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Abstract

We examine a conditional scheduling model in which the deadlines of jobs are allowed to vary. We
explore variants of the basic model and locate the dividing line between NP-hard and polynomial-time
problems.

Suppose that an engineer needs to design one of two devices, either A or B. Each device will require nine
months of work. The due date of both A and B is in one year, but only one device will need to be completed.
However, which device will need to be built will not be known until six months from now. Building both
devices is clearly impossible, since the total amount of time required is 18 months. Instead, the engineer’s next
six months should be divided between A and B, with the remaining six months devoted exclusively to one or
the other, depending on the decision six months from now about which device to complete. In this example,
the scheduling strategy is easy enough to determine. In more complicated examples, it may be less clear how
to devise a strategy. What if the devices to be made are many, require unequal amounts of time, and have
unequal due dates? What if the decisions about which device to make occur at different times? What if some
devices require other devices to be already completed? This report presents generalizations and variants of
the engineer’s problem, and locates the dividing line between polynomial-time and computationally infeasible
variants.

1 Related work

The model we shall consider is closely related to the model of [Bar98a], which was further extended and
analyzed in [Bar98b, CETO01]. Our model generalizes these models in two respects. First, and most impor-
tantly, the models of [Bar98a, Bar98b, CET01] do not permit the deadlines of jobs to change depending on
conditional behavior. Though the idea of dynamically changing deadlines may seem odd, we have already
encountered a situation in which the deadlines do so change: the engineer’s problem. In one scenario, the
engineer had to produce device A within 12 months, with device B given an infinite deadline. In the other
scenario, then engineer had to produce device B within 12 months, with device A given an infinite deadline.
Second, jobs are unrelated in the models of [Bar98a, Bar98b, CETO01], in the sense that jobs do not admit
precedence constraints. When precedence constraints are included, conditionally changing deadlines are also
required, even if the relative deadline of each job j is fixed when j is released. To see why this is so, consider
a scenario in which job j; precedes both j, and j3. Initially, j; is released, followed some fixed time later by
job either jo or jz, but not both. If j3’s deadline is different from j3’s deadline, then depending on which
branch is followed, j;’s deadline varies.

Though the model we shall consider generalizes those of [Bar98a, Bar98b, CET01] in the two respects
just discussed, in other respects our model is weaker. We do not address the parallel composition of two
or more conditional scheduling problems. This is in contrast to [Bar98a, Bar98b|, though the less vague
analysis of [CETO01] also does not address compositionality. Our techniques could be extended to handle
such compositions, though we do not discuss these extensions here. Second, our models specify exact release
times for tasks, not minimum separations between release times. Finally, unlike [CET01], we do not discuss
approximation algorithms for those problems that we prove to be hard (NP-hard or otherwise). Despite
these modest restrictions, we believe our scheduling algorithms are novel and of independent interest.’

IThe reader familiar with the techniques of [Bar98a, Bar98b, CET01] may wonder whether these techniques may be extended
to our setting. We now explain why such an extension seems improbable. These techniques rely on a deadline bound function,
which assigns to each nonnegative real number ¢ a number dbf(t), which is the maximum, over all time intervals I of length ¢,
of the sum of computation times of jobs that have release times and deadlines within /. As mentioned above, in the models
of [Bar98a, Bar98b, CETO01], each job j is due at its release time plus a fixed constant d(j). It is shown in [CETO01] that an
instance of such a model is schedulable if and only if for all t > 0,

dbf(t) < t (1.0.1)

The proof of the “only if” portion relies in an essential way on the optimality of the earliest deadline first (EDF) algorithm.
However, deadlines vary in our setting, and it is therefore unclear what an EDF algorithm would be. Thus, the proof of
condition (1.0.1) does not extend to our setting. Indeed, it is easy to see that (1.0.1) is not sufficient in our setting. (It remains
necessary, though we do not discuss its necessity here.) Consider the example from the beginning of the report, modified so
that both device A and device B require 10 months of time. Then

[0 i t<12
aro={ % i 1503
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Figure 2.0.1: The engineer’s problem modeled as a conditional scheduling problem.

Another line of research which has influenced our model is that of G. Fohler, especially [Foh94], which
develops algorithms for multiprocessor conditional scheduling. In contrast to [Foh94], our focus is on
polynomial-time algorithms. In addition, our algorithms are optimal: they find a feasible schedule if one
exists. Because of our focus on efficiency and optimality, we avoid multiprocessor scheduling problems.
Approximation algorithms and heuristics for multiprocessor conditional scheduling may also be found, for
example, in [GS98, EKPT98].

A third line of research in real-time scheduling seeks to extend the priority ceiling protocol [SRLI0] to
handle changes of operational mode, including the addition or deletion of tasks, modification of the frequency
of a task, and so on [SRLR89]. Our approach differs substantially from that of [SRLR89]. In our model, jobs
interact via precedence constraints, not via shared resources. Moreover, mode changes seem to be regarded
as infrequent events in [SRLR&9], whereas in our model, mode changes are allowed to be frequent. Finally, as
noted above, our schedulability tests are sufficient and necessary, whereas [SRLR89] only provides sufficient
tests.

2 The conditional scheduling problem

We begin with a precise definition of the model we shall consider in this report.

Definition 2.0.1 (conditional scheduling problem). A conditional scheduling problem P is a pair
(F, W), where:

o F = (V,v0,E,D) is called the finite state machine of P. Here, V is a finite set, called the wvertices,
of which the initial vertex vy € V is a member. The set £ of edges is a subset of V x V; we write
v — v’ instead of (v,v’) € £. The function D assigns to each edge e € £ a positive rational duration

D(e) € Q1.

e W = (J,t,r,d) is called the workload of P. Here, J is a finite set, called the jobs. The function ¢
assigns to each job j € J an amount ¢(j) € Q>0 of time required by j. The function r assigns to each
vertex v € V a set r(v) C J of jobs released at v. Similarly, the function d assigns to each vertex v € V
a set r(v) C J of jobs due at v. O

Example 2.0.2. Figure 2.0.1 presents the engineer’s problem modeled as a conditional scheduling problem.
For convenience, we use integers as vertices. At the initial vertex vg = 1, jobs A and B are released. The
jobs released at vertex 1 are indicated with the label r : A, B adjacent to vertex 1. The time required by
each job A and B is 9 (i.e., t(A) = t(B) = 9), though this is not pictured. The duration D(1 — 2) of the
edge 1 — 2 is 6; this is pictured adjacent to the edge 1 — 2. After this duration has passed, the manager

Though condition (1.0.1) holds, still there is no solution to the given scheduling problem: A requires four months of time during
the first six months, and so does B, but only six months are available.
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Run pin R o(p,A) o(p,B)

(1,2) 3 3
(1,2,3) 6 0
(1,2,4) 0 6

Figure 2.0.2: A strategy for the problem of Figure 2.0.1.

decides which device to build. To build device A, the manager follows the edge 2 — 3. After an additional 6
time units (the duration D(2 — 3) is 6), job A is due at vertex 3. The jobs due at vertex 3 are indicated
with the label d : A adjacent to vertex 3. To build device B instead, the manager follows the edge 2 — 4;
after an additional 6 time units, job B is due at vertex 4. (]

We will be concerned with a game played by the scheduler versus the environment. The environment
decides what branches to take in the conditional graph, and the scheduler decides how to allocate a single
processor among the jobs J. At time 0, the game is at the initial vertex vy. The environment chooses
any vertex v; such that vg — v;. The scheduler is informed immediately, at time 0, of the environment’s
decision. During the next D(vy — v1) time units, the scheduler allocates the processor among the jobs. In
this section, we let scheduler make preemptions at arbitrary times.? Each release of a job j is a request for
the execution of an additional instance of j. When a vertex v is encountered such that j € d(v), all previously
released instances of j must be complete. Thus, the scheduler loses if some job in both r(vy) and d(v1) is
not complete by time D(vy — v1). Otherwise, the game continues, and the environment again chooses any
vertex vo such that v; — vs. The scheduler, informed of this choice, allocates the processor among jobs for
the next D(v; — vg) time units. The scheduler loses if some job in both d(ve) and (r(vg) \ d(v1)) Ur(ve) is
not complete at time D(vg — v1) + D(vy — va). The game continues in this way forever, or until a vertex
is entered that has no outgoing edges.

Our main goal in this section is to develop an algorithm for finding winning strategies for the scheduler.
To this end, we make precise the game we have informally described by defining objects that capture the
moves of environment (runs), and the decisions of the scheduler (strategies).

Definition 2.0.3 (runs and strategies). Let P be a conditional scheduling problem. A run p of P is a

sequence (vg,v1,- - ,vy,) of vertices such that n > 1 and (v;,v;41) € € for i € [0 .. n — 1]. The length of run
(vo, V1, ,vp) is n+1. Let R be the set of runs of P. For any run p = (vg, -+ ,0n), (Vo, " ,Un, "+ ,Um) € R
is a continuation of p, and is a mazximal continuation if vertex v,, has no successors. A strategy o for P is a
function o : R x J — R2% such that for any run p = (vg,v1,- - ,v,) in R,
Za(p,j) < D(vp—1 — vy) (2.0.2)
jeJ

If o(p,j) > 0, we say that strategy ezecutes job j along run p. For each integer i € [0..n], let 7(i) =
2_:10 D(vg — vgt1). We say that 7(7) is the time at which the i-th element v; of run p is entered. O

Note that 7(v;) — 7(vi—1) = D(vi—1 — v;). Intuitively, a strategy o allocates o(p, j) time to job j between
times 7(n — 1) and 7(n). The inequalities (2.0.2) express the constraint that for a run (vg,--- ,v,), the
strategy o allocates at most D(v,—1 — v,) from time 7(v,_1) until time 7(v,). Note that a strategy is
non-clairvoyant in the sense that, past the next vertex v, chosen by the environment, the scheduler has no
knowledge of the future behavior of the environment.

Example (2.0.2 continued). For the problem of Figure 2.0.1, the set R of runs is {(1, 2), (1,2, 3), (1,2,4)}.
The strategy presented at the beginning of the report — divide the first six months between A and B, and
spend the next six months exclusively on either A or B — is presented in Figure 2.0.2. ]

2In Sections ?? and ??, we will investigate variants of the conditional scheduling problem in which the scheduler may preempt
only at integral times. This models a periodic timer interrupt, for example. The choice of the integers over, say, a set of evenly
spaced rationals is arbitrary, but is no less general.
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We now define the conditions under which a strategy o is winning. Informally, the definition is as follows.
Consider a run p = (v, v1,- - ,vy), and a job j that is released at v; for some ¢ € [0 .. n — 1]. If there is no
vertex vy, k € [¢ + 1 .. n], at which j is due, then p imposes no requirements on o. Now suppose there is such
a vertex, and let v~ be such a vertex with minimum index k*. Each vertex at or after v; and before v+ that
releases j incurs a requirement of ¢(j) additional time units for j. Let m denote the number of such vertices.
In order to be winning, o must allocate at least m - ¢(j) time units for j from time 7(i) up to time 7(k*).
More precisely, we define a winning strategy as follows.

