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Abstract

Reliability is a rapidly growing concern in contemporary Personal Computer (PC) 
industry, both for computer users as well as product developers. To improve 
dependability, systems designers and programmers must consider failure and usage data 
for operating systems as well as applications. In this paper, we analyze crash data from 
Windows machines. We collected our data from two different sources – the UC Berkeley 
EECS department and a population of volunteers who contribute to the BOINC project. 
We study both application crash behavior and operating systems crashes. We found that 
application crashes are caused by both faulty non-robust dll files as well as impatient 
users who prematurely terminate non-responding applications, especially web browsers. 
OS crashes are predominantly caused by poorly-written device driver code. Users as well 
as product developers will benefit from understanding the crash behaviors and crash-
prevention techniques we have revealed in this paper.
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1. Introduction

Personal Computer (PC) reliability has become a rapidly growing concern both for 
computer users as well as product developers. Personal computers running the Microsoft 
Windows operating system are often considered overly complex and difficult to manage.  
We often hear people exclaim, “the Windows operating system is unreliable”. As modern 
operating systems serve as a confluence of a variety hardware and software components, 
it is difficult to pinpoint unreliable components. Multiple versions of dynamically-linked 
libraries (DLLs) and a vast array of peripherals compound errors caused directly by 
applications developed for the Windows software environment. This complexity 
precludes manual inspection of crash events to identify features of Windows applications 
responsible for failure behavior.  

Such unconstrained flexibility allows complex, unanticipated, and unsafe 
interactions that result in an unstable environment often frustrating the user. To 
troubleshoot recurring problems, it is beneficial to data-mine, analyze and document 
every interaction for erroneous behaviors. Such failure data provides insight into how 
computer systems behave under varied hardware and software configurations. To 
improve dependability, systems designers and programmers must consider failure and 
usage data for operating systems as well as applications. Common misconceptions about 
Windows are rampant. Our study attempts to shed some light on the factors affecting 
Windows PC reliability based on data collected from hundreds of PCs.

1.1 Motivation

“If a problem has no solution, it may not be a problem, but a fact, not to be solved, but to 
be coped with over time.” 

–Shimon Peres

Most Windows users have experienced at least one “bluescreen” during the 
lifetime of their machine. With the availability of a wide range of downloadable software,
there is no reason to hold back and use PCs in a conservative fashion. As a result, 
application crashes are a common side-effect. A sophisticated PC user will accept 
Windows crashes as a fact and attempt to cope with them, rather than remain puzzled.
However, a novice user will be terrified by the implications of a crash and will continue 
to be preoccupied with the thought of causing severe damage to the computer.

From a research perspective, the motivation behind failure data-mining is 
manifold. First, it reveals the dominant failure cause of popular computer systems. In 
particular, it identifies products that cause the most user-frustration, thus rekindling our 
efforts to build stable, resilient systems. Furthermore, it enables product evaluation and 
development of benchmarks that rank product quality. These benchmarks can influence 
design prototypes for reliable systems. Most importantly, such methodology helps 
formulate and address research issues in computer system reliability.

Within the realm of an organization, knowledge of failure data can improve 
quality of service. Often, corporations collect failure data to evaluate causes of downtime. 
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In addition, they perform cost-benefit analysis to improve service availability. Some 
companies extend their analyses to client sites by gathering failure data at deployment 
locations. For example, Microsoft Corporation collects crash data for their Windows 
operating system as well as applications used by their customers. Unfortunately, due to 
legal concerns, corporations such as Microsoft will not share their data with academic 
research groups. Companies do not wish to reveal their internal vulnerabilities, nor can 
they share third party products’ potential weaknesses. While abundant failure data is 
generated on a daily basis, very little is readily sharable with the research community. 

1.2 Contributions and Roadmap

This report presents an exploration of crash behavior in PCs running Windows XP. We 
provide a brief description of various types of crashes and details on the crash data we 
collect in section 2. While much related work exists in the area of systems failure data 
analysis, as presented in section 3, our primary contribution to this research area is 
Windows XP crash data and analysis. We collect and compare crash data from two 
different data sets as described in section 4. We use two different data collection 
mechanisms – one of which we developed ourselves at Berkeley. These data collection 
tools are outlined in section 5. We describe tools and techniques we use for our data 
analysis in section 6. 

We analyze the underlying causes for both application-level as well as operating 
system-level crashes. We also compare application crash data to application usage 
statistics collected from our users. In our study of application crashes (section 7.1), we 
have identified web browsers as the single most crashing application type in the 
Windows environment. We found that application crashes are caused by both faulty non-
robust dll files as well as impatient users who prematurely terminate non-responding 
applications. Operating system-level crashes, discussed in section 7.2, are predominantly 
caused by poorly-written device driver code. Section 7 explains the above (and more)
analysis results and outlines potential techniques to reduce crashes in PCs. In section 8, 
we discuss shortcomings of our analysis, including missing information that would 
compliment our data analysis and allow us to improve our understanding of Windows 
crashes. As a solution for overcoming hurdles we encountered in collecting data from 
various sources, we propose an open source repository for failure data, details of which 
are outlined in section 8.2. Section 9 concludes.
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2. Background

To study Windows crash behavior, we collect data, in the form of crash dumps, from two 
different sources (discussed in section 4), using two different collection mechanisms 
(discussed in section 5). We study various types of crashes, which differ in their 
manifestation as well as impact to the user. Each type of crash is defined and explained in 
section 2.1. The amount of information collected to analyze each type of crash varies 
based on the data collection mechanism used. We discuss the contents of crash dumps 
and other information collected in section 2.2. We parse each of the collected crash 
dumps using Windows debugging tools (as described in section 6.1) and analyze the data 
to understand crash patterns in Windows machines.

2.1 Crash Definitions
There are various types of “crashes” that a Windows user may encounter. These crash-
types vary in their manifestation and their impact on the user’s experience. We define 
each crash-type below:

 Crash – An event caused by a problem in the operating system(OS) or 
application(app) requiring OS or app restart.

 Application Crash – A crash occurring at user-level, caused by one or more 
components (.exe/.dll files), requiring an application restart.

 Application Hang – An application crash caused as a result of the user terminating a 
process that is potentially deadlocked or running an infinite loop. If the user 
intervenes to terminate the process, the component (.exe/.dll file routing) causing the 
loop/deadlock cannot be identified.

 OS Crash – A crash occurring at kernel-level, caused by memory corruption, bad 
drivers or faulty system-level routines. An OS crash includes blue-screen-generating 
crashes, which require a machine reboot, as well as Windows explorer crashes, which 
require restarting the explorer process.

 Bluescreen – An OS crash that produces a user-visible blue screen followed by a 
non-optional machine reboot.

2.2 What are crash dumps

Upon each application crash or bluescreen generated by the operating system, Windows 
collects failure data as a minidump. Users have three different options for the amount of 
information that is collected upon a crash. We use the default (and smallest) option of 
collecting small dumps, which are only 64K in size. These small minidumps contain a 
snapshot of the computer’s state at the time of crash. They include a list of loaded drivers, 
the names and timestamps of binaries that were loaded in the computer’s memory at the 
time of crash, the processor context for the stopped process, and process information and 
kernel context for the stopped process and thread as well as a brief stack trace. We do not 
collect personal data files for our study. However, portions of such data may be resident 
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in memory at the time of crash and will consequently appear in our crash dumps. For 
further details on the contents of crash dumps, the interested reader can refer
http://support.microsoft.com/kb/254649/

When an OS crash occurs, typically the entire machine must be rebooted. Any 
relevant information that can be captured before the reboot is saved in a .dmp file in the 
%windir%\Minidump directory. These minidumps are uniquely named with the date of 
the crash and a serial number to eliminate conflicting names for multiple crashes on the 
same day. 

When an application crashes, the user typically receives a prompt asking if they 
would like to send the crash-related information to Microsoft. The information that is 
collected includes a minidump as well as a list of all modules loaded by the crashing 
process. Unlike OS crashes, application minidumps are stored in application-specific 
locations and are often difficult to locate on a machine. To increase the amount of data 
we receive, we disable the data-requesting prompt and automatically collect data for 
every application crash on the user’s machine.
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3. Related Work

Jim Gray's work [Gra86, Gra90] serves a role model for most contemporary failure 
analysis work. Gray did not perform root cause analysis but rather Outage Cause that 
considers the last in the fault chain. In 1989, he found that the major source of outages 
was due to software, contributing to about 55%, far outrunning its immediate successor, 
system operations that contributed 15%. This observation led him to blame software for 
almost every failure; it was supposed to mask all single faults. We study software 
(application) crashes as well as system crashes and understand the cause and effect of 
both crash types.

Deviating from Gray’s outage cause analysis, in our study we perform root cause 
analysis under the belief that the first crash in a sequence of crashes is responsible for all 
subsequent crashes within that event chain. The past two decades have produced several 
studies in root-cause analysis for operating systems (OS) ranging from Guardian OS and 
Tandem Non-Stop UX OS to VAX/VMS and Windows NT [Gra90, Kal98, LI95, SK+00, 
SK+02, TI92, TI+95]. In server environments, Tandem computers, VAX clusters as well 
as several operating systems and file servers have been examined for software defects by 
several researchers. Lee and Iyer focussed on software faults in the Tandem GUARDIAN 
operating system [LI95], Tang and Iyer considered two VAX clusters running the 
VAX/VMS operating system [TI92], and Sullivan and Chillarege examined software 
defects in MVS, DB2, and IMS [SC91]. Murphy and Gent also focussed on system 
crashes in VAX systems over an extended period, almost a decade [MG95]. They 
concluded that system management was responsible for over 50% of failures with 
software trailing at 20% followed by hardware that is responsible for about 10% of 
failures. While examining NFS data availability in Network Appliance’s NetApp filers,
Lancaster and Rowe attributed power failures and software failures as the largest 
contributors to downtime; operator failure contributions were negligible [LR01]. Thakur 
and Iyer examined failures in a network of 69 SunOS workstations [TI96]. They divided 
problem root causes into network, non-disk and disk-related machine problems. 
Kalyanakrishnam et al. perused six months of event logs from a LAN comprising of 
Windows NT workstations that delivered emails [KK+99]. Using a state machine model 
of detailed system failure states to describe failure timelines on a single node, they 
concluded that most automatic system reboot problems are software-related; the average 
downtime is two hours. Similarly, Xu et al. considered Windows NT event log entries 
related to system reboots for a network of workstations that were used for enterprise 
infrastructure, allowing operators to annotate event logs to indicate the reason for reboot
[XK+99]. In this progression, our study of Windows’ crash data gauges the evolution of 
PC reliability. We compare these results with similar information from earlier systems.  
Koopman et al. test operating systems against the POSIX specification [KD00]. Our 
study is complimentary to this work as we consider actual crash data that leads to OS 
unreliability.

Recently, in Windows XP Machines, Murphy deduced that display drivers were a 
dominant crash cause and memory is the most frequently failing hardware component
[Mur04]. We extend this work, evaluating application crashes over and above operating 
system crashes. We study actual crash instances experienced by users rather than 
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injecting artificial faults as performed by fuzz testing [FM00]. This study of crash data 
differs from error log analysis performed by Kalakech et al. [KK+04]; we determine the 
cause of crashes in addition to time and frequency. 

Applications constantly evolve with enhanced features and more protection 
mechanisms to safeguard from potentially unsafe environments. Despite a proliferation of 
techniques to improve reliability, PC components continue to fail, causing much user 
frustration. These systems offer potentially fruitful avenues for research with the 
promising potential for many practical suggestions to improve the performance of 
software for system designers and developers. However, some researchers argue that the 
key property of a well-conditioned system is graceful degradation [WC+01]. This trait 
has not been achieved in most PC applications; crashing is far from graceful degradation. 
We attempt to understand the reason behind such behavior in Windows applications.

