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Abstract

Unified Parallel C (UPC) is a parallel language that uses a Single Pro-
gram Multiple Data (SPMD) model of parallelism within a global address
space. The Berkeley UPC Compiler is an open source and high-performance
implementation of the language. The choice of C as the code generation tar-
get greatly enhances the compiler’s portability, as evidenced by its support
of a wide range of supercomputing platforms, including large-scale multi-
processors, vector machines, and network of workstations. In this paper I
describe the translator component of the Berkeley UPC Compiler, which
is responsible for performing UPC-to-C transformation and generating the
necessary runtime calls for communication. The goal of the translator is to
generate high quality C code while enabling easy porting of the compiler,
and also provide a framework that allows for extensive high-level optimiza-
tions. We use a combination of micro-benchmarks and application kernels to
show that our compiler can output C code that achieves good performance
on both superscalar and vector environments, despite the source-to-source
transformation process. We also investigate several communication opti-
mizations, specifically targeting two optimizations can get significantly im-
prove the performance of fine-grained programs: message coalescing and
split-phase communication generation.



1 Introduction

Global Address Space (GAS) languages have recently emerged as a promising
alternative to the traditional message passing model for parallel applications. De-
signed as parallel extensions for popular sequential programming languages, GAS
languages such as Unified Parallel C [25], Titanium [48, 28], and Co-Array For-
tran [39] provide better programmability through the support of a user-level global
address space, leading to more flexible remote accesses through language-level
one-sided communication. GAS languages thus offer a more convenient and pro-
ductive programming style than explicit message passing (e.g., MPI [36]), and
good performance can still be achieved because programmers retain explicit con-
trol of data placement and load balancing. Another virtue of GAS languages is
their versatility; for example, UPC’s flexible memory model is carefully designed
so that it can operate in both shared and distributed memory environments. While
it has not yet reached the level of MPI’s ubiquity, UPC implementations are now
available on a significant number of platforms [20, 26, 43], ranging from multi-
processors to the many flavors of networks of workstations.

The Berkeley UPC Project is a research effort aimed at increasing the visi-
bility of the UPC language, by building a portable compiler framework that also
offers comparable performance to other commercial UPC implementations. To
achieve portability and high performance, the Berkeley UPC compiler uses a lay-
ered design, which can be tailored to adapt to the communication primitives and
processor architectures offered by different platforms. Specifically, the compiler
generates C code that contains calls to our UPC runtime interface [7], which is im-
plemented atop a language-independent communication layer called GASNet [9].

In this report, we describe our experiences with designing and implementing
the source-to-source translator in the Berkeley UPC Compiler [6]. The transla-
tor is derived from the Open64 Compiler Suite [40], an open-source collection of
optimizing compiler tools that can compile C,C++, and Fortran programs. The
translator helps achieve portability by both targeting C as its output format and
employing a transformation process that is mostly platform independent with the
exception of a few architecture specific parameters. Generating code for a new
platform thus can be as simple as changing the particular values of such param-
eters in a configuration file. An equally important goal of the translator is to
ensure that the sequential portion of an UPC program, which is written just like
regular C code, does not experience performance slowdown after the source-to-
source translation. By keeping the internal representation sufficiently high-level,
our Berkeley UPC translator is able to generate C output that closely resembles
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the original source. Empirical evidence suggests that our translator can generate
good-quality C output that performs well on both scalar architectures and vector
machines.

The second part of this report concentrates on our efforts in using the transla-
tor as a framework for experimenting with high-level UPC specific optimizations.
Because a thread can write and read shared memory directly, UPC encourages a
programming style that may result in many small messages. A major challenge for
a UPC compiler is thus to bridge the gap between fine- and coarse-grained styles
by providing automatic communication optimizations. Specifically, the optimiza-
tions should reduce both the number and the volumes of message traffic, as well as
hide communication latencies by overlapping communication with computation.
We have designed and implemented several optimizations in our translator that
enable fine-grained UPC programs to be compiled more efficiently. The first op-
timization eliminates runtime affinity tests associated with UPC’s parallel forall
loop construct. The second optimization, message coalescing, transforms fine-
grained memory accesses into bulk transfers to reduce communication overhead.
Finally, the translator performs split-phase communication scheduling to exploit
both communication-computation overlap and message pipelining. Preliminary
results suggest that these optimizations are generally effective in reducing the
communication costs.

The rest of the paper is organized as follows. Section 2 describes the UPC
language and provides an overview of the Berkeley UPC Compiler. Section 3
presents the source-to-source transformation process of the Berkeley UPC-to-C
translator. Section 4 discusses our strategies for dealing with the several chal-
lenges encountered while implementing the translator, while Section 5 examines
the code generation quality of the translator, focusing on its ability to maintain
the vectorizability of the program. Section 6 gives a summary of the Berkeley
UPC translator’s optimization framework. Section 7 presents our optimization
work with the UPC forall loop, while Section 8 describes another loop optimiza-
tion called message coalescing. Section 9 details the translator’s strategy for split-
phase communication generation. Section 10 lists the related work, and Section 11
concludes the paper.
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Figure 1: Different type ol UPC pointers.
2 Background

2.1 Unified Parallel C

UPC is a parallel extension of the ISO C programming language aimed at sup-
porting high performance scientific applications. The language adopts the SPMD
programming model, so that every thread runs the same program but keeps its
own private local data. Each thread has a unique integer identity expressed as the
MYTHREAD variable, and the THREADS variable represents the total number of
threads, which can either be a compile-time constant or specified at run-time. In
addition to each thread’s private address space, UPC provides a shared memory
area to facilitate communication among threads, and programmers can declare a
shared object by specifying the shared type qualifier. While a private object
may only be accessed by its owner thread, all threads can read or write data in
the shared address space. The shared memory space is logically divided among
all threads, so from a thread’s perspective the shared space can be further di-
vided into a local shared memory and remote one. Data located in a thread’s
local shared space are said to have “affinity”” with the thread, and compilers can
utilize this affinity information to exploit data locality in applications to reduce
communication overhead.

Pointers in UPC can be classified based on the locations of the pointers and
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Figure 2: UPC pointer-to-shared components.

of the objects they point to. Accesses to the private area behave identically to
regular C pointer operations, while accesses to shared data are made through a
special pointer-to-shared construct. The speed of local shared memory accesses
will be lower than that of private accesses due to the extra overhead of determining
affinity, and remote accesses in turn are typically significantly slower because of
the network overhead. Figure 1 illustrates three different kinds of UPC pointers:
private pointers pointing to objects in the thread’s own private space (P1 in the
figure), private pointers pointing to the shared address space (P2), and pointers
living in shared space that also point to shared objects (P3).

UPC gives the user direct control over data placement through local memory
allocation and distributed arrays. When declaring a shared array, programmers
can specify a block size in addition to the dimension and element type, and the
system uses this value to distribute the array elements block by block in a round-
robin fashion over all threads. For example, a declaration of shared [2] int
ar [10] means that the compiler should allocate the first two elements of ar on
thread O, the next two on thread 1, and so on. If the block size is omitted the
value defaults to one (cyclic layout), while a layout of [] or [0] indicates indel-
inite block size, i.e., that the entire array should be allocated on a single thread.
A pointer-to-shared thus needs three logical fields to fully represent the address
of a shared object: address, thread._id, and phase. The thread_id
indicates the thread that the object has affinity to, the address field stores the
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object’s “local” address on the thread, while the phase field gives the offset of
the object within its block. Figure 2 demonstrates how the fields in a pointer-to-
shared are used to access a shared value. In summary, a UPC pointer-to-shared
thus can be classified into three categories based on the data layout: block cyclic,
cyclic, and indefinite.