Definition 2.0.4. Let P be a conditional scheduling problem. A strategy is winning for P if, for every run
p = (vo,v1, - ,vn) € R, for each integer i € [0 .. n — 1], and for each job j € r(v;), either the set

{klkeli+1..n] andj € d(vg)} (2.0.3)

is empty, or the condition, marked (2.0.4) below, holds. Let £* be the minimum over the set (2.0.3). Let m
be the size of the set {¢ | ¢ < ¢ < k* and j € r(vs)}. Then

o
Z U((Uo,"' avf)vj) th(]) (204)
l=i+1

must hold. m

We now consider how to find a winning strategy for a conditional scheduling problem P. On the positive
side, if the graph (V,&) is a tree rooted at vg, we develop in Section 2.1 a polynomial-time algorithm
that determines whether P has a winning strategy, and if so synthesizes such a strategy. We then show
how to enrich the tree scheduling model with an anytime reward function (Section 2.2) and precedence
constraints (Section 2.3) while retaining a polynomial-time synthesis algorithm. On the negative side, if
(V, &) is a directed acyclic graph (respectively, if strategies must be discrete-time), we show in Section 3 that
determining whether P has a feasible strategy is coNP-hard (respectively, NP-hard). Table 5.0.5 on page 29
summarizes the results of this report.

2.1 Tree scheduling

We now present an algorithm that decides whether P has a winning strategy, and if so returns such a strategy.
This algorithm (1) creates a system of linear inequalities that captures the constraints on a winning strategy,
and (2) tests these inequalities for a solution using a polynomial-time linear programming algorithm. The
inequalities have the property that any solution corresponds to a winning strategy. Further, the inequalities
may be generated in time, and a fortiori size, that are polynomial in the conditional scheduling problem, if
the graph (V, ) is a tree rooted at vg. Thus, for such tree-shaped problems we will show that our algorithm
runs in polynomial time.? It should be emphasized that if (V,€) is instead a directed acyclic graph, the
running time may not be bounded by a polynomial, though our algorithm still synthesizes a winning strategy
if one exists.

In order to present our algorithm, we introduce the system of linear inequalities generated in step (1) of
our algorithm by means of an example.

Example (2.0.2 continued). For our running example, the inequalities are

o((1,2),4) > 0 o((1,2),B) = 0
0((1,2,3),4) > 0 0((1,2,3),B) > 0 (2.1.1)
o((1,2,4),4) > 0 o((1,2,4),B) > 0
o((1,2),A) +0((1,2).B) < 6
0((1,2,3),A) + 0((1,2,3),B) < 6 (2.1.2)
0((1,2,4), A) + 0((1,2,4),B) < 6

30f course, a nonpolynomial-time algorithm, such as the simplex method, may in practice run more quickly. Our focus here
is not to find the fastest algorithm in practice, but instead to prove the existence of a polynomial-time algorithm.
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o2 4 +o(1.29.4) > 9 .19

L, ) 2
((1,2),B) +0((1,2,4),B) = 9

The variables of the inequalities are the members of the set {o(p,j) | p € RA j € J}. The inequalities (2.1.1)
require that o(p,j) is nonnegative for each run p € R and job j € J. The inequalities (2.1.2) capture the
constraint (2.0.2), that the amount of time allocated by the scheduler during an interval is at most the
duration of that interval. Any assignment of values to the variables o(p, j) that satisfies (2.1.1) and (2.1.2)
also satisfies the requirements of Definition 2.0.3; such an assignment is thus a strategy. The inequali-
ties (2.1.3) express the constraint (2.0.4), that between the release of a job and its next subsequent deadline,
sufficient time is allocated to that job. The reader may verify that the strategy of Figure 2.0.2 satisfies the
inequalities (2.1.1), (2.1.2), and (2.1.3). O

We now formally define the system Lin[P] of linear inequalities generated by a conditional scheduling
problem P. There will be finitely many inequalities if the graph (V,€) is a directed acyclic graph, and will
be polynomial in the size of P if (V, &) is a tree rooted at vy.

Definition 2.1.1 (the system Lin[P] of linear inequalities). Let P be a conditional scheduling problem.
The set of variables of Lin[P] is {o(p,j) | p € RAj € J}. There are three types of constraints in Lin[P]:

e [Nonnegativity constraints] For each variable o(p, j), o(p,j) > 0 is a constraint.
e [Duration constraints] For each run p = (vg, -+ ,v,) € R, Eje] o(p,j) < D(vp—1 — vy,) is a constraint.

o [Execution time constraints] For each run p = (vg,- -+ ,v,) € R, for each integer ¢ € [0 .. n — 1], for each
job j € r(v;), if the set (2.0.3) is nonempty, then ZIZ:i_H o((vo, -+ ,ve),7) = m - t(j) is a constraint,
where k* and m are as defined in Definition 2.0.4. (]

The reader will note the close correspondence between Definition 2.0.3 and the nonnegativity and interval
constraints of Lin[P]. Based on this correspondence, it is straightforward to prove the following proposition.

Proposition 2.1.2. An assignment of values to the variables of Lin[P] is a strategy if and only if the
assignment satisfies the nonnegativity constraints and the interval constraints.

The reader will also note the close correspondence between Definition 2.0.4 and the execution time constraints
of Lin[P]. It is thus straightforward to prove that an assignment of values to the variables of Lin[P] is
a winning strategy if and only if the assignment is a strategy and moreover satisfies the execution time
constraints of Lin[P]. From Proposition 2.1.2, the following proposition follows.

Proposition 2.1.3. An assignment of values to the variables of Lin[P] is a winning strategy if and only if
the assignment satisfies the nonnegativity, duration, and execution time constraints.

We now bound the running time of our algorithm. In order to do so, we bound the size of Lin[P]. Since
the graph (V, ) is a tree rooted at vg, the number |R| of runs equals the number |£| of edges. The number
of variables of Lin[P] equals |R|-|J| = |€] - |J|. Since there is one nonnegativity constraint per variable, the
number of these constraints is also |€|-|.J|. Since there is one duration constraint per run, the number of these
constraints is |€]. Each duration constraint is the sum of at most |J| terms, for a total size of O(|€| - |J]).
The number of execution time constraints is at most the number of runs, times the length of the longest run,
times the number of jobs; and the number of summands in each execution time constraint is at most the
length of the longest run. The longest run has length at most |€], for a total of size O(|€]*-].J|). We conclude
that the size of Lin[P] is polynomial in the size of P. Further, it is straightforward to verify that Lin[P] may
be generated in time polynomial in the size of P. Since a polynomial-time linear programming algorithm
may be used to test whether Lin[P] has a solution, we have established the following theorem.

Theorem 2.1.4. Let P be a conditional scheduling problem in which (V,€) is a tree rooted at vg. Then
the algorithm of this section is polynomial time, determines whether a winning strategy for P exists, and if
so returns such a strategy.
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2.2 Imprecise tree scheduling

It has been widely observed within the artificial intelligence community that the amount of time required
to compute an optimal result may reduce the utility of the result [RW91]. Since earlier results are generally
better than later results in a real-time setting, computing the optimal result after a long delay may be less
desirable than computing a sub-optimal result after a short delay. In order to maximize a utility function,
decisions need to be made about the amount of time to devote to each job. Anytime algorithms allow such
decisions to be made flexibly [DB88]. An anytime algorithm is an algorithm in which computation may be
interrupted at any time, producing results of increasing quality as the amount of computation time increases.

The similar concept of imprecise computations has been studied in scheduling theory since the 1980s [SLCI1,
LLSY91]. An imprecise computation consists of two parts, a mandatory part and an optional part. The
mandatory part must be completed to produce a result of minimum acceptable quality. The optional part
follows the mandatory part, and improves the result produced by the mandatory part. [SLC91] presents a
polynomial-time algorithm that finds, from among all schedules satisfying release, deadline, and mandatory
computation constraints, one that is optimal in the sense of minimizing the total amount of remaining op-
tional computation. In addition, [SLC91] permits a positive, rational weight for each job, and shows how
to minimize the weighted sum of remaining computation times. The per-job weight may be thought of as a
linear reward function. [AMMMAQO1] generalizes [SLC91] to include concave reward functions, and presents
a polynomial-time algorithm that finds optimal schedules for this more general model, as long as strong
periodicity requirements are met.

The conditional scheduling problem of Definition 2.0.1 can easily be adapted to fit the framework of
imprecise computations. The condition (2.0.4) specifies a lower bound on the amount of time each job j
must be executed — or, in other words, the mandatory execution time of j. Any additional execution time
is optional. To quantify the total reward of a strategy, we augment the basic conditional scheduling problem
with a reward function f : J — QZ°. As we will see, this reward function behaves similarly to the linear
reward function of [SLC91].

Definition 2.2.1 (imprecise scheduling problem). An imprecise scheduling problem P is a triple
(F,W, f), where the finite state machine F and workload W are defined as in Definition 2.0.1, and f :
J — Q=Y is a function, called the reward function, assigning a non-negative rational number f(j) to each
job j. The runs, strategies, and winning strategies of an imprecise scheduling problem (F, W, f) are the
same as for the underlying conditional scheduling problem (F, W). O

Our goal is to develop an algorithm for finding a winning strategy of maximum reward. Before we define
what the reward of a strategy is, however, we restrict the class of imprecise scheduling problems that we
will consider in four ways. The intent of these restrictions is (1) to simplify the definition of the reward of a
strategy, and (2) to focus on a class of imprecise scheduling problems for which a polynomial-time algorithm
exists. To these ends, we define a well-formed imprecise scheduling problem as follows:

Definition 2.2.2 (well-formed imprecise scheduling problem). We say that an imprecise scheduling
problem is well-formed if the following conditions hold:

1. In order to develop a polynomial-time algorithm, we require that the graph (V,€) is a tree rooted
at vg.

2. In order to simplify the definition of the reward of a strategy, we require that for each job j € J, there
exists exactly one vertex v € V such that j € r(v). Given this requirement, for j € J we let r(j) denote
the unique vertex v € V such that j € r(v).

3. Without loss of generality, we require that for any v € V and any j € d(v), there exists v € V such
that v —T v and j € r(v').

4No generality is lost for the following reason. If j € d(v), but there does not exist a v’ € V with v/ —1 v and j € r(v'),
then upon reaching v, j cannot have been released. Thus, the fact that j is due at v can be ignored. A problem not satisfying 3
may be replaced by a problem that does satisfy 3, by removing j from d(v); the constraints on a winning strategy remain the
same.
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4. Given 1 and 2, without loss of generality we require that there do not exist two vertices v,v" € V such
that v —+ v" and d(v) Nd(v') # 0. O

We now define the reward of a strategy. The reward of a run (vg, - ,v,) is the sum, over all jobs j due
at vy, of f(j) times the amount of time allocated to j since the vertex releasing j was entered.® The reward
of a strategy is the sum, over all runs p € R, of the reward of p. We formalize this notion in the following
definition:

Definition 2.2.3 (reward of a strategy). Let o be a strategy for a well-formed imprecise scheduling
problem. The reward of o is

n

Z Z f(]) : Z 0'((’[]07 e 7Ui)’j) (221)

(vo,++,vn)ER  jed(vn) i=r(j)+1

We use the symbol f[o] to denote the reward of strategy o.” We say that a strategy o is optimal if o is
winning, and for all winning strategies o', flo] > flo’]. O

The third (last) summation in (2.2.1) measures the amount of time allocated to job j between entering the
vertex v,.(;) that releases j and entering the vertex v, at which j is due. The second summation measures
the reward of the run (vg,- -+ ,v,). The first summation, of course, measures the reward of the strategy o.

