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Abstract

We develop and analyze methods for computing provably optimal maximum a posteriori
(MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By
decomposing the original distribution into a convex combination of tree-structured distributions,
we obtain an upper bound on the optimal value of the original problem (i.e., the log probability
of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove
that this upper bound is met with equality if and only if the tree distributions share an optimal
configuration in common. An important implication is that any such shared configuration must
also be a MAP configuration for the original distribution. Next we develop two approaches
to attempting to obtain tight upper bounds: (a) a tree-relaxed linear program (LP), which is
derived from the Lagrangian dual of the upper bounds; and (b) a tree-reweighted message-
passing algorithm that is related to but distinct from the max-product (min-sum) algorithm.
Finally, we discuss the conditions that govern when the relaxation is tight, in which case the
MAP configuration can be obtained. The analysis described here generalizes naturally to convex
combinations of hypertree-structured distributions.

Keywords: Markov random fields; max-product algorithm; min-sum algorithm; message-
passing algorithms; approximate inference; MAP estimation; iterative decoding; integer pro-
gramming; linear programming relaxation; marginal polytope.

1 Introduction

Integer programming problems arise in various fields, including communication theory, error-
correcting coding, image processing, statistical physics and machine learning [e.g., 28, 31, 8]. Many
such problems can be formulated in terms of Markov random fields [e.g., 8, 14], in which the cost
function corresponds to a graph-structured probability distribution, and the goal is to find the max-
imum a posteriori (MAP) configuration. It is well-known that the complexity of solving the MAP
estimation problem on a Markov random field (MRF) depends critically on the structure of the
underlying graph. For cycle-free graphs (also known as trees), the MAP problem can be solved by
a form of non-serial dynamic programming known as the max-product or min-sum algorithm [e.g.,
14, 15]. This algorithm, which entails passing “messages” from node to node, represents a general-
ization of the Viterbi algorithm [32] from chains to arbitrary cycle-free graphs. In recent years, the
max-product algorithm has also been studied in application to graphs with cycles as a method for
computing approximate MAP assignments [e.g., 1, 20, 21, 22, 26, 34]. Although the method may
perform well in practice, it is no longer guaranteed to output the correct MAP assignment, and

Work supported in part by ODDR&E MURI Grant DAAD19-00-1-0466 through the ARO; by ONR N00014-00-1-0089;
and by the AFOSR F49620-00-1-0161

1



it is straightforward to demonstrate problems on which it specifies an incorrect (i.e., non-optimal)
assignment.

In this paper, we present and analyze new methods for computing MAP configurations for
MRFs defined on graphs with cycles. The basic idea is to use a convex combination of tree-
structured distributions to derive upper bounds on the cost of a MAP configuration. We prove
that any such bound is met with equality if and only if the trees share a common optimizing
configuration; moreover, any such shared configuration must be MAP-optimal for the original
problem. Consequently, when the bound is tight, obtaining an MAP configuration for a graphical
model with cycles — in general, a very difficult problem — is reduced to the easy task of examining
the optima of a collection of tree-structured distributions.

Accordingly, we focus our attention on the problem of obtaining tight upper bounds, and
propose two methods directed to this end. Our first approach is based on the convexity of the
upper bounds, and the associated theory of Lagrangian duality. We begin by re-formulating the
exact MAP estimation problem on a graph with cycles as a linear program (LP) over the so-called
marginal polytope. We then consider the Lagrangian dual of the problem of optimizing our upper
bound. In particular, we prove that this dual is another LP, one which has a natural interpretation
as a relaxation of the LP for exact MAP estimation. The relaxation is obtained by replacing the
marginal polytope for the graph with cycles, which is a very complicated set in general, by an
outer bound with simpler structure. This outer bound is an exact characterization of the marginal
polytope of any tree-structured distribution, for which reason we refer to this approach as a tree-
based relaxation.

The second method consists of a class of message-passing algorithms designed to find a collection
of tree-structured distributions that share a common optimum. The resulting algorithm, though
similar to the standard max-product (or min-sum) algorithm [e.g., 22, 34], differs from it in a
number of important ways. In particular, under the so-called optimum specification criterion, fixed
points of our tree-reweighted max-product algorithm specify a MAP-optimal configuration with a
guarantee of correctness. We also prove that under this condition, fixed points of the tree-reweighted
max-product updates correspond to dual-optimal solutions of the tree-relaxed linear program. As
a corollary, we establish that the ordinary max-product algorithm on trees is solving the dual of
an exact LP formulation of the MAP estimation problem.

Overall, this paper establishes a connection between two approaches to solving the MAP es-
timation problem: LP relaxations of integer programming problems [e.g., 7], and (approximate)
dynamic programming methods using message-passing in the max-product algebra. This connec-
tion has links to the recent work of Yedidia et al. [38], who showed that the sum-product algorithm
has a variational interpretation involving the so-called Bethe free energy. In addition, the work
described here is linked in spirit to our previous work [33, 36], in which we showed how to upper
bound the log partition function using a “convexified form” of the Bethe free energy. Whereas this
convex variational problem led to a method for computing approximate marginal distributions, the
current paper deals exclusively with the problem of computing MAP configurations. Importantly
and in sharp contrast with our previous work, there is a non-trivial set of problems for which the
upper bounds of this paper are tight, in which case the MAP-optimal configuration can be obtained
by the techniques described here. For instance, as documented in other work, we have applied these
techniques successfully to data association problems involving multiple targets and sensors [13], and
as a decoding method for turbo-like and LDPC codes [18, 19].

The remainder of this paper is organized as follows. Section 2 provides necessary background
on graph theory and graphical models, as well as some preliminary details on marginal polytopes,
and a formulation of the MAP estimation problem. In Section 3, we introduce the basic form of
the upper bounds on the log probability of the MAP assignment, and then develop necessary and
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sufficient conditions for these bounds to be met with equality. In Section 4, we first discuss how
the MAP integer programming problem has an equivalent formulation as a linear program (LP)
over the marginal polytope. We then prove that the Lagrangian dual of the problem of optimizing
our upper bounds has a natural interpretation as a tree-relaxation of the original LP. Section 5 is
devoted to the development of iterative message-passing algorithms and their relation to the dual
of the LP relaxation. We conclude in Section 6 with a discussion and extensions to the analysis
presented here.

2 Preliminaries

This section provides the background and some preliminary developments necessary for subsequent
sections. We begin with a brief overview of some graph-theoretic basics; we refer the reader to
the books [9, 10] for additional background on graph theory. We then describe the formalism of
Markov random fields; more details can be found in various sources [e.g., 12, 14, 27]. We conclude
with a precise formulation of the MAP estimation problem for a Markov random field.

2.1 Basics of graph theory

An undirected graph G = (V, E) consists of a set of nodes or vertices V = {1, . . . , n} that are
joined by a set of edges E. In this paper, we consider only simple graphs, for which multiple edges
between the same pair of vertices are forbidden. For each s ∈ V , we let Γ(s) = { t ∈ V | (s, t) ∈ E }
denote the set of neighbors of s. A clique of the graph G is a fully-connected subset C of the vertex
set (i.e., (s, t) ∈ E for all s, t ∈ C). The clique C is maximal if it is not properly contained within
any other clique. A cycle in a graph is a path from a node s back to itself; that is, a cycle consists
of a sequence of distinct edges { (s0, s1), (s1, s2), . . . , (sk−1, sk) } such that s0 = sk.

A subgraph of G = (V, E) is a graph H = (V (H), E(H)) where V (H) (respectively E(H))
are subsets of V (respectively E). Of particular importance to our analysis are those (sub)graphs
without cycles. More precisely, a tree is a cycle-free subgraph T = (V (T ), E(T )); it is spanning if
it reaches every vertex (i.e., V (T ) = V ). See Figure 1 for illustration of these concepts. Given a

(a) (b) (c)
Figure 1. (a) Graph with cycles. (b) A tree is a cycle-free subgraph. (c) A spanning tree reaches
every vertex of the graph.

graph G with a single connected component, a vertex cutset is any subset B ⊂ V whose removal
breaks the graph into two or more pieces. For example, with reference to the graph of Figure 2,
the subset of nodes B is a vertex cutset, because it separates the graph into the disjoint parts A
and C.

2.2 Markov random fields

A Markov random field (MRF) is defined on the basis of an undirected graph G = (V, E) in the
following way. For each s ∈ V , let xs be a random variable taking values in some sample space
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Xs. This paper deals exclusively with the discrete case, for which xs takes values in the finite
alphabet Xs := {0, . . . , ms − 1}. By concatenating the variables at each node, we obtain a random
vector x = {xs | s ∈ V } with n = |V | elements. Observe that x itself takes values in the Cartesian
product space X n := X1 ×X2 × · · · × Xn. For any subset A ⊆ V , we let xA denote the collection
{xs | s ∈ A} of random variables associated with nodes in A.

Of interest are random vectors x that are Markov with respect to the graph G. To define this
Markov property, let A, B and C be arbitrary subsets of the vertex set V , and let xA|B denote the
random vector xA conditioned on xB. The random vector x is Markov with respect to the graph
if xA|B and xC|B are conditionally independent whenever B separates A and C. See Figure 2 for
an illustration of this correspondence between graph separation and conditional independence.

A
B

C
Figure 2. Illustration of the relation between conditional independence and graph separation. Here
the set of nodes B separates A and C, so that for a Markov random field, xA|B and xC|B must be
conditionally independent.

The well-known Hammersley-Clifford theorem [e.g., 12, 27] asserts that any Markov random
field that is strictly positive (i.e., p(x) > 0 for all x ∈ X n) decomposes in terms of functions
associated with the cliques of the graph. For the sake of development in the sequel, it is convenient
to describe this decomposition in terms of exponential families [e.g., 3, 4]. We begin with some
necessary notation. A potential function associated with a given clique C is mapping φ : X n → R
that depends only on the subcollection xC := {xs | s ∈ C}. There may be a family of potential
functions {φα | α ∈ I(C)} associated with any given clique, where α is an index ranging over
some set I(C). Taking the union over all cliques defines the overall index set I = ∪CI(C). The
full collection of potential functions {φα | α ∈ I} defines a vector-valued mapping φ : X n → Rd,
where d = |I| is the total number of potential functions. Associated with φ is a real-valued vector
θ = { θα | α ∈ I }, known as the exponential parameter vector. For a fixed x ∈ X n, we use
〈θ, φ(x)〉 to denote the ordinary Euclidean product in Rd between θ and φ(x).

With this set-up, the collection of strictly positive Markov random fields associated with the
graph G and potential functions φ can be represented as the exponential family {p(x; θ) | θ ∈ Rd},
where

p(x; θ) ∝ exp
{〈θ, φ(x)〉} ≡ exp

{ ∑
α∈I

θαφα(x)
}
. (1)

Note that each vector θ ∈ Rd indexes a particular Markov random field p(x; θ) in this exponential
family.

Example 1. The Ising model of statistical physics [e.g., 5] provides a simple illustration of a
collection of MRFs in this form. This model involves a binary random vector x ∈ {0, 1}n, with
a distribution defined by potential functions only on cliques of size at most two (i.e., vertices and

4



edges). As a result, the exponential family in this case takes the form:

p(x; θ) ∝ exp
{ ∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

}
. (2)

Here θst is the weight on edge (s, t), and θs is the parameter for node s. In this case, the index set
I consists of the union V ∪ E. Note that the set of potentials {xs, s ∈ V } ∪ {xsxt, (s, t) ∈ E} is a
basis for all multinomials on {0, 1}n of maximum degree two that respect the structure of G. ♦

When the collection of potential functions φ do not satisfy any linear constraints, then the
representation (1) is said to be minimal [3, 4]. For example, the Ising model (2) is minimal,
because there is no linear combination of the potentials φ = {xs, s ∈ V } ∪ {xsxt, (s, t) ∈ E}
that is equal to a constant for all x ∈ {0, 1}n. In contrast, it is often convenient to consider an
overcomplete representation, in which the potential functions φ do satisfy linear constraints, and
hence are no longer a basis. More specifically, our development in the sequel makes extensive use
of an overcomplete representation in which the basic building blocks are indicator functions of the
form δj(xs) — the function that is equal to one if xs = j, and zero otherwise. In particular, for
a Markov random field with interactions between at most pairs of variables, we use the following
collection of potential functions:

{δj(xs)
∣∣ j ∈ Xs } for s ∈ V, (3a)

{δj(xs)δk(xt)
∣∣ (j, k) ∈ Xs ×Xt } for (s, t) ∈ E, (3b)

which we refer to as the canonical overcomplete representation. This representation involves a total
of d :=

∑
s∈V ms +

∑
(s,t)∈E msmt potential functions, indexed by the set

I :=
[ ∪s∈V {(s; j), j ∈ Xs}

] ∪ [ ∪(s,t)∈E {(st; jk), (j, k) ∈ Xs ×Xt}
]
. (4)

The overcompleteness of the representation is manifest in various linear constraints among the
potentials; for instance, the relation δj(xs) −

∑
xt∈Xt

δj(xs)δk(xt) = 0 holds for all xs ∈ Xs. As
a consequence of this overcompleteness, there are many exponential parameters corresponding to
a given distribution (i.e., p(x; θ) = p(x; θ̃) for θ 6= θ̃). Although this many-to-one correspondence
might seem undesirable, its usefulness is illustrated in Section 5.

