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Abstract

Elkhound is a parser generator based on the Generalized LR (GLR) parsing algorithm. Because it uses GLR,
Elkhound can parse with any context-free grammar, including those that are ambiguous or require unbounded
lookahead. Due to a novel improvement to the GLR algorithm, wherein the parser can choose between GLR and
ordinary LR on a token-by-token basis, Elkhound parsers are about as fast as LALR(1) parsers on deterministic
portions of the input.

Unlike existing GLR implementations, Elkhound allows the user to associate arbitrary action code with re-
ductions, and to directly manage subtree sharing and merging. These capabilities make Elkhound adaptable to a
wide range of applications and memory management strategies.

To demonstrate Elkhound's e�ectiveness, we used it to build a parser for C++, a language notorious for being
diÆcult to parse. Our C++ parser is small (3500 lines), eÆcient, maintainable, and elegantly handles even the
most troublesome constructs|by delaying disambiguation until semantic analysis when necessary.

1 Introduction

The state of the practice in automated parsing has changed little since the introduction of YACC (Yet Another
Compiler-Compiler), an LALR(1) parser generator, in 1975 [Joh75]. An LALR(1) parser is deterministic: at every
point in the input, it must be able to decide which grammar rule to use, if any, utilizing only one token of lookahead
[ASU86]. Not every context-free language has an LALR(1) grammar. For those that do, the process of modifying a
grammar to conform to LALR(1) is diÆcult and time-consuming for the programmer, and it often involves obscuring
or destroying conceptual structure in the grammar. Note that while any LR(k) grammar can be automatically
transformed into an LR(1) grammar [HU79], the reduction actions cannot be automatically transformed.

The main alternative to a long battle with shift/reduce conicts1 is to abandon automatic parsing technology
altogether. However, writing a parser by hand is tedious and expensive, and the resulting artifact is often diÆcult to
modify to incorporate extensions. The Edison Design Group C++ Front End [EDG] includes such a hand-written
parser for C++, and its size and complexity attest both to the diÆculty of writing a parser without automation and
the skill of EDG's engineers.

This paper describes Elkhound, a new parser generator intended to move the state of parsing practice beyond hand
crafting and LALR(1). Based on the Generalized LR (GLR) parsing algorithm, Elkhound realizes a simple vision:
describe your language with a context-free grammar, and the tool produces an eÆcient parser for that language.

1.1 Problems with LALR(1)

Given that parsers have been written using LALR(1) tools for twenty years, what is wrong with LALR(1)? The main
problem is that it takes a lot of work to write an LALR(1) grammar for a given language. Resolving shift/reduce
and reduce/reduce conicts is typically a process of trial and error: stare at the parser generator's debug output,
try to understand the conict from the point of view of the parsing algorithm, and then modify the grammar. This

1A parse state in which the parser cannot decide whether to apply a grammar rule or consume more input is said to have a \shift/reduce"
conict. If the parser cannot decide which grammar rule to apply it has a \reduce/reduce" conict.
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Figure 1: Recognizing a language di�erence.

process requires a good understanding of how LALR(1) works internally, and even with such knowledge it is by no
means easy.

What's more, transforming a grammar into LALR(1) form usually destroys much of its original conceptual
structure. Nonterminals cease to correspond to sub-languages, and instead come to represent states in the token
by token decomposition of the input. Instead of describing the language to be parsed, the grammar describes the
process used to parse it; it's more like a hand-crafted parsing program, but crammed into Backus-Naur Form. This
is very unfortunate, since the grammar is the most important piece of the parsing speci�cation.

LALR(1) also does not allow ambiguous grammars, yet they are certainly useful. Programming languages some-
times contain syntactic ambiguities when the languages for two constructs have a non-empty intersection, a situation
suggested by Figure 1a. The language speci�cation might disambiguate them with a phrase like \the resolution is to
consider any construct that could possibly be a declaration a declaration."2 Implementing any such resolution crite-
ria with an unambiguous grammar would require describing the (asymmetric) di�erence between two sub-languages,
which is messy at best and impossible at worst: the set of LALR(1) languages is not closed under subtraction.
Figure 1b suggests resolving the ambiguity by classifying every string in A \ B as an instance of B, which would
require changing the grammar for A to instead recognize AnB.

Section 5.1 includes a dramatic application of an ambiguous grammar: since it is diÆcult in C++ to tell whether
a given name refers to a type or a variable, but it makes a di�erence in how the surrounding syntax is parsed, we
use a grammar in which names are parsed as both a type and a variable name. Any resulting ambiguities are then
resolved during semantic analysis, a more appropriate phase than parsing in which to make the distinction.

1.2 Problems with GLR

The Generalized LR parsing algorithm [Lan74, Tom86] extends LR by e�ectively maintaining multiple parse stacks.
Wherever ordinary LR faces a shift/reduce or reduce/reduce conict, the GLR algorithm splits the stack to pursue
all options in parallel. One way to view GLR is as a form of the Earley dynamic programming algorithm [Ear70],
optimized for use with mostly-deterministic grammars. It can use any context-free grammar, including those that
require unbounded lookahead or are ambiguous. Section 2 explains the GLR algorithm in more detail.

GLR addresses both of the main problems of LALR(1). However, while GLR is asymptotically as eÆcient as
ordinary LR for deterministic input, GLR implementations are typically a factor of ten or more slower than their LR
counterparts for grammars that are LALR(1). The poor performance is due to the overhead of maintaining a data
structure more complicated than a simple stack, and of traversing that data structure to �nd reduction opportunities.

Additionally, most existing GLR parsers yield a parse tree (or a parse forest, in the case of ambiguous input)
instead of executing user-speci�ed actions at each reduction. They build such a tree because it allows the tool to
control sharing and the representation of ambiguity. This is a problem because a parse tree is not a good data
structure for subsequent language analysis; an abstract syntax tree (AST), designed with analysis in mind and
constructed by reduction actions, is much better. Parse trees are very big, often consuming �ve to ten times as much
memory as a corresponding AST. Further, parse trees have the wrong shape: later phases are forced to understand
equivalent ways of saying the same thing, or to traverse past nonterminals which exist purely in service of the parser.
Finally, they induce a tight coupling between the parsing grammar and later phases, since any change to the grammar
forces adjustments to be made everywhere. Of course, an AST can be constructed by walking a parse tree, but then
the e�ort of materializing the latter is wasted.

2[C++], Section 8.2, paragraph 1.
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1.3 Advantages of Elkhound

The Elkhound parser generator is based on the GLR algorithm, so it inherits the bene�ts of unbounded lookahead
and tolerance for ambiguity. Elkhound addresses GLR's relative performance problems by a novel enhancement
which lets the parser use both GLR and ordinary LR, choosing between them at each token. For input fragments
that exercise only the deterministic portions of the grammar, Elkhound parsers are as fast as conventional LALR(1)
implementations: every conict-free sub-language is parsed as fast as by a conventional LALR(1) implementation.
As a result, a developer is free to take advantage of the convenience of GLR, and gradually work towards removing
conicts if desired for performance. Section 3.1 describes Elkhound's hybrid of GLR and LR in more detail.

Elkhound also supports the direct construction of abstract syntax trees, by executing arbitrary user action code
with each reduction. However, this introduces two new challenges. First, if the grammar is nondeterministic, i.e.
it requires more than one token of lookahead to decide how to parse, then some of the user's semantic values will
be shared by the competing interpretations being built. Since sharing can have important semantic implications,
Elkhound lets the user intervene in the process. The exposed interface is suÆciently powerful to implement any of
the common schemes for resource management, including strict ownership (deep copying) and reference counting,
though the defaults are intended for use with a garbage collector. In any case, this important decision is entirely in
the user's hands.

