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Abstract

In the introspective computing model, on-chip resources are
divided into those used forcomputingand those used forintro-
spection. The introspective processor or processors may per-
form sophisticated online observation and analysis of the com-
putation and use the extracted information to improve perfor-
mance, reliability, or other system properties. This paper con-
siders the possibility of online construction of graphical mod-
els representing program behavior and the use of such models
to perform better branch prediction. The particular graphical
model that we employ is that ofdecision trees. We explore the
space of decision tree models, consider the feasibility of im-
plementation of the introspective processor, then present the
performance of this model on the SPEC2000 benchmark suite.

1 Introduction

Historically, shrinking transistor sizes have allowed micropro-
cessor architects to extract ever more instruction-level par-
allelism at a cost of ever increasing complexity. Each suc-
cessive generation of high-performance chips has devoted a
greater fraction of their transistors to control-related functions
rather than actual execution units. Further, as the number of
transistors in a microprocessor grows, design and verification
time grow superlinearly with complexity. Seeking alterna-
tive ways to use transistors, computer architects have turned
to different computation models such as chip multiprocessors
(CMP) [12, 2, 21] and reconfigurable hardware [16].

Given the plethora of resources available to a modern com-
puter architect, we might consider an alternative model, called
introspective computing. In the introspective computing
model, on-chip resources are divided into those used forcom-
putingand those used forintrospection. The introspective pro-
cessor or processors may perform sophisticated on-line obser-
vation and analysis of the computation and use the extracted
information to improve performance, reliability, or other sys-
tem properties. The basic introspective computing model is
shown in Figure 1. Here, in addition to normal computation,
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Figure 1: The Cycle of Introspection

we show some processor resources devoted to monitoring and
others to adaptation. The essential element of this model is
that the feedback is continuous and in real time.

Much of the hardware of an introspective system resembles a
chip multiprocessor, possibly with FIFO communication chan-
nels rather than shared memory. Thus, we can design such a
system by replicating a simple processor unit many times. The
essential difference between introspective computing and mul-
tiprocessing lies in the use of resources. An introspective sys-
tem does not attempt to utilize every available CPU cycle for
performing the primary computation task. Instead, it devotes
some of these resources to performing “meta-tasks” such as
analyzing and adapting the behavior of running programs. The
thesis is that this might ultimately lead to better overall behav-
ior of the application than devoting all resources to (say) pro-
ducing a wider superscalar. Existing examples of this model
might include continuous dynamic (re-)compilation [3], fault
analysis (e.g.DIVA [4]) and complex power adaptation [18].

The possibilities for introspective computing are numerous. In
this particular paper, we explore the use of graphical models
to perform a traditional microprocessor task: branch predic-
tion. The existence of an introspective processor allows for
the creation and manipulation of more complicated graphical
models than would be practical (or desirable) with hardware
alone. These graphical models encapsulate the most vital as-
pects of a given program execution with regard to the desired
end: effective prediction of branch outcomes. These models
are built from observations of the state of the running program
and used to adjust the behavior of the program in the same run.

The particular graphical model that we have determined strikes
the best balance between prediction effectiveness and feasibil-
ity of implementation is that of adecision tree. A decision
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tree is a tree whose interior nodes represent decision points
(or questions about the past) and whose leaves represent pre-
dictions of the future. We show that it is possible to strike a
compromise such that graphical models can be built and used
in real time, while still being highly efficient predictors. In the
rest of the paper, we explore the space of decision tree mod-
els and consider the hardware complexity of the introspective
processor. We present results from the SPEC 2000 benchmark
suite that show speedups as high as 22% for a four-way super-
scalar processor.

The remainder of the paper is divided as follows. Section 2
discusses general trends on computer design. Section 3 dis-
cusses previous work in this field as well as motivations for
our own work. Section 4 contains an overview of general de-
cision trees, the decision trees used in our algorithms, and the
overall prediction mechanism employed. Section 5 describes
the decision tree algorithms that we use. Section 6 discusses
a possible implementation of the algorithm and the trade-offs
that need to be considered in order to run this in real time.
Section 7 provides experimental results. Section 8 discusses
future lines of research, and Section 9 concludes.

2 General Trends

The argument is made in this paper that the extra transistors
which will inevitably be available to future chip designers may
be put to better use in introspection rather than in the standard
forums (wider issue, more functional units, larger caches, etc.).
However, in order to justify this argument, we must consider
the actual performance improvement that has generally been
achieved through these standard means as transistor count on
a chip increases.

Obviously, actual performance improvement cannot be linked
linearly (or in any other such simple manner) with transistor
count, since performance depends on many factors of the de-
sign as well as the targeted uses of the chip. However, by
studying average reported performance of various machines
over a few years, we may be able to draw some general con-
clusions concerning performance improvement over time and
increased transistor count.

Figure 2 shows the reported base results of several popular
workstation processors on the SPEC 2000 Integer benchmark
suite as a function of the chip’s transistor count. The best-fit
line through these points indicates that, in the last few years, a
doubling in the number of transistors on a chip has resulted in
approximately a 23.9% overall performance improvement.

Figure 3 shows similar results for earlier workstation proces-
sors on the SPEC 1995 Integer benchmark suite. In this case,
the best-fit line through these points shows that a doubling
in the number of transistors results in approximately a 27.9%
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Figure 2: Various workstation processors that were released
in the late 1990s and early 2000s. Each point represents one
processor and shows the SPEC 2000 Integer Base performance
metric and the transistor count for the machine.
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Figure 3: Various workstation processors that were released
in the late 1990s. Each point represents one processor and
shows the SPEC 1995 Integer Base performance metric and
the transistor count for the machine.

performance improvement. So, using conventional techniques
and technology and clock improvements over time, we can ex-
pect a 20-30% performance improvement for a doubling in the
number of transistors.

3 Related Work

An enormous number of papers have been published in the
last fifteen years regarding branch prediction techniques and
analyses, using a variety of techniques both novel and recy-
cled from such other fields as artificial intelligence. More re-
cently, research has been conducted into the possibilities of
introspection to make various run-time modifications in order
to improve performance, power, etc.
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Table-Based Predictors In 1992, Yeh and Patt published
their paper on two-level adaptive branch prediction [22]. In
this mechanism, predictions are made using 2-bit saturating
counters. The counters are stored in a table which is indexed
by a portion of the branch address as well as global and per-
branch history. The 2-bit counter is updated based on whether
the prediction matches the actual outcome of the branch.

Since only a portion of the branch address is used in index-
ing the table (in order to reduce table size), aliasing can be a
significant problem [19]. Several schemes have been proposed
which maintain the successful approach of the Yeh and Patt al-
gorithm (tables of 2-bit saturating counters) while attempting
to reduce aliasing [17] [15] [8] [20]. From among these,
we have chosen the YAGS predictor [8] as a baseline against
which to compare our own mechanisms in this paper, since
YAGS is representative of a top-of-the-line predictor.

Branch Prediction Using AI Algorithms A few attempts
have been made at using algorithms from the field of artificial
intelligence (AI) in building better branch predictors. Calder
et al. [6] devised a method of performing static branch pre-
diction using neural networks. Their mechanism extracts pro-
gram information at compile-time and feeds it into a trained
neural network. They achieve 80% prediction accuracy over-
all, which is good for a static prediction mechanism, but sig-
nificantly worse than can be achieved using modern dynamic
prediction techniques.

