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Abstract

The foundation of modeling and synthesizing reactive processes
is the theory of graph games with !-regular winning conditions. In
the case of stochastic reactive processes, the corresponding stochastic
graph games have three players, two of them (System and Environ-
ment) behaving adversarially, and the third (Uncertainty) behaving
probabilistically. We consider two solution problems for stochastic
graph games: a qualitative problem, calling for the computation of the
set of states from which a player can win with probability 1 (almost-

sure winning), and a quantitative problem, calling for the computation
of the maximal probability of winning (optimal winning) from each
state. We show that, for Rabin winning conditions, both problems
are in NP. As these problems were known to be NP-hard, it follows
that they are NP-complete for Rabin conditions, and dually, coNP-
complete for Streett conditions. The proof proceeds by showing that
pure memoryless strategies suÆce for qualitatively and quantitatively
winning stochastic graph games with Rabin conditions. This fact was
an open problem, and it is of interest in its own right, as it implies
that controllers for Rabin objectives have simple implementations. We
also prove that for any !-regular objective optimal winning strategies
are no more complex than almost-sure winning strategies.
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1 Introduction

A stochastic graph game is played on a directed graph with three kinds of
states: player-1 states, player-2 states, and probabilistic states. At player-1
states, the �rst player chooses a successor state; at player-2 states, the sec-
ond player chooses a successor state; and at probabilistic states, a successor
state is chosen according to a given probability distribution. The result of
playing the game forever is an in�nite path through the graph. If there are
no probabilistic states, we refer to the game as a 2-player graph game, and
otherwise, as a 21=2-player graph game. There has been a long history of
using 2-player graph games for modeling and synthesizing reactive processes
[1, 19, 21]: a reactive system and its environment represent the two play-
ers, whose states and transitions are speci�ed by the states and edges of a
game graph. Consequently, 21=2-player graph games provide the theoreti-
cal foundation for modeling and synthesizing stochastic reactive processes
[20, 13].

For the modeling and synthesis (or \control") of reactive processes, one
traditionally considers !-regular winning conditions, which naturally ex-
press the temporal speci�cations and fairness assumptions of transition sys-
tems [15]. This paper focuses on the complexity of solving 21=2-player graph
games with respect to two important normal forms of !-regular conditions:
Rabin conditions and Streett conditions [23]. Rabin and Streett conditions
are dual (i.e., complementary), and their practical relevance stems from the
fact that their form corresponds to the form of fairness conditions for tran-
sition systems. In particular, no blow-up in the system representation is
required when encoding fairness as a Streett condition, or dually, in the
antecedent of a temporal speci�cation, as a Rabin condition [15].

In the case of 2-player graph games, where no randomization is involved,
a fundamental determinacy result ensures that, given an !-regular (or indeed
Borel) condition, at each state, either player 1 has a strategy to ensure that
the condition holds, or player 2 has a strategy to ensure that the condition
never holds [17]. The problem of solving 2-player graph games consists
thus in �nding the set of winning states, from which player 1 can ensure
that the condition holds. This problem is known to be in NP \ coNP
for parity conditions [11], to be NP-complete for Rabin conditions [12, 11,
23], and consequently, to be coNP-complete for Streett conditions. The
proofs of inclusion in NP rely on the existence of pure (i.e., deterministic)
memoryless strategies, which act as polynomial witnesses. The existence of
pure memoryless winning strategies is also of independent interest, as such
strategies can be simply and e�ectively implemented by a controller.
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In the case of 21=2-player graph games, where randomization is present in
the transition structure, the notion of winning needs to be clari�ed. Player 1
is said to win surely if she has a strategy that guarantees to achieve the
winning condition against all player-2 strategies. While this is the classical
notion of winning in the 2-player case, it is less meaningful in the presence of
probabilistic states, because it makes all probabilistic choices adversarial (it
treats them analogously to player-2 choices). To adequately treat probabilis-
tic choice, we consider the probability with which player 1 can ensure that
the winning condition is met. We thus de�ne two solution problems for 21=2-
player graph games: a qualitative one, which asks for the computation of the
set of states from which player 1 can ensure winning with probability 1, and
a quantitative one, which asks for the computation of the maximal probabil-
ity with which player 1 can ensure winning from each state (also called the
value of the game at a state) [9, 8]. Correspondingly, we de�ne almost-sure
winning strategies, which enable player 1 to win with probability 1 when-
ever possible, and optimal strategies, which enable player 1 to win with
maximal probability. The main result of this paper is that, in 21=2-player
graph games, both the qualitative and the quantitative solution problems
are NP-complete in the case of Rabin conditions, and coNP-complete in the
case of Streett conditions. The NP-hardness for Rabin conditions follows
from NP-hardness of 2-player games with Rabin conditions [12, 23]; we es-
tablish the membership in NP. Both questions have been known to be in
NP \ coNP for the more restrictive, self-dual parity conditions [18, 4, 24],
whose exact complexity is an important open problem.

Our proof of membership in NP for stochastic Rabin games relies on
establishing the existence of pure memoryless almost-sure winning and op-
timal strategies. The corresponding result for stochastic parity games has
been proved only recently [18, 4, 24]; the proofs rely heavily on the self-
duality of parity conditions. For Rabin conditions, a new proof approach
is required. First, we show the existence of pure memoryless almost-sure
winning strategies in stochastic Rabin games; the proof is based on a reduc-
tion from 21=2-player games to 2-player games that preserves the ability of
player 1 to win with probability 1 (but not, obviously, the maximal prob-
ability of winning). The proof technique is di�erent from the techniques
for parity games [3] that relies on the notion of ranking functions and self-
duality of parity conditions. The present proof technique is combinatorial
and uses graph theoretic arguments to take care of the fact that Rabin ob-
jectives are not closed under complementation. Our reduction establishes
the membership in NP of the qualitative solution problem for stochastic
Rabin games. To show the existence of pure memoryless optimal strategies,
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we partition the game graph into value classes, each consisting of states
where the value of the game is identical. We show that if the players play
according to optimal strategies, then the game leaves every intermediate
value class (in which the value is neither 0 nor 1) with probability 1. We
can then leverage the results on almost-winning to show the existence of
pure memoryless optimal strategies, and establish the membership in NP
also for the quantitative solution problem for stochastic Rabin games. The
coNP-completeness of stochastic Streett games follows by duality.

