
Counterexample Guided Control

Thomas A. Henzinger Ranjit Jhala Rupak Majumdar

Report No. UCB//CSD-02-1213

November 12, 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Counterexample Guided Control�

Thomas A. Henzinger Ranjit Jhala Rupak Majumdar
Department of EECS, UC Berkeley

ftah,jhala,rupakg@eecs.berkeley.edu

Abstract

A major hurdle in the algorithmic veri�cation and control of systems is the need to �nd suitable
abstract models, which omit enough details to overcome the state-explosion problem, but retain enough
details to exhibit satisfaction or controllability with respect to the speci�cation. The paradigm of
counterexample-guided abstraction re�nement suggests a fully automatic way of �nding suitable ab-
stract models: one starts with a coarse abstraction, attempts to verify or control the abstract model, and
if this attempt fails and the abstract counterexample does not correspond to a concrete counterexample,
then one uses the spurious counterexample to guide the re�nement of the abstract model. We present a
scheme for counterexample-guided re�nement with the following properties. First, our scheme is the �rst
such method for control. The main diÆculty here is that in control, unlike in veri�cation, counterexam-
ples are strategies in a game between system and controller. Second, our scheme can be implemented
symbolically and is therefore applicable to in�nite-state systems. Third, in the case that the controller
has no choices, our scheme subsumes the known algorithms for counterexample-guided veri�cation. In
particular, we present a symbolic algorithm that employs counterexample-guided abstraction re�nement
in a uniform way to check satisfaction as well as controllability for all linear-time speci�cations (LTL
or Buchi automata). Our algorithm is game-based and can be applied in all situations where games
provide an adequate model, such as supervisory control, hardware and program synthesis and modular
veri�cation.

1 Introduction

The key to the success of algorithmic methods for the veri�cation (analysis) and control (synthesis) of
complex systems is abstraction. Useful abstractions have two desirable properties. First, the abstraction
should be sound, meaning that if a property (e.g., safety, controllability) is proved for the abstract model of
a system, then the property holds also for the concrete system. Second, the abstraction should be e�ective,
meaning that the abstract model is not too �ne and can be handled by the tools at hand; for example,
in order to use conventional model checkers, the abstraction must be both �nite-state and of manageable
size. Recent research has focused on a third desirable property of abstractions. A sound and e�ective
abstraction (provided it exists) should be found automatically ; otherwise, the labor-intensive process of
constructing suitable abstract models often negates the bene�ts of automatic methods for veri�cation and
control. The most successful paradigm in automatic abstraction is the method of counterexample-guided
abstraction re�nement [5, 9, 24, 6]. According to that paradigm, one starts with a very coarse abstract
model, which is e�ective but may not be informative, meaning that it may not exhibit the desired property
even if the concrete system does. Then the abstract model is re�ned iteratively. The re�nement process
is guided by looking at counterexamples: �rst, if the abstract model does not exhibit the desired property,
then an abstract counterexample is constructed automatically; second, it can be checked automatically if
the abstract counterexample corresponds to a concrete counterexample; if this is not the case, then, third,
the abstract model is re�ned in order to eliminate the spurious counterexample.

�Supported in part by the DARPA SEC grant F33615-C-98-3614, the DARPA PCES grant F33615-00-C-1693, the MARCO
GSRC grant 98-DT-660, the NSF grant CCR-9988172, the NSF ITR grant CCR-0085949, and a Microsoft Research Fellowship.

The method of counterexample-guided abstraction re�nement has been developed for the veri�cation of
linear-time properties [9], and some (universal) branching-time properties [10]. It has been applied success-
fully in both hardware [17] and software veri�cation [6, 19]. We develop the method of counterexample-guided
abstraction re�nement, for the �rst time, for the control of linear-time objectives. In veri�cation, a coun-
terexample to the satisfaction of a linear-time property is a trace that violates the property: for safety
properties, a �nite trace; for general LTL properties, an in�nite, periodic (lasso-shaped) trace. In control,
counterexamples are considerably more complicated: a counterexample to the controllability of a system
with respect to a linear-time objective is a tree that represents a strategy of the system for violating the
property no matter what the controller does. For safety objectives, �nite trees are suÆcient as counterexam-
ples; for general LTL objectives on �nite abstract models, in�nite trees are necessary, but they can be �nitely
represented as graphs with cycles, because �nite-state strategies are as powerful as in�nite-state strategies
[18].

In somewhat more detail, our method proceeds as follows. Given a two-Player game structure (player 1
\system" vs. player 2 \controller"), we wish to check if player 2 has a strategy to achieve a given LTL (or !-
regular e.g., buchi automata) winning condition. Solutions to this problem have applications in supervisory
control [23], sequential hardware synthesis and program synthesis [8, 7, 22], modular veri�cation [2], recep-
tiveness checking [14], interface compatibility checking [12], and schedulability analysis [1]. We automatically
construct an abstraction of the given game structure that is as coarse as possible and as �ne as necessary in
order for player 2 to have a winning strategy. We start with a very coarse abstract game structure and re�ne
it iteratively. First, we check if player 2 has a winning strategy in the abstract game; if so, then the concrete
system can be controlled; otherwise, we construct an abstract player 1 strategy that wins against all abstract
player 2 strategies. Second, we check if the abstract player 1 strategy corresponds to a winning strategy for
player 1 in the concrete game; if so, then the concrete system cannot be controlled; otherwise, we re�ne the
abstract game in order to eliminate the abstract player 1 strategy. In this way, we automatically synthesize
\maximally abstract" controllers, which distinguish two states of the controlled system only if they need to
be distinguished in order to achieve the control objective. In particular, we �nd �nite-state controllers for
in�nite-state systems, such as hybrid systems, whenever such controllers exist. It should be noted that LTL
veri�cation problems are but special cases of LTL control problems, where player 2 (the controller) has no
choice of moves. Our method, therefore, includes as a special case counterexample-guided abstraction for
linear-time veri�cation.

Furthermore, our method is fully symbolic: while traditional symbolic veri�cation computes �xpoints on
the iteration of a transition-precondition operator on regions (symbolic state sets), and traditional symbolic
control computes �xpoints on the iteration of a more general, game-precondition operator CPre (Controllable
Pre) [3, 21], our counterexample-guided abstraction re�nement also computes �xpoints on the iteration of
two region operators, called Focus and Shatter. The Focus operator, which is used to check if an abstract
counterexample is genuine or spurious, sharpens the relation between an abstract state and its successors:
if there is a player 1 move leading to abstract successors that have no concrete counterparts, then that
move is removed. The Shatter operator, which is used to re�ne an abstract model guided by a spurious
counterexample, splits an abstract state into several states. Our top-level algorithm, which constructs and
re�nes abstract models and solves veri�cation and control problems on these models, calls only these three
system-speci�c operators: CPre, Focus, and Shatter. It is therefore applicable not only to �nite-state systems
but also to in�nite-state systems, such as hybrid systems, on which these three operators are computable
(termination can be studied as an orthogonal issue along the lines of [13]; clearly, our abstraction-based
algorithms terminate in all cases in which the standard, Pre-based algorithms terminate, as e.g., in the
control of timed automata [21] and they may terminate in more cases).

