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Abstract when a new node joins but has not been fully incorporated

o . into the routing state (join hole), and when a node leaves and
Distributed Hash Tables (DHTSs) support a hash-table-like disrupts the routing state (leave recovery).

lookup interface: given a key, it maps the key onto a node. o i .
One of the crucial questions facing DHTS is whether lookups The rate at which inconsistencies are generated and cedrect

can route correctly in a dynamic environmentwhere the rout- I" @ DHT depends on its component algorithms. False neg-
ing state is inconsistent. The routing state may become in-atives aré generated by leaves and corrected by failure de-
consistent when a node falsely thinks a failed neighbor is {€Ction algorithms; false positives are generated by ri@ilu
up (false negative), when a node falsely removes a neighborfje_te‘:t'on algorithms and cor_repted by recovery algo_rlt.hms
that is up (false positive), when a new node joins but has notiin holes are generated by joins and corrected by join al-
been fully incorporated into the routing state (join hote)d gorithms; and leave recoveries are g.er_lera_ted by leaves and
when a node leaves and disrupts the routing state (leave reSorrected by recovery algorithms. Minimizing one type of
covery). In this paper we analyze the cost of inconsistemcy | INconsistency may come at the cost of another type of in-
DHTs. Using the example of Chord, we evaluate the cost of COnsistency. For example, more aggressive failure detecti
each type of inconsistency on lookup performance. We find algorithms reduce the dura‘qc_m of false negatives but may in
that the routing invariant has a first order impact on the rel- créase the rate of false positives.

ative cost of different types of inconsistencies. In adwdifi The relative cost of false negatives, false positives, ljoiles,

the cost of false negatives is higher than that of false posi- and leave recoveries on lookup performance also depend on
tives, which means it is more important to ensure timely fail  the routing invariant of a DHT. The routing invariant speci-
ure detection than a low probability of false positives. The fies the information in the routing state that must be correct
cost of join holes and leave recoveries are also higher thanin order to guarantee correct routing of lookups. As we il-
that of false positives due to the routing invariant of Chord lustrate in the context of Chord, the routing invariant has a
We also make conjectures about the cost of inconsistency infirst order impact on the relative cost of inconsistencies on
other DHTs based on their routing invariants. lookup performance.

Our work here focuses on identifying lookup pathologies
1 Introduction that can result from routing state inconsistencies andyanal
o ing the relative cost of different types of inconsisten@as

In the last few years, distributed hash tables (DHTSs) have lookup performance, rather than proposing new algorithms
rapidly evolved and emerged as a promising platform to de- 5 minimize false negatives, false positives, join holes a
ploy new applications and services in the Internet [12, 7, 9, |eaye recoveries. Understanding the impact of routingrinco
10]. DHTs support a hash-table-likeokup interface: given  gjstencies on lookup performance will provide important in
a key, it maps the key onto a node. sights on how to make certain choices and tradeoffs when
Each node in the network maintains a routing table contain- designing future algorithms to construct and maintain con-
ing information about a few other (typicaly(log n)) nodes. sistent routing state.

Because the routing state is distributed, a node communi-The rest of the paper is organized as follows. In Section 2, we
cates with other nodes to perform a lookup. The routing state jgentify the possible outcomes of a lookup, and illustrae t
may become inconsistent as nodes continuously join and|ookup pathologies that can result from routing state incon
leave the network, and cause lookups to fail. Thus, the de-jstencies in Chord. We present our simulation methodology
sign of algorithms to construct and maintain consistent-rou i, section 3. In Section 4, we evaluate the cost of each type
ing state under cc_>ntinuous joins and leaves is an important ¢ inconsistency on lookup performance in Chord. In Sec-
and fundamental issue. tion 5, we make conjectures about the relative cost of false
The routing state may become inconsistent when a nodenegatives, false positives, join holes, and leave receséni
falsely thinks a failed neighbor is up (false negative), whe several other DHTs based on their routing invariants. We dis
a node falsely removes a neighbor that is up (false positive) cuss related work in Section 6, and conclude in Section 7.