Second, if the grammar is ambiguous, then the competing interpretations must be merged into a uni�ed repre-
sentation (otherwise the total forest size would be exponential in the number of ambiguities). Elkhound again defers
to the user, who can specify for each ambiguous nonterminal in the grammar exactly how to merge semantic values.

These advantages make Elkhound fast, in that it creates parsers that are competitive with LALR(1) parsers, and
practical, because it leaves the user in control of key decisions regarding management of semantic values. Elkhound
is designed to make it easy to write a parser, by eliminating grammar restrictions, and easy to integrate that parser
into a larger program, by avoiding constraints on its environment.

2 The GLR Parsing Algorithm

This presentation of the GLR [Lan74, Tom86] algorithm assumes the reader is acquainted with ordinary LR(1) or
LALR(1) parsing. The needed concepts will be reviewed, but only briey. For a more detailed introduction, see
[ASU86].

2.1 LALR(1) Parsing Tables

Consider the following (ambiguous) expression grammar:

1. S ! E

2. E ! i

3. E ! E + E

4. E ! E � E

(EEi )

The �rst step in parser construction is to compute the item-set DFA (deterministic �nite automaton), shown in
Figure 2. The dot (�) indicates the parser's current position, while working through a given grammar production.
The symbols after the comma are the lookahead tokens. Arcs from one state to another indicate transitions when
shifting terminals, or after reducing nonterminals. Possible reductions have been circled.

The item-set DFA is computed during parse table generation, but the parsing decisions it records are traditionally
encoded in two tables, the Action and Goto tables, shown in Figure 3. Entries of the form \Sn" mean it is possible
to shift the column's terminal in the row's state, and that doing so leads to state n. Entries of the form \Rm" mean
it is possible to reduce in the row's state when the column's terminal is the lookahead symbol, using grammar rule
m. In the Goto table, the entries tell which state to go to, after reducing to the column's nonterminal.

Notice that there are four cells of the Action table with two possible actions. These are the shift/reduce conicts,
which in this case arise from the ambiguity in the grammar. While demonstrating the LR(1) algorithm, I will simply
pick one of the two actions to use; later, the GLR algorithm will use both.
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E ! � i, $/+/*

E ! � E + E, $/+/*

E ! � E * E, $/+/*

S ! � E $

E ! i �, $/+/*

E ! E � + E, $/+/*

E ! E � * E, $/+/*

S ! E � $

E ! E * E �, $/+/*

E ! E � + E, $/+/*

E ! � * E, $/+/*

E ! E * � E, $/+/*

E ! � i, $/+/*

E ! � E + E, $/+/*

E ! � E * E, $/+/*

E ! E + � E, $/+/*

E ! � i, $/+/*

E ! � E + E, $/+/*

E ! � E * E, $/+/*

E ! E + E �, $/+/*

E ! E � + E, $/+/*

E ! E � * E, $/+/*

0

2

1

4 5

6 7

2

i

*
+

i

* E E ++ *

S ! E $ �3

E
$

i

Figure 2: The item-set DFA for the EEi grammar.

Action Goto
State $ i + * S E

0 S2 1
1 S3 S5 S4
2 R2 R2 R2
3  � accept using R1 �!
4 S2 6
5 S2 7
6 R4 S5 & R4 S4 & R4
7 R3 S5 & R3 S4 & R3

Figure 3: Action and Goto tables corresponding to Figure 2.
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2

6

7 4

7 4

7

0 1

1 30

E ! i

E ! i
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5

Shift

Reduce, Shift, Shift

Reduce, Shift Shift

Reduce

Reduce

Reduce, Shift

Accept

Start

Conict

(shift)

i + i * i $ Time

E ! E * E

E ! E + E

S ! E $

Figure 5: Behavior of an LR parser on input i + i * i. Square boxes are stack nodes, and rounded rectangles
represents the result of running the user's reduction action code. Dotted lines show the ow of semantic values; they
resemble parse tree edges.

2.2 The LALR(1) Parsing Algorithm

To establish context for the GLR algorithm, I �rst present the classic LALR(1) parsing algorithm.
During parsing, the algorithm maintains a stack of item-set state identi�ers. Parsing proceeds by looking up the

(state, lookahead token) pair in the Action table, and for reductions, consulting the Goto table to determine the
next state. Figure 4 contains the details as pseudocode.3

let stack of state identi�ers contain the start state initially;
for each token of input t f

if action(top(stack), t) = \reduce by N ! �" f
pop len(�) elements from stack ;
push goto(top(stack), N ) onto stack ;

g
else if action(top(stack), t) = \shift to dest" f

push dest onto stack ;
g
else f

report parse error;
g

g

Figure 4: The LR(1) parsing algorithm.

Figure 5 diagrams the operation of the LR(1)
algorithm on the input i + i * i. In this dia-
gram, each row of square boxes is a snapshot of
the stack at some point of execution. To the left
of each state is the semantic value yielded by the
reduction action (or the lexer) for the symbol re-
duced (or shifted) to arrive at that state. Time
begins at the bottom, where the stack contains
only state 0. This notation is unusual, but has a
purpose: it can be generalized for use with GLR
in subsequent sections. More traditional depic-
tions of LR's behavior are harder to generalize.

The �rst action (row 2) is to shift the �rst
symbol, after which the stack has two states, 0
and 2. Between them is the semantic value (lex-
eme) associated with the �rst symbol, indicated
by the solid line extending down from between
the states.

3The pseudocode notation uses boldface for keywords, italics for variable references, and underlined italics for binding introductions.
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0 1 3 6

5

7

Bottom node

9

8 Stack: 8,6,3,1,0

Stack: 9,7,5,1,0

Stack: 8,6,5,1,0

Figure 6: An example graph-structured stack. The nodes are labeled with their parse state number.

In row 3, the state containing 2 has been popped to execute the action associated with grammar rule E ! i.
State 1 has been pushed, because goto(E; i) = 1. The semantic value between states 0 and 1 is not necessarily a
parse tree node|it's whatever value the user's action returned. That action was given the semantic value of i as
input, shown by the dashed line from i to the action bubble. Then, two more terminals are shifted, and four states
are on the stack.

The diagram proceeds according to the LR algorithm in Figure 4, except when it encounters the * in state 7 on
row 4. State 7 has two actions on *, a shift and a reduce. Here we show what happens when the algorithm chooses
to shift, as it would under the conventional precedence of multiplication over addition.

Finally (row 7), the algorithm terminates when it enters state 3. At that time the last reduction action executes,
and the result is passed out of the parser. By inspection, it should be clear that every semantic value is consumed
exactly once, by a reduction action occurring later. This won't be true for the GLR algorithm.

2.3 The GLR Parsing Algorithm

As with LR parsing [ASU86], the GLR algorithm uses a parse stack and a �nite control. The �nite control dictates
what parse action (shift or reduce) to take, based on what the next token is. But unlike LR, GLR's parse \stack" is
not a stack at all: it is a graph which encodes all of the possible stacks that an LR parser could have. Each encoded
stack is treated like a separate potential LR parser, and all stacks are processed in parallel, kept synchronized by
always shifting a given token together.

The encoding of the GLR graph-structured stack (GSS) is simple. Some of the stack nodes are considered to be
the top of their stack(s), and the algorithm keeps track of which are the top nodes. Every node has one or more
directed edges to nodes below them in some stack, such that every �nite path from a top node to the unique bottom
node encodes a potential LR parse stack. Figure 6 shows one possible GSS and its encoded stacks. In the case of an
�-grammar [NF91], there may actually be a cycle in the graph and therefore an in�nite number of paths. Elkhound
can handle �-grammars, but they are not considered further in this paper.