2 Games and Abstraction

2.1 Two-player Games

Let P be a set of proposition. A (two-player) game structure G = (V1; V2;�;�; Æ;P) consists of two (possibly
in�nite) sets V1 and V2 of states, a �nite set � of moves, a function � : V1 [V2 ! 2� mapping states
to subsets of moves enabled at the state, a transition relation Æ � (V1 � � � V2) [(V2 � � � V1), and

2

a labeling function P : (V1 [V2) ! 2P mapping states to sets of propositions. The set V1 is the set of
player 1 states, the (disjoint) set V2 is the set of player 2 states. Let V = V1 [V2 denote the set of all
states. The transition relation relates states v 2 V1 and moves in �(v1) to states in V2, and states v 2 V2
and moves in �(v2) to states in V1. Intuitively, for i = 1; 2, at state v 2 Vi, player i chooses a move l 2 �(v),
and the game proceeds to some state v0 satisfying Æ(v; l; v0). We require that each state v has an enabled
move (�(v) 6= ;). For a move l 2 �, let Rl = fv 2 V j l 2 �(v)g denote the set of states in which move
l is enabled. We extend the transition relation to sets via the operator Apre : 2V � � ! 2V by de�ning
Apre(X; l) = fv 2 V j 8v0:Æ(v; l; v0)) v0 2 Xg. We assume P contains a special proposition init . For p 2 P

let hhpii = fv j p 2 P(v)g and hh:pii = V n hhpii, the set hhinitii is the set of initial states. We say v satis�es p
if v 2 hhpii.

A source-v0 run of the game G is an in�nite sequence v0v1 : : : of states in V such that for all j � 0,
there is lj 2 �(vj) such that Æ(vj ; lj ; vj+1). A strategy of player 1 is a function f1 : V

+ ! � such that
f1(w � v) 2 �(v) for every state sequence w 2 V � and every state v 2 V1. A strategy of player 2 is a pair
(f2; n2) where f2 : V

+ ! � and n2 : V
+ � � ! V2. For every state sequence w 2 V �, every state v 2 V2,

and every state v0 2 V1, the function f2 suggests moves to player 2: f2(w � v) 2 �(v), and the function n2
resolves the nondeterminism in the move of player 1: n2(w � v0; l) 2 fu j Æ(v0; l; u)g. Since the transition
relation is (in general) nondeterministic, the games are inherently asymmetric: we allow the adversary to
resolve the nondeterminism at every stage. Hence our de�nition of strategies for players 1 and 2 are also
asymmetric: a strategy for player 1 looks at the history of the game and suggests a move; a strategy for
player 2 suggests moves at player 2 states, and moreover resolves the nondeterminism by picking some
successor at player 1 states (given a move of player 1 at that state). This asymmetry is needed (as explained
below) in the abstraction of games. Let f1 be a strategy of player 1 and (f2; n2) a strategy of player 2. The
outcome �f1;(f2;n2)(v0) from v0 2 V of strategies f1 and (f2; n2) is a subset of the source-v0 runs of G: a run
v0v1v2 : : : belongs to �f1;(f2;n2)(v0) if for all j � 0, we have vj+1 = n2(v0 : : : vj ; f1(v0 : : : vj)) if vj 2 V1, and
Æ(vj ; f2(v0 : : : vj); vj+1) if vj 2 V2.

2.2 LTL Winning Conditions

We consider winning conditions expressed by formulas of linear temporal logic (LTL).1 The LTL formulas
are generated by the grammar

	 ::= p j :	 j 	 _	 j 	 j 	U	

where p 2 P is a proposition, is the \next" operator, and U is the \until" operator. Additional constructs
such as 3	 = true U	 and 2	 = :3:	 can be de�ned in the standard way. A trace � : ! ! 2P is an
in�nite sequence of sets of propositions. Every LTL formula 	 has a truth value on each trace, we write
L() for the set of traces that satisfy 	; a formal de�nition for L() may be found in [15]. For a run
� = v0v1 : : : of G, we get a trace �� = P0P1 : : : where for all j > 0, Pj = P(vj) is the set of propositions from
P true at vj . An LTL game is a triple (G; hhinitii; h1i) where G = (V1; V2;�;�; Æ;P) is a game structure,
hhinitii denotes the set of initial states, and 	 is a winning objective for player 1. A run � is winning for
player 1 if the corresponding trace �� satis�es 	. A strategy f1 is winning for player 1 if for all strategies
(f2; n2) of player 2, and for all initial states v, all runs in the outcome �f1;(f2;n2)(v) are winning for player 1.
Conversely, a strategy (f2; n2) is spoiling for player 2 if for all strategies f1 of player 1, there is an initial v
and a run in �f1;(f2;n2)(v) not winning for player 1.

We consider, in particular, safety games (and dually reachability games) on game structures. A safety
game has the objective h1i2p. Intuitively, the goal of player 1 is to keep any play starting from any initial
state always inside the set of states satisfying p. Formally, a run � = v0v1 : : : is winning for player 1 if for
all j � 0, we have p 2 P(vj). �p denote the set of all runs winning for player 1. The strategy f1 is winning
for player 1 if for all strategies (f2; n2) of player 2 and for all v 2 hhinitii, the outcome �f1;(f2;n2)(v) � �p.
Conversely, a strategy (f2; n2) is spoiling for player 2 if for all strategies f1 of player 1, there is a v 2 hhinitii
such that the outcome �f1;(f2;n2)(v) \ �p = ;. The dual of a safety game is a reachability game h1i3p.
Intuitively, the goal of player 1 is to force the play into a state satisfying p. Formally, a run � = v0v1 : : :

is winning for player 1 if there exists j � 0 such that p 2 P(vj). Note that nondeterministic games are

1Our results hold also for winning conditions given by !-regular languages.

3

I

II

1 2 3

8

A A

L

L L

B B B L
L C

75 6 9

p p

(a) Game

p

LL

I

II

1 2 3

l

I

II

1 2 3

l

L L

BA

8 9765

(b) Abstraction

Figure 1: Ex-Control

2

5

43

6

1

p p

(a)

21

65

43

p

(b)

Figure 2: Ex-Verif

in general not determined: a spoiling strategy of player 2 is not necessarily a winning strategy in the dual
game.

In the following, if the game structure and the set of initial moves is understood, we refer to a game only
by the winning condition, for example, for a �xed game G and �xed initial set of states hhinitii, we refer to
the game (G; hhinitii; h1i) as h1i	.

Example 1 [A Safety Game] As an example of a safety game, consider the game in Figure 1(a). The
white states are player 1 states and the black ones are player 2 states. The labels on the edges denote the
moves. The objective is h1i2:p, i.e., the states hhpii are the error states that player 1 seeks to avoid. The
player 1 states 1; 2; 3 are the starting states, i.e., we wish player 1 to win from all those states. Notice that
in fact player 1 wins from the states 1, 2, and 3: at state 1, he plays the move C, at state 2, he plays A, and
at state 3, he plays B. In each case, the only move L of player 2 brings the game back to the original state.
This ensures the game never reaches a state in hhpii.