Another interesting UPC feature is its support for both a strict and a relaxed
memory consistency model. Every shared variable access in UPC is type quali-
fied as either “strict” or “relaxed”, either explicitly or inferred from pragmas. The
strict memory model is analogous to sequential consistency in that it requires the
actual execution of the accesses on each thread to be consistent with program or-
der, while relaxed accesses only need to preserve local data dependencies. The
difference between the two models is visible only in a program with a data race,
which occurs when two threads access the same memory location with no order-
ing constraints between them, and at least one of the accesses is a write [38]. The
goal of the UPC memory model is to effectively exploit the tradeoff between pro-
grammability and performance; relaxed accesses offer better performance as they
can be aggressively optimized by compilers as long as local data dependency on
each thread is still preserved, but programmers are left with the burden of ensuring
that their code is free of race conditions. Other notable features of UPC language
include dynamic allocation functions, synchronization constructs, and a builtin
parallel loop construct. The UPC language specification describes them in more
details [25].



2.2 The Berkeley UPC Compiler

Figure 3 shows the overall structure of the Berkeley UPC Compiler [6], which is
divided into three main components: the UPC-to-C translator, the UPC runtime
system, and the GASNet communication system.

During the first phase of compilation, the Berkeley UPC compiler translates
UPC programs into C code in a platform-independent manner, with UPC-related
parallel features converted into calls to the runtime library. The translated C code
is then compiled using the target system’s C compiler and linked to the runtime
system, which performs initialization tasks such as thread generation and shared
data allocation. The Berkeley UPC runtime delegates communication operations
such as remote memory accesses to the GASNet communication layer, which pro-
vides a uniform interface for low-level communication primitives on all networks.

We believe this three-layer design has several advantages. Because ol the
choice of C as our intermediate representation, our compiler will be available on
most commonly used hardware platforms that have an ANSI-compliant C com-
piler. In addition to the portability benefits, the layered design also means that
each component can be implemented and performance-tuned individually. The
backend C compiler is free to aggressively optimize the intermediate C output,
and the UPC-to-C translator can utilize its UPC-specific knowledge about shared
memory access patterns to perform communication optimizations. Moreover, the
communication overhead is generally low since the GASNet system can directly
access the networking hardware instead of going through another communication
layer such as MPI, and many runtime and GASNet operations are implemented
using macros or inline functions to eliminate function call overhead.

3 The UPC-to-C Translator: An Overview

Like the Berkeley UPC Compiler, the UPC-to-C translator is also divided into
three components: the front end, the back end, and whirl2c. Figure 4 depicts the
translator’s compilation process.

e Front end: Upon receiving a preprocessed UPC file, the translator’s [ront
end parses and type checks the input, and generates a high level WHIRL
(Open64’s intermediate representation) file. UPC-specific information such
as shared types and block size for distributed arrays are preserved in the
symbol table, so that the later translator phases can utilize the information
in performing optimization and code generation. We have also extended the
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Figure 4: UPC-to-C Translation Process

front end code base with several features from ISO C99 standard [12] such
as mid-block declarations and declaration expressions in a for loop header.

Back end: The primary functionality of the back-end is to convert expres-
sions involving a pointer-to-shared into the appropriate runtime library calls.
Specifically, pointer arithmetic on a shared address is converted into func-
tion calls; the translator selects one of the runtime’s three different func-
tions for shared address calculation, based on the blocksize of the pointer-
to-shared. Similarly, loads and stores of shared variables may require com-
munication and are also transformed into runtime calls. The actual runtime
function invoked again depends on a number of factors such as the type
being loaded and whether the shared memory access is strict or relaxed.
An optional optimization phase, which includes both a loop nest optimizer
(LNO) and a general-purpose global scalar optimizer (WOPT), can be in-
voked before the lowering of shared expressions. Details about the opti-
mization phase are presented in Section 6.

Whirl2c: The final component’s job is to convert the WHIRL representation
into ISO-compliant C code, with shared pointers declared as opaque UPC
pointer-to-shared types that are defined internally in the runtime system.
This enables us to experiment with different pointer-to-shared representa-
tions in the runtime system without having to modify the translator. This
capability has proved uselul on platforms such as the Cray X1, where we
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can more efficiently implement pointer-to-shared operations by exploiting
the hardware global address space support [5]. Whirl2c attempts to generate
high-level C language constructs when possible (e.g., using struct member
accesses in favor of pointer arithmetic), so that its output will bear sufficient
resemblance to the source code. This stage also provides special support
[or static and global shared variables, which can not be initialized statically
as their storage is not allocated until runtime. Finally, an indirect access
scheme is adopted for applications running with POSIX threads so that each
pthread gets its own private copy of thread-local variables, and whirl2c is
responsible for generating the address translation macros when accessing
such variables in the program.

4 Code Generation Issues

In this section, we describe several code generation issues encountered during our
implementation of the Berkeley UPC translator, and our approaches for handling
them.

4.1 Portable Code Generation

Since the Berkeley UPC translator outputs C code, it avoids difficulties associated
with cross compilation that are often encountered when compiling for a variety of
target systems. The infrastructure of the translator is flexible enough that it can
perform code generation for both 32-bit and 64-bit platforms, and we have also
extended the [ront end to obtain the values of architectural dependent parameters
such as integral type width and struct alignment rules in a configuration file. In
general, the generated code for different platforms will be identical (modulo dif-
ferences introduced by the system headers) with the exception of parameters such
as the size of pointers and primitive types that are either explicitly referenced in
the program or implicitly used during the generation of runtime calls. Thus, while
Open64 represents the scalar types internally by their type size (e.g., on IA-32 int
and long would be considered equivalent since they are both four bytes), different
integral types will remain distinct in the output to avoid both C compiler warnings
and unsafe integer downcasts. Another important platform-specific parameter is
the size of UPC pointer-to-shared object, which is usually different from that of
regular C pointers. This leads to a subtle issue for structs containing pointer-to-
shared, as their size needs to be adjusted as do the offsets of field accesses into
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such structs. The offset padding is performed in the backend, so that the preced-
ing analysis and optimization phase of the translator can treat pointer-to-shared as
regular pointers.

Another challenge introduced by the choice of C as the translation target con-
cerns header file conflicts. The translated code must include the Berkeley UPC
runtime header file to access the library [unction prototypes, and the runtime
header in turn includes a variety of the standard C library headers to implement
tasks such as I/0, timing, and communication. Consequently, duplicate type and
variable declarations may occur if the UPC program itself also includes the stan-
dard C headers, and the translator emits their contents in the output. Our solution
is to distinguish the files that contain UPC constructs and those that do not, and
avoid outputting any variables and struct types for the latter, as such ordinary C
files can be safely recompiled by the backend C compiler. Instead, the #include
directives for these files are regenerated in the same relative order in the trans-
lated code, taking advantage of the fact that C library headers are guarded against
reinclusion. Furthermore, only the toplevel inclusions (files explicitly included by
the user) are reinserted into the output file. The Berkeley UPC compiler automat-
ically recognizes files containing UPC constructs (whose contents thus must be
emitted) by checking for the presence of shared expressions and declarations in
a file and its recursively included contents, and no user intervention is therefore
required. One code pattern that our “reinclude” scheme does not handle correctly
arises when the behavior of a #include header depends upon the prior presence of
macro variable definitions; a common example is the use of the NDEBUG variable
to turn off assertions in a program. While this problem can potentially be fixed by
also preserving macro definitions in the output, we have elected not to pursue this
option, since such a fix would require the translator to have its own preprocessor
and may thus have adverse effects on the compiler’s portability.