A fast technique to detect and recover from software errors is continuous testing 
of the software with various inputs. However, devoid of clairvoyance it is usually far 
from obvious which inputs to throw at complex systems. Many researchers use fault 
injection to perform post-deployment prophylactic tests. Injected faults include data 
corruption, such as flipped bits in registers or memory and stuck-at faults, code 
corruption, such as op-code alteration and incorrect call routes [SM+04, BS+02], as well 
as performance faults. In the absence of real failure data, fault injection is a good 
alternative. However, we collect actual crash data from numerous users to study and 
evaluate PC software.

Several researchers have provided significant insights on benchmarking and 
failure data analysis [BC+02, BS97, OB+02, WM+02]. Wilson et al. suggest evaluating 
the relationship between failures and service availability [WM+02]. Among other 
metrics, when evaluating dependability, system stability is a key concern. Ganapathi et al. 
examine Windows XP registry problems and their effect on system stability [GW+04]. 
Levendel suggests using the catastrophic nature of failures to evaluate system stability
[Lev89]. Brown et al. provide a practical perspective on system dependability by 
incorporating users’ experience in benchmarks [BC+02, BS97]. In our study of crashes, 
we consider these factors when evaluating various applications. 
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4. Description of Data Sets

A single data set can be construed as an imprecise representative of typical Windows 
computer usage. For example, academic/corporate computer users have a level of 
computer expertise higher than average computer users. To reduce the skew introduced 
by a single data source, and to increase variability in usage profile, we consider several 
different data sources and attempt to understand the biases/assumptions implicit in each 
data set. We describe these data sets below.

4.1 UC Berkeley EECS Department

Our primary data collection and analysis was performed on research machines in the 
EECS department at UC Berkeley. Since June 2004, over 200 machines that run 
Windows XP SP1 are reporting their crashes to our server. The users of these machines 
are professors, graduate students and/or departmental staff/admins. 

These machines operate within the same domain and are somewhat constrained in 
security and administration. Much of the software installed in these machines is available 
internally to all EECS users. Thus, it is safe to say that these applications are somewhat 
stable and widely used in the department. However, users have the ability to install any 
software they require, and many of the graduate students use custom-written software 
that their research group has produced. The system administrators do not restrict use of 
such software, but ensure that necessary safety precautions are taken and patches are 
updated. 

We have collected data since mid-June 2004 and will present analysis for 10 
months of data (see Figure 1). We incrementally added computers to report to us (to 
verify stability of the collection mechanism). Also, since we are in an academic setting, 
we must account for gaps in crash data due to holidays and semester breaks. Below, we 
provide a timeline of such events/milestones during our 10 months of data collection:
Jun 14: 25 machines
Jun 25: 125 machines
July 9: 150 machines
Aug 3: 214 machines
Aug 24: Fall semester begins
Nov 25-26: Thanksgiving break
Dec 21-Jan 10: Winter break
Jan 11: Spring semester begins
Mar 21-Mar 25: Spring break

Given that the data is collected from a population of experienced (and perhaps 
expert) computer users, we realize the crash data we receive from this group might be 
biased and may not accurately represent the PC user population as a whole. We attempt 
to address this issue using BOINC, as described in section 4.2.
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Figure 1: Number of crashes reported per month. This graph is based on the data collected in the UC 
Berkeley EECS department.

4.2 BOINC User Group

To study a broader population of Windows users (in a less constrained environment), we 
have embarked on an effort to target public-resource computing volunteers. BOINC is a 
platform for pooling computer resources from volunteers to collect data and run 
distributed computations [And03]. A popular example of an application using this 
platform is SETI@home, which aggregates computing power to ‘search for 
extraterrestrial intelligence’. Numerous people enthusiastically contribute data to projects 
on BOINC rather than corporations as they favor a research cause. Additionally, users 
appreciate incentive either through statistics that compares their machine to an average 
BOINC user’s machine, or through recognition as pioneering contributors to the project. 

Currently, we have about 150 BOINC users. We are working on publicizing this 
effort further. So far we have received 562 OS crashes from these users, which we 
analyze to understand the types of and implications of OS level crashes.
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5. Data Collection process

We use two different mechanisms to collect crash data. To collect data from machines 
within the same administrative domain, we use Microsoft’s Corporate Error Reporting 
tool. Data collection for machines that reside in different domains is done using BOINC, 
as described in section 5.2.

5.1 Corporate Error Reporting (CER)

To collect data, we use Microsoft’s Corporate Error Reporting (CER) software. We 
configure a server with a shared directory that can directly receive crash reports from 
other machines within the same domain. Reporting client machines require no additional 
software. We simply modify a few registry entries (using a group policy) to redirect crash 
reports to our server in place of Microsoft. Furthermore, we disable the prompt that asks 
users whether they wish to send a crash report. Thus, we are guaranteed to receive reports 
for all crashes and are not dependent on the good graces of the user to send us crash data. 
Figure 2 shows sample information logged for each crash reported.

Figure 2: Sample data extracted from CER crash reports. The first column shows the time of crash. 
The second and third columns represent the anonymized machine and user name. The last column shows 
the crashing application, application version, crash-causing component, and component version. 

The CER server collects all the crash reports from each machine and sorts them by 
application. Each crash report is a .cab file containing the crashdump, a text description 
of the crashing application and it’s version, and a log of the number of times the same 
time of crash occurred on that machine.

The convenience of using CER is that it provides user-friendly interfaces for 
configuration as well as viewing/organizing crash reports. A major drawback of this 
approach is that all reporting machines must be in the same network domain as the CER 
server. This structure limits us to aggregating data from a single organization at a time. 
Furthermore, we cannot collect any historical data from client machines (such as crashes 
that occurred prior to CER installation). Additionally, there is no usage information 
collected by CER. Any usage-related metrics must be collected using an orthogonal 
mechanism, which often makes it inconvenient to correlate with crash data.

CDCopier.exe\5.3.5.10\hungapp\0.0.0.0Usr7M79/4/04 0:19

win-ir pro.exe\3.4.25.1\win-ir pro.exe\3.4.25.1Usr5M59/3/04 1:30

iexplore.exe\6.0.2800.1106\unknown\0.0.0.0Usr6M69/3/04 1:19

NOTEPAD.EXE\5.1.2600.0\hungapp\0.0.0.0Usr5M59/3/04 0:57

excel.exe\9.0.0.3822\excel.exe\9.0.0.3822Usr4M49/3/04 0:46

sgtray.exe\1.0.89.0\anigifdisplay.ocx\1.0.89.0Usr3M39/3/04 0:31

notepad.exe\5.2.3790.0\comctl32.dll\6.0.3790.0Usr2M29/2/04 21:59

iexplore.exe\6.0.2800.1106\rpcl3260.dll\6.0.9.1575Usr1M19/2/04 21:58

CDCopier.exe\5.3.5.10\hungapp\0.0.0.0Usr7M79/4/04 0:19

win-ir pro.exe\3.4.25.1\win-ir pro.exe\3.4.25.1Usr5M59/3/04 1:30

iexplore.exe\6.0.2800.1106\unknown\0.0.0.0Usr6M69/3/04 1:19

NOTEPAD.EXE\5.1.2600.0\hungapp\0.0.0.0Usr5M59/3/04 0:57

excel.exe\9.0.0.3822\excel.exe\9.0.0.3822Usr4M49/3/04 0:46

sgtray.exe\1.0.89.0\anigifdisplay.ocx\1.0.89.0Usr3M39/3/04 0:31

notepad.exe\5.2.3790.0\comctl32.dll\6.0.3790.0Usr2M29/2/04 21:59

iexplore.exe\6.0.2800.1106\rpcl3260.dll\6.0.9.1575Usr1M19/2/04 21:58
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5.2 Berkeley Open Infrastructure for Network Computing (BOINC)

Berkeley Open Infrastructure for Network Computing (BOINC) provides services to send 
and receive data from its users via the HTTP protocol using XML formatted files. It 
allows application writers to run and maintain a server that can communicate with 
numerous client machines through a specified Applications-Programmer-Interface (API). 
Each subscribed user’s machine, when idle, is used to run BOINC applications. Project 
groups can create project web sites with registration services for users to subscribe and 
facilitate a project. The web site can also display statistics for contributing users.

Taking advantage of these efforts, we have created a data collection application to 
run on this platform. BOINC provides a good opportunity to collect and aggregate data 
from users outside our department while addressing privacy concerns. We have written 
tools to read crash dumps from users’ machines and send the data to our BOINC server. 
In addition, we are also able to collect usage data with users’ consent. The drawback of 
this mechanism is that we can only collect crash dumps that are stored in known locations 
on the user’s computer, consequently excluding application crash dumps that are stored 
in unknown app-specific locations. Furthermore, configuring the BOINC server is a 
tedious and meticulous task. We must also monitor the number of work units we allot for 
the BOINC projects; if there are not enough work units, the application will not run on 
client machines.

An attractive aspect of using BOINC is that we can add more features to our 
application as and when necessary. We can also provide users with personalized feedback 
pages, consequently rewarding the users with an incentive for sharing data. However, we 
must verify the integrity of each crashdump we receive from the users. We must 
safeguard our server from being sabotaged by malicious data responses.
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6. Crash data analysis

We use a combination of Microsoft’s analysis tools and custom-written scripts to parse, 
filter and analyze the crash data. We provide an overview of these tools in the next few 
sections. 

6.1 Description of analysis tools

Upon receipt of crash dumps, they are parsed using Microsoft’s “Debugging Tools for 
Windows” (WinDbg), publicly available at  
http://www.microsoft.com/whdc/devtools/debugging/default.mspx. We retrieve 
debugging symbols from Microsoft’s publicly available symbol server 
(http://www.microsoft.com/whdc/devtools/debugging/symbolpkg.mspx). Parsing crash 
dumps using WinDbg reveals the application in which the crash was experienced as well 
as the immediate cause of the crash via an error code of the crashing routine. The 
drawback of this approach is that we rely on the completeness and accuracy of 
Microsoft’s symbols. Due to legal reasons, Microsoft does not make 3rd party symbols 
available so we cannot rely on our current tools to provide an accurate stack trace for 3rd

party applications; the issue is that we may not accurately identify the component causing 
the application crash even thought the application that crashed is identified correctly.

Once crash dumps are run through WinDbg, the importance of filtering data is 
evident. When a computer crashes, the application and/or entire machine is rendered 
unstable for sometime during which a subsequent crash is likely to occur. Specifically, if 
a particular component of an application, such as a dynamic-link-library (.dll) file is 
corrupt, the application is likely to repeatedly reproduce the error. It is inaccurate to 
double-count subsequent crashes that occur within the same instability window. To avoid 
clustering unrelated events while capturing all related crash events, we study the number 
individual crash events forced into clusters using various temporal windows. 

The data that is collected can be used to gather a variety of statistics. We can 
provide insight to the IT team about the dominant cause of crashes in the organization 
and how to increase product reliability. We can also use crash behavior to track any 
potential vulnerabilities as frequent crashes may be a result of malware on the machine. 
In the long run, we may be able to develop a list of safe and unsafe applications (and 
versions) and which combinations of concurrent installations result in crashes.

6.2 Clustering the data

For the purposes of our study, we identify three states for each application installed on a 
computer – not running, running (without problems) and crashed. Our data does not 
allow us to identify the not running and running states; we only have information about 
crashes. Based on our own PC usage experience, Figure 3 shows the behavior of
concurrently running applications on our PC.
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Figure 3: Behavior of concurrently executing applications on a single computer. Typically, a single 
application crash triggers several subsequent crashes. These events are grouped by inter-crash times.