The bulk of this paper focuses exclusively on MRFs with interactions between at most pairs
(xs, xt) of random variables, which we refer to as pairwise MRFs. In principle, there is no loss of
generality in restricting to pairwise interactions, since any MRF can be converted to this form by
introducing auxiliary random variables; see Freeman and Weiss [22] for the details of this procedure.
However, the techniques described in this paper can all be generalized to apply directly to MRFs
that involve higher-order interactions, by dealing with hypertrees as opposed to ordinary trees.1

Moreover, with the exception of specific examples involving the Ising model, we exclusively use the
canonical overcomplete representation (3) defined in terms of indicator functions.

2.3 Marginal distributions on graphs

Our analysis in the sequel focuses on the local marginal distributions that are defined by the indi-
cator functions in the canonical overcomplete representation (3). In particular, taking expectations

1For brevity, we do not discuss hypertrees at length in this paper. Roughly speaking, they amount to trees formed
on clusters of nodes from the original graph; see Wainwright et al. [35] for further details on hypertrees.
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of these indicators with respect to some distribution p(·) yields marginal probabilities for each node
s ∈ V and each edge (s, t) ∈ E, in the following way:

µs;j = Ep[δj(xs)] :=
∑

x∈Xn

p(x)δj(xs) for s ∈ V, j ∈ Xs, (5a)

µst;jk = Ep[δj(xs)δk(xt)] :=
∑

x∈Xn

p(x; θ) [δj(xs)δk(xt)] for (s, t) ∈ E, (j, k) ∈ Xs ×Xt. (5b)

Note that equation (5) defines a d-dimensional vector µ = {µα, α ∈ I} of marginals, indexed by
elements of I defined in equation (4). We let MARG(G) denote the set of all such marginals
realizable in this way:

MARG(G) := {µ ∈ Rd | µs;j = Ep[δj(xs)], µst;jk = Ep[δj(xs)δk(xt)] for some p(·) }. (6)

The conditions defining membership in MARG(G) can be expressed more compactly in the equiv-
alent vector form µ = Ep[φ(x)] =

∑
x∈Xn p(x)φ(x), where φ denotes a vector consisting of the

potential functions forming the canonical overcomplete representation (3). We refer to MARG(G)
as the marginal polytope associated with the graph G.

MARG(G)

µJ

〈aj , µ〉 ≤ bj

Figure 3. The geometry of a marginal polytope MARG(G). It is bounded and characterized by a
finite number of half-space constraints 〈aj , µ〉 ≤ bj . The vertices µJ are in one-to-one correspondence
with configurations J ∈ Xn in the original discrete space.

By definition, any marginal polytope is the convex hull of a finite number of vectors — namely,
the collection {φ(x) | x ∈ X n}. Consequently, the Minkowski-Weyl theorem [29] ensures that
MARG(G) can be represented as an intersection of half-spaces ∩j∈JHaj ,bj , where J is a finite
index set and each half-space is of the form

Haj ,bj := {µ ∈ Rd | 〈aj , µ〉 ≤ bj}. (7)

for some aj ∈ Rd, and bj ∈ R. These half-space constraints include the non-negativity condition
µα ≥ 0 for each α ∈ I. Moreover, due to the overcompleteness of the canonical overcomplete
representation, there are various equality2 constraints that must hold; for instance, for all nodes
s ∈ V , we have the constraint

∑
j∈Xs

µs;j = 1 .
Figure 3 provides an idealized illustration of the geometry of a marginal polytope, including a

particular half-space constraint. A point µ∗ ∈ MARG(G) is a vertex [29] if any decomposition of

2Any equality constraint 〈a, µ〉 = b is equivalent to enforcing the pair of inequality constraints 〈a, µ〉 ≤ b and
〈−a, µ〉 ≤ −b.
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the form µ∗ = λµ1 + (1 − λ)µ2 and λ ∈ (0, 1) implies that µ1 = µ2 = µ∗. It is straightforward to
show that any vertex of MARG(G) is uniquely realized by a delta distribution pJ(x) := δJ(x) that
places all its mass at a single configuration J ∈ X n. We use µJ to denote the vertex associated
with configuration J ∈ X n. The number of linear constraints required to characterize MARG(G),
though always finite, grows rapidly in n for a general graph with cycles; see Deza and Laurent [16]
for an in-depth treatment of the binary case.

It is straightforward, however, to specify a subset of constraints that any µ ∈ MARG(G) must
satisfy. First, as mentioned previously, since the elements of µ are marginal probabilities, we must
have µ ≥ 0 (meaning that µ is in the positive orthant). Second, as local marginals, the elements of
µ must satisfy the normalization constraints:∑

j∈Xs

µs;j = 1 ∀ s ∈ V,
∑

(j,k)∈Xs×Xt

µst;jk = 1 ∀ (s, t) ∈ E. (8)

Third, since the single node marginal over xs must be consistent with the joint marginal on (xs, xt),
the following marginalization constraint must also be satisfied:∑

k∈Xt

µst;jk = µs;j ∀ (s, t) ∈ E, j ∈ Xs. (9)

On the basis of these constraints,3 we define the following set:

LOCAL(G) := {µ ∈ Rd
+ |

∑
j∈Xs

µs;j = 1 ∀ s ∈ V,
∑
k∈Xt

µst;jk = µs;j ∀(s, t) ∈ E, j ∈ Xs}. (10)

Here it should be understood that there are two sets of marginalization constraints for each edge
(s, t): one for each of the variables xs and xt. By construction, LOCAL(G) specifies an outer bound
on MARG(G); moreover, in contrast to MARG(G), it involves only a number of inequalities that
is polynomial in n. More specifically, LOCAL(G) is defined by O(mn + m2|E|) inequalities, where
m := maxs |Xs|. Since the number of edges |E| is at most

(
n
2

)
, this complexity is at most O(m2n2).

The constraint set LOCAL(G) plays an important role in the sequel.

2.4 MAP estimation

Of central interest in this paper is the computation of maximum a posteriori (MAP) configurations4

for a given distribution in an exponential form — i.e., configurations in the set arg maxx∈Xn p(x; θ̄),
where θ̄ ∈ Rd is a given vector of weights. For reasons to be clarified, we refer to p(x; θ̄) as the
target distribution. The problem of computing an MAP configuration arises in a wide variety of
applications. For example, in image processing [e.g., 8], computing MAP estimates can be used as
the basis for image segmentation techniques. In error-correcting coding [e.g., 28], a decoder based
on computing the MAP codeword minimizes the word error rate.

When using the canonical overcomplete representation φ(x) = {δj(xs), δj(xs)δk(xt)}, it is often
convenient to represent the exponential parameters in the following functional form:

θ̄s(xs) :=
∑
j∈Xs

θ̄s;jδj(xs), θ̄st(xs, xt) :=
∑

(j,k)∈Xs×Xt

θ̄st;jkδj(xs)δk(xt). (11)

3Note that the normalization constraint on {µst;jk} is redundant given the marginalization constraint (9), and the
normalization of {µs;j}.

4The term a posteriori arises from applications, in which case one often wants to compute maximizing elements
of the posterior distribution p(x |y; θ), where y is a fixed collection of noisy observations.
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With this notation, the MAP problem is equivalent to finding a configuration x̂MAP ∈ X n that
maximizes the quantity

〈θ̄, φ(x)〉 :=
∑
s∈V

θ̄s(xs) +
∑

(s,t)∈E

θ̄st(xs, xt). (12)

Although the parameter θ̄ is a known and fixed quantity, it is useful for analytical purposes to
view it as a variable, and define a function Φ∞(θ̄) as follows:

Φ∞(θ̄) := max
x∈Xn

〈θ̄, φ(x)〉. (13)

Note that Φ∞(θ̄) represents the value of the optimal (MAP) configuration as θ̄ ranges over Rd. As
the maximum of a collection of linear functions, Φ∞ is convex in terms of θ̄.

3 Upper bounds via convex combinations

This section introduces the basic form of the upper bounds on Φ∞(θ̄) to be considered in this paper.
The key property of Φ∞ is its convexity, which allows us to apply Jensen’s inequality [25]. More
specifically, let {ρi} be a finite collection of non-negative weights that sum to one, and consider a
collection {θi} of exponential parameters such that

∑
i ρ

iθi = θ̄. Then applying Jensen’s inequality
yields the upper bound

Φ∞(θ̄) ≤
∑

i

ρiΦ∞(θi). (14)

Note that the bound (14) holds for any collection of exponential parameters {θi} that satisfy∑
i ρ

iθi = θ̄; however, the bound will not necessarily be useful, unless the evaluation of Φ∞(θi)
is easier than the original problem of computing Φ∞(θ̄). Accordingly, in this paper, we focus on
convex combinations of tree-structured exponential parameters (i.e., the set of non-zero components
of θi is restricted to an acyclic subgraph of the full graph), for which exact computations are
tractable. In this case, each index i in equation (14) corresponds to a spanning tree of the graph,
and the corresponding exponential parameter is required to respect the structure of the tree. In
the following, we introduce the necessary notation required to make this idea precise.

3.1 Convex combinations of trees

For a given graph, let T denote a particular spanning tree, and let T = T(G) denote the set of all
spanning trees. For a given spanning tree T = (V, E(T )), we define a set

I(T ) = {(s; j) | s ∈ V, j ∈ Xs} ∪ {(st; jk) | (s, t) ∈ E(T ), (j, k) ∈ Xs ×Xt},
corresponding to those indexes associated with all vertices but only edges in the tree.

To each spanning tree T ∈ T, we associate an exponential parameter θ(T ) that must respect the
structure of T . More precisely, the parameter θ(T ) must belong to the following linear constraint
set:

E(T ) = { θ(T ) ∈ Rd | θα(T ) = 0 ∀ α ∈ I\I(T ) }. (15)

Note that E(T ) corresponds to an e-flat manifold of exponential parameters in information-geometric
terms [3]. By concatenating all of the tree vectors, we form a larger vector θ = {θ(T ), T ∈ T},
which is an element of Rd×|T(G)|. The vector θ must belong to the constraint set

E := {θ ∈ Rd×|T(G)| | θ(T ) ∈ E(T ) for all T ∈ T(G)}. (16)
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(a) (b) (c) (d)
Figure 4. Illustration of edge appearance probabilities. Original graph is shown in panel (a).
Probability 1/3 is assigned to each of the three spanning trees {Ti | i = 1, 2, 3 } shown in panels (b)–
(d). Edge b is a so-called bridge in G, meaning that it must appear in any spanning tree. Therefore,
it has edge appearance probability ρb = 1. Edges e and f appear in two and one of the spanning
trees, respectively, which gives rise to edge appearance probabilities ρe = 2/3 and ρf = 1/3.