We wish to develop an algorithm that, when given a well-formed imprecise scheduling problem P =
(F,W, f), decides whether P has a winning strategy, and if so returns an optimal strategy. Given our
linear programming approach, this is quite easily accomplished: we simply use a polynomial-time linear
programming algorithm to maximize the objective function (2.2.1) subject to the constraints Lin[P’], where
P’ = (F,W). We have thus established the following theorem:

Theorem 2.2.4. Let P be a well-formed imprecise scheduling problem. Then the algorithm of this section
is polynomial time, decides whether P has a winning strategy, and if so returns an optimal strategy.

2.3 Precedence-constrained tree scheduling

In this section, we enrich the conditional scheduling model of Definition 2.0.1 by adding precedence con-
straints. We then develop a polynomial-time algorithm, based on the algorithm of Section 2.1, to synthesize
schedules for the extended model. We begin by adding a precedence relation < C J x J to the conditional
scheduling problem:

Definition 2.3.1 (precedence-constrained scheduling problem). A precedence-constrained scheduling
problem P is a triple (F, W, <), where the finite state machine F and workload W are defined as in Defi-
nition 2.0.1, and the precedence relation < C J x J is an acyclic binary relation on J. We shall normally
write j < j' instead of (j,j') € <. The runs and strategies of a precedence-constrained scheduling problem
(F,W, <) are the same as for the underlying conditional scheduling problem (F, W). O

We will consider a restricted subset of precedence-constrained scheduling problems. As in Definition 2.2.2,
we require that the graph (V, £) is a tree rooted at vy, and that each job is released by exactly one vertex. The
first requirement is necessary for a polynomial-time strategy synthesis algorithm. The second requirement, in
the present context, simplifies the definition of a winning strategy (Definition 2.3.3, below). Without loss of

5No generality is lost for the following reason. Given 2, for any run (vo, - - - ,v,) and any job j, there is at most one vertex v;
such that j € r(v;). Now if j were in both d(vy) and d(vy/), for some i + 1 < k < k' < n, then given 1, vy is only reachable
from v; by first passing through vi. Thus, the fact that j is due at v,/ can be ignored, since j already had to complete before
the predecessor vy of v/ is reached. Any problem satisfying 1 and 2 but not 4 can be replaced by one that satisfies 1, 2, and 4,
by removing j from d(vy/); the constraints on a winning strategy remain the same.

6Given the definition of well-formedness, j was released by some previous vertex v;, i € [0 .. n — 1]; j was released by exactly
one such vertex; and j was not due at some previous vertex vg, 1 € [i +1 .. n — 1].

7Other definitions of the reward of a strategy are also possible: one might, for example, weight the last sum by f(5)/n(j),
where n(j) is the number of vertices at which j is due. Alternatively, one might weight the second sum by Prob(p), where Prob
is a probability distribution over runs. The significant choice is not the specific way in which the reward of a strategy is defined,
but rather that the definition be a linear function of the variables o((vo, - ,v;), 7).
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generality, we also require that conditions 3 and 4 of Definition 2.2.2 hold. Finally, we require that if j < j’,
then j is both released and due prior to j'. We now precisely specify the class of precedence-constrained
scheduling problems we will consider:

Definition 2.3.2 (well-formed precedence-constrained scheduling problem). We say that a precedence-
constrained scheduling problem is well-formed if:

1. Conditions 1, 2, 3, and 4 of Definition 2.2.2 hold.
2. For any two jobs j,j’ € J, if j < j/, then r(j) —* r(j).

3. Let j,j' be any two members of J such that j < j'. Suppose j' € d(v’) for some v € V. Then there
exists v € V such that j € d(v) and v —* v'. O

We now consider what it means for a strategy to be winning for a well-formed precedence-constrained
scheduling problem. Consider a run (vg, -+ ,v,) € R, and an i € [0..n — 1]. Since < is acyclic, for any
strategy o, it is possible to topologically sort the the execution of jobs from time 7(¢) until time 7(i + 1), so
that < is respected. On the other hand, suppose that for two jobs 7,7’ € J such that j < j’, there exists a
k € [i+1..n] such that

U((”Oa e 7Ui)aj/)
U((UO’ T 7vk)7j)

In this case, strategy o violates the precedence constraint j < j’, since 7 does not finish before j' begins. If
no such violation occurs, o is winning. More precisely, we define a winning strategy as follows:

Definition 2.3.3 (winning strategy). Let P = (F, W, <) be a well-formed precedence-constrained schedul-
ing problem. A strategy o is winning for P if ¢ is winning for (F, W) in the sense of Definition 2.0.4, and
the following additional condition holds. Consider any run (vg,--- ,v,) € R and any jobs j,j’ € J such that
j=<j. Io((ve, - ,v;),5) >0 for some i € [1..n—1], then o((vg, - ,vk),j) =0forallk € [i+1..n]. In
other words,

Viell..n—1]
Vkeli+1.. n] (2.3.1)
O—((UOW" ,Ui),j/)>0 = O—(<U03"' 7vk)7j):0
If (2.3.1) does not hold for some run p = (vg,--- ,v,), some precedence constraint j < j', and some i €
[1..n — 1], then we say that o i-violates precedence constraint j < 7' along run p. |

Suppose that (F, W, <) is a precedence-constrained scheduling problem, and that o is a winning strategy
for the less constrained conditional scheduling problem (F, W). Somewhat surprisingly, a strategy o’ that
is winning for (F, W, <) may be derived from o in polynomial time. The relation between precedence
constrained scheduling and conditional scheduling is analogous to the relation between the classical scheduling
problems 1 | rj; dj; prec; pmtn | — and 1 | rj; dj; pmin | — (see [Bla76]). In each case, schedules for the
precedence-constrained version can be derived from schedules for the version without precedence constraints
by an appropriate topological sort. In the present case, the topological sort required is more complex, but
the basic intuition remains the same: if job j precedes job j’, then it is always acceptable to execute j in
preference to j'. We now show how to derive a winning strategy for (F, W, <) from a winning strategy for
(F,W) in polynomial time.

Proposition 2.3.4. Let P = (F, W, <) be a well-formed precedence-constrained scheduling problem. Let o
be a winning strategy for (F, W) in the sense of Definition 2.0.4. Then a winning strategy for P may be
obtained from o in time polynomial in |V|- |J].

Proof. Without loss of generality, we assume that the winning strategy o for (F, W) has three additional
properties. Let p = (vg,---v,) € R be any run, and let j € J be any job. Then:

I. If o(p,j) > O then there exists a vertex v € V such that j € d(v) and v, —* v. Informally, j is not
executed along run p unless it is subsequently due along a continuation of p.
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Figure 2.3.1: A visual aid for the proof of Lemma 2.3.5.

II. If o(p,j) > 0 then j € r(v;) for some ¢ € [0 .. n — 1]. Informally, j is not executed along run p unless
it has been released.

OL > o((ve, -+ ,vi),7) < t(j). Informally, j is not executed for more than ¢(j) time units.

Let runs pi,---, pm be the members of R, enumerated in order of nondecreasing length. Let o9 = o.
For i = 1,--- ;m, we construct a strategy o; from o;_1, with properties I-III above, and two additional
properties:

IV. o; remains winning for (F, W).

V. Let n be the length of p;, and let p be any continuation of a run in {p1,---,p;}. Then for any
k € [1..n — 1], there is no precedence constraint j < j’ such that o; k-violates j < j' along p.

Properties IV and V imply that o, is winning for (F, W, <). Since (V,€) is a tree, the number m of runs
is O(]V|), and the following lemma completes the proof. O

Lemma 2.3.5. Strategy o; may be obtained from strategy o;_; in time polynomial in |V| - |J|.

Proof. Let (vg,---,v,) be the sequence of vertices of run p;. Let j,j° € J be any two jobs such that
j < 4" and o;_1 n-violates j < j' along some continuation of p;. Consider any maximal continuation
p= (v, " ,Upn, - ,vpn) of p; such that j € d(vy) for some k € [n+1..n']. We call such a continuation a
(pi, §)-continuation. Since o;_ is winning for (F, W) and satisfies III,

’
n

> oo v, 5) = ) =Y oia((vos - 00, j)
=1

{=n+1

In other words, for any (p;, j)-continuation, the amount of time allocated to j after vertex v, is the same,
and is equal to the time ¢(j) required by j minus the amount of time allocated to j before v,,. Figure 2.3.1
illustrates this situation. In the figure, after v,, the same amount of time is allocated to j on each (p;, j)-
continuation (these continuations are (vg,---,e) and (vg,---,h)). On other continuations, less time is
allocated to j (this other continuation is (vg,- - ,g)).

Select two jobs j, 7’ such that (1) j < 5/, (2) 0;_1 n-violates j < j’ along some continuation of p;, and
(3) j is minimal in the partial order <. Let T be the minimum of the amount o;_1(p;,j’) of time allocated
to 7/ along run p;, and the amount that remains to be executed of job j, i.e.,

T = min{o;-1(pi,j"), t(j) = 2=y oim1((vo, -+ ,vi),5)}
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Figure 2.3.2: The transformation of the strategy from Figure 2.3.1.

We now perform an exchange of execution times. We move T units of the execution of j from the (p;, j)-
continuations to p;, so that o;(p;,j) = T. At the same time, we move T units of the execution of j' from p;
to the times just vacated in the (p;, j)-continuations, taking care to preserve property I by not executing j’
along continuations on which j' is not due. This transformation is illustrated in Figure 2.3.2, where o;_1
was the strategy of Figure 2.3.1, and o;_1 is the strategy of Figure 2.3.2. Note in Figure 2.3.2 that j’ is
executed along (vg,- - ,e), since j' € d(e); but that to preserve property I, j’ is not executed along either
(vo, -+, f), (vo, -+ ,g), or (vg,--- ,h), since j' is not in either d(f) or d(h).

We repeat this process with additional jobs j, 7’ satisfying (1)—(3) until no such jobs remain, thus obtaining
strategy o;. There are at most (lgl) exchanges to perform. Each exchange takes O(|V]) time, since there
are O(|V|) continuations of p;. Thus, obtaining o; requires time polynomial in |V|-|J|. We now prove that
properties I-V hold for ;.