We emphasize that, as mentioned earlier, the existence of pure mem-
oryless strategies is relevant in its own right, as such strategies consist in
mappings associating with each player-1 state a unique successor, without
need for randomization or memory; such mappings are easily implemented
in controllers. The result that a pure memoryless strategy suÆces for win-
ning with probability 1 and for optimality in every stochastic Rabin game
is far from obvious; recall that Streett conditions in general require memory
even in the simpler case of non-stochastic (i.e., 2-player) graph games. Fur-
thermore, our techniques lead us to a far more general result, that states
a strong connection between the qualitative and quantitative problems: we
show that for any !-regular objective in a 21=2-player game graph, if a family
of strategies suÆces for almost-sure winning, it also suÆces for optimality.
Hence future research about 21=2-player games with !-regular objectives can
focus on qualitative winning strategies, and our result generalizes qualitative
winning strategies to quantitative winning strategies.

2 Preliminaries

We consider several classes of turn-based games, namely, two-player turn-
based probabilistic games (21=2-player games), two-player turn-based deter-
ministic games (2-player games), and Markov decision processes (11=2-player
games).

Probability distribution. For a countable set A, a probability distribu-
tion on the set A is a function Æ : A ! [0; 1] such that

P
a2A Æ(a) = 1. We

denote the set of probability distributions on the set A by D(A).

Game graphs. A turn-based probabilistic game graph (21=2-player game
graph) G = ((S;E); S1; S2; S
; Æ) consists of a directed graph (S;E), a par-
tition (S1, S2, S
) of the set of states S, and a probabilistic transition
function Æ: S
 ! D(S), where D(S) denotes the set of probability distri-
butions over the state space S. The states in S1 are the player-1 states,
where player 1 decides the successor state; the states in S2 are the player-2
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states, where player 2 decides the successor state; and the states in S
 are
the probabilistic states, where the successor states is chosen according to the
probabilistic transition function Æ. We assume that, for s 2 S
 and t 2 S,
we have (s; t) 2 E i� Æ(s)(t) > 0, and we often write Æ(s; t) for Æ(s)(t). For
technical convenience we assume that in (S;E) every state has at least one
outgoing edge, and we write t 2 E(s) for (s; t) 2 E. For a state s we write
E(s) to denote f t 2 S j (s; t) 2 E g. We denote by n the size of the state
space, i.e., n = jSj, and by m the number of edges, i.e., m = jEj.

An in�nite path, or play, of the game graph G is an in�nite sequence
! = hs0; s1; s2; : : :i of states such that (sk; sk+1) 2 E for all k 2 N. We write

 for the set of all plays, and for every state s 2 S we write 
s for the set
of plays that start from the state s.

A set U � S of states is called Æ-closed if for every u 2 U \ S
, we
have that (u; t) 2 E implies t 2 U ; it is called Æ-live if for every state
s 2 U \ (S1 [ S2) there is a state t 2 U such that (s; t) 2 E. A Æ-closed and
Æ-live subset of S induces a subgame graph of G, indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are
the special case of the 21=2-player game graphs with S
 = ;. The Markov
decision processes (11=2-player game graphs) are the special case of the 21=2-
player game graphs with S1 = ; or S2 = ;. We refer to the MDPs with
S2 = ; as player-1 MDPs, and to the MDPs with S1 = ; as player-2 MDPs.
A game graph which is both deterministic and an MDP is called a transition
system (1-player game graph): a player-1 transition system has only player-1
states; a player-2 transition system has only player-2 states.

Strategies. A strategy for player 1 is a function �: S� � S1 ! D(S) that
assigns a probability distribution to every �nite sequence ~w 2 S��S1 of states,
which represents the history of the play so far. Player 1 follows the strategy �
if in each move, given that the current history of the play is ~w 2 S� � S1,
she chooses the next state according to the probability distribution �(~w).
A strategy must prescribe only available moves, i.e., for all ~w 2 S�, s 2 S1,
and t 2 S, if �(~w � s)(t) > 0, then (s; t) 2 E. The strategies for player 2
are de�ned analogously. We denote by � and � the set of all strategies for
player 1 and player 2, respectively. Note that for player-1 MDPs the set �
is a singleton, i.e., player 2 has only a single trivial strategy.

Pure strategies. We classify strategies according to their use of random-
ization and memory. The strategies that do not use randomization are called
pure. A player-1 strategy � is pure if for all ~w 2 S� and s 2 S1, there is a
state t 2 S such that �(~w � s)(t) = 1. The pure strategies for player 2 are
de�ned analogously. We denote by �P and �P the sets of pure strategies
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for player 1 and player 2, respectively. A strategy that is not necessarily
pure is called randomized.

Finite memory and memoryless strategies. Let M be a set called
memory. A strategy with memory can be described as a pair of func-
tions: (a) memory update function �u : S � M ! M, (b) next move function
�m : S1 � M! D(S). A strategy is �nite-memory if the memory M is �nite.
We denote by �F the set of �nite-memory strategies for player 1, and by
�PF the set of pure �nite-memory strategies; that is, �PF = �P \ �F . A
strategy is memoryless if jM j = 1: hence, the next move does not depend on
the history but only on the current state. A memoryless strategy for player 1
can be represented as function �: S1 ! D(S) such that for all s 2 S1 and
t 2 S, if �(s)(t) > 0, then (s; t) 2 E. A pure memoryless strategy is a
pure strategy that is memoryless. A pure memoryless strategy for player 1
can be represented as a function �: S1 ! S such that (s; �(s)) 2 E for all
s 2 S1. We denote by �M the set of memoryless strategies for player 1, and
by �PM the set of pure memoryless strategies; that is, �PM = �P \ �M .
Analogously we de�ne the corresponding strategy families for player 2.