Jimenez and Lin [14] explore the possibility of using the sim-
plest of neural networks, perceptrons, to do effective dynamic
branch prediction efficiently in hardware. Due to its simplic-
ity, their mechanism is capable of considering longer branch
histories than is possible using the table-based predictors men-
tioned above, for a given amount of hardware. Their predictor
gets the best gains over bi-mode and gshare on benchmarks
which have largely linearly separable branch behavior (that is,
branch behavior which can be described by a perceptron).

Fern et al. [10] study the general approach of dynamically se-
lecting features from among system state (and state history)
which can be used to generate graphical models useful for
prediction. They describe a dynamic decision tree algorithm
and present experimental results which show that their design
is close to PAp and GAp predictors in prediction success rate.
Though our paper likewise describes a decision tree algorithm,
we use a significantly different learning algorithm based on
a different fundamental approach to the problem. We also
show significant performance improvement over top-of-the-
line branch predictors.

Analyses of Branch Prediction A more high level approach
to this research problem has led to a series of theoretical papers
containing analyses of various sorts. Young and Smith [24]

suggest a method of statically analyzing branch correlations in
order to transform code to take advantage of static prediction
schemes. They expand upon this in a later paper [23] by an-
alyzing the effectiveness of various prediction schemes based
on correlations between branches.

An analytical study of two-level predictors was published by
Evers, Patel, Chappell and Patt in 1998 [9]. The results of this
paper show that branches have a strong tendency to correlate
highly with only a few other branches (two or three at most).
This conclusion was a large factor in our decision to use rather
small decision trees to encapsulate a good deal of information
about correlations.

Also in 1998, a paper was published [11] exploring the possi-
bility of estimating confidence levels for predictions in order to
only use those predictions with high confidence, thus avoiding
unnecessary rollback after faulty predictions. More recently,
Jimenez, Keckler and Lin published a paper [13] studying the
effect that various realistic delays have on the design and opti-
mization of prediction mechanisms. These two papers empha-
size the fact that prediction accuracy is not the whole picture
when it comes to branch prediction. Actual performance im-
provement on real program runs are the final test of prediction
mechanisms. For this reason, our final performance numbers
in this paper are reported in terms of performance (cycle count)
rather than branch misprediction rate.

Introspection Recently, there has been work done in the
area of introspection, though often under other names. In
1999, Todd Austin published a paper on DIVA [4], a system
which uses dynamic verification to verify the correctness of a
running program. Additionally, current research is going on
at IBM under the name of Autonomic Computing [1], which
focuses on creating “a systemic view of computing modeled
after a self-regulating biological system.” They are essen-
tially researching the possibility of a self-modifying and self-
improving system, which is the basic idea behind the intro-
spective processor discussed in this paper.

4 Decision Trees for Branch Prediction

In general, branch prediction involves the use of probabilis-
tic models to predict the outcome of branch instructions. The
process of predicting a branch is straightforward: first, select
an appropriate model for the branch and second, apply histor-
ical information to this model. What makes branch prediction
complex is the selection and training of the models.

Decision trees have been used in the literature for a variety of
tasks. In this section, we discuss the use of decision trees to
predict branches. We assume that each branch has its own set
of decision trees. The result is a branch-specific probabilistic
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Figure 4: This sample decision tree helps one determine
whether to go hiking today. To use it, start at the root, an-
swer the question, follow the appropriate leg, and repeat this
until a leaf node is reached. The leaf node returns the decision
made by the tree given the current state of the world.

model. We describe these models, their physical representa-
tion and their impact on the computational processor. We will
leave the details of producing “good” decision trees to later
sections of the paper.

4.1 General Decision Trees

Decision trees are simple, yet often highly effective decision-
making tools used commonly in work concerning artificial in-
telligence and other related fields. A decision tree uses data
concerning the (present and past) state of the system under
consideration to make a binary decision.

Consider the sample decision tree shown in Figure 4. This
decision tree helps one decide whether to go hiking today, with
the sole output being either a Yes (go hiking) or a No (don’t
go hiking). The tree takes as input portions of the state under
consideration (in this case, the physical world).

Each non-leaf node in the tree corresponds to some determi-
nate component of the state of the system. Each leg of a non-
leaf node corresponds to a value of the component specified by
the node. Note that some of the nodes have two legs to their
children, while some have more. A general decision tree node
can have any number of legs.

The actual use of the decision tree is rather intuitive. One be-
gins at the root node, answers the question posed, and then
follows the appropriate edge to the next question. One con-
tinues like this until a leaf node is reached. Each leaf node
corresponds to a possible value for the output of the decision
tree (Yes, No, 1, 0, Taken, Not Taken). For a given state of the
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Figure 5: This is a sample Type 1 decision tree. Each non-leaf
node contains an AOP (branch address and ordinal) and has
two legs going out to its children, one for Taken, one for Not
Taken. Each level consists of identical nodes. The leaf nodes
are two-bit saturating counters.

system, some leaf node will ultimately be reached, and that
value is the decision made.

4.2 Decision Trees and the Execution History

Figure 5 shows a simple decision tree for branch prediction. In
the next section, we will call this a “Type 1” tree. Each internal
node in the tree selects a particular branch in the program ex-
ecution history, while each arc represent a taken or not-taken
result of that branch. Branches in the execution history are
identified withAddress-Ordinal Pairs(AOPs), which we will
discuss in a moment. The leaves of the decision tree consist
of 2-bit saturating counters which are interpreted in the usual
way: if the MSB is zero, the prediction is “false”; if the MSB
is one, the prediction is “true”.

Decision trees only make sense relative to a particular execu-
tion history. All of the algorithms discussed in this paper use
the contents of the Augmented Global Branch History Reg-
ister (AGBHR). A Global Branch History Register (GBHR)
is anx-bit hardware shift register which stores the outcome
(Taken or Not Taken) of the lastx branches executed in the
current program run, wherex is usually on the order of16.

The AGBHR is augmented in that, in addition to keeping track
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Figure 6: An8-element AGBHR. Each element consists of a
32-bit address and a1-bit outcome (Taken or Not Taken).
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Figure 7: An8-element AGBHR labeled with the appropriate
ordinal for each element. The rightmost element is the most
recent one.

of the outcome for the lastx branches, it also keeps track of
the instruction address of the branch that was executed. Thus,
the AGBHR is anx-element hardware shift register in which
each element consists of a branch address and a single bit rep-
resenting Taken or Not Taken (see Figure 6).

A given branch address may appear more than once simulta-
neously in the AGBHR since that branch may have been exe-
cuted more than once in the lastx branch executions. When
considering the elements of the AGBHR, we identify each one
by the branch address specified and by an ordinal. For a given
branch address, the most recent instance of that address in the
AGBHR is assigned ordinal1, the second most recent is as-
signed ordinal2, etc., as shown in Figure 7. Thus, we care less
about how recently the branch instance occurred overall and
more about how recently it occurred relative to other instances
of the same branch. An address/ordinal pair (AOP) completely
specifies a particular element in the AGBHR.