Inconsistency | Generated by Corrected by (a) Loss NET (b) Loss FN
False negative | Leaves Failure detection
algorithms
False positive | Failure detection| Recovery algorithms C @ A c A
algorithms
Join hole Joins Join algorithms
Leave recovery| Leaves Recovery algorithms
Table 1:Routing State Inconsistencies. O
B B
Loss : _ _ :
) Figure 2:Possible scenarios of a lookup loss in Chord.
Timeout Loop
Premature reply is caused by inconsistencies in the routing state.
Looku Timeout
2.3 Chord Protocol
Reply Correct Using the example of Chord [10], we illustrate lookup
: pathologies that can result from routing state inconscésn
Incorrect Chord is a distributed lookup protocol that provides a hash

function mapping keys to nodes responsible for them. It as-
sumes a circular identifier space of integfr2™). Chord
ensures that the node responsible for a key is found after
O(logn) hops.

Figure 1:Breakdown of possible outcomes of a lookup.

2 Design

. ) . The routing state maintained by each notieonsists of a
2.1 Routing State Inconsistencies predecessor, successors, and fingers. Predecessor islthe no
that immediately precedeton the identifier circle. Succes-
sors are the first few nodes that succeedn the identifier
circle. Theith finger is the first node that succeeddy at
least2’~!, wherel < i < m. The routing invariantin Chord
states that lookups will route correctly if each node’s pred
cessor and successor are correctly maintained.

There are four types of routing state inconsistenciesefals
negative, false positive, join hole, and leave recovenal8¢d
negative occurs in a node’s routing state when a neighbor
fails but the node has not yet detected the failure of thelmeig
bor. False negatives are detected and corrected by faiire d
tection algorithms, and the failed neighbor is then removed
from the node’s routing state. A false positive occurs when In order to ensure that lookups execute correctly as the set
a node falsely removes a neighbor that is up. False positivesof participating nodes changes, Chord must ensure that each
are generated by failure detection algorithms when the al- node’s routing state is up to date. It does this usirstabi-
gorithms make false detections, and they are corrected by re lize protocol that each node periodically runs evétysec-
covery algorithms. A join hole occurs when a new node joins onds. In each stabilization round, a node updates its immedi
but has not been fully incorporated into the routing staign J  ate successor and another node in its routing state.

holes are corrected by join algorithms. A leave recovery oc-

curs after a node detects the failure of a neighbor but before2.3.1  Cost of Inconsistency: Loss

it is corrected by recovery algorithms. The different types A lookup loss occurs when it is dropped by the underlying IP

of Inconsistencies, how they are generated and correoted ar network (Loss-NET), or when forwarded to a failed neighbor
summarized in Table 1. (Loss-FN)

2.2 Possible Outcomes of a Lookup
. . LosssNET Figure 2(a) shows a lookup loss caused by the
Figure 1 shows the possible outcomes of a lookup. A lookup underlying IP network. Nodes A, B, and C are nodes on the

can either timeout or return a reply. A timeout can be caused g ring. When A forwards a lookup to B and B forwards
by loss, loop, or premature timeout. A lookup loss occurs i o, to C, the lookup is dropped by the underlying IP net-
when it is dropped by the underlying IP network, or when 0.k from B to C.

forwarded to a failed neighbor. A lookup loop is caused by

inconsistencies in the routing state. A premature timeout o

curs when the timeout value is too short and the lookup is Loss-FN  Figure 2(b) shows a lookup loss caused by a false
still being processed in the network. When a lookup returns negative in the routing state of node B. Nodes A, B, and C
areply, the answer is either correct or incorrect. Aninectr ~ are nodes on the Chord ring, and C fails, but node B falsely



Figure 3:Cost of inconsistency: loop.

thinks its neighbor C is still up. When A forwards a lookup

to B and B forwards it on to C, a lookup loss occurs. Such a c
lookup loss persists until node B detects the failure of C and
removes it from its routing state.

Thus minimizing the detection time of a node failure reduces
lookup losses caused by false negatives.

. _—
2.3.2 Cost of Inconsi Stency: LOOp Lookup path Neighbor ptrs (incorrect) Correct pti

Figure 3 shows a lookup loop in Chord, where circles de-
note nodes on the Chord ring, rectangles denote lookup keys,
solid arrows denote neighbor relationships, and dotted ar-
rows denote path taken by a lookup. In Figure 3, node A A routing loop caused by a join hole persists until node A
points to node B as its successor, and node B points to nodenserts node S in its routing state. Thus, minimizing thestim
P as its predecessor. When node A forwards a lookup to itsit takes a node to fully join the network reduces lookup loops
successor B, node B forwards it on because the lookup keycaused by join holes.

is not between B’s predecessor P and B. This results in a

lookup loop.

