
Why Does Windows Crash?

Archana Ganapathi
Computer Science Division

Department of Electrical Engineering & Computer Sciences
University of California, Berkeley

Why Does Windows Crash?

Archana Ganapathi

University of California at Berkeley

archanag@cs.berkeley.edu

May 20th, 2005

Abstract

Reliability is a rapidly growing concern in contemporary Personal Computer (PC)
industry, both for computer users as well as product developers. To improve
dependability, systems designers and programmers must consider failure and usage data
for operating systems as well as applications. In this paper, we analyze crash data from
Windows machines. We collected our data from two different sources – the UC Berkeley
EECS department and a population of volunteers who contribute to the BOINC project.
We study both application crash behavior and operating systems crashes. We found that
application crashes are caused by both faulty non-robust dll files as well as impatient
users who prematurely terminate non-responding applications, especially web browsers.
OS crashes are predominantly caused by poorly-written device driver code. Users as well
as product developers will benefit from understanding the crash behaviors and crash-
prevention techniques we have revealed in this paper.



This work was supported in part by the National Science Foundation, grant CCR-0085899, and the
California State MICRO Program. The author was supported in part by a National Science Foundation
Graduate Research Fellowship. The information presented here does not necessarily reflect the position or
the policy of the Government and no official endorsement should be inferred.

Table of Contents

1. Introduction... 1
1.1 Motivation... 1
1.2 Contributions and Roadmap ... 2

2. Background ... 3
2.1 Crash Definitions .. 3
2.2 What are crash dumps... 3

3. Related Work .. 5

4. Description of Data Sets ... 7
4.1 UC Berkeley EECS Department... 7
4.2 BOINC User Group .. 8

5. Data Collection process .. 9
5.1 Corporate Error Reporting (CER)... 9
5.2 Berkeley Open Infrastructure for Network Computing (BOINC).................. 10

6. Crash data analysis ... 11
6.1 Description of analysis tools ... 11
6.2 Clustering the data .. 11

7. Analysis Results... 15
7.1 Application Crashes .. 15

7.1.1 How Do We Categorize Applications?... 15
7.1.2 How Can a Usage Survey Help Interpret Crash Behavior?...................... 18
7.1.3 Which Categories of Applications Generate the most Crashes? 23
7.1.4 Do Web Browser Usage Patterns Reflect Web Browser Crash Patterns? 25
7.1.5 What Causes these Crashes?... 25

7.2 OS Crashes.. 30
7.2.1 What are Device Drivers?... 30
7.2.2 What Components Cause OS Crashes? .. 31
7.2.3 Which Faults Generate the Most OS Crashes? ... 33

7.3 Practical techniques to reduce crashes... 34

8. Discussion – A Case for an Open Source Data Repository 38
8.1 Drawbacks of Current Data Collection Mechanisms...................................... 38

8.1.1 Insufficient Data Quantity... 38
8.1.2 Improving BOINC Data Quality... 38
8.1.3 Difficulty of Collecting Data .. 39

8.2 Design Challenges for an Open Source Data Repository 39

9. Conclusions.. 41

Appendix A: Usage Survey .. 42

Appendix B: Clustering Windows Applications based on Crash Behavior 43

References.. 48

Acknowledgements

First and foremost, I would like to thank my advisor, Dave Patterson, for his continual
guidance and support. He inspired many ideas during the course of this project. I owe
immense gratitude to Brendan Murphy of Microsoft Research for sharing his wealth of
knowledge and expertise in failure data analysis. I wish to thank my second reader,
Armando Fox, for his advice and constructive criticism on this report. I am grateful to
ROC group members and ROC industrial advisors for stimulating discussions and
invaluable feedback on this project.

I owe much appreciation to Alex Brown, Mike Howard and Emrys Ingersoll for
facilitating crash data collection in the Berkeley EECS department. I am also thankful to
volunteers who responded to the EECS department usage survey. Many thanks go to
Divya Ramachandran, Steve Stanek and Yang Zhang for their contributions to the
BOINC crash collection application. I appreciate all volunteers who contribute their crash
data to the BOINC crash collection project.

Last but not least, I wish to express gratitude to my family and friends for
providing perpetual moral support and encouragement.

This work was supported in part by the National Science Foundation, grant CCR-
0085899, and the California State MICRO Program. The author was supported in part by
a National Science Foundation Graduate Research Fellowship. The information presented
here does not necessarily reflect the position or the policy of the Government and no
official endorsement should be inferred.

1

1. Introduction

Personal Computer (PC) reliability has become a rapidly growing concern both for
computer users as well as product developers. Personal computers running the Microsoft
Windows operating system are often considered overly complex and difficult to manage.
We often hear people exclaim, “the Windows operating system is unreliable”. As modern
operating systems serve as a confluence of a variety hardware and software components,
it is difficult to pinpoint unreliable components. Multiple versions of dynamically-linked
libraries (DLLs) and a vast array of peripherals compound errors caused directly by
applications developed for the Windows software environment. This complexity
precludes manual inspection of crash events to identify features of Windows applications
responsible for failure behavior.

Such unconstrained flexibility allows complex, unanticipated, and unsafe
interactions that result in an unstable environment often frustrating the user. To
troubleshoot recurring problems, it is beneficial to data-mine, analyze and document
every interaction for erroneous behaviors. Such failure data provides insight into how
computer systems behave under varied hardware and software configurations. To
improve dependability, systems designers and programmers must consider failure and
usage data for operating systems as well as applications. Common misconceptions about
Windows are rampant. Our study attempts to shed some light on the factors affecting
Windows PC reliability based on data collected from hundreds of PCs.

1.1 Motivation

“If a problem has no solution, it may not be a problem, but a fact, not to be solved, but to
be coped with over time.”

–Shimon Peres

Most Windows users have experienced at least one “bluescreen” during the
lifetime of their machine. With the availability of a wide range of downloadable software,
there is no reason to hold back and use PCs in a conservative fashion. As a result,
application crashes are a common side-effect. A sophisticated PC user will accept
Windows crashes as a fact and attempt to cope with them, rather than remain puzzled.
However, a novice user will be terrified by the implications of a crash and will continue
to be preoccupied with the thought of causing severe damage to the computer.

From a research perspective, the motivation behind failure data-mining is
manifold. First, it reveals the dominant failure cause of popular computer systems. In
particular, it identifies products that cause the most user-frustration, thus rekindling our
efforts to build stable, resilient systems. Furthermore, it enables product evaluation and
development of benchmarks that rank product quality. These benchmarks can influence
design prototypes for reliable systems. Most importantly, such methodology helps
formulate and address research issues in computer system reliability.

Within the realm of an organization, knowledge of failure data can improve
quality of service. Often, corporations collect failure data to evaluate causes of downtime.

2

In addition, they perform cost-benefit analysis to improve service availability. Some
companies extend their analyses to client sites by gathering failure data at deployment
locations. For example, Microsoft Corporation collects crash data for their Windows
operating system as well as applications used by their customers. Unfortunately, due to
legal concerns, corporations such as Microsoft will not share their data with academic
research groups. Companies do not wish to reveal their internal vulnerabilities, nor can
they share third party products’ potential weaknesses. While abundant failure data is
generated on a daily basis, very little is readily sharable with the research community.

1.2 Contributions and Roadmap

This report presents an exploration of crash behavior in PCs running Windows XP. We
provide a brief description of various types of crashes and details on the crash data we
collect in section 2. While much related work exists in the area of systems failure data
analysis, as presented in section 3, our primary contribution to this research area is
Windows XP crash data and analysis. We collect and compare crash data from two
different data sets as described in section 4. We use two different data collection
mechanisms – one of which we developed ourselves at Berkeley. These data collection
tools are outlined in section 5. We describe tools and techniques we use for our data
analysis in section 6.

We analyze the underlying causes for both application-level as well as operating
system-level crashes. We also compare application crash data to application usage
statistics collected from our users. In our study of application crashes (section 7.1), we
have identified web browsers as the single most crashing application type in the
Windows environment. We found that application crashes are caused by both faulty non-
robust dll files as well as impatient users who prematurely terminate non-responding
applications. Operating system-level crashes, discussed in section 7.2, are predominantly
caused by poorly-written device driver code. Section 7 explains the above (and more)
analysis results and outlines potential techniques to reduce crashes in PCs. In section 8,
we discuss shortcomings of our analysis, including missing information that would
compliment our data analysis and allow us to improve our understanding of Windows
crashes. As a solution for overcoming hurdles we encountered in collecting data from
various sources, we propose an open source repository for failure data, details of which
are outlined in section 8.2. Section 9 concludes.

3

2. Background

To study Windows crash behavior, we collect data, in the form of crash dumps, from two
different sources (discussed in section 4), using two different collection mechanisms
(discussed in section 5). We study various types of crashes, which differ in their
manifestation as well as impact to the user. Each type of crash is defined and explained in
section 2.1. The amount of information collected to analyze each type of crash varies
based on the data collection mechanism used. We discuss the contents of crash dumps
and other information collected in section 2.2. We parse each of the collected crash
dumps using Windows debugging tools (as described in section 6.1) and analyze the data
to understand crash patterns in Windows machines.

2.1 Crash Definitions
There are various types of “crashes” that a Windows user may encounter. These crash-
types vary in their manifestation and their impact on the user’s experience. We define
each crash-type below:

 Crash – An event caused by a problem in the operating system(OS) or
application(app) requiring OS or app restart.

 Application Crash – A crash occurring at user-level, caused by one or more
components (.exe/.dll files), requiring an application restart.

 Application Hang – An application crash caused as a result of the user terminating a
process that is potentially deadlocked or running an infinite loop. If the user
intervenes to terminate the process, the component (.exe/.dll file routing) causing the
loop/deadlock cannot be identified.

 OS Crash – A crash occurring at kernel-level, caused by memory corruption, bad
drivers or faulty system-level routines. An OS crash includes blue-screen-generating
crashes, which require a machine reboot, as well as Windows explorer crashes, which
require restarting the explorer process.

 Bluescreen – An OS crash that produces a user-visible blue screen followed by a
non-optional machine reboot.

2.2 What are crash dumps

Upon each application crash or bluescreen generated by the operating system, Windows
collects failure data as a minidump. Users have three different options for the amount of
information that is collected upon a crash. We use the default (and smallest) option of
collecting small dumps, which are only 64K in size. These small minidumps contain a
snapshot of the computer’s state at the time of crash. They include a list of loaded drivers,
the names and timestamps of binaries that were loaded in the computer’s memory at the
time of crash, the processor context for the stopped process, and process information and
kernel context for the stopped process and thread as well as a brief stack trace. We do not
collect personal data files for our study. However, portions of such data may be resident

4

in memory at the time of crash and will consequently appear in our crash dumps. For
further details on the contents of crash dumps, the interested reader can refer
http://support.microsoft.com/kb/254649/

When an OS crash occurs, typically the entire machine must be rebooted. Any
relevant information that can be captured before the reboot is saved in a .dmp file in the
%windir%\Minidump directory. These minidumps are uniquely named with the date of
the crash and a serial number to eliminate conflicting names for multiple crashes on the
same day.

When an application crashes, the user typically receives a prompt asking if they
would like to send the crash-related information to Microsoft. The information that is
collected includes a minidump as well as a list of all modules loaded by the crashing
process. Unlike OS crashes, application minidumps are stored in application-specific
locations and are often difficult to locate on a machine. To increase the amount of data
we receive, we disable the data-requesting prompt and automatically collect data for
every application crash on the user’s machine.

5

3. Related Work

Jim Gray's work [Gra86, Gra90] serves a role model for most contemporary failure
analysis work. Gray did not perform root cause analysis but rather Outage Cause that
considers the last in the fault chain. In 1989, he found that the major source of outages
was due to software, contributing to about 55%, far outrunning its immediate successor,
system operations that contributed 15%. This observation led him to blame software for
almost every failure; it was supposed to mask all single faults. We study software
(application) crashes as well as system crashes and understand the cause and effect of
both crash types.

Deviating from Gray’s outage cause analysis, in our study we perform root cause
analysis under the belief that the first crash in a sequence of crashes is responsible for all
subsequent crashes within that event chain. The past two decades have produced several
studies in root-cause analysis for operating systems (OS) ranging from Guardian OS and
Tandem Non-Stop UX OS to VAX/VMS and Windows NT [Gra90, Kal98, LI95, SK+00,
SK+02, TI92, TI+95]. In server environments, Tandem computers, VAX clusters as well
as several operating systems and file servers have been examined for software defects by
several researchers. Lee and Iyer focussed on software faults in the Tandem GUARDIAN
operating system [LI95], Tang and Iyer considered two VAX clusters running the
VAX/VMS operating system [TI92], and Sullivan and Chillarege examined software
defects in MVS, DB2, and IMS [SC91]. Murphy and Gent also focussed on system
crashes in VAX systems over an extended period, almost a decade [MG95]. They
concluded that system management was responsible for over 50% of failures with
software trailing at 20% followed by hardware that is responsible for about 10% of
failures. While examining NFS data availability in Network Appliance’s NetApp filers,
Lancaster and Rowe attributed power failures and software failures as the largest
contributors to downtime; operator failure contributions were negligible [LR01]. Thakur
and Iyer examined failures in a network of 69 SunOS workstations [TI96]. They divided
problem root causes into network, non-disk and disk-related machine problems.
Kalyanakrishnam et al. perused six months of event logs from a LAN comprising of
Windows NT workstations that delivered emails [KK+99]. Using a state machine model
of detailed system failure states to describe failure timelines on a single node, they
concluded that most automatic system reboot problems are software-related; the average
downtime is two hours. Similarly, Xu et al. considered Windows NT event log entries
related to system reboots for a network of workstations that were used for enterprise
infrastructure, allowing operators to annotate event logs to indicate the reason for reboot
[XK+99]. In this progression, our study of Windows’ crash data gauges the evolution of
PC reliability. We compare these results with similar information from earlier systems.
Koopman et al. test operating systems against the POSIX specification [KD00]. Our
study is complimentary to this work as we consider actual crash data that leads to OS
unreliability.