4.2 Handling Shared Expressions

Pointer-to-shared variables in UPC are almost as expressive as normal C pointers
(one exception is that pointers to shared (unctions have undeflined behavior), and
can generally appear anywhere in the program where it is legal for a C pointer.
Shared expressions that must be converted into equivalent runtime functions by
the Berkeley UPC translator include shared memory accesses, pointer-to-shared
arithmetic, as well as equality tests and cast operations involving pointers-to-
shared. Shared memory accesses can be easily recognized internally by the type
of the operands. For accesses to shared objects with integral or floating point
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types that can fit inside a register, the translator generates memory-to-register run-
time communication calls to avoid unnecessary local memory operations, while
other accesses such as struct copying are translated into the more general memory-
to-memory puts and gets, with the translator responsible for spilling out stack
allocated temporaries to obtain a lvalue. Depending on whether the memory ac-
cess is strict or relaxed, the translator must also choose between the blocking and
non-blocking variants of the communication functions. Pointer-to-shared arith-
metic expressions are always marked internally with a preceding type cast, so that
they can be quickly identified and transformed into the appropriate runtime calls
in the translator’s lowering phase; explicit casts of pointer-to-shared into private
types are handled in the same manner. The translator does not make any assump-
tions about the internal layout of the pointer-to-shared object while performing
the above transformations, so the Berkeley UPC runtime layer is free to select the
pointer-to-shared representation most suitable for the target platform.

4.3 Code Generation Example

Figure 5 provides an example on how UPC programs are translated into C code.
The UPC code fragment performs matrix-vector multiplication between a dis-
tributed two-dimensional array and a shared vector located on thread O. In the
translated C code (for brevity, declaration and allocation of the shared arrays and
temporary variables are omitted), both shared pointer arithmetic expressions and
shared memory accesses are converted to runtime calls with the “upcr” prefix. Dif-
ferent runtime operations are chosen for the two shared variables, as mat is dis-
tributed block cyclically while vec is declared as an indefinite array. Since both
shared arrays have relaxed type, the translator generates one-sided nonblocking
communication calls to fetch the remote values. The nonblocking GET_NB call
issues a request for the communication subsystem to begin the data transfer and
return a handle, which later can be used in a synchronizing call (WAIT_SYNCNB)
to wait [or the completion of the request. Shared variable writes can be imple-
mented analogously. The example shows but a small subset of functions available
in our runtime layer, and the translator also generates code for other communica-
tion patterns such as bulk transfer and blocking operations.
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sum = 0.0;
i=((int) upcr_mythread () );
while(i <= 9)
#define ROW 10 {
#define N 10000
shared [N] double mat{ROW*THREADS][N];
shared [] double vec[N];

j=0;
while(j <= 9999)

_bupc_Mptra0 = UPCR_ADD_PSHAREDI(vec, 8, j);

_bupc_Msync2 = (upcr_handle_t) UPCR_GET_NB_PSHARED(
& bupc_spillld1, _bupc_Mptra0, 0, 8);

UPCR_WAIT_SYNCNB(_bupc_Msync2);

double sum;
sum = 0; _bupc_Mptra3 = UPCR_ADD_SHARED(
for (inti = MYTHREAD; mat, 8, (_UINT32)(i) * 10000U, 10000);
i < ROW*THREADS; _bupc_Mptra4 = UPCR_ADD_SHARED(
i+=THREADS) { _bupc_Mptra3, 8, j, 10000);
for (intj=0;j < N;j++) { _bupc_Msync6 = (upcr_handle_t)
sum += mat[i][j] * vec[j]; UPCR_GET_NB_SHARED(
} &_bupc_spilllds, _bupc_Mptrad, 0, 8);
} UPCR_WAIT_SYNCNB(_bupc_Msync6);
2
i=i+1
}
15
i=i+1;
}
Original UPC Code Translator C Qutput (with one thread)

Figure 5: UPC-to-C Translation Process
5 Translator Output Performance — Vectorization

The popular GAS languages are designed as parallel extensions of sequential pro-
gramming languages, and UPC is no exception. A thread’s local computation in
its private address space is generally written in a language very similar to ordi-
nary C code, and therefore uniprocessor execution time is an important criteria in
evaluating a UPC compiler’s performance [24]. Although our translator preserves
the semantics of the sequential portions of the program, it is infeasible to expect
the translated output to be syntactically identical to the program source, due to
optimizations performed by the translator and the lack of a one-to-one mapping
between its intermediate representation and the C language. In previous work [16]
we have discovered that despite a source-to-source translation from UPC to C, our
compiler still delivers good serial performance on conventional superscalar archi-
tectures. It is less clear, however, whether such syntactic discrepancies will have a
performance impact on vector platforms such as the Cray X1 [22], whose dramat-
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ically different architectural approach makes vectorization the dominant factor for
achieving high performance. A common performance attribute of parallel vector
systems is that the vector unit executes substantially faster than its scalar coun-
terpart; for the Cray X1, in addition to operating at twice the clock speed, its
ability to overlap memory operations with vector computation makes the vector
unit signiflicantly more power{ul than the scalar pipeline. Furthermore, the Cray
C compiler’s vectorizer [21] is sensitive to changes in inner loop expressions; our
experiments have identified several constructs that tend to inhibit a loop’s vector-
ization, such as function calls, type casts, the address-of operator, and access to
global variables in the presence of pointer arithmetic. One interesting metric of
the translator’s code generation quality is thus its serial performance on a vector
architecture. Specifically, it is worth investigating whether the translator’s code
generation process can be extended to minimize interferences with the C com-
piler’s ability to automatically vectorize application code.

5.1 Implementation Approach

Our goal is to evaluate the serial performance of the Berkeley UPC compiler, con-
centrating on its ability to maintain the vectorizability of the sequential portion
of the program. With full optimizations enabled, the Cray C compiler [21] per-
forms automatic vectorization on expressions inside a loop that it detects to be
free of cycles of dependences, after applying vectorization-enabling transforma-
tions such as inlining, loop splitting, and loop interchange. The compiler also
vectorizes certain special recurrences such as reductions and scatter/gather oper-
ations. Cray C provides two program-level techniques to assist the compiler’s
alias and dependence analysis: restrict pointers and the pragmas that declare
a loop to be free of vector dependences or recurrences between array accesses. As
such, our strategy is to keep the translated output as syntactically similar as pos-
sible to the original source. The level of the intermediate representation is kept
sufficiently high such that C loops are preserved in their original form. Similarly,
array expressions are recognized and handled specially by the translator, both to
allow for more aggressive transformations by its optimizer and to provide the C
compiler with more precise information. Multidimensional arrays are preserved
in its original form instead of being linearized into one dimensional arrays. The
Berkeley UPC compiler supports restrict-qualified pointers, and additionally
UPC source-level vectorization pragmas are accepted by the translator and appear
unchanged in the same relative location in the generated C output.
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Geo. Mcan | Avg. Rate | Har. Mcan | Max | Min
C 160 756 58.7 6561 | 9.0
UPC | 161.9 762 59.6 6652 | 9.0

Table 1: Aggregate performance of the Livermore Loops (in MFLOPS)
5.2 Livermore Kernels

We use the C version of the Livermore Kernels [35] to evaluate the serial per-
formance of our compiler. The Livermore Loops consist of 24 sequential com-
putation loops extracted from common scientific applications, and should closely
reflect the sequential computational performance offered by our compiler. In par-
ticular, the X1°s reliance on the vector unit to achieve both [ast computation and
high memory bandwidth means that application performance will often hinge on
whether the main computation loops can be efficiently vectorized. In this test, we
do not supply any vectorization pragmas and do not perform any manual trans-
formations, as our goal is to test if the translation process interferes with Cray
C’s automatic vectorization. Table 1 presents the aggregate performance for both
the original C source and the translated output with the —O3 flag, while Figure 6
displays the normalized performance of the individual kernels.