Given a strategy � 2 � for player 1, we write G� for the game played on
the graph G under the constraint that player 1 follows the strategy �. The
corresponding de�nition for a player-2 strategy is analogous. Observe that
given a 21=2-player game graph G and a memoryless player-1 strategy �,
the result G� is a player-2 MDP. Similarly, for a player-1 MDP G and a
memoryless player-1 strategy �, the result G� is a Markov chain. Hence, if
G is a 21=2-player game graph and the two players follow given memoryless
strategies � and �, the result G�;� is a Markov chain. Given a game graph
G and a �nite memory strategy � for player 1 with memory M, the strategy
� can be interpreted as a memoryless strategy �m in the usual synchronous
product game graph G with the memory M, i.e., G� M. Analogous observa-
tions hold for player 2 strategies �. These observations will be useful in the
analysis of 21=2-player games.

Once a starting state s 2 S and strategies � 2 � and � 2 � for the two
players are �xed, the outcome of the game is a random walk !�;�s for which
the probabilities of events are uniquely de�ned, where an event A � 
s

is a measurable set of paths. Given strategies � for player 1 and � for
player 2, a play ! = hs0; s1; s2; : : :i is feasible in a 21=2-player game graph
if for every k 2 N the following three conditions hold: (1) if sk 2 S
, then
(sk; sk+1) 2 E; (2) if sk 2 S1, then �(s0; s1; : : : ; sk)(sk+1) > 0; and (3) if
sk 2 S2 then �(s0; s1; : : : ; sk)(sk+1) > 0. Given strategies � 2 � and � 2 �,
and a state s, we denote by Outcome(s; �; �) � 
s the set of feasible plays
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that start from s given strategies � and �. For a state s 2 S and an event
A, we write Pr�;�s (A) for the probability that a path belongs to A if the
game starts from the state s and the players follow the strategies � and �,
respectively. In the context of player-1 MDPs we often omit the argument �,
because � is a singleton set.

Objectives. An objective for a player consists in an !-regular set of winning
plays � � 
 for each player [22]. In this paper we study only zero-sum games
[20, 13], where the objectives of the two players are complementary. In other
words, it is implicit that if the objective of one player is �, then the objective
of the other player is 
 n�. Given a game graph G and an objective � � 
,
we write (G;�) for the game played on the graph G with the objective �
for player 1.

In this paper we consider !-regular objectives speci�ed as Rabin and
Strett objectives. For a play ! = hs0; s1; s2; : : :i 2 
, we de�ne Inf(!) =
f s 2 S j sk = s for in�nitely many k � 0 g to be the set of states that occur
in�nitely often in !. We use colors to de�ne objectives independent of game
graphs. For a set C of colors, we write [[�]]: C ! 2S for a function that maps
each color to a set of states. Inversely, given a set U � S of states, we write
[U ] = f c 2 C j [[c]]\U 6= ; g for the set of colors that occur in U . Note that
a state can have multiple colors.

1. Reachability and safety objectives. Given a color c, the reachability
objective requires that some state of color c be visited. Let T = [[c]] be
the set of so-called target states. Formally, we write Reach(T ) = f! =
hs0; s1; s2; : : :i 2 
 j sk 2 T for some k � 0 g for the set of winning
plays. Given c, the safety objective requires that only states of color
c be visited. Let F = [[c]] be the set of so-called safe states. Formally,
the set of winning plays is Safe(F ) = f ! = hs0; s1; s2; : : :i 2 
 j sk 2
F for all k � 0 g.

2. Rabin, parity, and Streett objectives. Given a set P =
f(e1; f1); : : : ; (ed; fd)g of pairs of colors, the Rabin objective requires
that for some 1 � i � d, all states of color ei be visited �nitely
often and some state of color fi be visited in�nitely often. Let
P̂ = f(E1; F1); : : : ; (Ed; Fd)g be the corresponding set of so-called Ra-
bin pairs, where Ei = [[ei]] and Fi = [[fi]] for all 1 � i � d. For-
mally, the set of winning plays is Rabin(P̂ ) = f ! 2 
 j 9 1 �
i � d: (Inf(!) \ Ei = ; ^ Inf(!) \ Fi 6= ;) g. Without loss of
generality, we require that

�S
i2f 1;2;:::;d g(Ei [ Fi)

�
= S. The parity

(or Rabin-chain) objectives are the special case of Rabin objectives
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where E1 � F1 � E2 � F2 � � � � Ed � Fd. The Rabin-chain ob-
jective can be represented as a parity objective de�ned as follows:
de�ne a priority function p that labels each state in Ei n Fi�1 by
a priority 2i � 1 and each state in Fi n Ei by a priority 2i. The
parity objective requires that minimum priority state that is vis-
ited in�nitely often is even. Formally, the set of winning plays is
Parity(p) = f ! 2 
 j min(p(Inf(!))) is even g. Given P , the Streett
objective requires that for each 1 � i � d, if some state of color fi is
visited in�nitely often, then some state of color ei is visited in�nitely
often. Formally, for the set P̂ = f(E1; F1); : : : ; (Ed; Fd)g of so-called
Streett pairs, the set of winning plays is Streett(P̂ ) = f ! 2 
 j 8 1 �
i � d: (Inf(!)\Ei 6= ; _ Inf(!)\Fi = ;) g. Note that the Rabin and
Streett objectives are dual. Moreover, every parity objective is both a
Rabin objective and a Streett objective. Hence, parity objectives are
closed under complementation.