The GLR algorithm proceeds as follows: On each token, for each stack top, every enabled LR action is performed.
There may be more than one enabled action, corresponding to a shift/reduce or reduce/reduce conict in ordinary
LR. A shift adds a new node at the top of some stack. A reduce also adds a new node, but depending on the length of
the production's right-hand side, it might point to the top or into the middle of a stack. The latter case corresponds
to the situation where LR would pop nodes o� the stack; but the GLR algorithm cannot in general pop reduced
nodes because it might also be possible to shift. It may be possible to reduce from a given node in more than one
way if there is more than one path of the required length from that node, so the algorithm reduces along all such
paths. If two stacks shift into the same state, or reduce into the same state, then the stack tops are merged into one
node, encapsulating the ambiguous stack region. In Figure 6, the node with state 6 is such a merged node.

Figures 7 and 8 contain a pseudocode description of the algorithm. One unusual feature of the implementation
shown here is that it uses a worklist of reduction paths, instead of a worklist of stack nodes. The reduction worklist
serves two purposes. First, it avoids a subtle iteration sequencing problem that can cause some paths to be reduced
more than once; this is explained in Section 2.4. Second, it makes the reduction ordering technique described in
Section 4.2 possible, because all of the enabled reductions are available for inspection simultaneously. An earlier
version of Elkhound contained implementations of both the stack worklist and reduction worklist algorithms, and
their parsing performance was the same.
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topmost : set of stack nodes; // global set of active parsers

pathQueue : queue of (path, production) pairs; // worklist of enabled reductions

// toplevel GLR driver
glrParse(input : sequence of tokens) : returns the set of accepting stack nodes
f

let start be a new stack node in the start state;
topmost := f start g; pathQueue := �;
for each token t in input f

doReductions(t);
doShifts(t);

g

remove nodes from topmost not in the accepting state;
return topmost ;

g

// perform all possible reductions; pathQueue is empty before and afterwards
doReductions(t)
f

for each stack node current in topmost f // seed the reduction worklist
for each \reduce by N ! �" in actions(current, t) f

for each path p of length len(�) from current f
enqueue (p, \N ! �") into pathQueue;

g
g

g

while pathQueue is not empty f // process the reduction worklist until empty
let (p, \N ! �") = dequeue from pathQueue;
reduceViaPath(p, \N ! �", t); // execute reduction actions; see Figure 8

g
g

// perform all possible shifts
doShifts(t)
f

let prevTops = topmost ; topmost := �;
for each stack node current in prevTops f

if \shift to dest" is in actions(current, t) f
if there is an existing stack node rightSib in topmost with state dest f

addLink(current, rightSib, t); // merge stack tops; see Figure 8
g
else f

let rightSib = new stack node with state dest ;
insert rightSib into topmost ;
addLink(current, rightSib, t);

g
g

g
g

Figure 7: GLR algorithm: Driver, shifts, and reduces.
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// given a path p in the graph-structured stack, which corresponds to an instance of �, reduce it to N ;
// t is the current lookahead token; there are three possible outcomes: a new stack node is created,
// a new stack link is added between two existing nodes, or a semantic value is merged
reduceViaPath(p, \N ! �", t)
f

let toPass [ ] =
collect array of semantic values in links in p, where for each one we call dup(), storing the
original value in toPass and dup's return value back into the link;

let newSemanticValue = reductionAction(\N ! �", toPass); // invoke user's reduction action

let leftSib be the leftmost stack node in p;

if there is already a node rightSib with state goto(leftSib, N ) in topmost f
if there is already a link from rightSib to leftSib f

// merge the competing interpretations
link.sval := merge(N, link.sval, newSemanticValue); // invoke user's merge function

g
else f

let link = addLink(leftSib, rightSib, newSemanticValue);

// the new link might enable reductions in states whose reductions we've already expanded
enqueueLimitedReductions(link, t);

g
g
else f

let rightSib = new stack node with state goto(leftSib, N );
addLink(leftSib, rightSib, newSemanticValue);
insert rightSib into topmost ;

g
g

addLink(leftSib, rightSib, semanticValue)
f

let link = new link from rightSib to leftSib;
link.sval := semanticValue;

g

// enqueue all reductions that use the newly-created link
enqueueLimitedReductions(link, t)
f

for each stack node n in topmost f
for each \reduce by N ! �" in actions(n, t) f

for each path p of length len(�) from n which uses link f
enqueue (p, \N ! �") into pathQueue;

g
g

g
g

Figure 8: GLR algorithm: Execution of user actions, and link-speci�c enqueueing.
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When the algorithm performs a reduction, it executes the user's action code. The result of an action is called a
semantic value, and these values are stored on the links between the stack nodes.4 When a reduction happens along a
particular path, the semantic values stored on the links in that path are passed as arguments to the reduction action.
If two di�erent reductions lead to the same con�guration of the top two stack nodes, i.e. the resulting stacks use the
same �nal link, the algorithm merges their top-most semantic values. Each of the merged values corresponds to a
di�erent way of reducing some sequence of ground terminals to a particular nonterminal (the same nonterminal for
both stacks). The merged value is then stored back into the link between the top two stack nodes, and participates
in future reduction actions in the ordinary way.

Deallocation of stack nodes is handled by reference counting; when a node is deallocated, all its sibling links are
deallocated, and their semantic values are passed to del() (see Section 4.1).

While processing reductions in reduceSeveralPaths, the user's action code is run. The values returned by the
actions are stored in the links which point between stack nodes. If a sibling link is added to an existing node, it
could expose new opportunities to perform reductions, so a recursive pass through the readyToShift list is performed
in that case. Figure 8 contains the details.

2.3.1 Example: Arithmetic Grammar

To illustrate the behavior of the GLR algorithm, I'll diagram its actions with the EEi grammar and the input
i + i * i. As in Figure 5, nodes of the parse stack are in square boxes connected by solid lines, and nodes of the
parse tree are in rounded boxes connected by dashed lines. A stack node's horizontal position denotes when, relative
to the shifting of terminals, that stack node is created.

The �rst step is as in the LR algorithm: shift i. Now the parser is in state 2, with state 0 at the bottom of the
stack. The sibling link between them refers to the lexeme for the i token, which is what will be passed to a reduction
action later.

i

20

In state 2 on lookahead +, we can reduce, leading to state 1. The reduction action for E ! i is executed, with
the lexeme for i passed as an argument, and the result of the action is stored in the sibling link between states 1
and 2. However, the state 2 node is retained (for the moment), because it might be able to shift, too. (The basic
GLR algorithm does not immediately notice that the parse tables disallow a shift in state 2. Section 3.1 describes
an optimization that does.)

i

20

E ! i

1

+

4It would be incorrect to store values in the stack nodes themselves, because a node at the top of multiple stacks must have a distinct
semantic value for each stack.

9



However, in the shift phase, only state 1 can shift the +, and doing so leads to state 5. The state 2 node cannot
make progress, and is deallocated.

i +

20

E ! i

1

5

After shifting the next i, a sequence of two reductions are possible, leading in turn to states 7 and 1. After
performing these reductions, three states are candidates to shift.

i + i

20

E ! i

2

1

5

7

1

E ! i

E ! E + E

*

State 2 cannot shift *, but both states 7 and 1 can. This is where the ambiguity is �rst encountered: the prior
step reduced from state 7, and now we shift as well. Since both shifts happen to lead to state 4, the forked stack
tops are merged immediately. However, the node with 4 in it remembers it is the top of two stacks (it has two stack
links), so the ambiguity is still in play.

i + i *

20

E ! i

2

1

5

7

1

4

E ! i

E ! E + E

After shifting the �nal i, state 2 reduces to state 6. Then, state 6's potential reduction by E ! E � E can be
satis�ed by two paths: 6,4,7,5 and 6,4,1,0. These two reduction instances lead to states 7 and 1 with semantic values
labeled (a) and (b), respectively, when the E nonterminal is shifted.