We often have different applications open in different windows in modern PCs. Even if 
only one application is actively being used, the other applications continue to run in the 
background until they are explicitly terminated. Often, our interactions and the 
consequent behavior of one application affects the behavior of other concurrently running 
applications or subsequent instances of the same application. There may be several 
reasons for such cascading effect (or clustered crash behavior), a few of which are 
outlined below:
 Shared resources - Applications often share some common resources such as CPU 

and memory. If one application exhausts the memory available on the PC, other 
applications are impacted and slow down significantly (perhaps even stop responding 
altogether).

 Dependant processes - In some scenarios, one application may fork a process to 
invoke another application. For example, when using MS Outlook for e-mail, MS 
Word is invoked as the default editor for composing messages. If the parent Outlook 
application crashes, then the child process used for text editing in Word is directly 
affected.

 System instability – When there is a persistent problems, such as hardware failure, 
software misconfiguration, or underlying operating system instability as a result of a 
virus attack, all applications running on that machine are impacted. Often, in the 
absence of anti-virus software, repeated crashing behavior can indicate the existence 
of a virus on the system. 

 User retry – When a user-initiated action is unsuccessful, the user often retries the 
same action until it is successful or they lose patience and try alternative means to 
accomplish their task. 

In all the above scenarios, we must consider each cluster of crashes as a single event 
(initiated by the first crash event). Counting each crash event separately (without 
grouping them) leads to false accusations and skewed results. Since we do not know the 
exact sequence of events in every crash cluster scenario, we try to extrapolate based on 
the time between crash events on each individual machine. Figure 4 shows the number of 
individual crash events filtered out when clustering crashes based on the various time 
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Figure 4: Crash data filtering by time. This graph shows the number of crash events filtered out by 
setting the time between related events to the value indicated on the x axis.

intervals to determine related events. We try clustering events that occur across different 
applications on the same machine as well as limiting clusters to single applications.  

When choosing the appropriate time interval to determine crash event clusters, 
there are several concerns to address. Choosing a very long time interval would falsely 
impose relationships across applications. Given a large enough time interval, all crashing 
applications would be considered related. On the other hand, choosing a very short 
interval would perhaps overlook many valid inter-application relationships. Thus, based 
on trends observed in the graph in Figure 4, we chose a 10 minute time filter. In our data 
set, crash events that occur on the same machine within 10 minutes of each other are 
considered related. For subsequent data analysis sections in this paper, we only consider 
the first crash event in each crash cluster. This clustering technique reduced the 2254 
crashes into 1521 crash clusters. 

Another side-effect of crash clustering is that we eliminate duplicate records for 
the same event. Often, if an application is not responding and the user tries to manually 
terminate it (for example, by clicking the ‘x’ on the top right corner of the window), they 
may not see a prompt to terminate the process for a few seconds. Some users impatiently 
click the ‘x’ multiple times, consequently receiving several prompts to terminate the 
same application. This scenario may generate several records for the same crash event. 
Thus, it is important to soften the effect of such outliers in our data set.



14

We also experimented with automatically clustering application crash events 
using statistical learning theoretic algorithms. We augment the crash data with 
information about usage patterns and program dependencies and feed the data into the k-
means and agglomerative clustering algorithms to determine which applications are
behaviorally related.  Preliminary results highlight the importance of identifying features 
of collected crash data that provide information about program structure, system 
configurations, and user behaviors, and defining distance measures for clustering that use 
those features effectively. For more details, see Appendix B.
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7. Analysis Results

Crashes, at a high level, can be partitioned into two types – application-level and kernel-
level/OS crashes. To fully understand the dynamics of Windows crashes, we studied both 
types of crashes to the extent facilitated by the analysis tools available to us. In the EECS 
data set, only 79 of the 1521 crashes were caused by the OS (these OS crashes include 
bluescreen-generating crashes as well as Windows explorer crashes). The remaining 1442
crashes were application-level crashes. Sixty of these 79 OS crashes were caused by 
Windows Explorer; however, these Explorer crashes occurred at the application level and 
did not generate blue-screens or kernel-level problems. Thus, despite the fact that 
Explorer is a Windows OS related component, we analyze Explorer crashes among other 
application crashes.  The remaining 19 OS crashes were due to blue screens generated by 
various drivers operating with kernel-level capabilities. A more detailed discussion of OS
crashes follows in section 7.2, as BOINC has many more OS crashes.

In the BOINC data set, we were able to collect 562 OS crashes from 77 users (we 
have many more users voluntarily reporting crashes to us through BOINC; however, not 
all of them have experienced OS crashes). We also collected a handful of application 
crash dumps. However, all these application crashes were related to Microsoft-written
applications such as notepad and MS word (as those were the only crash folders we were 
able to locate). Consequently we do not analyze these application crashes from the 
BOINC data set. 

7.1 Application Crashes

Modern PCs run a wide variety of application software. There are hundreds of thousands 
of different applications available to PC users, each with numerous versions supporting a 
variety of features. It is difficult for the operating system to support such a spectrum of 
application requirements and workloads. Consequently, it is easier for applications to 
misbehave or simply behave in a manner that is not anticipated by the user. In our data 
set from the UC Berkeley EECS department, applications are responsible for over 95% of 
the crashes. In the remainder of this section, we elaborate on applications and their crash 
behavior.

7.1.1 How Do We Categorize Applications?
As a result of our automatic clustering experiment, we determined that we did not have 
enough data to derive a method to categorize applications in our data set. There was no 
unifying theme for crashes grouped together by our clustering algorithm. (See Appendix 
B for details) For example, we had:

 crashes from the same user/machine
 crashes from the same application
 crashes from similar applications (based on what they were used for) 
 crashes from application written by the same organization

For the sake of simplicity, we chose to impose a categorization based on 
application functionality i.e. what they are typically used for. We describe each 
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application category we use and provide example applications that would fall under each 
category. 

 code development – Applications in this category, such as Visual Studio and 
Java Eclipse, are primarily used for the purpose of writing custom software. These 
applications rely on various libraries for providing a variety of functionality to the 
user. 

 custom software – This category entails applications that are developed by the 
users for themselves/other users. Several research groups in the Berkeley EECS 
department develop software to assist their work and/or for the benefit of the 
industry. Thus, it is common to see these tools being used in the EECS 
department. Unlike commercially available software, custom software is statically 
linked and does not depend on many dynamic link libraries.

 database – This category includes typical database such as SQL Server and MS 
Access. The primary function of applications in this category is to provide an 
interface to organize and access data stored in a repository.

 document and presentation editing  – Applications in this category, such as MS 
Word, LaTeX and MS Powerpoint, are used as a means create and modify textual 
documents and/or presentations. These applications are widely used as they often 
increase efficiency for the user by providing facilities such as spelling checks.

 document archiving  –  This category of applications include gzip and MS cab 
extractor, whose primary function is to compress documents for efficiently 
archiving them and uncompress documents to view them. Typically, these 
applications are used rarely. 

 document viewing  – Applications such as Adobe Acrobat Reader and 
Ghostview serve the main purpose of document viewing. These applications are 
not used for editing/updating documents, and thus provide a read-only interface to 
the user.

 e-mail  – There are a plethora of applications used for reading/writing e-mail. 
Common examples include MS Outlook, Eudora and Thunderbird. 

 I/O – This application category includes all software used for interfacing with I/O 
devices such as scanners, printers, and handheld device. For instance, users
“hotsync” data between their computer and handheld devices such as a palm pilot. 

 instant messaging  –  Numerous applications have been developed to enable 
users to communicate instantly with other peers online. Examples of applications 
in this category include AOL Instant Messenger, Yahoo Messenger, and MSN 
Messenger. These applications rely on underlying network libraries to connect to 
a server or directly connect to peer machines for sending text messages and/or 
documents.

 multimedia  – Several applications facilitate recording and/or playback of audio 
and video files. Media players such as Real Audio Player and Windows Media 
Player also allow users to stream files from remote locations. Thus, these 
multimedia applications often depend on network libraries in addition to audio-
visual libraries.

 remote connection  – Many users prefer to work off-site, especially at night and 
on weekends. Additionally, many users may need to log into machines that are 
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located in a server room, and the only mechanism to access them is to use 
applications such as sshclient and exceed, which enable remote connectivity. 

 scientific computation  – Applications in this category include Matlab and 
Mathematica, which are typically used perform complex arithmetic. 
Consequently, these applications tend to be very CPU-intensive.

 system management and security  – Few computer users perform minimal 
maintenance on their computers. They use software such as Microsoft 
Management Console to manage devices and other software such as SQL Server. 
With the increase of malware, tools such as stopzilla assists the user in removing 
spyware and pop-ups. Applications such as Microsoft Management Console and 
stopzilla are considered in this category.

 web browsing – The most common application used in PCs is web browsing 
software. Examples of applications in this category include MS Internet Explorer, 
Netscape and Firefox. Several web browsers come with embedded e-mail clients. 
However, for the purposes of our study, we do not consider such e-mail clients in 
the e-mail category as it is extremely difficult to distinguish them from the actual 
browser components.

Figure 5 suggests expertise levels of typical users who use applications in each of the 
categories mentioned above. While it is possible to categorize crashes based on the likely 
expertise of a typical user of the application that crashes, we realized such analysis would 
not reveal information detailed enough for application developers to react to. 
Categorizing applications based on how they are used will not only provide insight to 
users of these applications; it will also reveal shortcomings in the underlying design flaws 
in inter-component interactions in each application category.

Application Category Novice user Intermediate 
User

Expert User

Code development No No Yes
Custom software No No Yes
Database No Yes Yes
Document presentation 
and editing

Yes Yes Yes

Document archiving No Yes Yes
Document viewing Yes Yes Yes
e-mail Yes Yes Yes
I/O Yes Yes Yes
Instant messaging Yes Yes Yes
Multimedia Yes Yes Yes
Remote connection No Yes Yes
Scientific computation No Yes Yes
System management and 
security

No No Yes

Web browsing Yes Yes Yes
Figure 5: Typical computer expertise level of people who use applications in each category.
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7.1.2 How Can a Usage Survey Help Interpret Crash Behavior?
In each application category, a handful of applications caused a majority of crashes in 
that category. However, it is unfair to judge the quality and/or reliability of applications 
based solely on crash count. In the absence of a process monitoring application usage, we 
conducted a survey among users whose machines generated crashes in our data set. The 
questions we asked our survey-takers are available in Appendix A. We received over 
50% of the responses (41 responses). Due to the nature of surveys, we cannot rely on the 
responses to gain an accurate understanding of how frequently these applications are 
used. However, we can use survey responses to approximate the correlation between 
usage and crash behavior and justify crash patterns based on usage trends. We 
acknowledge that the difficulty of objective evaluation of computer usage taints our 
survey responses. However, though less accurate than automated monitoring, the
information we gathered highlights unusual occurrences in application crashes.

Given that the EECS department contains a wide variety of users, we try to 
catalogue the affiliations of these users in Figure 6. The computer-expertise of these users 
spans a fairly wide range (from experts who build their own machines to application-
level users). The quantity (and types) of crashes generated by each type of user varies 
based on their usage level. Graduate students, for example, often develop their own 
software and may cause several crashes in the process of debugging. We would consider 
such users as experts. The department’s administrative staff, on the other hand, typically 
limit their use to pre-existing applications and do not experiment much with their 
machine. They may range from novice to intermediate users.

Figure 6: User Profile in the UC Berkeley 
EECS data set. 

Figure 7 and Figure 8 show the usage proportion and number of crashes, 
respectively, on each day of the week. All the EECS department users who responded to 
our survey use their EECS computers Monday through Friday. Very few of them use 
these computers on weekends. Crashes, on the other hand, do not occur uniformly across 
the five days of the working week. There appear to be far fewer crashes on Fridays than 
Monday through Thursday. This trend may be due to the fact that Fridays tend to be more 
relaxed than the other four work days as many people simply wrap up work from the 
previous days. Saturday and Sunday naturally have very few crashes as many people do 
not come to the department to work on those weekends.