4.3 Variations on a Theme

In our algorithms, each unique branch has a set of 2-bit sat-
urating counters associated with it which are used to predict
future outcomes. Graphical models, specifically trees, are a
way of structuring these counters. The problem is finding a
structure which allows for high learning potential while main-
taining simplicity of design to allow for efficient hardware. As

a result, we’ve tried a few different decision tree structures.

Type 1 Trees In a Type 1 decision tree (Figure 5), each level
consists of nodes corresponding to the same AOP. In such a
tree, any path from root to leaf passes through exactly the same
AOPs. In effect, this correlates the branch being predicted with
a small set of AOPs. Associated with each collective outcome
of these AOPs is a separate 2-bit saturating counter.

This approach is reminiscent of the conclusions drawn by Ev-
ers et al in [9]. In that paper, the authors make the claim
that many branches correlate highly with only very few other
branches. If those few correlated branches could be found in-
dividually for each unique branch, then we wouldn’t need the
huge tables of gshare and other such predictors. With the Type
1 decision tree, we are in fact doing exactly that. We are cor-
relating each unique branch with onlyx other branches, and
thus we need2x 2-bit counters.

However, while Evers et al discuss this important conclusion
about correlation, they do not provide an effective online algo-
rithm for learning these correlations. Such an algorithm will
be discussed later in this paper.

Type 2 Trees A degree of freedom can be added to the learn-
ing process, resulting in what we refer to as a Type 2 tree (see
Figure 8). Each non-leaf node is again associated with an AOP,
and each leaf node is a 2-bit saturating counter. The difference
is that each level in a Type 2 decision tree need not consist of
nodes containing the same AOP. Each node in a Type 2 tree is
learned independently, thus allowing for the possibility that a
“Taken” correlation with root lead to some further set of corre-
lations, while a “Not Taken” at the root may lead to an entirely
different set of correlations. This structure preserves the no-
tion that each unique branch correlates with only a few other
branches, but it allows greater freedom in types of correlations
allowed.

Type 3 Trees Nonetheless, there is yet another degree of
freedom which can be allowed in tracking correlations. A Type
2 decision tree assumes that an AOP correlates both with the
Taken and Not Taken outcomes. If an AOP is associated with
a node, then it must have both a Taken and a Not Taken leg.
But we may wish to learn even these independently. Figure 9
shows a Type 3 decision tree structure. In this structure, each
leg in the tree (rather than each node) is associated with an
AOP. Each leg is learned independently, thus allowing Taken
and Not Taken outcomes to be separately learned.

Notice that the different legs of a single node are no longer
mutually exclusive. Since they are completely independent of
each other, it is entirely possible for two or more of them to be
simultaneously true (for a tree traversal with a given AGBHR).
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Figure 8: This is a sample Type 2 decision tree. It is simi-
lar to the Type 1 decision tree, except that each node is inde-
pendently learned. This means that each level may consist of
nodes with different AOPs, unlike in the Type 1 tree.

In this case, the simple solution is to take the leftmost leg that
is currently true (that is, the first one that was created). It is
also possible for none of the legs to be true for a given node.
This is discussed in the Algorithm section. Additionally, in or-
der to keep the trees bounded, we put some limit on the num-
ber of legs that each node can have, as well as a limit on the
maximum height of each tree.

The nodes in this tree have a slightly ambiguous meaning, but
one could imagine the question at each node being, “Which of
the AOP/outcome pairs among the possible legs can be found
in the current AGBHR?” To traverse the tree, we start at the
root and keep following legs that are in the AGBHR until we
reach a leaf, which gives us a prediction.

4.4 Fast Decision Tree Traversal

Each of the above decision trees can be represented by a com-
bined vector of AOPs (for the nodes or arcs) and 2-bit coun-
ters. When a branch is encountered, its decision tree (vector of
bits) must be fetched from somewhere. Assume that we use a
fast cache of decision trees. Given the description of the deci-
sion tree, we can combine it with the current execution history
(AGBHR) to perform a prediction.

Conceptually, traversing a decision tree involves starting at the
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Figure 9: This is a sample Type 3 decision tree. Each leg
(rather than each node) is associated with an AOP. In traversing
this tree, we simply follow the leg that appears in the current
AGBHR until we reach a 2-bit counter.

root, matching and continuing to a child, and repeating until
a leaf is reached. However, doing these comparisons sequen-
tially would be time consuming. Instead, all comparisons can
be performed in parallel as in Figure 10 (for a Type 3 tree).
The description of each arc includes an AOP/result combina-
tion which we match against each entry of the AGBHR. Once
the comparisons are made, we can identify paths through the
tree that lead to leaves, which are two-bit saturating coun-
ters. The final prediction is made using the predictions of the
valid path(s), as described further in Section 6. The outcome
of the branch then modifies (increments or decrements) the
counter(s) used. Note that Figure 10 is only representational;
an optimized design would likely use dynamic matching logic
(treating the AGBHR like a CAM).

5 Algorithm

In this section, we discuss an online learning algorithm to pro-
duce good decision trees. Section 6 will show how the intro-
spective processor implements this algorithm.

5.1 Constructing Decision Trees

The tree construction algorithm is similar for all three types of
decision trees. Assume that each unique branch has a decision
tree associated with it. The decision tree starts out null, and
nodes are added as correlations are found between the current
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Figure 10: Decision Tree Traversal: Comparators simultane-
ously compare each leg (or node) against the AGBHR. The
results are used in conjunction with the 2-bit saturating coun-
ters to make a prediction, as described in detail in Section 6.

branch and the execution history. For instance, suppose that a
Taken outcome for a given AOP always coincides with a Taken
outcome for the branch in question. If this happens frequently
enough (i.e. there is a correlation), we reflect that by adding a
node or link to the decision tree.

Type 1 trees are filled in one level at a time (as opposed to one
node at a time). When a correlation is discovered, each node in
the highest empty level of the decision tree is set to this AOP.
That is, if the decision tree is empty, then the root node is set
to this AOP; if there is only a root, then both of its children are
set to this AOP; etc.

With Type 2 and 3 decision trees, each tracked correlation is
additionally associated with a particular empty location in a
particular tree (a node for Type 2 trees, a leg for Type 3). When
a CFC saturates, we know exactly where to add it. For all three
types, the maximum height of the tree is set (in order to facil-
itate hardware design), so any further learning is discarded.
Additionally, for Type 3 trees, the maximum width (number of
legs per node) is also bounded. We explore the sensitivity with
respect to tree size in Section 7.

5.2 Discovering Correlations

The introspective processor runs in parallel with a program ex-
ecution on the computation processor and creates a set of deci-
sion trees to be used for branch prediction during the same run.
Thus, the introspective processor must use an online decision
tree learning algorithm to create the decision trees.

A true online learning algorithm would use floating point op-
erations. This is infeasible given that we would like the intro-
spective processor to run in parallel with the computation pro-
cessor (and not fall behind by doing extremely complex and
time-consuming operations). In order to approximate these

complex computations, the introspective processor uses Cor-
relation Frequency Counters (CFCs).

A CFC is ann-bit saturating counter. For Type 1 decision
trees, each CFC is associated with three things:

• the address of the branch that’s being predicted;

• the AOP of a possibly correlating branch in the AGBHR;
and

• the outcome (Taken/Not Taken) of the same possibly cor-
relating branch in the AGBHR.