Recently, in Windows XP Machines, Murphy deduced that display drivers were a
dominant crash cause and memory is the most frequently failing hardware component
[Mur04]. We extend this work, evaluating application crashes over and above operating
system crashes. We study actual crash instances experienced by users rather than

6

injecting artificial faults as performed by fuzz testing [FM00]. This study of crash data
differs from error log analysis performed by Kalakech et al. [KK+04]; we determine the
cause of crashes in addition to time and frequency.

Applications constantly evolve with enhanced features and more protection
mechanisms to safeguard from potentially unsafe environments. Despite a proliferation of
techniques to improve reliability, PC components continue to fail, causing much user
frustration. These systems offer potentially fruitful avenues for research with the
promising potential for many practical suggestions to improve the performance of
software for system designers and developers. However, some researchers argue that the
key property of a well-conditioned system is graceful degradation [WC+01]. This trait
has not been achieved in most PC applications; crashing is far from graceful degradation.
We attempt to understand the reason behind such behavior in Windows applications.

A fast technique to detect and recover from software errors is continuous testing
of the software with various inputs. However, devoid of clairvoyance it is usually far
from obvious which inputs to throw at complex systems. Many researchers use fault
injection to perform post-deployment prophylactic tests. Injected faults include data
corruption, such as flipped bits in registers or memory and stuck-at faults, code
corruption, such as op-code alteration and incorrect call routes [SM+04, BS+02], as well
as performance faults. In the absence of real failure data, fault injection is a good
alternative. However, we collect actual crash data from numerous users to study and
evaluate PC software.

Several researchers have provided significant insights on benchmarking and
failure data analysis [BC+02, BS97, OB+02, WM+02]. Wilson et al. suggest evaluating
the relationship between failures and service availability [WM+02]. Among other
metrics, when evaluating dependability, system stability is a key concern. Ganapathi et al.
examine Windows XP registry problems and their effect on system stability [GW+04].
Levendel suggests using the catastrophic nature of failures to evaluate system stability
[Lev89]. Brown et al. provide a practical perspective on system dependability by
incorporating users’ experience in benchmarks [BC+02, BS97]. In our study of crashes,
we consider these factors when evaluating various applications.

7

4. Description of Data Sets

A single data set can be construed as an imprecise representative of typical Windows
computer usage. For example, academic/corporate computer users have a level of
computer expertise higher than average computer users. To reduce the skew introduced
by a single data source, and to increase variability in usage profile, we consider several
different data sources and attempt to understand the biases/assumptions implicit in each
data set. We describe these data sets below.

4.1 UC Berkeley EECS Department

Our primary data collection and analysis was performed on research machines in the
EECS department at UC Berkeley. Since June 2004, over 200 machines that run
Windows XP SP1 are reporting their crashes to our server. The users of these machines
are professors, graduate students and/or departmental staff/admins.

These machines operate within the same domain and are somewhat constrained in
security and administration. Much of the software installed in these machines is available
internally to all EECS users. Thus, it is safe to say that these applications are somewhat
stable and widely used in the department. However, users have the ability to install any
software they require, and many of the graduate students use custom-written software
that their research group has produced. The system administrators do not restrict use of
such software, but ensure that necessary safety precautions are taken and patches are
updated.

We have collected data since mid-June 2004 and will present analysis for 10
months of data (see Figure 1). We incrementally added computers to report to us (to
verify stability of the collection mechanism). Also, since we are in an academic setting,
we must account for gaps in crash data due to holidays and semester breaks. Below, we
provide a timeline of such events/milestones during our 10 months of data collection:
Jun 14: 25 machines
Jun 25: 125 machines
July 9: 150 machines
Aug 3: 214 machines
Aug 24: Fall semester begins
Nov 25-26: Thanksgiving break
Dec 21-Jan 10: Winter break
Jan 11: Spring semester begins
Mar 21-Mar 25: Spring break

Given that the data is collected from a population of experienced (and perhaps
expert) computer users, we realize the crash data we receive from this group might be
biased and may not accurately represent the PC user population as a whole. We attempt
to address this issue using BOINC, as described in section 4.2.

8

Number of Crashes per Month

54

204

248

282

320

220

184
201

191

237

113

0

50

100

150

200

250

300

350

Jun 14-30, 2004

Jul 1-31, 2004

Aug 1-31, 2004

Sep 1-30, 2004

Oct 1-31, 2004

Nov 1-30, 2004

Dec 1-31, 2004

Jan 1-31, 2005

Feb 1-28, 2005

M
ar 1-31, 2005

Apr 1-14, 2005

Month

#
 c

ra
s

h
e

s

Figure 1: Number of crashes reported per month. This graph is based on the data collected in the UC
Berkeley EECS department.

4.2 BOINC User Group

To study a broader population of Windows users (in a less constrained environment), we
have embarked on an effort to target public-resource computing volunteers. BOINC is a
platform for pooling computer resources from volunteers to collect data and run
distributed computations [And03]. A popular example of an application using this
platform is SETI@home, which aggregates computing power to ‘search for
extraterrestrial intelligence’. Numerous people enthusiastically contribute data to projects
on BOINC rather than corporations as they favor a research cause. Additionally, users
appreciate incentive either through statistics that compares their machine to an average
BOINC user’s machine, or through recognition as pioneering contributors to the project.

Currently, we have about 150 BOINC users. We are working on publicizing this
effort further. So far we have received 562 OS crashes from these users, which we
analyze to understand the types of and implications of OS level crashes.

9

5. Data Collection process

We use two different mechanisms to collect crash data. To collect data from machines
within the same administrative domain, we use Microsoft’s Corporate Error Reporting
tool. Data collection for machines that reside in different domains is done using BOINC,
as described in section 5.2.

5.1 Corporate Error Reporting (CER)

To collect data, we use Microsoft’s Corporate Error Reporting (CER) software. We
configure a server with a shared directory that can directly receive crash reports from
other machines within the same domain. Reporting client machines require no additional
software. We simply modify a few registry entries (using a group policy) to redirect crash
reports to our server in place of Microsoft. Furthermore, we disable the prompt that asks
users whether they wish to send a crash report. Thus, we are guaranteed to receive reports
for all crashes and are not dependent on the good graces of the user to send us crash data.
Figure 2 shows sample information logged for each crash reported.

Figure 2: Sample data extracted from CER crash reports. The first column shows the time of crash.
The second and third columns represent the anonymized machine and user name. The last column shows
the crashing application, application version, crash-causing component, and component version.

The CER server collects all the crash reports from each machine and sorts them by
application. Each crash report is a .cab file containing the crashdump, a text description
of the crashing application and it’s version, and a log of the number of times the same
time of crash occurred on that machine.

The convenience of using CER is that it provides user-friendly interfaces for
configuration as well as viewing/organizing crash reports. A major drawback of this
approach is that all reporting machines must be in the same network domain as the CER
server. This structure limits us to aggregating data from a single organization at a time.
Furthermore, we cannot collect any historical data from client machines (such as crashes
that occurred prior to CER installation). Additionally, there is no usage information
collected by CER. Any usage-related metrics must be collected using an orthogonal
mechanism, which often makes it inconvenient to correlate with crash data.

CDCopier.exe\5.3.5.10\hungapp\0.0.0.0Usr7M79/4/04 0:19

win-ir pro.exe\3.4.25.1\win-ir pro.exe\3.4.25.1Usr5M59/3/04 1:30

iexplore.exe\6.0.2800.1106\unknown\0.0.0.0Usr6M69/3/04 1:19

NOTEPAD.EXE\5.1.2600.0\hungapp\0.0.0.0Usr5M59/3/04 0:57

excel.exe\9.0.0.3822\excel.exe\9.0.0.3822Usr4M49/3/04 0:46

sgtray.exe\1.0.89.0\anigifdisplay.ocx\1.0.89.0Usr3M39/3/04 0:31

notepad.exe\5.2.3790.0\comctl32.dll\6.0.3790.0Usr2M29/2/04 21:59

iexplore.exe\6.0.2800.1106\rpcl3260.dll\6.0.9.1575Usr1M19/2/04 21:58

CDCopier.exe\5.3.5.10\hungapp\0.0.0.0Usr7M79/4/04 0:19

win-ir pro.exe\3.4.25.1\win-ir pro.exe\3.4.25.1Usr5M59/3/04 1:30

iexplore.exe\6.0.2800.1106\unknown\0.0.0.0Usr6M69/3/04 1:19

NOTEPAD.EXE\5.1.2600.0\hungapp\0.0.0.0Usr5M59/3/04 0:57

excel.exe\9.0.0.3822\excel.exe\9.0.0.3822Usr4M49/3/04 0:46

sgtray.exe\1.0.89.0\anigifdisplay.ocx\1.0.89.0Usr3M39/3/04 0:31

notepad.exe\5.2.3790.0\comctl32.dll\6.0.3790.0Usr2M29/2/04 21:59

iexplore.exe\6.0.2800.1106\rpcl3260.dll\6.0.9.1575Usr1M19/2/04 21:58

10

5.2 Berkeley Open Infrastructure for Network Computing (BOINC)

Berkeley Open Infrastructure for Network Computing (BOINC) provides services to send
and receive data from its users via the HTTP protocol using XML formatted files. It
allows application writers to run and maintain a server that can communicate with
numerous client machines through a specified Applications-Programmer-Interface (API).
Each subscribed user’s machine, when idle, is used to run BOINC applications. Project
groups can create project web sites with registration services for users to subscribe and
facilitate a project. The web site can also display statistics for contributing users.

Taking advantage of these efforts, we have created a data collection application to
run on this platform. BOINC provides a good opportunity to collect and aggregate data
from users outside our department while addressing privacy concerns. We have written
tools to read crash dumps from users’ machines and send the data to our BOINC server.
In addition, we are also able to collect usage data with users’ consent. The drawback of
this mechanism is that we can only collect crash dumps that are stored in known locations
on the user’s computer, consequently excluding application crash dumps that are stored
in unknown app-specific locations. Furthermore, configuring the BOINC server is a
tedious and meticulous task. We must also monitor the number of work units we allot for
the BOINC projects; if there are not enough work units, the application will not run on
client machines.

An attractive aspect of using BOINC is that we can add more features to our
application as and when necessary. We can also provide users with personalized feedback
pages, consequently rewarding the users with an incentive for sharing data. However, we
must verify the integrity of each crashdump we receive from the users. We must
safeguard our server from being sabotaged by malicious data responses.

11

6. Crash data analysis

We use a combination of Microsoft’s analysis tools and custom-written scripts to parse,
filter and analyze the crash data. We provide an overview of these tools in the next few
sections.

6.1 Description of analysis tools

Upon receipt of crash dumps, they are parsed using Microsoft’s “Debugging Tools for
Windows” (WinDbg), publicly available at
http://www.microsoft.com/whdc/devtools/debugging/default.mspx. We retrieve
debugging symbols from Microsoft’s publicly available symbol server
(http://www.microsoft.com/whdc/devtools/debugging/symbolpkg.mspx). Parsing crash
dumps using WinDbg reveals the application in which the crash was experienced as well
as the immediate cause of the crash via an error code of the crashing routine. The
drawback of this approach is that we rely on the completeness and accuracy of
Microsoft’s symbols. Due to legal reasons, Microsoft does not make 3rd party symbols
available so we cannot rely on our current tools to provide an accurate stack trace for 3rd

party applications; the issue is that we may not accurately identify the component causing
the application crash even thought the application that crashed is identified correctly.

Once crash dumps are run through WinDbg, the importance of filtering data is
evident. When a computer crashes, the application and/or entire machine is rendered
unstable for sometime during which a subsequent crash is likely to occur. Specifically, if
a particular component of an application, such as a dynamic-link-library (.dll) file is
corrupt, the application is likely to repeatedly reproduce the error. It is inaccurate to
double-count subsequent crashes that occur within the same instability window. To avoid
clustering unrelated events while capturing all related crash events, we study the number
individual crash events forced into clusters using various temporal windows.

The data that is collected can be used to gather a variety of statistics. We can
provide insight to the IT team about the dominant cause of crashes in the organization
and how to increase product reliability. We can also use crash behavior to track any
potential vulnerabilities as frequent crashes may be a result of malware on the machine.
In the long run, we may be able to develop a list of safe and unsafe applications (and
versions) and which combinations of concurrent installations result in crashes.

6.2 Clustering the data

For the purposes of our study, we identify three states for each application installed on a
computer – not running, running (without problems) and crashed. Our data does not
allow us to identify the not running and running states; we only have information about
crashes. Based on our own PC usage experience, Figure 3 shows the behavior of
concurrently running applications on our PC.

12

Time

App1

App2

App3

Time

App1

App2

App3

App1

App2

App3

Figure 3: Behavior of concurrently executing applications on a single computer. Typically, a single
application crash triggers several subsequent crashes. These events are grouped by inter-crash times.

We often have different applications open in different windows in modern PCs. Even if
only one application is actively being used, the other applications continue to run in the
background until they are explicitly terminated. Often, our interactions and the
consequent behavior of one application affects the behavior of other concurrently running
applications or subsequent instances of the same application. There may be several
reasons for such cascading effect (or clustered crash behavior), a few of which are
outlined below:
 Shared resources - Applications often share some common resources such as CPU

and memory. If one application exhausts the memory available on the PC, other
applications are impacted and slow down significantly (perhaps even stop responding
altogether).

 Dependant processes - In some scenarios, one application may fork a process to
invoke another application. For example, when using MS Outlook for e-mail, MS
Word is invoked as the default editor for composing messages. If the parent Outlook
application crashes, then the child process used for text editing in Word is directly
affected.