Type of User
Number 
of Users

Number of 
Crashes

graduate student 30 621
staff 28 414
unknown 16 197
faculty 14 191
undergraduate 4 19
visitor 3 51
guest 1 9
postdoc 1 19
TOTAL 97 1521
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Figure 7: Computer Usage by Day of Week. This graph depicts the percentage of our survey responders 
that use their EECS computer on each day of the week.
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Figure 8: Crashes generated on each day of the week. This graph depicts the number of crashes that 
occurred on each day of the week based on the UC Berkeley EECS data set.
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Studying Figure 9 and Figure 10, we observe an approximate correlation between usage 
and crashes during each hour of the 24-hour day. Most people work during the typical 
hours of 9am to 5pm. Since our data set involves users of various affiliations to the 
department, we see a wider spectrum of work schedules. While most administrative staff 
work during the day, several graduate students work in the evenings and late nights. Of 
course, this trend is likely to vary based on conference deadlines and course project 
deadlines. The crashes generated during each hour correlate fairly well with the usage for 
that hour of the day. Most crashes occurred between 1pm and 5pm, which is the same 
window for maximum computer usage in the department.

Percentage of Computer Users per Hour of Day
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Figure 9: Computer Usage by Hour of Day. This graph depicts the percentage of our survey responders 
that use their EECS computer during each hour of the day.
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Number of Crashes per Hour of Day
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Figure 10: Crashes generated during each hour of the day. This graph depicts the number of crashes 
that occurred during each hour of the day based on the UC Berkeley EECS data set.
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Percentage of Users Rebooting their Computer at 
Specified Frequency
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Figure 11: Frequency of Computer Reboot. This graph was generated based on responses to the survey 
we conducted among EECS department computer users whose machines contributed crashes to our data 
set.

In our survey, we also inquired about the frequency with which users reboot their 
machines. The rebooting process helps rejuvenate PCs and restore them to a clean and 
stable state. Based on the results in Figure 11, the reboot frequency largely varies among 
the users. Thus, it is difficult to generalize and derive conclusions on the quality of 
maintenance of the machines in the EECS department.

Windows users typically have several applications running in parallel; while 
many windows are open at a time, only one or two are actively used in the foreground, 
leaving other applications to run in the background. For example, instant messaging has 
become a common tool for communicating between friends, co-workers, and even 
meeting new people. Many users we asked use instant messaging software during their 
work hours. It is difficult to gauge the frequency of active use of such messaging 
software; however, the survey revealed that such software is definitely being used in the 
EECS department, justifying the handful of crashes generated by this category of 
applications.
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Figure 12: Usage frequency of miscellaneous applications

In our user survey, we also asked users to indicate if they use certain types of 
software (results in Figure 12). It is difficult to quantify the frequency of use of a 
category of applications if it is by nature useful on rare occasion. For example, cd 
burning software and document archiving software are not typically used on a regular 
basis. Thus, we wanted to verify that the lack of crashes in these categories are justified 
by the usage patterns.  The only reliable source for understanding such usage patterns is 
to monitor processes on each computer.

7.1.3 Which Categories of Applications Generate the most Crashes?
Application crashes are more frequent than OS crashes but can usually be resolved by 
restarting the crashing application. Figure 13 shows a distribution of crashes by cause. 
Web browsers cause a majority of crashes in this dataset. This category includes Internet 
Explorer, Netscape, Mozilla and Firefox. One possible explanation for such a large 
number of browser crashes is that browsers interact with a wide variety of components 
which are often untested/unreliable. For example, people use web browsers for a variety 
of purposes including checking e-mail, interacting in chat rooms, uploading and 
downloading files and viewing multimedia. Plug-ins that are required to view a particular 
website often run inside browsers; crashes that were caused when interacting with a plug-
in are blamed on the browser by the analysis tools. 

The next major crash-contributing category is document preparation software. 
Applications in this category include MS Word, Powerpoint and LaTeX. According to 
the usage survey we conducted, on average, users spend 22% of their computer time 
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Figure 13: Crash Cause by 
Application Category. This 
table depicts the relative 
frequency of crashes caused 
by each category of 
applications and the relative 
time spent using each 
category of application 
(based on the user survey 
conducted in the EECS 
department at UC Berkeley). 

using document preparation applications. It seems reasonable that such a highly utilized 
set of applications generate a large number of crashes. However, there are other factors 
than usage alone that must be addressed when justifying the crash rate. Document 
preparation software usually involves interacting with various data formats. For example, 
examining this thesis report alone, we find textual contents as well as Excel tables, graphs 
and pictures. Typically, document preparation software requires libraries to interact with 
a variety of data formats and this dependency results in increased number of crashes.

E-mail software such as MS Outlook and Eudora caused 9% of crashes in this 
data set but were reported to be used most frequently by users who responded to our 
survey. It is not surprising that e-mail generate so many crashes as there are numerous 
inconveniences that accompany e-mail. For example, numerous worms and viruses 
spread via e-mail, especially through e-mail attachments. Furthermore, some of the users 
we surveyed used e-mail programs that were embedded in their web browser (see Figure 
12); however, crashes in such browser-related e-mail programs were classified as web 
browser crashes as we were unable to distinguish them from regular browser crashes.

Scientific computing and code development software also caused a sizeable 
amount of crashes in our data set. We expect this result to be atypical of an average PC 
user. Graduate student users in the UC Berkeley EECS department are more likely to 
develop software and use scientific computing tools such as Matlab and Mathematica
more frequently than a typical PC user (or even a non-graduate student user such as a 
staff member in the EECS department). 

We have a significant percentage of crashes attributed to un-classifiable 
applications, that is, we were unable to identify the purpose of the software, perhaps 
because they were custom-written and used by a single/small set of users. A few
applications in this category had ambiguous names such as setup.exe, which could have 
belonged to one or more application categories. Since we have no method of tracing 
applications on the crashing machines, we refrained from forcing them into one of the 
above mentioned application categories.

Application Category # Crashes Crash % Usage %
web browsing 598 41% 18%
unknown 185 13% n/a
document preparation 152 11% 22%
email 130 9% 24%
scientific computing 95 7% 7%
document viewer 84 6% 8%
multimedia 57 4% 6%
code development 26 2% 10%
document archiving 23 2% n/a
remote connection 23 2% n/a
instant messaging 17 1% n/a
i/o 15 1% n/a
other 14 1% 1%
database 8 1% n/a
system management 8 1% 4%
security 7 0% n/a
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7.1.4 Do Web Browser Usage Patterns Reflect Web Browser Crash Patterns?

Web Browsing Usage

Internet 
Explorer, 54%

Netscape, 20%

Firefox, 9%

Mozilla, 15%

Lynx, 2%

Web Browsing Crashes

Firefox, 13% (79)

Netscape, 26% 
(156)

Internet Explorer, 
58% (348)

Mozilla, 3% (15)

Figure 14: Web Browsing Application Use and Crash Frequency.  Note: some users check e-mail using 
Netscape’s built-in mail application. We do not distinguish between Netscape’s browser and e-mail 
crashes. 

While web browsers cause a majority of crashes in our data set, they are not the most 
frequently used application. We further dissected web browser crashes to identify the 
specific web browsing applications that contributed to these crashes (see Figure 14). 
Internet Explorer is the most commonly used, and the highest crash contributor among 
web browsers. Netscape and Firefox have approximately the same proportion of use as 
well as crashes. However, we must keep in mind that Netscape comes with a built-in e-
mail client, that may have contributed some of the Netscape crashes in our data set.
Mozilla also appears to be a fairly popular browser; however, it does not generate nearly 
as many crashes as other browsers. A possible explanation for Mozilla’s robustness is 
that it is an open source product. Unlike proprietary software, Mozilla’s code has 
benefited from thorough testing and evaluation from numerous users around the world. 
While Firefox is also open source, it is “younger” than Mozilla and consequently has less 
stable code that is more crash prone than Mozilla.

On average, users reported more frequent usage of email and document 
preparation applications than web browsers; these applications caused a significant 
proportion of crashes. Recall throughout this analysis that this data represents the 
Berkeley EECS department and not the entire Windows user population. Usage statistics 
underscore this fact as code development and scientific computation are uncommon 
activities for most Windows users. 

7.1.5 What Causes these Crashes?
Figure 15 suggests that approximately half of crashes are generated due to a user’s 
manual termination of an application, i.e., application hang. Often, when an application 
does not respond in a timely manner, perhaps due to an outdated .dll, an overloaded 
processor or insufficient memory, users tend to terminate this process and retry 
subsequently. It is possible that such applications would crash eventually if the user 
avoided pre-termination during its “hang”. It is equally likely that the process was simply 
slow in responding and would have eventually completed the task successfully. 
Application hangs do not reveal much information regarding what occurred at the time of 
crash. Thus, we can not explore the details of such events.
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Crash Cause

application 
hang
48%

faulty 
component

52%

Figure 15: Crash Cause.  This pie chart distinguishes the frequency of crashes due to application hangs 
from crashes caused by faulty components such as .dll, .exe and .sys files.

Application # hangs % hangs
% Running 
Total

iexplore.exe 185 25% 25%
matlab.exe 68 9% 34%
winword.exe 67 9% 43%
outlook.exe 60 8% 51%
firefox.exe 47 6% 57%
netscape.exe 41 6% 63%
unknown 25 3% 66%
powerarc.exe 19 3% 69%
powerpnt.exe 13 2% 71%
thunderbird.exe 13 2% 73%
excel.exe 12 2% 75%
acrobat.exe 11 1% 76%
explorer.exe 11 1% 77%
mozilla.exe 11 1% 78%
acrord32.exe 10 1% 79%
msimn.exe 10 1% 80%
AdDestroyer.exe 7 1% 81%
wmplayer.exe 7 1% 82%
notepad.exe 6 1% 83%
rundll32.exe 5 1% 84%
hp precisionscan 
pro.exe 4 1% 85%
mathematica.exe 4 1% 86%
msaccess.exe 4 1% 87%
msdev.exe 4 1% 88%
photosle.exe 4 1% 89%
winamp.exe 4 1% 90%
apps causing <1% 
of crashes each 84 11% 101%
Total 736

Figure 16: Frequency of Hangs due to Various Applications.  Some of these applications are custom-
authored by users. Percentages shown are rounded to the nearest percent, causing the total to exceed 100%.
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Applications hang frequently
Figure 16 outlines the applications that commonly hang. Again, Internet Explorer, 
represents the largest proportion of applications that hang; Netscape and Firefox fall 
among the top ten commonly hanging applications. A feasible explanation for this trend 
is that web browsers interact with numerous other applications such as Macromedia 
Flash, Quicktime, and Acrobat Reader. Consequently, a robust browser application is 
forced to interact with other applications that may not be safeguarded against unreliable
code. To resolve this problem, interaction must be restricted to trusted, safe plug-ins, 
avoiding potentially unsafe and potentially malicious code. In contrast, applications such 
as MS Word, Outlook and Matlab can hang for different reasons. Often, large 
computations running in Matlab can use a significant amount of memory and disable 
other applications from running in parallel. In addition to insufficient computation 
memory, corrupt files can also cause the application to hang. In some scenarios, a file can 
be large enough to cause problems at start up. A practical solution must reduce the 
workload and/or upgrade the software/machine.

Figure 17: Top fifteen problematic DLL and executable files causing crashes. Each component is 
annotated with a description of its functionality, authorship (MS=Microsoft) and examples of applications 
using this component. The percentage of crashes attributed to a component is listed in the last column along 
with the raw number of crashes in parenthesis. This percentage excludes crashes categorized as application 
hangs. For user-written executable files, we are unable to provide sample applications that use the 
component.