Example 2 [A Safety Veri�cation Problem] The standard safety veri�cation (or invariant checking)
problem on transition systems is a special case of the safety game where there are only player 2 states. An
example is given in Figure 2(a). The starting states are 1,2 and we wish to check that 2:p ,i.e., that the
states 5,6 are never visited. It is easy to see that the system satis�es this criterion.

2.3 Abstractions of Games

It may be computationally infeasible to compute solutions to safety and reachability games on a game
structure. Hence we study the abstraction of safety and reachability games on abstract game structures [20].
We want the abstraction to be sound : i.e., the properties that we establish in the abstract game G� should
carry over to the actual game, namely, if player 1 wins the safety (or reachability) game on an abstract game,
then he wins the corresponding game on the concrete game. To ensure soundness, we restrict the power of
player 1 and increase the power of player 2. Therefore we abstract the player 1 abstract states so that fewer
moves are enabled, and the player 2 abstract states so that more moves are enabled.

De�nition 1 [Abstract Game Structures] Given a game structure G = (V1; V2;�;�; Æ;P) with state
space V = V1[V2, an abstract game structure G� for G is a tuple (V �

1 ; V
�
2 ;�;�

�; Æ�;P�) and a concretization
function [[�]] : V � ! 2V (where V � = V �

1 [V �
2) such that:

(i) The abstraction preserves the player structure and proposition labels: for each i 2 f1; 2g we have
8v�i 2 V �

i :[[v
�
i]] � Vi; and for each v� 2 V �, if v1; v2 2 [[v�]] then P(v1) = P(v2).

(ii) The abstract states \cover" the concrete state space:
S
v�2V � [[v�]] = V .

(iii) For a player 1 abstract state v�1 2 V �
1 , the set of enabled moves ��(v�1) =

T
v12[[v�1]]

�(v). Dually for a

player 2 abstract state v�2 2 V �
2 , we have �

�(v�2) =
S
v22[[v�2]]

�(v).

4

(iv) The abstract transition relation is Æ� � V � � � � V � such that (v�; l; w�) 2 Æ� i� l 2 ��(v�) and
9v 2 [[v�]]; v0 2 [[w�]]: (v; l; v0) 2 Æ.

(v) The abstract labeling function P� : V � ! 2P maps an abstract state v� to P(v) where v 2 [[v�]]. This
is well-de�ned by (i).

Remark 1 [V � generates G�] (1) Notice that the abstract transition relation Æ� and �� are functions
of just the concrete transition relation Æ and the abstract state space V �. Hence, given a game structure G
and the set of abstract states V � = V �

1 [V �
2 , we say G

� is generated by the game G and V � if G� is the
abstract game for G de�ned on the states V � in De�nition 1. (2) For any set W � V of a game structure G,
we denote by W� � V � the set fv� j [[v�]] \W 6= ;g.

Intuitively, each abstract state represents a set of concrete states of the original game G; we sometimes
identify (with abuse of notation) the concretization of an abstract state with the abstract state. The abstract
transition relation can be extended to sets of abstract states via the operators Pre� and Post� as for concrete
games. The soundness of the abstraction ensures that if player 1 can win the abstract game, he can win
the concrete game as well; in fact a winning strategy in the abstract game can be directly translated to a
winning strategy in the concrete game.

Proposition 1 [Soundness of Abstraction] Let G� be an abstract game structure corresponding to a
concrete game structure G over the set of states V . For any LTL objective 	, if player 1 wins the LTL game
(G�; fv�g; h1i) from a state v� on the abstract game structure, then he wins the LTL game (G; [[v�]]; h1i)
on the concrete game G.

Example 3 [Abstractions for Ex-Safety, Ex-Verif] In Figure 1(b) we show one particular abstraction
for Ex-Safety. The boxes denote abstract states with the states they represent drawn inside them. The
dashed arrows are the abstract transitions. Notice that from the starting player 1 box, the move C is not
enabled as not all the states in the box can do it. In the abstract game, player 2 has a spoiling strategy:
after player 1 plays either move A or move B, player 2 can play move L and take the game to the error set
hhpii. In Figure 2(b), we show an abstraction for Ex-Verif. Notice this is exactly the standard existential
abstraction for transition systems.

2.4 Solving LTL Games

We now turn our attention to solving LTL games, i.e., determining the states from which player 1 can
win. From the predecessor operator Apre, we can de�ne the one step controllable predecessor operator
Cpre1 : 2

V ! 2V , denoting, for a set X � V , the set of states from which player 1 can force the game into
X in one step. Player 1 can force the game into X in one step from a state v1 2 V1 i� in that state he has
some enabled move l such that all the l-successors of v1 are in X, and player 1 can force the game into X
from an state v2 2 V2 i� for all moves l enabled at v2, all l-successors of v2 are in X. Hence we have:

Cpre1(X) =
[
l2�

fv1 2 V1 j 8v2:Æ(v1; l; v2) =) v2 2 Xg [
\
l2�

fv2 2 V2 j 8v1:Æ(v2; l; v1) =) v1 2 Xg (1)

Note that player 2 resolves the nondeterminism, this is necessary to ensure soundness.
Given a game with an LTL winning condition, we can construct a �-calculus formula with the Cpre1

operator that characterizes the set of states from which player 1 wins the game [13]. Moreover, from the
�xpoint computation, one can symbolically construct a winning strategy for player 1 [21, 13]. In particular,
the solution of reachability and safety games can be constructed by iterating the one step controllable
predecessor Cpre1 until �xpoint. For example, the set of states from which player 1 can control for 2p
is exactly the greatest �xpoint �X:hhpii ^ Cpre1(X), so player 1 wins the safety game (G; hhinitii; h1i2p) if
hhinitii � (�X:hhpii^Cpre1(X)). Similarly, the set of states from which player 1 can control for 3p is exactly
the least �xpoint �X:hhpii _Cpre1(X).

5

Given a game G we construct and model check its abstraction G�. The soundness of the abstraction
ensures that if player 1 can win the abstract game, then he can win the concrete game as well, moreover, a
strategy for player 1 in the abstract game can be used to synthesize (symbolically) a strategy for player 1
in the concrete game [21, 13]. On the other hand, if player 1 cannot win the abstract game, the �xpoint
iteration can be used to return an abstract counterexample corresponding to a spoiling strategy of player 2
in the abstract game.