I. Consider any jobs j,j’ that were exchanged in the construction of ¢;. Since o;_1 satisfies property I,
and j is executed by o;_; along a continuation of p;, j is due along a continuation of p;. Similarly, ;'
is due along a continuation of p;, since o;_1 satisfies I, and j is executed by o;_; along p;. Further,
by the construction of o;, j' is not executed along those continuations on which j’ is not due. Thus, I
holds for o;.

II. Consider again any jobs j, j that were exchanged. Since o;_1 satisfies IT, and o;_1(p;,5') > 0, j' € r(vg)
for some k € [0 .. n — 1]. By condition 2 of Definition 2.3.2, j € r(vy) for some k' € [0 .. k]. Thus, II
holds for o;.

III. Consider again any jobs j,j’ that were exchanged. Then for each leaf vertex vy € V,

S 0il(vo, -+ vk), ) = gy oict (Vo v, 4)

whereas , ,
Y1 oil(vo, - vk), 7)) <D g oim1((vo, -+ k), )

Since o;_1 satisfied III, o; satisfies III as well.

IV. Consider again any jobs j,j' that were exchanged. Job j is not moved earlier than the vertex that
releases it, by II. Since by the argument for III, the total time allocated to j remains the same, the
inequality (2.0.4) continues to hold for job j. For job j’, by property I for o;_1, the times vacated by j
do not occur past the vertices at which j is due. By condition 3 of Definition 2.3.2, a fortior:i the times
vacated by j do not occur past any vertex at which j’ is due. Thus, j' is not moved later than any
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vertex at which it is due. Further, along the paths on which 5’ is due, the time allocated to j’ remains
the same. Thus, (2.0.4) continues to hold for job j'. We conclude that o; remains feasible for (F, W).

V. Each n-violation of a precedence constraint by ¢; 1 was removed in the construction of ¢;. Further,
for k < n, no k-violations were reintroduced in the construction of ¢;, since the construction of o; only
modified the behavior of ¢;_; for p; and continuations of p;. Thus, o; satisfies V. O

Consider a well-formed precedence-constrained scheduling problem (F, W, <). If (F,W) has a winning
strategy o, then a winning strategy for (F, W, <) may be constructed from ¢ in polynomial time. On the
other hand, if (F, W) has no winning strategy, then (F, W, <) has no winning strategy either, since (F, W)
is a less constrained version of (F,W, <). Thus, to check whether (F, W, <) has a winning strategy, the
following algorithm suffices: first, test whether Lin[F, W] has a feasible solution o. If not, then report that
(F, W, <) has no winning strategy. If so, use the algorithm of Proposition 2.3.4 to obtain a winning strategy
from the feasible solution 0. We have established the following theorem:

Theorem 2.3.6. Let P = (F,W, <) be a well-formed precedence-constrained scheduling problem. Then
the algorithm of this section is polynomial time, determines whether a winning strategy for P exists, and if
so returns such a strategy.

3 Hard conditional scheduling problems

In Section 2, we saw that several conditional scheduling problems — tree scheduling, imprecise tree schedul-
ing, and precedence-constrained tree scheduling — can be solved in polynomial time. In this section, we
will investigate conditional scheduling problems that cannot be solved in polynomial time, unless P = NP.
Section 3.1 examines discrete-time strategies, in which the scheduler is restricted to make decisions only
at integral points in time. We will see that determining whether a tree scheduling problem has a winning
discrete-time strategy is NP-hard. Section 3.2 considers conditional scheduling problems in which the graph
(V,€) is a directed acyclic graph (DAG). We will see that determining whether a DAG scheduling problem
has a winning strategy is coNP-hard. Finally, Section 3.3 shows that determining whether a DAG scheduling
problem has a winning discrete-time strategy is PSPACE-hard.

3.1 Discrete-time tree scheduling

There is one respect in which the strategies produced by the algorithm of Section 2.1 are impractical: they
require that preemptions be made at arbitrary points in time. This is not possible in computer systems, since
the clock rate provides an upper bound on the frequency of preemptions; moreover, because of context-switch
overhead, most real-time systems do not function well with timers that run faster than 10 kHz. Suppose
that strategies are restricted to preempt only at a sparse, evenly-spaced spaced set of times — at integral
times, say.® We call such restricted strategies discrete-time strategies. For discrete-time strategies, do tree
scheduling problems remain solvable in polynomial time? Unfortunately, the answer is negative, as we will
see in this section.

The difference in the complexity of dense- and discrete-time versions of tree scheduling provides evidence
that conditional scheduling with varying deadlines is fundamentally different from standard single-processor
scheduling models. In standard single-processor settings, the same polynomial-time algorithm is often op-
timal both for a model that allows preemption at any time, and for a model that allows preemption only
at integer points in time. In contrast, unless P = NP, there can be no polynomial-time tree scheduling
algorithm that is optimal for both dense-time and discrete-time models.

We now precisely define discrete-time strategies; we also define the problem Discrete-time tree scheduling
that we will prove is NP-hard:

Definition 3.1.1 (discrete-time strategy, Discrete-time tree scheduling). A strategy o for a condi-
tional scheduling problem P is discrete-time if, for each run p € R and each job j € J, o(p,j) € Z. The

8We consider integral times only for reasons of simplicity. The results of this section generalize to any evenly-spaced set of
time points.
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Figure 3.1.1: The conditional scheduling problem of Example 3.1.2.

Runp e R a(p,ji) o(p,je) ol(p,js) o(p, ja)

(1,2) 0.5 0.5 0.5 0.5
(1,2,3) 1.5 1.5 0 0
(1,2,4) 1.5 0 1.5 0
(1,2,5) 1.5 0 0 1.5
(1,2,6) 0 1.5 1.5 0
(1,2,7) 0 1.5 0 1.5
(1,2,8) 0 0 1.5 1.5

Figure 3.1.2: A winning strategy o for the conditional scheduling problem of Example 3.1.2.

set Discrete-time tree scheduling is {P | P is a conditional scheduling problem such that (1) (V,€&) is a tree
rooted at vg, and (2) there exists a winning discrete-time strategy for P}. O

Clearly, since discrete-time strategies are strategies, the existence of a winning discrete-time strategy
implies the existence of a winning strategy. However, the converse is not true. As the following example
shows, some tree scheduling problems have a winning strategy, but no winning discrete-time strategy.

Example 3.1.2. Consider the tree scheduling problem of Figure 3.1.1. There are four jobs, j1, j2, j3, and jy.
The amount t(j;) of time required by job j; is 2 for all i € [1 .. 4]. The initial vertex is 1. At vertex 1, jobs ji,
j2, j3, and js are released. Vertex 2 has six successors, one for each of the (‘21) ways of choosing two of the
four jobs. At each successor of vertex 2, two jobs are due, so that every set of two jobs is due at some
successor of vertex 2. The duration D(1 — 2) of the edge 1 — 2 is 2; all other edges have a duration of 3.
Figure 3.1.2 depicts the unique winning strategy for this problem. This strategy divides the first 2 time
units equally between jobs ji, j2, js, and j4, so that o((1,2),5) = 0.5 for each j € J. The remaining 3 units
of time are divided equally between the two jobs due at whichever of the successor vertices 3 through 8 is
chosen. It may be verified that strategy o is the only solution to the inequalities Lin[P] of Definition 2.1.1.
Note that o(p,j) ¢ Z for each run p € R and job j € J. O

In the remainder of this section, we prove the following theorem:
Theorem 3.1.3. Discrete-time tree scheduling is NP-hard, even if the time ¢(j) required by each job j is 1.

We prove this theorem by presenting a polynomial-time reduction from 3-SAT to Discrete-time tree schedul-
ing. Recall that a 3-CNF' formula

m
o= /\ LiaVElia Vi3

i=1
is a conjunction of clauses, of which let us say there are m. Each clause is the disjunction ¢; 1 V ¢; 2 V ¢; 3 of
three literals 0; 1, {; 2, and ¢; 3. Each literal is either a boolean variable x}, or a negated boolean variable —xy,.
We will let n denote the number of variables appearing in ¢, and we will assume that these variables are
members of the set {x1, -+ ,x,}. Without loss of generality, we may assume that each clause contains
three distinct variables [Pap94]. The set 3-SAT is the set of all 3-CNF formulae that are satisfiable. We
now informally describe the reduction from 3-SAT to Discrete-time tree scheduling, after which we formally
describe the reduction and prove Theorem 3.1.3.
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Figure 3.1.3: The assignment gadget.
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Figure 3.1.4: The formula gadget.

3.1.1 Introduction to the reduction from 3-SAT to Discrete-time tree scheduling

Given a 3-CNF formula ¢, the reduction produces a tree scheduling problem P[¢], with the following property:
P[¢] has a winning discrete-time strategy if and only if ¢ is satisfiable. The problem P[¢] consists of two
parts, an assignment gadget and a formula gadget. Figure 3.1.3 shows the assignment gadget. The assignment
gadget consists of the 2n + 2 vertices 1,2, --- ,2n+ 2. (Vertex 2 plays no significant role in the construction,
but is included to make the graph regular.) At vertex 2i —1, for ¢ € [1 .. n], jobs ¢; and f; are released. Each
job requires one unit of time, i.e., t(t;) = t(f;) = 1. Jobs t; and f; are due at vertex 2i + 2. For any feasible
discrete-time strategy o, either:

o((1,---,2i+1),¢;) = 1 and
or:

o((1,--+,2i4+1),f;) = 1 and

o((l,--,2i4+2),t;) = 1

In an intuitive sense, the first choice corresponds to a truth assignment that gives variable x; the value true,
and the second choice corresponds to an assignment that gives x; the value false. Intuitively, then, the
assignment gadget forces the scheduling algorithm to pick a truth assignment.

The reduction now needs a means for determining whether the assignment chosen by the scheduling
algorithm “satisfies” the 3-CNF formula ¢. This mechanism is provided by the formula gadget, pictured in
Figure 3.1.4. The formula gadget consists of the m vertices 2n + 3,--- ,2n 4+ m + 2. For i € [1 .. m], three
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jobs are due at vertex 2n + i+ 2. Which jobs these are depend on the variables occurring in the literals ¢; 1,
?; 2, and ¢; 3, and whether these literals are positive or negative. To be precise, d(2n+i+2) = {ji1,Ji2, i3},
where for ¢/ € [1 .. 3],

Gid :{ be i by = @y (3.1.1)

fo by =-xp

Jobs ji 1, ji2, and j; 3 can finish before vertex 2n+i+2 if and only if one of them has completed before vertex
2n + 1. Intuitively, this can occur if and only if the truth assignment chosen by the scheduling algorithm
makes one of the literals ¢; 1, ¢; 2, or {; 3 true, i.e., if the truth assignment makes ¢ true.

3.1.2 Proof of NP-hardness of Discrete-time tree scheduling

We now precisely define the reduction from 3-SAT to Discrete-time tree scheduling. We first describe a
polynomial-time function that maps each 3-CNF formula ¢ to a tree scheduling problem P[¢]. We then
prove that ¢ is satisfiable if and only if P[¢] has a winning discrete-time strategy. This will establish that
Discrete-time tree scheduling is NP-hard (Theorem 3.1.3).