Figure 6:Possible scenarios of an incorrect lookup in Chord.

Loop-Leave A leave recovery occurs after a node A de-

ch|g;Jre 4 showsl p(la(ssmlle V'OI_?_EonS of t?e routing !nva;rlant tects the failure of a neighbor but before the recovery algo-
1at can cause 00, uploops. There areé wo Scenarios 10 CoNn  corrects A's routing state to point to the new successo
sider. First, node A's successor is incorrect (i.e., A imeotly

ints to B as it 4B d . S. Such a routing loop persists until node A inserts node S
points to B as its successor), and B's predecessor is COrrecty js routing state. Thus, minimizing the time it takes a@od

or |nc0rrect: Second, n_ode A successor 'S, correct Q.e., A to recover from leaves reduce lookup loops caused by leave
correctly points to B as its successor), and B’s predecéssor recoveries

incorrect. _ .
Inthe second scenario, node B’s predecessor is incorrett, a

In the first scenario, node A's correct successor should beitS correct predecessor should be A. This can be caused by a

some node S between A and the key (Figure 4(a)), or some Lo ) ; ; -
node S between the key and B (Figure 4(b)). The above two L&:I:i(rg)aganve in node B's routing state as illustrated gv Fi
cases can be caused by false positives, join holes, or leave '
recoveries in the routing state.
Loop-FN In Figure 4(c), node B falsely thinks a failed
neighbor, node P, is still alive, resulting in node B incothg

) ! pointing to node P as its predecessor. Such a routing loop
atnode A may cause A to incorrectly remove node S fromits pergists until node B detects the failure of P and removes it

routing state, resulting in node A incorrectly pointing turie from its routing state. Thus, minimizing the detection time

B as its successor. Such a routing loop persists until node A4t 5 node failure reduces lookup loops caused by false nega-
reinserts node S in its routing state. Thus, minimizing the tj,es.

number of false positives reduces lookup loops caused by
false positives. 2.3.3 Cost of Inconsistency: Incorrect Lookup

Loop-FP A false positive in the failure detection algorithm

Figure 5 shows an incorrect lookup in Chord, where circles
Loop-Join A join hole occurs when a new node S joins denote nodes on the Chord ring, rectangles denote lookup
but has not been incorporated into the routing state of nodekeys, solid arrows denote neighbor relationships, anddott
A. Join holes and false positives are similar in that a node arrows denote path taken by a lookup. In Figure 5, node A
S should, but does not exist in the routing state of node A. points to node B as its successor, and node B points to a node



@ (b)

Lookup path

C A —_—
Neighbor ptrs (correct)
S —
key Neighbor ptrs (unspecified)
_—
Neighbor ptrs (incorrect)
r ~=Pr Q= P.. L ____
B Correct ptrs
Figure 4:Possible scenarios of a lookup loop in Chord.
(e.g. node A) before the key as its predecessor. When node b Iy
A forwards a lookup to its successor B, node B accepts it Loss—FN
. , 50( | —<— Loop-FN
because the lookup key is between B’s predecessor and B. —— Loop-FP

Loop-Join
40 | —=— Loop-Leave {
Total

This results in an incorrect lookup because there is another
node (e.g. node P) between the key and B.

Figure 6 shows possible violations of the routing invariant soy

that can cause incorrect lookups. There is only one scenario
to consider. In order to cause an incorrect lookup, node A's

successor and node B’s predecessor are both incorrect. Node
A's successor is incorrect because there is some node (e.g.