Component Description Author Apps invoking 
component

%crash

ntdll.dll 
NT system functions MS Internet Explorer, 

Matlab 11% (86)

msvcrt.dll 
Microsoft C runtime library MS Acrobat,

Netscape 5% (37)
acrord32.exe Acrobat Reader 3rd party Acrobat Reader 4% (29)

pdm.dll 
Scripting component functions MS Visual Studio, 

Internet Explorer 3% (23)
firefox.exe Web browser 3rd party Firefox 2% (19)

user32.dll 
Communication, message 
handler, timer functions 

MS Firefox, Internet 
Explorer 2% (17)

ray_tracing.exe User application 3rd party -- 2% (16)
winword.exe Windows document editor MS Word, Outlook 2% (15)

mshtml.dll HTML related functions MS
Internet Explorer, 
Netscape 2% (15)

tempest.exe Unknown 3rd party -- 2% (15)

gklayout.dll Mozilla layout library 3rd party
Thunderbird, 
Firefox 2% (14)

kernel32.dll 

Microsoft memory 
management, I/O and interrupts
library MS

Acrobat, Firefox, 
Internet Explorer

2% (14)
simpl_fox_gl.exe User application 3rd party -- 2% (14)
rpcl3260.dll Real Player component 3rd party Real Player 2% (13)
thunderbird.exe Mozilla e-mail program 3rd party Thunderbird 2% (13)
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 .dll files are  not robust enough
Figure 17 lists the top fifteen .dll and executable files blamed for crashes. These 
components constitute a significant portion of non-application hang-induced crashes. 
Apparently, a majority of problematic .dll files are invoked by multiple applications. A 
few noteworthy examples are ntdll.dll and msvcrt.dll. Among several scenarios, the same 
.dll can be blamed for a crash. For example, the caller of a .dll routine can pass invalid 
arguments to the callee. Alternately, a .dll’s callee routine can return a bad value. 
Moreover, it is possible for a machine’s state to be corrupt at the time of .dll execution. 
Precise inter-.dll interface definition and sand-boxing will help avoid cascading effects of 
data corruption.

.dll “Model Citizens”
We further investigated which dll files are used commonly among 33 applications we 
examined. We were limited to these 33 applications as we did not have executable files 
readily available for other applications. We generated dll dependency graphs using 
Dependency Walker (available at http://www.dependencywalker.com/). We identified 
commonly used dlls that never crashed and those that generated many crashes. Among 33 
applications for which we were able to generate dll dependency graphs, 227 unique dll 
files were used. Of these dlls, only 37 caused crashes in our data set. The worst offenders 
were widely used components that provide Windows operating system functions. See 
Figure 18 for the 5 most commonly used dlls that produce several crashes. The top 
offender, used by all 33 applications and generating 86 crashes in our data set is ntdll.dll. 
Perhaps sandboxing this dll better will eliminate many future crashes.

Figure 18: Commonly used dlls that produce several crashes. This 
list is based on 33 applications that we analyzed.

The remaining 190 dlls are “model citizens” for good dll design and implementation. Of 
these 190, 96 dlls were used by 32 out of 33 applications analyzed. These top dlls are 
listed below in Figure 19. One explanation for the success of these dlls is that they 
provide a focused set of functions. For example, netman.dll is responsible for managing 
network connections. Perhaps the best model for a dll is that it provides a small set of 
specific functions and intensively checks parameters for invalid values, eliminating errors 
at the earliest point possible.

Crash-
causing dll

Num 
Crashes

ntdll.dll 86
msvcrt.dll 37
user32.dll 17
mshtml.dll 15
kernel32.dll 14
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Figure 19: Most commonly used dlls that do not crash. This list is based on 33 applications that we 
analyzed

Crash-causing Status Codes
The table in Figure 20 shows a list of the error codes that accompanied each application 
crash in our data set. Most of these errors (such as access violation) are essentially due to 
bad pointers. A significant number of crashes could have been avoided if processes 
stayed within their bounds and did not try to access memory that they did not have 
permission to use. A meta-lesson is that the code can immensely benefit from more 
careful boundary checking and verification. 

The next highest crash-causing error code, 0xcfffffff, suggests an application 
hang. As mentioned earlier, hangs are a result of users manually terminating a non-
responding application, which may potentially respond given sufficient time. We do not 
have enough information regarding application hangs to suggest techniques to avoid 
them. In page errors occur when an I/O request was incomplete and consequently, the 
contents were not appropriately loaded in memory. There are also a handful of exceptions 
due to integer and/or floating point arithmetic that was illegal or caused an overflow.
These exceptions are often techniques to check for corner-case errors and can be 
prevented only by fixing the code that led to the corner-case. Some exceptions are due to 
code that does not abide Windows NT specifications. For example, invalid lock sequence 
status is a result of bad lock ordering according to Windows NT standards.

A C T IV E D S .D L L IM A G E H L P .D L L N E T M A N .D LL  S E C U R 3 2 .D LL  
A D S LD P C .D L L  IM M 3 2 .D L L  N E T P LW IZ .D L L  S E T U P A P I.D LL  
A D V A P I3 2 .D LL  IN E T C O M M .D L L  N E T R A P .D L L S H LW A P I.D LL  
A D V P A C K .D LL  IP H L P A P I.D L L  N E T S H E L L .D L L  S H S V C S .D L L  
A T L.D LL  IR P R O P S .C P L  N E T U I0 .D L L  T A P I32 .D LL  
A U T H Z .D LL  L IN K IN F O .D LL  N E T U I1 .D L L  U R LM O N .D L L 
C A B IN E T .D L L LZ 32 .D L L  N E T U I2 .D L L  U S E R E N V .D LL  
C D F V IEW .D L L M F C 4 2U .D L L  N T D S A P I.D L L  U T IL D LL .D L L  
C E R T C L I.D L L  M LA N G .D LL  N T L A N M A N .D L L  V E R S IO N .D LL  
C F G M G R 3 2.D LL  M O B S Y N C .D LL  O D B C 32 .D L L  W 32T O P L .D L L 
C L U S A P I.D L L  M P R .D L L O LE A C C .D L L W IN M M .D L L 
C O M D L G 32 .D L L  M P R A P I.D L L  O LE D L G .D L L W IN S C A R D .D L L 
C R E D U I.D L L  M P R U I.D L L  O LE P R O 32 .D LL  W IN S P O O L.D R V  
C R Y P T 3 2.D LL  M S A S N 1 .D L L P O W R P R O F .D L L W IN ST A .D L L 
C R Y P T U I.D LL  M S G IN A .D L L  P R IN T U I.D L L  W IN T R U S T .D LL  
C S C D L L .D L L  M S I.D L L  Q U E R Y .D L L  W LD A P 32 .D L L  
D B G H E LP .D LL  M S IM G 32 .D L L  R A S A P I32 .D L L  W M I.D L L  
D E V M G R .D L L  M S O E R T 2 .D L L R A S D L G .D L L W S 2 _3 2.D LL  
D H C P C S V C .D L L  M S R A T IN G .D L L R A S M A N .D L L  W S 2 H E LP .D L L 
D N S A P I.D LL  M S S IG N 3 2 .D LL  R E G A P I.D LL  W SO C K 3 2.D L L  
D U S E R .D L L M S V C P 6 0.D LL  R P C R T 4 .D L L  W T S A P I3 2 .D LL  
E F S A D U .D LL  M SW S O C K .D L L R T U T ILS .D LL  W ZC D L G .D L L 
E S E N T .D LL  N E T A P I3 2 .D L L  S A M LIB .D L L  W ZC S A P I.D L L  
G D IP LU S .D LL  N E T C F G X .D L L S C E C L I.D L L  W ZC S V C .D L L 
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NTSTATUS code Error Message Num Crashes
0xc0000005 STATUS_ACCESS_VIOLATION 728
0xcfffffff HANG 579
0xc0000006 STATUS_IN_PAGE_ERROR 15
0xc0000096 STATUS_PRIVILEGED_INSTRUCTION 11
0xeedfade Trappable error in external object 7
0x80000003 STATUS_BREAKPOINT 6
0xc000001d STATUS_ILLEGAL_INSTRUCTION 4
0xc0000409 STATUS_STACK_BUFFER_OVERRUN 4
0xc0000094 STATUS_INTEGER_DIVIDE_BY_ZERO 3
0xc0000025 STATUS_NONCONTINUABLE_EXCEPTION 2
0xc0000091 STATUS_FLOAT_OVERFLOW 2
0xc0150010 STATUS_SXS_INVALID_DEACTIVATION 2
0xe06d7363 Trappable error in external object 2
0xc000001e STATUS_INVALID_LOCK_SEQUENCE 1
0xc0000090 STATUS_FLOAT_INVALID_OPERATION 1
0xc00000fd STATUS_STACK_OVERFLOW 1
0xc015000f STATUS_SXS_EARLY_DEACTIVATION 1

Figure 20: Crash-causing status codes. Status codes were available for only a subset of the crashes. 

7.2 OS Crashes

OS crashes are more frustrating than application crashes as they require the user to kill 
and restart the explorer process at a minimum, more commonly forcing a full machine 
reboot. While there are a handful of crashes due to memory corruption and other common 
systems problems, a majority of these OS crashes are caused by device drivers (as seen in 
Figure 21). These drivers were related to various components such as display monitors, 
network and video cards.

7.2.1 What are Device Drivers?
A device driver is a kernel-mode module that communicates operating system requests to 
the device and vice versa. These drivers are inherently complex in nature and 
consequently difficult to write. Among many reasons for device driver complexity are 
that these drivers deal with asynchronous events. Since they interact heavily with the 
operating system, the code must follow kernel programming etiquette (which is difficult 
to master and follow). Furthermore, once device drivers are written, they are exceedingly 
difficult to debug as the typical device driver failure is a combination of an OS event and 
a device problem, and thus very difficult to reproduce (see [SM+04] for a detailed 
description of device driver problems).

Figure 21, in addition to pointing out the high number of device crashes, also 
specifically shows the number of graphics driver crashes. The fields for this table were a 
direct result of scraping the OS Crash Type field from all the analyzed crash dumps. For 
legal reasons, the publicly available analysis tools do not reveal driver categories for 
various crashing drivers. Graphics drivers appear to be an exception to the rule.
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OS Crash Type Num Crashes
  DRIVER_FAULT 458
  COMMON_SYSTEM_FAULT 63
  GRAPHICS_DRIVER_FAULT 36

Figure 21: Number of OS crashes of each type. This table was generated based on the OS Crash Type 
field in analyzed crash reports. 

7.2.2 What Components Cause OS Crashes?
In the absence of more details revealed by the analysis tools, we considered guessing the 
type of each driver that caused a crash. However, we realized this effort might lead to 
inaccurate results and numerous unknown mappings. There are thousands of drivers 
available and not all of them have English documentation. Thus, it would take a large 
amount of effort to web crawl and gather data, and perhaps not embellish this work too 
much more. As an alternative, we study the image (i.e. .exe, .SYS or .dll file) that caused 
these crashes, so we can at least identify the organization that contributed the crash-
causing code (see Figure 22).