 System instability – When there is a persistent problems, such as hardware failure,
software misconfiguration, or underlying operating system instability as a result of a
virus attack, all applications running on that machine are impacted. Often, in the
absence of anti-virus software, repeated crashing behavior can indicate the existence
of a virus on the system.

 User retry – When a user-initiated action is unsuccessful, the user often retries the
same action until it is successful or they lose patience and try alternative means to
accomplish their task.

In all the above scenarios, we must consider each cluster of crashes as a single event
(initiated by the first crash event). Counting each crash event separately (without
grouping them) leads to false accusations and skewed results. Since we do not know the
exact sequence of events in every crash cluster scenario, we try to extrapolate based on
the time between crash events on each individual machine. Figure 4 shows the number of
individual crash events filtered out when clustering crashes based on the various time

13

Number of Events Eliminated by Filtering

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50 55 60

Time Between Related Events (min)

E

ve
n

ts
 E

lim
in

at
ed

Crashes Grouped by Same App

Crashes Grouped across All Apps

Figure 4: Crash data filtering by time. This graph shows the number of crash events filtered out by
setting the time between related events to the value indicated on the x axis.

intervals to determine related events. We try clustering events that occur across different
applications on the same machine as well as limiting clusters to single applications.

When choosing the appropriate time interval to determine crash event clusters,
there are several concerns to address. Choosing a very long time interval would falsely
impose relationships across applications. Given a large enough time interval, all crashing
applications would be considered related. On the other hand, choosing a very short
interval would perhaps overlook many valid inter-application relationships. Thus, based
on trends observed in the graph in Figure 4, we chose a 10 minute time filter. In our data
set, crash events that occur on the same machine within 10 minutes of each other are
considered related. For subsequent data analysis sections in this paper, we only consider
the first crash event in each crash cluster. This clustering technique reduced the 2254
crashes into 1521 crash clusters.

Another side-effect of crash clustering is that we eliminate duplicate records for
the same event. Often, if an application is not responding and the user tries to manually
terminate it (for example, by clicking the ‘x’ on the top right corner of the window), they
may not see a prompt to terminate the process for a few seconds. Some users impatiently
click the ‘x’ multiple times, consequently receiving several prompts to terminate the
same application. This scenario may generate several records for the same crash event.
Thus, it is important to soften the effect of such outliers in our data set.

14

We also experimented with automatically clustering application crash events
using statistical learning theoretic algorithms. We augment the crash data with
information about usage patterns and program dependencies and feed the data into the k-
means and agglomerative clustering algorithms to determine which applications are
behaviorally related. Preliminary results highlight the importance of identifying features
of collected crash data that provide information about program structure, system
configurations, and user behaviors, and defining distance measures for clustering that use
those features effectively. For more details, see Appendix B.

15

7. Analysis Results

Crashes, at a high level, can be partitioned into two types – application-level and kernel-
level/OS crashes. To fully understand the dynamics of Windows crashes, we studied both
types of crashes to the extent facilitated by the analysis tools available to us. In the EECS
data set, only 79 of the 1521 crashes were caused by the OS (these OS crashes include
bluescreen-generating crashes as well as Windows explorer crashes). The remaining 1442
crashes were application-level crashes. Sixty of these 79 OS crashes were caused by
Windows Explorer; however, these Explorer crashes occurred at the application level and
did not generate blue-screens or kernel-level problems. Thus, despite the fact that
Explorer is a Windows OS related component, we analyze Explorer crashes among other
application crashes. The remaining 19 OS crashes were due to blue screens generated by
various drivers operating with kernel-level capabilities. A more detailed discussion of OS
crashes follows in section 7.2, as BOINC has many more OS crashes.

In the BOINC data set, we were able to collect 562 OS crashes from 77 users (we
have many more users voluntarily reporting crashes to us through BOINC; however, not
all of them have experienced OS crashes). We also collected a handful of application
crash dumps. However, all these application crashes were related to Microsoft-written
applications such as notepad and MS word (as those were the only crash folders we were
able to locate). Consequently we do not analyze these application crashes from the
BOINC data set.

7.1 Application Crashes

Modern PCs run a wide variety of application software. There are hundreds of thousands
of different applications available to PC users, each with numerous versions supporting a
variety of features. It is difficult for the operating system to support such a spectrum of
application requirements and workloads. Consequently, it is easier for applications to
misbehave or simply behave in a manner that is not anticipated by the user. In our data
set from the UC Berkeley EECS department, applications are responsible for over 95% of
the crashes. In the remainder of this section, we elaborate on applications and their crash
behavior.

7.1.1 How Do We Categorize Applications?
As a result of our automatic clustering experiment, we determined that we did not have
enough data to derive a method to categorize applications in our data set. There was no
unifying theme for crashes grouped together by our clustering algorithm. (See Appendix
B for details) For example, we had:

 crashes from the same user/machine
 crashes from the same application
 crashes from similar applications (based on what they were used for)
 crashes from application written by the same organization

For the sake of simplicity, we chose to impose a categorization based on
application functionality i.e. what they are typically used for. We describe each

16

application category we use and provide example applications that would fall under each
category.

 code development – Applications in this category, such as Visual Studio and
Java Eclipse, are primarily used for the purpose of writing custom software. These
applications rely on various libraries for providing a variety of functionality to the
user.

 custom software – This category entails applications that are developed by the
users for themselves/other users. Several research groups in the Berkeley EECS
department develop software to assist their work and/or for the benefit of the
industry. Thus, it is common to see these tools being used in the EECS
department. Unlike commercially available software, custom software is statically
linked and does not depend on many dynamic link libraries.

 database – This category includes typical database such as SQL Server and MS
Access. The primary function of applications in this category is to provide an
interface to organize and access data stored in a repository.

 document and presentation editing – Applications in this category, such as MS
Word, LaTeX and MS Powerpoint, are used as a means create and modify textual
documents and/or presentations. These applications are widely used as they often
increase efficiency for the user by providing facilities such as spelling checks.

 document archiving – This category of applications include gzip and MS cab
extractor, whose primary function is to compress documents for efficiently
archiving them and uncompress documents to view them. Typically, these
applications are used rarely.

 document viewing – Applications such as Adobe Acrobat Reader and
Ghostview serve the main purpose of document viewing. These applications are
not used for editing/updating documents, and thus provide a read-only interface to
the user.

 e-mail – There are a plethora of applications used for reading/writing e-mail.
Common examples include MS Outlook, Eudora and Thunderbird.

 I/O – This application category includes all software used for interfacing with I/O
devices such as scanners, printers, and handheld device. For instance, users
“hotsync” data between their computer and handheld devices such as a palm pilot.

 instant messaging – Numerous applications have been developed to enable
users to communicate instantly with other peers online. Examples of applications
in this category include AOL Instant Messenger, Yahoo Messenger, and MSN
Messenger. These applications rely on underlying network libraries to connect to
a server or directly connect to peer machines for sending text messages and/or
documents.

 multimedia – Several applications facilitate recording and/or playback of audio
and video files. Media players such as Real Audio Player and Windows Media
Player also allow users to stream files from remote locations. Thus, these
multimedia applications often depend on network libraries in addition to audio-
visual libraries.

 remote connection – Many users prefer to work off-site, especially at night and
on weekends. Additionally, many users may need to log into machines that are

17

located in a server room, and the only mechanism to access them is to use
applications such as sshclient and exceed, which enable remote connectivity.

 scientific computation – Applications in this category include Matlab and
Mathematica, which are typically used perform complex arithmetic.
Consequently, these applications tend to be very CPU-intensive.

 system management and security – Few computer users perform minimal
maintenance on their computers. They use software such as Microsoft
Management Console to manage devices and other software such as SQL Server.
With the increase of malware, tools such as stopzilla assists the user in removing
spyware and pop-ups. Applications such as Microsoft Management Console and
stopzilla are considered in this category.

 web browsing – The most common application used in PCs is web browsing
software. Examples of applications in this category include MS Internet Explorer,
Netscape and Firefox. Several web browsers come with embedded e-mail clients.
However, for the purposes of our study, we do not consider such e-mail clients in
the e-mail category as it is extremely difficult to distinguish them from the actual
browser components.

Figure 5 suggests expertise levels of typical users who use applications in each of the
categories mentioned above. While it is possible to categorize crashes based on the likely
expertise of a typical user of the application that crashes, we realized such analysis would
not reveal information detailed enough for application developers to react to.
Categorizing applications based on how they are used will not only provide insight to
users of these applications; it will also reveal shortcomings in the underlying design flaws
in inter-component interactions in each application category.

Application Category Novice user Intermediate
User

Expert User

Code development No No Yes
Custom software No No Yes
Database No Yes Yes
Document presentation
and editing

Yes Yes Yes

Document archiving No Yes Yes
Document viewing Yes Yes Yes
e-mail Yes Yes Yes
I/O Yes Yes Yes
Instant messaging Yes Yes Yes
Multimedia Yes Yes Yes
Remote connection No Yes Yes
Scientific computation No Yes Yes
System management and
security

No No Yes

Web browsing Yes Yes Yes
Figure 5: Typical computer expertise level of people who use applications in each category.

18

7.1.2 How Can a Usage Survey Help Interpret Crash Behavior?
In each application category, a handful of applications caused a majority of crashes in
that category. However, it is unfair to judge the quality and/or reliability of applications
based solely on crash count. In the absence of a process monitoring application usage, we
conducted a survey among users whose machines generated crashes in our data set. The
questions we asked our survey-takers are available in Appendix A. We received over
50% of the responses (41 responses). Due to the nature of surveys, we cannot rely on the
responses to gain an accurate understanding of how frequently these applications are
used. However, we can use survey responses to approximate the correlation between
usage and crash behavior and justify crash patterns based on usage trends. We
acknowledge that the difficulty of objective evaluation of computer usage taints our
survey responses. However, though less accurate than automated monitoring, the
information we gathered highlights unusual occurrences in application crashes.

Given that the EECS department contains a wide variety of users, we try to
catalogue the affiliations of these users in Figure 6. The computer-expertise of these users
spans a fairly wide range (from experts who build their own machines to application-
level users). The quantity (and types) of crashes generated by each type of user varies
based on their usage level. Graduate students, for example, often develop their own
software and may cause several crashes in the process of debugging. We would consider
such users as experts. The department’s administrative staff, on the other hand, typically
limit their use to pre-existing applications and do not experiment much with their
machine. They may range from novice to intermediate users.

Figure 6: User Profile in the UC Berkeley
EECS data set.

Figure 7 and Figure 8 show the usage proportion and number of crashes,
respectively, on each day of the week. All the EECS department users who responded to
our survey use their EECS computers Monday through Friday. Very few of them use
these computers on weekends. Crashes, on the other hand, do not occur uniformly across
the five days of the working week. There appear to be far fewer crashes on Fridays than
Monday through Thursday. This trend may be due to the fact that Fridays tend to be more
relaxed than the other four work days as many people simply wrap up work from the
previous days. Saturday and Sunday naturally have very few crashes as many people do
not come to the department to work on those weekends.

Type of User
Number
of Users

Number of
Crashes

graduate student 30 621
staff 28 414
unknown 16 197
faculty 14 191
undergraduate 4 19
visitor 3 51
guest 1 9
postdoc 1 19
TOTAL 97 1521

19

Percentage of Computer Users per Day of Week

0

20

40

60

80

100

120

M
on

da
y

Tue
sd

ay

W
ed

ne
sd

ay

Thu
rs

da
y

Frid
ay

Sat
ur

da
y

Sun
da

y

Day of Week

%
 u

se
rs

Figure 7: Computer Usage by Day of Week. This graph depicts the percentage of our survey responders
that use their EECS computer on each day of the week.

Number of Crashes per Day of Week

446

371

482

410

297

116 132

0
50

100

150
200
250
300
350

400
450
500

M
on

da
y

Tue
sd

ay

W
ed

ne
sd

ay

Thu
rs

da
y

Frid
ay

Sat
ur

da
y

Sun
da

y

Day of Week

#
 c

ra
s

h
e

s

Figure 8: Crashes generated on each day of the week. This graph depicts the number of crashes that
occurred on each day of the week based on the UC Berkeley EECS data set.

20

Studying Figure 9 and Figure 10, we observe an approximate correlation between usage
and crashes during each hour of the 24-hour day. Most people work during the typical
hours of 9am to 5pm. Since our data set involves users of various affiliations to the
department, we see a wider spectrum of work schedules. While most administrative staff
work during the day, several graduate students work in the evenings and late nights. Of
course, this trend is likely to vary based on conference deadlines and course project
deadlines. The crashes generated during each hour correlate fairly well with the usage for
that hour of the day. Most crashes occurred between 1pm and 5pm, which is the same
window for maximum computer usage in the department.

Percentage of Computer Users per Hour of Day

0

20

40

60

80

100

1
2

a
m

-1
2

:5
9

a
m

1
:0

0
a

m
-1

:5
9

a
m

2
:0

0
a

m
-2

:5
9

a
m

3
:0

0
a

m
-3

:5
9

a
m

4
:0

0
a

m
-4

:5
9

a
m

5
:0

0
a

m
-5

:5
9

a
m

6
:0

0
a

m
-6

:5
9

a
m

7
:0

0
a

m
-7

:5
9

a
m

8
:0

0
a

m
-8

:5
9

a
m

9
:0

0
a

m
-9

:5
9

a
m

1
0

:0
0

a
m

-1
0

:5
9

a
m

1
1

:0
0

a
m

-1
1

:5
9

a
m

1
2

:0
0

p
m

-1
2

:5
9

p
m

1
:0

0
p

m
-1

:5
9

p
m

2
:0

0
p

m
-2

:5
9

p
m

3
:0

0
p

m
-3

:5
9

p
m

4
:0

0
p

m
-4

:5
9

p
m

5
:0

0
p

m
-5

:5
9

p
m

6
:0

0
p

m
-6

:5
9

p
m

7
:0

0
p

m
-7

:5
9

p
m

8
:0

0
p

m
-8

:5
9

p
m

9
:0

0
p

m
-9

:5
9

p
m

1
0

:0
0

p
m

-1
0

:5
9

p
m

1
1

:0
0

p
m

-1
1

:5
9

p
m

Hour of Day

%
 u

s
e

rs

Figure 9: Computer Usage by Hour of Day. This graph depicts the percentage of our survey responders
that use their EECS computer during each hour of the day.