Further, state 7 can reduce by E ! E+E, following path 7,5,1,0, which also leads to state 1 but with the semantic
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value labeled (c). Since there is already a link between the nodes for states 1 and 0, we have a true ambiguity: two
di�erent parse trees for the same sequence of ground terminals. To resolve this, we pass the two competing semantic
values, (b) and (c), to the user-speci�ed merge function associated with the E nonterminal. The merge function
could keep both alternatives by constructing a tree node to point to them, but in this case we'll assume it decides to
throw away (b), in accordance with conventional predence. The dotted lines connect the now-defunct subtree, and
the dashed lines connect the retained subtree.

i + i i*

20

E ! i

2

1

5

7

1

4 2

6

7

1

E ! i E ! i

E ! E + E E ! E * E

E ! E + E E ! E * E

E

$

merge

(retained) (discarded)

(a)

(b)(c)

Finally, we shift the $. Only state 1 can shift this symbol, and doing so transitions to state 3, the accepting state.
The top level reduction action �res with the merged result for E, and this is yielded to the parser's caller.

i + i i $*

20

E ! i

2

1

5

7

1

4 2

6

7

1

E ! i E ! i

E ! E * E

E ! E + E

E

3

S ! E $Accept

2.4 Bug Fix: Pathological Additional Link

The algorithm described in [Rek92] contains a subtle problem, such that a straightforward implementation would
sometimes yield too many parse trees. Because it intermingles the enumeration of possible reductions with the
processing of additional links created by those reductions (in DO-LIMITED-REDUCTIONS), if an additional link is
added to the same state as is performing the reduction, then paths containing the new link may get processed twice:
once by DO-LIMITED-REDUCTIONS, and once by the normal path enumeration. The duplicate processing leads
to a spurious reduction and tree node.
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aa a $

0 1

2 3

1 1

2

3

aa a $

0 1

2 3

1

2

B ! B B �

0 2

1

a

B

B ! a �

a B
3

a B

Item-set DFA

new link

Step 1: About to shift the third \a".

Step 2: Reduced along 3,3,2 path, creating

another link from state 3.

Figure 9: A GSS demonstrating a possible aw in other GLR implementations.

Figure 9 demonstrates the problem on the input \aaa" with the grammar

B ! B B j a (BBa)

If, while performing reductions possible in state 3, the algorithm chooses to consider path 3,3,2 �rst, then it will add
another link from state 3 to state 2. This will trigger a re-examination of all reduction paths, and the algorithm in
[Rek92] will reduce along the newly-created 3,2,0 path. But then the outer state 3 reduction iteration will encounter
the new link as well, and that path will be reduced again.

The �x is to enumerate all enabled reduction paths before doing any of them. Then, if a particular path adds
a new link, the newly-enabled paths will only be processed by enqueueLimitedReductions (my equivalent to DO-
LIMITED-REDUCTIONS). Elkhound's use of a reduction worklist achieves this automatically.

Note that the [Rek92] algorithm properly handles the case where the new link is added to a di�erent state than
is performing the reduction. In that case, either the new link extends from a state still \to do," in which case DO-
LIMITED-REDUCTIONS ignores it, or else the state has already been marked \�nished," so normal enumeration
has completed.
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Figure 10: In this graph-structured stack, each node is labeled with its deterministic depth.

3 Performance Improvements

This section explains several enhancements to the basic GLR algorithm to make it faster. These enhancements are
implemented in the Elkhound parser generator, but could reasonably be applied to any GLR implementation.

3.1 GLR/LR Hybrid

For most (programming) languages, the common case in the above scenario is that there is only one stack top and
the parse action is unique. That is, for most of the input the ordinary LR algorithm would suÆce.

It would be pro�table to use LR when possible because performing reductions is much simpler (and therefore
faster) with LR, and reductions account for the bulk of the time during parsing. The main cause for slower reductions
with GLR is the need to interpret the graph-structured stack: following pointers between nodes, iteration over
nodes' successors, and the extra mechanism to properly handle some special cases [Rek92, McP02] all add signi�cant
constant-factor overhead. Secondary causes include testing the node reference counts, and not popping and reusing
node storage during reductions.

To exploit LR's faster reductions, one would like a way to decide when to use ordinary LR instead of the full
GLR algorithm. Clearly, LR can only be used if there is a unique top stack node, and if the action for the current
token at the top node's state is unambiguous. If that action is a shift, then a simple shift is performed: a new top
node is created and the token's semantic value is stored on the new link.

However, if the action is a reduce, then we must check to see if the reduction can be performed more than once
(via multiple paths), because if it can, then the GLR algorithm must be used. To enable this check, we modi�ed
the algorithm to keep track of each node's deterministic depth, de�ned to be the number of stack links that can
be traversed before reaching a node with out-degree greater than one. The bottom node's depth is de�ned to be
one. Any time the enabled reduction's right-hand side length (call it n) is less than or equal to the top node's
deterministic depth, the reduction will only touch parts of the stack that are linear. Therefore a simple reduction
can be performed: deallocate the top n nodes, and create in their place one new node, whose link will hold the
reduction's semantic value.

Maintaining the deterministic depth is usually easy. When a node is created its depth is set to one more than that
of its successor. When a second link is added to a node, its depth is reset to zero, and its reference count is inspected
to see if there are other nodes with links to it. If there are, then the top nodes' depths are recomputed. Since this
happens infrequently in practice, recomputation is cheaper than maintaining a list of pointers to predecessor nodes.
Figure 10 shows an example parse stack annotated with the deterministic depths.

An important property of this scheme is that it ensures that the parsing performance of a given sub-language is
independent of the context in which it is used. If we instead tried the simpler approach of using LR only when the
stack is entirely linear, then (unreduced) ambiguity anywhere in the left context would slow down the parser. For
example, suppose a C++ grammar contains two rules for function de�nitions, say, one for constructors and another
for ordinary functions. If these rules have an ambiguity near the function name, that ambiguity will still be on
the stack when the function body is parsed. By allowing ordinary LR to be used for the body despite the latent
ambiguity, the parsing performance of the statement language is the same in any context. As a result, the e�ort
spent removing conicts from one sub-language is immediately bene�cial, without having to chase down conceptually
unrelated conicts elsewhere. This also aids compositionality of grammar modules.

As shown in Section 6.1, the hybrid algorithm is about �ve times faster than the plain GLR algorithm for
grammars that are LALR(1) or inputs that exercise only the LALR(1) fragment of a grammar.
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Figure 11: A parse forest for the EEb grammar.

3.2 Other Optimizations

The performance of the GLR algorithm depends heavily on the implementation of the graph-structured stack and the
parse node worklists. In this section we briey summarize the (empirically) most important optimizations applied
to these data structures in Elkhound, beyond what is described in Section 3.1.

First, a na��ve implementation of GLR does frequent allocation in its inner loops. All allocation of short-lived
objects must be hoisted out of the loops, so the same memory is reused on each iteration. This avoids trips through
the allocator, and improves locality.