201

10r

Breakdown of Lookup Timeouts

node S) between the key and node B, and node B’s prede- or —— j:f:’:t

cessor is also incorrect because B only accepts a lookup if it

predecessor is before the key but there is a node (e.g. node -10, 0oL o 003 oo oo 006
P) between the key and node B. Network Loss Rate

In Figure 6(a), node A's correct successor should be SomeFigure 7: Breakdown of lookup timeouts vs. network loss
node S between A and the key. In Figure 6(b), node A's cor- rate

rect successor should be some node S between the key and

B. The above two cases can be caused by false positives,

join holes, or leave recoveries in the routing state. In both 4  Smulation Results

Figures 6(a) and 6(b), node B’s correct predecessor should

be some node between the key and B (e.g. node P). Thiscaml.1 Results. Lookup Timeouts vs. Network

be caused by false positives, join holes, or leave recaverie Loss Rate

in the routing state.

Here we examine the breakdown of lookup timeouts as the
network loss rate increases from 0.01 to 0.05. For this set of
simulations, we hold the churn rate at 0.75 leaves per second

3 Simulation Methodology which corresponds to a mean lifetime of 22.22 minutes.

We now present simulation results evaluating the cost of Figure 7 shows a breakdown of the causes of lookup time-

false negatives, false positives, join holes and leaveweco outs. As expected, the number of losses due to the under-
eries in Chord. We make conjectures about the cost of incon-lying IP network (Loss-NET) increases as the network loss

sistencies in several other DHTs in Section 5. rate increases.

In each simulation, we start a Chord network with 1000 The number of losses due to false negatives (Loss-FN) re-
nodes by joining a new node to a random bootstrap node mains approximately constant because the probabilityref fo
once a second. Then we repeatedly kill and replace a ran-warding a lookup to a failed neighbor varies with the churn
dom node, timed by a Poisson process. rate, but does not depend on the network loss rate [13]. For

Key lookups are initiated from random sources to random the mean lifetime of 22.22 minutes,.a significant number of
keys, timed by a Poisson process at a rate of 20 per second'.oomps are lost due to false negatives. On _the other hand,
Lookups are routed recursively; each intermediate node for € number of loops caused by false negatives (Loop-FN)
wards a lookup to the next until it reaches the node respon-"€mains insignificant.

sible for the key. The destination node sends back a reply The number of loops due to false positives (Loop-FP) in-
to the source node of the lookup. We examine the causes ofcreases slowly as the network loss rate increases because th
lookup timeouts, and incorrect lookups. number of false detections made by failure detection algo-



rithms increases. However, such loops remain insignificant i P
Join—-FP

[ | —— Join-Join

—+— Join-Leave
Total

I

The number of loops due to join holes (Loop-Join) and leave
recoveries (Loop-Leave) remain approximately constant be
cause such loops only depend on the churn rate.
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The results in Figure 7 show that for network loss rates from
0.011t0 0.05, loss due to false negatives causes more tisieout
than loop due to false positives in Chord. Thus it is more im-
portantto ensure timely failure detection than a low pralbab

ity of false positives under such conditions. In additiaop

due to join holes causes more timeouts than loop due to false
positives in Chord. For example, when the network loss rate
is 0.05, the average number of timeouts due to Loop-FPis 0.4
per minute and the average number of timeouts due to Loop-
Join is 9.4 per minute. This may be surprising since the aver-
age rate of false positives (56 per minute) is greater than th _ .
average rate of joins (45 per minute) in the Chord network. Figure 8: Breakdown of incorrect lookups vs. network loss
This discrepancy can be resolved by looking at Chord’s rout- rate

ing invariant, which states that lookups will route corhgct

if each node’s predecessor and successor are correctly mainjnconsistency that caused the incorrectness of the predece
tained [10]. When a new node joins, the routing invariantis gqor nointer, and each entry represents the number of times a
violated for both the predecessor and successor of the new, g ticylar inconsistency pair caused an incorrect lodkup
node. When a node falsely removes a neighbor, this false )

Figure 8 shows a breakdown of the causes of incorrect

positive results in a violation of the routing invariant wnl | X )
if the neighbor is the predecessor or successor of the node!00kupS. For clarity of presentation, we only plot the Join

Hence, a join in Chord always violates the routing invariant 0V in the matrix (i.e., the successor pointer is incorre d
whereas a false positive may not necessarily do so. Thus,[© 10in holes in the routing state). Figure 8 shows that join
join protocols such as [3] that can sustain a high rate of node Noles _(Jom-Jom) and leave recoveries (Jom-L_eave) cause
dynamics will improve the rate at which new nodes become more incorrect lookups than false positives (Join-FP)sThi

fully incorporated into the routing state, and thereby ey difference is again explained by Chord’s routing invariant
the number of lookup timeouts due to join holes. For example, when a new node N joins, the routing invariant