Given a 3-CNF formula ¢ = A", ¢;1V ;2 V {; 3, we define the conditional scheduling problem P[¢] =
((V,v0,E,D), (J,t,r,d)) as follows:

e The set V of vertices is [1 .. 2n + m + 2].
e The initial vertex vg is 1.

e The set £ of edges is:

{(2i=1) = (20) |ie[l..n+1]} U (assignment gadget)
{(2i—1) = @i+1)]icl.n]} U ”
{@n+1)—=2n+i+2)|iec[l..m]} (formula gadget)

e For each edge e = v — v’ € £, the duration D(e) of e is defined as follows:

2 fv=2n+1and v  =2n+i+ 2 for some i € [1.. m]

De) = .
1 otherwise

e The set J of jobs is {t1, f1,t2, fa, "+ ytn, fn}-

e The time ¢(j) required by job j is 1 for each job j € J.

e For i € [1..n], the set r(2i — 1) of jobs released at vertex 2i — 1 is {t;, f;}. For all other vertices v € V,

[
r(v) = 0.
e The set d(v) of jobs due at each vertex v is defined as follows:

d(2i + 2) = {ti7fi} fori € [1 .. ’I’L]
d2n+i+2) = {ji1, ji2, Jiz} forie[l.. m]

where for i € [1 .. m] and ¢’ € [1 .. 3], j;+ is defined by (3.1.1). For all other vertices v € V, d(v) = 0.

It can easily be seen that the conditional scheduling problem P[¢] can be derived from the 3-CNF
formula ¢ in time polynomial in the size of ¢. We now prove the following lemma, which establishes
Theorem 3.1.3.

Lemma 3.1.4. The 3-CNF formula ¢ is satisfiable if and only if the tree scheduling problem P[¢] has a
winning discrete-time strategy.

Proof. (=) Suppose that ¢ is satisfiable. Let T be a truth assignment which makes ¢ true. We define the
discrete-time strategy o[T] as follows:
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e Forie[l..m]:

— If T makes each literal ¢; 1, ¢; 2, and ¢; 3 true, then o[T]((1,--- ,2n+1i+2),j) = 0 for each j € J.

— If T makes exactly one literal ¢; ;+ false, then o[T]((1,---,2n + i+ 2), ;) = 1, where j; ;/ is
defined by (3.1.1). For each other job j € J, o[T]((1,--- ,2n+1i+2),5) = 0.

— If T'makes exactly two literals ¢; ; and ¢; ;» false, then o[T]((1,- - - ,2n+i4+2), j; i) = o[T)((1,-- - , 2n+
i+2), jiiv) = 1, where j; i and j; ;» are defined by (3.1.1). For each other job j € J, o[T]((1,- - ,2n+
i+2),5)=0.

This completes the definition of o[T]. We now show that o[T] is winning. By construction, both jobs ¢;
and f; finish by vertex 27 4+ 2. It remains to show that jobs j; 1, ji 2, and j; 3 finish by vertex 2n + 2i 4 2.
Since T makes ¢ true, for each i € [1 .. m| there is some ¢’ € [1 .. 3] such that 7" makes literal ¢; ; true. The
corresponding job j;  finishes by vertex 2n + 1. At most two jobs remain to be scheduled before vertex
2n + 2i + 2. By the construction of o[T], these other two jobs finish by vertex 2n + 2i + 2. Thus, o[T] is
winning.

(<) Suppose that P[¢] has a winning discrete-time strategy . We define the truth assignment T'[o] as

follows: f o(( ), ti)
B true ifo((1,---,204+1),t) =1
Tlo)(:) —{ false if o((1,--,2i+1), fi) =1

Note that since o is a winning discrete-time strategy, either o((1,-- ,2i+1),t;) = loro((1,--- ,2i+1), f;) =
1, but not both. We now show that T'[c] makes ¢ true. Let i be an arbitrary member of [1 .. m]. Consider
the i-th clause of ¢, ;1 V{; 1 V{; 3. Since o is winning, either j; 1, ji 2, or j; 3 is finished by vertex 2n+1. Let
i’ € [1 .. 3] be such that j; ;s is finished by vertex 2n + 1. Let k be the index of the variable zy, of literal ¢; ;.
Without loss of generality suppose that ¢; ;» is positive, so that j; ; = t;. Since job t; is finished by vertex
2n+1, 0((1,---,2k +1),t;) = 1. Thus, T'[o](zx) = true, and T[] makes the i-th clause true. Since i was
arbitrary, T'[o] makes ¢ true. We conclude that ¢ is satisfiable. O

It should be noted why the construction of P[¢] fails to show that dense-time tree scheduling is NP-hard.
Given the conditional scheduling problem P[¢], consider a strategy o such that for i € [1 .. n):

o((1,--+,2i4+1),t;) =o((1,--,20+ 1), f;) =05

In this strategy, every job is executed for 0.5 time units before vertex 2n + 1. The i-th branch of the clause
gadget requires that three jobs finish within two time units. A total of 1.5 time units of execution time for
these three jobs remains after vertex 2n + 1, so they can easily finish on time.?

9n fact, this fractional strategy is what initially suggested to the author the polyhedral algorithm for dense-time tree
scheduling.
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3.2 Directed acyclic graph scheduling

The polynomial-time algorithms from Section 2 all operate on conditional scheduling problems in which
the graph G = (V,€), is a tree. This raises an obvious question: if the graph G is allowed to have a more
general form — for example, a directed acyclic graph (DAG) — can it still be determined in polynomial time
whether a conditional scheduling problem has a winning strategy? In this section, we will show that the
answer to this question is negative. This hardness result is unfortunate, as control-flow graphs are, for most
programming languages, directed acyclic graphs. Thus, it would be useful to be able to determine whether
a DAG scheduling problem has a winning strategy. We now precisely define the DAG scheduling problem.

Definition 3.2.1 (DAG scheduling problem, DAG scheduling). A DAG scheduling problem is a
conditional scheduling problem in which the graph (V,£) is acyclic. The set DAG scheduling is {P | P is a
DAG scheduling problem such that there exists a winning strategy for P}. O

In the remainder of this section, we show that DAG scheduling is coNP-hard. The basic intuition is that
the presence of a DAG leads to a set of runs whose size is exponential in the size of the graph G.

Theorem 3.2.2. DAG scheduling is coNP-hard, even if the time ¢(j) required by each job j is 1.

We prove this theorem by displaying polynomial-time reduction from 3-TAUT to DAG scheduling. Recall
that a 3-DNF formula

m
o=\ tiaNliaNlis

i=1
is a disjunction of m clauses. Each clause is the conjunction ¢; 1 A ¢; 2 A ¢; 3 of three literals. As with 3-CNF
formulae, each literal is either a boolean variable zj, or a negated boolean variable —x;. We will again let n
denote the number of variables x1,- - - , x, appearing in ¢. The set 3-TAUT is the set of all 3-DNF formulae
that are tautologies. Note that a 3-DNF formula ¢ is a tautology if and only if —¢ is unsatisfiable. Note
also that

m m
- \/ €i71 A f@g A 61,3 is equivalent to /\ —\€i71 vV —|€i,2 vV _‘fi’3
i=1 i=1
Thus, —¢ is equivalent to a 3-CNF formula 1. Because ¢ € 3-TAUT iff —¢ is unsatisfiable iff ¢ ¢ 3-SAT,
3-TAUT is coNP-complete [Sto76].

3.2.1 Introduction to the reduction from 3-TAUT to DAG scheduling

Given 3-DNF formula ¢, the reduction produces a DAG scheduling problem P[¢] with the following property:
P[¢] has a winning strategy if and only if ¢ is a tautology. The problem P[¢] consists of three parts: an
assignment gadget, a formula gadget, and a tail gadget. All edges have duration 1 unless otherwise noted.
The assignment gadget is pictured in Figure 3.2.1. It consists of 3n + 1 vertices. Consider vertex 1, which
has two successors. At the top successor, the jobs ti1,---,t1,, are released. Each of these jobs has a
computation time of 1. At the bottom successor, the jobs fi1,---, fi,m are released. Intuitively, the top
successor corresponds to a truth assignment in which x; is true, and the bottom successor corresponds to
an assignment in which z; is false. Further, a path from vertex 1 to vertex 3n + 1 corresponds to a truth
assignment for the variables x1,--- ,x,. Job o has a computation time of 1. Job o is released at vertex 1
and due at vertices 2 and 3. Job o is also released at vertices 2 and 3 and due at vertex 4. In any winning
strategy, o is the only job executed from time 0 until time 2n.

The formula gadget is made up of m clause gadgets. Figure 3.2.2 depicts the clause gadget for the i-th
clause, €;1 A ;2 A {; 3. The first vertex 3n 4 4i — 3 has three successors, corresponding to the three literals.
For ¢’ € [1 .. 3], job j; i is due at the #’-th successor, where

] fra g =g
i = { e = oy (3.2.1)

Note that this definition is the opposite of the definition of j; ;» for the NP-hardness proof (equation (3.1.1)).
Vertices 3n + 4i — 2, 3n + 4¢ — 1, and 3n + 4i each release the job o. Recall that job o has computation
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Figure 3.2.1: The assignment gadget.
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Figure 3.2.2: The clause gadget for the ¢-th clause.

17



B. Horowitz: Conditional Scheduling with Varying Deadlines 18

d: j11 d: j21 d: jm1

r:o
d:o dJlZ d:o djzz d:o d:o d: o

~ ,1/ - h/ AW \d
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Figure 3.2.3: The formula gadget.

d:s

m-—1
B — e

Figure 3.2.4: The tail gadget.

time 1. Job o is due at the common successor vertex 3n + 4¢ + 1. In any winning strategy, o is the only job
executed from time 2¢ — 1 until time 2i. The vertex 3m + 47 — 3 releases the job s. Job s has computation
time 1, and will be due in the tail gadget. The role of s will be explained shortly. Figure 3.2.3 shows the
entire formula gadget. It consists of a sequence of m clause gadgets one for each clause.

To understand the role of job s, consider a run p = (1,--- ,3n+ 1) from vertex 1 to vertex 3n+1. Let p;
(respectively, pa and p3) be the sequence consisting of p followed by vertex 3n + 2 (respectively, 3n + 3,
3n +4). There are two cases to consider:

1. For some i € [1..3], job ji, has been released along run p. Suppose for concreteness that job ji o
has been released. In any winning strategy o, o(p2,j1,2) = 1. Thus, s will not have completed after
following po and entering vertex 3n + 5.

2. Neither j1,1, ji1,2, nor ji,s has been released along run p. Then s can be executed along runs p1, po,
and p3, and s will have completed upon entering vertex 3n -+ 5.

