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Abstract

Distributed Hash Tables (DHTs) support a hash-table-like
lookup interface: given a key, it maps the key onto a node.
One of the crucial questions facing DHTs is whether lookups
can route correctly in a dynamic environment where the rout-
ing state is inconsistent. The routing state may become in-
consistent when a node falsely thinks a failed neighbor is
up (false negative), when a node falsely removes a neighbor
that is up (false positive), when a new node joins but has not
been fully incorporated into the routing state (join hole),and
when a node leaves and disrupts the routing state (leave re-
covery). In this paper we analyze the cost of inconsistency in
DHTs. Using the example of Chord, we evaluate the cost of
each type of inconsistency on lookup performance. We find
that the routing invariant has a first order impact on the rel-
ative cost of different types of inconsistencies. In addition,
the cost of false negatives is higher than that of false posi-
tives, which means it is more important to ensure timely fail-
ure detection than a low probability of false positives. The
cost of join holes and leave recoveries are also higher than
that of false positives due to the routing invariant of Chord.
We also make conjectures about the cost of inconsistency in
other DHTs based on their routing invariants.

1 Introduction

In the last few years, distributed hash tables (DHTs) have
rapidly evolved and emerged as a promising platform to de-
ploy new applications and services in the Internet [12, 7, 9,
10]. DHTs support a hash-table-likelookup interface: given
a key, it maps the key onto a node.

Each node in the network maintains a routing table contain-
ing information about a few other (typicallyO(log n)) nodes.
Because the routing state is distributed, a node communi-
cates with other nodes to perform a lookup. The routing state
may become inconsistent as nodes continuously join and
leave the network, and cause lookups to fail. Thus, the de-
sign of algorithms to construct and maintain consistent rout-
ing state under continuous joins and leaves is an important
and fundamental issue.

The routing state may become inconsistent when a node
falsely thinks a failed neighbor is up (false negative), when
a node falsely removes a neighbor that is up (false positive),

when a new node joins but has not been fully incorporated
into the routing state (join hole), and when a node leaves and
disrupts the routing state (leave recovery).

The rate at which inconsistencies are generated and corrected
in a DHT depends on its component algorithms. False neg-
atives are generated by leaves and corrected by failure de-
tection algorithms; false positives are generated by failure
detection algorithms and corrected by recovery algorithms;
join holes are generated by joins and corrected by join al-
gorithms; and leave recoveries are generated by leaves and
corrected by recovery algorithms. Minimizing one type of
inconsistency may come at the cost of another type of in-
consistency. For example, more aggressive failure detection
algorithms reduce the duration of false negatives but may in-
crease the rate of false positives.

The relative cost of false negatives, false positives, joinholes,
and leave recoveries on lookup performance also depend on
the routing invariant of a DHT. The routing invariant speci-
fies the information in the routing state that must be correct
in order to guarantee correct routing of lookups. As we il-
lustrate in the context of Chord, the routing invariant has a
first order impact on the relative cost of inconsistencies on
lookup performance.

Our work here focuses on identifying lookup pathologies
that can result from routing state inconsistencies and analyz-
ing the relative cost of different types of inconsistencieson
lookup performance, rather than proposing new algorithms
to minimize false negatives, false positives, join holes, and
leave recoveries. Understanding the impact of routing incon-
sistencies on lookup performance will provide important in-
sights on how to make certain choices and tradeoffs when
designing future algorithms to construct and maintain con-
sistent routing state.

The rest of the paper is organized as follows. In Section 2, we
identify the possible outcomes of a lookup, and illustrate the
lookup pathologies that can result from routing state incon-
sistencies in Chord. We present our simulation methodology
in Section 3. In Section 4, we evaluate the cost of each type
of inconsistency on lookup performance in Chord. In Sec-
tion 5, we make conjectures about the relative cost of false
negatives, false positives, join holes, and leave recoveries in
several other DHTs based on their routing invariants. We dis-
cuss related work in Section 6, and conclude in Section 7.
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Inconsistency Generated by Corrected by
False negative Leaves Failure detection

algorithms
False positive Failure detection Recovery algorithms

algorithms
Join hole Joins Join algorithms
Leave recovery Leaves Recovery algorithms

Table 1:Routing State Inconsistencies.
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Figure 1:Breakdown of possible outcomes of a lookup.