We commonly use terminology like the following: a 21=2-player Rabin
game (G;Rabin(P̂ )) consists of a 21=2-player game graph G and a Rabin
objective for player 1.

Values of a game. Given !-regular objectives � � 
 for player 1 and

 n � for player 2, we de�ne the value functions hh1iival and hh2iival for the
players 1 and 2, respectively, as follows:

hh1iival (�)(s) = sup
�2�

inf
�2�

Pr�;�s (�) hh2iival (
n�)(s) = sup
�2�

inf
�2�

Pr�;�s (
n�)

A strategy � for player 1 is optimal from state s for objective � if

hh1iival (�)(s) = inf
�2�

Pr�;�s (�):

The optimal strategies for player 2 are de�ned analogously. The quantitative
determinacy of 21=2-player games with Rabin objectives follows from the
result of Martin [16].

Theorem 1 (Quantitative determinacy [16]) For all 21=2-player game
graphs, all Rabin objectives �, and all states s,

hh1iival (�)(s) + hh2iival (
 n �)(s) = 1:

Sure, almost-sure and limit-sure winning strategies. Given an ob-
jective �, a strategy � is a sure winning strategy for player 1 from a state
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s if for every strategy � of player 2 we have Outcome(s; �; �) � �. A strat-
egy � is an almost-sure winning strategy for player 1 from a state s for the
objective � if for every strategy � of player 2 we have Pr�;�s (�) = 1. A
family of strategies �C are limit-sure winning for player 1 from a state s if
sup�2�C inf�2� Pr

�;�
s (�) = 1. The sure, almost-sure and limit-sure winning

strategies for player 2 are de�ned analogously. Given an objective �, the sure
winning set hh1iisure (�) for player 1 is the set of states from which player 1
has a sure winning strategy. The almost-sure winning set hh1iialmost (�) for
player 1 is the set of states from which player 1 has an almost-sure win-
ning strategy. The limit-sure winning set hh1iilimit (�) for player 1 is the set
of states from which player 1 has limit-sure winning strategies. The sure
winning set hh2iisure (
 n �), the almost-sure winning set hh2iialmost (
 n �)
and the limit-sure winning set hh2iilimit (
 n�) for player 2 are de�ned anal-
ogously. It follows from the de�nitions that for all 21=2-player game graphs
and all objectives �, we have hh1iisure (�) � hh1iialmost (�) � hh1iilimit (�)
and hh2iisure (
 n �) � hh2iialmost (
 n �) � hh2iilimit (
 n �). Computing sure
winning, almost-sure winning and limit-sure winning sets and strategies is
referred to as the qualitative analysis of 21=2-player games [8]. The following
result is the classical determinacy result for 2-player deterministic games.

Theorem 2 (Qualitative determinacy [17]) For all 2-player game
graphs and all Rabin objectives �, we have

hh1iisure (�) \ hh2iisure (
 n �) = ;; hh1iialmost (�) = hh1iisure (�);

hh1iisure (�) [ hh2iisure (
 n �) = S; hh2iialmost (
 n �) = hh2iisure (
 n �):

SuÆciency of a family of strategies. Let C 2 fP;M;F;PM ;PFg and
consider the family �C of special strategies for player 1. We say that the
family �C suÆces with respect to an objective � on a class G of game graphs
for

� sure winning if for every game graph G 2 G, for every s 2 hh1iisure (�)
there is a player-1 strategy � 2 �C such that for every player-2 strategy
� 2 � we have Outcome(s; �; �) � �;

� almost-sure winning if for every game graph G 2 G, for every state
s 2 hh1iialmost (�) there is a player-1 strategy � 2 �C such that for
every player-2 strategy � 2 � we have Pr�;�s (�) = 1;

� limit-sure winning if for every game graph G 2 G, for every state
s 2 hh1iilimit (�) we have sup�2�C inf�2� Pr

�;�
s (�) = 1;
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� optimality if for every game graph G 2 G, for every state s 2 S there is
a player-1 strategy � 2 �C such that hh1iival (�)(s) = inf�2� Pr

�;�
s (�).

For sure winning, the 11=2-player and 21=2-player games coincide with
2-player deterministic games where the random player (who chooses the
successor at the probabilistic states) is interpreted as an adversary, i.e., as
player 2. This is formalized by the proposition below.

Proposition 1 If a family �C of strategies suÆces for sure winning with
respect to an !-regular objective � on all 2-player game graphs, then the
family �C suÆces for sure winning with respect to � also on all 11=2-player
and 21=2-player game graphs.

The following result is the classical determinacy result for 2-player de-
terministic graph games with Rabin and Streett objectives.

Theorem 3 (Pure memoryless and �nite-memory strategies) 1.
[12, 10] The family �PM of pure memoryless strategies suÆces for
sure winning with respect to all Rabin objectives on 2-player game
graphs.

2. [14] The family �PF of pure �nite-memory strategies suÆces for sure
winning with respect to all Streett objectives on 2-player game graphs.

3 MDPs, End Components, and Streett objectives

In this section we develop some facts on end components [7] that are needed
for the further developments of the paper. We consider player-1 MDPs and
hence strategies for player 1. Let G = ((S;E); (S1; S2; S
); Æ) with S2 = ;
be a 11=2-player game graph.

De�nition 1 (End component) A set U � S of states is an end-
component if U is Æ-closed and the subgame graph G � U is strongly con-
nected.