) _ is violated for both the predecessor P and successor S of the
Figure 7 also shows that loss (due to the underlying IP net- neyw node N. When a node N leaves, the routing invariant is

work or forwarding to a failed neighbor) causes significantl  yjs|ated for the successor S of the node N, and may or may
more timeouts than loop in Chord. Such loss induced time- o pe violated for the predecessor P of the node N. This is
outs dwarf loop induced timeouts. In Section 4.5, we émploy pecause node P maintains a list of successors in Chord, so the
perhop retry to reduce lookup losses, and evaluate the-break o ting invariant is not violated for P if it already has node
down of lookup timeouts under perhop retry. S as a neighbor in its routing state. When a node falsely re-
moves a neighbor, this false positive results in a violatibn

4.2 Results: Incorrect Lookups vs. Network the routing invariant only if the neighbor is the predecesso

L oss Rate or successor of the node. Thus, join holes and leave recov-

. . eries are more significant causes of incorrect lookups than
Recall from Section 2.3.3, an incorrect lookup occurs only false positives in Chord

when node A's successor and node B’s predecessor are both

incorrect, where A is the node forwarding the lookup to B, . .
and B is the node accepting the lookup. The incorrectness of4'3 Results: Lookup Timeoutsvs. Churn Rate

node As successor or node B's predecessor can be causeg,eriay networks are intended to scale to at least hundreds
by false positives, join holes, or leave recoveries. In addi 4t thousands of nodes, where nodes are joining and leaving,
tion, when node B is the source of a lookup and incorrectly ,ting the network into a continuous state of “churn”. Here

believes it is the destination (i.e., B accepts the lookupwi e ghserve how the cost of false negatives, false positives,
out forwarding), we include a special type of inconsistency jqin holes, and leave recoveries vary as churn rate incsease

called NO inconsistency because the successor pointet is NO\we ;se mean lifetimes of 88.88. 44.44. 22.22 11.11. and

used when B incorrectly accepts the lookup. Thus, we haves 55 minutes, which correspond to churn rates of 0.1875,
a matrix of four by four entries where each row represents a

particular inconsistency that caused the incorrectnesiseof "Note that the following entries in the matrix are always zero
successor pointer, and each column represents a particulaNkO-NO, FP-NO, Join-NO, Leave-NO.
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Figure 9: Breakdown of lookup timeouts vs. churn rate Figure 10: Breakdown of incorrect lookups vs. churn rate

4.4 Results: Incorrect Lookups vs. Churn
Rate

Figure 10 plots a breakdown of the causes of incorrect
lookups when the successor pointer is incorrect due to join
éwoles in the routing state. The number of incorrect lookups
due to false positives (Join-FP) remains insignificant as
churn rate increases. At a network loss rate of 0.05, the rate

Figure 9 shows a breakdown of the causes of lookup time- of fa|se positives is low, and a false positive leads to inecr
outs. The number of losses due to the underlying IP network lookups only if it is falsely removed by its successor.

(Loss-NET) remains approximately constant as churn rate
increases because the network loss rate is held at 0.05.

0.375, 0.75, 1.5, and 3 leaves per second. The network los
rate is 0.05 in these simulations.

The number of incorrect lookups due to join holes (Join-
Join) and leave recoveries (Join-Leave) increases as churn
The number of losses due to false negatives (Loss-FN) in-rate increases because the fraction of nodes with incor-
creases because the probability of forwarding a lookup 10 rect predecessors and successors increases as churn rate in
a failed neighbor increases as churn rate increases [13]. Orgreases. Thus, join holes and leave recoveries are more sig-

the other hand, the number of loops due to false negativespificant causes of incorrect lookups than false positives in
(Loop-FN) remains insignificant. Chord.