2 Design

2.1 Routing State Inconsistencies

There are four types of routing state inconsistencies: false
negative, false positive, join hole, and leave recovery. A false
negative occurs in a node’s routing state when a neighbor
fails but the node has not yet detected the failure of the neigh-
bor. False negatives are detected and corrected by failure de-
tection algorithms, and the failed neighbor is then removed
from the node’s routing state. A false positive occurs when
a node falsely removes a neighbor that is up. False positives
are generated by failure detection algorithms when the al-
gorithms make false detections, and they are corrected by re-
covery algorithms. A join hole occurs when a new node joins
but has not been fully incorporated into the routing state. Join
holes are corrected by join algorithms. A leave recovery oc-
curs after a node detects the failure of a neighbor but before
it is corrected by recovery algorithms. The different types
of inconsistencies, how they are generated and corrected are
summarized in Table 1.

2.2 Possible Outcomes of a Lookup

Figure 1 shows the possible outcomes of a lookup. A lookup
can either timeout or return a reply. A timeout can be caused
by loss, loop, or premature timeout. A lookup loss occurs
when it is dropped by the underlying IP network, or when
forwarded to a failed neighbor. A lookup loop is caused by
inconsistencies in the routing state. A premature timeout oc-
curs when the timeout value is too short and the lookup is
still being processed in the network. When a lookup returns
a reply, the answer is either correct or incorrect. An incorrect

B

AC

B

AC

(a) Loss NET (b) Loss FN

Figure 2:Possible scenarios of a lookup loss in Chord.

reply is caused by inconsistencies in the routing state.

2.3 Chord Protocol

Using the example of Chord [10], we illustrate lookup
pathologies that can result from routing state inconsistencies.

Chord is a distributed lookup protocol that provides a hash
function mapping keys to nodes responsible for them. It as-
sumes a circular identifier space of integers[0, 2m). Chord
ensures that the node responsible for a key is found after
O(log n) hops.

The routing state maintained by each nodeA consists of a
predecessor, successors, and fingers. Predecessor is the node
that immediately precedesA on the identifier circle. Succes-
sors are the first few nodes that succeedA on the identifier
circle. Theith finger is the first node that succeedsA by at
least2i−1, where1 ≤ i ≤ m. The routing invariant in Chord
states that lookups will route correctly if each node’s prede-
cessor and successor are correctly maintained.

In order to ensure that lookups execute correctly as the set
of participating nodes changes, Chord must ensure that each
node’s routing state is up to date. It does this using astabi-
lize protocol that each node periodically runs everyTs sec-
onds. In each stabilization round, a node updates its immedi-
ate successor and another node in its routing state.

2.3.1 Cost of Inconsistency: Loss

A lookup loss occurs when it is dropped by the underlying IP
network (Loss-NET), or when forwarded to a failed neighbor
(Loss-FN).

Loss-NET Figure 2(a) shows a lookup loss caused by the
underlying IP network. Nodes A, B, and C are nodes on the
Chord ring. When A forwards a lookup to B and B forwards
it on to C, the lookup is dropped by the underlying IP net-
work from B to C.

Loss-FN Figure 2(b) shows a lookup loss caused by a false
negative in the routing state of node B. Nodes A, B, and C
are nodes on the Chord ring, and C fails, but node B falsely
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Figure 3:Cost of inconsistency: loop.

thinks its neighbor C is still up. When A forwards a lookup
to B and B forwards it on to C, a lookup loss occurs. Such a
lookup loss persists until node B detects the failure of C and
removes it from its routing state.

Thus minimizing the detection time of a node failure reduces
lookup losses caused by false negatives.

2.3.2 Cost of Inconsistency: Loop

Figure 3 shows a lookup loop in Chord, where circles de-
note nodes on the Chord ring, rectangles denote lookup keys,
solid arrows denote neighbor relationships, and dotted ar-
rows denote path taken by a lookup. In Figure 3, node A
points to node B as its successor, and node B points to node
P as its predecessor. When node A forwards a lookup to its
successor B, node B forwards it on because the lookup key
is not between B’s predecessor P and B. This results in a
lookup loop.