In order to define convex combinations of exponential parameters defined on spanning trees, we
require a probability distribution ρ over the set of spanning trees

ρ := { ρ(T ), T ∈ T | ρ(T ) ≥ 0,
∑
T∈T

ρ(T ) = 1 }. (17)

For any distribution ρ, we define its support to be the set of trees to which it assigns strictly positive
probability; that is

supp(ρ) := { T ∈ T | ρ(T ) > 0 }. (18)

In the sequel, it will also be of interest to consider the probability ρe = Prρ{e ∈ T} that a given
edge e ∈ E appears in a spanning tree T chosen randomly under ρ. We let ρe = {ρe | e ∈ E}
represent a vector of these edge appearance probabilities. Any such vector ρe must belong to the
so-called spanning tree polytope [7, 17], which we denote by T(G). See Figure 4 for an illustration of
the edge appearance probabilities. Although we allow for the support supp(ρ) to be a strict subset
of the set of all spanning trees, we require that ρe > 0 for all e ∈ E, so that each edge appears in
at least one tree with non-zero probability.

Given a collection of tree-structured parameters θ and a distribution ρ, we form a convex
combination of tree exponential parameters as follows

Eρ[θ(T )] :=
∑
T

ρ(T )θ(T ). (19)

Let θ̄ ∈ Rd be the target parameter vector for which we are interested in computing Φ∞, as well
as an MAP configuration of p(x; θ̄). For a given ρ, of interest are collections θ of tree-structured
exponential parameters such that Eρ[θ(T )] = θ̄. Accordingly, we define the following constraint
set:

Aρ(θ̄) := {θ ∈ E | Eρ[θ(T )] = θ̄}. (20)

It can be seen that Aρ(θ̄) is never empty as long as ρe > 0 for all edges e ∈ E. We say that any
member θ of Aρ(θ̄) specifies a ρ-reparameterization of p(x; θ̄).

9



Example 2 (Single cycle). To illustrate these definitions, consider a binary vector x ∈ {0, 1}4

on a 4-node cycle, with the distribution in the minimal Ising form

p(x; θ̄) ∝ exp{x1x2 + x2x3 + x3x4 + x4x1}.
In words, the target distribution is specified by the minimal parameter θ̄ = [0 0 0 0 1 1 1 1],
where the zeros represent the fact that θ̄s = 0 for all s ∈ V . The four possible spanning trees

4

3

4

3

4

3

0

4

3

4

3

0

4

3

4

3

4

3

0

4

3

4

3

4

3

4

3
0

Figure 5. A convex combination of four distributions p(x; θ(Ti)), each defined by a spanning tree
Ti, is used to approximate the target distribution p(x; θ̄) on the single-cycle graph.

T = {Ti | i = 1, . . . , 4 } on a single 4-node cycle are illustrated in Figure 5. Suppose that ρ is the
uniform distribution ρ(Ti) = 1/4 for i = 1, . . . 4, so that ρe = 3/4 for each edge e ∈ E. We construct
a member θ of Aρ(θ̄), as follows:

θ(T1) = (4/3)
[
0 0 0 0 1 1 1 0

]
,

θ(T2) = (4/3)
[
0 0 0 0 1 1 0 1

]
,

θ(T3) = (4/3)
[
0 0 0 0 1 0 1 1

]
,

θ(T4) = (4/3)
[
0 0 0 0 0 1 1 1

]
.

With this choice, it is easily verified that Eρ[θ(T )] = θ̄ so that θ ∈ Aρ(θ̄).

3.2 Tightness of upper bounds

It follows from equations (14), (19) and (20) that for any θ ∈ Aρ(θ̄), there holds:

Φ∞(θ̄) ≤
∑
T

ρ(T )Φ∞(θ(T )) =
∑
T

ρ(T ) max
x∈Xn

{〈θ(T ), φ(x)〉}. (21)

Our first goal is to understand when the upper bound (21) is tight — that is, met with equality. It
turns out that that equality holds if and only if the collection of trees share a common optimum,
which leads to the notion of tree agreement.

More formally, for any exponential parameter vector θ ∈ Rd, define the collection of its optimal
configurations:

OPT(θ) := {x ∈ X n | 〈θ, φ(x′)〉 ≤ 〈θ, φ(x)〉 for all x′ ∈ X n}. (22)

Note that by the definition (13) of Φ∞, there holds 〈θ̄, φ(x)〉 = Φ∞(θ̄) for any x ∈ OPT(θ̄). With
this notation, we have:

Proposition 1 (Tree agreement). Let θ = {θ(T )} ∈ Aρ(θ̄), and let ∩T∈supp(ρ) OPT(θ(T )) be
the set of configurations that are optimal for every tree-structured distribution. Then the following
containment always holds:

∩T∈supp(ρ) OPT(θ(T )) ⊆ OPT(θ̄). (23)

Moreover, the bound (21) is tight if and only if the intersection on the LHS is non-empty.
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Proof. The containment relation is clear from the form of the upper bound (21). Let x∗ belong to
OPT(θ̄). Then the difference of the RHS and the LHS of equation (21) can be written as follows:

0 ≤
[ ∑

T

ρ(T )Φ∞(θ(T ))
]
− Φ∞(θ̄) =

[ ∑
T

ρ(T )Φ∞(θ(T ))
]
− 〈θ̄, φ(x∗)〉

=
∑
T

ρ(T )
[
Φ∞(θ(T ))− 〈θ(T ), φ(x∗)〉],

where the last equality uses the fact that
∑

T ρ(T )θ(T ) = θ̄. Now for each T ∈ supp(ρ), the term
Φ∞(θ(T ))− 〈θ(T ), φ(x∗)〉 is non-negative, and equal to zero only when x∗ belongs to OPT(θ(T )).
Therefore, the bound is met with equality if and only if x∗ ∈ ∩T∈supp(ρ) OPT(θ(T )) for some
x∗ ∈ OPT(θ̄).

The preceding result shows that the upper bound (21) is tight if and only if all the trees in the
support of ρ agree on a common configuration. When this tree agreement condition holds, a MAP
configuration for the original problem p(x; θ̄) can be obtained simply by examining the intersection
∩T∈supp(ρ) OPT(θ(T )) of configurations that are optimal on every tree for which ρ(T ) > 0. Accord-
ingly, we focus our attention on the problem of finding upper bounds (21) that are tight, so that a
MAP configuration can be obtained. Since the target parameter θ̄ is fixed and assuming that we
fix the spanning tree distribution ρ, the problem on which we focus is that of optimizing the upper
bound as a function of θ ∈ Aρ(θ̄). Proposition 1 suggests two different strategies for attempting to
find a tight upper bound, which are the subjects of the next two sections:

Direct minimization and Lagrangian duality: The first approach is a direct one, based
on minimizing equation (21). In particular, for a fixed distribution ρ over spanning trees, we
consider the constrained optimization problem of minimizing the RHS of equation (21) subject to
the constraint θ ∈ Aρ(θ̄). The problem structure ensures that strong duality holds, so that it
can be tackled via its Lagrangian dual. In Section 4, we show that this dual problem is a linear
programming (LP) relaxation of the original MAP estimation problem.

Message-passing approach: In Section 5, we derive and analyze message-passing algorithms,
the goal of which is to find, for a fixed distribution ρ, a collection of exponential parameters
θ∗ = {θ∗(T )} such that θ∗ belongs to the constraint set Aρ(θ̄) of equation (20), and the inter-
section ∩T OPT(θ∗(T )) of configurations optimal for all tree problems is non-empty. Under these
conditions, Proposition 1 guarantees that all configurations that the bound is tight. In Section 5,
we develop a class of message-passing algorithms with these two goals in mind. We also prove
that when the bound is tight, fixed points of these algorithms specify optimal solutions to the LP
relaxation derived in Section 4.

4 Lagrangian duality and tree relaxation

In this section, we develop and analyze a Lagrangian reformulation of the problem of optimizing
the upper bounds —- i.e., minimizing the RHS of equation (21) as a function of θ ∈ Aρ(θ̄). The
cost function is a linear combination of convex functions, and so is also convex as a function of θ;
moreover, the constraints are linear in θ. Therefore, the minimization problem can be solved via its
Lagrangian dual. Before deriving this dual, it is convenient to develop an alternative representation
of Φ∞ as a linear program.
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4.1 Linear program over the marginal polytope for exact MAP estimation

Recall from equation (13) that the function value Φ∞(θ̄) corresponds to the optimal value of the
integer program maxx〈θ̄, φ(x)〉. We now reformulate this integer program as a linear program
(LP), which leads to an alternative representation of the function Φ∞, and hence of the exact
MAP estimation problem. In order to convert from integer to linear program, our approach is the
standard one [e.g., 7] of taking convex combinations of all possible solutions. The resulting convex
hull is precisely the marginal polytope MARG(G) defined in Section 2.3. We summarize in the
following:

Lemma 1. The function Φ∞(θ̄) has an alternative representation as a linear program over the
marginal polytope:

Φ∞(θ̄) = max
µ∈MARG(G)

〈θ̄, µ〉 = max
µ∈MARG(G)

{ ∑
s∈V

∑
j

µs;j θ̄s;j +
∑

(s,t)∈E

∑
(j,k)

µst;jkθ̄st;jk

}
. (24)

Proof. Consider the set P := { p(·) | p(x) ≥ 0,
∑

x p(x) = 1} of all possible probability distribu-
tions over x. We first claim that the maximization over x ∈ X n can be rewritten as an equivalent
maximization over P as follows:

max
x∈Xn

〈θ̄, φ(x)〉 = max
p∈P

{ ∑
x∈Xn

p(x)〈θ̄, φ(x)〉
}

. (25)

On one hand, the RHS is certainly greater than or equal to the LHS, because for any configuration
x∗, the set P includes the delta distribution that places all its mass at x∗. On the other hand, for
any p ∈ P, the sum

∑
x∈Xn p(x)〈θ̄, φ(x)〉 is a convex combination of terms of the form 〈θ̄, φ(x)〉

for x ∈ X n, and so cannot be any larger than maxx〈θ̄, φ(x)〉.
Making use of the functional notation in equation (11), we now expand the summation on the

RHS of equation (25), and then use the linearity of expectation to write:∑
x∈Xn

p(x)
{ ∑

s∈V

θ̄s(xs) +
∑

(s,t)∈E

θ̄st(xs, xt)
}

=
∑
s∈V

∑
j∈Xs

θ̄s;jµs;j +
∑

(s,t)∈E

∑
(j,k)∈Xs×Xt

θ̄st;jkµst;jk.

Here µs;j :=
∑

x∈Xn p(x)δj(xs) and µst;jk :=
∑

x∈Xn p(x)δjk(xs, xt). As p ranges over P, the
marginals µ range over MARG(G). Therefore, we conclude that maxx∈Xn〈θ̄, φ(x)〉 is equal to
maxµ∈MARG(G)〈θ̄, µ〉, as claimed.

Remarks: (a) Lemma 1 identifies Φ∞(θ̄) as the support function [25] of the set MARG(G). In
particular, consider the family of hyperplanes specified by the normal vector θ̄ ∈ Rd, and varying
intercepts. By the definition of Φ∞, the inequality 〈θ̄, µ〉−Φ∞(θ̄) ≤ 0 holds for all µ ∈ MARG(G),
with equality for at least some member of MARG(G). Therefore, Φ∞(θ̄) can be interpreted as the
negative intercept of the supporting hyperplane to MARG(G) with normal vector θ̄ ∈ Rd. This
property underlies the dual relation that is the focus of Section 4.2.

(b) The equivalence asserted in Lemma 1 can be understood geometrically by referring back to
Figure 3, which provides an idealized illustration of a marginal polytope MARG(G). Recall that
the vertices of MARG(G), denoted by µJ , are in one-to-one correspondence with configurations
J ∈ X n. An important property of linear programs is that the optimum is always attained at a
vertex (possibly more than one) of the associated constraint set [e.g., 7]. Consequently, solving
the LP maxµ∈MARG(G)〈θ̄, µ〉 will always yield a vertex µJ of MARG(G), which indicates that the
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configuration J ∈ X n is an MAP configuration of p(x; θ̄). The difficulty with this LP formulation
of exact MAP estimation is that MARG(G) is a very complicated polytope, with a large number
of facets [e.g., 16].

4.2 Lagrangian dual

Let us now address the problem of finding the tightest upper bound of the form in equation (21).
More formally, for a fixed distribution ρ over spanning trees, we wish to solve the constrained
optimization problem: min

θ∈E
∑

T ρ(T )Φ∞(θ(T ))

s. t
∑

T ρ(T )θ(T ) = θ̄.
(26)

As defined in equation (16), the constraint set E consists of all vectors θ = {θ(T )} such that for
each tree T , the subvector θ(T ) respects the structure of T , meaning that θα(T ) = 0 ∀ α ∈ I\I(T ).