21

Number of Crashes per Hour of Day

21
13

4 2 4 2 8
26

114

161 164 171 167

214
196

208 204

139

107
95

87

58
43 46

0

50

100

150

200

250

1
2

a
m

-1
2

:5
9

a
m

1
:0

0
a

m
-1

:5
9

a
m

2
:0

0
a

m
-2

:5
9

a
m

3
:0

0
a

m
-3

:5
9

a
m

4
:0

0
a

m
-4

:5
9

a
m

5
:0

0
a

m
-5

:5
9

a
m

6
:0

0
a

m
-6

:5
9

a
m

7
:0

0
a

m
-7

:5
9

a
m

8
:0

0
a

m
-8

:5
9

a
m

9
:0

0
a

m
-9

:5
9

a
m

1
0

:0
0

a
m

-1
0

:5
9

a
m

1
1

:0
0

a
m

-1
1

:5
9

a
m

1
2

:0
0

p
m

-1
2

:5
9

p
m

1
:0

0
p

m
-1

:5
9

p
m

2
:0

0
p

m
-2

:5
9

p
m

3
:0

0
p

m
-3

:5
9

p
m

4
:0

0
p

m
-4

:5
9

p
m

5
:0

0
p

m
-5

:5
9

p
m

6
:0

0
p

m
-6

:5
9

p
m

7
:0

0
p

m
-7

:5
9

p
m

8
:0

0
p

m
-8

:5
9

p
m

9
:0

0
p

m
-9

:5
9

p
m

1
0

:0
0

p
m

-1
0

:5
9

p
m

1
1

:0
0

p
m

-1
1

:5
9

p
m

Hour of Day

cr

as
h

es

Figure 10: Crashes generated during each hour of the day. This graph depicts the number of crashes
that occurred during each hour of the day based on the UC Berkeley EECS data set.

22

Percentage of Users Rebooting their Computer at
Specified Frequency

0

5

10

15

20

25

30

1 2.5 5 7 10 14 30 60 365

interval (days)

P
er

ce
n

ta
g

e
o

f
u

se
rs

Figure 11: Frequency of Computer Reboot. This graph was generated based on responses to the survey
we conducted among EECS department computer users whose machines contributed crashes to our data
set.

In our survey, we also inquired about the frequency with which users reboot their
machines. The rebooting process helps rejuvenate PCs and restore them to a clean and
stable state. Based on the results in Figure 11, the reboot frequency largely varies among
the users. Thus, it is difficult to generalize and derive conclusions on the quality of
maintenance of the machines in the EECS department.

Windows users typically have several applications running in parallel; while
many windows are open at a time, only one or two are actively used in the foreground,
leaving other applications to run in the background. For example, instant messaging has
become a common tool for communicating between friends, co-workers, and even
meeting new people. Many users we asked use instant messaging software during their
work hours. It is difficult to gauge the frequency of active use of such messaging
software; however, the survey revealed that such software is definitely being used in the
EECS department, justifying the handful of crashes generated by this category of
applications.

23

Percentage of Users using Applications in
Enumerated Categories

0%

20%

40%

60%

80%

100%

web-based
e-mail

instant
messaging

cd burning
software

document
archiving
software

%
 u

se
rs yes

rare

no

Figure 12: Usage frequency of miscellaneous applications

In our user survey, we also asked users to indicate if they use certain types of
software (results in Figure 12). It is difficult to quantify the frequency of use of a
category of applications if it is by nature useful on rare occasion. For example, cd
burning software and document archiving software are not typically used on a regular
basis. Thus, we wanted to verify that the lack of crashes in these categories are justified
by the usage patterns. The only reliable source for understanding such usage patterns is
to monitor processes on each computer.

7.1.3 Which Categories of Applications Generate the most Crashes?
Application crashes are more frequent than OS crashes but can usually be resolved by
restarting the crashing application. Figure 13 shows a distribution of crashes by cause.
Web browsers cause a majority of crashes in this dataset. This category includes Internet
Explorer, Netscape, Mozilla and Firefox. One possible explanation for such a large
number of browser crashes is that browsers interact with a wide variety of components
which are often untested/unreliable. For example, people use web browsers for a variety
of purposes including checking e-mail, interacting in chat rooms, uploading and
downloading files and viewing multimedia. Plug-ins that are required to view a particular
website often run inside browsers; crashes that were caused when interacting with a plug-
in are blamed on the browser by the analysis tools.

The next major crash-contributing category is document preparation software.
Applications in this category include MS Word, Powerpoint and LaTeX. According to
the usage survey we conducted, on average, users spend 22% of their computer time

24

Figure 13: Crash Cause by
Application Category. This
table depicts the relative
frequency of crashes caused
by each category of
applications and the relative
time spent using each
category of application
(based on the user survey
conducted in the EECS
department at UC Berkeley).

using document preparation applications. It seems reasonable that such a highly utilized
set of applications generate a large number of crashes. However, there are other factors
than usage alone that must be addressed when justifying the crash rate. Document
preparation software usually involves interacting with various data formats. For example,
examining this thesis report alone, we find textual contents as well as Excel tables, graphs
and pictures. Typically, document preparation software requires libraries to interact with
a variety of data formats and this dependency results in increased number of crashes.

E-mail software such as MS Outlook and Eudora caused 9% of crashes in this
data set but were reported to be used most frequently by users who responded to our
survey. It is not surprising that e-mail generate so many crashes as there are numerous
inconveniences that accompany e-mail. For example, numerous worms and viruses
spread via e-mail, especially through e-mail attachments. Furthermore, some of the users
we surveyed used e-mail programs that were embedded in their web browser (see Figure
12); however, crashes in such browser-related e-mail programs were classified as web
browser crashes as we were unable to distinguish them from regular browser crashes.

Scientific computing and code development software also caused a sizeable
amount of crashes in our data set. We expect this result to be atypical of an average PC
user. Graduate student users in the UC Berkeley EECS department are more likely to
develop software and use scientific computing tools such as Matlab and Mathematica
more frequently than a typical PC user (or even a non-graduate student user such as a
staff member in the EECS department).

We have a significant percentage of crashes attributed to un-classifiable
applications, that is, we were unable to identify the purpose of the software, perhaps
because they were custom-written and used by a single/small set of users. A few
applications in this category had ambiguous names such as setup.exe, which could have
belonged to one or more application categories. Since we have no method of tracing
applications on the crashing machines, we refrained from forcing them into one of the
above mentioned application categories.

Application Category # Crashes Crash % Usage %
web browsing 598 41% 18%
unknown 185 13% n/a
document preparation 152 11% 22%
email 130 9% 24%
scientific computing 95 7% 7%
document viewer 84 6% 8%
multimedia 57 4% 6%
code development 26 2% 10%
document archiving 23 2% n/a
remote connection 23 2% n/a
instant messaging 17 1% n/a
i/o 15 1% n/a
other 14 1% 1%
database 8 1% n/a
system management 8 1% 4%
security 7 0% n/a

25

7.1.4 Do Web Browser Usage Patterns Reflect Web Browser Crash Patterns?

Web Browsing Usage

Internet
Explorer, 54%

Netscape, 20%

Firefox, 9%

Mozilla, 15%

Lynx, 2%

Web Browsing Crashes

Firefox, 13% (79)

Netscape, 26%
(156)

Internet Explorer,
58% (348)

Mozilla, 3% (15)

Figure 14: Web Browsing Application Use and Crash Frequency. Note: some users check e-mail using
Netscape’s built-in mail application. We do not distinguish between Netscape’s browser and e-mail
crashes.

While web browsers cause a majority of crashes in our data set, they are not the most
frequently used application. We further dissected web browser crashes to identify the
specific web browsing applications that contributed to these crashes (see Figure 14).
Internet Explorer is the most commonly used, and the highest crash contributor among
web browsers. Netscape and Firefox have approximately the same proportion of use as
well as crashes. However, we must keep in mind that Netscape comes with a built-in e-
mail client, that may have contributed some of the Netscape crashes in our data set.
Mozilla also appears to be a fairly popular browser; however, it does not generate nearly
as many crashes as other browsers. A possible explanation for Mozilla’s robustness is
that it is an open source product. Unlike proprietary software, Mozilla’s code has
benefited from thorough testing and evaluation from numerous users around the world.
While Firefox is also open source, it is “younger” than Mozilla and consequently has less
stable code that is more crash prone than Mozilla.

On average, users reported more frequent usage of email and document
preparation applications than web browsers; these applications caused a significant
proportion of crashes. Recall throughout this analysis that this data represents the
Berkeley EECS department and not the entire Windows user population. Usage statistics
underscore this fact as code development and scientific computation are uncommon
activities for most Windows users.

7.1.5 What Causes these Crashes?
Figure 15 suggests that approximately half of crashes are generated due to a user’s
manual termination of an application, i.e., application hang. Often, when an application
does not respond in a timely manner, perhaps due to an outdated .dll, an overloaded
processor or insufficient memory, users tend to terminate this process and retry
subsequently. It is possible that such applications would crash eventually if the user
avoided pre-termination during its “hang”. It is equally likely that the process was simply
slow in responding and would have eventually completed the task successfully.
Application hangs do not reveal much information regarding what occurred at the time of
crash. Thus, we can not explore the details of such events.

26

Crash Cause

application
hang
48%

faulty
component

52%

Figure 15: Crash Cause. This pie chart distinguishes the frequency of crashes due to application hangs
from crashes caused by faulty components such as .dll, .exe and .sys files.

Application # hangs % hangs
% Running
Total

iexplore.exe 185 25% 25%
matlab.exe 68 9% 34%
winword.exe 67 9% 43%
outlook.exe 60 8% 51%
firefox.exe 47 6% 57%
netscape.exe 41 6% 63%
unknown 25 3% 66%
powerarc.exe 19 3% 69%
powerpnt.exe 13 2% 71%
thunderbird.exe 13 2% 73%
excel.exe 12 2% 75%
acrobat.exe 11 1% 76%
explorer.exe 11 1% 77%
mozilla.exe 11 1% 78%
acrord32.exe 10 1% 79%
msimn.exe 10 1% 80%
AdDestroyer.exe 7 1% 81%
wmplayer.exe 7 1% 82%
notepad.exe 6 1% 83%
rundll32.exe 5 1% 84%
hp precisionscan
pro.exe 4 1% 85%
mathematica.exe 4 1% 86%
msaccess.exe 4 1% 87%
msdev.exe 4 1% 88%
photosle.exe 4 1% 89%
winamp.exe 4 1% 90%
apps causing <1%
of crashes each 84 11% 101%
Total 736

Figure 16: Frequency of Hangs due to Various Applications. Some of these applications are custom-
authored by users. Percentages shown are rounded to the nearest percent, causing the total to exceed 100%.

27

Applications hang frequently
Figure 16 outlines the applications that commonly hang. Again, Internet Explorer,
represents the largest proportion of applications that hang; Netscape and Firefox fall
among the top ten commonly hanging applications. A feasible explanation for this trend
is that web browsers interact with numerous other applications such as Macromedia
Flash, Quicktime, and Acrobat Reader. Consequently, a robust browser application is
forced to interact with other applications that may not be safeguarded against unreliable
code. To resolve this problem, interaction must be restricted to trusted, safe plug-ins,
avoiding potentially unsafe and potentially malicious code. In contrast, applications such
as MS Word, Outlook and Matlab can hang for different reasons. Often, large
computations running in Matlab can use a significant amount of memory and disable
other applications from running in parallel. In addition to insufficient computation
memory, corrupt files can also cause the application to hang. In some scenarios, a file can
be large enough to cause problems at start up. A practical solution must reduce the
workload and/or upgrade the software/machine.

Figure 17: Top fifteen problematic DLL and executable files causing crashes. Each component is
annotated with a description of its functionality, authorship (MS=Microsoft) and examples of applications
using this component. The percentage of crashes attributed to a component is listed in the last column along
with the raw number of crashes in parenthesis. This percentage excludes crashes categorized as application
hangs. For user-written executable files, we are unable to provide sample applications that use the
component.

Component Description Author Apps invoking
component

%crash

ntdll.dll
NT system functions MS Internet Explorer,

Matlab 11% (86)

msvcrt.dll
Microsoft C runtime library MS Acrobat,

Netscape 5% (37)
acrord32.exe Acrobat Reader 3rd party Acrobat Reader 4% (29)

pdm.dll
Scripting component functions MS Visual Studio,

Internet Explorer 3% (23)
firefox.exe Web browser 3rd party Firefox 2% (19)

user32.dll
Communication, message
handler, timer functions

MS Firefox, Internet
Explorer 2% (17)

ray_tracing.exe User application 3rd party -- 2% (16)
winword.exe Windows document editor MS Word, Outlook 2% (15)

mshtml.dll HTML related functions MS
Internet Explorer,
Netscape 2% (15)

tempest.exe Unknown 3rd party -- 2% (15)

gklayout.dll Mozilla layout library 3rd party
Thunderbird,
Firefox 2% (14)

kernel32.dll

Microsoft memory
management, I/O and interrupts
library MS

Acrobat, Firefox,
Internet Explorer

2% (14)
simpl_fox_gl.exe User application 3rd party -- 2% (14)
rpcl3260.dll Real Player component 3rd party Real Player 2% (13)
thunderbird.exe Mozilla e-mail program 3rd party Thunderbird 2% (13)

28

 .dll files are not robust enough
Figure 17 lists the top fifteen .dll and executable files blamed for crashes. These
components constitute a significant portion of non-application hang-induced crashes.
Apparently, a majority of problematic .dll files are invoked by multiple applications. A
few noteworthy examples are ntdll.dll and msvcrt.dll. Among several scenarios, the same
.dll can be blamed for a crash. For example, the caller of a .dll routine can pass invalid
arguments to the callee. Alternately, a .dll’s callee routine can return a bad value.
Moreover, it is possible for a machine’s state to be corrupt at the time of .dll execution.
Precise inter-.dll interface definition and sand-boxing will help avoid cascading effects of
data corruption.