Figure 4 shows possible violations of the routing invariant
that can cause lookup loops. There are two scenarios to con-
sider. First, node A’s successor is incorrect (i.e., A incorrectly
points to B as its successor), and B’s predecessor is correct
or incorrect. Second, node A’s successor is correct (i.e., A
correctly points to B as its successor), and B’s predecessoris
incorrect.

In the first scenario, node A’s correct successor should be
some node S between A and the key (Figure 4(a)), or some
node S between the key and B (Figure 4(b)). The above two
cases can be caused by false positives, join holes, or leave
recoveries in the routing state.

Loop-FP A false positive in the failure detection algorithm
at node A may cause A to incorrectly remove node S from its
routing state, resulting in node A incorrectly pointing to node
B as its successor. Such a routing loop persists until node A
reinserts node S in its routing state. Thus, minimizing the
number of false positives reduces lookup loops caused by
false positives.

Loop-Join A join hole occurs when a new node S joins
but has not been incorporated into the routing state of node
A. Join holes and false positives are similar in that a node
S should, but does not exist in the routing state of node A.
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P

Figure 5:Cost of inconsistency: incorrect lookup.
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Figure 6:Possible scenarios of an incorrect lookup in Chord.

A routing loop caused by a join hole persists until node A
inserts node S in its routing state. Thus, minimizing the time
it takes a node to fully join the network reduces lookup loops
caused by join holes.

Loop-Leave A leave recovery occurs after a node A de-
tects the failure of a neighbor but before the recovery algo-
rithm corrects A’s routing state to point to the new successor
S. Such a routing loop persists until node A inserts node S
in its routing state. Thus, minimizing the time it takes a node
to recover from leaves reduce lookup loops caused by leave
recoveries.

In the second scenario, node B’s predecessor is incorrect, and
its correct predecessor should be A. This can be caused by a
false negative in node B’s routing state as illustrated in Fig-
ure 4(c).

Loop-FN In Figure 4(c), node B falsely thinks a failed
neighbor, node P, is still alive, resulting in node B incorrectly
pointing to node P as its predecessor. Such a routing loop
persists until node B detects the failure of P and removes it
from its routing state. Thus, minimizing the detection time
of a node failure reduces lookup loops caused by false nega-
tives.

2.3.3 Cost of Inconsistency: Incorrect Lookup

Figure 5 shows an incorrect lookup in Chord, where circles
denote nodes on the Chord ring, rectangles denote lookup
keys, solid arrows denote neighbor relationships, and dotted
arrows denote path taken by a lookup. In Figure 5, node A
points to node B as its successor, and node B points to a node
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Figure 4:Possible scenarios of a lookup loop in Chord.

(e.g. node A) before the key as its predecessor. When node
A forwards a lookup to its successor B, node B accepts it
because the lookup key is between B’s predecessor and B.
This results in an incorrect lookup because there is another
node (e.g. node P) between the key and B.

Figure 6 shows possible violations of the routing invariant
that can cause incorrect lookups. There is only one scenario
to consider. In order to cause an incorrect lookup, node A’s
successor and node B’s predecessor are both incorrect. Node
A’s successor is incorrect because there is some node (e.g.
node S) between the key and node B, and node B’s prede-
cessor is also incorrect because B only accepts a lookup if its
predecessor is before the key but there is a node (e.g. node
P) between the key and node B.

In Figure 6(a), node A’s correct successor should be some
node S between A and the key. In Figure 6(b), node A’s cor-
rect successor should be some node S between the key and
B. The above two cases can be caused by false positives,
join holes, or leave recoveries in the routing state. In both
Figures 6(a) and 6(b), node B’s correct predecessor should
be some node between the key and B (e.g. node P). This can
be caused by false positives, join holes, or leave recoveries
in the routing state.

3 Simulation Methodology

We now present simulation results evaluating the cost of
false negatives, false positives, join holes and leave recov-
eries in Chord. We make conjectures about the cost of incon-
sistencies in several other DHTs in Section 5.

In each simulation, we start a Chord network with 1000
nodes by joining a new node to a random bootstrap node
once a second. Then we repeatedly kill and replace a ran-
dom node, timed by a Poisson process.