Note that the cost function is a convex combination of convex functions; moreover, with ρ fixed,
the constraints are all linear in θ. Under these conditions, strong duality holds [6], so that this
constrained optimization problem can be tackled via its Lagrangian dual. The dual LP formulation
turns out to have a surprisingly simple and intuitive form. In particular, recall the set LOCAL(G)
described in Section 2.3. For the convenience of the reader, we restate the definition here:

LOCAL(G) := {τ ∈ Rd
+ |

∑
j∈Xs

τs;j = 1 ∀ s ∈ V,
∑
k∈Xt

τst;jk = τs;j ∀(s, t) ∈ E, j ∈ Xs}. (27)

By construction, this set is an outer bound on MARG(G), since any valid marginal vector must
satisfy all of the constraints defining LOCAL(G). However, for a graph with cycles, LOCAL(G) is
a strict superset of MARG(G). (In particular, Example 3 to follow provides an explicit construc-
tion of an element τ ∈ LOCAL(G)\MARG(G).) For this reason, we call any τ ∈ LOCAL(G) a
pseudomarginal vector.

The structure of the polytope LOCAL(G), in contrast to that of MARG(G), is very simple
for any graph: indeed, it is characterized by O(mn + m2|E|) constraints, where m := maxs |Xs|.
A natural relaxation of the linear program in equation (24), then, is to replace the constraint set
MARG(G) by the outer bound LOCAL(G). It turns out that the Lagrangian dual of problem (26)
is precisely this relaxed linear program:

Theorem 1 (Lagrangian dual). The Lagrangian dual to problem (26) is given by the LP relax-
ation:

Φ∞(θ̄) ≤ max
τ∈LOCAL(G)

〈τ, θ̄〉 ≡ max
τ∈LOCAL(G)

{ ∑
s∈V

∑
j

τs;j θ̄s;j +
∑

(s,t)∈E

∑
(j,k)

τst;jkθ̄st;jk

}
. (28)

Proof. Let τ be a vector of Lagrange multipliers corresponding to the constraints Eρ[θ(T )] = θ̄.
We then form the Lagrangian associated with problem (26):

Lρ,θ̄(θ, τ) = Eρ[Φ∞(θ(T ))] + 〈τ, θ̄ −
∑
T

ρ(T )θ(T )〉

=
∑
T

ρ(T )
[
Φ∞(θ(T ))− 〈θ(T ), τ〉] + 〈τ, θ̄〉.

We compute the dual by taking the infimum over θ ∈ E , for a fixed dual vector τ :

Qρ,θ̄(τ) := inf
θ∈E

Lρ,θ̄(θ, τ) =
∑
T

ρ(T ) inf
θ(T )∈E(T )

[
Φ∞(θ(T ))− 〈θ(T ), τ〉] + 〈τ, θ̄〉. (29)
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The following lemma is key to computing this infimum:

Lemma 2 (Indicator function). We have the following conjugate dual relation:

sup
θ(T )∈E(T )

{〈θ(T ), τ〉 − Φ∞(θ(T ))
}

=

{
0 if τ ∈ LOCAL(G; T )
+∞ otherwise,

where LOCAL(G; T ) := { τ ∈ Rd
+ | ∑

j∈Xs
τs;j = 1 ∀s ∈ V,

∑
j∈Xs

τst;jk = τt;k ∀ (s, t) ∈ E(T ) }.
Proof. See Appendix A.

Using Lemma 2, the value of the infimum (29) will be equal to 〈τ, θ̄〉 if τ ∈ LOCAL(G; T ) for
all T ∈ supp(ρ), and −∞ otherwise. Since every edge in the graph belongs to at least one tree
in supp(ρ), we have ∩T∈supp(ρ) LOCAL(G; T ) ≡ LOCAL(G), so that the dual function takes the
form:

Qρ,θ̄(τ) =

{
〈τ, θ̄〉 if τ ∈ LOCAL(G)
−∞ otherwise.

Thus, the dual optimal value is maxτ∈LOCAL(G)〈τ, θ̄〉; by strong duality [6], this optimum is equal
to the optimal primal value (26).

Equation (28) is a relaxation of the original LP (24), since it involves replacing the original
constraint set MARG(G) by the set LOCAL(G) formed by local (node and edgewise) constraints.
In fact, the polytope LOCAL(G) is equivalent to the constraint set involved in the Bethe variational
principle which, as shown by Yedidia et al. [38], underlies the sum-product algorithm. For binary
variables, the linear program (28) is equivalent to a relaxation that has been studied in previous
work [e.g., 11, 24, 30], as discussed briefly in Appendix B. The derivation given here illuminates the
critical role of graphical structure in controlling the tightness of such a relaxation. In particular,
an immediate consequence of our development is the following:

Corollary 1. The relaxation (28) is exact for any problem on a tree-structured graph.

Since the LP relaxation (28) is always exact for MAP estimation with any tree-structured
distribution, we refer to it as a tree relaxation. For a graph with cycles — in sharp contrast to the
tree-structured case —- LOCAL(G) is a strict outer bound on MARG(G), and the relaxation (28)
will not always be tight. Figure 6 provides an idealized illustration of LOCAL(G), and its relation
to the exact marginal polytope MARG(G). Recall from Section 2.3 that the vertices of MARG(G)
are all of the form µJ , corresponding to the marginal vector realized by the delta distribution that
puts all its mass on J ∈ X n. In the canonical overcomplete representation (3), each element of any
such µJ is either zero or one. These integral vertices, denoted by µint, are drawn with black circles
in Figure 6(a). It is straightforward to show that each such µJ is also a vertex of LOCAL(G).
However, for graphs with cycles, LOCAL(G) includes additional fractional vertices that lie strictly
outside of MARG(G), and that are drawn in gray circles in Figure 6(a).

Since LOCAL(G) is also a polytope, the optimum of the LP relaxation (28) will be attained at
a vertex (possibly more than one) of LOCAL(G). In geometrical terms, the cost vector θ̄ specifies
a direction. The linear program can be solved by translating the hyperplane with normal θ̄ until
it is tangent to the constraint set. Any vertex involved in the tangency, which need not be unique
in general, corresponds to an optimizing point. This geometric construction is illustrated for two
possible cost vectors in panels (b) and (c) of Figure 6.

Therefore, solving the LP relaxation using LOCAL(G) as an outer bound on MARG(G) can
have one of two possible outcomes:

14



LOCAL(G)

MARG(G)
µfrac

µint
θ̄1

MARG(G)

θ̄2

MARG(G)

(a) (b) (c)
Figure 6. (a) The constraint set LOCAL(G) is an outer bound on the exact marginal polytope. Its
vertex set includes all the integral vertices of MARG(G), which are in one-to-one correspondence with
optimal solutions of the integer program. It also includes additional fractional vertices, which are not
vertices of MARG(G). (b)– (c) Solving a LP with cost vector θ̄ entails translating a hyperplane with
normal θ̄ until it is tangent to the constraint set LOCAL(G). In (b), the point of tangency occurs at
a unique integral vertex. In (c), the tangency occurs at a fractional vertex of LOCAL(G) that lies
outside of MARG(G).

(i) First, suppose that the optimum is attained at a vertex of LOCAL(G) which is also a vertex
of MARG(G). The optimum may occur at a unique integral vertex, as illustrated in panel
(b), or at multiple integral vertices (not illustrated here). In this case, both the dual LP
relaxation (28), and hence also the primal version in equation (21), are tight. As observed
previously, vertices of MARG(G) are in one-to-one correspondence with configurations J ∈
X n. Therefore, in this case, we can recover an optimal MAP configuration for the original
problem, which is consistent with Proposition 1.

(ii) Alternatively, the optimum is attained only outside the original marginal polytope MARG(G)
at a fractional vertex of LOCAL(G), as illustrated in panel (d). In this case, the relaxation
must be loose, so that Proposition 1 asserts that it is impossible to find a configuration that
is optimal for all tree-structured problems.

Consequently, whether or not the tree agreement condition of Proposition 1 can be satisfied corre-
sponds precisely to the distinction between integral and fractional vertices in the LP relaxation (28).

Example 3 (Integral versus fractional vertices). In order to demonstrate explicitly the dis-
tinction between fractional and integral vertices, we now consider a simple example — namely, a
binary problem x ∈ {0, 1}3 defined the 3-node cycle illustrated in Figure 7. Consider the parameter
vector θ̄ with components defined as follows:

θ̄s =
[
θ̄s;0 θ̄s;1

]
:=

[
0 0

] ∀ s, θ̄st =
[
θ̄st;00 θ̄st;01

θ̄st;10 θ̄st;11

]
:=

[
0 −β
−β 0

]
∀ (s, t). (30)

Suppose first that β is positive — say β = 1 as illustrated in Figure 7(a). By construction of θ̄,
we have 〈θ̄, τ〉 ≤ 0 for all τ ∈ LOCAL(G). This inequality is tight when τ is either the vertex µ0

corresponding to the configuration [0 0 0], or its counterpart µ1 corresponding to [1 1 1]. In fact,
both of these configurations are MAP-optimal for the original problem, so that we conclude that
the LP relaxation (28) is tight (i.e., we can achieve tree agreement).

15



1

2

3

[
0 −1
−1 0
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[
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]
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]
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[
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]

[
0 1
1 0

]

[
0 1
1 0

]

(a) (b)

Figure 7. Failure of tree agreement. (a) Specification of parameter vector θ̄. (b) Case β > 0 for
which both [0 0 0] and [1 1 1] are MAP-optimal configurations. The relaxation (28) is tight in this
case. (c) Case β < 0 for which the relaxation fails.

On the other hand, suppose that β < 0; for concreteness, say β = −1, as illustrated in Fig-
ure 7(c). This choice of θ̄ encourages all pairs of configurations (xs, xt) to be distinct (i.e., xs 6= xt).
However, in going around the cycle, there must hold xs = xt for at least one pair. Therefore, the
set of optimal configurations consists of [1 0 1], and the other five permutations thereof. (I.e., all
configurations except [1 1 1] and [0 0 0] are optimal). The value of any such optimizing configu-
ration — i.e., maxµ∈MARG(G)〈θ̄, µ〉 — will be −2β > 0, corresponding to the fact that two of the
three pairs are distinct.

However, with reference to the relaxed polytope LOCAL(G), a larger value of 〈θ̄, τ〉 can be
attained. We begin by observing that 〈θ̄, τ〉 ≤ −3β for all τ ∈ LOCAL(G). In fact, equality can
be achieved in this inequality by the following pseudomarginal:

τs =
[
τs;0 τs;1

]
:=

[
0.5 0.5

] ∀ s, τst =
[
τst;00 τst;01

τst;10 τst;11

]
:=

[
0 0.5

0.5 0

]
∀ (s, t). (31)

Overall, we have shown that maxτ∈LOCAL(G)〈θ̄, τ〉 = −3β > −2β = maxµ∈MARG(G)〈θ̄, µ〉,
which establishes that the relaxation (28) is loose for this particular problem. Moreover, the
pseudomarginal vector τ defined in equation (31) corresponds to a fractional vertex of LOCAL(G),
so that we are in the geometric setting of Figure 6(c). ♦

5 Tree-reweighted message-passing algorithms

The main result of the preceding section is that the problem of finding tight upper bounds, as
formulated in equation (26), is equivalent to solving the relaxed linear program (28) over the
constraint set LOCAL(G). A key property of this constraint set is that it is defined by a number
of constraints that is at most quadratic in the number of nodes n. Solving an LP over LOCAL(G),
then, is certainly feasible by various generic methods, including the simplex algorithm [e.g., 7].
It is also of interest to develop algorithms that exploit the graphical structure intrinsic to the
problem. Accordingly, this section is devoted to the development of iterative algorithms with this
property. An interesting property of the iterative methods developed here is that when applied
to a tree-structured graph, they all reduce to the ordinary max-product algorithm [22, 34]. For
graphs with cycles, in contrast, they differ from the ordinary max-product algorithm in critical
ways. Ultimately, we connect fixed points of these iterative algorithms to optimal dual solutions of
the LP relaxation (28).
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We begin with some background on the notion of max-marginals, and their utility in computing
exact MAP estimates of tree-structured distributions [2, 14, 15, 34]. We then define an analogous
notion of pseudo-max-marginals for graphs with cycles, which play a central role in the message-
passing algorithms that we develop subsequently.