Thus, s will be able complete in all runs following p and subsequently entering vertex 3n + 5 if and only if
neither ji 1, ji,2, nor ji,3 has been released along run p. But note, from the properties of the assignment
gadget, that p releases neither ji 1, ji,2, nor ji 3 if and only if the clause £1 1 A £12 A 41 3 is made true by
the truth assignment corresponding to p. Intuitively, then, the first clause gadget indicates whether the first
clause is made true by the truth assignment corresponding to p: if some amount of s remains to complete
upon entering vertex 3n + 5, then the truth assignment makes the first clause false. Further, if more than
m — 1 units of s remain to complete upon entering vertex 3n + 4m + 1, then the truth assignment makes ¢
false. The proof in the next subsection will flesh out these intuitions; here our purpose is merely to introduce
the construction.

The tail gadget is pictured in Figure 3.2.4. The tail gadget follows the formula gadget. The tail gadget
has two vertices 3n +4m + 1 and 3n + 4m + 2 connected by an edge of duration m — 1. The duration of the
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edge is significant, in that if more than m — 1 units of job s are pending when vertex 3n +4m + 1 is entered,
then s will not be able to finish before vertex 3n + 4m + 2 is entered. Intuitively, s will be able to finish
before vertex 3n + 4m + 2 is entered if and only if every truth assignment makes some clause of ¢ true, i.e.,
if and only if ¢ is a tautology.

3.2.2 Proof of coNP-hardness of DAG scheduling

We now precisely define the reduction from DAG scheduling to 3-TAUT. We first present a polynomial-time
function that maps each 3-DNF formula ¢ to a DAG scheduling problem P[¢]. We then show that ¢ is a
tautology if and only if P[¢] has a winning strategy, thus establishing that DAG scheduling is coNP-hard
(Theorem 3.2.2).

Given a 3-DNF formula ¢ = V!, 0;1 A 42 A {; 5 we define the DAG scheduling problem P[¢] =
((V,v9,E,D), (J,t,r,d)) as follows:

e The set V of vertices is [1 .. 3n + 4m + 2].
e The initial vertex vg is 1.

e The set £ of edges is:

{Bi—2)—=3Bi—1)|ie[l.. n]} u (assignment gadget)
{Bi—2) — (3i)|ie[l..n]} U K
{Bi—1) = 3i+1)|ie[l..n]} U K
{B1)) = (Bi+1)|ie[l.. n]} U ”
{Bn+4i—3)—> Bn+4i—2)|ie[l..m]} U (formula gadget)
{Bn+4i—-3) = Bn+4i—-1)|ie[l..m]} U ”
{Bn+4i—-3)— Bn+4i)|ie[l..m]} U "
{Bn+4i—2) - Bn+4i+1)]iel..m]} U "
{Bn+4i-1)— Bn+4i+1)|ic[l..m]} U ”
{Bn+4i) > Bn+4i+1)|ie[l..m]} U ”
{Bn+4m +1) —» (3n+4m + 2)} tail gadget

For each edge e = v — v’ € £, the duration D(e) of e is:

m—1 fv=3n+4m+1and v  =3n+4m+ 2
D(e) = 1

otherwise

The set J of jobs is:
{tix|iel..n,kel.m]} U
{fixliel.n],ke[l.m]} U
{o,s}

For each job j € J, the time ¢(j) required by j is 1.

The set r(v) of jobs released at vertex v € V is defined as follows:

r(3i—2) = {o} forie[1..n]
r(3i—1) = {otix|ke[l..m]} forie[l. n]
r(37) = Ao, fir|ke[l..m]} forie][l. n]
r(3n+4i—-3) = {s} forie[l..m]
rBn+4i—-2) = {o} forie[l..m]
rBn+4i—-1) = {o} forie[l..m]
r(3n + 41) = {o} forie[1..m]

For all other vertices v € V, r(v) = ().
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e The set d(v) of jobs due at vertex v € V is defined as follows:

d(3i—1) = {o} fori e[l .. n]

d(3i) = {o} fori e[l ..n]

d(3i+1) = {o} forie[l..n]
dBn+4i—3+4) = {js} forie[l.m],7el. 3]
d(3n +4i+1) = {o} forie[l..m)

d(3n+4m +2) = {s}

where j; ;+ is defined by (3.2.1). For all other vertices v € V, d(v) = 0.

It can easily be seen that the DAG scheduling problem P[¢] can be derived from the 3-DNF formula ¢
in time polynomial in the size of ¢. We now prove the following lemma, which establishes Theorem 3.2.2.

Lemma 3.2.3. The 3-DNF formula ¢ is a tautology if and only if the DAG scheduling problem P[¢] has a
winning strategy.

Proof. (<) Suppose that ¢ is not a tautology. We will show that P[¢] has no winning strategy. Consider a
truth assignment 7" that makes ¢ false. For each clause ¢; 1 A¢; 2 A¢; 3 there exists an integer ¢’ € [1 .. 3] such
that 7" makes ¢; ;» false. Consider the run p corresponding to this truth assignment and choice of literals;
more precisely, define p as follows. For i € [1 .. n], p passes through vertex 3i — 1 if T'(z;) = true, or through
vertex 3i if T'(x;) = false. For i € [1 .. m], p passes through vertex 3n+4i —3+¢'. At each of the m vertices
3n + 4i — 3 + 4/, the job j;; (as defined by (3.2.1)) is due; moreover each such job has been been released
on run p. From vertex 1 to 3n + 1 there are 2n time units of job o due; from vertex 3n + 1 to 3n +4m + 1
there are m time units of o due and m time units of the jobs j; ;» due, for a total of 2n 4+ 2m time units. If
each instance of job o and each job j; ; completes in the 2n + 2m time units before vertex 3n +4m+ 1, then
the m time units of job s cannot complete in the remaining m — 1 free time units before s is due at vertex
3n + 5m. Thus P[¢] does not have a winning strategy.

(=) Suppose that ¢ is a tautology. We shall exhibit a strategy o, and then show that it is winning. Let o
be defined as follows:

e Consider any run p = (1,--- ,4) whose final vertex 7 is in the set [2 .. 3n + 1]. Then o(p,0) = 1.

e Let i be a member of [1 .. m], and let ¢’ be a member of [1 .. 3]. Let p be a run whose final vertex is
3n+4i—3+74'. If j; i has been released along p, then o(p, j; ) = 1, where j; + is as defined by (3.2.1).
Otherwise o(p, s) = 1.

e For any run p = (1,--- ,3n+4i — 3), where i € [1 .. m], o(p,0) = 1.
e Finally, for any run p = (1,--- ,3n + 4m + 2) whose final vertex is 3n + 4m + 2, o(p,s) =m — 1.

Note that, by construction, all instances of job o, as well as jobs t; ; and f;;/, complete before they are
due. It remains to show that s also completes before it is due. Consider an arbitrary run p from vertex 1 to
vertex 3n 4+ 5m, and the corresponding truth assignment 7. More precisely, T'(x;) = true if p passes through
vertex 3¢ — 1, and T'(x;) = false if p passes through vertex 3i. Since ¢ is a tautology, T' makes some clause
of ¢, say £;1 A2 N, 3, true. For any ¢’ € [1 .. 3], consider any continuation p’ of p whose final vertex is
3n + 41 — 3+ 4. Since the job j;; due at vertex 3n + 4¢ — 3 + ¢’ has not been released, o(p,s) = 1. Since s
executes for 1 unit of time before vertex 3n + 4m + 1, each instance of s completes before it is due at vertex
3n 4+ 4m + 2. Thus o is winning. O

3.3 Discrete-time directed acyclic graph scheduling

If the graph (V, £) of a conditional scheduling problem P is allowed to be acyclic, and the strategy is required
to be discrete-time, then deciding whether P has a winning strategy becomes PSPACE-hard. In this section,
we define the set Discrete-time DAG scheduling of DAG scheduling problems with a winning discrete-time
strategy. We then reduce the PSPACE-hard problem of determining whether a quantified boolean formula
has a winning boolean strategy to Discrete-time DAG scheduling.
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Definition 3.3.1 (Discrete-time DAG scheduling). The set Discrete-time DAG scheduling is {P | P
is a DAG scheduling problem for which there exists a winning discrete-time strategy}. (I

In the remainder of this section, we prove the following theorem:

Theorem 3.3.2. Discrete-time DAG scheduling is PSPACE-hard, even if the time ¢(j) required by each
job jis 1.

We prove this theorem by presenting a polynomial-time reduction from QBF, the set of all quantified boolean
formulae with winning boolean strategies, to Discrete-time DAG scheduling. As will be seen, this reduction
will combine elements of the reductions of Sections 3.1 and 3.2. For the purposes of this section, a quantified
boolean formula is a boolean formula of the form ¢ = Jxy Vao - -+ dxo,_1 Vo, ¢, where ¢ is a 3-CNF for-
mula. As before, we shall let m denote the number of clauses of ¢. We assume that the variables occurring
in ¢ are a subset of {x1,--- , 29, }, and that each clause of ¢ contains three distinct variables. Let A be the set
of strings over the alphabet {true, false} of length at most n — 1, i.e., A = {(true U false)’ | i € [0 .. n — 1]}.
A boolean strategy is a function 3 : A — B. Intuitively, given values @ € A for the universally quantified vari-
ables o, x4, - , X9, a boolean strategy chooses a value B(«) for the existentially quantified variable xg;11.
Note that () is defined, where A is the empty string, so that a boolean strategy chooses a value for x;
given values for no universally quantified variables.

Given a boolean strategy 3 and a string & = ajas - - - v, € (trueU false)™, we define the truth assignment
T|a, A] as follows. For i € [1 .. 2n],

T, B)(x;) = { Blanaz -+ i) if iis odd

Q2 if ¢ is even

A boolean strategy (3 is winning for the quantified boolean formula v if for every string « € (true U false)™,
the truth assignment T, 5] makes ¢ true. The set QBF is {t | ¢ is a quantified boolean formula for which
there exists a winning boolean strategy}. QBF is PSPACE-hard [Sto76].

3.3.1 An introduction to the reduction from QBF to Discrete-time DAG scheduling

The expressiveness of the problem Discrete-time DAG scheduling allows us to encode the problem of de-
termining whether a quantified boolean formula has a winning boolean strategy as a discrete-time DAG
scheduling problem. In this subsection, we introduce the reduction from QBF to Discrete-time DAG schedul-
ing. In the next subsection, we precisely define the reduction, and prove that Discrete-time DAG scheduling
is PSPACE-hard. Given a quantified boolean formula 1, the reduction from QBF to Discrete-time DAG
scheduling produces a DAG scheduling problem P[] with the property that ¢ has a winning boolean strat-
egy if and only if P[¢] has a winning discrete-time strategy. The problem P[] has two parts, a quantifier
gadget and a formula gadget. The quantifier gadget consists of an existential quantifier subgadget, followed
by a universal quantifier subgadget; this pattern repeats n times. Figure 3.3.1 presents the i-th existential
quantifier gadget, for ¢ € [1 .. n]. In an intuitive sense, this gadget represents the symbols Jxzg;_1. Vertex
5i — 4 releases two jobs, to;_1 and fs;—1. Each of these jobs requires one unit of computation time, and each
job must finish by vertex 5i — 2, two time units later. Since the strategy must be discrete-time, one of these
jobs must execute in the first time unit, and, on the edge from vertex 5i — 3 to vertex 5i — 2, the other job
must execute in the second time unit. The strategy decides which job to execute first. The reader will note
the similarity between Figures 3.3.1 and 3.1.3.