In the case of Type 2 and 3 decision trees, we also associate
each CFC with one more thing: a node or leg specification.
With these two tree types, we are attempting to learn corre-
lations for each node or leg individually. In order to avoid
aliasing between CFCs, we need to keep track of which node
or leg each CFC is tracking.

Since each tree is of bounded size, we may label each indi-
vidual node (or leg) of the complete tree with a different inte-
ger. Thus, a “Node/Leg ID” is added to each CFC to specify
that the CFC is studying the given correlation exclusively for
that particular node (or leg). When a branch executes on the
computation processor, we take a look at the current AGBHR
and find all the possible places we could add a new node (or
leg) to the tree (and still be consistent with the contents of the
AGBHR). We then create or increment/decrement all the ap-
propriate CFCs for each of the elements of the AGBHR and
for each possible node (or leg). When a CFC saturates, we
know exactly where it should be placed in the tree.

Each CFC measures the extent of the correlation between the
branch currently being predicted and a recently Taken or re-
cently Not Taken branch. Upon each branch execution on the
computation processor, the introspective processor takes the
branch address and outcome, as well as the complete AGBHR.
Each element of the AGBHR consists of an AOP and a corre-
sponding outcome.

If we take the branch address in question and group it together
with any individual AOP and corresponding outcome in the
AGBHR, we have specified a unique CFC for a Type 1 tree
(since all three elements listed above are specified). (For the
other types, we must do this for every possible node or leg in
the incomplete tree.) Thus, for a given branch in question and
correspondingx-element AGBHR, we are concerned withx
unique CFCs. For each of these CFCs, if it already exists, then
we simply wish to increment it or decrement it. If the branch
in question was Taken, we increment by1. If Not Taken, we
decrement by1. On the other hand, if the CFC does not exist
yet, then it is created and initialized to a central value (2n−1 if
we are usingn-bit saturating counters).
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Figure 11: This flowchart shows the basic progression of the
algorithms. The computation processor executes branches reg-
ularly and passes relevant data to the introspective processor.
The introspective processor updates CFCs and adds relevant
nodes/legs to decision trees upon CFC saturation. The up-
dated trees are sent to the computation processor (periodically
or upon request) to be used for prediction.

Now let us consider what this accomplishes. Suppose that a
Taken outcome for a given AOP strongly correlates with a
Taken outcome for the branch in question. In that case, the
corresponding CFC would be continuously incremented, thus
resulting in a saturating value at the high end for the counter.
On the other hand, if a Taken outcome for the same AOP
strongly correlates with a Not Taken outcome for the branch
in question, the corresponding CFC would be continuously
decremented, thus resulting in a saturating value at the low end
for the counter. The size of then-bit saturating counter must
be chosen to be large enough to avoid accidental saturations
but small enough to allow fast learning.

Now we can finally understand exactly what the introspective
processor does. When a branch is executed on the computa-
tion processor, the introspective processor grabs the address
and outcome of the branch in question as well as the com-
plete AGBHR. For each element in the AGBHR, the appro-
priate CFC is modified as described above (being created if it
does not exist yet, being incremented or decremented as ap-
propriate if it does).

5.3 Algorithmic Choices

Figure 11 shows pictorially the basic flow of the algorithms
described so far, as well as the interactions between the com-
putation and introspective processors. As mentioned before,
various modifications may be made to these algorithms in or-
der to improve effectiveness. Each of these modifications adds
performance benefits to the algorithm at the cost of design
complexity and additional transistor count (and possibly ad-
ditional gate delays along the critical path).

Default Leg Consider the fact that, during a particular
traversal of the tree, the AOP specified by an encountered node
may not appear in the current AGBHR. Likewise, with a Type

3 tree, we may encounter a node during a traversal for which
none of the legs appear in the AGBHR. One solution to this
problem would be to use another branch prediction mechanism
(or to not make a prediction at all) in these instances. However,
since this may turn out to be a frequent occurrence, we would
like a better way of dealing with this.

A second option would be to designate either the “Taken” or
the “Not Taken” leg as the default leg to be traversed. This
allows us to use the tree, but it results in rather arbitrary inter-
ference on the default leg, so the results are unpredictable.

The third and best option is to add a third leg to each node,
called the “Not in AGBHR” leg, to be the default in case none
of the other options can be taken. Not only does this avoid
interference on either of the other two legs, but it allows the
decision tree to attempt to glean patterns from the absence of
relevant AOPs in the AGBHR, as well as from their presence.
This default leg has been found through testing to be vital to
the effectiveness of all of the algorithms, so all of the tests in
Section 7 use trees with the “Not in AGBHR” leg.

Multiple Trees per Branch Thus far, we have assumed a
limit of one tree per unique branch, but this restriction may
significantly limit the algorithm’s ability to learn a complex
branch’s behavior. Obviously, many branches in a program
don’t need a decision tree at all because they occur less than
a dozen times over the entire run of the program (which is
not enough time to learn any behavior). Many other branches
can be accurately predicted by a single tree. However, there
are a select few branches in each program which have a much
larger number of instances than the others. These branches are
unlikely to be accurately represented by a single tree, and they
are likely to pass through several phases or patterns throughout
the execution, perhaps correlating with different branches at
different times.

For this reason, we should allow for the creation of multiple
decision trees per branch. However, we also need to be careful
not to create decision trees haphazardly and unnecessarily, as
this will tend to deteriorate prediction accuracy. As a result,
only one decision tree is created at a time (since we expect a
branch to be in a single phase or pattern of execution at any
given time), with additional trees being created as needed.

The first tree is created normally as before. Once this tree is
done, all CFCs corresponding to that branch in question are
cleared, and we start anew. If the next CFC (corresponding
to this branch) to saturate is either the root or in the first level
of the first tree, then we can safely assume that we are still
in the same pattern for this branch (since the same AOPs are
most strongly correlating). In this case, we clear all the CFCs
corresponding to this branch and start anew again.

However, if a different CFC saturates before any of the previ-
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Figure 12: This is a high level view of the system. The compu-
tation processor consists of all the standard hardware, as well
as a prediction mechanism and a local decision tree cache. The
introspective processor consists of the learning hardware, two
caches (one for decision trees, one for CFCs) and a processor.

ously most strongly correlated ones, then we have likely en-
tered a new stage of execution, so we create a new tree. This
second tree is built using the same techniques as the first one.
We continue creating trees like this for as long as is necessary.

6 Implementation

In order to study the feasibility of these algorithms in practice,
we must examine the details of a hardware implementation.
The hardware of interest consists of the introspective proces-
sor, the branch prediction mechanism on the computation pro-
cessor and the communication mechanism connecting the two
(see Figure 12). The introspective and computation processors
are preferably embedded on the same chip, thus allowing for
fast communication between the two. Each of these compo-
nents is discussed individually in the following sections.

6.1 Communication

The introspective and computation processors communicate
by means of two uni-directional buses. The introspective pro-
cessor has two incoming FIFO queues corresponding to the
two types of messages it can receive. Each time a branch is ex-
ecuted on the computation processor, a message is sent to the
introspective processor containing the address and outcome.
These messages are all directed into one queue and handled
by the CFC-updating hardware, as described below.