5.1 Max-marginals for tree-distributions

Although the notion of max-marginal can be defined for any distribution, of particular interest in
the current context are the max-marginals associated with a distribution p(x; θ(T )) that is Markov
with respect to some tree T = (V, E(T )). For each s ∈ V and j ∈ Xs, the associated single node
max-marginal is defined by a maximization over all other nodes in the graph

νs;j := κs max
{x | xs=j}

p(x; θ(T )). (32)

Here κs > 0 is some normalization constant, included for convenience, that is independent of
j but can vary from node to node. Consequently, the max-marginal νs;j is proportional to the
probability of the most likely configuration under the constraint xs = j. Note that νs;j is obtained by
maximizing over the random variables at all nodes t 6= s, whence the terminology “max-marginal”.
For each edge (s, t), the joint pairwise max-marginal is defined in an analogous manner:

νst;jk := κst max
{x | (xs,xt)=(j,k)}

p(x; θ(T )). (33)

Once again, the quantity κst is a positive normalization constant that can vary from edge to edge
but does not depend on (j, k).

It is convenient to represent all the values {νs;j , j ∈ Xs} associated with a given node, and the
values {νst;jk, (j, k) ∈ Xs ×Xt} associated with a given edge in the functional form:

νs(xs) :=
∑
j∈Xs

νs;jδj(xs), νst(xs, xt) :=
∑

(j,k)∈Xs×Xt

νst;jkδj(xs)δk(xt). (34)

It is well-known [14] that any tree-structured distribution p(x; θ(T )) can be factorized in terms
of its max-marginals as follows:

p(x; θ(T )) ∝
∏
s∈V

νs(xs)
∏

(s,t)∈E(T )

νst(xs, xt)
νs(xs)νt(xt)

. (35)

This factorization, which is entirely analogous to the more familiar one in terms of (sum)-marginals,
is a special case of the more general junction tree decomposition [15, 14]. Moreover, it can be
shown [15, 34] that the ordinary max-product (min-sum) algorithm computes this max-marginal
factorization. The fact that this factorization can be computed in a straightforward manner for
any tree is exploited in the algorithms that we develop in the sequel.

The max-marginal factorization (35) yields a local criterion for assessing the validity of tree
max-marginals. The following lemma provides a precise statement:

Lemma 3. A collection {νs, νst} are valid max-marginals for a tree if and only if the edgewise
consistency condition

νs(xs) = κ max
x′

t∈Xt

νst(xs, x
′
t) (36)

holds5 for every edge (s, t) ∈ E(T ).
5Here κ is a positive constant that depends on both the edge, and the variable over which the maximization takes

place.
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Proof. Necessity of the edge consistency is clear. The sufficiency can be established by an inductive
argument in which successive nodes are stripped from the tree by local maximization; see [15, 34]
for further details.

The max-marginal representation (35) allows the global problem of MAP estimation to be
solved by performing a set of local maximization operations. In particular, suppose that the
configuration x∗ belongs to OPT(θ(T )), meaning that is MAP-optimal for p(x; θ(T )). For a tree,
such configurations are completely characterized by local optimality conditions with respect to the
max-marginals, as summarized in the following:

Lemma 4 (Local optimality). Let {νs, νst} be a valid set of max-marginals for a tree-structured
graph. Then a configuration x∗ belongs to OPT(θ(T )) if and only if the following local optimality
conditions hold:

x∗s ∈ arg max
xs

νs(xs) ∀ s, (37a)

(x∗s, x
∗
t ) ∈ arg max

xs,xt

νst(xs, xt) ∀ (s, t) (37b)

Proof. The necessity of the conditions in equation (37) is clear. To establish sufficiency, we follow
a dynamic-programming procedure. Any tree can be rooted at a particular node r ∈ V , and all
edges can be directed from parent to child (s → t). To find a configuration x∗ ∈ OPT(θ(T )),
begin by choosing an element x∗r ∈ arg maxxr νr(xr). Then proceed recursively down the tree, from
parent s to child t, at each step choosing the child configuration x∗t from arg maxxt νst(x∗s, xt). By
construction, the configuration x∗ so defined is MAP-optimal; see [15, 34] for further details.

A particularly simple condition under which the local optimality conditions (37) hold is when for
each s ∈ V , the max-marginal νs has a unique optimum x∗s. In this case, the MAP configuration x∗

is unique with elements x∗s = arg maxxs νs(xs) that are computed easily by maximizing each single
node max-marginal. If this uniqueness condition does not hold, then more than one configuration
is MAP-optimal for p(x; θ̄). In this case, maximizing each single node max-marginal is no longer
sufficient [34], and the dynamic-programming procedure described in the proof of Lemma 4 must
be used.

5.2 Iterative algorithms

We now turn to the development of iterative algorithms for a graph G = (V, E) that contains cycles.
We begin with a high-level overview of the concepts and objectives, before proceeding to a precise
description.

5.2.1 High level view

The notion of max-marginal is not limited to distributions defined by tree-structured graphs, but
can also be defined for graphs with cycles. Indeed, if we were able to compute the exact max-
marginals of p(x; θ̄) and each single node max-marginal had a unique optimum, then the MAP
estimation problem could be solved by local optimizations.6 However, computing exact max-
marginals for a distribution on a general graph with cycles is an intractable task. Therefore, it is
again necessary to relax our requirements.

The basic idea, then, is to consider a vector of so-called pseudo-max-marginals ν := {νs, νst},
the properties of which are to be defined shortly. The qualifier “pseudo” reflects the fact that these

6If a subset of the single node max-marginals had multiple optima, the situation would be more complicated.
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quantities no longer have an interpretation as exact max-marginals, but instead represent approx-
imations to max-marginals on the graph with cycles. For a given distribution ρ over the spanning
trees of the graph G and a tree T for which ρ(T ) > 0, consider the subset ν(T ), corresponding to
those elements of ν associated with T — i.e.,

ν(T ) := {νs, s ∈ V } ∪ {νst, (s, t) ∈ E(T )}. (38)

We think of ν(T ) as implicitly specifying a tree-structured exponential parameter via the fac-
torization (35), i.e.:

ν(T ) ←→ θ(T ), ∀ T ∈ supp(ρ), (39)

which in turn implies that ν is associated with a collection of tree-structured parameters — viz.:

ν ←→ θ := {θ(T ) | T ∈ supp(ρ)}. (40)

Now suppose that given ρ, we have a vector ν that satisfies the following properties:

(a) The vector ν specifies a vector θ ∈ Aρ(θ̄), meaning that θ is a ρ-reparameterization of the
original distribution.

(b) For all trees T ∈ supp(ρ), the vector ν(T ) consists of exact max-marginals for p(x; θ(T )); we
refer to this condition as tree consistency.

Our goal is to iteratively adjust the elements of ν — and hence, implicitly, θ as well — such that
the ρ-reparameterization condition always holds, and the tree consistency condition is achieved
upon convergence. In particular, we provide algorithms such that any fixed point ν∗ satisfies both
conditions (a) and (b).

The ultimate goal is to use ν∗ to obtain an MAP configuration for the target distribution p(x; θ̄).
The following condition turns out to be critical in determining whether or not ν∗ is useful for this
purpose:

Optimum specification: The pseudo-max-marginals {ν∗s , ν∗st} satisfy the optimum specification
(OS) criterion if there exists at least one configuration x∗ that satisfies the local optimality
conditions (37) for every vertex s ∈ V and edge (s, t) ∈ E on the graph with cycles.

Note that the OS criterion always holds for any set of exact max-marginals on any graph. For the
pseudo-max-marginals updated by the message-passing algorithms, in contrast, the OS criterion is
no longer guaranteed to hold, as we illustrate in Example 4 to follow.

In the sequel, we establish that when ν∗ satisfies the OS criterion with respect to some config-
uration x∗, then any such x∗ must be MAP-optimal for the target distribution. In contrast, when
the OS criterion is not satisfied, the pseudo-max-marginals {ν∗s , ν∗st} do not specify a MAP-optimal
configuration, as can be seen by a continuation of Example 3.

Example 4 (Failure of the OS criterion). Consider the parameter vector θ̄ defined in equa-
tion (30). Let the spanning tree distribution ρ place mass 1/3 on each of the three spanning trees
associated with a 3-node single cycle. With this choice, the edge appearances probabilities are
ρst = 2/3 for each edge. We now define a 2-vector log ν∗s of log pseudo-max-marginals associated
with node s, as well as a 2 × 2 matrix log ν∗st of log pseudo-max-marginals associated with edge
(s, t), in the following way:

log ν∗s :=
[
0 0

] ∀ s ∈ V, log ν∗st :=
1

(2/3)

[
0 −β
−β 0

]
∀ (s, t) ∈ E. (41)

19



For each of the three trees in supp(ρ), the associated vector ν∗(T ) of pseudo-max-marginals defines
a tree-structured exponential parameter θ∗(T ) as in equation (39). More specifically, we have

θ∗s(T ) = log ν∗s ∀ s ∈ V, θ∗st(T ) =

{
log ν∗st ∀ (s, t) ∈ E(T ),
0 otherwise

With this definition, it is straightforward to verify that
∑

T
1
3θ∗(T ) = θ̄, meaning that the ρ-

reparameterization condition holds. Moreover, for any β ∈ R, the edgewise consistency condition
maxx′

t
ν∗st(xs, xt) = κ ν∗s (xs) holds. Therefore, the pseudo-max-marginals are pairwise-consistent,

so that by Lemma 3, they are tree-consistent for all three spanning trees.
Now suppose that β > 0. In this case, the pseudo-max-marginal vector ν∗ does satisfy the OS

criterion. Indeed, both configurations [0 0 0] and [1 1 1] achieve argmaxxs
ν∗s (xs) for all vertices

s ∈ V , and argmaxxs,xt
ν∗st(xs, xt) for all edges (s, t) ∈ E. This finding is consistent with Example 3,

where we demonstrated that both configurations are MAP-optimal for the original problem, and
that the LP relaxation (28) is tight.

Conversely, suppose that β < 0. In this case, the requirement that x∗ belong to the set
argmaxxs,xt

ν∗st(xs, xt) for all three edges means that x∗s 6= x∗t for all three pairs. Since this condition
cannot be met, the pseudo-max-marginal fails the OS criterion for β < 0. Again, this is consistent
with Example 3, where we found that for β < 0, the optimum of the LP relaxation (28) was attained
only at a fractional vertex. ♦

5.2.2 Direct updating of pseudo-max-marginals

Our first algorithm is based on updating a collection of pseudo-max-marginals {νs, νst} for a graph
with cycles such that ρ-reparameterization (condition (a)) holds at every iteration, and tree con-
sistency (condition (b)) is satisfied upon convergence. At each iteration n = 0, 1, 2, . . ., associated
with each node s ∈ V is a single node pseudo-max-marginal νn

s , and with each edge (s, t) ∈ E is
a joint pairwise pseudo-max-marginal νn

st. Suppose that for each tree T in the support of ρ, we
use these pseudo-max-marginals {νn

s , νn
st} to define a tree-structured exponential parameter θn(T )

via equation (35). More precisely, again using the functional notation as in equation (11), the
tree-structured parameter θn(T ) is defined in terms of (element-wise) logarithms of νn as follows:

θn
s (T )(xs) = log νn

s (xs) ∀ s ∈ V (42a)

θn
st(T )(xs, xt) =

{
log νn

st(xs,xt)
νn

s (xs)νn
t (xt)

if (s, t) ∈ E(T )

0 otherwise
(42b)

The general idea is to update the pseudo-max-marginals iteratively, in such a way that the
ρ-reparameterization condition is maintained, and the tree consistency condition is satisfied upon
convergence. There are a number of ways in which such updates can be structured; here we
distinguish two broad classes of strategies: tree-based updates, and parallel edge-based updates.
Tree-based updates entail performing multiple iterations of updating on a fixed tree T ∈ supp(ρ),
updating only the the subcollection ν(T ) of pseudo-max-marginals associated with vertices and
edges in T until it is fully tree-consistent for this tree (i.e., so that the components of ν(T ) are
indeed max-marginals for the distribution p(x; θ(T ))). However, by focusing on this one tree, we
may be changing some of the νs and νst so that we do not have tree-consistency on one or more of
the other trees T ′ ∈ supp(ρ). Thus, the next step entails updating the pseudo-max-marginals ν(T ′)
on one of the other trees and so on, until ultimately the full collection ν is consistent on every tree.
In contrast, the edge-based strategy involves updating the pseudo-max-marginal νst on each edge,
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as well as the associated single node max-marginals νs and νt, in parallel. This edgewise strategy
is motivated by Lemma 3, which guarantees that ν is consistent on every tree of the graph if and
only if the edge consistency condition

max
x′

t∈Xt

νst(xs, x
′
t) = κ νs(xs) (43)

holds for every edge (s, t) of the graph with cycles.
It should be noted that tree-based updates are computationally feasible only when the support

of the spanning tree distribution ρ consists of a manageable number of trees. When applicable,
however, there can be important practical benefits to tree-based updates, including more rapid
convergence as well as the possibility of determining a MAP-optimal configuration prior to conver-
gence. We describe tree-based updates and their properties in more detail in Appendix C.