3 Counterexample-Guided Re�nement

We now describe what the abstract counterexamples look like and how they may be analyzed. For clarity,
we shall �rst focus on synthesizing controllers for safety games; Section 4.2 discusses how a similar analysis
works for general LTL (or !-regular) control objectives. We give an algorithm to decide whether an abstract
counterexample corresponds to a player 2 spoiling strategy for the concrete safety game (the counterexample
is \genuine"), or if it arises due to the coarseness of the abstraction (the counterexample is \spurious"). In
the �rst case, no controller can be synthesized; in the second, we must re�ne the abstraction in order to
rule out this counterexample (and similar ones). In essence our algorithm amounts to model checking the
counterexample to �nd which of the states corresponding to the abstract set of states represented by the
counterexample can actually be a part of a real counterexample. In the sequel, we show the di�erent steps
on a �xed safety game (G; hhinitii; h1i2:p). We write U = hhinitii and W = hhpii.

3.1 Abstract Counterexamples

A counterexample for a safety game 2p is a strategy of player 2 that ensures that for every strategy of player 1,
some state of hhpii is reached eventually. Finite trees form a natural representation of such counterexamples.
In fact, since memoryless strategies suÆce for a reachability game, such a tree will contain states only once
along any path. This is unlike counterexample driven veri�cation of safety properties [9, 24, 6] where the
counterexample is just a trace.

In the sequel we use the following notation. By tree, we mean a rooted directed �nite tree with labels on

both nodes and edges. Each edge is labeled with a move from �. If n
l
�! n

0 is an edge in the tree we say n
0 is

an l-child of n. Nodes are marked with either an abstract state (denoted by v�), a concrete state (denoted
by v), or a set of concrete states (denoted by r). We write n : M for node n marked with M. A leaf is a node
with no children.

De�nition 2 [Abstract counterexample trees] An abstract counterexample tree T� for G� is a �nite
tree where each node is labeled by an abstract state such that n1 : v�1 is an l-child of n : v� only if
(v�; l; v�1) 2 Æ� and:

(i) The root of the tree is labeled by an abstract initial state.

(ii) If node n : v� is a leaf, then either v� 2 V �
1 and there is no enabled move (��(v�) = ;), or [[v�]] � hhpii.

(iii) If node n : v� is an internal player 1 node, then for each l 2 ��(v�), n has at least one l-child.

(iv) If node n : v� is an internal player 2 node, then for some l 2 ��(v�), n has at least one l-child.

We de�ne a partial order on counterexample trees as follows: T1 � T2 i� the rooted tree T1 is equal to
some subgraph of T2 (with the same root). An abstract counterexample tree T� is maximal (respectively,
minimal) for G� if there is no counterexample tree T�

1 for G� such that T� (T�
1 (respectively, T�) T�

1).
The type of a counterexample tree T� is a tree type(T�) that is identical to T�, except that only the
edges are labeled, not the nodes. The set of types of a counterexample tree T� is denoted Types(T�) =
ftype(T�

1) j T
�
1 is a counterexample tree and T�

1 � T�g.
An abstract counterexample tree T� corresponds to a set of spoiling strategies for player 2 in the abstract

game. At each player 1 state n : v�, for each enabled move l that player 1 can choose, player 2 can choose at

6

p p

1 2 3

l

1 2 3

II

I

L L

A B

6 7 8 9

(a) T�

A B

L L

(b) type(T�)

Figure 3: Abstract counterexample for Ex-Safety

21

65

43

p

Figure 4: An abstract counterex-
ample �� for Ex-Verif

least one successor abstract state from which she wins by subsequently forcing it into W�, namely, any one
of the l-children of n : v�. Depending on how player 2 chooses to resolve the nondeterminism, we get a set
of spoiling strategies for player 2. If player 1 cannot win the safety game h1i2V � nW�, the model checker
produces a maximal counterexample tree corresponding to a spoiling strategy for player 2.

Example 4 [Abstract Counterexamples] Figure 3(a) shows an abstract counterexample T� for the
abstraction of Ex-Safety. Notice that the counterexample for a safety game is anAnd-Or tree. Figure 3(b)
shows the type of the given counterexample. Figure 4 shows an abstract counterexample for the abstraction
of Ex-Verif. The counterexample for invariant veri�cation is just a trace ��.

Note that there may be player 1 abstract states in the abstract game with no abstract successors. To
ensure soundness, such states must be considered losing for player 1. Since the original game structure is
total, an abstract strategy of player 1 that wins by going to a state with no successors cannot be translated
to a concrete strategy; hence any such winning strategy must be removed in the abstract game. Consider
for example a game with three states s; t; u, where the �rst two are player 1 states. At s, player 1 can play
only the move A and go to u, and at t he can play the move B and go to u. Now consider the safety game
h1i2fs; tg with starting states fs; tg. Clearly player 1 loses. Consider an abstraction made of the abstract
states fs; tg; fug. In the abstract state fs; tg no moves are enabled, so the abstract game never goes out of
fs; tg. However, state fs; tg is still losing for player 1. Note that since the original game structure is total,
there cannot be abstract player 2 states with no abstract successors. Therefore, we assume (by splitting
abstract states if necessary) that each leaf state of a given abstract counterexample has at least one enabled
move. Thus, condition (ii) in De�nition 2 becomes: (ii)' if node n : v� is a leaf, then [[v�]] � hhpii. This
assumption, while not technically necessary, simpli�es the presentation.

3.2 Concretizing Abstract Counterexamples

An abstract counterexample may not be realizable in the concrete game, i.e., even though player 2 has a
strategy to win the abstract game, it may be the case that that strategy does not correspond to a winning
strategy for player 2 in the concrete game.

De�nition 3 [Concrete Counterexamples] A concrete counterexample tree T is a �nite tree where each
node is labeled by a concrete state such that:

(i) the root is labeled with an initial state,

(ii) if (n : vn)
l
�! (n0 : vn0) 2 T then (vn; l; vn0) 2 Æ, and

(iii) for each player 1 internal node n in T , if the children of n are labeled by moves C(n) then �(n) = C(n),
i.e., exactly those moves are enabled at vn, and

7

(iv) for each leaf node n in T , vn 2W .

An abstract counterexample T� is realized by the concrete counterexample T if type(T) = type(T�) and
each node n that was marked with abstract state v� in T� is marked in T with a single state vn 2 [[v�]]. An
abstract counterexample tree T� is genuine if there is some T�

1 � T� such that T�
1 is realized by a concrete

counterexample; it is spurious otherwise.

From the de�nition it follows that a counterexample tree is spurious i� it does not correspond to a winning
strategy for player 2. Given an abstract counterexample tree, the counterexample analysis procedure must
determine if the counterexample is genuine. We now give a nondeterministic closure procedure on the abstract
counterexample tree that characterizes precisely if the tree is a genuine counterexample. We then resolve
the nondeterminism to provide a bottom-up tree-marking algorithm linear in the size of the counterexample
tree.

For the abstract counterexample tree T�, the basic step in counterexample analysis is the Focus operation
FocusT� : (T� � 2V)! 2V , that takes a node n in T� and a set of concrete states, and returns a subset of
the concrete states. Let C(n) be the labels on edges leaving n 2 T�, and let nl;i : rl;i be the various l-children
of n (indexed by i), where each of the rl;i denotes a set of concrete states. De�ne the operation FocusT� as:

FocusT�(n; r) =

8>><
>>:
r if n is a leaf node

r \
�T

l2C(n)([nl;i
Apre(rl;i; l))

�
\ :(

S
l 62C(n)Rl) if n is a player 1 node,

r \
�S

l2C(n)([nl;i
Apre(rl;i; l))

�
if n is a player 2 node.