We denote by E � 2S the set of all end-components of G. The next
lemma states that, under any strategy (memoryless or not), with proba-
bility 1 the set of states visited in�nitely often along a play is an end-
component. This lemma allows us to derive conclusions on the (in�nite)
set of plays in an MDP by analyzing the (�nite) set of end components in
the MDP. In particular, the lemma implies that to show that a Streett
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(resp. Rabin) condition f(e1; f1); : : : ; (ed; fd)g is satis�ed with probabil-
ity 1, it suÆces to show that for all reachable end components U , we have
that 8i 2 [1::d]:(U \ Ei 6= ; _ U \ Fi = ;) (resp., for Rabin conditions,
9i 2 [1::d]:(U \ Ei = ; ^ U \ Fi 6= ;)). To state the lemma, for s 2 S and
U � S, we de�ne 
U

s = f ! 2 
s j Inf(!) = U g.

Lemma 1 [7] For all state s 2 S and strategies � 2 �, we have
Pr�s (

S
U2E 


U
s ) = 1.

Next, we present a polynomial-time algorithm for computing the maxi-
mal probability of satisfying a Streett condition in an MDP; the algorithm
will be used in later sections to argue that certain witnesses can be checked
in polynomial time. Consider a set P̂ = f(E1; F1); : : : ; (Ed; Fd)g of Streett
pairs. Let U 2 U i� U 2 E and for all 1 � i � d, we have either U \Ei 6= ;
or U \ Fi = ;. The following lemma states that the maximal probabil-
ity of satisfying Streett(P̂ ) is equal to the maximal probability of reaching
Tend =

S
U2U U .

Lemma 2 [2] hh1iivalStreett(P̂ ) = hh1iivalReach(Tend ).

We present a polynomial-time algorithm for computing Tend ; the com-
putation of the value then reduces to computing values of a MDP with a
reachability objective which can be achieved by linear programming [6]. To
state the algorithm, we say that an end-component U � S is maximal in
V � S if U � V , and if there is no end-component U 0 with U � U 0 � V .
Given a set V � S, we denote by MaxEC(V ) the set consisting in all max-
imal end components U such that U � V . This set can be computed in
quadratic time with standard graph algorithms; see, e.g., [7]. The set Tend
can be computed with the following algorithm.

L := MaxEC(S); D := ;
while L 6= ; do

choose U 2 L and let L := L n f U g
if 8i 2 [1::d]:(U \Ei 6= ; _ U \ Fi = ;)

then D := D [ f U g
else choose i 2 [1::d] such that U \ Fi 6= ;, and

let L := L [MaxEC(U n Fi)
end if

end while
Return: Tend =

S
U2D U .

11



It is easy to see that every state s 2 S is considered as part of an end-
component in the else-part of the above algorithm at most once for every
1 � i � d; hence, the algorithm runs in time polynomial in jGj and jP j.

4 Almost-sure winning strategies in Rabin games

In this section we show that pure memoryless strategies suÆces for almost-
sure winning with respect to Rabin objectives on 21=2-player game graphs.
The result is achieved by a reduction to 2-player Rabin games. This also
gives a direct proof of the fact that the limit-sure and almost-sure winning
sets coincide in 21=2-player games with Rabin objectives. Since any !-regular
objective can be expressed as a Rabin objective the result holds for all !-
regular objectives in 21=2-player games. Moreover, the reduction allows us
to apply the algorithms for 2-player Rabin games for qualitative analysis
of 21=2-player games with Rabin objectives. In the next section, we use
the existence of pure memoryless almost-sure winning strategies to prove
existence of pure memoryless optimal strategies.

4.1 Reduction

Given a 21=2-player Rabin game (G = ((S;E); (S1; S2; S
); Æ); [�] : S ! 2P n
;), where P = f (e1; f1); (e2; f2); : : : ; (ed; fd) g is a set of d pairs of colors, we
construct a 2-player Rabin game (G = ((S;E); (S1; S2; S
)); [�] : S ! 2P n;).
The construction is described as follows: for every state s 2 S1 [ S2, there
is a state s 2 S with \the same" outgoing edges, i.e., (s; t) 2 E if and only
if (s; t) 2 E. Each probabilistic state s 2 S
 is substituted by the gadget
presented in Figure 1. More formally, the players play the following 3-step
game in G from a probabilistic state s. For the state s we have [s] = [s].
First, in vertex s player 2 chooses a successor (es; 2k), for k 2 f0; 1; 2; : : : ; dg.
For every state (es; 2k) we have [(es; 2k)] = [s]. For k > 1, in state (es; 2k)
player 1 chooses from two successors: state (bs; 2k�1) with [(bs; 2k � 1)] = ek;
state (bs; 2k) with [(bs; 2k)] = fk. In state (es; 0) there is only one successor
(bs; 0) with [(bs; 0)] = f f1; f2; : : : ; fd g. Finally, in a state (bs; k) the choice is
between all states t such that (s; t) 2 E, and it belongs to player 1 if k is
odd, and to player 2 if k is even.

Let U1 and U2 be the sure-winning sets for players 1 and 2, respectively,
in the 2-player Rabin game G. De�ne sets U1 and U2 of states in the 21=2-
player Rabin game G by U1 = fs 2 S j s 2 U1g, and U2 = fs 2 S j s 2 U2g.
By the determinacy of 2-player Rabin games [11] (Theorem 3) we have that
U1 [ U2 = S, and hence U1 [ U2 = S.
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(bs; 0)

E(s) E(s) E(s) E(s) E(s)

e1 f1 e2 f2
(bs; 1) (bs; 4)(bs; 2) (bs; 3)

E(s) E(s)

s

(es; 0)

[s] [s]

(es; 4)(es; 2)
[s] [s]

[s]

f1; f2; : : : ; fd

(es; 2d)

ed fd

(bs; 2d� 1) (bs; 2d)

Figure 1: The gadget for the reduction of a 21=2-player parity game to a
2-player parity game.

