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Abstract /‘ Computation '\

In the introspective computing model, on-chip resources are Ootimization
- . . . Observation

divided into those used f@omputingand those used fantro- d &/

spection The introspective processor or processors may per-
form sophisticated online observation and analysis of the com- Figure 1: The Cycle of Introspection

putation and use the extracted information to improve perfor-
mance, reliability, or other system properties. This paper con-

siders the possibility of online construction of graphical mogre show some processor resources devoted to monitoring and
els representing program behavior and the use of such mogdeers to adaptation. The essential element of this model is
to perform better branch prediction. The particular graphigpht the feedback is continuous and in real time.

model that we employ is that ofecision treesWe explore the

space of decision tree models, consider the feasibility of iftich of the hardware of an introspective system resembles a
plementation of the introspective processor, then present $hiP multiprocessor, possibly with FIFO communication chan-

performance of this model on the SPEC2000 benchmark su@ls rather than shared memory. Thus, we can design such a
system by replicating a simple processor unit many times. The

essential difference between introspective computing and mul-
tiprocessing lies in the use of resources. An introspective sys-
1 Introduction tem does not attempt to utilize every available CPU cycle for
performing the primary computation task. Instead, it devotes
L . . . . some of these resources to performing “meta-tasks” such as
Historically, _shrmklng transistor sizes hav_e allowc_ad m'crOprBhalyzing and adapting the behavior of running programs. The
cessor architects to extragt ever more mstru_ctlon-level PiHesis is that this might ultimately lead to better overall behav-
aIIeh_sm at a cogt of Ever increasing complgxﬁy. Each sy r of the application than devoting all resources to (say) pro-
cessive generation of high-performance chips has devote Eing a wider superscalar. Existing examples of this model
greater fraction of their transistors to control-related functioHﬁ ht include continuous dynamic (re-)compilation [3], fault

rather than actual execution units. Further, as the numbe R lysis €.g. DIVA [4]) and complex power adaptation [18]
transistors in a microprocessor grows, design and verification e '

time grow superlinearly with complexity. Seeking alterndhe possibilities for introspective computing are numerous. In
tive ways to use transistors, computer architects have turtied particular paper, we explore the use of graphical models
to different computation models such as chip multiprocesstosperform a traditional microprocessor task: branch predic-
(CMP) [12, 2, 21] and reconfigurable hardware [16]. tion. The existence of an introspective processor allows for

Gi he pleth f ilabl q the creation and manipulation of more complicated graphical
ven t ep ethora of resources avariable to_ a modemn Colisqels than would be practical (or desirable) with hardware
puter architect, we might consider an alternative model, call

. . - . . ) ne. These graphical models encapsulate the most vital as-
Introspective . computing In thg . mtrgspecnve Compuungpects of a given program execution with regard to the desired
model, on-chip resources are d|V|_ded Into those “S?dd‘"' end: effective prediction of branch outcomes. These models
putingand those used famtrospection The introspective pro- ;o it from observations of the state of the running program

Cessor or processors may perform sophisticated on-line Obﬁﬁg used to adjust the behavior of the program in the same run.
vation and analysis of the computation and use the extracte

information to improve performance, reliability, or other sysrhe particular graphical model that we have determined strikes
tem properties. The basic introspective computing modeltlie best balance between prediction effectiveness and feasibil-
shown in Figure 1. Here, in addition to normal computatioity of implementation is that of aecision tree A decision



tree is a tree whose interior nodes represent decision points
(or questions about the past) and whose leaves represent pre- ., |
dictions of the future. We show that it is possible to strike a Alpha 212645 el P4
compromise such that graphical models can be built and used s ’
in real time, while still being highly efficient predictors. In the
rest of the paper, we explore the space of decision tree mod-g «o |
els and consider the hardware complexity of the introspective g
processor. We present results from the SPEC 2000 benchmark e

suite that show speedups as high as 22% for a four-way super- [ .
scalar processor. 1Bt Power3-l
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The remainder of the paper is divided as follows. Section 2
discusses general trends on computer design. Section 3 dis- i 5 6 78w 20 0w w0
cusses previous work in this field as well as motivations for franssors (milens)

ourown work. SeCt'.On 4 contains an overview o_f general d@l’ ure 2: Various workstation processors that were released
cision trees, the decision trees used in our algorithms, andiw e late 1990s and early 2000s. Each point represents one
overall prediction mechanism employed. Section 5 descr'tb%cessor and shows the SPEC 2000 Integer Base performance

the decision tree algorithms that we use. Section 6 discus@%%c and the transistor count for the machine
a possible implementation of the algorithm and the trade-offs '

that need to be considered in order to run this in real time. «
Section 7 provides experimental results. Section 8 discusses *|
future lines of research, and Section 9 concludes. or
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The argument is made in this paper that the extra transistors
which will inevitably be available to future chip designers may
be put to better use in introspection rather than in the standard
forums (wider issue, more functional units, larger caches, etc.).
However, in order to justify this argument, we must consider s 5 7 s 9w % ®
the actual performance improvement that has generally been e miers

achieved through these standard means as transistor cour;
a chip increases.