Key lookups are initiated from random sources to random
keys, timed by a Poisson process at a rate of 20 per second.
Lookups are routed recursively; each intermediate node for-
wards a lookup to the next until it reaches the node respon-
sible for the key. The destination node sends back a reply
to the source node of the lookup. We examine the causes of
lookup timeouts, and incorrect lookups.
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Figure 7: Breakdown of lookup timeouts vs. network loss
rate

4 Simulation Results

4.1 Results: Lookup Timeouts vs. Network
Loss Rate

Here we examine the breakdown of lookup timeouts as the
network loss rate increases from 0.01 to 0.05. For this set of
simulations, we hold the churn rate at 0.75 leaves per second,
which corresponds to a mean lifetime of 22.22 minutes.

Figure 7 shows a breakdown of the causes of lookup time-
outs. As expected, the number of losses due to the under-
lying IP network (Loss-NET) increases as the network loss
rate increases.

The number of losses due to false negatives (Loss-FN) re-
mains approximately constant because the probability of for-
warding a lookup to a failed neighbor varies with the churn
rate, but does not depend on the network loss rate [13]. For
the mean lifetime of 22.22 minutes, a significant number of
lookups are lost due to false negatives. On the other hand,
the number of loops caused by false negatives (Loop-FN)
remains insignificant.

The number of loops due to false positives (Loop-FP) in-
creases slowly as the network loss rate increases because the
number of false detections made by failure detection algo-
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rithms increases. However, such loops remain insignificant.

The number of loops due to join holes (Loop-Join) and leave
recoveries (Loop-Leave) remain approximately constant be-
cause such loops only depend on the churn rate.

The results in Figure 7 show that for network loss rates from
0.01 to 0.05, loss due to false negatives causes more timeouts
than loop due to false positives in Chord. Thus it is more im-
portant to ensure timely failure detection than a low probabil-
ity of false positives under such conditions. In addition, loop
due to join holes causes more timeouts than loop due to false
positives in Chord. For example, when the network loss rate
is 0.05, the average number of timeouts due to Loop-FP is 0.4
per minute and the average number of timeouts due to Loop-
Join is 9.4 per minute. This may be surprising since the aver-
age rate of false positives (56 per minute) is greater than the
average rate of joins (45 per minute) in the Chord network.
This discrepancy can be resolved by looking at Chord’s rout-
ing invariant, which states that lookups will route correctly
if each node’s predecessor and successor are correctly main-
tained [10]. When a new node joins, the routing invariant is
violated for both the predecessor and successor of the new
node. When a node falsely removes a neighbor, this false
positive results in a violation of the routing invariant only
if the neighbor is the predecessor or successor of the node.
Hence, a join in Chord always violates the routing invariant,
whereas a false positive may not necessarily do so. Thus,
join protocols such as [3] that can sustain a high rate of node
dynamics will improve the rate at which new nodes become
fully incorporated into the routing state, and thereby reduce
the number of lookup timeouts due to join holes.

Figure 7 also shows that loss (due to the underlying IP net-
work or forwarding to a failed neighbor) causes significantly
more timeouts than loop in Chord. Such loss induced time-
outs dwarf loop induced timeouts. In Section 4.5, we employ
perhop retry to reduce lookup losses, and evaluate the break-
down of lookup timeouts under perhop retry.

4.2 Results: Incorrect Lookups vs. Network
Loss Rate

Recall from Section 2.3.3, an incorrect lookup occurs only
when node A’s successor and node B’s predecessor are both
incorrect, where A is the node forwarding the lookup to B,
and B is the node accepting the lookup. The incorrectness of
node A’s successor or node B’s predecessor can be caused
by false positives, join holes, or leave recoveries. In addi-
tion, when node B is the source of a lookup and incorrectly
believes it is the destination (i.e., B accepts the lookup with-
out forwarding), we include a special type of inconsistency
called NO inconsistency because the successor pointer is not
used when B incorrectly accepts the lookup. Thus, we have
a matrix of four by four entries where each row represents a
particular inconsistency that caused the incorrectness ofthe
successor pointer, and each column represents a particular
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Figure 8: Breakdown of incorrect lookups vs. network loss
rate

inconsistency that caused the incorrectness of the predeces-
sor pointer, and each entry represents the number of times a
particular inconsistency pair caused an incorrect lookup1.