The number of loops due to false positives (Loop-FP) re-

mains insignificant as churn rate increases. At a network 4.5 Results; Per hop Retry

loss rate of 0.05, the rate of false positives is low (56 per . ]

minute [13]). Moreover, a false positive leads to lookugiso !N this section, we employ per overlay hop retry to reduce
only if it is caused by a node falsely removing its successor. 100KUp losses, which cause a significant fraction of lookup

. timeouts. We implement a simple perhop retry mechanism
As expected, the number of loops due to join holes (Loop- j, Chord, where a node forwards a lookup to a neighbor,

Join) a”?' leave recove_ries_ (Loop-Leave) increa_ses because g waits for an ack. If a lookup is not acknowledged within
the fraction of nodes with incorrect Successors increases a gome timeout period, it is retransmitted to the same neighbo
churn rate increases. Loop due to join holes becomes a S|g-up to a maximum of MAXNBR.TRIES-1 times. If an ack
nificant cause of timeouts as churn rate increases. Thus, joi is not received from the neighbor after MAXBR_TRIES
protocols S_U(?h as [3] that Improve the rate at which new transmissions, the neighbor is marked as possibly down, and
n_odes can join a network will allow the network to support g e tries another neighbor. Note that a neighbor marked
higher churn rates. as possibly down is not used in forwarding until the status is
The results in Figure 9 again show that loss due to the un-reset when the node receives an ack in response to a lookup
derlying IP network or false negatives causes significantly or when the node receives an ack in response to a keep-alive
more timeouts than loop in Chord. In Section 3.4, we em- probe. For this set of simulations, we set the perhop time-
ploy perhop retry to reduce lookup losses, and evaluate theout period to 50 milliseconds, and MAKBR_TRIES to 3.
breakdown of lookup timeouts versus churn rate under per- For more sophisticated implementations of perhop retriy tha
hop retry. maintains TCP-like state for each neighbor, refer to [8].
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Figure 11 shows a breakdown of the causes of lookup time-
outs versus network loss rate under perhop retry. % 05 1 15 L 25 3 35
urn Rate

Lookup losses due to the underlying IP network and false
negatives are significantly reduced. For example, when thefigure 13: Breakdown of lookup timeouts vs. churn rate un-
network loss rate is 0.05, the average number of timeoutsder perhop retry

due to Loss-NET and Loss-FN are 1 per minute and 1.5 per
minute under perhop retry, compared to 208.1 per minute
and 72.8 per minute without perhop retry. This shows that

perhop retry is very effective at reducing lookup losses. ity of presentation, we only plot the Join row in the matrix

_ o (i.e. the successor pointer is incorrect due to join holeken
Figure 11 shows that the three most significant causes ofyouting state). The results in Figure 12 show that join holes

lookup timeouts are loops due to false negatives (Loop-FN), and leave recoveries are more significant causes of ind¢orrec
join holes (Loop-Join), and leave recoveries (Loop-Leave) |ookups than false positives in Chord.

The number of loops due to possibly downs (Loop-PD) is
low. The number of loops due to false positives (Loop-FP)
remains insignificant. Thus, it is more important to ensure
timely failure detection than a low probability of false pos
tive, and the cost of join holes and leave recoveries is lighe
than that of false positives due to the routing invariant of
Chord.

4.5.3 Lookup Timeoutsvs. Churn Rate

Figure 13 shows a breakdown of the causes of lookup time-
outs versus churn rate under perhop retry. Again lookup
losses due to the underlying IP network and false negatives
are significantly reduced. The three most significant causes
of lookup timeouts are loops due to false negatives (Loop-
Figure 12 shows a breakdown of the causes of incorrectFN), join holes (Loop-Join), and leave recoveries (Loop-
lookups versus network loss rate under perhop retry. For cla Leave).

4.5.2 Incorrect Lookups vs. Network Loss Rate
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4.5.4 Incorrect Lookupsvs. Churn Rate

Figure 12 shows a breakdown of thecauses of incorrect

The routing invariant of CAN states: a routing table must
store at least two neighbors per dimension, one to advance
and one to retreat along each dimension. A false positive vi-
olates the routing invariant when a node falsely removes the
only neighbor that advances or retreats along a dimension.
A join hole or leave recovery violates the routing invariant
of nodes who are neighbors of the new node or the leaving
node (up taO(d) nodes).

If the number of dimensiong in CAN is set to(logn)/2,
then each node maintairi¥(log n) neighbors as in Chord.
Given the greater number of places where the routing in-
variant could be violated, the cost of false positives afird jo
holes may be higher in CAN than in Chord on lookup per-
formance. However, the cost of false positives and join$ole
may be comparable in CAN.