.dll “Model Citizens”
We further investigated which dll files are used commonly among 33 applications we
examined. We were limited to these 33 applications as we did not have executable files
readily available for other applications. We generated dll dependency graphs using
Dependency Walker (available at http://www.dependencywalker.com/). We identified
commonly used dlls that never crashed and those that generated many crashes. Among 33
applications for which we were able to generate dll dependency graphs, 227 unique dll
files were used. Of these dlls, only 37 caused crashes in our data set. The worst offenders
were widely used components that provide Windows operating system functions. See
Figure 18 for the 5 most commonly used dlls that produce several crashes. The top
offender, used by all 33 applications and generating 86 crashes in our data set is ntdll.dll.
Perhaps sandboxing this dll better will eliminate many future crashes.

Figure 18: Commonly used dlls that produce several crashes. This
list is based on 33 applications that we analyzed.

The remaining 190 dlls are “model citizens” for good dll design and implementation. Of
these 190, 96 dlls were used by 32 out of 33 applications analyzed. These top dlls are
listed below in Figure 19. One explanation for the success of these dlls is that they
provide a focused set of functions. For example, netman.dll is responsible for managing
network connections. Perhaps the best model for a dll is that it provides a small set of
specific functions and intensively checks parameters for invalid values, eliminating errors
at the earliest point possible.

Crash-
causing dll

Num
Crashes

ntdll.dll 86
msvcrt.dll 37
user32.dll 17
mshtml.dll 15
kernel32.dll 14

29

Figure 19: Most commonly used dlls that do not crash. This list is based on 33 applications that we
analyzed

Crash-causing Status Codes
The table in Figure 20 shows a list of the error codes that accompanied each application
crash in our data set. Most of these errors (such as access violation) are essentially due to
bad pointers. A significant number of crashes could have been avoided if processes
stayed within their bounds and did not try to access memory that they did not have
permission to use. A meta-lesson is that the code can immensely benefit from more
careful boundary checking and verification.

The next highest crash-causing error code, 0xcfffffff, suggests an application
hang. As mentioned earlier, hangs are a result of users manually terminating a non-
responding application, which may potentially respond given sufficient time. We do not
have enough information regarding application hangs to suggest techniques to avoid
them. In page errors occur when an I/O request was incomplete and consequently, the
contents were not appropriately loaded in memory. There are also a handful of exceptions
due to integer and/or floating point arithmetic that was illegal or caused an overflow.
These exceptions are often techniques to check for corner-case errors and can be
prevented only by fixing the code that led to the corner-case. Some exceptions are due to
code that does not abide Windows NT specifications. For example, invalid lock sequence
status is a result of bad lock ordering according to Windows NT standards.

A C T IV E D S .D L L IM A G E H L P .D L L N E T M A N .D LL S E C U R 3 2 .D LL
A D S LD P C .D L L IM M 3 2 .D L L N E T P LW IZ .D L L S E T U P A P I.D LL
A D V A P I3 2 .D LL IN E T C O M M .D L L N E T R A P .D L L S H LW A P I.D LL
A D V P A C K .D LL IP H L P A P I.D L L N E T S H E L L .D L L S H S V C S .D L L
A T L.D LL IR P R O P S .C P L N E T U I0 .D L L T A P I32 .D LL
A U T H Z .D LL L IN K IN F O .D LL N E T U I1 .D L L U R LM O N .D L L
C A B IN E T .D L L LZ 32 .D L L N E T U I2 .D L L U S E R E N V .D LL
C D F V IEW .D L L M F C 4 2U .D L L N T D S A P I.D L L U T IL D LL .D L L
C E R T C L I.D L L M LA N G .D LL N T L A N M A N .D L L V E R S IO N .D LL
C F G M G R 3 2.D LL M O B S Y N C .D LL O D B C 32 .D L L W 32T O P L .D L L
C L U S A P I.D L L M P R .D L L O LE A C C .D L L W IN M M .D L L
C O M D L G 32 .D L L M P R A P I.D L L O LE D L G .D L L W IN S C A R D .D L L
C R E D U I.D L L M P R U I.D L L O LE P R O 32 .D LL W IN S P O O L.D R V
C R Y P T 3 2.D LL M S A S N 1 .D L L P O W R P R O F .D L L W IN ST A .D L L
C R Y P T U I.D LL M S G IN A .D L L P R IN T U I.D L L W IN T R U S T .D LL
C S C D L L .D L L M S I.D L L Q U E R Y .D L L W LD A P 32 .D L L
D B G H E LP .D LL M S IM G 32 .D L L R A S A P I32 .D L L W M I.D L L
D E V M G R .D L L M S O E R T 2 .D L L R A S D L G .D L L W S 2 _3 2.D LL
D H C P C S V C .D L L M S R A T IN G .D L L R A S M A N .D L L W S 2 H E LP .D L L
D N S A P I.D LL M S S IG N 3 2 .D LL R E G A P I.D LL W SO C K 3 2.D L L
D U S E R .D L L M S V C P 6 0.D LL R P C R T 4 .D L L W T S A P I3 2 .D LL
E F S A D U .D LL M SW S O C K .D L L R T U T ILS .D LL W ZC D L G .D L L
E S E N T .D LL N E T A P I3 2 .D L L S A M LIB .D L L W ZC S A P I.D L L
G D IP LU S .D LL N E T C F G X .D L L S C E C L I.D L L W ZC S V C .D L L

30

NTSTATUS code Error Message Num Crashes
0xc0000005 STATUS_ACCESS_VIOLATION 728
0xcfffffff HANG 579
0xc0000006 STATUS_IN_PAGE_ERROR 15
0xc0000096 STATUS_PRIVILEGED_INSTRUCTION 11
0xeedfade Trappable error in external object 7
0x80000003 STATUS_BREAKPOINT 6
0xc000001d STATUS_ILLEGAL_INSTRUCTION 4
0xc0000409 STATUS_STACK_BUFFER_OVERRUN 4
0xc0000094 STATUS_INTEGER_DIVIDE_BY_ZERO 3
0xc0000025 STATUS_NONCONTINUABLE_EXCEPTION 2
0xc0000091 STATUS_FLOAT_OVERFLOW 2
0xc0150010 STATUS_SXS_INVALID_DEACTIVATION 2
0xe06d7363 Trappable error in external object 2
0xc000001e STATUS_INVALID_LOCK_SEQUENCE 1
0xc0000090 STATUS_FLOAT_INVALID_OPERATION 1
0xc00000fd STATUS_STACK_OVERFLOW 1
0xc015000f STATUS_SXS_EARLY_DEACTIVATION 1

Figure 20: Crash-causing status codes. Status codes were available for only a subset of the crashes.

7.2 OS Crashes

OS crashes are more frustrating than application crashes as they require the user to kill
and restart the explorer process at a minimum, more commonly forcing a full machine
reboot. While there are a handful of crashes due to memory corruption and other common
systems problems, a majority of these OS crashes are caused by device drivers (as seen in
Figure 21). These drivers were related to various components such as display monitors,
network and video cards.

7.2.1 What are Device Drivers?
A device driver is a kernel-mode module that communicates operating system requests to
the device and vice versa. These drivers are inherently complex in nature and
consequently difficult to write. Among many reasons for device driver complexity are
that these drivers deal with asynchronous events. Since they interact heavily with the
operating system, the code must follow kernel programming etiquette (which is difficult
to master and follow). Furthermore, once device drivers are written, they are exceedingly
difficult to debug as the typical device driver failure is a combination of an OS event and
a device problem, and thus very difficult to reproduce (see [SM+04] for a detailed
description of device driver problems).

Figure 21, in addition to pointing out the high number of device crashes, also
specifically shows the number of graphics driver crashes. The fields for this table were a
direct result of scraping the OS Crash Type field from all the analyzed crash dumps. For
legal reasons, the publicly available analysis tools do not reveal driver categories for
various crashing drivers. Graphics drivers appear to be an exception to the rule.

31

OS Crash Type Num Crashes
 DRIVER_FAULT 458
 COMMON_SYSTEM_FAULT 63
 GRAPHICS_DRIVER_FAULT 36

Figure 21: Number of OS crashes of each type. This table was generated based on the OS Crash Type
field in analyzed crash reports.

7.2.2 What Components Cause OS Crashes?
In the absence of more details revealed by the analysis tools, we considered guessing the
type of each driver that caused a crash. However, we realized this effort might lead to
inaccurate results and numerous unknown mappings. There are thousands of drivers
available and not all of them have English documentation. Thus, it would take a large
amount of effort to web crawl and gather data, and perhaps not embellish this work too
much more. As an alternative, we study the image (i.e. .exe, .SYS or .dll file) that caused
these crashes, so we can at least identify the organization that contributed the crash-
causing code (see Figure 22).

Image Name/
Crash Cause Image Description

Num
crashes

%
crashes

% Running
Total

 ntoskrnl.exe NT kernel and system 150 27% 27%
 GDFSHK.SYS McAfee Privacy Service File Guardian 42 8% 35%

 ALCXWDM.SYS
Windows (R) WDM driver for Realtek
AC'97 40 7% 42%

 kmixer.sys kernel audio mixer of Microsoft Windows 28 5% 47%
 win32k.sys multi user win32 driver 19 3% 50%

 ati3d2ag.dll
ATI Technologies Inc. Radeon DirectX
Universal Driver 18 3% 53%

 Brwgate.sys NAT/Proxy/Firewall system 16 3% 56%

 HSF_CNXT.sys
Conexant Systems SoftK or SoftK56
Modem Driver 10 2% 58%

 Ialmdev5.DLL Intel graphics driver 10 2% 60%
 ati2dvag.dll ATI Radeon WinNT display driver 8 1% 61%

 nv4_disp.dll
NVIDIA Compatible Windows 2000
display driver 8 1% 62%

 V7.SYS IBM V7 Driver for Windows NT/2000 8 1% 63%
 usbscan.sys Microsoft usb driver 7 1% 64%

 ALCXSENS.SYS
Windows (R) WDM driver for Realtek
AC'97 6 1% 65%

 ar5211.sys
driver for dual band WIFI wireless mini
pci adapter 6 1% 66%

 pcx500.sys
NDIS5.1 Miniport Driver for 32 bit
Windows 6 1% 67%

 Unknown_Image -- 6 1% 68%

 ati3duag.dll
ATI Technologies Inc. Radeon DirectX
Universal Driver 5 1% 69%

 AVGNTDD.SYS Filter Device for Windows XP/2000/NT 5 1% 70%

 nv4_mini.sys
NVIDIA Compatible Windows 2000
Miniport Driver 5 1% 71%

Figure 22: Top 20 OS Crash-causing Images. A description of the crash-causing image is provided in
addition to the percentage of crashes caused by each image.

32

The top contender in Figure 22 is ntoskrnl.exe, which constitutes the bare-bones
Windows NT operating system kernel code. It is not surprising that this executable is
responsible for a number of driver crashes because it interacts with every other operating
system component and is thus the single most critical component that can never be
perfect enough. Furthermore, other systems code might generate bad input parameters to
the ntoskrnl functions that cause exceptions; ntoskrnl bears the blame for the resulting
crash as it generated the exception.

Other crash causing images range from graphics drivers to multimedia and I/O
drivers. It is difficult to debug or even analyze these crashes further as we do not have the
code and/or symbols for these drivers. With the increasing need for numerous devices
accompanying the PC, it does not scale for the operating system developers to account
for and write device driver code for each device; consequently, device drivers are written
by device manufacturers, who are typically inexperienced in kernel programming.
Perhaps such lack of expertise is the most impacting cause for driver-related OS crashes.

We also had 47 OS crashes caused by memory corruption. Memory corruption-
related crashes can often be attributed to hardware problems introduced by the type of
memory used (eg. non-ECC memory). In the event that the memory corruption was due
to software, the probelm cannot be tracked down to a single image.

Driver Fault Type
Num

Crashes
PAGE FAULT IN NONPAGED AREA 118
IRQL NOT LESS OR EQUAL 105
KERNEL MODE EXCEPTION NOT HANDLED 67
UNEXPECTED KERNEL MODE TRAP 63
BAD POOL CALLER 46
THREAD STUCK IN DEVICE DRIVER 36
SYSTEM THREAD EXCEPTION NOT HANDLED 29
Unknown bugcheck code 16
Other (each caused 1 crash) 14
PFN LIST CORRUPT 13
DRIVER CORRUPTED EXPOOL 12
DRIVER UNLOADED WITHOUT CANCELLING PENDING OPERATIONS 8
MANUALLY INITIATED CRASH 5
File Corruption - Unreadable File 4
BAD POOL HEADER 4
KERNEL DATA INPAGE ERROR 4
NTFS FILE SYSTEM 4
CRITICAL OBJECT TERMINATION 3
FAT FILE SYSTEM 3
DRIVER POWER STATE FAILURE 2
KERNEL STACK INPAGE ERROR 2
MEMORY MANAGEMENT 2
MULTIPLE IRP COMPLETE REQUESTS 2

Figure 23: Crash generating driver fault type.

33

7.2.3 Which Faults Generate the Most OS Crashes?
To further understand driver crashes, we studied the type of fault that resulted in the
crash. Figure 23 lists the number of crashes that were caused by the various fault types.
These fault types are reported by Microsoft’s analysis tools when analyzing each OS
crash dump.