The second type of message that may be received by the intro-
spective processor is a request message from the computation
processor. If the computation processor misses in the deci-
sion tree cache (whether because of a replacement or a cold
start miss), it may request that decision tree from the intro-

spective processor. These request messages are given prior-
ity and thus a second queue. These are handled as quickly as
possible by the introspective software. The appropriate tree is
fetched from the introspective processor’s cache and is sent to
the computation processor.

The computation processor has only a single incoming FIFO
queue. Decision trees are periodically sent by the introspective
processor to update the computation processor’s local cache.
This needs to be done because, once the computation pro-
cessor’s local tree cache contains a decision tree for a given
branch, the computation processor will no longer need to re-
quest it. However, if the introspective processor continues to
update that tree, the computation processor’s copy could grow
stale, so it needs to be updated. Additionally, a decision tree
may be sent in response to a direct request made by the com-
putation processor. In both cases, the trees arrive at the same
queue on the computation processor and are transferred to the
computation processor’s decision tree cache.

6.2 Computation Processor

The computation processor has a local decision tree cache.
Trees in this cache are periodically updated by the introspec-
tive processor, thus keeping the prediction mechanism up-to-
date. The size of this cache can be varied, but the number of
decision trees used by a program is so small that replacement
is rare, and hit rate in this cache is barely an issue.

The computation processor must use branches from its local
decision tree cache to make predictions that can be used during
a run. This means that it is necessary to make predictions in
a single cycle, which necessitates the use of specialized hard-
ware to traverse a decision tree fast enough.

When a branch is encountered, its decision tree is fetched from
the local cache. If it’s a cache miss, a request is sent to the
introspective processor for the desired decision tree. In this
case, some other mechanism is used to make a prediction, or
perhaps no prediction at all is made. If it’s a cache hit, then the
tree must be traversed using the data currently in the AGBHR
in order to make a prediction.

Conceptually, traversing a decision tree involves starting at the
root node, following one of its legs to a child node, and repeat-
ing this until a leaf has been reached. Each leg corresponds to
some AOP, and that leg should only be traversed if the AOP ex-
ists in the current AGBHR. However, doing these comparisons
sequentially would take more than a single clock cycle, which
would make the prediction useless. Thus, all of the compar-
isons are performed in parallel by multiple comparators.

Figure 10 gives a sketch of the hardware involved in travers-
ing a tree. We would like to estimate the time involved here.
Consider a Type 3 tree with depth three (Figure 13). Further,
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. . .. . . leaves

Figure 13: This is a decision tree of height 3 and width 3. The
height is determined by the number of non-leaf levels. The
width is the number of legs/node. If we are using the default
“Not in AGBHR” leg, this is included in the width. The 27
leaves at the bottom are each a 2-bit saturating counter.

assume that each node has two AOP/result arcs to children and
one default arc. A quick computation yields2 + 6 + 18 = 26
arcs that must be matched against the AGBHR. If we have a
12-element AGBHR, we need12 × 26 = 312 comparators.
Each comparator must compare two AOPs. If we are using the
low-order 12 bits of each address as well as a 4-bit ordinal,
then we have 16-bit AOPs. So we need 312 16-bit compara-
tors in order to perform all of the comparisons in parallel. As
suggested before, it would probably make sense to build a tight
12× 26 matrix of dynamic matching logic.

Given the comparator results, we can generate a 27-bit vector
specifying whether or not each path is valid given the current
AGBHR (one bit for each of the 27 possible paths through the
tree). Remember that more than one path may be simultane-
ously valid in a Type 3 tree, so the vector may have more than
a single bit set to 1. We now consider the design of the Pre-
diction Selector in Figure 10, which takes the results from the
comparators and the MSBs of the 27 leaves (2-bit saturating
counters), and which produces a single branch prediction.

The straightforward approach is to take the leftmost valid path
and use its prediction. Since legs are added from the left, this
will give a highly correlated valid leaf. Figure 14 shows such a
design for the Prediction Selector. The 27 valid path bits (com-
parator results) are passed through a priority encoder which
outputs five bits specifying the leftmost valid path. These bits
are used as control for a mux to select between the 27 possible
predictions (MSBs of the leaves).

The drawback of this approach is that a priority encoder is rela-
tively complicated, and it must execute in series with the mux.
Using a standard design for a 27-to-5 priority encoder, we have
a gate delay of approximately 8 gates. Likewise, for a 27-to-1
mux, we have a gate delay of approximately 10 gates, for a to-
tal delay of approximately 18 gates for the Prediction Selector,
which is too much for our single cycle prediction goal.

Prediction

5

...
Comparator Results

27−to−1 MUX

Leaf Node MSBs

...
Priority Encoder

Figure 14: One possible design for the Prediction Selector in
Figure 10. The comparator results are used to select from
among the possible predictions. A priority encoder is needed
since multiple paths may be valid.

We could save some time by using the approximate solution
shown in Figure 15. The valid bit for each path is ANDed
with the prediction that would be made by the corresponding
leaf node (the MSB of the 2-bit saturating counter), so each
bit is now 1 if and only if the path is validand the prediction
is Taken. These 27 results are ORed together, and this is used
as the prediction. Thus, the decision tree predicts Taken ifany
valid path predicts Taken. (It is a simple matter to convert this
design into one using only NANDs and NORs.) This design
gives us a gate delay of 4 gates.

Tests have shown that predictions made using this approxima-
tion differ from predictions made using a priority encoder only
0.009% of the time (averaged across all benchmarks). Thus,
we can use this simplified design with its significantly reduced
gate delay with almost no loss in prediction accuracy.

Given this design, we can estimate the gate delay for a single
prediction. The comparators work in parallel, so they take a
total of (say) 4 gate delays. It takes one gate delay to gener-
ate the path valid bits and another gate delay to generate the
prediction bits for all 27 paths. Determining whether there is
at least one high bit among these 27 bits takes another 3 gate
delays. Thus, we could have a result in about 9 gate delays or
so. More optimization is possible here, and dynamic logic and
wider gates (possible in SOI technology) will further reduce
the latency for prediction.

6.3 Introspective Processor

The introspective processor is responsible for updating CFCs,
adding nodes to decision trees and sending those trees to the
computation processor. CFC updates must be performed af-
ter each executed branch on the computation processor. This
occurs very often (every one, two or three cycles generally),
so the CFC update mechanism is implemented in hardware to
make the common case fast.

In contrast, the addition of a node to a tree, the sending of a tree
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Figure 15: A simple but approximate design for the Prediction
Selector in Figure 10. The mechanism predicts Taken ifany
valid path predicts Taken.

to the computation processor and the replacement of a CFC all
occur much less frequently, so these are handled by trapping
to software. This avoids a good deal of hardware complex-
ity that would be needed to manage these tasks completely in
specialized hardware.

Overview Each time a branch is executed on the computa-
tion processor, a message is sent to the introspective processor
containing the address and outcome of the branch in question.
In Section 7, we report the results of investigations into using a
certain number of low order bits to identify each branch, rather
than the entire address. The end result is that 12 or 16 bits
are perfectly adequate for these algorithms on a 32-bit system.
However, this is only true for the correlating branches. The
branch in question must always be referred to by its complete
address, since we don’t want to start mixing up decision trees
due to aliasing.