(2)

Intuitively, the Focus operator does the following. At each point, each of the nodes of the tree will be
marked by those (concrete) states that we know are an upper approximation of the the set of states that
can actually be a part of a concrete counterexample of the type of the given one. One step of the Focus
operator further sharpens this set by �nding exactly which of the states in the present overapproximation
can actually have successors which can lead to counterexamples. Thus the �xpoint of this operator contains
exactly those states that can be part of the counterexample. For any leaf node (since we assume every leaf
node has at least one enabled move), all states are in hhpii, and therefore can actually be in a counterexample.
For player 1 internal nodes, the only states that can be part of a counterexample are those (i) where the
only enabled moves are the moves labeling the child-edges on the tree and moreover (ii) where all their
l-successors are in fact such that from them player 2 has a spoiling strategy corresponding to the given tree,
i.e., those states that lie in the intersection of the Apres of the overapproximations presently labeling the
children. Similarly for player 2 nodes, only those nodes can actually be a part of a counterexample, which
have at least one successor from which subsequently player 2 can spoil, which is exactly the union of the
Apres of the overapproximations of the child nodes.

Algorithm 1 AnalyzeCounterex(T�)

INPUT: An abstract counterexample tree T�, with root root.
OUTPUT: Whether the abstract counterexample T� is Spurious or Genuine
for each n : v� 2 T� do
Relabel n with [[v�]]

while there is some node n : r with r 6� FocusT�(n; r) do
pick some node n : r to focus
replace n : r with n : FocusT�(n; r) in the tree
if root : r with r = ; then
return Spurious

return Genuine

The counterexample analysis procedure AnalyzeCounterex iterates Focus on nodes until there is no change,
that is, it computes the greatest �xpoint of the Focus operator on the abstract tree. Notice that in fact the
procedure AnalyzeCounterex is model checking the counterexample tree (T�) to �nd if it is genuine or not. The
greatest �xpoint that it computes is exactly the set of states that can be a part of a concrete counterexample,

8

Algorithm 2 Focus�(n : v�; T�)

INPUT: An abstract counterex. tree T� and a node n 2 T� marked by the abstract state v� .
OUTPUT: The region that is the greatest �xpoint of Focus for node n.
if n is a leaf node then
return [[v�]]

else if n is a player 1 node then

return [[v�]] \
�T

l2C(n)([iApre(Focus
�(nl;i : v

�
l;i; T

�); l))
�
\ :(

S
l 62C(n)Rl)

else if n is a player 2 node then

return [[v�]] \
�S

l2C(n)([iApre(Focus
�(nl;i : v

�
l;i; T

�); l))
�

and thus if at some point that set becomes empty it means that there is no concrete counterexample that
realizes T�.

The procedure AnalyzeCounterex is nondeterministic in its choice of nodes to re�ne. One can resolve the
nondeterminism of the while loop by a bottom-up strategy starting from the leaves: each node is focused
after all of its children. This ensures that after a node is focused for the �rst time, for all states v in the
focus, there is a concrete counterexample tree rooted at v. The algorithm Focus� computes this �xpoint
in time linear in the size of the counterexample tree. Note that AnalyzeCounterex(T�) returns Spurious
i� Focus�(root; T�) is empty. In the sequel Focus�(n) refers to the set of states computed by the above
function, namely Focus�(n : v�; T�), which is exactly the same as the �xpoint of the Focus operator as
computed by the while loop of AnalyzeCounterex. We drop the parameters v�; T� where they are clear
from the context. The correctness and complexity of the counterexample analysis routine is stated by the
following proposition.

Proposition 2 [Correctness of AnalyzeCounterex] The counterexample T� is spurious i� the procedure
AnalyzeCounterex(T�) returns Spurious. Checking if a counterexample tree is spurious can be done in time
linear in the size of the counterexample tree.

I 1 2 3

II

L L

6 7 8 9

p p

(a)

I 1 2 3

II

C
B B BA A A

6 7 8 9

p p

(b)

Figure 5: Focusing the nodes of T�.

21

65

43

p

(a)

1

65

43

2

p

(b)

Figure 6: Focusing nodes of ��.

Example 5 [Counterexample Analysis: Ex-Safety] In Figure 5 we see the result of running
AnalyzeCounterex (or Focus�) on the counterexample T�. The lightly shaded parts of the boxes denote
the states which may still be a part of a counterexample i.e., the states that we take the Pres of when
computing the Focus. The dashed arrows indicate abstract transitions and the solid arrows the concrete
transitions occurring between the respective concrete states. In Figure 5(a) we see the player 2 nodes getting
focused. Note that all the states in the leaf node are error states (satisfying p) hence they are all in the
lightly shaded box. Only 6 (and respectively 8) can go to the error region from the two abstract states hence
only they are in the focused region. In Figure 5(b) we see the e�ect of doing a subsequent Focus on the root
node. None of the states in the root node are such that they can play only the moves A;B and subsequently

9

go to states from which player 2 can subsequently spoil. Hence neither of those states can serve as the
root of a concrete counterexample tree of the same type as the abstract counterexample. Thus the shaded
boxes in Figure 5(b) show also the �xpoint of Focus, we see that Focus� is empty and we can conclude the
counterexample is spurious.

Example 6 [Counterexample Analysis: Ex-Verif] In the Figure 6 we see the result of running
AnalyzeCounterex (or Focus�) on the counterexample ��. In Figure 6(a) we see the e�ect of doing a Focus
on the second abstract state in ��. All the concrete states corresponding to the last abstract state are error
states (i.e., satisfy p) hence they are all shaded. Only state 4 can go to one of the error states (i.e., lies in
the Pre of the error states) hence it is the only state in the focused region of that node. In Figure 6(b) we
see the second application of Focus, this time to the root of the trace | none of the states 1,2 in the root
go to 4 (which is the only candidate state for the second abstract state) hence the focused region is empty,
and the counterexample spurious. The �xpoint of Focus is shown by the shaded portions in Figure 6(b).

3.3 Counterexample-Guided Re�nement

If the counterexample tree returned by the model checker is spurious, we can conclude that the abstraction
is too coarse to �nd a winning strategy for player 1, and hence the abstraction must be re�ned, in order to
rule out this particular spoiling strategy of player 2.

The re�nement procedure uses the following observation: since the focus of the root is empty we can
conclude that there is no way to get a concrete subtree corresponding to the given counterexample tree (or
any subset thereof), using any of the states corresponding to the abstract state of the node. We shall split
the abstract states labeling the nodes of the tree so as to rule out all possible counterexamples whose type
is in Types(T�). The splitting uses a Shatter operation that is dual to the Focus operation used in checking
for genuine counterexamples. The Shatter operator takes an abstract state v� and returns a set of abstract
states which will replace v� in the re�ned abstraction. This is how we re�ne the abstract state space. Recall
that for a node n : v� in the abstract counterexample tree, Focus�(n; v�) represents the set of concrete states
that can actually be in some concrete counterexample.