Image Name/ 
Crash Cause Image Description

Num 
crashes

% 
crashes

% Running 
Total

  ntoskrnl.exe NT kernel and system 150 27% 27%
  GDFSHK.SYS McAfee Privacy Service File Guardian 42 8% 35%

 ALCXWDM.SYS
Windows (R) WDM driver for Realtek 
AC'97 40 7% 42%

  kmixer.sys kernel audio mixer of Microsoft Windows 28 5% 47%
  win32k.sys multi user win32 driver 19 3% 50%

  ati3d2ag.dll 
ATI Technologies Inc. Radeon DirectX 
Universal Driver 18 3% 53%

 Brwgate.sys NAT/Proxy/Firewall system 16 3% 56%

  HSF_CNXT.sys 
Conexant Systems SoftK or SoftK56 
Modem Driver 10 2% 58%

  Ialmdev5.DLL Intel graphics driver 10 2% 60%
  ati2dvag.dll ATI Radeon WinNT display driver 8 1% 61%

  nv4_disp.dll 
NVIDIA Compatible Windows 2000 
display driver 8 1% 62%

  V7.SYS IBM V7 Driver for Windows NT/2000 8 1% 63%
  usbscan.sys Microsoft usb driver 7 1% 64%

 ALCXSENS.SYS 
Windows (R) WDM driver for Realtek 
AC'97 6 1% 65%

  ar5211.sys 
driver for dual band WIFI wireless mini 
pci adapter 6 1% 66%

  pcx500.sys 
NDIS5.1 Miniport Driver for 32 bit 
Windows 6 1% 67%

 Unknown_Image -- 6 1% 68%

  ati3duag.dll 
ATI Technologies Inc. Radeon DirectX 
Universal Driver 5 1% 69%

  AVGNTDD.SYS Filter Device for Windows XP/2000/NT 5 1% 70%

  nv4_mini.sys 
NVIDIA Compatible Windows 2000 
Miniport Driver 5 1% 71%

Figure 22: Top 20 OS Crash-causing Images. A description of the crash-causing image is provided in 
addition to the percentage of crashes caused by each image.
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The top contender in Figure 22 is ntoskrnl.exe, which constitutes the bare-bones
Windows NT operating system kernel code. It is not surprising that this executable is 
responsible for a number of driver crashes because it interacts with every other operating 
system component and is thus the single most critical component that can never be 
perfect enough. Furthermore, other systems code might generate bad input parameters to 
the ntoskrnl functions that cause exceptions; ntoskrnl bears the blame for the resulting 
crash as it generated the exception. 

Other crash causing images range from graphics drivers to multimedia and I/O 
drivers. It is difficult to debug or even analyze these crashes further as we do not have the 
code and/or symbols for these drivers. With the increasing need for numerous devices 
accompanying the PC, it does not scale for the operating system developers to account 
for and write device driver code for each device; consequently, device drivers are written 
by device manufacturers, who are typically inexperienced in kernel programming.
Perhaps such lack of expertise is the most impacting cause for driver-related OS crashes.

We also had 47 OS crashes caused by memory corruption. Memory corruption-
related crashes can often be attributed to hardware problems introduced by the type of 
memory used (eg. non-ECC memory). In the event that the memory corruption was due 
to software, the probelm cannot be tracked down to a single image. 

Driver Fault Type
Num 

Crashes
PAGE FAULT IN NONPAGED AREA 118
IRQL NOT LESS OR EQUAL 105
KERNEL MODE EXCEPTION NOT HANDLED 67
UNEXPECTED KERNEL MODE TRAP 63
BAD POOL CALLER 46
THREAD STUCK IN DEVICE DRIVER 36
SYSTEM THREAD EXCEPTION NOT HANDLED 29
Unknown bugcheck code 16
Other (each caused 1 crash) 14
PFN LIST CORRUPT 13
DRIVER CORRUPTED EXPOOL 12
DRIVER UNLOADED WITHOUT CANCELLING PENDING OPERATIONS 8
MANUALLY INITIATED CRASH 5
File Corruption - Unreadable File 4
BAD POOL HEADER 4
KERNEL DATA INPAGE ERROR 4
NTFS FILE SYSTEM 4
CRITICAL OBJECT TERMINATION 3
FAT FILE SYSTEM 3
DRIVER POWER STATE FAILURE 2
KERNEL STACK INPAGE ERROR 2
MEMORY MANAGEMENT 2
MULTIPLE IRP COMPLETE REQUESTS 2

Figure 23: Crash generating driver fault type.
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7.2.3 Which Faults Generate the Most OS Crashes?
To further understand driver crashes, we studied the type of fault that resulted in the 
crash. Figure 23 lists the number of crashes that were caused by the various fault types. 
These fault types are reported by Microsoft’s analysis tools when analyzing each OS 
crash dump. 

While many of these fault types are straightforward to understand from the name, 
many others are abbreviations of the event they describe. Below, we enumerate each fault 
type and its significance (based on the descriptions provided in the parsed crash dumps):

 PAGE FAULT IN NONPAGED AREA - Invalid system memory was referenced.  
This cannot be protected by try-except, it must be protected by a Probe.  This error is 
typically due to a bad pointer. This category of driver faults contributed the most OS 
crashes in our data set.

 IRQL NOT LESS OR EQUAL - An attempt was made to access a pageable (or 
completely invalid) address at an interrupt request level (IRQL) that is too high.  This 
is usually caused by drivers using improper addresses.
*Note: The interrupt request level is the hardware priority level at which a given 
kernel-mode routine runs, masking off interrupts with an equivalent or lower IRQL 
on the processor. A routine can be preempted by an interrupt with a higher IRQL. 

 KERNEL MODE EXCEPTION NOT HANDLED - The exception address 
pinpoints the driver/function that caused the problem.  This address, combined with 
the date link date of the driver/image containing this address, can provide insight to 
the problem.

 UNEXPECTED KERNEL MODE TRAP - A trap occurred in kernel mode, either 
because the kernel is not allowed to have/catch (bound trap) the trap or because a 
double fault occurred.

 BAD POOL CALLER - The current thread is making a bad pool request.  Typically 
this is at a bad IRQL level or double freeing the same allocation, etc.

 THREAD STUCK IN DEVICE DRIVER - The device driver is spinning in an 
infinite loop, most likely waiting for hardware to become idle. This usually indicates 
problem with the hardware itself or with the device driver programming the hardware 
incorrectly.

 SYSTEM THREAD EXCEPTION NOT HANDLED – This fault type is similar to 
an unhandled kernel mode exception. The exception address pinpoints the 
driver/function that caused the problem.  This address, combined with the date link 
date of the driver/image containing this address, can provide insight to the problem.

 PFN LIST CORRUPT - Typically caused by drivers passing bad memory descriptor 
lists.

 DRIVER CORRUPTED EXPOOL - An attempt was made to access a pageable (or 
completely invalid) address at an interrupt request level (IRQL) that is too high.  This 
fault is caused by drivers that have corrupted the system pool.  

 DRIVER UNLOADED WITHOUT CANCELLING PENDING OPERATIONS
- A driver unloaded without canceling timers, DPCs, worker threads, etc. The broken 
driver's name is displayed on the screen.
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 MANUALLY INITIATED CRASH - The user manually initiated this crash dump. 
This is not really a problem, perhaps a test to verify that crash reporting works 
properly.

 BAD POOL HEADER - The pool is already corrupt at the time of the current 
request. This may or may not be due to the caller. The internal pool links must be 
walked to figure out a possible cause of the problem, and then special pool applied to 
the suspect tags or the driver verifier to a suspect driver.

 KERNEL DATA INPAGE ERROR - The requested page of kernel data could not 
be read in.  This fault is typically caused by a bad block in the paging file or disk 
controller error. Possible errors include a failure experienced by the disk subsystem
and a failed request due to a filesystem not progressing forward.

 NTFS FILE SYSTEM  - This fault suggests a problem with the machine’s NTFS 
filesystem.

 CRITICAL OBJECT TERMINATION - A process or thread crucial to system 
operation has unexpectedly exited or been terminated. Several processes and threads 
are necessary for the operation of the system; when they are terminated (for any 
reason), the system can no longer function. 

 FAT FILE SYSTEM – This fault suggests a problem with the FAT filesystem on the 
machine.

 DRIVER POWER STATE FAILURE - A driver is causing an inconsistent power 
state. 

 KERNEL STACK INPAGE ERROR - The requested page of kernel data could not 
be read in.  This fault is typically caused by a bad block in paging file or disk 
controller error. 

 MEMORY MANAGEMENT – Bad input parameter.
 MULTIPLE IRP COMPLETE REQUESTS - A driver has requested that an IRP 

be completed, but the packet has already been completed.  In the best case scenario of 
this fault, a driver attempted to complete its own packet twice.  More commonly, two 
separate drivers attempt to complete the same packed as each driver believes it owns 
the packet. 

Studying these fault types reveals various programming errors that impact system 
behavior and what OS problems to tackle with caution. We explore the possibilities for 
improving PC reliability and evaluate their pros and cons in the next section.

7.3 Practical techniques to reduce crashes

In the past, Windows code has been optimized for performance rather than reliability. 
Much of the parameter checking code was eliminated in the interest for faster response. 
Currently, speed and performance are becoming less important than reliability. Perhaps it 
is time to reintroduce more parameter checking and verification at each system procedure 
call interface.

Traditionally, software reliability problems have been tackled by using a handful 
of ad-hoc methods. The ideal solution for increasing software reliability is to work with 
existing components and simply add wrappers/helper components to help the software 
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function better and/or recover gracefully. However, this solution is not always an option. 
An alternative technique is to rewrite the unreliable code. Unfortunately, this approach 
does not scale well, especially with thousands of proprietary software running on PCs. 
One can also rebuild the entire system from scratch – redesign the Windows operating 
system, redefine interfaces and standards for third party application and device driver 
code. This approach, while feasible, is extremely unrealistic as the cost-benefit analysis 
would reveal that the cost would far outweigh the benefits. Moreover, there is no 
guarantee that everyone will converge on these new standards, let alone guarantee status-
quo reliability. 

Software-Based Fault Isolation 
Wahbe et al. [WL+93] proposed isolating distrusted modules from trusted OS 
components by loading code and data into its own fault domain. Such sand-boxing would 
enforce clear semantics for code/data flow between trusted and untrusted modules. It 
would allow each kernel extension to execute independently of other extensions while 
having access to a specified portion of kernel memory. The authors suggest using cross-
fault-domain RPC to invoke code or modify data and maintain dedicated arbitration code 
(in its own fault domain) to decide if the cross-fault-domain transactions are safe.

This model would be very valuable in the Windows operating system. Clearly, we 
could reduce the number of OS crashes caused by bad device driver code using this fault 
isolation technique. We could treat all third party device driver code as “untrusted” and 
execute each of them in its own fault domain. This model guarantees that an “untrusted” 
device driver could not clobber operating system state. The crucial component of this 
model is developing the arbitration code; incompetent arbitration code is at least as bad as 
not having any isolation at all. This approach requires modifying existing operating 
system code to incorporate the notion of fault domains. However, with the size and 
complexity of Windows operating system code, this option might not be feasible in a 
short time span.

Nooks
Nooks, discussed in [SM+04], tackles the device-driver unreliability problem by adding a 
subsystem in the Linux kernel to handle reliable device-driver communications. Clearly, 
mechanisms implemented by Nooks would help reduce device driver-related crashes. 
They follow the software fault isolation model by enclosing each kernel extension in a 
dedicated protection domain. All communication between the kernel and its extensions 
passes through a wrapper that enforces the use of extension procedure calls (XPC). To 
allow graceful recovery, they implement shadow drivers that monitor each driver and 
take over in the case of a failure. A functional shadow driver enables the original 
(faulting) driver to be reset, allowing relatively transparent failure recovery from the 
driver fault. 

While this mechanism is effective in preventing the propagation of driver faults to 
the user level, it seems difficult to scale to all possible driver categories. For example, 
Nooks has been tested on a handful of device categories (such as network cards and 
sound cards), and the communication between these drivers and the operating system 
have been successfully sand-boxed to allow monitoring and post-mortem analysis. 
Furthermore, it seems as though Nooks works best if the kernel extensions can be 
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terminated and restarted safely; it is unclear how the model would change if safe 
terminations and restarts were not the norm.