Here we focus on edge-based updates, due their simplicity and close link to the ordinary max-
product algorithm that will be explored in the following section. The edge-based reparameterization
algorithm takes the following form:

Algorithm 1 (Edge-based reparameterization updates).

1. Initialize the pseudo-max-marginals {ν0
s , ν0

st} in terms of the original exponential parameter
vector as follows:

ν0
s (xs) = κ exp

(
θ̄s(xs)

)
(44a)

ν0
st(xs, xt) = κ exp

( 1
ρst

θ̄st(xs, xt) + θ̄t(xt) + θ̄s(xs)
)

(44b)

2. For iterations n = 0, 1, 2, . . ., update the pseudo-max-marginals as follows:

νn+1
s (xs) = κ νn

s (xs)
∏

t∈Γ(s)

[maxx′
t
νn

st(xs, x
′
t)

νn
s (xs)

]ρst

(45a)

νn+1
st (xs, xt) = κ

νn
st(xs, xt)

maxx′
t
νn

st(xs, x′t) maxx′
s
νn

st(x′s, xt)
νn+1

s (xs)νn+1
t (xt) (45b)

Remarks: (a) Each scalar ρst appearing equations (44b) and (45a) is the edge appearance prob-
ability of edge (s, t) induced by the spanning tree distribution ρ, as defined in Section 3.1.
(b) This edge-based reparameterization algorithm is actually closely related to a reparameteriza-
tion form of the ordinary max-product algorithm [34]. In fact, if ρst = 1 for all edges (s, t) ∈ E,
then the update (45) are exactly equivalent to a reparameterization form of the usual max-product
updates. We will see this equivalence in an alternative form in our subsequent presentation of
explicit message-passing updates.

The following lemmas summarize the key properties of the Algorithm 1. We begin by claiming
that all iterates of this algorithm specify a ρ-reparameterization:
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Lemma 5 (ρ-reparameterization). At each iteration n = 0, 1, 2, . . ., the collection of tree-
structured parameter vectors θn = {θn(T )}, as specified by the pseudo-max-marginals {νn

s , νn
st}

via equation (42), satisfies the ρ-reparameterization condition.

Proof. Using the initialization (44) and equation (42), for each tree T ∈ supp(ρ), we have θ0
st(T ) = 1

ρst
θ̄st

for all edges (s, t) ∈ E(T ), and θ0
s(T ) = θ̄s for all vertices s ∈ V . Thus

∑
T

ρ(T )
[ ∑

s∈V

θ0
s(T ) +

∑
(s,t)∈E(T )

θ0
st(T )

]
=

∑
T

ρ(T )
[ ∑

s∈V

θ̄s +
∑

(s,t)∈E(T )

1
ρst

θ̄st

]
=

∑
s∈V

θ̄s +
∑

(s,t)∈E

θ̄st,

so that ρ-reparameterization holds for n = 0. We now proceed inductively: supposing that it holds
for iteration n, we prove that it also holds for iteration n + 1. Using the update equation (45) and
equation (42), we find that the weighted sum

∑
T ρ(T )θn+1(T )(x) is equal to

∑
T

ρ(T )
[ ∑

s∈V

{
log νn

s (xs)+
∑

t∈Γ(s)

ρst log
maxx′

t
νn

st(xs, x
′
t)

νn
s (xs)

}
+

∑
(s,t)∈E(T )

log
νn

st(xs, xt)
max

x′
t

νn
st(xs, x′t) max

x′
s

νn
st(x′s, xt)

]
.

Some algebraic re-arrangement leads to an equivalent expression∑
s∈V

log νn
s (xs) +

∑
(s,t)∈E

log
νn

st(xs, xt)
νn

s (xs)νn
t (xt)

,

which, using equation (42), is seen to be equal to
∑

T ρ(T )θn(T )(x) (up to an additive constant
independent of x). Thus, the statement follows by the induction hypothesis.

Next we characterize the fixed points of the updates in step 2:

Lemma 6. Any fixed point ν∗ of the updates (45) satisfies the tree consistency condition (b).

Proof. At a fixed point, we can substitute ν∗ = νn = νn+1 at all places in the updates. Doing so
in equation (45b) and cancelling out common terms leads to the relation

ν∗st(xs)
maxx′

t
ν∗st(xs, x′t)

ν∗t (xt)
maxx′

s
ν∗st(x′s, xt)

= κ ∀ (xs, xt),

from which the edgewise consistency condition (43) follows for each edge (s, t) ∈ E. The tree
consistency condition then follows from Lemma 3.

5.2.3 Message-passing updates

The reparameterization updates of Algorithm 1 can also be described in terms of explicit message-
passing operations. In this formulation, the pseudo-max-marginals depend on the original expo-
nential parameter vector θ̄, as well as a set of auxiliary quantities Mst(·) associated with the edges
of G. For each edge (s, t) ∈ E, Mst : Xt → R+ is a function from the state space Xt to the positive
reals. The function Mst(·) represents information that is relayed from node s to node t, so that we
refer to it as a “message”. The resulting algorithm is an alternative but equivalent implementation
of the reparameterization updates of Algorithm 1.

22



More explicitly, let us define pseudo-max-marginals {νs, νst} in terms of θ̄ and a given set of
messages M = {Mst} as follows:

νs(xs) := exp
(
θ̄s(xs)

) ∏
v∈Γ(s)

[
Mvs(xs)

]ρvs (46a)

νst(xs, xt) := exp
( 1
ρst

θ̄st(xs, xt) + θ̄s(xs) + θ̄t(xt)
) ∏

v∈Γ(s)\t
[
Mvs(xs)

]ρvs[
Mts(xs)

](1−ρts)

∏
v∈Γ(t)\s

[
Mvt(xt)

]ρvt[
Mst(xt)

](1−ρst)
.(46b)

As before, these pseudo-max-marginals can be used to define a collection of tree-structured expo-
nential parameters θ = {θ(T )} via equation (42). First, we claim that for any choice of messages,
the set of tree-structured parameters so defined specifies a ρ-reparameterization:

Lemma 7. For any choice of messages, the collection {θ(T )} is a ρ-reparameterization of θ̄.

Proof. We use the definition (42) of θ(T ) in terms of {νs, νst} to write:

∑
T

ρ(T )θ(T )(x) =
∑
T

ρ(T )
[ ∑

s∈V

log νs(xs) +
∑

(s,t)∈E(T )

log
νst(xs, xt)

νs(xs)νt(xt)

]
=

∑
s∈V

log νs(xs) +
∑

(s,t)∈E

ρst log
νst(xs, xt)

νs(xs)νt(xt)
, (47)

where we have expanded out the expectation over ρ in the second line. Using the definition (46)
of νs and νst, we have

ρst log
νst(xs, xt)

νs(xs)νt(xt)
= θ̄st(xs, xt)− ρst log Mst(xt)− ρst log Mts(xs),

As a consequence, each weighted log message ρst log Mts(xs) appears twice in equation (47): once
in the term log νs(xs) with a plus sign, and once in the term log νst(xs, xt)/νs(xs)νt(xt) with a
negative sign. Therefore, the messages all cancel in the summation. This establishes that for all
x ∈ X n, we have

∑
T ρ(T )θ(T )(x) =

∑
s∈V θ̄s(xs) +

∑
(s,t)∈E θ̄st(xs, xt).

The following set of message-passing updates are designed to find a collection of pseudo-max-
marginals {νs, νst} that satisfy the tree consistency condition (b).

Algorithm 2 (Parallel tree-reweighted max-product).

1. Initialize the messages M0 = {M0
st} with arbitrary positive real numbers.

2. For iterations n = 0, 1, 2, . . ., update the messages as follows:

Mn+1
ts (xs) = κ max

x′
t∈Xt

{
exp

(
1

ρst
θ̄st(xs, x

′
t) + θ̄t(x′t)

) ∏
v∈Γ(t)\s

[
Mn

vt(x
′
t)

]ρvt[
Mn

st(x
′
t)

](1−ρst)

}
(48)
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Remarks: (a) The message-passing updates of Algorithm 2 represent an alternative way in which
to implement the reparameterization updates of Algorithm 1. See Wainwright et al. [35] for further
details of this equivalence between message-passing and reparameterization in the context of the
sum-product algorithm.
(b) The message update equation (48) is closely related to the standard [22, 34] max-product
updates, which correspond to taking ρst = 1 for every edge. On one hand, if the graph G is
actually a tree, any vector in the spanning tree polytope must necessarily satisfy ρst = 1 for every
edge (s, t) ∈ E, so that Algorithm 2 reduces to the ordinary max-product update. However, if
G has cycles, then it is impossible to have ρst = 1 for every edge (s, t) ∈ E, so that the updates
in equation (48) differ from the ordinary max-product updates in three critical ways. First, the
exponential parameters θ̄st(xs, xt) are scaled by the (inverse of the) edge appearance probability
1/ρst ≥ 1. Secondly, for each neighbor v ∈ Γ(t)\s, the incoming message Mvt is exponentiated
by the corresponding edge appearance probability ρvt ≤ 1. Lastly, the update of message Mts —
that is, from t to s along edge (s, t) — depends on the reverse direction message Mst from s to t
along the same edge. Despite these features, the messages can still be updated in an asynchronous
manner, as in ordinary max-product [22, 34]. The tree-reweighted updates are related but distinct
from the attenuated max-product updates proposed by Frey and Koetter [23]. A feature common
to both algorithms is the re-weighting of messages; however, unlike the tree-reweighted update (48),
the attenuated max-product update in [23] of the message from t to s does not involve the message
in the reverse direction (i.e., from s to t).

By construction, any fixed point of Algorithm 2 specifies a set of tree-consistent pseudo-max-
marginals, as summarized in the following:

Lemma 8. For any fixed point M∗ of the updates (48), the associated pseudo-max-marginals ν∗

defined as in equation (46a) and (46b) satisfy the tree-consistency condition.

Proof. By Lemma 3, it suffices to verify that the edge consistency condition (43) holds for all edges
(s, t) ∈ E. Using the definition (46) of ν∗s and ν∗st, the edge consistency condition (43) is equivalent
to:

exp
(
θ̄s(xs)

) ∏
v∈Γ(s)

[
Mvs(xs)

]ρvs =

κ max
x′

t∈Xt

{
exp

(
θ̄st(xs, x

′
t) + θ̄s(xs) + θ̄t(x′t)

) ∏
v∈Γ(s)\t

[
Mvs(xs)

]ρvs[
Mts(xs)

](1−ρts)

∏
v∈Γ(t)\s

[
Mvt(x′t)

]ρvt[
Mst(x′t)

](1−ρst)

}
.

Pulling all terms involving Mts(xs) to the LHS, and canceling out all remaining common terms
yields the message update equation (48).

5.3 Analysis of algorithms

We now consider various questions associated with Algorithms 1 and 2, including existence of fixed
points, convergence of the updates, and the relation of fixed points to the LP relaxation (28).
As noted previously, the two algorithms (reparameterization and message-passing) represent al-
ternative implementations of the same updates, and hence are equivalent in terms of their fixed
point and convergence properties. For the purposes of the analysis given here, we focus on the
message-passing updates given in Algorithm 2.