As Table 1 shows, Berkeley UPC’s translated output performs almost iden-
tically to the original C source code. Performance results from the individual
benchmarks confirm with this observation; the ratio of UPC running time versus
C running time is within 5% for nearly all of the kernels, which can be attributed
to measurment noises. One notable exception occurs in kernel 8, where Berkeley
UPC’s output surprisingly outperforms the C code by about 10%. Examination
of the translated output suggests that its performance benefits from the Berkeley
UPC translator recognizing several three dimensional array accesses in the loop
as common subexpressions and replacing them with stack temporaries. The in-
troduction of the stack variables does not affect vectorization, and saves three
address calculations per iteration. Because the translated output exhibits similar
performance to the C code for most of the kernels, we expect the Berkeley UPC
compiler to offer competitive serial performance on a vector platform like the X1.

6 Optimization Framework
Having presented the source-to-source compilation strategy and evaluated the se-

quential performance of the Berkeley UPC-to-C translator, in the second part of
the paper we focus on the translator’s parallel performance. In particular, we de-
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scribe the preliminary experiences with designing and implementing a number
of optimizations specifically targeted at improving UPC communication perfor-
mance. One of the reasons Open64 was chosen as the code base of our translator is
its extensive collection of optimizations. Not only are standard compiler optimiza-
tions such as copy propagation, partial redundancy elimination, and dead code
elimination supported through its global scalar optimizer (WOPT), but Open64
also provides a high level loop nest optimizer (LNO) that recognizes and applies
various loop transformations and optimizations. A framework for interprocedural
analysis and optimizations is also available. For our source-to-source transfor-
mation several of Open64’s optimizations are not directly applicable, since they
either produce outputs that are too low-level to be expressed in C (e.g., prefetch-
ing individual loads), or can be performed equally well by the backend compiler.
Therefore, while employing many of Open64’s large repertoire of optimizations in
the compilation process, we also have supplied several optimizations that require
UPC specific knowledge and therefore could not be performed by a C compiler.
Figure 7 summarizes the overall structure of the Berkeley UPC-to-C trans-
lator’s optimization framework. The process starts from Open64’s Preopt opti-
mizer [34], which serves as the front end of both the loop nest optimizer (LNO)
and the global optimizer (WOPT). Accepting program input in WHIRL format,
Preopt builds a control flow graph and a Static Single Assignment (SSA) represen-
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Name System Network CPU

Seaborg | IBM RS/6000 SP SP Switch 2 375MHz Power 3+
Flyer Compaq Alphaserver ES45 | Quadrics Elan 3 | 1GHz Alpha

Ram SGI Altix shared memory | 1.5 Itanium 2

Table 2: Machine summary

tation, and performs a number of high-level optimizations such as copy propaga-
tion and dead code elimination. After the optimizations are completed, it converts
the program back into WHIRL form, and generates the def-use chain information
for LNO. The LNO component performs transformations such as fusion, inter-
change, and tiling on loops that have the semantics of Fortran DO Loops [47].
Specifically, a DO loop contains a single index variable, the condition expres-
sion is a comparison on the value of the index variable, and the lower bound,
upper bound, and stride of the loop are all loop-invariant. We have introduced two
UPC-specific optimizations at the end of the LNO phase. The first optimization,
described in Section 7, focuses on eliminating the runtime overhead of UPC’s
parallel forall loop, while the second optimization, message coalescing, is ex-
plained in detail in Section 8. WOPT is invoked after LNO, again with Preopt
as the front end to perform the necessary analysis. Instead of running Open64’s
SSAPRE optimization [17], which produces low-level WHIRL nodes that can not
be safely translated into C code, however, we have implemented our own algo-
rithm that targets shared memory accesses and pointer arithmetic expressions in
UPC. Also based on the SSA representation, our algorithm combines partial re-
dundancy elimination with communication scheduling to automatically generate
split-phase communication calls. The algorithm is presented in Section 9. Table 2
contains a summary of the machines where the experiments on the optimizations
are performed.

7 Optimizing UPC Parallel Loop

To simplify the task of parallel programming, UPC includes a builtin upc_forall
loop that distributes iterations among the threads. The upc_forall loop be-
haves like a C for loop, except that the programmer can specify an affinity ex-
pression whose value is examined before every iteration of the loop. The affinity
expression can be of two different types: if it is an integer, the affinity test checks
if its value modulo THREADS is the same as the id of the executing thread; oth-
erwise, the expression must be a shared address, and the affinity test checks if
the running thread has affinity to this address. The affinity expression can also be
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omitted, in which case the affinity test is vacuously true and the loop behaves as if
itis a C for loop. A thread executes an iteration only if the affinity test succeeds,
and the upc_forall language construct thus provides an easy to use syntax to
distribute the computation load to match the data layout pattern.

UPC forall loops provide a convenient syntactic sugar for the purposes of
thread coordination and preventing inadvertent remote accesses, but its primary
drawback is the runtime overhead incurred by the affinity tests. Not only do these
affinity tests have to be executed on each iteration by all threads, but the presence
of the branches in the loop can also inhibit many useful loop optimizations. For-
tunately, while their values naturally changes from iteration to iteration, affinity
expressions can often be derived directly from loop induction variables; for such
common special cases, we can eliminate the runtime affinity tests by incorporating
their thread-iteration mapping constraints into the loop’s bound and stride.

for=L;i < U;i++; 1+c)

int ofst = MODMYTHREAD - L - ¢, THREADS);
for(i = L+ofst; i < U; i += THREADS)

Figure 8: Forall Loop Affinity Test Removal

Our optimization operates on forall loops with unit stride (either 1 or —1); op-
timizing loops with non-unit stride is possible, but would involve more expensive
operations such as greatest-common-divisor, and such forall loops occur relatively
infrequently in practice. Another precondition is that the loop must be recognized
by the loop nest optimizer as a DO loop. If the affinity expression is an integral
expression of the form ¢ + ¢, where ¢ is the primary induction variable and ¢ is
loop-invariant, we apply the transformation illustrated in Figure 8, to yield an
equivalent for loop with the affinity test eliminated. The M OD operation per-
forms modular arithmetic, and MO D{a, b) returns a value between 0 and b — 1
if b is positive. When the affinity expression is a shared address, we focus on the
common special case of the form &ali], where a is a shared array or pointer and
the induction variable. Once the base address a is established to be loop invariant,
three transformations are available to eliminate the affinity tests and can be chosen

20



depending on a’s blocksize. In the trivial case when « is indefinite, all of its ele-
ments will be on the same thread, and we simply need to test the variable’s affinity
once before executing the loop. If a is cyclic, the affinity expression is equivalent
to i+threadof(a), where the second operand computes the thread that a[0] locates
on; the loop then is optimized with the transformation shown in Figure 8. Finally
il a is block cyclic, a two-level nested loop can be used in place ol the original
forall loop. The outer loop will take a stride of THREADS*xBLOCKSIZE(a),
while the inner loop iterates through the executing thread’s block in unit stride.