Next, arrays (growable if necessary) should be preferred to linked lists whenever possible. In the inner loop, the
algorithm walks the primary stack node worklist and the list of semantic values to pass to reductions. The extra
indirection of a linked list would double parsing time.

Stack nodes contain a list of links to other stack nodes. However, most stack nodes contain only one such link,
because most of the time the stack is approximately linear. Parsing time is cut in half by embedding the �rst link,
including its associated semantic value reference, into the stack node object itself.

Finally, inlining and manual specialization are crucial to making the ordinary LR core fast. The LR core has
to maintain the data structure invariants that the GLR core requires, but many of the manipulations it does are
degenerate whenever LR can be used. For example, stack node reference counts can be statically predicted, so their
updates can often be avoided; and stack nodes themselves can be directly reused during reductions (analogous to
popping the parse stack in a conventional LR implementation).

The combined e�ect of the optimizations in this section is to save about a factor of eight in running time. Thus,
the total e�ect of the techniques presented in Sections 3.1 and 3.2 is to make our implementation about forty times
faster than a na��ve implementation.

4 User-Speci�ed Actions

The GLR algorithm's exibility provides two basic challenges to any implementation that associates arbitrary user
code with the reduction actions. First, while alternative parses are being pursued, semantic values are shared between
the alternatives. This obviously entails questions about how to manage deallocation, but also raises the possibility
of subtle interaction between the supposedly independent parses, if the actions have side e�ects. Second, if multiple
parse trees can be constructed for a region of the input, the semantic values from the di�erent interpretations have
to be merged (otherwise the forest could be exponentially large).

As a running example, we use an ambiguous grammar for sums:

E ! E + E j b (EEb)

Figure 11 shows a parse forest for the input \b + b + b".
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4.1 Sharing Subtrees

When a reduction action yields (produces as its return value for use by subsequent reductions) a semantic value such
as v1, it is stored in a link between two stack nodes. If that link is used for more than one subsequent reduction, then
v1 will be passed as an argument to more than one action; in Figure 11, it has been used in the creation of v4 and v6.
If v1 is a dynamically allocated object, then which reduction action takes responsibility for eventually deallocating
it? One possibility is to use some form of garbage collection, another is to make a deep copy for each distinct use.

To allow for a range of memory management strategies, Elkhound allows the user to associate with each symbol
(terminal and nonterminal) two functions, dup() and del(). dup(v) is called whenever v is passed to a reduction
action, and its return value is stored back into the stack node link for use by the next action. In essence, the
algorithm surrenders v to the user, and the user tells the algorithm what value to provide next time. When a node
link containing value v is deallocated, del(v) is called. This happens when the last parser that could have potentially
used v's link fails to make progress. Note that these rules also apply to semantic values associated with terminals,
so t2 and t4 will be properly shared. As a special case, the calls to dup() and del() are omitted by the ordinary LR
core, since semantic values are always yielded exactly once in that case.

Typical memory management strategies are easy to implement with this interface. For a garbage collector,
dup() is the identity function and del() does nothing. To use reference counting, dup() increments the count and
del() decrements it. Finally, for a strict ownership model, dup(v) makes a deep copy of v and del() recursively
deallocates. This last strategy is fairly ineÆcient, so it should probably only be used in a grammar with at most
occasional nondeterminism.

The fact that the algorithm stores dup(v) back in the stack link and yields the original v to the reduction action
(as opposed to the other way around) is important because it lets the user control the lifetime of every value. The
algorithm regards the semantic values stored in stack as borrowed from the user, and are returned as soon as possible.
Were the algorithm to retain values inde�nitely, it would limit the user's choices for semantic value representation.

As an application of the control a�orded by this interface, consider a situation where the grammar author intends
and expects that a given value will be used by at most one reduction action. With Elkhound's semantics for dup, a
simple way to prevent a value from being used more than once is for dup(v) to return a special value which means
\should not be used." This special value would be yielded to every reduction after the �rst, and actions could check
for the special value, raising an error if they receive it. If the grammar indeed has the property that the value in
question cannot be yielded more than once, then the error will never be raised. A particularly simple example is to
use a NULL pointer as the special value, but of course this is up to the grammar author.

4.2 Merging Alternatives

If the grammar is ambiguous, then some inputs have more than one parse tree. In that case, semantic values
representing the competing alternatives for the di�ering subtrees must be merged, so each nonterminal has an
associated merge() function in the Elkhound API. For example, in Figure 11, semantic values v6 and v7 arise from
di�erent ways of parsing the same sequence of ground terminals, so the algorithm calls merge(v6,v7) and stores the
return value v8 back into the stack node link for use by future reduction actions.

Now, the user has at least three reasonable options in a merge(v6,v7) function: (1) pick one of the values to
keep and discard the other one, (2) retain the ambiguity by creating some explicit representation of its presence, or
(3) report an error due to unexpected input ambiguity. Option (3) is of course easy to do.

Unfortunately, options (1) and (2) don't always work in a na��ve GLR implementation: depending on the order of
reductions, by the time the merge() operation is performed, the value v6 that would be replaced by merge(v6,v7)

has already been used in another reduction, and thus the new merge(v6,v7) would be lost.
To illustrate the problem, consider the grammar SAdB and the GLR algorithm's activities while parsing \d":

S ! A

A ! d j B
B ! d

(SAdB)

For reference, Figure 12a shows the states of the �nite control. In Figure 12b, the d has been shifted, and the
actions for A ! d and B ! d have been executed. But from there the algorithm can proceed in two ways because
there are two top nodes, in states 2 and 3, which can reduce.

15



d

B ! d

A! d

d

A! d

B ! d

S ! A

0 1

3

2

4

d

B ! d

A! d A! B

merge

0 1

3

2

d

B ! d

S ! A yielded

A! d A! B

merge

0 1

3

2

4

included
in result

0

1 2 3

4

d

B ! d

merge

S ! A

A! d A! B

yielded

c) e)

f)

state 2
reduce in

a)

0 1

3

2

b) d)

reduce in state 3

Parser Finite Control DFA

A Bd

S

0 1

3

2

4

lost!

Figure 12: There are two possible reduction sequences for the SAdB grammar, depending on reduction order.

Figures 12c and 12e show the sequence of GLR stack con�gurations when the node in state 3 reduces �rst.
First (Figure 12c), the action for A ! B runs. Then, because this reduction leads to another stack con�guration
with state 2 on top of state 0, the algorithm merges the two semantic values for nonterminal A as well as the
stacks themselves. Finally, (Figure 12e) the action for S ! A runs. The semantic value corresponding to A ! B

participates in the �nal result because A was merged before it was passed to the action for S ! A.
On the other hand, Figures 12d and 12f show an alternative sequence, where state 2 reduces �rst. In that case, the

action for S ! A runs immediately (Figure 12d), and this is in fact the �nal result of the parse. Then (Figure 12f),
the action for A! B and the merge() for A run, but nothing more is done with either value; the parser has already
performed the reductions corresponding to state 2. The e�ect of one of the possible parses is lost.

This yield-then-merge problem can arise any time a grammar contains an ambiguous nonterminal N , and a
production M ! �N� where � !� � (� and � are arbitrary sequences of symbols, and � is the empty string). Once
the �rst semantic value for N is available, the reductionM ! �N� is enabled. If it runs before other possible values
for N are computed, then the �rst value for N will have been yielded before being merged.

If the grammar is cyclic, meaning there is some nonterminal N such that N !+ N , then there may be no
reduction order which avoids the problem. But if the grammar is acyclic, then for a given input there is always
some order of reductions such that no value is ever yielded and then merged with another value: an acyclic grammar
produces an acyclic parse forest, so an o�ine topological sort after parsing would �nd a good order.