Separate protection level for drivers 
The MULTICS operating system adopted multiple protection rings for restricting the 
flexibility of applications [SS72]. In most modern operating systems (including 
Windows), we simply distinguish between kernel and user level permissions (effectively 
2 protection levels rather than 9 prescribed by MULTICS). With un-trusted driver code 
requiring access to communicate with the operating system, it is obvious the device 
drivers should have more flexibility than application code that executes in the users level. 
However, it seems unnecessary for device drivers to have complete flexibility to modify 
and often corrupt operating system structures, especially when the code is written mostly 
by third party vendors who are not familiar with the detailed workings of the operating 
system. 

Perhaps it is wise to introduce an intermediate protection level for device drivers 
as a compromise between user level restrictions and kernel level freedom. Obviously, this 
approach would require clear redefinition of interfaces between the kernel level and the 
intermediate protection level. It also requires rewriting portions of the operating system 
code and moving existing kernel-level device driver code into this new intermediate 
protection level.

Move driver code to user level libraries
Along the lines of the previously proposed solution of creating a new protection level, we 
can perhaps consider moving all driver code entirely to the user-level. This modification 
would completely restrict the amount of “damage” driver code can do to the operating 
system. Perhaps we can create user-level libraries that interface with the operating system 
and validate communications between device drivers and the operating system. This 
approach involves moving some of the operating system code (and all device driver code) 
into the user-level.

Virtual Machines for unsafe/distrusted applications
Virtual machines offer a mechanism for isolating the effects of one application from 
another. Recently, there have been many opportunities to use virtual machines for 
improving the reliability of operating systems. In [KD+04] the authors run code in virtual 
machines and log/monitor operations on the host machine to track and understand the 
interactions between the various applications and the operating system. Furthermore, with 
the increase in e-mail viruses, several PC users open their e-mail applications in a virtual 
machine so that any mal-effects of e-mail are contained within that virtual machine and 
do not affect other applications on the host machine. 

We can take advantage of virtual machine technology to reduce the number of 
crashes on PCs. Currently, there is no mechanism to transparently invoke virtual 
machines upon application start. We can run unreliable/distrusted applications on these 
dedicated virtual machines to understand their impact on other concurrently executing 
applications. Over time, if an application has functioned without causing any unexpected 
behavior, we can migrate the application to the host machine. This area of research 
sounds attractive as it does not require rewriting operating system or application code. 
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Upon application invocation, we simply need to verify the integrity/trustworthiness of 
applications and select between running them on the host machine or a dedicated virtual 
machine.

This technique would be particularly useful for crashes caused by web browsers 
(a majority of application crashes). Since web browsers often invoke multiple “helper” 
components such as plug-ins, invoking a web browser in a separate virtual machine 
ensures that the plug-ins are also invoked in the same virtual machine and do not affect 
any other applications running on the bare machine. Crashing the virtual machine is less 
problematic than crashing the host machine as the number of peer applications affected 
by the crash are drastically reduced.
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8. Discussion – A Case for an Open Source Data Repository

An Open Source Data Repository would simplify data collection and make failure data 
more accessible to systems researchers. We make a case for such a repository by 
identifying the drawbacks of our current data collection and analysis techniques, and 
suggest issues to consider when designing such a repository.

8.1 Drawbacks of Current Data Collection Mechanisms

In this section, we discuss several obstacles and consequent shortcomings of our data 
analysis and ways to address them. 

8.1.1 Insufficient Data Quantity
One can think about application complexity and crash-susceptibility in terms of interface 
complexity.  The interfaces between an executable and its libraries, between binary files 
and the system configuration, and between the user and the application all introduce 
complexity, and are easier to quantify than the source-code complexity of an application 
with a range of external dependencies.  To address each of these interfaces, we would 
like our data set to include multiple crash events, occurring on different computers with 
different usage patterns, for each of the (application, DLL) pairs occurring most 
frequently in home or corporate settings.  For the 33 applications we could analyze, we 
found 227 DLLs in use.  Expanding this list to 50 applications and assuming around 250 
DLLs in use, this comes to around 12,500 (application, DLL) pairs.  

This “back-of-the-envelope” calculation provides a foothold for an order-of-
magnitude estimate of the sample size that might provide reliable clustering data.  If we 
let the number of (application, DLL) pairs approximate the number of outcomes we care 
about (the interaction between (application, DLL) pairs and error codes is difficult to 
quantify because the two are not causally independent), then the multinomial distribution 
of failures given a machine configuration and usage pattern has 12,500 outcomes. It is 
difficult (although not entirely impossible) for a researcher to single-handedly collect and 
analyze so many different outcomes. However, Microsoft has the resources and the data
(and access to the source code) to investigate all these possibilities. In our case, the range 
of potential causes (corrupted DLLs, version conflicts, misconfiguration, and user 
behavior, among others) only serves to enlarge the space of possible outcomes.  We will 
require more data to make more concrete claims about the results we observed.

8.1.2 Improving BOINC Data Quality
Ideally, to embellish our analysis with information about the sequence of events and/or 
the machine’s condition leading to the crash, we wish to know precisely the duration of 
each application or process and the associated resource consumption. A continuous 
profile of the machine’s evolution is absent in the collected data. For each machine, it is 
useful to know information including service packs, CPU type/speed, RAM, disk 
capacity, applications installed, antivirus tools installed, virus definition date/version. We 
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must also collect several performance metrics, expressly before and during the crash. For 
example, for each machine, it is useful to know the system uptime, amount of free space, 
number of processors, processor queue length(s) and network configurations. Such data 
can suggest the sequence of events that lead to a crash and factors and processes that 
influence the failure progression. Presently, as we rely on Microsoft’s debugging tools to 
parse crash dumps, it is difficult to study the context of each failure as third party 
executable images are encoded not to be publicly available. Collecting machine metrics 
and process information will improve the accuracy of our analysis process.

8.1.3 Difficulty of Collecting Data
Several limitations are imposed on our analysis due to the inherent concern regarding 
privacy. We have observed that some people are undoubtedly uncomfortable with data 
collection. After crossing the initial threshold to gain credibility, people are eager to share 
crash data. The privacy issue is a matter of policy rather than data availability. The most 
outstanding concern that users have with sharing data is anonymity. It is crucial for us to 
mask the exact data source and collect and store data anonymously.  Thus, data collection 
must be restricted to necessary and sufficient statistics that evaluate usage. Also, it is 
beneficial to provide incentives to the users volunteering their data. This technique has 
been fruitful in past projects and continues to be an attractive mechanism to gather data.

Usage data collection continues to be difficult, even in the UC Berkeley EECS 
department. People are concerned that revealing usage information allows others to 
reverse-engineer data and hold potentially incriminating evidence against the user. In 
contrast, the computer industry routinely collects such data and is keen to share this 
information. Perhaps businesses expect a pattern of usage behavior from their employees 
and are less concerned with privacy.

A major bottleneck with industrial collaborations is legal documentation. Based 
on our experience, engineers are willing to share the company’s data if they see an 
incentive such as being able to know what applications to avoid using. Corporate 
lawyers, who draft agreements for the collaborations, are less willing to give us access to 
the data. It takes up to several months for them to draft a non-disclosure agreement, even 
if we already have agreements in place for other project collaborations with that 
company. Valuable time is lost during the interim period between submitting a request to 
the lawyer and getting signatures on the agreements. That time could have been used to 
collect more data and/or analyze and take the next steps in making changes based on the 
analysis results.

8.2 Design Challenges for an Open Source Data Repository

Gathering data requires a significant investment. Some of these investments are technical, 
such as the cost of building an infrastructure for measurement. Others are more social in 
nature. For example, when collecting data from companies, researchers must pass
through several layers of indirection for an approving signature. Furthermore, corporate 
lawyers spend several months drafting tedious legal agreements for the collaboration. 
Similarly, when conducting user studies for research, students are often required to obtain 
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approval from an institutional review board, which requires considerable paperwork and 
has high latency.

It is accepted wisdom that time is our most precious resource. It can take days,
weeks, or months to collect a large quantity of useful data. Nevertheless, we often fail to 
amortize these costs and leverage these investments. If we are to be more effective and 
efficient as a research community, then we must find ways to use and build upon the time 
investments of our peers. Data collection in experimental computer science and 
engineering has always been time consuming. However, as we pursue research agendas
which increasingly connect the physical and virtual worlds, or embark on projects which 
require data as an input, like applications of statistical learning theory to systems 
problems, the data collection, management, and sharing challenges can only grow.

There is currently no single repository that can be queried for data sets. We rely 
on the knowledge of peer researchers to point us to the right person to obtain data. An 
open source data repository provides a single interface to numerous data sets, eliminating
the unnecessary downtime of waiting for responses. There are various design and 
maintenance considerations for building such a repository, some of which are enumerated 
below.

One of the biggest challenges of building an open source data repository is 
determining management logistics. A centralized repository would be simpler and more 
cost effective to monitor. Designating a single organization to maintain the system 
introduces issues related to economics as well as trust. A decentralized repository, on the 
other hand, would be more fault tolerant (eliminating the single point of failure) but 
would require sophisticated consistency mechanisms to assure data integrity. A related
question is whether federated management is feasible; a federated scheme would allow 
member sites to choose which features to open or not to the outside.

There are numerous repositories created by research groups to hold different types 
of data ranging from failure data to http and Apache logs to sensor data. Little effort is 
spent on making these repositories easy to access. Systems researchers would benefit 
from a unifying schema that accommodates all these data types. We can use XML-like 
languages to write headers describing the data set. Given such data descriptor headers, we 
can provide tools to automatically convert the data to our desired format and store the 
information in our repository.

It is important to verify the authenticity of data (and the contributing entity) to
avoid plaguing our repository with fake data. We also need mechanisms to verify that 
people using the data give due credit to the data contributors. This task is challenging as 
the purpose of the repository is to provide data access to any and all organizations while 
reducing the likeliness of misuse. Also, people often have stringent privacy requirements 
for sharing data. We can meet these requirements by providing an infrastructure to 
anonymize sensitive data at the point of collection, a model that has already been adopted 
by some systems researchers. Another concern is that no details regarding individuals 
should be reproducible from cross-correlating various data sets.
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9. Conclusions

Our crash-data related study has contributed several Windows related revelations. The 
most notable reality is that the Windows operating system is not responsible for a 
majority of PC crashes at Berkeley. Application software, especially browsers, is mostly 
responsible for these crashes. Users can alleviate computer frustration by better usage 
discipline and avoiding unsafe applications. With additional data collection and mining, 
we hope to make stronger claims about applications and also extract safe product design 
and usage methodology that apply universally to all operating systems. Eventually, this 
research can gauge product as well as usage evolution.

Our study of operating system-level driver crashes has also revealed many 
insights. It is clear that PCs would benefit from enclosing device drivers in a more 
restrictive environment. Furthermore, better programming etiquette can avoid many 
problems introduced in device driver code. Most authors of device drivers are not trained 
sufficiently to follow kernel programming rules and best practices. It is perhaps time to 
offer mandatory training for these device driver authors and also develop better tools that 
advise and constrain device driver code.

The analysis performed in this report, if applied to a data set representative of
Windows users world-wide, can help us derive conditions for safe and unsafe application 
functionality. We would be able to devise a knowledge-base of universally safe 
application configurations that would never crash as well as combinations of applications 
(and their versions) that are guaranteed to be problematic. Such information would 
forewarn users before they purchase software and also allow them to choose the level of 
risk they are willing to take for their personal computing experience.

Studying failure data is as important to the computing industry as it is to 
consumers. Product dependability evaluations, such as reports provided by J.D. Power 
and Associates, help evolve the industry by reducing quality differential between various 
products. Once product reliability data is publicized, users will use such information to 
guide their purchasing decisions and usage patterns. Consequently, product developers 
will react defensively to resulting competition. Perhaps using the data in this report, 
manufacturers of both hardware and software would pay considerable attention to their 
products thereby improving their quality control.