Figure 8 shows a breakdown of the causes of incorrect
lookups. For clarity of presentation, we only plot the Join
row in the matrix (i.e., the successor pointer is incorrect due
to join holes in the routing state). Figure 8 shows that join
holes (Join-Join) and leave recoveries (Join-Leave) cause
more incorrect lookups than false positives (Join-FP). This
difference is again explained by Chord’s routing invariant.
For example, when a new node N joins, the routing invariant
is violated for both the predecessor P and successor S of the
new node N. When a node N leaves, the routing invariant is
violated for the successor S of the node N, and may or may
not be violated for the predecessor P of the node N. This is
because node P maintains a list of successors in Chord, so the
routing invariant is not violated for P if it already has node
S as a neighbor in its routing state. When a node falsely re-
moves a neighbor, this false positive results in a violationof
the routing invariant only if the neighbor is the predecessor
or successor of the node. Thus, join holes and leave recov-
eries are more significant causes of incorrect lookups than
false positives in Chord.

4.3 Results: Lookup Timeouts vs. Churn Rate

Overlay networks are intended to scale to at least hundreds
of thousands of nodes, where nodes are joining and leaving,
putting the network into a continuous state of “churn”. Here
we observe how the cost of false negatives, false positives,
join holes, and leave recoveries vary as churn rate increases.
We use mean lifetimes of 88.88, 44.44, 22.22, 11.11, and
5.55 minutes, which correspond to churn rates of 0.1875,

1Note that the following entries in the matrix are always zero:
NO-NO, FP-NO, Join-NO, Leave-NO.
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Figure 9: Breakdown of lookup timeouts vs. churn rate

0.375, 0.75, 1.5, and 3 leaves per second. The network loss
rate is 0.05 in these simulations.

Figure 9 shows a breakdown of the causes of lookup time-
outs. The number of losses due to the underlying IP network
(Loss-NET) remains approximately constant as churn rate
increases because the network loss rate is held at 0.05.

The number of losses due to false negatives (Loss-FN) in-
creases because the probability of forwarding a lookup to
a failed neighbor increases as churn rate increases [13]. On
the other hand, the number of loops due to false negatives
(Loop-FN) remains insignificant.

The number of loops due to false positives (Loop-FP) re-
mains insignificant as churn rate increases. At a network
loss rate of 0.05, the rate of false positives is low (56 per
minute [13]). Moreover, a false positive leads to lookup loops
only if it is caused by a node falsely removing its successor.

As expected, the number of loops due to join holes (Loop-
Join) and leave recoveries (Loop-Leave) increases because
the fraction of nodes with incorrect successors increases as
churn rate increases. Loop due to join holes becomes a sig-
nificant cause of timeouts as churn rate increases. Thus, join
protocols such as [3] that improve the rate at which new
nodes can join a network will allow the network to support
higher churn rates.

The results in Figure 9 again show that loss due to the un-
derlying IP network or false negatives causes significantly
more timeouts than loop in Chord. In Section 3.4, we em-
ploy perhop retry to reduce lookup losses, and evaluate the
breakdown of lookup timeouts versus churn rate under per-
hop retry.
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Figure 10: Breakdown of incorrect lookups vs. churn rate

4.4 Results: Incorrect Lookups vs. Churn
Rate

Figure 10 plots a breakdown of the causes of incorrect
lookups when the successor pointer is incorrect due to join
holes in the routing state. The number of incorrect lookups
due to false positives (Join-FP) remains insignificant as
churn rate increases. At a network loss rate of 0.05, the rate
of false positives is low, and a false positive leads to incorrect
lookups only if it is falsely removed by its successor.

The number of incorrect lookups due to join holes (Join-
Join) and leave recoveries (Join-Leave) increases as churn
rate increases because the fraction of nodes with incor-
rect predecessors and successors increases as churn rate in-
creases. Thus, join holes and leave recoveries are more sig-
nificant causes of incorrect lookups than false positives in
Chord.