Elkhound uses an online algorithm to �nd a reduction order that avoids yield-then-merge; this is where the
reduction worklist presented in Section 2.3 comes into play. The reductions are maintained in a sorted order, such
that:

� Rule 1. Reductions which span fewer tokens come �rst.

� Rule 2. If two reductions A! � and B ! � span the same tokens, then A! � comes �rst if B !+ A.

This algorithm always avoids yield-then-merge if the grammar is acyclic.5 To see why the algorithm works,
5If the grammar is cyclic then Rule 2 is not necessarily consistent, since it could be that both B !+ A and A!+ B.
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consider Figure 13, which shows the necessary conditions for yield-then-merge to happen: a given token sequence at
the top of the parse stack can be interpreted as either �1 or �2, where A! �1 and A! �2 are possible reductions;
and another reduction B ! �A is also enabled, where  !� �.

A! �2

merge

B ! �A

A! �1

� �1 or �2

Figure 13: Necessary parse forest conditions
to make yield-then-merge possible.

Now, if � cannot derive �, then Rule 1 is suÆcient to prevent the
problem since both reductions to A will happen before the reduction
to B. However, if � !� � in this parse forest, then token span is not
enough, and we turn to nonterminal derivability. Since B !+ A,
Rule 2 speci�es again that all reductions to A are performed before
any to B. Since in both cases reductions to A preceed those to B,
A is guaranteed to be completely merged before it is yielded.

Of course, this argument assumes that both A! �1 and A! �2
are present in the worklist at least as soon as B ! �A. Suppose
(for purposes of contradiction) that A ! �2 did not get added to
the worklist until after B ! �A was added. By inspection, the
algorthm presented in Section 2.3 adds reductions to the worklist
as soon as their right-hand side constituents are in the GSS, so �2
cannot consist entirely of terminals. Thus, �2 = ÆC� for some C that
was not present in the GSS. But all reductions to C should have
happened before reductions to A: if Æ didn't derive � then Rule 1
applies, otherwise Rule 2 applies (clearly � derived �). Therefore
C must have been present in the GSS by the time A ! �1 was
reduced (itself a prerequisite for adding B ! �A), and we have a
contradiction.

d

A! d

t1

B ! d
x3

A! B

S ! A
x2

yielded

ambiguity links

x4

x1

Figure 14: A parse forest for SAdB in which
ambiguities are represented using ambiguity
links. The �nal forest is independent of re-
duction order.

If the grammar is cyclic, then the algorithm above will not al-
ways avoid yield-then-merge. Fortunately, there is a simple design
pattern for constructing potentially-ambiguous abstract syntax trees
that works even if a node might be merged after being yielded. Given
two AST nodes v1 and v2, merge(v1,v2) inserts v2 into an \ambigu-
ity" list inside v1, and then returns v1 itself. If v1 and v2 are pointers
to objects with an ambiguity pointer, then the following merge()

function (in Elkhound notation) does the required insertion:

merge(L,R) { // prepend R to L's list

R->ambiguity = L->ambiguity;

L->ambiguity = R;

return L;

}

Figure 14 shows a parse forest for SAdB employing the ambiguity
link solution. Even if x2 is created before x4, the forest accurately
encodes all of the possible trees because merge(x1,x4) prepends x4
to x1's ambiguity list. It also returns x1, to make sure that any
addition reductions using the semantic value for A will see all of the
interpretations.

It should be noted that traditional GLR implementations avoid the yield-then-merge problem by the way they
construct parse trees. For example, the algorithm described in [Rek92] uses \Symbol" nodes, which are equivalent to
(but use more memory than) the ambiguity links described above. What makes Elkhound di�erent is the allowance
for arbitrary user actions, which are not required to always retain ambiguities, nor incorporate subtrees by reference
only. Such arbitrary actions are potentially sensitive to the order in which they are executed, and thus Elkhound
must take care when choosing the reduction order.

4.3 Managing Side E�ects

Beyond memory management, subtree sharing is a problem if reduction actions have side e�ects. The best policy
is to avoid side e�ects whenever possible, which may mean unlearning some habits acquired while writing actions
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for LALR(1) tools. As a special case, it is safe for a side e�ect to modify the semantic value of one of its subtrees,
provided that value is only yielded once. One way to verify that a value is yielded only once is for its dup() function
to return NULL, as discussed in Section 4.1.

Side e�ects that modify global state like the symbol table are more diÆcult to implement correctly. It is possible
to roll back changes in the del() function, but since other actions might run between the time the change is made
and rolled back, this might not work in all cases. Developing a more general strategy for managing unavoidable
global side e�ects is perhaps a topic for future work. The only clearly correct solution is to postpone all such side
e�ects until after parsing, retaining any ambiguities this creates.

5 Case Study: A C++ Parser

To establish its real-world applicability, we put Elkhound to the test and wrote a C++ parser. This e�ort took
one of the authors about three weeks. The �nal parser speci�cation is about 3500 non-blank, non-comment lines,
including the grammar, abstract syntax description and type checker. The grammar currently has 37 shift/reduce
conicts, 47 reduce/reduce conicts and 8 ambiguous nonterminals.

This parser can parse and fully disambiguate most6 of the C++ language, including templates. We used our
implementation to parse Mozilla, a large (about 2 million lines) open-source web browser. Note that the type checker's
primary purpose is to disambiguate, so it does not currently implement all of C++'s rules for type compatibility,
though it would be straightforward to extend it to do so.

The C++ language de�nition includes several provisions that make parsing the language diÆcult. In the following
sections we explain how we resolved these parsing diÆculties using the mechanisms available in Elkhound.

5.1 Type Names versus Variable Names

The single most diÆcult task for a C or C++ parser is distinguishing type names (introduced via a typedef) from
variable names. For example, the syntax \(a)&(b)" is the bitwise-and of a and b if a is the name of a variable, or a
type-cast of the expression &b to type a if a is the name of a type. In C++ this task is even more diÆcult, since a
might be a type name whose �rst declaration occurs later in the �le: type declarations inside a class body are visible
in all method de�nitions of that class, even those which appear textually before the declaration. For example:

int *a; // variable name (hidden)

class C {

int f(int b) { return (a)&(b); } // cast!

typedef int a; // type name (visible)

};

The traditional solution, sometimes called the \lexer hack," is to add type names to the symbol table during
parsing, and feed this information back into the lexical analyzer. Then, when the lexer yields a token to the parser,
the lexer must �rst categorize the token as either a type name or a variable name. Type names adhere to the C
scoping rules, so they can be hidden by other names and they eventually go out of scope. Thus the lexer is dependent
on the implementation of scopes, a semantic concept.

In C, the lexer hack is non-ideal because of the tight coupling it induces among the lexer, parser, and semantic
analyzer, but it is manageable. In C++, the scoping rules within classes make it considerably more diÆcult to
implement: The parser must defer parsing of class method bodies until the entire class declaration has been analyzed,
but this entails somehow saving the unparsed method token sequences and restarting the parser to parse them later.

However, with a GLR parser that can tolerate ambiguity, a much simpler and more elegant approach is possible:
simply parse every name as both a type name and a variable name, and store both interpretations in the AST. During
type checking, when the full AST and symbol table are available, one of the interpretations will fail because it has
the wrong classi�cation for a name. The type checker simply discards the failing interpretation, and the ambiguity is
resolved. The scoping rules are easily handled at this stage, since the (possibly ambiguous) AST is available: make
two passes over the class AST, where the �rst builds the class symbol table, skipping method bodies, and the second
pass checks the method bodies.