Figure 3.3.2 shows the i-th universal quantifier gadget, for ¢ € [1 .. n]. In an intuitive sense, this gadget
represents the symbols Vao;. Vertex 5i — 3 releases job o. This job requires one unit of computation time,
and must finish by vertices 5i — 1 and 5, each one time unit later. Vertex 5i — 1 releases the job ty;, and
vertex 5i releases the job fa;. In contrast to the existential quantifier gadget, the environment — not the
scheduler — decides whether to release ty; or rather fs;. Vertices 5¢ — 1 and 5i also release job o, which
must finish by vertex 5i + 1, one time unit later. The reader will note the similarity between Figures 3.3.2
and 3.2.1.

Figure 3.3.3 presents the formula gadget. Recall that m is the number of clauses of the 3-CNF formula ¢.
For each i € [1 .. m], the formula gadget has a vertex 5n+i+1. At vertex 5n+i+1, jobs j; 1, ji 2, and j; 3 are
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Figure 3.3.1: The existential quantifier subgadget.
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Figure 3.3.2: The universal quantifier subgadget.
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Figure 3.3.3: The formula gadget.
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Figure 3.3.4: The entire construction.

due, where for i’ € [1 .. 3], j; i+ is defined by (3.1.1). The reader will note the similarity between Figures 3.3.3
and 3.1.4. Figure 3.3.4 shows the entire construction P[¢)]. Intuitively, the choices of the strategy and
environment up to time 3n (vertex 5n + 1) correspond to a truth assignment for the variables x1,- -, za,.
At time 3n, the formula gadget then “evaluates” this truth assignment. The proof in the next subsection
will flesh out these intuitions.

3.3.2 Proof of PSPACE-hardness

We now precisely describe the reduction from QBF to Discrete-time DAG scheduling. First, we present a
polynomial-time function that maps each quantified boolean formula ¢ to a DAG scheduling problem P[]
We then show that ¢ has a winning boolean strategy if and only if P[¢)] has a winning discrete-time strategy,
thus establishing that Discrete-time DAG scheduling is PSPACE-hard (Theorem 3.3.2).

Given a quantified boolean formula v = Jx; Vay -+ Jro,_1 Vo, /\:';1 U1V lio VL3, we define the
DAG scheduling problem P[] = ((V,vo,E, D), (J,t,r,d)) as follows:

e The set V of vertices is [1 .. 5n 4+ m + 1].
e The initial vertex vg is 1.

e The set £ of edges is:

{(6i—4) > (5i—3) |ie[l..n]} U (existential quantifier subgadget)
{(6i =3) = (5i—2) |ie[l..n]} U K

{(52 -3)—=(bi—-1)|iel..n]} U (universal quantifier subgadget)
{(5i—3)— (50) i € [1 . n]} y :

{(5¢ = 1) = (5i + 1) |z€ [1..n]} U K

{(5i) = (5t +1) |ie[l. n]} U K

{6Gn+1)— GBn+i+1)|ie[l..m]} (formula gadget)

e For each edge e = v — v’ € &, the duration D(e) of e is defined as follows:

D(e) = 2 ifv=>5n+1and v =5n+i+1 for some i€ [1..m]
=1 1 otherwise

e The set J of jobs is {o,t1, f1,t2, fo, s ton, fan}-

e The time ¢(j) required by job j is 1 for each j € J.
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e The release function r is defined as follows. For i € [1 .. n],

r(5i—4) = {toi—1, foi-1}
r(5i—3) = {o}

T(5i — 1) = {07 tgi}

r(54) = {o, fai}

For each other vertex v € V, r(v) = 0.

e The due function d is defined as follows:

d(5i — 2) = {t2i-1, foicr} fori€([l..n]
d(5i —1) = {o} fori e [1..n]
d(5i) = {o} fori e[l ..n]
d(5i+1) = {o} fori e [1..n]
dbn+i+1) = {ji1,Ji2 Jig} forie[l.. m]

where for ¢ € [1..m] and ¢’ € [1 .. 3], j; v is defined by (3.1.1). For each other vertex v € V, d(v) = 0.

It can easily be seen that P[] can be derived from v in time polynomial in the size of ). We now prove
the following lemma, which establishes Theorem 3.3.2.

Lemma 3.3.3. The quantified boolean formula ¢ has a winning boolean strategy if and only if the DAG
scheduling problem P[] has a winning discrete-time strategy.

Proof. (=) Suppose that ¢ has a winning boolean strategy 5. From § we will construct a winning discrete-
time strategy o[f]. For any run p = (1,---,i) € R, where ¢ € [2..5n+ 1], define the string alp] €
(true U false) Li+2)/6] as follows: afp] = afp]; - - - alp]| (i+2)/6), where for j € [1 .. [(i +2)/6]],

alol; = false if p visits vertex 55 — 1
Pli = true if p visits vertex 5;

Consider any run p = (1,--- , k) € R. We now define o[8](p, j) for each job j € J:
o If ke [5i—1.. 5i+1] for some i € [1 .. n], then o[3](p,0) = 1.

o If k = 5i — 3 for some i € [1 .. n|, then

o[Bl(pt:) =1 if Balp]) = true
=1

a[Bl(p, f) if B(alp]) = false
If k = 5i — 2 for some i € [1 .. n], then

a[B)(p,t:) = 1 if B(alp]) = false

olBl(p, f) =1 it Blalp]) = truc

e If k = 5n+ i+ 1 for some ¢ € [1..m], let p’ be the prefix of p that agrees with p up to vertex
5n + 1. Since ¢ € QBF, the truth assignment T'[a[p'], 5] makes false at most two of the literals ¢, 1,
61727 and £i73.

— If T[alp’], f] makes none of these literals false, then o[3](p,j) = 0 for each j € J.

— If T[alp'], 5] makes exactly one literal ¢;; false, then o[B](p,j;+#) = 1, where j; ;s is defined
by (3.1.1). For each other job j € J, o[f](p,7) = 0.

— If Talp'], B] makes exactly two literals ¢; ; and ¢; ;» false, then o[8](p, ji.i)

= U[ }(P;ji,i”) =1,
where j; ; and j; ;» are defined by (3.1.1). For each other job j € J, o[8](p, j) =

0.
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We now claim that o[f3] is winning. By the construction of o[f], all deadlines are met at vertices [5¢ — 2 .. 5i + 1],
for all ¢ € [1 .. n]. Now consider any i € [1 .. m], and any run p from vertex 1 to vertex 5n + i+ 1. It is easy
to see, based on the fact that 3 is a winning boolean strategy, that at most two of the jobs j; 1, ji2, and j; 3
remain to complete upon entering vertex 5n + 1. By the construction of o[3], these jobs are all complete
upon entering vertex 5n + ¢ + 1. Thus o[g] is winning.

(<) Suppose that P[] has a winning discrete-time strategy o. From o we will construct a winning
boolean strategy ([o]. Given an integer i € [0..n — 1] and a string @ = ay---a; € (true U false)®, let
pla] = pla]: - - - pla]si+2 be the unique run from vertex 1 to vertex 5i 4+ 2 such that for j € [1 .. 4],

| 5 =1 ifa; = false
plods; = { 5j if o = true

Define §[o] as follows:
| true if o(pla],tairr) =1
Blo)(e) = { false if o(pa], foir1) =1

We now show that the strategy ([o] is winning. Consider any string « € (true U false)™ and any integer
i € [1..m]. We will show that the truth assignment T[«, 3[o]] makes true the i-th clause, ¢;1 V ;2 V {; 3.
Since o is winning, after following the run pla; - - - @,—1] and entering vertex 5n + 1, at most two of the
jobs ji1, Jji2, and j; 3 remain to complete. Based on this fact, it is easy to see that at most two of the
literals ¢; 1, ¢; 2, and ¢; 3 are made false by the truth assignment T'[c, 3[o]]. Thus T'[«, 3[o]] makes the i-th
clause true, and 3[o] is winning. O

4 Fixed-deadline conditional scheduling

For conditional scheduling problems in which the graph (V, £) contains cycles, developing a strategy synthesis
algorithm — even an exponential-time algorithm — has proved very difficult. Though the author cannot
locate the source of this difficulty with complete confidence, he nonetheless believes that the problem lies
with the lack of standard forms of winning strategies for conditional scheduling problems. This concept is
best explained by comparison with the EDF scheduling algorithm. The way that EDF is shown to optimal,
say for the problem 1 | r;; d;; prec; pmtn | —, is to show that an arbitrary feasible schedule S can be
rearranged into the schedule S’ that EDF would have produced. The schedule produced by EDF is thus
a standard form that represents a class of feasible schedules. For a conditional scheduling problem P, the
process of going from the constraints Lin[P] to a winning strategy o involve global optimization, so that one
is hard-pressed to locate a standard form for winning strategies.

Suppose however that P is a conditional scheduling problem in which all deadlines are fixed. That is,
after a job j is released, j has a deadline some fixed number of time units later. This deadline is the same
regardless of which vertex releases j, and regardless of the sequence of vertices encountered after j is released.
It was observed in [CETO01] that, for such a fized-deadline conditional scheduling problem, EDF is an optimal
scheduling algorithm. The technical challenge now becomes one of detecting whether a condition of overload
obtains. In this section, we will develop an algorithm for this purpose. The algorithm that we obtain will
run in pseudopolynomial-time, and will determine whether a fixed-deadline conditional scheduling problem
has a winning strategy. This work extends that of [CETO01] in that the type of graph (V, &) that we analyze
is much more general: in [CET01] the graph is required to be a DAG with a unique source vertex and a
unique sink vertex. These restrictions may be slightly relaxed by allowing an edge from the sink to the
source, the only cycles in the graph being formed by such an edge [Cha03]. In this section, we remove
these restrictions. The cost is an increase in complexity: whereas [CETO01] presented a fully polynomial-time
approximation scheme, our algorithm is a pseudopolynomial-time exact algorithm. There is some hope that
this shortcoming might be removable, as the approximation scheme of [CETO01] was itself derived from a
pseudopolynomial-time exact algorithm.

We begin with a definition of fixed-deadline conditional scheduling. Rather than placing additional
conditions on Definition 2.0.1 to obtain a definition of fixed-deadline problems, we opt for the following, less
cumbersome, definition.
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Definition 4.0.4 (fixed-deadline conditional scheduling problem). A fized-deadline conditional schedul-
ing problem is a pair (F, W), where:

e F is defined as in Definition 2.0.1.

e W = (J,t,r,d), where J, t, and r are defined as in Definition 2.0.1, and d : J — Q> is a function
assigning to each job j a positive rational deadline d(j). (]

We now define the class of fixed-deadline conditional scheduling problems that our algorithm is capable
of analyzing.

e We require that the duration D(e) of each edge e is an integer, and that the time ¢(j) and deadline d(j)
of each job j are integers. This requirement may be removed by multiplying each of these quantities by
the least common multiple of the denominators of these quantities; for simplicity, however, we retain
this requirement.

e We require that every vertex have a successor. This requirement is not strict, as any graph not satisfying
it may be transformed into a graph that does: add an edge from every vertex with no successor to a
new vertex v that releases no jobs, with a new edge from v back to itself.

e We require that if a vertex releases a job j, then at least d(j) time units pass before j is released again.
Unlike the previous two requirements, this one is necessary for the algorithm we shall develop.