4.5 Results: Perhop Retry

In this section, we employ per overlay hop retry to reduce
lookup losses, which cause a significant fraction of lookup
timeouts. We implement a simple perhop retry mechanism
in Chord, where a node forwards a lookup to a neighbor,
and waits for an ack. If a lookup is not acknowledged within
some timeout period, it is retransmitted to the same neighbor
up to a maximum of MAXNBR TRIES-1 times. If an ack
is not received from the neighbor after MAXNBR TRIES
transmissions, the neighbor is marked as possibly down, and
the node tries another neighbor. Note that a neighbor marked
as possibly down is not used in forwarding until the status is
reset when the node receives an ack in response to a lookup
or when the node receives an ack in response to a keep-alive
probe. For this set of simulations, we set the perhop time-
out period to 50 milliseconds, and MAXNBR TRIES to 3.
For more sophisticated implementations of perhop retry that
maintains TCP-like state for each neighbor, refer to [8].
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Figure 11: Breakdown of lookup timeouts vs. network loss
rate under perhop retry

Perhop retry introduces a new type of inconsistency, possibly
down (PD). A PD inconsistency occurs when a node falsely
marks a neighbor as possibly down. False positives and pos-
sibly downs are similar in that a false positive should but
does not exist in the routing state of a node, and a possibly
down exist in the routing state but is not used in forwarding.

We now present simulation results evaluating the cost of
false negatives, false positives, join holes, leave recoveries
and possibly downs in Chord under perhop retry.

4.5.1 Lookup Timeouts vs. Network Loss Rate

Figure 11 shows a breakdown of the causes of lookup time-
outs versus network loss rate under perhop retry.

Lookup losses due to the underlying IP network and false
negatives are significantly reduced. For example, when the
network loss rate is 0.05, the average number of timeouts
due to Loss-NET and Loss-FN are 1 per minute and 1.5 per
minute under perhop retry, compared to 208.1 per minute
and 72.8 per minute without perhop retry. This shows that
perhop retry is very effective at reducing lookup losses.

Figure 11 shows that the three most significant causes of
lookup timeouts are loops due to false negatives (Loop-FN),
join holes (Loop-Join), and leave recoveries (Loop-Leave).
The number of loops due to possibly downs (Loop-PD) is
low. The number of loops due to false positives (Loop-FP)
remains insignificant. Thus, it is more important to ensure
timely failure detection than a low probability of false posi-
tive, and the cost of join holes and leave recoveries is higher
than that of false positives due to the routing invariant of
Chord.

4.5.2 Incorrect Lookups vs. Network Loss Rate

Figure 12 shows a breakdown of the causes of incorrect
lookups versus network loss rate under perhop retry. For clar-
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Figure 12: Breakdown of incorrect lookups vs. network loss
rate under perhop retry
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Figure 13: Breakdown of lookup timeouts vs. churn rate un-
der perhop retry

ity of presentation, we only plot the Join row in the matrix
(i.e. the successor pointer is incorrect due to join holes inthe
routing state). The results in Figure 12 show that join holes
and leave recoveries are more significant causes of incorrect
lookups than false positives in Chord.

4.5.3 Lookup Timeouts vs. Churn Rate

Figure 13 shows a breakdown of the causes of lookup time-
outs versus churn rate under perhop retry. Again lookup
losses due to the underlying IP network and false negatives
are significantly reduced. The three most significant causes
of lookup timeouts are loops due to false negatives (Loop-
FN), join holes (Loop-Join), and leave recoveries (Loop-
Leave).
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Figure 14: Breakdown of incorrect lookups vs. churn rate
under perhop retry

4.5.4 Incorrect Lookups vs. Churn Rate

Figure 12 shows a breakdown of thecauses of incorrect
lookups versus churn rate under perhop retry. These results
again show that join holes and leave recoveries are more sig-
nificant causes of incorrect lookups than false positives in
Chord.

5 Discussion and Future Work

In this section, we make conjectures about the relative costof
false negatives, false positives, join holes, and leave recover-
ies in several other DHTs based on their routing invariants.
A more in-depth quantitative study that makes precise these
costs might yield other interesting results. We consider the
following DHTs: CAN [7], Tapestry [12], and Pastry [9].

The number of losses due to false negatives depends on the
failure detection algorithm and churn rate [13], but does not
depend on the routing invariant. Thus, DHTs will experience
similar costs of false negatives on lookup performance under
similar failure detection algorithms and churn rates.