+
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Qffre 3: Various workstation processors that were released
in the late 1990s. Each point represents one processor and

Obviously, actual performance improvement cannot be link8gews the SPEC 1995 Integer Base performance metric and
linearly (or in any other such simple manner) with transist§€ transistor count for the machine.
count, since performance depends on many factors of the de-

sign as well as the targeted uses of the chip. However, fyformance improvement. So, using conventional techniques
studying average reported performance of various machig@g technology and clock improvements over time, we can ex-

over a few years, we may be able to draw some general cgaet a 20-30% performance improvement for a doubling in the
clusions concerning performance improvement over time a§¢hber of transistors.

increased transistor count.

Figure 2 shows the reported base results of several popular
workstation processors on the SPEC 2000 Integer benchn@rk Related Work
suite as a function of the chip’s transistor count. The best-fit

line through these points indicates that, in the last few years,

a . .
doubling in the number of transistors on a chip has resultecflﬂ ef_r;ormous number gf pabpers Eave ;ee_:n publrllshed in thg
approximately a 23.9% overall performance improvement. ast fifteen years regarding branch pre iction techniques an

analyses, using a variety of techniques both novel and recy-

Figure 3 shows similar results for earlier workstation proceded from such other fields as artificial intelligence. More re-
sors on the SPEC 1995 Integer benchmark suite. In this casmtly, research has been conducted into the possibilities of
the best-fit line through these points shows that a doubliimgrospection to make various run-time modifications in order
in the number of transistors results in approximately a 27.9&%improve performance, power, etc.



Table-Based Predictors In 1992, Yeh and Patt publishedsuggest a method of statically analyzing branch correlations in
their paper on two-level adaptive branch prediction [22]. brder to transform code to take advantage of static prediction
this mechanism, predictions are made using 2-bit saturatsapemes. They expand upon this in a later paper [23] by an-
counters. The counters are stored in a table which is indextyring the effectiveness of various prediction schemes based
by a portion of the branch address as well as global and pa@r-correlations between branches.

branch history. The 2-bit counter is updated based on whether tical study of level di blished b
the prediction matches the actual outcome of the branch. An analytical study of two-leve predictors was published by
Evers, Patel, Chappell and Patt in 1998 [9]. The results of this

Since only a portion of the branch address is used in ind@&aper show that branches have a strong tendency to correlate
ing the table (in order to reduce table size), aliasing can bhighly with only a few other branches (two or three at most).
significant problem [19]. Several schemes have been propoEbkid conclusion was a large factor in our decision to use rather
which maintain the successful approach of the Yeh and Pattsahall decision trees to encapsulate a good deal of information
gorithm (tables of 2-bit saturating counters) while attemptiradpout correlations.

to reduce aliasing [17] [15] [8] [20]. From among these,
we have chosen the YAGS predictor [8] as a baseline agar@I
which to compare our own mechanisms in this paper, si
YAGS is representative of a top-of-the-line predictor.

in 1998, a paper was published [11] exploring the possi-
ty of estimating confidence levels for predictions in order to
only use those predictions with high confidence, thus avoiding
unnecessary rollback after faulty predictions. More recently,
Jimenez, Keckler and Lin published a paper [13] studying the
Branch Prediction Using Al Algorithms A few attempts €ffect that various realistic delays have on the design and opti-
have been made at using algorithms from the field of artificiization of prediction mechanisms. These two papers empha-
intelligence (Al) in building better branch predictors. Caldétize the fact that prediction accuracy is not the whole picture
et al. [6] devised a method of performing static branch préhen it comes to branch prediction. Actual performance im-
diction using neural networks. Their mechanism extracts pfgovement on real program runs are the final test of prediction
gram information at Comp”e_time and feeds it into a trainéﬂEChanismS. For this reason, our final performance numbers
neural network. They achieve 80% prediction accuracy ovétthis paperare reported in terms of performance (cycle count)
all, which is good for a static prediction mechanism, but sigather than branch misprediction rate.
nificantly worse than can be achieved using modern dynamic

rediction techniques. . .
P g Introspection Recently, there has been work done in the