More precisely, we define as follows the conditions under which a fixed-deadline conditional scheduling
problem is well-formed.

Definition 4.0.5 (well-formed fixed-deadline conditional scheduling problem). A fixed-deadline
conditional scheduling problem is well-formed if the following conditions hold:

e For every edge e € £, D(e) € Z>°, and for every job j € J, t(j),d(j) € Z>°.
e For each v € V there exists a vertex v’ € V such that v — v’.

e Counsider any job j € J and any run p = (vg, -+ ,v,) € R. Let i < k be two nonnegative integers such
that j € r(v;) and j € r(vg). Then d(j) < Zf;il D(v; = viy1). O

Because numerical quantities rather than vertices are now used to impose deadlines, exactly when a job
executes between 7(i) and 7(i + 1) is now important, rather than just the proportion of time allocated to a
job between 7(4) and 7(¢ 4 1). For this reason, the definition of a strategy has to be modified to fit our new
setting.

Definition 4.0.6 (strategy). Let P be a well-formed fixed-deadline conditional scheduling problem. A
strategy o for P is a function that assigns to each run p = (vg, -+ ,v,) € R a pair o(p) = (I, e) such that:

e [ is a set of intervals, each of which is a nonempty, left-open and right-open subset of (7(vy,—1), 7(vy)).
Distinct intervals must not overlap, i.e., if 4,4’ € I and ¢ # ¢/, then i N’ = (.

e ¢: ] — Jis a function mapping each interval ¢ to a job e(i). We say that job e(i) is ezecuted in
interval i.

For a strategy o and a run p € R, we let I[o, p| (respectively, e[o,p]) denote I (respectively, e), where
(I,e) = o(p). Intuitively, I[o, p] are the intervals in which some job is executed by o along p, and e[o, p] is
a function which gives the jobs executed in these intervals. Finally, for a job j € J, we let I[o, p, j] denote
the set {i € I[o,p] | j = elo, p|(i)}. Intuitively, I[o, p, j] is the set of intervals in which job j is executed by o
along p. ]

We now define the conditions under which a strategy is winning. A strategy o is winning if, for every
infinite path (vg,vy,---) through the graph (V, &), for every integer i € Z=°, for every job j € r(v;), o
allocates t(j) time to job j between 7(i) and 7(i) 4+ d(j). More precisely:
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Algorithm 4.0.1 EDF algorithm for fixed-deadline conditional scheduling problems.

1: Algorithm EDF(Time: ZZ°, Remaining: array J of ZZ°, Deadline: array J of Z=°)
2: while Time > 0 and Remaining[j] > 0 for some j € J do
3:  let j:= a job in J such that Deadline[j] is minimal in
A := min { Time, Remaining[j]}
Time := Time — A, Remaining[j] := Remaining[j] — A
for all j € J such that Remaining[j] > 0 do

Deadline[j] := Deadline[j] — A

if Remaining[j] > Deadline[j] then

P has no winning strategy.

© % NS TR

Definition 4.0.7 (winning strategy). A strategy o for a well-formed fixed-deadline conditional scheduling
problem P is winning if the following condition holds. Let (vg,v1,--+) be any infinite sequence of vertices,
beginning with the initial vertex vg, such that v; — v; 4, for i € Z=% Then for any integer k € Z=°, for any
job j € r(uvk),

oo

> > 00 (=00, 7(vk) +d(G))] = t()) O

=k+1 icl[o,(vo, - ,ve),j]

From the optimality of EDF for fixed-deadline conditional scheduling [CETO01], it may easily be verified
that if a well-formed fixed-deadline conditional scheduling problem P has a winning strategy, then P has a
winning strategy o in which the endpoints of each interval i € I[o, p] are integers, for each run p € R.

We now develop an algorithm for determining whether a fixed-deadline conditional scheduling problem
has a winning strategy. We first present an EDF scheduling algorithm (Algorithm 4.0.1). We then we present
an algorithm that uses Algorithm 4.0.1 to detect overload (Algorithm 4.0.2). For any run (vg,v1,---), and
any ¢ € [0 .. oo, Algorithm 4.0.1 describes how EDF schedules the time interval (7(¢), 7(i4 1)) from the time
vertex v; is entered until the time vertex v;,; is entered. EDF has three inputs:

1. Time, a nonnegative integer, initially set to the duration of the edge v; — v; 1. Time indicates the
amount of time remaining in the interval (7(7),7(i 4+ 1)).

2. Remaining, an array of nonnegative integers indexed by the set J of jobs, that specifies how many
units of execution time remain for each job.

3. Deadline, also an array of nonnegative integers indexed by J, that specifies for each job j the amount
of time until j’s deadline expires.

On lines 2-3, while some time from the interval (7(i),7(i + 1)) is remaining, and some job has execution
time remaining, a job j with minimal deadline is selected. This job is executed for Time or Remaining|j]
time units, whichever quantity is smaller; call this quantity A (lines 4-5). Line 7 fixes up the array Deadline
to account for the fact that A units of time have elapsed. If there is some job j such that Remaining|[j] >
Deadlinelj], the deadline for j cannot be met (line 8). In this case, P has no winning strategy (line 9).

Unfortunately, since the number of runs, and the lengths of each run, are in general infinite, Algo-
rithm 4.0.1 cannot be used to check each run in turn, as the process would never terminate. However, there
are only finitely many permissible vectors Remaining and Deadline, since

Remaining[j] € [0 .. t(j)] and Deadline[j] € [0 .. d(j)] for each job j € J (4.0.1)

This observation suggests a state space exploration algorithm (Algorithm 4.0.2), where a state is a pair
(Remaining, Deadline) of vectors satisfying (4.0.1). For each vertex v, Algorithm 4.0.2 keeps track of a
set of unexplored states Frontier[v] and a set of explored states Explored[v]. Initially, Frontier[vg] is just
a pair of zero vectors, corresponding to the fact that no jobs have either remaining execution time or
upcoming deadlines, and Frontier[v] = @ for each vertex v # vg (lines 2-5). Now, as long as some vertex v
has a nonempty frontier, a pair (Remaining, Deadline) is selected from Frontier[v] (lines 6-8). This pair
is removed from the frontier of v, and added to the explored set of v (lines 9-10). Lines 11-12 update
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Algorithm 4.0.2 State-space exploration algorithm for fixed-deadline conditional scheduling.

1: Algorithm Explore(P: well-formed fixed-deadline conditional scheduling problem)
2: for allv € V do

3:  Frontier[v] :== Ezplored[v] := 0

4: let Remaining[j] := Deadline[j] := 0 for each j € J in

5. Frontier[vg] := (Remaining, Deadline)

6: while Frontier|v] # ) for some v € V do

7. Select any vertex v such that Frontier[v] # 0.

8: let (Remaining, Deadline) be any member of Frontier[v] in

9: Frontier[v] := Frontier[v] \ {(Remaining, Deadline)}

10: Ezplored|v] := Ezplored[v] U {(Remaining, Deadline)}

11: for all j € r(v) do

12: Remaining[j] := t(j), Deadline[j] := d(j)

13: for all v € V such that v — v’ do

14: let (A’, Remaining’, Deadline') := EDF(D(v — v'), Remaining, Deadline) in
15: if (Remaining’, Deadline’) ¢ Explored(v') then

16: Frontier(v') := Frontier(v') U {(Remaining’, Deadline’) }

17: if EDF has not declared that P has no winning strategy then
18: P has a winning strategy.

Remaining and Deadline to account for the jobs released at vertex v. Now, for each successor vertex v’ of v,
we let Remaining’ and Deadline’ be the result of applying Algorithm EDF for D(v — v’) time units (lines
13-14).19 If (Remaining’, Deadline’) is not in the explored set of v/, then (Remaining’, Deadline’) is added
to the frontier set. Finally, after all reachable states have been visited (line 17), if no call to Algorithm EDF
reported failure, then the fixed-deadline problem P is reported to have a winning strategy (line 18).

It is easy to show, based on the optimality of EDF for fixed-deadline conditional scheduling [CETO01],
that Algorithm 4.0.2 correctly determines whether P has a winning strategy. Further, the while loop
in lines 6-16 executes at most once for each vertex v and state (Deadline, Remaining), i.e., at most

V] <Hj€(]t(j)) (Hje.] d(j)) times. The running time of Algorithm 4.0.2 is thus exponential, but pseu-

dopolynomial, in the size of P. We summarize this result in the following theorem.

Theorem 4.0.8. Algorithm 4.0.2 determines whether a well-formed fixed-deadline conditional scheduling
problem P has a winning strategy. The running time of Algorithm 4.0.2 is exponential, and pseudopolyno-
mial, in the size of P.

5 Conclusion

This report has studied conditional scheduling problems. Table 5.0.5 summarizes our results. For conditional
scheduling problems with varying deadlines, we located the dividing line between feasible and infeasible
versions of conditional scheduling. On the positive side, when the graph (V,€) is a tree, we developed
a polynomial-time algorithm for synthesizing a winning strategy if one exists (Section 2). We extended
this algorithm to maximize an anytime reward function (Section 2.2), and to handle precedence constraints
(Section 2.3). On the negative side, we showed that under the reasonable restriction that preemptions occur
only at integral times, determining whether a tree scheduling problem has a winning strategy is NP-hard
(Section 3.1). Also on the negative side, we showed that if (V,€) is a directed, acyclic graph (DAG), then
determining whether a conditional scheduling problem has a winning strategy is coNP-hard (Section 3.2).
Further, when DAG scheduling is combined with preemptions only at integral times, determining whether
a conditional scheduling problem has a winning strategy becomes PSPACE-hard (Section 3.3). Finally, for
conditional scheduling problems with fixed deadlines, we presented a pseudopolynomial-time algorithm that
tests for the existence of a winning strategy (Section 4).

10We assume a call-by-value semantics, so that Remaining and Deadline are not modified by the call in line 14 to Algorithm
EDF.
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Problem Form of  Form of trace  Additional Result
graph tree features
Tree scheduling Tree Dense-time Polynomial-time
algorithm
Imprecise tree scheduling | Tree Dense-time Anytime reward | Polynomial-time
function algorithm
Precedence-constrained Tree Dense-time Precedence Polynomial-time
tree scheduling relation algorithm
Discrete-time tree Tree Discrete-time NP-hard
scheduling
DAG scheduling Directed, | Dense-time coNP-hard
acyclic
Discrete-time DAG Directed, | Discrete-time PSPACE-hard
scheduling acyclic
Fixed-deadline Any Discrete- or Fixed deadlines | Exponential-time
conditional scheduling dense-time algorithm

Figure 5.0.5: Main results of this report.
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