With reference to the first question, in related work [34], we proved the existence of fixed
points for the ordinary max-product algorithm when applied to any strictly positive distribution
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defined on an arbitrary graph. The same proof can be adapted to show that the message-update
equation (48) has at least one fixed point M∗ under these same conditions. We do not yet have
sufficient conditions to guarantee convergence on graphs with cycles; however, in practice, we find
that the message updates (48) converge if suitably damped. In particular, we apply damping in
the logarithmic domain, so that messages are updated according to λ log Mnew

ts + (1− λ) log Mold
ts ,

where Mnew
ts is calculated in equation (48). Finally, the following theorem addresses the nature

of the fixed points, and in particular provides sufficient conditions for Algorithm 2 to yield exact
MAP estimates for the target distribution p(x; θ̄):

Theorem 2 (Exact MAP). Let M∗ be a fixed point of Algorithm 2, and suppose that the associ-
ated pseudo-max-marginals ν∗ satisfy the optimum specification (OS) criterion. Then the following
statements hold:

(a) Any configuration x∗ satisfying the local optimality conditions in the OS criterion is a MAP
configuration for p(x; θ̄).

(b) Let λ∗ = log M∗ be the logarithm of the fixed point M∗ taken element-wise. Then λ∗ is an
optimal solution to the dual of the LP relaxation (28) of Theorem 1.

Proof. (a) By Lemma 7, the pseudo-max-marginals ν∗ specify a ρ-reparameterization of p(x; θ̄).
Since the message vector M∗ defining ν∗ is a fixed point of the update equation (48), Lemma 8
guarantees that the tree consistency condition holds. By the optimum specification (OS) criterion,
we can find a configuration x∗ that is node and edgewise optimal for ν∗. By Lemma 4, the configu-
ration x∗ is optimal for every tree-structured distribution p(x; θ∗(T )). Thus, by Proposition 1, the
configuration x∗ is MAP-optimal for p(x; θ̄). Using the ρ-reparameterization condition and the OS
criterion, the value of this optimum is given by:

Φ∞(θ̄) =
∑
s∈V

max
xs

log ν∗s (xs) +
∑

(s,t)∈E

ρst log
maxxs,xt ν∗st(xs, xt)

maxxs ν∗s (xs) maxxt ν∗t (xt)
. (49)

(b) The proof involves showing that the vector λ∗ := log M∗, defined by the element-wise logarithm
of the message fixed point, is an optimal solution to a particular Lagrangian dual reformulation of
the LP relaxation (28). It is convenient to represent any pseudomarginal τ more compactly in the
functional form

τs(xs) :=
∑
j∈Xs

τs;jδj(xs), τst(xs, xt) :=
∑

(j,k)∈Xs×Xt

τst;jkδj(xs)δk(xt).

For each edge (s, t) and element xs ∈ Xs, define Cts(xs) := τs(xs) −
∑

x′
t∈Xt

τst(xs, x
′
t), and let

λts(xs) be a Lagrange multiplier associated with the constraint Cts(xs) = 0. We then consider the
Lagrangian

Lθ̄,ρ(τ, λ) := 〈τ, θ̄〉+
∑

(s,t)∈E

ρst

[ ∑
xs∈Xs

λts(xs)Cts(xs) +
∑

xt∈Xt

λst(xt)Cst(xt)
]
. (50)

We have rescaled the Lagrange multipliers by the edge appearance probabilities ρst > 0 so as to
make the connection to the messages in Algorithm 2 as explicit as possible. Indeed, let νs and
νst represent pseudo-max-marginals, defined as in equation (46), with the message M := exp(λ).
(Here the exponential is taken element-wise.) With the pseudo-max-marginals defined in this way,
the following lemma provides a more convenient form of the Lagrangian:
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Lemma 9. Let r be an arbitrary node of the graph, and suppose that every tree T ∈ supp(ρ) is
rooted at r, and the remaining edges are directed from parent-to-child (s → t). Then an equivalent
form of the Lagrangian (50) is Lθ̄,ρ(τ, λ) =

∑
T ρ(T )Fθ̄;ρ(τ, ν; T ), where

Fθ̄;ρ(τ, ν; T ) :=
∑
xr

τr(xr) log νr(xr) +
∑

(s→t)∈E(T )

∑
(xs,xt)

τst(xs, xt) log
νst(xs, xt)

νs(xs)
. (51)

Proof. See Appendix D.1.

Although the direction of any given edge may vary from tree to tree, this difference is not
important for our purposes. With this set-up, we define the dual function as the maximization
Qθ̄;ρ(λ) := maxτ∈S Lθ̄,ρ(τ, λ), over the constraint set

S := {τ | τ ≥ 0,
∑
xs

τs(xs) = 1,
∑
xs,xt

τst(xs, xt) = 1}.

Let M∗ be a fixed point of the update equation (48), such that the pseudo-max-marginals ν∗ satisfy
the OS criterion.

Lemma 10. The dual function evaluated at λ∗ := log M∗ is equal to:

Qθ̄;ρ(λ∗) =
∑
s∈V

log max
xs

ν∗s (xs) +
∑

(s,t)∈E

ρst log
maxxs,xt ν∗st(xs, xt)

maxxs ν∗s (xs)maxxt ν∗t (xt)
.

Proof. See Appendix D.2.

By comparison to equation (49), we see that the dual value Qθ̄;ρ(λ∗) is equal to the optimal
primal value, which implies that λ∗ ≡ log M∗ must be a dual-optimal solution [7].

For a general graph with cycles, we have not established that any fixed point of Algorithm 2 (i.e.,
one for which ν∗ does not satisfy the OS criterion) necessarily specifies a dual-optimal solution of
the LP relaxation. However, on a tree-structured graph, the tree-reweighted max-product updates
reduce to the ordinary max-product (min-sum) updates, and any fixed point ν∗ must satisfy the
OS criterion. In this case, we can use Theorem 2 to obtain the following corollary:

Corollary 2 (Ordinary max-product). For a tree-structured graph T , the ordinary max-product
algorithm is an iterative method for solving the dual of the exact LP representation of the MAP
problem:

max
x∈Xn

〈θ̄, φ(x)〉 = max
τ∈LOCAL(T )

〈θ̄, τ〉. (52)

Proof. By Lemma 1, the MAP problem maxx∈Xn〈θ̄, φ(x)〉 has the alternative LP representation
as maxτ∈MARG(T )〈θ̄, τ〉. By the junction tree theorem [14], we have MARG(T ) = LOCAL(T ) in
the tree case, so that equation (52) follows. For the case of a tree, the only valid choice of ρe is the
vector of all ones, so the tree-reweighted updates must be equivalent to the ordinary max-product
algorithm. The result then follows from Theorem 2.
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Remark: It is important to recall that the tree-reweighted max-product algorithm differs from
the ordinary max-product algorithm for non-trees. Indeed, the ordinary max-product algorithm —
when applied to a graph with cycles — does not satisfy a condition analogous to Theorem 2(a).
More precisely, it is possible to construct fixed points of the ordinary max-product algorithm that
satisfy the OS criterion, yet the associated configuration x∗ is not MAP-optimal. In contrast,
any configuration specified by the tree-reweighted max-product updates is guaranteed to be MAP-
optimal.

As proved in Corollaries 1 and 2, the techniques given here are always exact for tree-structured
graphs. For graphs with cycles, their performance — more specifically, whether or not an MAP
configuration can be obtained —- depends on both the graph structure, and the strength of the
parameter vector θ̄. It is thus of particular interest to note that we have found several applica-
tions in which the tree relaxation and iterative algorithms described here are quite useful. For
instance, we have applied the tree-reweighted max-product algorithm to a distributed data asso-
ciation problem involving multiple targets and sensors [13]. For the class of problem considered,
the tree-reweighted max-product algorithm converges, typically quite rapidly, to a provably MAP-
optimal data association. We have also applied these methods to decoding turbo-like and low
density parity check (LDPC) codes [18, 19]. In the context of decoding, the fractional vertices of
the polytope LOCAL(G) have a very concrete interpretation as pseudocodewords [e.g., 21, 26, 37].
The performance of LP decoding is superior to the ordinary max-product algorithm, and slightly
worse or comparable to the sum-product algorithm. An advantage of the methods given here, in
contrast to the more standard iterative algorithms, is that they either acknowledge a decoding
failure, or they output an MAP codeword accompanied by a guarantee of correctness. It remains
to explore further the range of problems for which the iterative algorithms and LP relaxations
described here are suitable.

6 Discussion

In this paper, we demonstrated the utility of convex combinations of tree-structured distributions
in upper bounding the value of the maximum a posteriori (MAP) configuration on a Markov
random field (MRF) on a graph with cycles. A key property is that this upper bound is met with
equality if and only if the collection of tree-structured distributions shares a common optimum.
Moreover, when the upper bound is tight, then then an MAP configuration can be obtained for
the original MRF on the graph with cycles simply by examining the optima of the tree-structured
distributions. This observation motivated two approaches for attempting to obtain tight upper
bounds, and hence MAP configurations. First of all, we proved that the Lagrangian dual of the
problem is equivalent to a linear programming (LP) relaxation, wherein the marginal polytope
associated with the original MRF is replaced with a looser constraint set formed by tree-based
consistency conditions. Interestingly, this constraint set is equivalent to the constraint set in the
Bethe variational formulation of the sum-product algorithm [38]; in fact, the LP relaxation itself can
be obtained by taking a suitable limit of the “convexified” Bethe variational problem analyzed in
our previous work [33, 36]. Second, we developed a family of tree-reweighted max product algorithms
that reparameterize a collection of tree-structured distributions in terms of a common set of pseudo-
max-marginals on the nodes and edges of the graph with cycles. When it is possible to find
a configuration that is locally optimal with respect to every single node and edge pseudo-max-
marginal, then the upper bound is tight, and the MAP configuration can be obtained. Under this
condition, we proved that fixed points of these message-passing algorithms specify dual-optimal
solutions to the LP relaxation. A corollary of this analysis is that the ordinary max-product
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algorithm, when applied to trees, is solving the dual of an exact LP formulation of the MAP
estimation problem.

Finally, in cases in which the methods described here do not yield MAP configurations, it is
natural to consider strengthening the relaxation by forming clusters of random variables, as in
the Kikuchi approximations described by Yedidia et al. [38]. In the context of this paper, this
avenue amounts to taking convex combinations of hypertrees, which (roughly speaking) correspond
to trees defined on clusters of nodes.7 Such convex combinations of hypertrees lead, in the dual
reformulation, to a hierarchy of progressively tighter LP relaxations, ordered in terms of the size
of clusters used to form the hypertrees. On the message-passing side, it is also possible to develop
hypertree-reweighted forms of generalizations of the max-product algorithm.

Acknowledgments: We thank Jon Feldman and David Karger for helpful discussions.

A Proof of Lemma 2

By definition, we have Φ∞(θ(T )) := maxx∈Xn〈θ(T ), φ(x)〉. We re-write this function in the follow-
ing way:

Φ∞(θ(T ))
(a)
= max

τ∈LOCAL(G)
〈θ(T ), τ〉 (b)

= max
τ∈LOCAL(G;T )

〈θ(T ), τ〉

where equality (a) follows from Lemma 1, and equality (b) follows because θ(T )α = 0 for all
α /∈ I(T ). In this way, we recognize Φ∞(θ(T )) as the support function of the set LOCAL(G; T ).
Hence, by a standard result in convex analysis [25], the conjugate dual is the indicator function of
LOCAL(G; T ), as specified in equation (30).