Intuitively, the Shatter operation must break up an abstract state v� into a \good" part Focus�(n; v�)
that can actually lead to an error, and its complement v�nFocus�(n; v�) (the \bad" part). Second, the \bad"
part must be further broken down so that the re�ned abstraction cannot have a similar counterexample using
the \bad" partitions. Thus, the bad parts must be broken up into fragments, such that it is clear that each
fragment cannot lead to the given counterexample.

For a player 1 node, a part is bad because every concrete state in it either (1) has some other move
enabled that is not in the abstract counterexample, or (2) has some successor from which player 2's given
strategy fails i.e., has a successor in a \bad" block. Thus we further split the bad part into little pieces
where each piece has some other move enabled or has successors only in some bad block. For a player 2
node, the bad part is the set of states from which there is no l-successor in a \good" block, from such states,
player 2 cannot spoil using the given counterexample strategy. It can be checked that player 2 bad blocks
need not be further broken up.

We must of course update the operation Cpre�1 for each of the re�ned abstract state space, but those are
de�ned by the abstract transition relation, which in turn is de�ned by the concrete transition relation and
the abstract state space.2

The Shatter operator takes a node n : v� of the abstract counterexample tree and returns a set of subsets
of [[v�]]. One of those subsets is the \good" part from which player 2 does indeed have a spoiling strategy
given by the current counterexample tree. The other parts are the \bad" parts from which the present
spoiling strategy fails. Each part is small enough that it is clear why the present strategy fails when each of
the bad parts is an abstract state.

For the node n : v� in T� denote by r+ the set Focus�(n : v�) and by r� the set [[v�]] n r+. Recall that
C(n) is the set of labels on edges leaving n 2 T�, and nl;i : rl;i (for index i) are the various l-children of n,

2Recall that the abstract game is generated by its state space and the concrete game.

10

I 1 2 3

6 7 8 9II

BAC

(a) Shatter

p

I

II

1 2 3

8L

L C

7 95 6

A A
B B B

L

LL

(b) Re�nement

Figure 7: Re�nement for Ex-Safety

65

43

p

(a)
Shatter

1 2

65
p

43

(b) Re�ne-
ment

Figure 8: Re�nement for Ex-
Verif

where rl;i = [[v�l;i]]. Let r
+
l;i = Focus�(nl;i) and r�l;i = rl;i n r

+
l;i.

ShatterT�(n : v�) =

(
fr+g [fr� \Rl j l 62 C(n)g [fr� \ ([iApre(r

�
l;i; l)) j l 2 C(n)g if n is a player 1 node

fr+; r�g if n is a player 2 node
(3)

Example 7 [Shatter: Ex-Safety] In Figure 7 is shown the e�ect of the Shatter operator on the root
node, and the �nal re�ned game in which the counterexample is removed. For the other nodes the shatter
is trivial, namely into r+; r�. We break up the states of the root node into (i) those that can execute some
di�erent move, which we then break into groups such that each state in the group can play some new move
here only the state 1 which can play the new move C and (ii) those that can execute only A or B but can
go to a state from which player 2's strategy fails (escape) i.e., can play A or B and land in a state not in
the �xpoint of Focus, for this latter split we further split into those that can play A and escape namely the
state 2 and those that can play B and escape, namely the state 3. Notice that any abstraction in which any
two of 1; 2; 3 are together admits a counterexample of this type.

Example 8 [Shatter: Ex-Verif] In Figure 8 is shown the e�ect of the Shatter operator on the nodes of
the abstract states of ��. It is easy to check that only the second state gets shattered into f3g; f4g, which
are the r�; r+ respectively of that abstract state, as the �xpoint of Focus for that state is f4g. The same
�gure shows the re�ned transition system. Again, it is trivial to see that there is no counterexample in the
re�ned system.

For any abstract counterexample tree T�, and any node n : v� in T�, it can be shown that the union of the
concretizations of the shattered states of v� is equal to the concretization of r; i.e., if R = ShatterT�(n : v�)
then we have: [[r]] =

S
r02R[[r

0]] { we omit the proof for brevity.
The re�nement step then is as follows: given the old abstraction structure G�, we replace each \shattered"

state v� 2 V � with the smaller states in ShatterT�(n; [[v�]]), to get a �ner abstraction structure, and
recompute Æ� and �� for the re�ned state space.

De�nition 4 [Re�nement] For any abstraction G�, and a spurious abstract counterexample T� for G�,
de�ne the re�ned game Re�ne(G;G�; T�) as the abstract game generated by G and the abstract state space
V � [V 0

T� n VT� , where VT� = fv� j (n : v�) 2 T�g and V 0
T� = fShatter(n; v�) j (n : v�) 2 T�g.

The following proposition states that the spurious counterexample is ruled out in the re�ned abstraction.
Given a set of types (of counterexamples) T we say that abstract game G� has a counterexample in T i�
there is some T� for G� such that type(T�) 2 T .

Proposition 3 [Shatter removes counterexamples] For a game G and every spurious counterexample
T� on G�, the re�ned abstraction Re�ne(G;G�; T�) has no counterexample in Types(T�). Moreover, no
further re�nement of Re�ne(G;G�; T�) has a counterexample in Types(T�).

11

Algorithm 3 AnalyzeRe�neCounterex(G; T�)

INPUT: An abstract counterexample tree T�, with root root.
OUTPUT: If the counterex. is spurious then a re�ned game not containing the counterex. else reports
that the counterex. is genuine
if AnalyzeCounterex(T�) = Spurious then
G�0 := Refine(G;G�; T�)
return (Spurious, G�0)

else
return Genuine

Algorithm 4 CGSafetyControl(G; r0;)

INPUT: A game structure G, an initial set of states r0, a safety objective 	 = 2:p.
OUTPUT: A synthesized controller exhibited by control strategy T� or no controller possible exhibited
by adversary strategy T�

G� := InitialAbstraction(G; r0;)
repeat
(winner; T�) := ModelCheck(G�; r0;)
if winner = 2 then
if AnalyzeRe�neCounterex(G; T�) = (Spurious;G�0) then
G� := G�0

winner :=?
until winner 6=?
if winner = 1 then
return Synthesized Controller,T�

else
return No Controller Possible,T�

Intuitively, the above proposition states that in the re�ned abstraction there is no counterexample that has
the same type as a spurious counterexample in the coarser abstraction, i.e., all the spurious counterexamples
in the coarser abstraction are removed in the re�ned abstraction (and re�nements thereof). We then continue
the algorithm with the new set of abstract states, by repeating the model checking to search for a winning
strategy for player 1 in the re�ned abstraction.

We need not actually shatter all the nodes in the counterexample tree. In particular if the counterexample
tree is minimal, we can re�ne only the subtree rooted at any node n : r such that Focus�(n; r) = ;. The
above procedure does not shatter the fewest nodes in order to eschew the counterexamples, as we might
want, but we describe this for brevity. Indeed, the problem of �nding the \best" explanation and re�nement
of a spurious counterexample is an interesting problem in its own right.