Tapestry A Tapestry node ID is a sequence bfligits,
where each digit is in bade An identifier space with a hex-
adecimal base and 160-bit values is commonly used40,
b = 16). Each node has a routing table witkevels, where

lookups versus churn rate under perhop retry. These resultssach level containsentries. Neighbors in theh level share
again show that join holes and leave recoveries are more sig- prefix of lengthi — 1 digits with the local node, but differ

nificant causes of incorrect lookups than false positives in
Chord.

5 Discussion and Future Work

In this section, we make conjectures about the relativeafost
false negatives, false positives, join holes, and leavevere

ies in several other DHTs based on their routing invariants.
A more in-depth quantitative study that makes precise these
costs might yield other interesting results. We consider th
following DHTs: CAN [7], Tapestry [12], and Pastry [9].

in theith digit. Each entry contains a primary neighbor and a
few backup neighbors. A lookup is routed by matching suc-
cessive digits in the key (prefix-based routing). When atdigi
cannot be matched, the neighbor with the next higher digit
(modulob) is chosen. There are no loops because each rout-
ing step “matches” one more level in the key by forwarding
the lookup to a node that either (1) shares a longer prefix with
the key than the local node, or (2) shares as long a prefix, but
with the next higher digit when a digit cannot be matched.

The routing invariant of Tapestry states: (i) every entry in

The number of losses due to false negatives depends on th& routing table must store at least one neighbor if qualified

failure detection algorithm and churn rate [13], but does no
depend on the routing invariant. Thus, DHTs will experience
similar costs of false negatives on lookup performance unde
similar failure detection algorithms and churn rates.

CAN A virtual d-dimensional Cartesian coordinate space

is partitioned among all the nodes in the system such that
every node owns its individual, distinct zone within the eve

all space. A CAN node maintains a routing table that con-

tains the IP address and virtual coordinate zone of each of it

nodes exist; (i) if there is no qualified node for an entrgrth
the entry must be empty. A false positive violates the raputin
invariant when a node falsely removes the only neighbor in
a routing entry. In particular, a false positive always ateb

the routing invariant when a node falsely removes a neighbor
in the /th level. A join hole violates the routing invariant of
any node (up tdb — 1) x b'~% nodes) who shares a prefix
of lengthi — 1 with the new node if the new node is the first
node in the network with a particular prefix of lengthin
particular, since a new node is the first node in the network
with a particular prefix length of, a join hole always vio-

neighbors in the coordinate space. Two nodes are neighbordates the routing invariant of any node (upite- 1 nodes)

if their coordinate spans overlap alotlg- 1 dimensions and
abut along one dimension. To route alookup, the key is deter-
ministically mapped onto a poir® in the coordinate space
using a uniform hash function. The lookup is then routed to
the node that owns the zone within which pakhties. There

who shares a prefix of length— 1 with the new node. A
leave recovery violates the routing invariant when a neigh-
bor leaves and it is the only neighbor in a routing entry. For
example, a leave recovery violates the routing invariant of
any node (up tgb — 1) x b'~* nodes) who shares a prefix of

are no loops because each routing step takes a lookup to dength: — 1 with the leaving node if the leaving node is the

node that is geographically closer to poitthan the local
node.

only node in the network with a particular prefix of length
1. In particular, since a leaving node is the only node in the



network with a particular prefix length éfa leave recovery  examine the cost of inconsistency on lookup performance

always violate sthe routing invariant of any node (up tol under realistic system conditions such as message loss and
ndoes) who shares a prefix of lendth- 1 with the leaving false failure detections.
node.

Li et al. [4] analyze the performance of lookups in Chord,
Given the greater number of places where the routing invari- Kademlia, Kelips, and Tapestry under churn. Lookups that
ant could be violated, the cost of false positives, join Bple timeout or return incorrect replies are retried up to a maxi-
and leave recoveries may be higher in Tapestry than in Chordmum of four seconds. Protocol parameters are varied to ex-
on lookup performance. However, join holes or leave recov- plore the tradeoff between lookup latency and bandwidth
eries are still more costly than false positives in Tapestry cost. Rather than looking at how protocol parameters affect
cause a join hole or leave recovery always violates the rout-lookup performance, we study why lookups timeout or re-
ing invariant, whereas a false positive may not necessdwily  turn incorrect replies in Chord. In particular, we identifye

S0. different types of inconsistencies, and evaluate the cbst o
each type of inconsistency on lookup performance.