Jimenez and Lin [14] explore the possibility of using the sinarea of introspection, though often under other names. In
plest of neural networks, perceptrons, to do effective dynam@99, Todd Austin published a paper on DIVA [4], a system
branch prediction efficiently in hardware. Due to its simplievhich uses dynamic verification to verify the correctness of a
ity, their mechanism is capable of considering longer branemning program. Additionally, current research is going on
histories than is possible using the table-based predictors m&rnBM under the name of Autonomic Computing [1], which
tioned above, for a given amount of hardware. Their predicfoicuses on creating “a systemic view of computing modeled
gets the best gains over bi-mode and gshare on benchmafter a self-regulating biological system.” They are essen-
which have largely linearly separable branch behavior (thattig)ly researching the possibility of a self-modifying and self-
branch behavior which can be described by a perceptron). improving system, which is the basic idea behind the intro-

i sgective processor discussed in this paper.
Fern et al. [10] study the general approach of dynamically se-

lecting features from among system state (and state history)

which can be used to generate graphical models useful fpor . . ..
prediction. They describe a dynamic decision tree algorithzg Decision Trees for Branch Prediction
and present experimental results which show that their design

is close to PAp and GAp predictors in prediction success raig¢ general, branch prediction involves the use of probabilis-
Though our paper likewise describes a decision tree algorith@models to predict the outcome of branch instructions. The
we use a significantly different learning algorithm based @pocess of predicting a branch is straightforward: first, select
a different fundamental approach to the problem. We algq appropriate model for the branch and second, apply histor-
show significant performance improvement over top-of-thigal information to this model. What makes branch prediction
line branch predictors. complex is the selection and training of the models.

Decision trees have been used in the literature for a variety of
Analyses of Branch Prediction A more high level approachtasks. In this section, we discuss the use of decision trees to
to this research problem has led to a series of theoretical pajpeeslict branches. We assume that each branch has its own set
containing analyses of various sorts. Young and Smith [2#f]decision trees. The result is a branch-specific probabilistic
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Figure 4: This sample decision tree helps one determine
whether to go hiking today. To use it, start at the root, an-

swer the question, follow the appropriate leg, and repeat thisT |NT| TINT!| TINT T NT
until a leaf node is reached. The leaf node returns the decision
made by the tree given the current state of the world. 01!/l 00| 11!| 11!l 01/| 10! 10!l 01

model. We describe these models, their physical represefiigure 5: This is a sample Type 1 decision tree. Each non-leaf
tion and their impact on the computational processor. We wipde contains an AOP (branch address and ordinal) and has

leave the details of producing “good” decision trees to laté¥0 legs going out to its children, one for Taken, one for Not
sections of the paper. Taken. Each level consists of identical nodes. The leaf nodes
are two-bit saturating counters.

4.1 General Decision Trees system, some leaf node will ultimately be reached, and that
value is the decision made.

Decision trees are simple, yet often highly effective decision-

making tools used commonly in work concerning artificial in-

telligence and other related fields. A decision tree uses data Decision Trees and the Execution History

concerning the (present and past) state of the system under

consideration to make a binary decision. . . - -
Figure 5 shows a simple decision tree for branch prediction. In

Consider the sample decision tree shown in Figure 4. THig next section, we will call this a “Type 1” tree. Eachinternal
decision tree helps one decide whether to go hiking today, wiide in the tree selects a particular branch in the program ex-
the sole output being either a Yes (go hiking) or a No (dor@étution history, while each arc represent a taken or not-taken
go hiking). The tree takes as input portions of the state undesult of that branch. Branches in the execution history are
consideration (in this case, the physical world). identified with Address-Ordinal PairgAOPSs), which we will

Each leaf node in th d q discuss in a moment. The leaves of the decision tree consist
ach non-leaf node in the tree corresponds to some deterfpl, i, saturating counters which are interpreted in the usual
nate component of the state of the system. Each leg of a

- QS/: if the MSB is zero, the prediction is “false”; if the MSB
leaf node corresponds to a value of the component specifie éoéfne the prediction is “true”

the node. Note that some of the nodes have two legs to their
children, while some have more. A general decision tree ndglecision trees only make sense relative to a particular execu-
can have any number of legs. tion history. All of the algorithms discussed in this paper use

- . N the contents of the Augmented Global Branch History Reg-
The actual use of the decision tree is rather intuitive. One t?&'er (AGBHR). A Global Branch History Register (GBHR)

gins at the root node, answers the question posed, and ﬁgeﬁw x-bit hardware shift register which stores the outcome

follows the appropriate edge to the next question. One c Paken or Not Taken) of the last branches executed in the
tinues like this until a leaf node is reached. Each leaf no rrent program run, whereis usually on the order of6

corresponds to a possible value for the output of the decision
tree (Yes, No, 1, 0, Taken, Not Taken). For a given state of flilee AGBHR is augmented in that, in addition to keeping track



AGBHR a result, we've tried a few different decision tree structures.