4 Counterexample-Guided Controller Synthesis

4.1 Safety Control

Our algorithm for safety control generalizes the \abstract-check-re�ne" loop described by [5, 9, 24, 6]. Given
a game structure G, a set of initial states r0 = hhinitii, and a proposition p with W = hhpii, wish to solve
the safety game (G; r0; h1i2:p), i.e., we wish to �nd if player 1 wins from all initial states. Informally, the
algorithm is as follows.

Step 1 (\abstraction") We �rst construct an initial abstract game. One such abstraction could be the trivial
abstraction where all player i states are partitioned according to the labeling of propositions, i.e., into
those satisfying both p and init , those satisfying only p, those satisfying only init , and those satisfying
neither. Recall that the abstract transition relation is generated by the abstract state space and the
concrete game.

12

Step 2 (\model checking") Next, we model check the abstract game to �nd if player 1 can keep the game
inside the desired region V � n W� in the abstract game, starting at all of the abstract states r�0 .
If player 1 can win the abstract safety game from the states r�0 , then the model checker gives us a
winning strategy on the abstract game, from which a winning strategy in the concrete game can be
easily constructed [13]. If not, i.e., if player 2 has a strategy to reach W� no matter what player 1
does, then the model checker produces an abstract counterexample symbolically [11]. Note that as the
abstract state space is �nite, the model checking is guaranteed to terminate.

Step 3 (\counterexample-driven re�nement") If model checking returns an abstract counterexample, we
analyze this counterexample strategy to see if it is genuine. If it is genuine, no controller can be
synthesized. If instead the counterexample is spurious, then we have to re�ne the abstraction so that
this counterexample (and similar ones) do not arise on subsequent model checking runs.

Goto Step 2. (\loop") We then repeat the process with the re�ned abstraction, until either we get a
player 1 winning strategy and hence a controller by which player 1 wins the safety game, or we get a
genuine counterexample at which point we know that there is no controller possible.

We summarize the counterexample driven control procedure in Algorithm 4. The algorithm ModelCheck

returns a pair (1; strategy) if player 1 can win the game where strategy is his winning strategy, or it returns
(2; T�) when player 2 has a spoiling strategy, where T� is an abstract counterexample for the safety game
for G�. The function InitialAbstraction just returns the trivial abstraction for the game that respects the
propositional labeling. From the soundness of abstract interpretation, we get the soundness of the algorithm.

Theorem 1 [Correctness] For any initial region r0, safety objective h1i2:p, and for any terminating
execution of Algorithm CGSafetyControl(G; r0;2:p), we have:

(i) If CGSafetyControl(G; r0;2:p) returns an error tree, then there is a state v0 2 [[r0]] such that player 2
has a spoiling strategy for the safety game (G; fv0g; h1i2:p).

(ii) Otherwise, CGSafetyControl(G; r0;2:p) returns a set of states r that satis�es both r0 � r and player 1
wins the safety game (G; r; h1i2:p).

In general, Algorithm CGSafetyControl will not terminate for in�nite-state games (it does terminate for
�nite-state games). However, one can prove suÆcient conditions for termination provided certain state
equivalences on the game structure have �nite index [4, 13]. As in [13], we note that in the course of
Algorithm CGSafetyControl, the abstract state space always consists of blocks of the alternating bisimilarity
relation. Hence, if the game has an alternating bisimilarity relation of �nite index, then termination is
guaranteed.

4.2 LTL Control

We now generalize the counterexample guided safety control procedure to LTL games.
First, the procedure for solving games must implement a symbolic model checker for LTL games: it should

compute the set of winning states of player 1 for an LTL objective, or return a counterexample strategy
for player 2. Notice that counterexamples for LTL control (i.e., strategies for player 2) are directed graphs
(rather than trees). So we must generalize abstract counterexample trees to abstract counterexample graphs,
which are rooted, directed graphs, with nodes labeled by abstract states, satisfying conditions (i), (iii), (iv)
of De�nition 2. The operators type and Types and the partial order � are trivially extended to abstract
counterexample graphs.

Second, for analyzing counterexamples, we have to generalize the Focus and Shatter operators by con-
sidering successors of a node in the graph.

However, for general graphs we cannot apply a bottom-up marking strategy: in the presence of cycles,
the �xpoint computation may require focusing a node several times before the �xpoint is reached. This

1Shatter de�ned as before except r+ = FocusG�(n; r); r� = r n r+, and r
�

l;i
= F (nl;i) n rl;i.

13

Algorithm 5 AnalyzeRe�neLTLCounterex(G; G�)

INPUT: An abstract counterexample graph G�, with root root.
OUTPUT: If the counterex. is spurious then a re�ned game not containing the counterex. else reports
that the counterex. is genuine
de�ne a map F : n 7! v� that maps nodes n 2 G� to the abstract state labeling them
for each n : v� 2 G� do
Relabel n with [[v�]]

W� := V � fW� will be the abstract state space of the re�nementg
while there is some node n : r with r 6� FocusG�(n; r) do
pick some node n : r to focus
replace n : r with n : FocusG�(n; r) in the tree
W� :=W� n frg [Shatter(n : r) 1

if root : r with r = ; then
return (Spurious, Game generated by (G; W�))

return Genuine

also implies that a node may be shattered more than once: once for each focus operation. We there-
fore generalize the AnalyzeCounterex and AnalyzeRe�neCounterex procedures of Section 3 to the procedure
AnalyzeRe�neLTLCounterex that simultaneously shatters nodes while computing the �xpoint of the Focus
operation. The procedure AnalyzeRe�neLTLCounterex takes an abstract counterexample graph as input and
returns \Genuine" if the counterexample can be realized in the concrete game, or \Spurious" if the counterex-
ample is spurious, along with a re�nement of the abstract state space that rules out this counterexample.
The Shatter procedure of Section 3 can be seen as a special case, when each node is focused (and shattered)
exactly once.

With these modi�cations, we can prove the analogues of Propositions 2 and 3.

Proposition 4 [Correctness of AnalyzeRe�neLTLCounterex] Given an abstract counterexample graph G�

if procedure AnalyzeRe�neLTLCounterex(G; G�) terminates then:

1. If the procedure returns Genuine then player 2 has a spoiling strategy in the game, i.e., no controller
can be synthesized.

2. If the procedure returns (Spurious, G�0) then the game G�0 has no counterexample in Types(G�), and
no further re�nement of G�0 has a counterexample in Types(G�).

Moreover, if the state space is �nite, then the procedure AnalyzeRe�neLTLCounterex will terminate.

From the procedure CGSafetyControl from Section 3 we obtain an algorithm CGLTLControl for
counterexample-guided LTL control, by simply replacing the procedure AnalyzeRe�neCounterex with the
procedure AnalyzeRe�neLTLCounterex and replacing the safety objective 	 with any arbitrary LTL objec-
tive.