CAN A virtual d-dimensional Cartesian coordinate space
is partitioned among all the nodes in the system such that
every node owns its individual, distinct zone within the over-
all space. A CAN node maintains a routing table that con-
tains the IP address and virtual coordinate zone of each of its
neighbors in the coordinate space. Two nodes are neighbors
if their coordinate spans overlap alongd− 1 dimensions and
abut along one dimension. To route a lookup, the key is deter-
ministically mapped onto a pointP in the coordinate space
using a uniform hash function. The lookup is then routed to
the node that owns the zone within which pointP lies. There
are no loops because each routing step takes a lookup to a
node that is geographically closer to pointP than the local
node.

The routing invariant of CAN states: a routing table must
store at least two neighbors per dimension, one to advance
and one to retreat along each dimension. A false positive vi-
olates the routing invariant when a node falsely removes the
only neighbor that advances or retreats along a dimension.
A join hole or leave recovery violates the routing invariant
of nodes who are neighbors of the new node or the leaving
node (up toO(d) nodes).

If the number of dimensionsd in CAN is set to(log n)/2,
then each node maintainsO(log n) neighbors as in Chord.
Given the greater number of places where the routing in-
variant could be violated, the cost of false positives and join
holes may be higher in CAN than in Chord on lookup per-
formance. However, the cost of false positives and join holes
may be comparable in CAN.

Tapestry A Tapestry node ID is a sequence ofl digits,
where each digit is in baseb. An identifier space with a hex-
adecimal base and 160-bit values is commonly used (l = 40,
b = 16). Each node has a routing table withl levels, where
each level containsb entries. Neighbors in theith level share
a prefix of lengthi − 1 digits with the local node, but differ
in theith digit. Each entry contains a primary neighbor and a
few backup neighbors. A lookup is routed by matching suc-
cessive digits in the key (prefix-based routing). When a digit
cannot be matched, the neighbor with the next higher digit
(modulob) is chosen. There are no loops because each rout-
ing step “matches” one more level in the key by forwarding
the lookup to a node that either (1) shares a longer prefix with
the key than the local node, or (2) shares as long a prefix, but
with the next higher digit when a digit cannot be matched.

The routing invariant of Tapestry states: (i) every entry in
a routing table must store at least one neighbor if qualified
nodes exist; (ii) if there is no qualified node for an entry, then
the entry must be empty. A false positive violates the routing
invariant when a node falsely removes the only neighbor in
a routing entry. In particular, a false positive always violates
the routing invariant when a node falsely removes a neighbor
in the lth level. A join hole violates the routing invariant of
any node (up to(b − 1) × bl−i nodes) who shares a prefix
of lengthi − 1 with the new node if the new node is the first
node in the network with a particular prefix of lengthi. In
particular, since a new node is the first node in the network
with a particular prefix length ofl, a join hole always vio-
lates the routing invariant of any node (up tob − 1 nodes)
who shares a prefix of lengthl − 1 with the new node. A
leave recovery violates the routing invariant when a neigh-
bor leaves and it is the only neighbor in a routing entry. For
example, a leave recovery violates the routing invariant of
any node (up to(b− 1)× bl−i nodes) who shares a prefix of
lengthi − 1 with the leaving node if the leaving node is the
only node in the network with a particular prefix of length
i. In particular, since a leaving node is the only node in the
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network with a particular prefix length ofl, a leave recovery
always violate sthe routing invariant of any node (up tob−1
ndoes) who shares a prefix of lengthl − 1 with the leaving
node.

Given the greater number of places where the routing invari-
ant could be violated, the cost of false positives, join holes,
and leave recoveries may be higher in Tapestry than in Chord
on lookup performance. However, join holes or leave recov-
eries are still more costly than false positives in Tapestrybe-
cause a join hole or leave recovery always violates the rout-
ing invariant, whereas a false positive may not necessarilydo
so.

Pastry Systems like Pastry (and Bamboo [8]) are built al-
most like Tapestry, but each node also maintains a leaf set in
addition to the routing table. A node’s leaf set is the set of
2k nodes immediately preceding and following it in the cir-
cular identifier space. A lookup is routed to the node whose
ID is numerically closest to the key. There are no loops be-
cause each routing step takes a lookup to a node that either
(1) shares a longer prefix with the key than the local node, or
(2) shares as long a prefix with, but is numerically closer to
the key than the local node.