De�nition 2 (Winning strongly connected component and end components)
Let G be a 1-player game graph with a Rabin(P̂ ) objective for player 1
and P = f (e1; f1); (e2; f2); : : : ; (ed; fd) g of d pairs of colors. A strongly
connected component (s.c.c) C in G is winning for player 1 if there is a
i 2 f 1; 2; : : : ; d g such that C \ Fi 6= ; and C \ Ei = ;; otherwise C is
winning for player 2. If G is a MDP with the set P of colors, then an end
component C in G is winning for player 1 if there is an i 2 f 1; 2; : : : ; d g
such that C \Fi 6= ; and C \Ei = ;; otherwise C is winning for player 2.

Lemma 3 Let G be a 21=2-player game graph, and let P =
f (e1; f1); (e2; f2); : : : ; (ed; fd) g be a set of pairs of colors, and let P̂ =
f(E1; F1); : : : ; (Ed; Fd)g be the corresponding sets of pairs of states. There
exists pure memoryless strategy � for player 1 in the game G, such that
for all strategy � for player 2 we have Pr�;�s (Rabin(P̂ )) = 1, for all states
s 2 U1. Hence U1 � hh1iialmost (Rabin(P̂ )).

Proof. We de�ne a pure memoryless strategy � for player 1 in the game
G from a strategy � in the game G as follows: for all state s 2 S1, if �(s) = t
then set �(s) = t. Consider a pure memoryless sure winning strategy � in
the game G from every state s 2 U1. Our goal is to establish that � is an
almost-sure winning strategy from every state in U1.

We prove that every end component in the player-2 MDP (G � U1)� is
winning for player 1. It would follow from Lemma 1 that � is an almost-sure
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ei2

(bs; 2i2 � 1)

fi2
(bs; 2i2)

(es; 2ik)

ei
k

(bs; 2i
k
� 1)

fi
k

(bs; 2ik)

i1 i2

ik

Figure 2: The strategy sub-graph in G� .

winning strategy. We argue that if there is an end component in (G � U1)�
that is winning for player 2 then we can construct an s.c.c in the subgraph
(G � U1)� that is winning for player 2, which is impossible because � is a sure
winning strategy for player 1 from the set U1 in the 2-player Rabin game
G. Let C be an end component in (G � U1)� that is winning for player 2.
We denote by C the set of states in the gadget of states in C. Hence for all
i 2 f1; 2; : : : ; dg we have if Fi\C 6= ; then C\Ei 6= ;. Let us de�ne the set
I = f i1; i2; : : : ; ij g such that Eik \C 6= ;. Thus for all i 2 (f1; 2; : : : ; dgnI)
we have Fi \ C = ;. Note that I 6= ;, as every state has at least one color.
We now construct a sub-game in G� as follows:

� For a state s 2 C \ S2 keep all the edges (s; t) such that t 2 C.

� For a state s 2 C \ S
 the sub-game is de�ned as follows:

{ At state s choose the edges to state (es; 2i) such that i 2 I.

{ For a state (bs; 2i), player 2 chooses a successor that shortens the
distance to the vertex set C \Ei in the game G.

The construction is illustrated in Fig. 2.
We now prove that every terminal s.c.c. is winning for player 2 in the

subgame thus constructed in (G � C)�, where C is the set of states in
the gadget of states in C. Consider any arbitrary terminal s.c.c Y in the
subgame constructed in (G � C)� . It follows from the construction that for
every i 2 f 1; 2; : : : ; d g n I we have Fi \ Y = ;. Suppose for a i 2 I we have
Fi \ Y 6= ;, we show that Ei \ Y 6= ;. There are two cases:
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1. If there is at least one state (es; 2i) such that the strategy � chooses
the successor (bs; 2i� 1) then the Ei \ Y 6= ; since [(es; 2i� 1)] = ei.

2. If for every state (es; 2i) the strategy for player 1 chooses the successor
(bs; 2i) then since (bs; 2i) is a player 2 state player 2 chooses an successor
to shorten distance to the vertex set Ei and hence the terminal s.c.c.
Y must contain a state s such that [s] = ei. Hence Ei \ Y 6= ;.

Now we argue that for every probabilistic state s 2 S
 \ U1, all of its
successors are in U1. Otherwise, player 2 in the state s of the game G can
choose the successor (es; 0) and then a successor to its winning set U2, which
contradicts the assumption that the strategy � is a sure winning strategy for
the player 1 in the game G. It follows from Lemma 1 that for any strategy
� with probability 1 the set of states visited in�nitely often along the play
!�;� is an end component in U1. Since every end component in (G � U1)� is
winning for player 1 the strategy � is an almost-sure winning strategy for
player 1.

Lemma 4 Let G be a 21=2-player game graph with a set P =
f (e1; f1); (e2; f2); : : : ; (ed; fd) g of d pairs of colors and winning objec-
tive Rabin(P̂ ) for player 1. There exists �nite-memory strategy � for
player 2 in the game G such that for all strategy � for player 1 we
have Pr�;�s (Streett(P̂ )) > 0, for all states s 2 U2. Hence S n U1 �
S n hh1iialmost (Rabin(P̂ )).

Proof. The proof idea is similar to the proof of Lemma 3. Consider a
�nite-memory sure winning strategy � for player 2 in the game G � U2; and
� be the corresponding strategy in G. Let M be the memory of the strategy
�. We argue that every end component in the game (G � U2)� is winning for
player 2. Consider the product game (G�M � U2�M) and the corresponding
memoryless strategy �m of � in the game G � M. It suÆces to argue that
every end component in (G � M � U2 � M)�m is winning for player 2. Let C
be a end component in (G� M � U2� M)�m that is winning for player 1, then
we construct an s.c.c. that is winning for player 1 in (G � M � U2 � M)�m ,
which is a contradiction since � is a sure winning strategy for player 2 in
G � U2. We describe the key steps to construct a winning s.c.c. C from a
winning end component C; mainly we describe the strategy corresponding
to a probabilistic state. If C is a winning end component for player 1 and
let i be the witness Rabin pair that C is winning, i.e., C \ Fi 6= ; and
C \Ei = ;. The strategy for player 1 is as follows:
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Distance to
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Figure 3: The strategy sub-graph in G� .