6Namespaces ([C++] Section 7.3) and template partial specialization ([C++] Section 14.5.4) are not currently implemented because
they are not needed to parse Mozilla. We foresee no new diÆculties implementing these features.
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5.2 Declarations versus Statements

Even when type names are identi�ed, some syntax is ambiguous. For example, if t is the name of a type, the syntax
\t(a);" could be either a declaration of a variable called a of type t, or an expression that constructs an instance
of type t by calling t's constructor and passing a as an argument to it. The language de�nition speci�es ([C++],
Section 6.8) that if some syntax can be a declaration, then it is a declaration; but establishing that it \can" be a
declaration is not trivial.

The solution in this case is again to represent the ambiguity explicitly in the AST, and resolve it during type
checking. If a statement can either be a declaration or an expression, then the declaration possibility is checked �rst.
If the declaration is well-formed then that is the �nal interpretation. Otherwise the expression possibility is checked,
and is used if it is well-formed. If neither interpretation is well-formed, then the two possible interpretations are
reported to the user, along their respective diagnostic messages.

Not all disambiguation must be delayed until type checking. For example, an access declaration ([C++], Sec-
tion 11.3) in a class body might look like \B::x;" where B is a base class. However, this could also be parsed as a
member declaration with no declarators (if B::x is a type), taking advantage of the syntax that declares inner classes.
To avoid this ambiguity we utilize Elkhound's keep() functionality, which can cancel a reduction. In this case the
keep() function for class member declarations cancels the declaration if the type speci�er does not introduce a new
type name, and there are no declarators ([C++], Section 7, par. 3). For a conventional implementation to enforce
this rule within the grammar, the grammar author would have to substantially modify the grammar, for example by
splitting the declaration sub-language by cases on the form of the type speci�er.

5.3 Function Declarators

In function parameter lists, the parameter names are optional. This creates an ambiguity between parentheses used
to denote a function type, and parentheses used to control precedence:

typedef int x; // 'x' is the only typedef

int f(int (x)); // what is this?

int g(int a(x b)); // parens mean function

int h(int (a)); // parens mean grouping

potentially
abiguous
context

( int ( x )fint ) ;

( int ( x )fint ) ;

Type SimpleDeclarator

Grouping()

Parameter

illegal here,
if it can also
be a type

Type Type

Parameter

FunctionDeclarator()

Parameterb) Correct

a) Incorrect

Figure 15: An ambiguous function declarator.

Does f accept an anonymous function-typed7

argument, similar to g, or an integer-typed argu-
ment, similar to h? To paraphrase [C++] Sec-
tion 8.2 par. 3, any type-name that occurs after
a left-parenthesis which could either start a pa-
rameter list or serve to group a declarator is to
be interpreted as naming the existing type (as
opposed to introducing a new name). Therefore
the parentheses mean \function," and f has the
same type as g.

We resolve this ambiguity in the Elkhound
C++ parser by recording explicitly the declara-
tor grouping operator in the AST, so that during
type checking it is possible to tell when we're in
the context where ambiguity is possible. Then, in
that context, the grouping interpretation is con-
sidered invalid if the declarator names an existing
type. Figure 15 illustrates the ambiguity; the ad-
dition of the otherwise redundant \Grouping()"
node to the AST is part of the solution. Whereas a conventional implementation would be forced to implement the
lexer hack and recognize a di�erence between two languages, we use a simple tree pattern recognizer.

7Parameters with function type are automatically converted to pointer-to-function type ([C++], Section 8.3.5, par. 3).
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5.4 Angle Brackets

Templates (also known as polymorphic classes, or generics) are allowed to have integer arguments. Template argu-
ments are delimited by the angle brackets < and >, but these symbols also appear as operators in the expression
language:

template <int n> class C { /*...*/ };

C< 3+4 > a; // ok; same as C<7> a;

C< 3<4 > b; // ok; same as C<1> b;

C< 3>4 > c; // syntax error

C< (3>4) > d; // ok; same as C<0> d;

The language de�nition speci�es that there cannot be any unparenthesized greater-than operators in a template
argument ([C++], Section 14.2, par. 3). Since this overloaded use of > rarely leads to a true ambiguity, our �rst
implementation simply ignored the problem, e�ectively letting the parser look ahead to resolve each case. To handle
the truly pathological cases like

new C< 3 > +4 > +5; // correct parse is

((new C<3>) + 4) > (+5); // <- like this

(new C< (3>(+4)) >) + 5; // <- and not this

which have two valid parses according to our grammar, we modi�ed the AST to record explicitly the use of paren-
theses to group expressions (similar to the treatment of declarators). Thus the type checker can detect an invalid
unparenthesized > in a template argument with another simple pattern check.

A correct implementation in an LALR(1) setting would again require recognizing a di�erence between languages
(as in Figure 1). In this case it would suÆce to split the expression language into expressions with unparenthesized
greater-than symbols and expressions without them. It is interesting to note that, rather than endure such a drastic
change to the grammar, the authors of gcc-2.95.3 chose to use a precedence speci�cation that works most of the
time but is wrong in some cases: for example, gcc cannot parse the type \C< 3&&4 >". This is the dilemma all too
often faced by the LALR(1) developer: sacri�ce the grammar, or sacri�ce correctness. Usually, the grammar is more
important, as the gcc example attests.

5.5 Experience

The process of building the C++ parser with the GLR algorithm was both enjoyable and enlightening. By far the
most diÆcult part was getting the environment lookup rules right. Dealing with parsing ambiguities was surprisingly
simple, with essentially the same simple solution used in most places: represent the ambiguity in the AST, type
check both, and discard the one that fails.

One of the pleasant surprises was the experience of debugging the grammar. A frequent problem was unexpected
ambiguity, where the parser complains that there is no method de�ned to merge some nonterminal; by default, it
prints a message and then discards one of the alternatives. Tracking down this problem is quite easy: Elkhound has
an option to build and print a parse forest, so we would do just that, and study the resulting forest. This is ideal
because we're debugging the grammar in terms of ambiguity, a concept directly related to the grammar, instead of
debugging conicts, a concept related to the parsing algorithm.

The other major unexpected bene�t of using GLR is the predictability of the process. Whereas it's usually
diÆcult to tell how far a given grammar is from being LALR(1), it's easy to count the kinds of ambiguous syntax
in your test suite and estimate the work required to handle each one. Ambiguities tend to be local, non-interacting
phenomena (again, unlike conicts). Our work on the parser was able to proceed feature by feature, without having
to reimplement one fragment because of a problem elsewhere.

6 Performance

In this section we compare the performance of Elkhound parsers to those of other parser generators, and also measure
in detail the parsing performance of the C++ parser. The experiments were performed on a 1GHz AMD Athlon
running Linux. We report the median of �ve trials.
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Figure 16: Parser performance on the EFa grammar, on a log-log scale. Input string is a(+a)n.

6.1 Comparison to Other Parser Generators

For comparison with a conventional LALR(1) implementation, we compare Elkhound to Bison, version 1.28 [DS99].
Bison associates user action code with each reduction, and generates a parser written in C.

For comparison with an existing GLR implementation, we used the ASF+SDF Meta-Environment [HHKR89].
The Meta-Environment contains a variety of language-processing tools, among which is a scannerless GLR parser
[Vis97] that generates parse trees. The parser can be run as a recognizer, and in this mode does not build trees. We
used the Meta-Environment bundle version 1.1.1, which contains version 3.7 of the SGLR component. This package
is written in C.