Because of the leaf set, the routing invariant in Pastry is the
same as in Chord. A false positive does not violate the rout-
ing invariant unless it is falsely removed by either its pre-
decessor or successor on the circular identifier space. A join
hole or leave recovery violates the routing invariant for both
the predecessor and successor of the new node or the leaving
node.

Given the same routing invariant as Chord, the relative cost
of false positives, join holes, and leave recoveries on lookup
performance in Pastry should be similar to Chord.

6 Related Work

There are several works which analyze DHTs in the context
of static networks. Xu [11] studies the fundamental tradeoff
between the size of the routing table and the network diam-
eter in designing a DHT. Gummadi et al. [1] explore the im-
pact of DHT routing geometry on static resilience and prox-
imity. Loguinov [6] examine the effect of graph-theoretic
properties of structured peer-to-peer architectures on rout-
ing distances and fault resilience. In contrast, we analyzethe
cost of inconsistency on lookup performance in a dynamic
environment with continuous churn.

Liben-Nowell et al. [5] present a theoretical analysis of peer-
to-peer networks under continuous churn. They give a lower
bound on the rate of maintenance traffic for a network to re-
main connected, and prove that Chord’s maintenance rate is
within a logarithmic factor of the optimum rate. The analy-
sis focuses on asymptotic bounds, and assumes perfect fail-
ure detection and reliable message delivery. In contrast, we

examine the cost of inconsistency on lookup performance
under realistic system conditions such as message loss and
false failure detections.

Li et al. [4] analyze the performance of lookups in Chord,
Kademlia, Kelips, and Tapestry under churn. Lookups that
timeout or return incorrect replies are retried up to a maxi-
mum of four seconds. Protocol parameters are varied to ex-
plore the tradeoff between lookup latency and bandwidth
cost. Rather than looking at how protocol parameters affect
lookup performance, we study why lookups timeout or re-
turn incorrect replies in Chord. In particular, we identifythe
different types of inconsistencies, and evaluate the cost of
each type of inconsistency on lookup performance.

Lam et al. [3] present a new join protocol for hypercube rout-
ing that can sustain a high rate of node dynamics by main-
taining K-consistent neighbor tables. Join protocols of other
DHTs may also be improved to increase the rate at which
new nodes become fully incorporated into the routing state,
and thereby reduce the number of lookup timeouts due to
join holes, a significant factor of lookup timeouts and incor-
rect lookups.

Krishnamurthy et al. [2] presents a theoretical analysis of
Chord using a Master-equation formalism to predict the frac-
tion of failed or incorrect successor and finger pointers and
use these quantities to predict number of failed lookups
and lookup latency. In contrast, we identify the type of in-
consistency that led to incorrect predecessor and successor
pointers, and evaluate the cost of each type of inconsistency
on lookup performance. By identifying inconsistencies that
have significant costs on lookup performance, we can im-
prove certain aspects of a DHT to minimize such inconsis-
tencies.

Zhuang et al. [13] study how the design of various keep-alive
algorithms affect their performance in node failure detec-
tion time, probability of false positive, control overhead, and
packet loss rate. In contrast, we aim to address the question
of how node failures, false positives, joins, and leaves actu-
ally impact application-level performance by evaluating the
cost of inconsistency on lookup performance.

7 Conclusion

This paper studies the cost of inconsistency on lookup pe-
formance in DHTs. Using the example of Chord, we evalu-
ate the cost of each type of inconsistency on lookup perfor-
mance. Our results indicate that the routing invariant has a
first order impact on the relative cost of different types of in-
consistencies. In addition, the cost of false negatives is higher
than that of false positives, which means it is more impor-
tant to ensure timely failure detection than a low probability
of false positives. The cost of join holes is also higher than
that of false positives due to the routing invariant of Chord.
We also make conjectures about the cost of inconsistency
in other DHTs based on their routing invariants. We believe
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that these findings will provide important insights on how
to make certain choices and tradeoffs when designing future
algorithms to construct and maintain consistent routing state
in DHTs.
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