� If the strategy for player 2 at a state (s; m) chooses successor ((es; 0); m0)
then the following successor state is ((bs; 0); m0) and since [(bs; 0)] =
f f1; f2; : : : ; fd g player 1 ensures that a state in Fi is visited.

� If the strategy for player 2 at a state (s; m) chooses a successor
((es; 2i); m0) then player 1 chooses a successor ((bs; 2i � 1); m0), where
m; m0 2 M. Since [(es; 2i)] = fi player 1 ensures that a state in Fi is
visited.

� If the strategy for player 2 at a state (s; m) chooses a successor
((es; 2j); m0), for j 6= i, then player 1 chooses a successor ((bs; 2j � 1); m0)
and then a successor to shorten distance to the set Fi, where m; m

0 2 M.
Since [(es; 2j � 1)] = ej 6= ei, player 1 ensures that a state in Ei is not
visited.

The construction is illustrated in Fig. 3.
Consider any terminal s.c.c. Y in the sub-game thus constructed. The

strategy for player 1 ensures that in the sub-game C whenever a state s
is visited such that s 2 S
, no state in Ei is visited. Since C \ Ei = ;
it follows that Y \ Ei = ;. Moreover, the strategy for player 1 ensures
that a state in Fi is always visited, i.e., Y \ Fi 6= ;. Hence in the sub-
game of (G � M � C � M)�m every terminal s.c.c. Y is winning for player 1,
i.e., Fi \ Y 6= ; and Ei \ Y = ;. However, this is a contradiction since �
is a sure winning strategy for player 2. Hence, all the end-components in
(G� M � U2 � M)�m are winning for player 2.

Note that (G�M � U2�M)�m is a �nite-state player-1 MDP and if player 1
can win almost-surely she can win by a pure memoryless strategy. Hence,
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it suÆces to argue that player 2 wins with probability greater than 0 from
every state s 2 (G � M � U2 � M)�m against all pure memoryless strategy
� for player 1 in (G � M � U2 � M)�m . For every probabilistic state s 2
S
 \ U2, at least one successor must be in the set U2. Otherwise if both
the successors of s are in U1 it follows from the construction of the gadget
that s 2 hh1iisure (Reach(U1)) in the game G. In other words, there is a
strategy for player 1 in the 2-player game to reach the set U1 from s; this
leads to s 2 U1, which is a contradiction. Hence for any pure memoryless
strategy � consider the Markov chain (G�M � U2�M)�;�m . From every state
s 2 U2�M there is a path from to a terminal strongly connected component
in U2 � M, i.e., there is a path to a closed recurrent class that is a subset
of U2 � M. Every end component is winning for player 2 in U2 � M. Hence,
for every state s 2 U2 � M there is a path to a closed recurrent class that is
winning for player 2. Therefore for any pure memoryless strategy �, in the
Markov chain, (G�M � U2�M)�;�m , if the play starts at any state s 2 U2�M

there is a positive probability that it reaches a terminal strongly connected
component that is winning for player 2. Hence the desired result follows.

It follows from Lemma 3 and Lemma 4 that U1 = hh1iialmost (Rabin(P̂ )).
Moreover, pure memoryless almost-sure winning strategies exist for 21=2-
player Rabin games.

Theorem 4 The family �PM of pure memoryless strategies suÆces for
almost-sure winning with respect to Rabin objectives on 21=2-player game
graphs.

5 From almost-sure to optimal

In this section we show how to extend the suÆciency result for a family of
strategies from almost-sure to optimality for any !-regular objective.

De�nition 3 (Value Class) Given an !-regular objective �, for any real
r 2 R, we denote by VC(r) the value class with value r, i.e., VC(r) = f s 2
S j hh1iival�(s) = r g.

The following Proposition states that there exists optimal strategies for
player 1 such that they never choose an edge to a lower value class.

Proposition 2 For all !-regular objectives � there exists optimal strategy
� for player 1 such that for any sequence ~w 2 S� and s 2 S1 we have
�(~w � s)(t) = 0 if hh1iival�(t) < hh1iival�(s).
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The following Proposition follows from Theorem 4.

Proposition 3 ([3]) For all !-regular objectives � and for all 21=2-
player game graphs, the limit-sure and almost-sure winning sets coincide:
hh1iilimit (�) = hh1iialmost (�) and hh2iilimit (
 n �) = hh2iialmost (
 n �).

De�nition 4 (Boundary probabilistic states) Given a value class
VC(r) a probabilistic state s is a boundary probabilistic vertex if there ex-
ists a successor t of s such that hh1iival�(t) 6= hh1iival�(s). It may be noted
that for every boundary probabilistic state s, there exists a successors t1; t2
of s such that hh1iival�(t1) < hh1iival�(s) and hh1iival�(t2) > hh1iival�(s).

Lemma 5 Consider a 21=2-player game with an !-regular objective �.
Given a value class VC(r), with 0 < r < 1, let B(r) be the set of boundary
probabilistic states of the value class VC(r). Convert each of the state in
B(r) to a sink state that is winning for player 1. Let the new game be G0.
Then player 1 wins almost-surely in the sub-game G0 � VC(r).

Proof. Assume that player 1 does not win almost-surely from every state
in G0 � VC(r). Then there exists a state where player 2 wins with positive
bounded probability. It follows from Corollary 1 of [8] and Proposition 3
that there exist a non-empty set U � VC(r) such that that player 2 wins
almost-surely from U . Consider a optimal strategy � that never chooses an
edge with positive probability to a lower value class (such a strategy exist
from Proposition 2). Since player 2 wins almost-surely from U it follows that
for every state s 2 U \S1, for every successor t of s in VC(r) we have t 2 U .
Note that it follows that every move of strategy � exists in U . Hence player 2
wins almost-surely from U against �. However, this is a contradiction to
the assumption that r > 0 and that � is an optimal strategy.