The introspective processor must also have access to the com-
plete contents of the AGBHR. However, since it receives each

branch and outcome, it can simply keep its own copy of the
AGBHR (which is modified each time a branch arrives) with-
out having to receive it in a message. The addresses stored in
the AGBHR can use 12 or 16 low order bits of the branch, as
mentioned before, in order to reduce hardware requirements.
Only the address for which a decision tree is being created
must be the complete address.

The introspective processor only needs to keep track of two
types of data structures: CFCs and decision trees. One possi-
bility is to store these in one general main memory. However,
since these are the exclusive data items that will be handled by
the introspective processor, a better idea is to have a separate
“CFC cache” and “decision tree cache” (with no main mem-
ory). Each of these caches acts as a main memory for a single
type of data structure.

CFC Update Hardware The CFC update process must be
done in hardware to keep up with the flow of messages from
the computation processor. Each time a message arrives from
the computation processor, the introspective processor must
handle one CFC for each element of the AGBHR. Handling
a CFC means either creating a CFC, incrementing an existing
CFC by one or decrementing an existing CFC by one. If we
use a 12-element AGBHR, this means that 12 CFCs must be
found in the CFC cache on each message arrival. This would
clearly take too long if all 12 were located randomly through-
out the cache.

For this reason, each branch for which a decision tree is being
constructed has a contiguous block in the CFC cache allocated
to it. When a message arrives, the entire block can be fetched
using the address of the branch, and thus all corresponding
CFCs can be fetched quickly. Since only one decision tree is
being created for each branch at any one time, each branch
address has only a single block in the CFC cache.

The size of this contiguous block is of prime importance, since
this limits the number of CFCs that may be associated with a
branch at any given time. Premature replacements in a CFC
block could cause inaccurate or inefficient trees to be built.
CFCs are created for each of the 12 elements of the AGBHR
for each tree node being studied. Depending upon the com-
plexity of the algorithm implemented (number of legs per
node, etc.), the “optimal” size of the block varies. However,
even the more complex algorithms perform well with a block
size of 128 CFCs, while a block size of 256 CFCs tends to
allow trees to be constructed slightly more quickly.

Figure 16 summarizes the parallel CFC Update Hardware.
When a message arrives, the introspective processor thus
fetches the appropriate CFC block from the CFC cache. Each
element in the AGBHR must be found in the block and incre-
mented or decremented (or created if it does not yet exist).
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Figure 16: This is an overview of the learning hardware on the
introspective processor that handles CFC updates. This hard-
ware is activated each time an instance of a branch execution
arrives from the computation processor. An overview of the
design of a Counter Modification Logic module is shown in
Figure 17.

Each CFC in the fetched CFC block is sent to a separate
Counter Modification Logic (CML) module, along with a
complete copy of the contents of the AGBHR and the outcome
of the branch in question. The inner workings of a CML mod-
ule are shown in Figure 17.

Each element of the AGBHR is compared against the corre-
sponding information of the CFC. The “path” associated with
the CFC represents the path taken from the root node to the
node being studied by the CFC. Since the trees are of fixed
dimensions (for a given design), the simple solution is to num-
ber the nodes of the tree in some order. Thus, the “path”
is simply the number of the node in question, so it takes
log(number of nodes in tree) bits to represent it.

The result of each comparator in the CML is killed (set to
0) if the CFC happens to be invalid (not yet initialized). If
any match is found, the CFC counter is incremented or decre-
mented, depending on the outcome of the branch in question.

The Incrementer/Decrementer logic produces the value of the
counter (which may be unchanged) as well as a bit signal-
ing whether the counter has saturated. The new value of the
counter is put back together with the general information as-
sociated with the CFC (which is unchanged), and this is output
as the new CFC. Additionally, the results from the comparators

are produced as outputs as well.

Thus, each CML module generates three outputs: an updated
CFC, a “saturated” bit, and a bus containing the results from
the comparators. The updated CFCs from all the CML mod-
ules are combined into a block and sent back to the CFC cache.
The other two outputs are both used to trap to software in rare
cases further described in the next section.

Software Support There are three instances in which we
trap to software on the introspective processor:

• request for a tree by the computation processor

• CFC saturation (a node needs to be added to a tree)

• CFC creation (if the CFC Update Hardware cannot find a
matching CFC)

If a tree request arrives from the computation processor, the in-
trospective processor fetches the requested tree and sends it off
as quickly as possible. If no such tree exists yet (for example,
early in the execution of a program), then the introspective pro-
cessor simply ignores the request. Any return communication
regarding the incomplete state of the tree would be complex
and unnecessary.

If any of the “saturated” bits are true, the system traps to soft-
ware in order to handle the adding of a node (or nodes) to the
decision tree. This software has access to the saturated bits
produced by the CMLs and to the newly updated CFC block.
The decision tree is fetched from the cache and the appropriate
node is added to the tree, based on the contents of the satura-
tion bits. The tree is then put back into the cache, and some
CFCs (those with a path that matches the node that was just
added) in the block need to be invalidated. In order to avoid
doing 128 sequential fetches and comparisons, these invalida-
tions are done in parallel by hardware.

The third output of the CML modules, the results of the com-
parators, is used for CFC creation. Each CML module com-
pares each element of the AGBHR with one CFC. Thus, if
we want to look at the comparisons of a single element of the
AGBHR, we must look at one result from each of the CML
modules. For each element of the AGBHR, if no match is
found among any of the existing CFCs (see Figure 16), the
system traps to software to handle the creation of a new CFC
or possibly the replacement of an old one.

For this task, the software has access to the CFC block in ques-
tion as well as the AGBHR and the results of the comparators.
Hardware comparators check all the valid bits in the block in
parallel, and then a priority encoder selects out the first invalid
CFC. If one exists, the software uses it. If no invalid CFCs ex-
ist, then hardware comparators compare against the two high
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Figure 17: This is an overview of a single Counter Modification Logic module. It is responsible for updating a single CFC and
signaling a saturation.

Task Number of Instructions
Tree Request 4
CFC Saturation 14
CFC Creation 10-38

Table 1: Instruction count for the three software operations
performed by the introspective processor.

order bits of each CFC. A CFC whose high order bits are 01
or 10 should not be near saturation (whereas a CFC with high
order bits 11 or 00 may be close to saturation). At this point,
the software randomly selects one of the possible CFCs for re-
placement (a CFC is an acceptable candidate if it is valid and
has high order bits 01 or 10). Once a candidate is found, the
new information is put into place and the CFC block is written
back to the CFC cache.

Introspective Processor Utilization The introspective pro-
cessor can be significantly simpler than the general purpose
computation processor, but it must still be capable of keep-
ing up with all incoming requests. We’d like to get an idea
of the software complexity of each of the three possible inter-
rupts. Table 1 shows the instruction count for each of these.
These counts do not include the time for the hardware assis-
tance mentioned above, so the actual execution time may be
increased by as many as 2 clock cycles.