Vector Addition
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Figure 9: Vector Addition — Millions of Additions per Second

A vector addition benchmark is used to illustrate the performance gain result-
ing from the affinity test removal. The program uses a forall loop to add two cyclic
arrays element by element, storing results to another shared cyclic array. As the
benchmark contains a minimal amount of computation, affinity test overhead can
contribute significantly to the forall loop’s execution cost. We experiment with
both integer and shared address affinity expressions for the loop. The results,
presented in Figure 9, were collected on a 256-processor SGI Altix system with
Itanium?2 processors [14]. Removing runtime affinity tests substantially increases
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the performance of the benchmark, delivering a more than 20% speedup for the
sequential case. More importantly, it significantly improves the program’s scala-
bility, since each thread no longer has to execute iterations that do no useful work
other than the affinity tests. Whereas the unoptimized scales poorly even with a
small number of threads, the optimized output achieves linear speedup.

Finally, since our optimization accepts only a [ew specific aflinity expression
patterns (namely ¢ + ¢ and &ali]), one natural question is whether the technique
may be too restrictive as to exclude a large number of forall loops found in com-
mon UPC programs. We seek the answer by analyzing the results of applying our
optimizations to the Berkeley UPC Compiler’s regression testsuite. The translator
identifies 122 forall loops from the testsuite that contain an affinity expression,
and the affinity tests are eliminated from 80% of them, suggesting that our opti-
mization is powerful enough to capture most common usages of UPC forall loops.

8 Message Coalescing: Implementation and Results

int size = (U - L) * sizeol(int);
int *Ir = malloc(size);
upc_memget(lr, r, size);
forG=L;i<U;i+=5)

el =e2 + Irfi];
free(lr);

shared [] int *r;

forG=L;i<U;i+=5)
el =e2 +r[i];

Figure 10: Unoptimized loop.

Figure 11: Loop after Message Coalescing.

Empirical data on the overhead and latency of today’s high-performance net-
works speak volumes about the effectiveness of message coalescing and aggre-
gation [4]; by combining small puts and gets into large messages, one can save
significantly on the per-message startup overheads. The most common realiza-
tion of this optimization, called message coalescing, significantly improves the
performance of a fine-grained loop by fetching all the remote values it needs in
a single bulk transfer outside the loop instead of issuing fine-grained read opera-
tions in every iteration. As a well known and extremely important optimization
for amortizing the cost of small message traffic, message coalescing has been im-
plemented in a number of compilers for Fortran-like languages [27, 46]. In this
section, we describe the implementations of message coalescing in the Berkeley
UPC translator.

22



8.1 Analysis for the Optimization

Our message coalescing optimization again operates on loops that have been
marked by the loop nest optimizer as possessing the semantics of Fortran DO
loops. To ensure that the resulting transformations do not violate the UPC memory
model, the analysis further prohibits synchronization statements, function calls,
and strict memory accesses from appearing in the loop body. Once a loop has
been identified as a potential coalescing candidate, the analysis walks through the
loop expressions and build for each distinct array symbol a (o, up) bounding box
on the range of its possible index values, which must be affine expressions of the
index variable. For example, if ar[i] and ar[i + c| are both present in the loop
body, a region is computed for the symbol ar by taking the union of the ranges
projected by the two index expressions. The array symbols are not limited to vari-
ables with array types and can include pointers, provided that the pointer object
is not modified in the loop. Coalescing-inhibiting array dependences are detected
by intersecting the def and use sets of the loop.

8.2 Implementation Sketch

The choice of code generation [or message coalescing varies significantly based
on the layout and the access pattern of the shared array in question. At the
language level, UPC provides several point-to-point bulk communication library
functions that perform reads and writes on contiguous memory regions between
the private and shared address space. To handle non-contiguous transfers, we have
recently proposed library extensions that support both indexed and strided mem-
ory accesses [10], and reference implementations already exist in the Berkeley
UPC runtime. Our message coalescing optimization targets both interfaces and
is thus able to support a variety of array access patterns commonly observed in
scientific applications.

In the simplest case, the shared array is one-dimensional and resides exclu-
sively on one thread (called indefinitely blocked arrays in UPC), so that only one
bulk communication call is required to fetch up — o+ 1 elements from the remote
array.

Figure 10 and 11 illustrates the application of message coalescing for such
a scenario'. Once the remote data is transfered into a local private buffer, the
optimization can replace all references to the original shared array with equivalent
accesses to the private array. When the lower bound is not a zero constant, the

Ifor brevity, some safety check code (c.g., checking loop is executed at Ieast once) are omitted
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Figure 12: Message Coalescing
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index expressions used by the local array must also be adjusted by subtracting the
lower bound’s value, as shared_ar|i] refers to the same content as local _ar|i—lo].
In the common special case where both the lower and upper bound of the loop are
compile-time constants, a stack array is allocated instead of calling malloc() to
save the heap management overhead. Finally, a unit-strided writes could also be
vectorized in the same manner, except that upc_memput must be invoked at loop
exit to store the new values of the shared array.

In a more advanced scenario, the shared array is still one-dimensional but is
now (block) cyclically distributed, so that data may need to be obtained from mul-
tiple threads. Our optimization handles this case by generating a point-to-point
bulk upc_memget call to each individual thread, copying remote data in units of
blocks to simplify the shared address calculation. A temporary two-dimensional
private array is allocated to serve as the destination buffer of the memget calls,
with ceil(number_of blocks [threads) x blocksize elements for each thread. For
maximal performance, the different memgets to the individual threads are over-
lapped to hide their communication latencies. After the bulk communication calls
have completed, a final step copies the data from the two-dimensional temporary
buffer into an one-dimensional local array following UPC shared pointer arith-
metic rules (i.e., first block of thread O is copied first, followed by the first block
of thread 1, and so on), so that the private array can be accessed with the same in-
dex expressions used by the original shared array. Figure 12a depicts graphically
the code generation steps of vectorizing accesses to an one-dimensional block
cyclic array.

For the previous two access patterns, the accessed elements on the individual
threads are always contiguous, and it thus suffices to copy them with the existing
UPC point-to-point memcpy library functions. For a two-dimensional array tra-
versed inside a two-level loop nest, however, such code generation strategy may
no longer be appropriate, since not all of the columns and rows of the array will
be accessed. If the two-dimensional array is indefinite, our optimization can more
efficiently vectorize the code by utilizing the strided memcpy functions in our run-
time interface. These functions transfer a list of fixed sized regions with a single
fixed stride separating them, and accept as arguments the starting address, region
length, distance (stride) between the regions, and the number of regions of both
the source and the destination array. This interface simplifies the code generation
of vectorized two-dimensional indefinite array accesses: the region length is sim-
ply the number of columns to be copied, number of regions is the row count, and
the stride is just the length of the inner dimension of the array. Thus, for the sam-
ple code shown in Figure 12b, our analysis will compute a bounding box for each
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dimension of the shared array, and use the strided memget function to transfer
elements in the rectangular box into a private buffer. An alternative code gener-
ation scheme we considered is to combine message coalescing with pipelining;
the inner loop is message coalesced by fetching one entire row in a single bulk
call, while the outer loop is software pipelined so that the communication over-
head of the bulk transfers can be overlapped. The performance tradeo(l between
the two methods will depend on factors such as the latency and bandwidth of the
underlying networks, and thus vary from platform to platform.