It follows, from Lemma 5 that in every value class if the boundary prob-
abilistic states are assumed to be winning for player 1, then player 1 wins
almost-surely. We call such an almost-sure winning strategy as conditional
almost-sure winning strategy.

De�nition 5 (Qualitative optimal strategy) A strategy � is qualitative
optimal for player 1, for an !-regular objective �, if the following conditions
hold:

� For every state s 2 hh1iialmost (�) the strategy � is almost-sure winning.
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� For every state s 2 VC(r) such that 0 < r < 1, there is a constant
c > 0 such that

inf
�2�

Pr�;�s (�) � c:

Lemma 6 Consider a strategy �, and an !-regular objective �, such that �
is almost-sure winning from every state s 2 hh1iialmost (�), and � is a condi-
tional almost-sure winning strategy from every state s in Snhh2iialmost (
n�),
then � is qualitative optimal for �.

Proof. Since the strategy � is conditional almost-sure winning it follows
that any strategy � that is optimal against � the play !�;�s reaches the
boundary probabilistic states with positive probability, for s 2 VC(r) and
r > 0. From every boundary probabilistic state the game proceeds to a
higher value class with positive probability. By an easy induction on the
number of value classes it follows that from every state in Snhh2iialmost (
n�)
the game reaches hh1iialmost (�) with positive probability. Since � is almost-
sure winning for every state s 2 hh1iialmost (�) it follows that � is qualitative
optimal.

De�nition 6 (Locally optimal strategies) A strategy � is locally opti-
mal for an !-regular objective � if for all ~w 2 S� and s 2 S1 we have
�(~w � s)(t) = 0 if hh1iival�(t) < hh1iival�(s).

Note that by de�nition a conditional almost-sure winning strategy is
locally optimal. The following proof is similar to the proof of Lemma 5.3
of [4].

Lemma 7 Consider a 21=2-player game G with an !-regular objective � for
player 1. Let � be a memoryless strategy such that � is qualitative optimal
and locally optimal for �. Then � is an optimal strategy for �.

Proof. Given � is a memoryless the game G� is a player-2 MDP. Since �
is a qualitative optimal strategy it follows that for every state s 2 VC(r),
for r > 0, for all strategy � of player 2 we have Pr�;�s (�) > c, for some
constant c. Hence, the set of almost-sure winning states for player 2 in G�

coincide with the set of almost-sure winning states in G. Let us denote by
W2 the set of almost-sure winning states for player 2 in G and G�, i.e.,
W2 = hh2iialmost (
 n �). It follows from the analysis of MDPs that in the
game G� , for all state s we have hh2iival (
 n�)(s) = hh2iival (Reach(W2))(s).
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By [6, 5], the values are the unique solution to the linear program consisting
in minimizing

P
s2S xs subject to:

8s 2 S
 : xs =
P

t2E(s) xt � Æ(s; t) 8s 2 S : xs � 0

8s 2 S1 : xs =
P

t2E(s) xt � �(s)(t) 8s 2W2 : xs = 1

8s 2 S2;8t 2 E(s) : xs � xt

Let us denote by x� the optimal solution of the above liner program. The
local optimality of the strategy � ensures that for every state s 2 S1,
xs = hh2iival (
 n �)(s), satisfy the constraints of the linear program. More-
over, xs = hh2iival (
 n �) satisfy the constraints for all state s 2 S2 [ S
.
Hence, xs = hh2iival (
 n �) is is a feasible solution of the linear pro-
gram. Since the above linear program is a minimization problem we have
x� � xs = hh2iival (
 n �)(s) for all s 2 S. It follows that in the MDP
G� we have sup�2� Pr

�
s (
 n �) � hh2iival (
 n �)(s). Hence it follows that

inf�2� Pr
�;�
s (�) = 1 � sup�2� Pr

�;�
s (
 n �) � 1 � hh2iival (
 n �)(s) =

hh1iival (�)(s). This implies that � is an optimal strategy for player 1 in
G.

Observe that arguments similar to the arguments of Lemma 7 can be
extended to the synchronous product of the game graph G with any �nite
memory M. Hence, the proof of Lemma 7 can be easily extended for �nite-
memory strategy � in place of memoryless strategy �. This gives us the
following general Theorem.

Theorem 5 If a family �C � �F of strategies suÆces for almost-sure win-
ning with respect to an !-regular objective � on 21=2-player game graphs,
then �C suÆces for optimality with respect to objective � on 21=2-player
game graphs.

Since pure memoryless suÆces for almost-sure winning with respect to
Rabin objectives on 21=2-player game graphs (Theorem 4) the following The-
orem is immediate from Theorem 5.

Theorem 6 The family �PM of pure memoryless strategy suÆces for opti-
mality with respect to all Rabin objectives on 21=2-player game graphs.

Theorem 7 Given a 21=2-player game graph G, an objective � for player 1,
a state s 2 S and a rational r 2 R, the complexity of determining whether
hh1iival (�)(s) � r is as follows:

1. NP-complete if � is a Rabin objective.
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2. coNP-complete if � is a Streett objective.

3. [4, 18] NP \ coNP if � is a parity objective.

Proof.

1. Let G be a 21=2-player game with a Rabin objective Rabin(P̂ ) for
player 1. Given a pure memoryless optimal strategy � for player 1
the game G� is a player-2 MDP with Streett objective for player 2.
Since the values of MDPs with Streett objective can be computed in
polynomial time (Section 3) the problem is in NP. The NP-hardness
proof follows from the fact the 2-player games with Rabin objectives
are NP-hard [12, 23].

2. Follows immediately from the fact that Street objectives are comple-
mentary to Rabin objectives.

3. Follows from the previous two completeness result, as a parity objec-
tive is both a Rabin objective and a Streett objective.
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