For the simulations reported in Section7, we ran actual code on
the introspective processor in order to discover the true load.
The end result is that, for all benchmarks tested, the introspec-
tive processor is idle for at least 50% of available software
cycles. In most cases, usage is around 20-30%. This means
that the introspective processor is in fact capable of keeping
up with incoming requests. Later, we shall discuss a possible
use for these idle cycles.

7 Experimental Results

For our experiments, we used the SimpleScalar Toolset written
by Todd Austin [5]. Modifications were made to SimpleScalar
by Mark Whitney (UC Berkeley) to allow it to run multiple
processors in parallel. Each processor is simply an instanti-
ation of the basic SimpleScalar simulator, with FIFO queues
being used for communication between the processors. Delays
on the FIFO queues allow simulation of real time communica-
tion delay as well as a bandwidth limit on data transferred.

Ten of the twelve SPEC 2000 integer benchmarks [7] have
been used in the simulations. Unless otherwise specified, re-
sults are reported for runs of the first 500 million branch in-
structions of each benchmark program. This translates to runs
of a few billion instructions total from each program. Num-
bers were found to converge by this point, so full program runs
were unnecessary. The branch prediction mechanism used as
the baseline is the YAGS prediction scheme [8].

Unless otherwise specified, each test uses Type 3 decision trees
(results for tests using Type 1 or 2 decision trees clearly state
this). All of the tests allow multiple decision trees per branch,
and all of the tests use decision trees which include the default
“Not in AGBHR” legs discussed previously. Unless otherwise
stated, each test uses the low order 12 bits of each branch ad-
dress in the AOPs and AGBHR elements, and decision trees
of height three (including the root but not the leaves) and
width three (that is, three legs per node, including the “Not
in AGBHR” leg).

On the hardware side, the tests use a 12-element AGBHR, a
decision tree cache with a maximum capacity of 1000 deci-
sion trees on the computation processor, a decision tree cache
with a maximum capacity of 10000 decision trees on the in-
trospective processor and a CFC cache with a maximum ca-
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pacity of 1000 blocks of 128 CFCs each on the introspective
processor. Additionally, the introspective processor has two
copies of the CFC Update Hardware (so two CFC blocks may
be updated independently each cycle), and queue overflow is
simply dropped (that is, if branch executions arrive at the in-
trospective processor more quickly than they can be handled
by the hardware, the excess branch instances are dropped and
not used to learn trees). The introspective processor is always
a 2-way superscalar machine and, unless otherwise stated, the
computation processor is a 4-way superscalar machine.

7.1 Choosing a Decision Tree

Three types of decision trees of varying complexity have been
presented. To determine the actual performance gains obtained
for the extra hardware of the more complex trees, these three
tree types have been tested using the default environment de-
scribed above. Additionally, we use a 4-way superscalar com-
putation and a 2-way superscalar introspective processor.

The YAGS branch prediction scheme [8] is used as the base-
line for comparison. The “DTrees” scheme refers to a pre-
diction mechanism consisting entirely of the decision tree al-
gorithm described herein. The “DTrees with mini-YAGS”
scheme refers to a combination of the two schemes. In this
scheme, a meta-predictor is used to select between the DTrees
scheme and the regular YAGS scheme. The total number of
transistors used in the computation processor implementation
is equal in all three schemes. Thus, much smaller YAGS tables
are used in the combined scheme to allow for some transistors
to be used for DTrees.

Figure 18 shows the relative performance (as determined by
total cycle count normalized to the YAGS scheme) for the var-
ious schemes for the ten benchmarks. With Type 1 decision
trees, the basic DTrees scheme does on average approximately
as well as YAGS alone, but the hybrid scheme does show some
performance gain over either of the individual ones. With
Type 2 trees, the DTrees scheme by itself gets a 4-5% per-
formance improvement over the basic YAGS scheme on aver-
age, while the hybrid scheme gets an average of 7-8% better
performance. Type 3 trees exhibit the best performance im-
provement, as expected, gaining by 11% on average using the
pure DTrees scheme and by almost 16% on average using the
hybrid scheme.

7.2 Parameter Variations

Various tests have been performed to study the sensitivity of
the prediction accuracy to the size and shape of decision trees
used. The results of these tests have been used to determine
realistic values for these parameters in the performance tests,
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Figure 18: Normalized cycle count for executions using differ-
ent decision tree types and different algorithms, as compared
to the YAGS scheme alone (4-way superscalar computation
and 2-way superscalar introspective processor).
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Figure 19: Misprediction rate for the decision tree algorithm
(multiple trees per branch) using different maximum heights
for the trees (including the root but not the leaves).

as well as to determine the “typical” hardware requirements
discussed in Section 6.

Smaller decision trees result in simpler hardware and fewer
transistors dedicated to the prediction mechanism. Unfortu-
nately, they also result in decreased accuracy. We would like
to minimize the size of decision trees used (both in height and
in width) while sacrificing as little prediction accuracy as pos-
sible. Figure 19 shows that increasing tree height past three
(including the root but not the leaves) does not significantly
improve the accuracy of the algorithm. This is true for all ten
of the benchmarks.

We also need to consider the width of the tree (the number of
legs per node). Remember that one of the legs is the default
“Not in AGBHR” leg, so a tree with three legs/node actually
has only two distinct correlations per node. Figure 20 shows
that slight gains can be achieved by increasing the number of
legs/node from three to four, but almost no gain is achieved

14
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Figure 20: Misprediction rate for the decision tree algorithm
using different maximum number of legs per node (including
the “Not in AGBHR” leg).

by making the trees any wider. As has been discussed in the
Implementation section, the width of the tree very dramati-
cally impacts the number of transistors needed by the predic-
tion hardware on the computation processor. For this reason, a
width of three legs/node has been used as the standard across
all of the other tests, sacrificing a small amount of accuracy for
implementation feasibility.

Another decision that must be made is the number of low
order address bits to use in the AOPs. Recall that each de-
cision tree is associated with the complete 32-bit address of
some branch (in order to completely eliminate aliasing be-
tween trees), but the elements of the AGBHR and the AOPs
in the trees use some number of low order bits to identify
branches, thus reducing the size of the trees (and the hard-
ware) but allowing some aliasing to occur. Figure 21 clearly
shows that the low order 12 bits of each address are adequate
to achieve near optimal performance for all ten benchmarks.
Note that, since branches are word-aligned, only 10 bits need
to be implemented in the hardware if we use the 12 low order
bits. This reduces both the storage requirements in the deci-
sion tree caches, AGBHR, etc., and the number of comparators
needed for the tree traversal hardware.

Finally, we must consider the fact that the best algorithms al-
low multiple trees per unique branch. In order to determine
how many trees are actually being built and thus how large the
decision tree caches need to be, we study the percentage of
branches in each program that have no trees at the end of the
run, that have exactly one tree, and that have more than one.
Figure 22 shows the results of this test. Clearly, the vast ma-
jority of unique branches have so few instances that they don’t
need any tree at all, while a tiny minority of branches (less
than 2% in all cases) need more than one tree to be predicted
accurately.
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Figure 21: Misprediction rate for the decision tree algorithm
using a varying number of address bits per element in the
AGBHR and AOPs.
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Figure 22: Percentage of unique branches for which no deci-
sion trees are built, exactly one tree is built, or more than one
tree is built for the decision tree algorithm.