While many of these fault types are straightforward to understand from the name,
many others are abbreviations of the event they describe. Below, we enumerate each fault
type and its significance (based on the descriptions provided in the parsed crash dumps):

 PAGE FAULT IN NONPAGED AREA - Invalid system memory was referenced.
This cannot be protected by try-except, it must be protected by a Probe. This error is
typically due to a bad pointer. This category of driver faults contributed the most OS
crashes in our data set.

 IRQL NOT LESS OR EQUAL - An attempt was made to access a pageable (or
completely invalid) address at an interrupt request level (IRQL) that is too high. This
is usually caused by drivers using improper addresses.
*Note: The interrupt request level is the hardware priority level at which a given
kernel-mode routine runs, masking off interrupts with an equivalent or lower IRQL
on the processor. A routine can be preempted by an interrupt with a higher IRQL.

 KERNEL MODE EXCEPTION NOT HANDLED - The exception address
pinpoints the driver/function that caused the problem. This address, combined with
the date link date of the driver/image containing this address, can provide insight to
the problem.

 UNEXPECTED KERNEL MODE TRAP - A trap occurred in kernel mode, either
because the kernel is not allowed to have/catch (bound trap) the trap or because a
double fault occurred.

 BAD POOL CALLER - The current thread is making a bad pool request. Typically
this is at a bad IRQL level or double freeing the same allocation, etc.

 THREAD STUCK IN DEVICE DRIVER - The device driver is spinning in an
infinite loop, most likely waiting for hardware to become idle. This usually indicates
problem with the hardware itself or with the device driver programming the hardware
incorrectly.

 SYSTEM THREAD EXCEPTION NOT HANDLED – This fault type is similar to
an unhandled kernel mode exception. The exception address pinpoints the
driver/function that caused the problem. This address, combined with the date link
date of the driver/image containing this address, can provide insight to the problem.

 PFN LIST CORRUPT - Typically caused by drivers passing bad memory descriptor
lists.

 DRIVER CORRUPTED EXPOOL - An attempt was made to access a pageable (or
completely invalid) address at an interrupt request level (IRQL) that is too high. This
fault is caused by drivers that have corrupted the system pool.

 DRIVER UNLOADED WITHOUT CANCELLING PENDING OPERATIONS
- A driver unloaded without canceling timers, DPCs, worker threads, etc. The broken
driver's name is displayed on the screen.

34

 MANUALLY INITIATED CRASH - The user manually initiated this crash dump.
This is not really a problem, perhaps a test to verify that crash reporting works
properly.

 BAD POOL HEADER - The pool is already corrupt at the time of the current
request. This may or may not be due to the caller. The internal pool links must be
walked to figure out a possible cause of the problem, and then special pool applied to
the suspect tags or the driver verifier to a suspect driver.

 KERNEL DATA INPAGE ERROR - The requested page of kernel data could not
be read in. This fault is typically caused by a bad block in the paging file or disk
controller error. Possible errors include a failure experienced by the disk subsystem
and a failed request due to a filesystem not progressing forward.

 NTFS FILE SYSTEM - This fault suggests a problem with the machine’s NTFS
filesystem.

 CRITICAL OBJECT TERMINATION - A process or thread crucial to system
operation has unexpectedly exited or been terminated. Several processes and threads
are necessary for the operation of the system; when they are terminated (for any
reason), the system can no longer function.

 FAT FILE SYSTEM – This fault suggests a problem with the FAT filesystem on the
machine.

 DRIVER POWER STATE FAILURE - A driver is causing an inconsistent power
state.

 KERNEL STACK INPAGE ERROR - The requested page of kernel data could not
be read in. This fault is typically caused by a bad block in paging file or disk
controller error.

 MEMORY MANAGEMENT – Bad input parameter.
 MULTIPLE IRP COMPLETE REQUESTS - A driver has requested that an IRP

be completed, but the packet has already been completed. In the best case scenario of
this fault, a driver attempted to complete its own packet twice. More commonly, two
separate drivers attempt to complete the same packed as each driver believes it owns
the packet.

Studying these fault types reveals various programming errors that impact system
behavior and what OS problems to tackle with caution. We explore the possibilities for
improving PC reliability and evaluate their pros and cons in the next section.

7.3 Practical techniques to reduce crashes

In the past, Windows code has been optimized for performance rather than reliability.
Much of the parameter checking code was eliminated in the interest for faster response.
Currently, speed and performance are becoming less important than reliability. Perhaps it
is time to reintroduce more parameter checking and verification at each system procedure
call interface.

Traditionally, software reliability problems have been tackled by using a handful
of ad-hoc methods. The ideal solution for increasing software reliability is to work with
existing components and simply add wrappers/helper components to help the software

35

function better and/or recover gracefully. However, this solution is not always an option.
An alternative technique is to rewrite the unreliable code. Unfortunately, this approach
does not scale well, especially with thousands of proprietary software running on PCs.
One can also rebuild the entire system from scratch – redesign the Windows operating
system, redefine interfaces and standards for third party application and device driver
code. This approach, while feasible, is extremely unrealistic as the cost-benefit analysis
would reveal that the cost would far outweigh the benefits. Moreover, there is no
guarantee that everyone will converge on these new standards, let alone guarantee status-
quo reliability.

Software-Based Fault Isolation
Wahbe et al. [WL+93] proposed isolating distrusted modules from trusted OS
components by loading code and data into its own fault domain. Such sand-boxing would
enforce clear semantics for code/data flow between trusted and untrusted modules. It
would allow each kernel extension to execute independently of other extensions while
having access to a specified portion of kernel memory. The authors suggest using cross-
fault-domain RPC to invoke code or modify data and maintain dedicated arbitration code
(in its own fault domain) to decide if the cross-fault-domain transactions are safe.

This model would be very valuable in the Windows operating system. Clearly, we
could reduce the number of OS crashes caused by bad device driver code using this fault
isolation technique. We could treat all third party device driver code as “untrusted” and
execute each of them in its own fault domain. This model guarantees that an “untrusted”
device driver could not clobber operating system state. The crucial component of this
model is developing the arbitration code; incompetent arbitration code is at least as bad as
not having any isolation at all. This approach requires modifying existing operating
system code to incorporate the notion of fault domains. However, with the size and
complexity of Windows operating system code, this option might not be feasible in a
short time span.

Nooks
Nooks, discussed in [SM+04], tackles the device-driver unreliability problem by adding a
subsystem in the Linux kernel to handle reliable device-driver communications. Clearly,
mechanisms implemented by Nooks would help reduce device driver-related crashes.
They follow the software fault isolation model by enclosing each kernel extension in a
dedicated protection domain. All communication between the kernel and its extensions
passes through a wrapper that enforces the use of extension procedure calls (XPC). To
allow graceful recovery, they implement shadow drivers that monitor each driver and
take over in the case of a failure. A functional shadow driver enables the original
(faulting) driver to be reset, allowing relatively transparent failure recovery from the
driver fault.

While this mechanism is effective in preventing the propagation of driver faults to
the user level, it seems difficult to scale to all possible driver categories. For example,
Nooks has been tested on a handful of device categories (such as network cards and
sound cards), and the communication between these drivers and the operating system
have been successfully sand-boxed to allow monitoring and post-mortem analysis.
Furthermore, it seems as though Nooks works best if the kernel extensions can be

36

terminated and restarted safely; it is unclear how the model would change if safe
terminations and restarts were not the norm.

Separate protection level for drivers
The MULTICS operating system adopted multiple protection rings for restricting the
flexibility of applications [SS72]. In most modern operating systems (including
Windows), we simply distinguish between kernel and user level permissions (effectively
2 protection levels rather than 9 prescribed by MULTICS). With un-trusted driver code
requiring access to communicate with the operating system, it is obvious the device
drivers should have more flexibility than application code that executes in the users level.
However, it seems unnecessary for device drivers to have complete flexibility to modify
and often corrupt operating system structures, especially when the code is written mostly
by third party vendors who are not familiar with the detailed workings of the operating
system.

Perhaps it is wise to introduce an intermediate protection level for device drivers
as a compromise between user level restrictions and kernel level freedom. Obviously, this
approach would require clear redefinition of interfaces between the kernel level and the
intermediate protection level. It also requires rewriting portions of the operating system
code and moving existing kernel-level device driver code into this new intermediate
protection level.

Move driver code to user level libraries
Along the lines of the previously proposed solution of creating a new protection level, we
can perhaps consider moving all driver code entirely to the user-level. This modification
would completely restrict the amount of “damage” driver code can do to the operating
system. Perhaps we can create user-level libraries that interface with the operating system
and validate communications between device drivers and the operating system. This
approach involves moving some of the operating system code (and all device driver code)
into the user-level.

Virtual Machines for unsafe/distrusted applications
Virtual machines offer a mechanism for isolating the effects of one application from
another. Recently, there have been many opportunities to use virtual machines for
improving the reliability of operating systems. In [KD+04] the authors run code in virtual
machines and log/monitor operations on the host machine to track and understand the
interactions between the various applications and the operating system. Furthermore, with
the increase in e-mail viruses, several PC users open their e-mail applications in a virtual
machine so that any mal-effects of e-mail are contained within that virtual machine and
do not affect other applications on the host machine.

We can take advantage of virtual machine technology to reduce the number of
crashes on PCs. Currently, there is no mechanism to transparently invoke virtual
machines upon application start. We can run unreliable/distrusted applications on these
dedicated virtual machines to understand their impact on other concurrently executing
applications. Over time, if an application has functioned without causing any unexpected
behavior, we can migrate the application to the host machine. This area of research
sounds attractive as it does not require rewriting operating system or application code.

37

Upon application invocation, we simply need to verify the integrity/trustworthiness of
applications and select between running them on the host machine or a dedicated virtual
machine.

This technique would be particularly useful for crashes caused by web browsers
(a majority of application crashes). Since web browsers often invoke multiple “helper”
components such as plug-ins, invoking a web browser in a separate virtual machine
ensures that the plug-ins are also invoked in the same virtual machine and do not affect
any other applications running on the bare machine. Crashing the virtual machine is less
problematic than crashing the host machine as the number of peer applications affected
by the crash are drastically reduced.

38

8. Discussion – A Case for an Open Source Data Repository

An Open Source Data Repository would simplify data collection and make failure data
more accessible to systems researchers. We make a case for such a repository by
identifying the drawbacks of our current data collection and analysis techniques, and
suggest issues to consider when designing such a repository.

8.1 Drawbacks of Current Data Collection Mechanisms

In this section, we discuss several obstacles and consequent shortcomings of our data
analysis and ways to address them.

8.1.1 Insufficient Data Quantity
One can think about application complexity and crash-susceptibility in terms of interface
complexity. The interfaces between an executable and its libraries, between binary files
and the system configuration, and between the user and the application all introduce
complexity, and are easier to quantify than the source-code complexity of an application
with a range of external dependencies. To address each of these interfaces, we would
like our data set to include multiple crash events, occurring on different computers with
different usage patterns, for each of the (application, DLL) pairs occurring most
frequently in home or corporate settings. For the 33 applications we could analyze, we
found 227 DLLs in use. Expanding this list to 50 applications and assuming around 250
DLLs in use, this comes to around 12,500 (application, DLL) pairs.

This “back-of-the-envelope” calculation provides a foothold for an order-of-
magnitude estimate of the sample size that might provide reliable clustering data. If we
let the number of (application, DLL) pairs approximate the number of outcomes we care
about (the interaction between (application, DLL) pairs and error codes is difficult to
quantify because the two are not causally independent), then the multinomial distribution
of failures given a machine configuration and usage pattern has 12,500 outcomes. It is
difficult (although not entirely impossible) for a researcher to single-handedly collect and
analyze so many different outcomes. However, Microsoft has the resources and the data
(and access to the source code) to investigate all these possibilities. In our case, the range
of potential causes (corrupted DLLs, version conflicts, misconfiguration, and user
behavior, among others) only serves to enlarge the space of possible outcomes. We will
require more data to make more concrete claims about the results we observed.

8.1.2 Improving BOINC Data Quality
Ideally, to embellish our analysis with information about the sequence of events and/or
the machine’s condition leading to the crash, we wish to know precisely the duration of
each application or process and the associated resource consumption. A continuous
profile of the machine’s evolution is absent in the collected data. For each machine, it is
useful to know information including service packs, CPU type/speed, RAM, disk
capacity, applications installed, antivirus tools installed, virus definition date/version. We

39

must also collect several performance metrics, expressly before and during the crash. For
example, for each machine, it is useful to know the system uptime, amount of free space,
number of processors, processor queue length(s) and network configurations. Such data
can suggest the sequence of events that lead to a crash and factors and processes that
influence the failure progression. Presently, as we rely on Microsoft’s debugging tools to
parse crash dumps, it is difficult to study the context of each failure as third party
executable images are encoded not to be publicly available. Collecting machine metrics
and process information will improve the accuracy of our analysis process.

8.1.3 Difficulty of Collecting Data
Several limitations are imposed on our analysis due to the inherent concern regarding
privacy. We have observed that some people are undoubtedly uncomfortable with data
collection. After crossing the initial threshold to gain credibility, people are eager to share
crash data. The privacy issue is a matter of policy rather than data availability. The most
outstanding concern that users have with sharing data is anonymity. It is crucial for us to
mask the exact data source and collect and store data anonymously. Thus, data collection
must be restricted to necessary and sufficient statistics that evaluate usage. Also, it is
beneficial to provide incentives to the users volunteering their data. This technique has
been fruitful in past projects and continues to be an attractive mechanism to gather data.

Usage data collection continues to be difficult, even in the UC Berkeley EECS
department. People are concerned that revealing usage information allows others to
reverse-engineer data and hold potentially incriminating evidence against the user. In
contrast, the computer industry routinely collects such data and is keen to share this
information. Perhaps businesses expect a pattern of usage behavior from their employees
and are less concerned with privacy.