Lam et al. [3] present a new join protocol for hypercube rout-
ing that can sustain a high rate of node dynamics by main-
taining K-consistent neighbor tables. Join protocols bkot
DHTs may also be improved to increase the rate at which
new nodes become fully incorporated into the routing state,
and thereby reduce the number of lookup timeouts due to
}oin holes, a significant factor of lookup timeouts and incor
rect lookups.

Pastry Systems like Pastry (and Bamboo [8]) are built al-
most like Tapestry, but each node also maintains a leaf set in
addition to the routing table. A node’s leaf set is the set of
2k nodes immediately preceding and following it in the cir-
cular identifier space. A lookup is routed to the node whose
ID is numerically closest to the key. There are no loops be-
cause each routing step takes a lookup to a node that eithe
(1) shares a longer prefix with the key than the local node, or
(2) shares as long a prefix with, but is numerically closer to Krishnamurthy et al. [2] presents a theoretical analysis of
the key than the local node. Chord using a Master-equation formalism to predict the-frac
tion of failed or incorrect successor and finger pointers and
use these quantities to predict number of failed lookups
and lookup latency. In contrast, we identify the type of in-
consistency that led to incorrect predecessor and suacesso
pointers, and evaluate the cost of each type of inconsigtenc
n lookup performance. By identifying inconsistencies tha
ave significant costs on lookup performance, we can im-

_ o _ _ prove certain aspects of a DHT to minimize such inconsis-
Given the same routing invariant as Chord, the relative cost tencies.

of false positives, join holes, and leave recoveries onu@ok
performance in Pastry should be similar to Chord.

Because of the leaf set, the routing invariant in Pastryes th
same as in Chord. A false positive does not violate the rout-
ing invariant unless it is falsely removed by either its pre-
decessor or successor on the circular identifier spacerA joi
hole or leave recovery violates the routing invariant fothbo
the predecessor and successor of the new node or the Ieavinﬁ
node.

Zhuang et al. [13] study how the design of various keep-alive
algorithms affect their performance in node failure detec-
tion time, probability of false positive, control overheadd

6 Related Work packet loss rate. In contrast, we aim to address the question

There are several works which analyze DHTSs in the context Of how node failures, false positives, joins, and leaves-act
of static networks. Xu [11] studies the fundamental tratieof ally impact application-level performance by evaluatihg t
between the size of the routing table and the network diam- cost of inconsistency on lookup performance.

eter in designing a DHT. Gummadi et al. [1] explore the im- .

pact of DHT routing geometry on static resilience and prox- 7 Conclusion

imity. Loguinov [6] examine the effect of graph-theoretic g naner studies the cost of inconsistency on lookup pe-
propgrues of structured pger—to—peer architectures of-ro ¢, 10cain DHTS. Using the example of Chord, we evalu-
ing distances and fault resilience. In contrast, we analyge 40 the cost of each type of inconsistency on lookup perfor-
COS'_‘ of |nconS|_stency on lookup performance in a dynamic 206 Our results indicate that the routing invariant has a
environmentwith continuous churn. first order impact on the relative cost of different typesmof i
Liben-Nowell et al. [5] present a theoretical analysis adipe  consistencies. In addition, the cost of false negativeigsan
to-peer networks under continuous churn. They give a lower than that of false positives, which means it is more impor-
bound on the rate of maintenance traffic for a network to re- tant to ensure timely failure detection than a low probapili
main connected, and prove that Chord’s maintenance rate isof false positives. The cost of join holes is also higher than
within a logarithmic factor of the optimum rate. The analy- that of false positives due to the routing invariant of Chord
sis focuses on asymptotic bounds, and assumes perfect fail\WWe also make conjectures about the cost of inconsistency
ure detection and reliable message delivery. In contrasst, w in other DHTs based on their routing invariants. We believe



that these findings will provide important insights on how
to make certain choices and tradeoffs when designing future
algorithms to construct and maintain consistent routinggst

in DHTSs.
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