Our current implementation could optimize most one-dimensional array ac-
cess in a single loop nest, but more complicated communication patterns are still
unsupported. On the top of our priority list is to generalize the analysis to handle
multidimensional arrays that are either block cyclically distributed or have non-
unit-stride accesses. Such access patterns are inappropriate for the bound methods
mentioned above, which involve retrieving a bound box that contain the needed
elements; a potentially large number of remote elements may be fetched but never
used, resulting in a substantial performance penalty. Instead, we need to opt for
a more general approach by passing a list of fixed-size (one element) regions to
the Berkeley UPC runtime, which will be responsible for performing the required
communications to the different threads. Another future plan is to support ir-
regular array access patterns (e.g., a[b[i]]) found in sparse matrix vector multiply
applications with the inspector-executor model [45].

8.3 Preliminary Evaluation

One advantage Global Address Space languages such as UPC have over message-
passing based programming models is that communication can be conveniently
expressed as reads and writes to the shared memory space, which allows programs
to easily build shared data structures. Studies [8] have pointed out, however, the
severe performance issues that shared-memory style UPC applications face on
distributed memory platforms, due to the excessive amount of small message traf-
fic generated. As a result, experienced UPC programmers usually code their ap-
plications with coarse-grained parallelism to ensure performance portability, even
when the application logic can be expressed more naturally with fine-grained com-
munication. By automatically transforming fine-grained shared reads and writes
into bulk communication calls, message coalescing holds great potentials in nar-
rowing the performance gap between the shared memory programming style and
the coarse-grained communication paradigm for UPC programs. The effective-
ness of message coalescing can thus be evaluated both in terms of performance
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and programmability. Not only do we seek to demonstrate that message coalesc-
ing of fine-grained code could perform as well as hand optimized code, but we
also want to assess the strength of the analysis by examining UPC benchmarks to
count the number of loops that can benefit from the optimization, thereby reliev-
ing application developers from the burden of manually converting fine-grained
accesses into bulk communication calls.

8.3.1 Performance

To evaluate the performance of message coalescing, we present data from a simple
dense matrix-vector multiply benchmark in UPC. The matrix is partitioned cycli-
cally by row, and we experiment with both an indefinite (entirely located on thread
0) and a cyclic distribution of the vector. Three different code configurations were
compared: a fine-grained version in which each thread has to repeatedly fetch the
remote vector elements to perform its local computations, the compiler-optimized
code of the fine-grained loop, and finally a coarse-grained version of the bench-
mark that fetches the entire vector once and saves the values in a local buffer.

Figure 13 presents the performance of the matrix-vector multiply under the
different configurations. The results were collected on the machine Flyer and
Seaborg in Table 2. As expected, the message coalesced code significantly outper-
forms the naive version by more than two orders of magnitude, as remote values
may need to fetched in every iteration of the inner loop in the latter case. Also
not surprisingly, the message coalesced version performs quite similarly to the
manually optimized version, given the close resemblance of their code and the
same bulk communication pattern they employ. One notable distinction between
message coalescing and user’s manual optimizations is that the [ormer can target
the nonblocking bulk communication calls provided by the Berkeley UPC run-
time, a feature that is not yet available at the language level. When the vector
is cyclically distributed, the message coalescing optimization is able to exploit
this ability to overlap communications to different threads and thus substantially
outperform bulk style UPC code on Flyer’s Quadrics network. From the results
of the benchmark, we therefore conclude that for fine-grained accesses to one di-
mensional shared arrays, message coalescing can produce code that performs as
well as the manually optimized code, regardless of whether the array is cyclically
or indefinitely distributed.
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8.3.2 Programmability

Good performance of the generated code alone does not make message coalesc-
ing a useful UPC optimization. If the analysis is too conservative, programmers
will still be forced to manually optimize their fine-grained loops due to fears that
they may not be recognized as message coalescing candidates. To evaluate the
accuracy of the analysis, we examine several of the UPC NAS parallel bench-
marks [3] (IS, MG, FT, CG) and report instances of fine-grained loops that can be
successfully message coalesced by our optimizations. Since for performance rea-
sons most of the benchmarks have been implemented using coarse-grained com-
munication, we additionally manually convert the bulk communication calls (e.g.,
upc_memget) into fine-grained shared memory accesses in a loop, and see if
they can be message coalesced.

shared[] dcomplex *shared reshuffle_arr_ shd[ THREADS];

// Broadcast the shared pointers
for (1 =0;1 < THREADS; i++)
reshuffle_arr[i] = reshuffle_arr_shd[i];

Figure 14: UPC code from FT benchmark that can be message coalesced

In the IS benchmark, which is written in bulk synchronous style, we discov-
ered that all three of the upc_memgets in the program can be message-coalesced
when converted back into loop form. Similarly, our analysis is strong enough to
recognize all four memgets in the MG benchmark as message-vectorizable when
the calls are rewritten as fine-grained accesses in a loop. While such transforma-
tions will not result in performance gains compared to the original benchmarks,
it does mean that our optimization can relieve programmers the trouble of explic-
itly generating the bulk communication calls. More encouragingly, both the FT
and the CG benchmark contain loops that perform fine-grained remote accesses
to broadcast the elements of a (block) cyclic array to all threads (Figure 14); since
UPC does not support multi-node communication routines at the language level,
code patterns such as broadcast and reduction could not easily be expressed with
bulk transfers. The Berkeley UPC translator, however, is able to automatically
apply message coalescing on these fine-grained loops to hoist the required com-
munication outside of the loops.

29



9 Automatic Split-phase Communication Generation

On machines with no hardware global address space support, remote data access
in UPC eventually needs to be compiled into one-sided communication calls. Due
to the asynchronous nature of message-passing networks, such one-sided com-
munication routines are generally implemented in two phases. As the earlier ex-
ample in Section 4.3 shows, one straightforward translation of a remote memory
access is to have the init_op () call followed immediately by the corresponding
sync_op () call. This code generation guarantees correctness, since all shared
memory accesses will execute in program order. The disadvantage, however, is
that remote memory accesses generally have very high latencies, and valuable
processor cycles can be wasted while waiting for the remote transfer.

In order to hide communication latency, optimizing compilers need to leverage
the asynchronous communication interface by performing communication place-
ment optimizations. The basic idea is to move the initiation and synchronization
calls for a remote operation as far apart from each other in the program as possi-
ble, while preserving data and control dependencies. This minimizes the chance
that the synchronization call will waste time blocking for completion, and allows
other communication and computation to be overlapped with the latency of the
remote operation. We describe an algorithm that combines partial redundancy
elimination and communication scheduling to automatically generate split-phase
communication. Based on an SSA representation, the algorithm targets shared
variable loads, reducing the number of messages and exploiting communication
and computation overlap simultaneously. The optimization can be applied to both
scalar and pointer accesses, and takes advantage of the SSA form in Open64 to
elficiently place the split-phase communication operations.