A major bottleneck with industrial collaborations is legal documentation. Based
on our experience, engineers are willing to share the company’s data if they see an
incentive such as being able to know what applications to avoid using. Corporate
lawyers, who draft agreements for the collaborations, are less willing to give us access to
the data. It takes up to several months for them to draft a non-disclosure agreement, even
if we already have agreements in place for other project collaborations with that
company. Valuable time is lost during the interim period between submitting a request to
the lawyer and getting signatures on the agreements. That time could have been used to
collect more data and/or analyze and take the next steps in making changes based on the
analysis results.

8.2 Design Challenges for an Open Source Data Repository

Gathering data requires a significant investment. Some of these investments are technical,
such as the cost of building an infrastructure for measurement. Others are more social in
nature. For example, when collecting data from companies, researchers must pass
through several layers of indirection for an approving signature. Furthermore, corporate
lawyers spend several months drafting tedious legal agreements for the collaboration.
Similarly, when conducting user studies for research, students are often required to obtain

40

approval from an institutional review board, which requires considerable paperwork and
has high latency.

It is accepted wisdom that time is our most precious resource. It can take days,
weeks, or months to collect a large quantity of useful data. Nevertheless, we often fail to
amortize these costs and leverage these investments. If we are to be more effective and
efficient as a research community, then we must find ways to use and build upon the time
investments of our peers. Data collection in experimental computer science and
engineering has always been time consuming. However, as we pursue research agendas
which increasingly connect the physical and virtual worlds, or embark on projects which
require data as an input, like applications of statistical learning theory to systems
problems, the data collection, management, and sharing challenges can only grow.

There is currently no single repository that can be queried for data sets. We rely
on the knowledge of peer researchers to point us to the right person to obtain data. An
open source data repository provides a single interface to numerous data sets, eliminating
the unnecessary downtime of waiting for responses. There are various design and
maintenance considerations for building such a repository, some of which are enumerated
below.

One of the biggest challenges of building an open source data repository is
determining management logistics. A centralized repository would be simpler and more
cost effective to monitor. Designating a single organization to maintain the system
introduces issues related to economics as well as trust. A decentralized repository, on the
other hand, would be more fault tolerant (eliminating the single point of failure) but
would require sophisticated consistency mechanisms to assure data integrity. A related
question is whether federated management is feasible; a federated scheme would allow
member sites to choose which features to open or not to the outside.

There are numerous repositories created by research groups to hold different types
of data ranging from failure data to http and Apache logs to sensor data. Little effort is
spent on making these repositories easy to access. Systems researchers would benefit
from a unifying schema that accommodates all these data types. We can use XML-like
languages to write headers describing the data set. Given such data descriptor headers, we
can provide tools to automatically convert the data to our desired format and store the
information in our repository.

It is important to verify the authenticity of data (and the contributing entity) to
avoid plaguing our repository with fake data. We also need mechanisms to verify that
people using the data give due credit to the data contributors. This task is challenging as
the purpose of the repository is to provide data access to any and all organizations while
reducing the likeliness of misuse. Also, people often have stringent privacy requirements
for sharing data. We can meet these requirements by providing an infrastructure to
anonymize sensitive data at the point of collection, a model that has already been adopted
by some systems researchers. Another concern is that no details regarding individuals
should be reproducible from cross-correlating various data sets.

41

9. Conclusions

Our crash-data related study has contributed several Windows related revelations. The
most notable reality is that the Windows operating system is not responsible for a
majority of PC crashes at Berkeley. Application software, especially browsers, is mostly
responsible for these crashes. Users can alleviate computer frustration by better usage
discipline and avoiding unsafe applications. With additional data collection and mining,
we hope to make stronger claims about applications and also extract safe product design
and usage methodology that apply universally to all operating systems. Eventually, this
research can gauge product as well as usage evolution.

Our study of operating system-level driver crashes has also revealed many
insights. It is clear that PCs would benefit from enclosing device drivers in a more
restrictive environment. Furthermore, better programming etiquette can avoid many
problems introduced in device driver code. Most authors of device drivers are not trained
sufficiently to follow kernel programming rules and best practices. It is perhaps time to
offer mandatory training for these device driver authors and also develop better tools that
advise and constrain device driver code.

The analysis performed in this report, if applied to a data set representative of
Windows users world-wide, can help us derive conditions for safe and unsafe application
functionality. We would be able to devise a knowledge-base of universally safe
application configurations that would never crash as well as combinations of applications
(and their versions) that are guaranteed to be problematic. Such information would
forewarn users before they purchase software and also allow them to choose the level of
risk they are willing to take for their personal computing experience.

Studying failure data is as important to the computing industry as it is to
consumers. Product dependability evaluations, such as reports provided by J.D. Power
and Associates, help evolve the industry by reducing quality differential between various
products. Once product reliability data is publicized, users will use such information to
guide their purchasing decisions and usage patterns. Consequently, product developers
will react defensively to resulting competition. Perhaps using the data in this report,
manufacturers of both hardware and software would pay considerable attention to their
products thereby improving their quality control.

42

Appendix A: Usage Survey

As part of Prof. David Patterson's research on Recovery Oriented Computing, we are studying the
cause of crashes on Windows PCs. To improve our analysis, we would appreciate if you could
answer the questions below. While the real reward is societal, benefiting future generations of
computer users, we will select 4 winners to receive a $50 gift certificate to Amazon.com. Please
send questions/comments and survey responses to archanag@cs.berkeley.edu

--

1) On average, how many hours a day do you spend actively working on your EECS computer?

2) What are your usual hours of computer work on an EECS machine? (e.g. 9am-6pm, 3pm-1am,
midnight-10am)

3) what days of the week do you usually use the EECS machine? (e.g. Mon-Fri, Wed-Sat, Thu-
Mon, ...)

4) What percent of this time is spent actively on the following activities (and which software do
you use):
Web browsing (internet explorer, netscape, ...)
Email (outlook, eudora, ...)
Document/presentation preparation (Word, Powerpoint, Latex, ...)
Document viewing (acrobat, ...)
Code development (C, C++, Java, visual studio, ...)
Scientific computation (matlab, mathematica, ...)
System management/security (e.g. install/uninstall software, antivirus, antispyware, ...)
Multimedia (Media player, Quicktime, ...)
Other (please specify)

5) Please answer yes/no to the following questions:
-is your e-mail program part of a web browser (e.g. netscape mail) Note: this does not include
using web interface for e-mail?
-do you use instant messaging?
-do you use cd burning software?
-do you spend time compressing and uncompressing documents?

6) Which apps crash most frequently?

7) When an app crashes, what do you tyically do?
Restart app?
Restart computer?
Other ...

8) How frequently do you reboot your computer?

43

Appendix B: Clustering Windows Applications based on Crash
Behavior

Automated techniques allow us to process larger data sets and identify deeper interactions
between applications and shared libraries than approaches like manually partitioning
crashes by publisher or task. However, automated clustering can only succeed if the data
actually encode the characteristics relevant to the clustering task. This is especially
challenging when the data set contains a wide range of non-numeric features, as is the
case with the crash events we recorded. We will discuss the measures we took to
augment crash data with relevant application, library, and workstation features; define
distance measures appropriate to the structure we intended to capture, and ascertain the
sensitivity of our model to changes in those distance measures.

We would like to use our automated clustering procedures to identify not only
whether a particular deployment of an application to a workstation interacted poorly with
the environment provided by that workstation in the past, but what underlying features of
a program make it susceptible to failure so that future designs and implementation do not
perpetuate those features.

Distance Measures for Crash-Event Clustering
Crash event vectors, including the raw data returned by Microsoft’s CER and the derived
features we append, mix several data types. Strings identify applications, libraries, users,
and machines; hexadecimal values correspond to error codes returned by DLLs, and
version numbers (integer arrays of length four) distinguish implementations of
executables and DLLs with the same names. To these data we add set-valued (the DLL
support of an application) and decimal-valued features (normalized times derived from
the timestamp and self-reported usage frequencies).

A single similarity measure will not suit all of these data types. We could order
string identifiers alphabetically, and measure their “similarity” as the edit distance
between them, but this does not correspond to the similarities or differences in the
applications or machines identified by those strings. (In more rigidly-administered
environments, one can imagine using machine names to identify the deployment
configuration of a computer, but our data suggest that this approach has little traction in
the EECS department.) Likewise, the total ordering of timestamps does provide
information about crash chains, but a total ordering of hexadecimal error codes is
meaningless, since the error codes are (in general) arbitrarily assigned to error conditions.
However, commonly-used metrics like the Euclidean distance between two vectors only
depend on the componentwise difference between those vectors, and do not require that
the same notion of “difference” apply to all components. This allows us to define a
difference operation for each data type that is consistent with the clustering task at hand:
 String identifiers and hexadecimal error codes used a “binary difference” operator: if

two values were equal, their difference was 0; otherwise, their difference was 1.

 Decimal values used ordinary subtraction; the magnitude of the difference between
two values was as important as the existence of the difference.

44

 Set-valued features (like the DLL support of an application) used the size of the
symmetric difference between the two sets. (The symmetric difference of two sets
contains all elements that occur in exactly one of the sets.)

 Version numbers, logged as v1.v2.v3.v4, were compared one component at a time, and
the differences summed. The difference between major versions v1 could be
arbitrarily large. The difference between minor versions v2 was scaled over all pairs of
version numbers observed to be less than 1.0, the difference between incremental
updates v3 was scaled to be less than 0.1, and the difference between builds was scaled
to be less than 0.01. This corresponds to one interpretation of version-number
semantics (that major version numbers provide the most useful measure of program
complexity), but we discussed several others. For example, higher minor version
numbers might correspond to bug-fix releases, or they may indicate the introduction of
new features without the exhaustive testing that typically precedes a major release.

Normalization, Bias, and Default Values
With the diversity of data types came the challenge of scaling the feature space so that no
one feature dominated the distance computation for a pair of data points. For example, if
one measures the time between crash events in milliseconds, then the feature
corresponding to the elapsed time since the last crash will overwhelm all other distance
measures. On the other hand, if one measures time in days, the contribution of elapsed
time to the distance between two data points is negligible

On the surface, normalization does not seem difficult: scale each component’s
difference operator so that the maximum difference between two components is 1.
However, if all dimensions are scaled in this way, then the choice of features can
materially alter the outcome of the clustering procedure. For example, we include both
user name and machine name in our data set to ascertain the relative influence of user
behavior and system configuration in the occurrence of crashes. However, machine
names and user names are almost perfectly correlated in our data set; only one or two of
the machines in our sample population generated crash reports with different users logged
in. As a result, the identity of the user (or his computer) carries twice as much weight as
the name of the application when deciding what crash events are related. Similarly, the
limited number of crash events we collected shows a strong correlation between DLL-
specific error codes and individual computers. Out of the nearly 1500 error reports, only
two crash chains occurring on different machines share the same (DLL, error code) pair!
This sparsity means that the introduction of derived features, rather than providing a
richer set of data about the task domain for the clustering algorithm to arrive at a reliable
conclusion, can serve as a tool to systematically bias the result. The verb-noun co-
occurrence example mentioned above also ran that risk by replacing individual nouns
with noun categories. However, the goal in that case was to compare the grammar-
checker’s internal representation of “common usage” against a large corpus of examples;
the substitution of categories for individual nouns made for a tighter connection between
the clustering results and the grammar-checker’s representation. Our goals in clustering
crash events are less concrete: we suspect that the application’s intended purpose, its
implementers’ practices, the configuration and state of the host PC, and the sophistication
of the user all play a role in the frequency and duration of crash chains, but we can’t

45

provide additional information in any of those categories without running the risk that we
privilege one over the others. At this stage of the work, we have taken our best effort to
balance the feature set; the results described below seem to match our expectations. We
see nothing to indicate that the features we have added greatly upset the balance of
relevant characteristics.

The choice of default values provides another avenue for introducing bias. Both
of the examples cited at the beginning of this section face the risk that a particular pattern
occurring in nature (for example, an article about the North Korean Olympic team that
combines traits of the “foreign policy” and “sports” articles) will not occur in the data set.
Techniques like Laplace smoothing, which assigns probability 1/(n+k) to an unobserved
outcome of an event with k possible outcomes and n observations, accommodate these
exceptional cases. Many of the crash events recorded by CER lacked several fields, so
we also faced the challenge of defining default values. This is actually easier to do for
non-numeric data types: for strings and hexadecimal codes, our default value was
defined to be different from all other instances of that data type. For set-valued data, the
default value was the empty set; most of the applications for which we had no
dependency information were statically-linked research applications, so they had no
runtime dependencies. For numerical fields, we used the average over all observations of
that field as an unbiased placeholder.

Clustering Analysis Results
In the absence of cluster exemplars, we are left with the task of manually

inspecting the clusters found by our application. Figure 25 shows examples of clusters
obtained from our data. Both agglomerative and k-means clustering successfully
identified crash chains as collections of related events. Crash events in a chain shared
almost all features in common, differing only in their time stamps, so these would
comprise the most prominent groups in our very sparse data set.

Working our way from the leaves to the root of the cluster tree generated by the
agglomerative algorithm, the clusters become harder to interpret. At the level of 25
clusters, the output of the agglomerative algorithm1 includes a mix of stand-alone crash
chains, user-specific crash histories (multiple crash chains attributed to the same user and

1 We could not identify systematic differences between the results of the k-means and agglomerative algorithms, so

we focus our presentation on the agglomerative results.

Figure 24: A comparison of clustering algorithms.