42

Appendix A: Usage Survey

As part of Prof. David Patterson's research on Recovery Oriented Computing, we are studying the 
cause of crashes on Windows PCs. To improve our analysis, we would appreciate if you could 
answer the questions below. While the real reward is societal, benefiting future generations of 
computer users, we will select 4 winners to receive a $50 gift certificate to Amazon.com. Please 
send questions/comments and survey responses to archanag@cs.berkeley.edu

----------------------------------------------------------------------------------------

1) On average, how many hours a day do you spend actively working on your EECS computer?

2) What are your usual hours of computer work on an EECS machine? (e.g. 9am-6pm, 3pm-1am, 
midnight-10am)

3) what days of the week do you usually use the EECS machine? (e.g. Mon-Fri, Wed-Sat, Thu-
Mon, ...)

4) What percent of this time is spent actively on the following activities (and which software do 
you use):
Web browsing (internet explorer, netscape, ...) 
Email (outlook, eudora, ...) 
Document/presentation preparation (Word, Powerpoint, Latex, ...) 
Document viewing (acrobat, ...) 
Code development (C, C++, Java, visual studio, ...) 
Scientific computation (matlab, mathematica, ...) 
System management/security (e.g. install/uninstall software, antivirus, antispyware, ...) 
Multimedia (Media player, Quicktime, ...) 
Other (please specify)

5) Please answer yes/no to the following questions:
-is your e-mail program part of a web browser (e.g. netscape mail) Note: this does not include 
using web interface for e-mail?
-do you use instant messaging?
-do you use cd burning software?
-do you spend time compressing and uncompressing documents?

6) Which apps crash most frequently?

7) When an app crashes, what do you tyically do?
Restart app?
Restart computer?
Other ...

8) How frequently do you reboot your computer?
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Appendix B: Clustering Windows Applications based on Crash 
Behavior

Automated techniques allow us to process larger data sets and identify deeper interactions 
between applications and shared libraries than approaches like manually partitioning 
crashes by publisher or task.  However, automated clustering can only succeed if the data 
actually encode the characteristics relevant to the clustering task.  This is especially 
challenging when the data set contains a wide range of non-numeric features, as is the 
case with the crash events we recorded.  We will discuss the measures we took to 
augment crash data with relevant application, library, and workstation features; define 
distance measures appropriate to the structure we intended to capture, and ascertain the 
sensitivity of our model to changes in those distance measures.

We would like to use our automated clustering procedures to identify not only 
whether a particular deployment of an application to a workstation interacted poorly with 
the environment provided by that workstation in the past, but what underlying features of 
a program make it susceptible to failure so that future designs and implementation do not 
perpetuate those features.

Distance Measures for Crash-Event Clustering
Crash event vectors, including the raw data returned by Microsoft’s CER and the derived 
features we append, mix several data types.  Strings identify applications, libraries, users, 
and machines; hexadecimal values correspond to error codes returned by DLLs, and 
version numbers (integer arrays of length four) distinguish implementations of 
executables and DLLs with the same names.  To these data we add set-valued (the DLL 
support of an application) and decimal-valued features (normalized times derived from 
the timestamp and self-reported usage frequencies).  

A single similarity measure will not suit all of these data types.  We could order 
string identifiers alphabetically, and measure their “similarity” as the edit distance 
between them, but this does not correspond to the similarities or differences in the 
applications or machines identified by those strings.  (In more rigidly-administered 
environments, one can imagine using machine names to identify the deployment 
configuration of a computer, but our data suggest that this approach has little traction in 
the EECS department.)  Likewise, the total ordering of timestamps does provide 
information about crash chains, but a total ordering of hexadecimal error codes is 
meaningless, since the error codes are (in general) arbitrarily assigned to error conditions.
However, commonly-used metrics like the Euclidean distance between two vectors only 
depend on the componentwise difference between those vectors, and do not require that 
the same notion of “difference” apply to all components.  This allows us to define a 
difference operation for each data type that is consistent with the clustering task at hand:
 String identifiers and hexadecimal error codes used a “binary difference” operator:  if 

two values were equal, their difference was 0; otherwise, their difference was 1.  

 Decimal values used ordinary subtraction; the magnitude of the difference between 
two values was as important as the existence of the difference.
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 Set-valued features (like the DLL support of an application) used the size of the 
symmetric difference between the two sets.  (The symmetric difference of two sets 
contains all elements that occur in exactly one of the sets.)  

 Version numbers, logged as v1.v2.v3.v4, were compared one component at a time, and 
the differences summed.  The difference between major versions v1 could be 
arbitrarily large.  The difference between minor versions v2 was scaled over all pairs of 
version numbers observed to be less than 1.0, the difference between incremental 
updates v3 was scaled to be less than 0.1, and the difference between builds was scaled 
to be less than 0.01.  This corresponds to one interpretation of version-number 
semantics (that major version numbers provide the most useful measure of program 
complexity), but we discussed several others.  For example, higher minor version 
numbers might correspond to bug-fix releases, or they may indicate the introduction of 
new features without the exhaustive testing that typically precedes a major release.

Normalization, Bias, and Default Values
With the diversity of data types came the challenge of scaling the feature space so that no 
one feature dominated the distance computation for a pair of data points.  For example, if 
one measures the time between crash events in milliseconds, then the feature 
corresponding to the elapsed time since the last crash will overwhelm all other distance 
measures.  On the other hand, if one measures time in days, the contribution of elapsed 
time to the distance between two data points is negligible

On the surface, normalization does not seem difficult:  scale each component’s 
difference operator so that the maximum difference between two components is 1.  
However, if all dimensions are scaled in this way, then the choice of features can 
materially alter the outcome of the clustering procedure.  For example, we include both 
user name and machine name in our data set to ascertain the relative influence of user 
behavior and system configuration in the occurrence of crashes.  However, machine 
names and user names are almost perfectly correlated in our data set; only one or two of 
the machines in our sample population generated crash reports with different users logged 
in.  As a result, the identity of the user (or his computer) carries twice as much weight as 
the name of the application when deciding what crash events are related.  Similarly, the 
limited number of crash events we collected shows a strong correlation between DLL-
specific error codes and individual computers.  Out of the nearly 1500 error reports, only 
two crash chains occurring on different machines share the same (DLL, error code) pair!  
This sparsity means that the introduction of derived features, rather than providing a 
richer set of data about the task domain for the clustering algorithm to arrive at a reliable 
conclusion, can serve as a tool to systematically bias the result.  The verb-noun co-
occurrence example mentioned above also ran that risk by replacing individual nouns 
with noun categories.  However, the goal in that case was to compare the grammar-
checker’s internal representation of “common usage” against a large corpus of examples; 
the substitution of categories for individual nouns made for a tighter connection between 
the clustering results and the grammar-checker’s representation.  Our goals in clustering 
crash events are less concrete:  we suspect that the application’s intended purpose, its 
implementers’ practices, the configuration and state of the host PC, and the sophistication 
of the user all play a role in the frequency and duration of crash chains, but we can’t 
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provide additional information in any of those categories without running the risk that we 
privilege one over the others.  At this stage of the work, we have taken our best effort to 
balance the feature set; the results described below seem to match our expectations.  We 
see nothing to indicate that the features we have added greatly upset the balance of 
relevant characteristics.

The choice of default values provides another avenue for introducing bias.  Both 
of the examples cited at the beginning of this section face the risk that a particular pattern 
occurring in nature (for example, an article about the North Korean Olympic team that 
combines traits of the “foreign policy” and “sports” articles) will not occur in the data set.  
Techniques like Laplace smoothing, which assigns probability 1/(n+k) to an unobserved 
outcome of an event with k possible outcomes and n observations, accommodate these 
exceptional cases.  Many of the crash events recorded by CER lacked several fields, so 
we also faced the challenge of defining default values.  This is actually easier to do for 
non-numeric data types:  for strings and hexadecimal codes, our default value was 
defined to be different from all other instances of that data type.  For set-valued data, the 
default value was the empty set; most of the applications for which we had no 
dependency information were statically-linked research applications, so they had no 
runtime dependencies.  For numerical fields, we used the average over all observations of 
that field as an unbiased placeholder.

Clustering Analysis Results
In the absence of cluster exemplars, we are left with the task of manually 

inspecting the clusters found by our application. Figure 25 shows examples of clusters 
obtained from our data.  Both agglomerative and k-means clustering successfully 
identified crash chains as collections of related events.  Crash events in a chain shared 
almost all features in common, differing only in their time stamps, so these would 
comprise the most prominent groups in our very sparse data set.  

Working our way from the leaves to the root of the cluster tree generated by the 
agglomerative algorithm, the clusters become harder to interpret.  At the level of 25 
clusters, the output of the agglomerative algorithm1 includes a mix of stand-alone crash 
chains, user-specific crash histories (multiple crash chains attributed to the same user and 

                                                
1 We could not identify systematic differences between the results of the k-means and agglomerative algorithms, so 

we focus our presentation on the agglomerative results.

Figure 24: A comparison of clustering algorithms. 
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workstation), and application-centric crash histories (crashes of the same application on 
different workstations).  For example, one of the clusters contained seven crashes of 
sshclient.exe, including two on different computers with the same error code; another 
contained six crash chains generated by netscape.exe with a variety of offending DLLs 
(from the Netscape-specific gklayout.dll to the widely-used msvcrt.dll).  Eight other 
clusters contained multiple crash chains experienced by a single user, but the offending 
DLLs of these crash chains rarely agreed.  The oddest cluster we found contained only 
two applications, firefox.exe (the Mozilla Firefox browser) and alisp.exe (Allegro 
Common Lisp).

The largest clusters do not present unifying features.  One cluster of the 25 
contained 582 crash events.  Most of these were user-terminated (reported as “hungapp”), 
but some identified DLLs as the cause of the failure.  Many of these applications were 
published by a single large vendor, but smaller developers and open-source projects also 
made the list.  Almost all of the cluster members, however, were “complex” interactive 
applications with large DLL sets.

Our analysis suggests that most crash histories are highly machine and/or user 
specific. Perhaps a high-level lesson we learned from this experience is that configuration 
management is a golden nugget in improving PC reliability. There is no single 
organization that is responsible for all crashes as the system instability is a result of 
incompatible configurations more often than it is due to bad application code. A useful 
tool in this direction would be an application compatibility checker that can verify upon 
application installation that it is safe to use given the current machine configuration.
Our analysis results seem promising that it is possible to find inter-application structural 
similarities given extensive crash data. However, to derive trustworthy patterns, we 
require orders of magnitude more crash data. It is important to have several instances of 
crashes generated for every application/component/error code tuple. Given the limited 
number of machines in the department and proficient system administration, it would be 
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Figure 25: Sample application clusters. Each table shows a cluster of applications as decided by k-means and/or 
agglomerative clustering. The left column represents the application while the right column corresponds to a 
particular component used by the application. 
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difficult to generate the necessary data locally. We would derive more accurate clustering 
results if we ran the tool on a large scale of data such as the millions of crash reports 
collected by Microsoft.

It is very important to incorporate expert knowledge of these applications and 
their structure into our analysis engine. It is impossible to automatically capture all the 
design intricacies and functional descriptions that an informed application developer 
might readily provide. However, such immense domain knowledge may bias clustering 
results. So it is important to be aware of any bias introduced by expert knowledge while 
preserving the necessary structural information about each application. Additionally, it is 
also important to include end-user-experience in availability metrics that we use. Crash 
patterns do not always correlate with usage patterns and such information is instrumental 
in accurate analyses that normalize the data. 
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