9.1 Algorithm Sketch

The analyses is performed on Open64’s Hashed SSA (HSSA) representation [ 18],
which uses global value numbering to build a sparse representation of the entire
program. A hash table is used to store all program expressions, and expressions
with the same value number share the same hash entry. The HSSA representation
also extends the original SSA form with the ability to support aliases, so that
indirect memory operations (the C dereference operator *) can be modeled as if
they are scalar variables. We further assume that control flow analysis has been
performed on the program.
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9.1.1 Optimize Shared Pointer Arithmetic

Cost of Shared Pointer Operations
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Figure 15: Cost of Shared Memory Operations

Before analyzing the split-phase communication placement, we perform par-
tial redundancy elimination on shared pointer arithmetic expressions. Pointer
arithmetic on shared addresses is inevitably slower than regular C pointer opera-
tions, since a pointer-to-shared contains three fields, all of which may be updated
during pointer manipulations. Figure 15 shows the cost of shared pointer arith-
metic operations on a Compaq Alphaserver ES45 node, with a 1-GHz processor
running the Tru64 operating system [32]. Two pointer-to-shared representations
are included in the experiments; one declares the pointer-to-shared as a C struct,
while the other more efficient format represents the pointer as a packed eight-byte
integer. As Figure 15 shows, shared pointer arithmetic is an expensive operation
even [or the packed representation. Eliminating redundant shared address calcula-
tion is therelore an important optimization, especially when the C compiler likely
will have difficulties performing it. Even if the runtime functions implementing
shared pointer arithmetic operations are fully inlined, it is still unrealistic to ex-
pect the C compiler to optimize the function body the same way it could for an
expression.

The analysis begins with a mark phase that iterates through all statements in a
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function and find nodes, or use points of shared pointer arithmetic expressions. If
the expression is used more than once in the program (each static occurrence of the
expression counts as a use point), we determine the earliest point in the function
where the expression can be computed. This can be performed in two steps. First,
we collect the definition point for all of the variables and indirect loads that appear
in the expression; because the program is in SSA form, every variable and indirect
load is guaranteed to have a single definition that must dominate it. If a variable
is never defined inside the function, we set its definition point to be the function
entry point. In the second step, we perform a merge operation on the collection of
definition points to find the one that is dominated by all of the rest (i.e., it occurs
last). This point will serve as the single definition for the shared pointer arithmetic
expression, since at this point the values of all variables used by the expression
have become available.

This use-def information is all that is necessary to perform optimization. At
a shared pointer arithmetic expression’s definition point, we compute the value of
the optimized expression and assign it to a newly created variable. All occurrences
of the expressions are then replaced with the temporary. While this optimization is
not always profitable (e.g., the occurences of the expression may all be on different
paths), the speculation is safe since pointer arithmetic operations will not raise
exceptions.

9.1.2 Split-phase Communication for reads

Having eliminated redundant shared pointer arithmetic expressions, we next shift
our attention to optimizing shared reads. The first step of the analysis is similar to
the previous case, as we also compute the single definition point [or every shared
reads in the [unction. A major difference, however, is that we cannot simply place
the nonblocking communication call at the definition point, since it may effec-
tively place a shared load expression on a path that does not perform the read in
the original code. This speculative code motion is incorrect because executing a
load on an invalid address (for indirect loads) will generate an exception. Fur-
thermore, the nonblocking remote read operation in our communication system
performs RDMA (remote direct memory access) to copy the remote data directly
into a stack-allocated temporary. This means all outstanding nonblocking reads
must be synchronized before a function returns to avoid memory corruption, even
if the return value is never used by the program. The spurious message traffic
can have a significant performance penalty that outweighs the benefits of the op-
timization.
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To prevent speculative code motion, we rely on the concept of anticipated ex-
pressions [37]. An expression is said to be anticipatible at program point p if
every path [rom p to exit evaluates the expression, with nothing in between that
could alter the value of the expression. To achieve sale code placement, a shared
load expression e must thus be anticipatible at the point where we insert the non-
blocking communication call. To efficiently compute this information, we divide
the use points of e into groups based on their basic blocks. We associate every
use group with a communication point p, with the property that p is dominated
by the definition point, and the expression is anticipatible after p. Since all uses
in a group belong to the same basic block, the point immediately before the first
use in the basic block trivially satisfies this property. To maximize the amount
of overlap, though, we begin the search starting from the definition point of e, to
identify the earliest program point that meets the requirement.

The communication points from each use group represent the locations where
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it is safe to insert the nonblocking operation. We can further reduce the number
of redundant message by omitting communication at point « if a is dominated
by another point from a different use group. The corresponding synchronizing
calls are then inserted immediately before every use of the expression. To ensure
that no nonblocking calls are synchronized more than once, we also invalidate the
handle after each synchronization call. Figure 16 shows how the communication
points are identified. In a), the load expression is anticipatible at the definition
point, which thus also serves as the single communication point. For b), two non-
blocking calls are required, since neither of the communication points dominate
the other, and we want to prevent speculative code motion.

9.2 Preserving the UPC Consistency Model

The compiler transformations presented so far maintain safety by preserving lo-
cal data dependencies. Such a notion of correctness, however, is inadequate for
parallel programs, as it does not take into account the restrictions imposed by the
synchronization constructs on the ordering of memory accesses. For example,
UPC employs barrier synchronization to divide a program into different phases,
and accesses from different phases must execute in program order. Furthermore,
UPC supports a strict memory consistency model, which requires all threads to
agree on a total order over the strict operations. For the purposes of our opti-
mizations, this prevents the compiler from performing code motion that would
reorder strict reads and writes with any other memory accesses. To prevent acci-
dental reordering caused by our optimization, we model strict accesses as barrier
statements that may modify every shared variable in the program. This effectively
inhibits any code motion that moves relaxed shared load expressions across strict
accesses.

9.3 Optimization Example

Figure 17 provides a concrete example of how the optimization performs redun-
dancy elimination and communication scheduling. The code is extracted from a
fine-grained UPC benchmark that performs parallel unbalanced tree search [42].
The shared arithmetic expression stealStack[t], which is computed five time in
the original UPC program, has been replaced with a temporary variable, eliminat-
ing all redundant address computations. The three individual reads following the
lock operation are also pipelined to reduce their communication overhead. The
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struct stealStack_t _bupc_Mptraé = UPCR_ADD_PSHARED1(stealStack, 480048,

i);
{ _bupc_UPC_ADD1 = _bupc_Mptraé;

int workAvail; bupc Msync? = UPCR_GET NB_PSHAREDY
int sharedStart; & bupc_UPC_CSES, bupc UPC_ADDA, 0, 4);
int local; UPCR_WAIT_SYNCNB(_bupc_Msync7);
int top; _bupc_Msync7 = UPCR_INVALID_HANDLE;
int nNodes, maxDepth, nAcquire, obsAvail = _bupc_UPC_CSES;
nRelease, nSteal, nFail; _bupc_Msync9 = UPCR_GET_NB_PSHARED(

&_bupc_spillld8, _bupc_UPC_ADD1, 40, 8);
UPCR_WAIT_SYNCNB(_bupc_Msync9);
UPCR_LOCK(_bupc_spillld8);

upc_lock_t *stackLock;
Node stack[MAXSTACKDEPTH];