O(n)O(n2Runtim e

1) M erge two clusters whose
centers are closest to each other

2) Recom pute cluster centers as
the “average” of all m em ber data
points

1) Assign each data point to the
nearest cluster center

2) Recom pute cluster centers
as the “average” of all m em ber
data points

Iteration

Each data point is the center of a
s ingleton c luster

Choose k data points uniform ly
at random from the full data set

In itialization

Agglom erativeClusteringK-M eans Clustering

O(n)2Runtim e

1) M erge two clusters whose
centers are closest to each other

2) Recom pute cluster centers as
the “average” of all m em ber data
points

1) Assign each data point to the
nearest cluster center

2) Recom pute cluster centers
as the “average” of all m em ber
data points

Iteration

Each data point is the center of a
s ingleton c luster

Choose k data points uniform ly
at random from the full data set

In itialization

Agglom erativeClusteringK-M eans Clustering

46

workstation), and application-centric crash histories (crashes of the same application on
different workstations). For example, one of the clusters contained seven crashes of
sshclient.exe, including two on different computers with the same error code; another
contained six crash chains generated by netscape.exe with a variety of offending DLLs
(from the Netscape-specific gklayout.dll to the widely-used msvcrt.dll). Eight other
clusters contained multiple crash chains experienced by a single user, but the offending
DLLs of these crash chains rarely agreed. The oddest cluster we found contained only
two applications, firefox.exe (the Mozilla Firefox browser) and alisp.exe (Allegro
Common Lisp).

The largest clusters do not present unifying features. One cluster of the 25
contained 582 crash events. Most of these were user-terminated (reported as “hungapp”),
but some identified DLLs as the cause of the failure. Many of these applications were
published by a single large vendor, but smaller developers and open-source projects also
made the list. Almost all of the cluster members, however, were “complex” interactive
applications with large DLL sets.

Our analysis suggests that most crash histories are highly machine and/or user
specific. Perhaps a high-level lesson we learned from this experience is that configuration
management is a golden nugget in improving PC reliability. There is no single
organization that is responsible for all crashes as the system instability is a result of
incompatible configurations more often than it is due to bad application code. A useful
tool in this direction would be an application compatibility checker that can verify upon
application installation that it is safe to use given the current machine configuration.
Our analysis results seem promising that it is possible to find inter-application structural
similarities given extensive crash data. However, to derive trustworthy patterns, we
require orders of magnitude more crash data. It is important to have several instances of
crashes generated for every application/component/error code tuple. Given the limited
number of machines in the department and proficient system administration, it would be

ComponentApplication

wow32.dllntvdm.exe

ntdll.dllntvdm.exe

ole32.dllPOWERPNT.EXE

MSO.DLLPOWERPNT.EXE

comctl32.dllnotepad.exe

MSO.DLLWINWORD.EXE

OUTLLIB.DLLOUTLOOK.EXE

ntdll.dllEXCEL.EXE

WINWORD.EXEWINWORD.EXE

BROWSEUI.DLLiexplore.exe

WINWORD.EXEWINWORD.EXE

FDATE.DLLOUTLOOK.EXE

comctl32.dllmmc.Exe

shell32.dllexplorer.exe

ntdll.dlliexplore.exe

shimgvw.dllexplorer.exe

mshtml.dlliexplore.exe

ComponentApplication

wow32.dllntvdm.exe

ntdll.dllntvdm.exe

ole32.dllPOWERPNT.EXE

MSO.DLLPOWERPNT.EXE

comctl32.dllnotepad.exe

MSO.DLLWINWORD.EXE

OUTLLIB.DLLOUTLOOK.EXE

ntdll.dllEXCEL.EXE

WINWORD.EXEWINWORD.EXE

BROWSEUI.DLLiexplore.exe

WINWORD.EXEWINWORD.EXE

FDATE.DLLOUTLOOK.EXE

comctl32.dllmmc.Exe

shell32.dllexplorer.exe

ntdll.dlliexplore.exe

shimgvw.dllexplorer.exe

mshtml.dlliexplore.exe

Microsoft Apps

ComponentApplication

xpcom.dllNetscp.exe

gkplugin.dllnetscp.exe

msgimap.dllnetscp.exe

gklayout.dllnetscp.exe

ComponentApplication

xpcom.dllNetscp.exe

gkplugin.dllnetscp.exe

msgimap.dllnetscp.exe

gklayout.dllnetscp.exe

Netscape

ComponentApplication

canvas5.execanvas5.exe

Hungappallegro-ansi.exe

HungappFlexPDE4.exe

FlexPDE4.exeFlexPDE4.exe

ray_tracing.exeray_tracing.exe

model_ir.exemodel_ir.exe

ntdll.dllusrtogrp.exe

stratagus.exestratagus.exe

tphkmgr.exetphkmgr.exe

wfxut32i.dllwfxctl32.exe

Hungappunison.win32-gtkui.exe

ADPS_ProjectBT3.exeADPS_ProjectBT3.exe

simpl_fox_gl.exesimpl_fox_gl.exe

dialogeditor.exedialogeditor.exe

ComponentApplication

canvas5.execanvas5.exe

Hungappallegro-ansi.exe

HungappFlexPDE4.exe

FlexPDE4.exeFlexPDE4.exe

ray_tracing.exeray_tracing.exe

model_ir.exemodel_ir.exe

ntdll.dllusrtogrp.exe

stratagus.exestratagus.exe

tphkmgr.exetphkmgr.exe

wfxut32i.dllwfxctl32.exe

Hungappunison.win32-gtkui.exe

ADPS_ProjectBT3.exeADPS_ProjectBT3.exe

simpl_fox_gl.exesimpl_fox_gl.exe

dialogeditor.exedialogeditor.exe

Custom-written Apps

ComponentApplication

kernel32.dllfirefox.exe

Hungappfirefox.exe

firefox.exefirefox.exe

Unknownthunderbird.exe

thunderbird.exethunderbird.exe

gklayout.dllthunderbird.exe

Hungappthunderbird.exe

ComponentApplication

kernel32.dllfirefox.exe

Hungappfirefox.exe

firefox.exefirefox.exe

Unknownthunderbird.exe

thunderbird.exethunderbird.exe

gklayout.dllthunderbird.exe

Hungappthunderbird.exe

Mozilla Apps

Figure 25: Sample application clusters. Each table shows a cluster of applications as decided by k-means and/or
agglomerative clustering. The left column represents the application while the right column corresponds to a
particular component used by the application.

47

difficult to generate the necessary data locally. We would derive more accurate clustering
results if we ran the tool on a large scale of data such as the millions of crash reports
collected by Microsoft.

It is very important to incorporate expert knowledge of these applications and
their structure into our analysis engine. It is impossible to automatically capture all the
design intricacies and functional descriptions that an informed application developer
might readily provide. However, such immense domain knowledge may bias clustering
results. So it is important to be aware of any bias introduced by expert knowledge while
preserving the necessary structural information about each application. Additionally, it is
also important to include end-user-experience in availability metrics that we use. Crash
patterns do not always correlate with usage patterns and such information is instrumental
in accurate analyses that normalize the data.

48

References

[And03] D. Anderson, “Public Computing: Reconnecting People to Science,” The Conference
on Shared Knowledge and the Web, Residencia de Estudiantes, Madrid, Spain, Nov.
2003.

[BS+02] P. Broadwell, N. Sastry and J. Traupman, “FIG: A Prototype Tool for Online
Verification of Recovery Mechanisms,” Workshop on Self-Healing, Adaptive and
self-MANaged Systems (SHAMAN), New York, NY, June 2002.

[BC+02] A. Brown, L. Chung, and D. Patterson, “Including the Human Factor in
Dependability Benchmarks,” In Proc. 2002 DSN Workshop on Dependability
Benchmarking, Washington, D.C., June 2002.

[BS97] A. Brown and M. Seltzer, “Operating System Benchmarking in the Wake of
Lmbench: A Case Study of the Performance of NetBSD on the Intel x86
Architecture,” In Proc. 1997 ACM SIGMETRICS Conference on the Measurement
and Modeling of Computer Systems, Seattle, WA, June 1997.

[FM00] J. Forrester and B. Miller, “An Empirical Study of the Robustness of Windows NT
Applications Using Random Testing,” In Proc. 4th USENIX Windows System
Symposium, Seattle, WA, Aug. 2000.

[GW+04] A. Ganapathi, Y. Wang, N. Lao and J. Wen, “Why PCs are Fragile and What We Can
Do About It: A Study of Windows Registry Problems,” In Proc. International
Conference on Dependable Systems and Networks (DSN-2004), Florence, Italy, June
2004.

[GP05] A. Ganapathi and D. Patterson, “Crash Data Collection: A Windows Case Study,” To
Appear in Proc. International Conference on Dependable Systems and Networks
(DSN-2005), Yokohama, Japan, June 2005.

[Gra86] J. Gray, “Why Do Computers Stop and What Can Be Done About It?” Symp on
Reliability in Distributed Software and Database Systems, pp 3–12, 1986.

[Gra90] J. Gray, “A census of Tandem system availability between 1985 and 1990,” Tandem
Computers Technical Report 90.1, 1990.

[GS04] J. Gray and A. Szalay, “Where the rubber meets the sky:bridging the gap between
databases and science,” Microsoft Research TR-2004-110, 2004.

[KK+04] A. Kalakech, K. Kanoun, Y. Crouzet and J. Arlat, “Benchmarking the dependability
of Windows NT4, 2000 and XP,” In Proc. International Conference on Dependable
Systems and Networks (DSN-2004), Florence, Italy, June 2004.

[Kal98] M. Kalyanakrishnam, “Analysis of Failures in Windows NT Systems,” Masters
Thesis, Technical report CRHC 98-08, University of Illinois at Urbana-Champaign,
1998.

[KK+99] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. “Failure data analysis of a LAN of
Windows NT based computers,” In Proceedings of the 18th IEEE Symposium on
Reliable Distributed Systems, 1999.

[KD+05] S. King, G. Dunlap and P. Chen, "Debugging operating systems with time-traveling
virtual machines", Proceedings of the 2005 Annual USENIX Technical Conference ,
April 2005.

[KD00] P. Koopman and J. DeVale, “The Exception Handling Effectiveness of POSIX
Operating Systems,” IEEE Trans. on Software Engineering, Vol 26, No 9, pp 837-
848 Sept. 2000.

[LR01] L. Lancaster and A. Rowe, “Measuring real-world data availability,” In Proceedings
of LISA 2001, 2001.

49

[LI95] I. Lee and R. Iyer, “Software Dependability in the Tandem GUARDIAN Operating
System,” IEEE Trans. on Software Engineering, Vol 21, No 5, pp 455-467, May
1995.

[Lev89] Y. Levendel, “Defects and Reliability Analysis of Large Software Systems: Field
Experience,” Digest 19th Fault-Tolerant Computing Symposium, pp 238-243, June
1989.

[MR+04] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal, and M. Baker, “The
lockss peer-to-peer digital preservation system,” ACM Transactions on Computer
Systems (TOCS), 2004.

[Mur04] B. Murphy, “Automating Software Failure Reporting,” ACM Queue Vol 2, No 8,
Nov. 2004.

[MG95] B. Murphy and T. Gent, “Measuring system and software reliability using an
automated data collection process,” Quality and Reliability Engineering
International,Vol 11,1995.

[OB+02] D. Oppenheimer, A. Brown, J. Traupman, P. Broadwell, and D. Patterson, “Practical
issues in dependability benchmarking,” Workshop on Evaluating and Architecting
System dependabilitY (EASY ’02), San Jose, CA, Oct. 2002.

[SS72] M. Schroeder, and J. Saltzer, “A Hardware Architecture for Implementing Protection
Rings,” Communications of the ACM Vol. 15, No. 3, pp. 157-170, March 1972.

 [SK+00] C. Shelton, P. Koopman, K. DeVale, “Robustness Testing of the Microsoft Win32
API,” In Proc. International Conference on Dependable Systems and Networks
(DSN-2000), New York, June 2000.

[SK+02] C. Simache, M. Kaaniche, A. Saidane, “Event log based dependability analysis of
Windows NT and 2K systems,” In Proc. 2002 Pacific Rim International Symposium
on Dependable Computing (PRDC'02), pp 311-315, Tsukuba, Japan, Dec. 2002.

[SC91] M. Sullivan and R. Chillarege, “Software defects and their impact on system
availability--a study of field failures in operating systems,” In Proceedings of the 21st
International Symposium on Fault-Tolerant Computing, 1991.

[SM+04] M. Swift, Muthukaruppan, B. Bershad and H. Levy, “Recovering Device Drivers,” in
Proceedings of the 6th ACM/USENIX Symposium on Operating Systems Design and
Implementation, San Francisco, CA, Dec. 2004.

[TI92] D. Tang and R. Iyer, “Analysis of the VAX/VMS Error Logs in Multicomputer
Environments – A Case Study of Software Dependability,” International Symposium
on Software Reliability Engineering, Research Triangle Park, North Carolina, Oct
1992.

[TI96] A. Thakur and R. Iyer, “Analyze-NOW-an environment for collection and analysis of
failures in a network of workstations,” IEEE Transactions on Reliability, R46 (4),
1996.

[TI+95] A. Thakur, R. Iyer, L. Young and I. Lee, “Analysis of Failures in the Tandem
NonStop-UX Operating System,” International Symposium on Software Reliability
Engineering, Oct 1995.

[WL+93] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient Software-Based Fault
Isolation,” In Proc. Fourteenth ACM Symposium on Operating Systems Principles
(SOSP), December 1993, pages 203 - 216.

[WC+01] M. Welsh, D. Culler and E. Brewer, “SEDA, an Architecture for well-conditioned
scalable Internet Services,” 18th Symposium on Operating System Principles. Chateau
Lake Louise, Canada, October 2001.

[WM+02] D. Wilson, B. Murphy and L. Spainhower, “Progress on Defining Standardized
Classes for Comparing the Dependability of Computer Systems,” In Proc. DSN 2002
Workshop on Dependability Benchmarking, Washington, D.C., June 2002.

50

[XK+99] J. Xu, Z. Kalbarczyk and R. Iyer, “Networked Windows NT system field failure data
analysis,” In Proceedings of the 1999 Pacific Rim International Symposium on
Dependable Computing, 1999.