To measure the speed of Elkhound's ordinary LR parser, we measured its performance against Bison and
ASF+SDF on this LALR(1) grammar:

E ! E + F j F
F ! a j ( E )

(EFa)

We measured each tool both with and without executing tree-building actions. As shown in Figure 16, the
Elkhound LR parser core is only a few percent slower than Bison, whereas ASF+SDF is a factor of ten slower than
both. When Elkhound's LR parser (Section 3.1) is disabled, parsing slows down by a factor of �ve. This validates
the hybrid design: the overhead of choosing between LR and GLR is almost negligible, and the speed improvement
when LR is used is substantial.

We also measured performance on the highly ambiguous EEb grammar, reproduced here:

E ! E + E j b (EEb)

This grammar generates the language described by the regular expression b(+b)�, and for the input string b(+b)n

the number of parses C(n) is exponential:

C(n) =

n�1X
m=0

C(m) � C(n�m� 1) =

�
2n

n

�
1

n+ 1

C(0) = 1

As shown in Figure 17, Elkhound's performance is very similar to that of ASF+SDF, when neither builds trees.
Both require time approximately quartic in the input size; for grammars with such a high degree of ambiguity, GLR
is often slower than the Earley algorithm [Ear70]. Since ASF+SDF apparently tries to materialize all of the parse
trees separately without sharing subtrees, it cannot build trees for inputs with n > 10, whereas Elkhound is only
a factor of two slower when building trees. This illustrates one of the drawbacks of tools that build trees: they
sometimes have unexpected limitations.
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Figure 17: Parser performance on the EEb grammar, on a log-log scale. Input string is b(+b)n.

Table 1: C++ Parser Performance.
Preprocessed File Name Lines Parse No LR Tcheck g++

ms ms (�) ms ms (�)
nsUnicodeToTeXCMRt1.i 9537 16 36 (2.25) 50 60 (1.10)
nsAtomTable.i 19369 104 179 (1.72) 296 270 (1.48)
nsCLiveconnectFactory.i 24055 80 167 (2.09) 273 250 (1.41)
nsSOAPPropertyBag.i 26807 173 298 (2.30) 418 460 (1.28)
nsMsgServiceProvider.i 39215 209 378 (1.81) 545 560 (1.35)
nsHTMLEditRules.i 49566 495 827 (1.67) 934 1140 (1.25)

6.2 C++ Parser Performance

To test the C++ parser, and measure its performance, we used it to parse Mozilla 1.0. Mozilla has about 2000 source
modules in its Linux con�guration, averaging about 30000 preprocessed lines each. Our C++ parser can parse and
fully disambiguate all of the modules except two that use gcc extensions not currently implemented.

We selected six of Mozilla's modules at random to measure and report parsing performance. Table 1 shows several
measurements for each �le. Parsing time is reported in milliseconds. \No LR" is parse time when the LR hybrid
mechanism (Section 3.1) is disabled, and (�) is the ratio of No LR to Parse. Tcheck is the time for the type checker
to run; Parse + Tcheck is the total time to parse and disambiguate. g++ is the time for gcc-2.95.3 to parse the
code, as measured by its internal parse time instrumentation,8 and (�) is the ratio of Elkhound parse time to g++
parse time.

The No LR measurements show that, while the GLR/LR hybrid technique is certainly bene�cial, saving about
a factor of two, it is not as e�ective for the C++ grammar as it is for a completely deterministic grammar such as
EFa, where it saves a factor of �ve. Of course, the reason is the C++ parser cannot use the LR parser all the time;
on the average it can use it only about 70% of the time. Presumably if we spent more e�ort modifying the grammar
to remove conicts, the performance could be improved, but for now there appears to be no need to do so.

Remarkably, the Elkhound C++ parser is typically only 30{40% slower than gcc's C++ parser. As an engineering
trade-o�, this meager performance di�erence seems to be more than compensated for by the vastly simpler design
of the former parser.

8We modi�ed gcc's source to enable parse time, a measurement which does not include any code generation activities. It does include
type checking, however, because gcc does such checking at the same time as it builds its internal representation of the code.
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7 Related Work

In \Current Parsing Techniques in Software Renovation Considered Harmful" [vdBSV98], the case for GLR is argued
on the basis of compositionality and other important grammar closure properties. That argument in part inspired
work on Elkhound.

The ASF+SDF Meta-Environment [HHKR89] contains a robust, eÆcient GLR parser. However, it su�ers from
the problems mentioned in Section 1.2. The Harmonia development environment [Bos01] makes novel use of an
incremental GLR parser. There is previous work to make the GLR algorithm faster [AHJM01, ACV97]; incorporating
such improvements into Elkhound is possible future work. Paul Hil�nger recently added support for GLR parsing to
version 1.5 of Bison. Work is underway to compare the performance of the GLR parsers in Elkhound and Bison.

Several strategies for disambiguation in ASF+SDF are discussed in [vdBSVV02], including reject and prefer

directives which are similar to Elkhound's keep() and merge() option (1), respectively. Elkhound's mechanisms are
more expressive because user writes code to specify disambiguation criteria, while the declarative reject and prefer

are possibly more eÆcient if the parser generator can �gure out how to apply them earlier in the parsing process.
Besides GLR, there are several other parsing algorithms that can handle nondeterminism or ambiguity. The

oldest of these is the Earley dynamic programming algorithm [Ear70], with running time 
(n2) and O(n3). The
ACCENT parser generator [Sch00] uses a combination of the LL and Earley algorithms.

Some tools, such as BtYacc and ANTLR, use extensions to LL and LR to achieve greater lookahead. These ex-
tensions are neither as eÆcient nor as general as GLR, particularly with respect to tolerance for ambiguity. Similarly,
one can use higher-order combinators in functional programming languages [Hut92] to conveniently describe back-
tracking LL parsers capable of unbounded lookahead and ambiguity representation, but they consume exponential
time and space in the worst case.

8 Future Work

The most important feature missing from Elkhound is error diagnosis and recovery; the current implementation
simply stops and prints a cryptic message when there is a parse error. I plan to implement the Burke-Fisher [BF87]
error diagnosis scheme.

As many language research projects are now being implemented in dialects of ML, it would be quite convenient
if Elkhound's back-end could generate and use actions written in ML. The parser never directly inspects the user's
semantic values, so they could be just as easily handles to ML or Java data structures as pointers to C++ objects.
If Elkhound were in general retargetable to di�erent action languages it could be of use to a wider audience.

9 Conclusion

The Elkhound parser generator improves upon existing GLR technology in two ways. First, it uses a hybrid parsing
algorithm able to switch between ordinary LR and full GLR on the y, for each token. This lets the grammar
developer choose whether to resolve some conicts to get LR-like speed, or leave them for GLR-like readability.
Second, Elkhound exposes a full-featured interface for controlling sharing and merging of semantic values, without
building intermediate data structures such as a parse tree. This ensures scalability and predictable performance.

This paper also tries to articulate the bene�ts of GLR parsing. Developing a parser using Elkhound is much
easier than it is with LALR(1) tools. It does not require intimate knowledge of any parsing algorithm. It also does
not require the ability to fully disambiguate input during parsing; an Elkhound parser can extract exactly as much
structure as is convenient during parsing. With these advantages, we were able to use this technology to build a
C++ parser in less than one person-month.

The time has come for a new breed of parsing tools to displace the quirky and frustrating LALR(1) algorithm.
The implementation described in this paper demonstrates that moving beyond LALR(1) does not require sacri�cing
performance.

Elkhound and its C++ parser have been released under an open-source (BSD) license, and are available at
http://www.cs.berkeley.edu/~smcpeak/elkhound .
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