I8 _bupc_Msync10 = UPCR_GET_NB_PSHARED(

typedef struct stealStack_t StealStack; &_bupc_UPC_CSE4, _bupc UPC_ADD1, 8, 4);

shared StealStack stealStack[THREADS]; _bupc_Msync11 = UPCR_GET_NB_PSHARED(
&_bupc_UPC_CSES3, _bupc UPC_ADDA1, 4, 4);

int steal((StealStack *s, int i, int k) { _bupc_Msynci2 = UPCR_GET_NB_PSHARED(

&_bupc_UPC_CSE2, bupc UPC_ADD1, 0, 4);
UPCR_WAIT_SYNCNB(_bupc_Msync10);

int obsAvail = stealStack[i].workAvail; “bupc_Msynci0 = UPCR_INVALID. HANDLE:
victimLocal = _bupc_UPC_CSE4;
upc_lock(stealStack(i].stackLock); UPCR_WAIT_SYNCNB(_bupc_Msync11);
victimLocal = stealStack(i].local; _bupc_Msynci11 = UPCR_INVALID_HANDLE;
victimShared = stealStack[i].sharedStart; victimShared = _bupc UPC_CSES;

UPCR_WAIT_SYNCNB(_bupc_Msync12);
_bupc_Msync12 = UPCR_INVALID_HANDLE;
victimWorkAvail = _bupc_UPC_CSE2;

victimWorkAvail = stealStack[i].workAvail;

Original UPC Code Optimized C output

Figure 17: Sample Code from Optimized Programs

optimization also correctly conforms to the UPC memory model by not issuing
any of the pipelined reads before the lock call.

9.4 Preliminary Results

Figure 18 presents the performance improvement achieved by our optimizations
in two fine-grained UPC benchmarks. In the graph we refer to the unoptimized
version as base, and the optimized version as opt. The results were collected on
an HP machine called Flyer, described in Table 2.

Gups: This communication-intensive benchmark performs random access to
a distributed shared array. For the optimized program, we manually unrolled the
loop that performs the shared reads, so that it will benefit from the effects of read
pipelining. When the loop is unrolled 4 times, performance improves by up to
20% due to the effects of message pipelining. When the loop is further unrolled
so that 8§ messages are now pipelined, performance increases by an additional
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Figure 18: Performance Improvement

5%. This matches our expectation on the diminishing returns of unrolling loops
to achieve message pipelining.

Mcop: This benchmark solves a problem called matrix chain ordering [11] in
UPC. The optimized version again takes advantage of read pipelining by issuing
four remote reads at the same time to overlap them. The performance speedup
ranges from 50% to 90% for this benchmark, growing as the number of threads
increases.

10 Related Work

In addition to the Berkeley UPC compiler, there are several UPC implementations
available on a variety of platforms. These compilers include the HP UPC Com-
piler [20], the GCC-based Intrepid Compiler [26], the MuPC runtime system [43],
and the Cray UPC Compiler [21]. El-Ghazawi et al. [13, 24] have evaluated the
performance of some of the above compilers with NAS parallel benchmarks, and
found that they can generally offer comparable performance to the MPI version
of the NAS benchmarks. In particular, the HP UPC compiler offers a number of
communication optimizations such as software caching, as does the MuPC run-
time system.

Several research efforts [41, 31, 33] have used Open64 as an open source plat-
form for compiler research and application development. Among these projects,
the one most closely related to the research goals of the Berkeley UPC Compiler
is the Co-Array Fortran Group at Rice University [19], which aims to provide
a portable, retargetable, and high-quality implementation of the global address
space language that is also based on Open64. To achieve portability, their com-
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piler performs source-to-source translation from Co-Array Fortran to Fortran 90
with calls to runtime library primitives, while high performance is to be attained
by employing optimization strategies with platform specific communication cost
models.

For today’s distributed memory machines, the overhead of accessing remote
data is usually orders of magnitude higher than local memory accesses. This
drastic performance gap has motivated numerous research works that aim to re-
duce communication overhead through automatic compiler optimizations. In gen-
eral, communication optimization techniques can be classified into two categories:
those that attempt to hide communication latencies through overlapping (e.g.,
prefetching, pipelined communication), and those that try to reduce the number
and volume of message traffic (e.g., message coalescing). Traditionally the opti-
mization problems have been studied along with communication code generation
in parallelizing compilers. For example, Amarasinghe and Lam [2] use dataflow
analysis on array elements to automatically parallelize a program and perform
optimizations that eliminate redundant messages. Kandemir et al. [29] use a com-
bination of dataflow analysis and linear algebra framework to perform optimiza-
tions such as message vectorization and message coalescing in the PARADIGM
compiler. Similarly, a number of optimizations including communication vector-
ization and pipelining have been implemented in the HPF compiler [1].

In the context of communication optimizations that overlap communication
and computation, perhaps the prior research that is most closely related to our
techniques is Hendren and Zhu’s work on parallel C programs [49]. Their analysis
framework is based on the concept of possible-placement analysis, which identi-
fies the earliest possible point to issue a remote read, and delays the issuing of a
remote write to exploit opportunities for blocked communication. Chakrabarti et
al. [15] have implemented a global communication scheduling algorithm for High
Perfomrance Fortran that handles remote accesses in an interdependent manner.
They have also explored using late placement to expose more opportunities for
combining messages.

Krishnamurthy and Yelick [30] also presented compiler analysis and optimiza-
tions for explicitly parallel Split-C [23] programs with a global address space.
Most of their work [ocuses on improving the accuracy and elficiency of the cycle
detection [44] algorithm for SPMD programs, which enforces sequential consis-
tency under reordering transformation. The optimizations presented in this report
also guarantees that the consistency model of the language would not be violated,
and our optimization framework can be augmented with their cycle detection al-
gorithm to allow for more opportunities at communication optimization in the
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presence of strict accesses.

11 Conclusion

We have described in this report the design and implementation of the Berke-
ley UPC-to-C translator, which is an essential component in the Berkeley UPC
compiler, a portable high-performance implementation of the UPC language. Our
contributions in this paper can be summarized as the following:

e We have demonstrated that with a source-to-source translation strategy, we
can build a portable compilation framework for UPC that works on a broad
range of platforms, including shared memory machines, vector systems,
clusters, and other hybrid architectures.

e We have also established that performance need not be sacrificed for the
sake of portability. Despite the source-to-source translation, the Berkeley
UPC compiler can achieve good serial performance even on a vector plat-
form.

e We have implemented several communication optimizations for fine-grained
UPC programs in the translator, and evaluated their effectiveness on a num-
ber of benchmarks. One optimization, message coalescing, improves per-
formance by combining small messages into bulk transfers. Another op-
timization, split-phase communication, utilizes communication and com-
putation overlapping to hide communication latency. Preliminary results
suggest that the optimizations can be very effective at reducing the commu-
nication costs of fine-grained UPC applications, especially on distributed
memory machines. Furthermore, we believe both optimizations can apply
to any Global Address Space Languages that perform one-side communica-
tions.

Ultimately, the metric of success for the UPC language will be its degrees of
acceptance in the parallel computing community. An open-source UPC compiler
that offers both portability and good performance will contribute significantly to-
ward the goal of promoting UPC. As the Berkeley UPC compiler matures, we
believe it would eventually exert a positive influence on the development of other
UPC compilers and on continuing language development, similar to GCC’s role
on C/C++ development. By offering an implementation that is freely available
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on a wide range architectures, the Berkeley UPC compiler can help set the bar
on performance that other vendor compilers should meet or surpass on their sup-
ported platforms. As we continue to improve the robustness and performance of
the Berkeley UPC compiler, we can also encourage other compilers with more in-
centives to enhance their implementations. This healthy competition will increase
the qualities of UPC implementations overall, thereby attracting more users [or
UPC.
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