7.3 Varying Hardware Constraints

As the issue width of the computation processor is increased,
the prospective gains from effective speculation are increased
as well. Tests using Type 3 decision trees were performed
thrice, with a 2-way, 4-way and 8-way superscalar computa-
tion processor. Since the introspective processor is supposed
to be relatively simple, it is a 2-way superscalar machine in all
cases. The remaining parameters were set as described earlier.

Figure 23 shows the relative performance (normalized cy-
cle count) using a 2-way superscalar computation processor.
DTrees outperforms YAGS on nine out of the ten benchmarks
by an average of about 10%. The combined scheme further
outperforms the simple DTrees scheme by an additional 5%.

Figures 24 and 25 show similar results for a 4-way and 8-way
superscalar computation processor, respectively. Both DTrees
and the combined scheme perform relatively better with in-
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Figure 23: Normalized cycle count for executions using algo-
rithms with Type 3 trees (2-way superscalar computation and
2-way superscalar introspective processor).
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Figure 24: Normalized cycle count for executions using algo-
rithms with Type 3 trees (4-way superscalar computation and
2-way superscalar introspective processor).

creased issue width, since the increased IPC of the wider is-
sue processor means that prediction accuracy has greater im-
pact on use of available resources. In the 8-way simulation
(Figure 25), the performance gain of the combined scheme ap-
proaches or exceeds 20% for several benchmarks.

All of these tests have been performed on a fixed hardware
budget. We also consider how these results are affected by a
change in the available hardware. The transistors under con-
sideration are those being used for prediction on the compu-
tation processor. The primary use of transistors in the YAGS
scheme is in the Pattern History Tables (PHTs), while the bulk
of the transistors in the DTrees scheme is in the comparators
and in the local decision tree cache. In the combined scheme,
the transistors are divided evenly between the two schemes.

Figure 26 compares the three schemes as the hardware budget
(approximate transistor count) of the prediction mechanism on
the computation processor is varied. Each point represents the
average performance across all ten benchmarks. Again, the
results have been normalized to the YAGS scheme, and a 4-
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Figure 25: Normalized cycle count for executions using algo-
rithms with Type 3 trees (8-way superscalar computation and
2-way superscalar introspective processor).
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Figure 26: Normalized cycle count for executions using algo-
rithms with Type 3 trees as the hardware budget on the compu-
tation processor is varied (averaged across all 10 benchmarks).

way superscalar computation processor has been used.

As expected, the bare DTrees algorithm needs a certain
amount of base hardware before it begins performing well. We
need enough hardware for the comparators and a local decision
tree cache large enough that it won’t be constantly thrashing.
For designs of 150,000 transistors or more, the bare DTrees
algorithm shows performance improvement (decreased cycle
count) of 10-15% over the YAGS scheme. As the hardware
on the computation processor is expanded, more complex de-
cision trees and a larger local cache can be included in the
design. However, both of these components of the DTrees
algorithm begin to exhibit diminishing returns, so additional
hardware doesn’t necessarily buy further performance gain.

Likewise, the combined scheme does not become effective un-
til we incorporate enough transistors in the design to include
smaller versions of both YAGS and DTrees. As expected,
more significant performance gains are observed, reaching al-
most 20% performance improvement for some configurations.
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7.4 Analysis

Given these performance results and the general trends de-
scribed in Section 2, we can now take a look at the overall
gains offered by the introspective approach. The prediction
hardware on the computation processor uses approximately as
many transistors as a corresponding YAGS mechanism would
take. On the introspective side, we need to consider the hard-
ware required for the introspective processor and the decision
tree and CFC caches. Of course, the transistor count depends
heavily on the design of the caches, but a good estimate is
that the total transistor count of the introspective portion of
the chip is approximately 50-100% of the transistor count of
the computation portion. Thus, we are adding 50-100% to the
hardware complexity of the chip.

According to the general trends presented in the Introduction,
a doubling of the number of transistors on a chip has histori-
cally resulted in a 25-30% performance improvement (at least
over the last few years). Thus, a 50-100% increase in transis-
tor count (as in our design) would imply a 13-30% increase
in performance, depending on the exact design chosen. Our
results show a 15-20% performance improvement for most of
the benchmarks. However, since these speedups are due to
different effects (conventional speedups result from wider is-
sue, improved technology, etc., whereas our speedups come
specifically from added parallelism and decreased rollback due
to better prediction), gains may differ depending on the exact
workload and configuration.

It is important to consider three additional factors when look-
ing at these numbers. First of all, the general trends section
looks at increasing transistor counts over time. Successive
generations of chips come out every three years or so, which
means that the 25-30% performance improvement includes in-
creased clock rate, which is not included in our results. This
skews the results in favor of the general trends.

Secondly, as chip complexity is increased, verification diffi-
culty increases superlinearly. For example, even though the
Intel P4 has about twice as many transistors as the PIII, it is
more than twice as difficult to verify such a complex design.
However, our design involves two smaller processor which can
be verified individually (although this is somewhat offset by
the additional verification which needs to be performed on the
interface between the two processors). This means that, for
similar gains, the introspective approach will more readily be
realized than will the standard approach.

Finally, much of the introspection work is done by the spe-
cialized hardware on the introspective processor (the CFC Up-
date Hardware). As mentioned earlier, the actual processor
runs software for less than 50% of its available cycles for all
benchmarks, much less in some cases. This gives rise to the
possibility that multiple introspective algorithms could use the

same introspective processor (for example, branch prediction
and memory prefetching). Of course, more research needs to
be done to be certain that this can be accomplished feasibly,
but the strong possibility exists that the cost of the introspec-
tive processor could be amortized over multiple algorithms.

8 Future Work

The prime area of further research on this topic is the expan-
sion of the system state being studied by the introspective pro-
cessor. Currently, only the contents of the AGBHR are used
to learn decision trees. This limits us to correlations between
branches. However, it may very well be that some branches
are highly correlated with data values, and thus inclusion of
the register set in available system state would improve the ac-
curacy of the decision trees constructed.

Additionally, decision trees or other graphical models could be
used to learn patterns other than branch outcomes. Introspec-
tion could be used to study the state of the system and build
graphs that can effectively predict data values, future memory
accesses, etc. The basic idea remains the same however: study
portions of present system state and build models that can ac-
curately predict portions of future system state.

9 Conclusion

With the number of transistors per chip constantly rising, we
are reaching the point where more complicated uniprocessor
designs are simply not the best way to achieve improved per-
formance. We have presented an argument for introspective
computing as an alternative use of these abundant transistors.
The introspective computing model involves devoting proces-
sor cycles for continuous, online analysis and adaptation.

As one possible use of this model, we devote introspective
resources to perform run-time optimizations such as branch
prediction. We have shown that one of the simplest graphical
structures, decision trees, can be effectively used to charac-
terize the behavior of a vast majority of branches. We have
shown how these trees can be learned and constructed by an
introspective processor in a timely manner, then used on the
computation processor for accurate single-cycle predictions in
the same run. The resulting gain in performance (more than
20% in some cases) is not unlike that which results by dou-
bling the number of transistors while widening an existing su-
perscalar design. Perhaps introspection will ultimately prove
to be a better way to achieve such gains.
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