Theorem 2 For any game G, initial region r0, LTL objective h1i	, and for any terminating execution of
Algorithm CGLTLControl(G; r0;), we have:

(i) If CGLTLControl(G; r0;) returns an error, then there is a state v0 2 [[r0]] such that player 2 has a
spoiling strategy in the game (G; fv0g; h1i).

(ii) Otherwise, CGLTLControl(G; r0;) returns a region r that satis�es both r0 � r and player 1 wins the
game (G; r; h1i).

Example 9 [LTL Control] In Figure 9(a) we show an example of an LTL game. We wish to check
whether: h1i23p, i.e., that player 1 can force the game into a p-state in�nitely often. Figure 9(b) shows
an abstraction for such a game, and Figure 9(c) shows the result of solving the game on that abstraction:
an abstract counterexample where player 2 forces a loop not containing a p state. We show how the

14

4

5

3

1 2

6

B

A
A

A A

C C

p p

(a) Game

1 2

4

5

3

6

BA

A

C

p

(b) Abstraction

1 2

43

BA

(c) Counterex. G�

1 2

4

5

3

6

C

A B A

p

C

A

(d) Re�nement

Figure 9: Ex-Control

B

1 2

43

(a)

A

1 2

43

(b)

1 2

43

B

(c)

A

1 2

43

(d)

Figure 10: AnalyzeRe�neLTLCounterex on G�

15

counterexample is analyzed and discovered to be spurious in Figure 10. In the �rst �gure we see the e�ect of
doing a Focus on the second (lower) node of G�. As only the state f4g has a move that lands it in f1; 2g (the
region of the B-child of the node) the focused region for the node is f4g, Also, the abstract state is shattered
into two states f4g and f3g (respectively r+; r�). Next, in Figure 10(b) we see the e�ect of doing a Focus
on the upper node of G�. Only the state 2 has an A successor in the focused region of the lower node, hence
the focused region becomes f2g, and the upper node gets shattered into f1g and f2g. In Figure 10(c) we
again do a Focus on the lower node. Since no state (in particular 4) has a B-move to the focused region of
the upper node, the focused region of the lower node becomes empty. In the next Figure 10(d) we see that
when we do a last Focus on the upper node, it becomes empty as well. In Figure 9(d) we see the re�ned
abstraction for the game; it is easy to see that player 2 has no spoiling strategy.

In [10], the authors consider counterexample based model checking for ACTL formulas. In that case (and
in fact, for some more expressive logics considered in [10]), the counterexample graphs are tree-like, and our
algorithm for analyzing counterexamples and re�ning the abstraction specializes to theirs; in fact since the
counterexamples are models of ECTL formulas, the counterexample graph in that case contains only player 2
nodes. Similarly, in model checking the �-calculus, one can reduce the model checking question to solving a
parity game [16]. Hence, the above method provides a counterexample driven model checking procedure for
the �-calculus.

Finally, we note that the operators Focus and Shatter can be de�ned using the operator Apre and boolean
operations. Hence, all the counterexample driven algorithms in this paper can be implemented completely
symbolically using a symbolic representation of game structures [13].

References

[1] K. Altisen, G. G�ossler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A framework for scheduler
synthesis. In RTSS 99: IEEE Real-Time Systems Symposium, pages 154{163. IEEE Computer Society
Press, 1999.

[2] R. Alur, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Automating modular veri�cation. In J.C.M.
Baeten and S. Mauw, editors, CONCUR 99: Concurrency Theory, Lecture Notes in Computer Science
1664, pages 82{97. Springer-Verlag, 1999.

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proceedings of the
38th Annual Symposium on Foundations of Computer Science, pages 100{109. IEEE Computer Society
Press, 1997.

[4] R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating re�nement relations. In D. San-
giorgi and R. de Simone, editors, CONCUR 98: Concurrency Theory, Lecture Notes in Computer
Science 1466, pages 163{178. Springer-Verlag, 1998.

[5] R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing veri�cation by successive approximation.
Information and Computation, 118(1):142{157, 1995.

[6] T. Ball and S.K. Rajamani. The SLAM project: debugging system software via static analysis. In
POPL 02: Principles of Programming Languages, pages 1{3. ACM, 2002.

[7] J.R. B�uchi and L.H. Landweber. Solving sequential conditions by �nite-state strategies. Transactions
of the AMS, 138:295{311, 1969.

[8] A. Church. Logic, arithmetic, and automata. In Proceedings of the International Congress of Mathe-
maticians, pages 23{35. Institut Mittag-Le�er, 1962.

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction re�nement.
In CAV 00: Computer-Aided Veri�cation, LNCS 1855, pages 154{169. Springer-Verlag, 2000.

[10] E. M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like counterexamples in model checking. In LICS 02:
Logic in Computer Science, pages ???{??? IEEE Press, 2002.

16

[11] E.M. Clarke, O. Grumberg, K. McMillan, and X. Zhao. EÆcient generation of counterexamples and wit-
nesses in symbolic model checking. In DAC 95: Proceedings of the 32nd Design Automation Conference,
pages 427{432. IEEE Computer Society Press, 1995.

[12] L. de Alfaro and T.A. Henzinger. Interface automata. In Foundations of Software Engineering, pages
??{?? ACM Press, 2001.

[13] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for in�nite state games. In
CONCUR: Concurrency Theory, pages ??{?? LNCS ????, Springer-Verlag, 2001.

[14] D.L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-independent Circuits. The
MIT Press, 1989.

[15] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 995{1072. Elsevier Science Publishers, 1990.

[16] E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model checking for fragments of �-calculus. In CAV 93:
Computer-aided Veri�cation, LNCS 697, pages 385{396. Springer-Verlag, 1993.

[17] S.G. Govindaraju and D.L. Dill. Counterexample-guided choice of projections in approximate symbolic
model checking. In ICCAD 00: International Conference on Computer-Aided Design, pages ??{?? ACM
Press, 2000.

[18] Y. Gurevich and L. Harrington. Trees, automata, and games. In Proceedings of the 14th Annual
Symposium on Theory of Computing, pages 60{65. ACM Press, 1982.

[19] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL 02: Principles of
Programming Languages, pages 58{70. ACM, 2002.

[20] T.A. Henzinger, R. Majumdar, F.Y.C. Mang, and J.-F. Raskin. Abstract interpretation of game prop-
erties. In J. Palsberg, editor, SAS 00: Static Analysis, Lecture Notes in Computer Science 1824, pages
220{239. Springer-Verlag, 2000.

[21] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems. In STACS
95: Theoretical Aspects of Computer Science, LNCS 900, pages 229{242. Springer-Verlag, 1995.

[22] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th Annual
Symposium on Principles of Programming Languages, pages 179{190. ACM Press, 1989.

[23] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event processes. SIAM
Journal of Control and Optimization, 25(1):206{230, 1987.

[24] H. Saidi. Model checking guided abstraction and analysis. In SAS 00: Static-Analysis Symposium,
pages 377{396. LNCS 1824, Springer-Verlag, 2000.

17