For the sake of self-containment, we provide an explicit proof here. If τ belongs to LOCAL(G; T ),
then 〈θ(T ), τ〉 − Φ∞(θ(T )) ≤ 0 holds for all θ(T ) ∈ E(T ), with equality for θ(T ) = 0. From this
relation, we conclude that

sup
θ(T )∈E(T )

〈θ(T ), τ〉 − Φ∞(θ(T )) = 0

whenever τ ∈ LOCAL(G; T ).
On the other hand, if τ /∈ LOCAL(G; T ), then by the (strong) separating hyperplane the-

orem [25], there must exist some vector γ and constant β such that (i) 〈γ, µ〉 ≤ β for all
µ ∈ LOCAL(G; T ); and (ii) 〈γ, τ〉 > β. Since conditions (i) and (ii) do not depend on elements
γα with α /∈ I(T ), we can take γ ≡ γ(T ) ∈ E(T ) without loss of generality. We then have

〈γ(T ), τ〉 − Φ∞(γ(T )) ≥ 〈γ(T ), τ〉 − β > 0. (53)

Note that conditions (i) and (ii) are preserved under scaling of both γ(T ) and β by a positive
number, so that can send the quantity (53) to positive infinity. We thus conclude that

sup
θ(T )∈E(T )

{〈θ(T ), τ〉 − Φ∞(θ(T ))
}

= +∞

whenever τ /∈ LOCAL(G; T ). This completes the proof of the lemma.

7See Wainwright et al. [35] for further details on hypertrees and their properties.
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B Binary quadratic programs

Consider the cost function associated with any pairwise binary problem:

∑
s∈V

1∑
j=0

θs;jδj(xs) +
∑

(s,t)∈E

1∑
j,k=0

θst;jkδj(xs)δk(xt).

Using the relations δ0(xs) = 1 − xs and δ1(xs) = xs, this cost function can be written in the
equivalent form ∑

s∈V

γsxs +
∑

(s,t)∈E

γstxsxt, (54)

where the elements of γ are specified in terms of θ̄ as follows:

γs = θ̄s;1 − θ̄s;0 +
∑

t∈Γ(s)

[
θ̄st;10 − θ̄st;00

]
γst = θ̄st;11 + θ̄st;00 − θ̄st;10 − θ̄st;01

With this form (54) of the problem, we can restrict attention to the local marginals qs := τs;1 for
each s ∈ V , and qst := τst;11 for each (s, t) ∈ E.

Proposition 2. In the binary case, problem (28) is equivalent to the following LP relaxation:

max
q

{ ∑
s∈V

γsqs +
∑

(s,t)∈E

γstqst

}
s. t 1 + qst − qs − qt ≥ 0

qs − qst ≥ 0
qt − qst ≥ 0

qst ≥ 0.

Proof. We can specify the single node pseudomarginal τs and the joint pseudomarginal τst in terms
of {qs, qt, qst} as follows:

τs =
[
(1− qs) qs

]
, τst =

[
(1 + qst − qs − qt) (qt − qst)

(qs − qst) qst

]
. (55)

It is clear that with τs and τst defined in this way, all of the normalization and marginalization
constraints involved in LOCAL(G) are satisfied. The remaining constraints are the non-negativity
constraints. It suffices to ensure that the four elements of the matrix τst are non-negative, which
are the constraints given in the statement of the proposition.

The relaxation for 0-1 quadratic programs given in Proposition 2 has been proposed and studied
by various authors [e.g., 11, 24]. As a particular case of Corollary 1, we conclude that the relaxation
is exact for any tree-structured graph.

C Tree-based updates

This appendix provides a detailed description of tree-based updates. In this scheme, each iteration
involves multiple rounds of message-passing on each tree T in the support of ρ. More specifically,
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the computational engine used within each iteration is the ordinary max-product algorithm, applied
as an exact technique to compute max-marginals for each tree-structured distribution.

At any iteration n, we let θn(T ) denote a set of exponential parameters for the tree T . To
be clear, the notation θn(T ) used in this appendix differs slightly from its use in the main text.
In particular, unlike in the main text, we can have θn

α(T ) 6= θn
α(T ′) for distinct trees T = T ′

at immediate iterations, although upon convergence this equality will hold. Each step of the
algorithm will involve computing, for every tree T ∈ supp(ρ), the max-marginals νn(T ), associated
with the tree-structured distribution p(x; θ(T )). (Once again, unlike the main text, we need not
have νn

α(T ) = νn
α(T ′) for distinct trees T = T ′.)

Overall, the tree-based updates take the following form:

Algorithm 3 (Tree-based updates).

1. For each spanning tree T ∈ supp(ρ), initialize θ0(T ) via

θ0
s(T ) = θ̄s ∀ s ∈ V,

θ0
st(T ) =

1
ρst

θ̄α ∀ (s, t) ∈ E(T ), θ0
st(T ) = 0 ∀ (s, t) ∈ E\E(T ).

2. For iterations n = 0, 1, 2, . . ., do the following:

(a) For each tree T ∈ supp(ρ), apply the ordinary max-product algorithm to compute the
max-marginals νn(T ) corresponding to the tree-structured distribution p(x; θn(T )).

(b) Check if the tree distributions share a common optimizing configuration (i.e., if ∩T OPT(θn(T ))
is non-empty).

(i) If yes, output any shared configuration and terminate.
(ii) If not, check to see whether or not the following agreement condition holds:

νs(T ) = νs(T ′) ∀ s ∈ V, ∀T, T ′ ∈ supp(ρ), (56a)
νst(T ) = νst(T ′) ∀ T, T ′ ∈ supp(ρ) s. t (s, t) ∈ E(T ) ∩ E(T ′). (56b)

If this agreement of all max-marginals holds, then terminate. Otherwise, form a
new exponential parameter θ̃ as follows:

θ̃n+1
s =

∑
T

ρ(T ) log νn
s (T ) ∀ s ∈ V (57a)

θ̃n+1
st =

∑
T3(s,t)

ρ(T ) log
νn

st(T )
νn

s (T )νn
t (T )

∀ (s, t) ∈ E (57b)

Define θn+1(T ) on each tree T ∈ supp(ρ) as in Step 1 with θ̄ ≡ θ̃, and proceed to
Step 2(a).

Termination: Observe that there are two possible ways in which Algorithm 3 can terminate. On
one hand, the algorithm stops if in Step 2(b)(i), a collection of tree-structured distributions is found
that all share a common optimizing configuration. Herein lies the possibility of finite termination,
since there is no need to wait until the values of the tree max-marginals νn(T ) all agree for every
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tree. Otherwise, the algorithm terminates in Step 2(b)(ii) if the max-marginals for each tree all
agree with one another, as stipulated by equation (56).

A key property of the updates in Algorithm 3 is that they satisfy the ρ-reparameterization
condition:

Lemma 11. For any iteration n, the tree-structured parameters {θn(T )} of Algorithm 3 satisfy∑
T ρ(T )θn(T ) = θ̄.

Proof. The claim for n = 0 follows from directly the initialization in Step 1. In particular, we
clearly have

∑
T ρ(T )θ0

s(T ) = θ̄s for any node s ∈ V . For any edge (s, t) ∈ E, we compute:∑
T

ρ(T )θ0
st(T ) =

∑
T

ρ(T )
[ 1
ρst

θ̄st] = θ̄st.

To establish the claim for n + 1, we proceed by induction. By the claim just proved, it suffices to
show that θ̃, as defined in equation (57), defines the same distribution as θ̄.

Using the definition (57), we have

〈θ̃, φ(x)〉 =
∑
s∈V

∑
xs

θ̃s(xs) +
∑

(s,t)∈E

∑
xs,xt

θ̃st(xs, xt)

=
∑
s∈V

∑
xs

∑
T

ρ(T ) log νn
s (T )(xs) +

∑
(s,t)∈E

∑
xs,xt

∑
T3(s,t)

ρ(T ) log
νn

st(T )(xs, xt)
νn

s (T )(xs)νn
t (T )(xt)

=
∑
T

ρ(T )

{ ∑
s∈V

∑
xs

log νn
s (T )(xs) +

∑
(s,t)∈E(T )

∑
xs,xt

log
νn

st(T )(xs, xt)
νn

s (T )(xs)νn
t (T )(xt)

}
(58)

Recall that for each tree T , the quantities νn(T ) are the max-marginals associated with the dis-
tribution p(x; θ(T )). Using the fact (35) that the max-marginals specify a reparameterization of
p(x; θn(T )), each term within curly braces is simply equal (up to an additive constant independent
of x) to 〈θn(T ), φ(x)〉. Therefore, by the induction hypothesis, the RHS of equation (58) is equal
to 〈θ̄, φ(x)〉, so that the claim of the lemma follows.

On the basis of Lemma 11, it is straightforward to prove the analog of Theorem 2(a) for
Algorithm 3. More specifically, whenever it outputs a configuration, it must be an exact MAP
configuration for the original problem p(x; θ̄).

D Proof of Theorem 2

D.1 Proof of Lemma 9

We begin by re-expressing the Lagrangian (50) as follows:

Lθ̄,ρ(τ, λ) =
∑
T

ρ(T )

{ ∑
s∈V

∑
xs

τs(xs)
[
θ̄s(xs) +

∑
t∈Γ(s)

ρstλts(xs)
]

+
∑

(s,t)∈E(T )

[ ∑
xs,xt

τst(xs, xt)
[ θ̄st(xs, xt)

ρst
− λst(xt)− λts(xs)

]]}
.
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Let νs and νst be the pseudo-max-marginals defined by the messages M := exp(λ). Then we can
write

Lθ̄,ρ(τ, λ) =
∑
T

ρ(T )
{ ∑

s∈V

∑
xs

τs(xs) log νs(xs) +
∑

(s,t)∈E(T )

∑
(j,k)

τst(xs, xt) log
νst(xs, xt)

νs(xs)νt(xt)

}
︸ ︷︷ ︸

Fθ̄;ρ(τ, ν; T )

Consider the quantity Fθ̄;ρ(τ, ν; T ) for a fixed tree T . Let T be rooted at some vertex r ∈ V ,
and direct all the edges from child to parent s → t. Using the fact that

∑
xt

τst(xs, xt) = τs(xs) on
the constraint set, we can re-write Fθ̄;ρ(τ, ν; T ) as

Fθ̄;ρ(τ, ν; T ) =
∑
xr

τr(xr) log νr(xr) +
∑

(s→t)∈E(T )

∑
xs,xt

τst(xs, xt) log
νst(xs, xt)

νs(xs)
,

which proves the claim of Lemma 9.

D.2 Proof of Lemma 10

Since by assumption the pseudo-max-marginals ν∗ defined by M∗ = exp(λ∗) (with the exponential
defined element-wise) satisfy the optimum specification criterion, we can find a configuration x∗

that satisfies the local optimality conditions (37) for every node and edge on the full graph G.
Since the pseudo-max-marginals ν∗ are defined by a fixed point M∗ = exp(λ∗) (with the ex-

ponential defined element-wise) of the update equation (48), the pseudo-max-marginals must be
pairwise-consistent. More explicitly, for any edge (s, t) and xs ∈ Xs, the pairwise consistency con-
dition maxxt νst(xs, xt) = κs ν∗(xs) holds, where κs is a positive constant independent of xs. Using
this fact, we can write

max
xs,xt

log
ν∗st(xs, xt)

ν∗s (xs)
= max

xs

log
maxxt ν∗st(xs, xt)

ν∗s (xs)
= log κs. (59)

Moreover, since by assumption the pseudo-max-marginals ν∗ satisfy the optimum specification
criterion, we can find a configuration x∗ that satisfies the local optimality conditions (37) for every
node and edge on the full graph G. For this configuration, we have the equality

log
ν∗st(x∗s, x∗t )

ν∗s (xs)
= log

maxxt ν∗st(x∗s, xt)
ν∗s (xs)

= log κs = max
xs,xt

log
ν∗st(xs, xt)

ν∗s (xs)
, (60)

where the final equality follows from equation (59).
In conjunction with Lemma 9, equation (60) allows us to write the dual function at λ∗ as follows:

Qθ̄;ρ(λ∗) =
∑
T

ρ(T )
{

log νr(x∗r) +
∑

(s→t)∈E(T )

log
ν∗st(x∗s, x∗t )

ν∗s (x∗s)

}
=

∑
T

ρ(T )
{ ∑

s∈V

log ν∗s (x∗s) +
∑

(s,t)∈E(T )

log
ν∗st(x∗s, x∗t )

νs(x∗s)νt(x∗t )

}
=

∑
s∈V

log max
xs

ν∗s (xs) +
∑

(s,t)∈E

ρst log
maxxs,xt ν∗st(xs, xt)

maxxs ν∗s (xs)maxxt ν∗t (xt)
,

which completes the proof of the claim.
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