Type 1 Trees Ina Type 1 decision tree (Figure 5), each level
consists of nodes corresponding to the same AOP. In such a
tree, any path from root to leaf passes through exactly the same
AOPs. In effect, this correlates the branch being predicted with
a small set of AOPs. Associated with each collective outcome
of these AOPs is a separate 2-bit saturating counter.

Branch Address | T/NT

This approach is reminiscent of the conclusions drawn by Ev-
ers et al in [9]. In that paper, the authors make the claim
Figure 6: Ans-element AGBHR. Each element consists of at many branches correlate highly with only very few other
32-bit address and &bit outcome (Taken or Not Taken). branches. If those few correlated branches could be found in-
dividually for each unique branch, then we wouldn’t need the
AGBHR huge tables of gshare and other such predictors. With the Type
1 decision tree, we are in fact doing exactly that. We are cor-
16 24| 8 | 16|16 | 24| 12| 16 | Address relating each unique branch with ontyother branches, and

"f*l1/0/1|1|0]0o|1]|1]| T/INT thus we nee@® 2-bit counters.
4 2 1 3 2 1 1 1 Ordnd However, while Evers et al discuss this important conclusion
&— Past Most Recent — about correlation, they do not provide an effective online algo-

rithm for learning these correlations. Such an algorithm will
Figure 7: Ang-element AGBHR labeled with the appropriatee discussed later in this paper.

ordinal for each element. The rightmost element is the most
recent one.
Type 2 Trees A degree of freedom can be added to the learn-

£ th N for the last b hes. it also k irack ing process, resulting in what we refer to as a Type 2 tree (see
?h e (t)u ctgme dodr € afth rinc eﬁ’tr'] ?SO eeps tra(ci: 'I(') igure 8). Each non-leaf node is again associated with an AOP,

€ instruction address ot the branch that was executed. %Lh each leaf node is a 2-bit saturating counter. The difference
the AGBHR is anc-element hardware shift register in which

hel t ists of a b h add d a sinal b'tls that each level in a Type 2 decision tree need not consist of
each element consists of a branch address and a singie bit [y containing the same AOP. Each node in a Type 2 tree is
resenting Taken or Not Taken (see Figure 6).

learned independently, thus allowing for the possibility that a
A given branch address may appear more than once simulf@ken” correlation with root lead to some further set of corre-

neously in the AGBHR since that branch may have been ej@ions, while a “Not Taken” at the root may lead to an entirely

cuted more than once in the lastranch executions. Whendifferent set of correlations. This structure preserves the no-
considering the elements of the AGBHR, we identify each ofien that each unique branch correlates with only a few other
by the branch address specified and by an ordinal. For a gitéanches, but it allows greater freedom in types of correlations
branch address, the most recent instance of that address irtigaed.

AGBHR is assigned ordindl, the second most recent is as-

signed ordina, etc., as shown in Figure 7. Thus, we care less )
about how recently the branch instance occurred overall g€ 3 Trees Nonetheless, there is yet another degree of

more about how recently it occurred relative to other instandg&edom which can be allowed in tracking correlations. A Type

of the same branch. An address/ordinal pair (AOP) complet@l{/€cision tree assumes that an AOP correlates both with the
specifies a particular element in the AGBHR. Taken and Not Taken outcomes. If an AOP is associated with

a node, then it must have both a Taken and a Not Taken leg.
But we may wish to learn even these independently. Figure 9
4.3 \Variations on a Theme shows a Type 3 decision tree structure. In this structure, each
leg in the tree (rather than each node) is associated with an

. . .. AOP. Each leg is learned independently, thus allowing Taken
In our algorithms, each unique branch has a set of 2-bit s d Not Taken outcomes to be separately learned
! .

urating counters associated with it which are used to predic
future outcomes. Graphical models, specifically trees, ar@leatice that the different legs of a single node are no longer
way of structuring these counters. The problem is findingrautually exclusive. Since they are completely independent of
structure which allows for high learning potential while maireach other, it is entirely possible for two or more of them to be
taining simplicity of design to allow for efficient hardware. Asimultaneously true (for a tree traversal with a given AGBHR).
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Figure 9: This is a sample Type 3 decision tree. Each leg

10/| 01 (rather than each node) is associated with an AOP. In traversing

this tree, we simply follow the leg that appears in the current

) o o ~_ AGBHR until we reach a 2-bit counter.
Figure 8: This is a sample Type 2 decision tree. It is simi-

lar to the Type 1 decision tree, except that each node is inde-
pendently learned. This means that each level may consistasit, matching and continuing to a child, and repeating until
nodes with different AOPs, unlike in the Type 1 tree. a leaf is reached. However, doing these comparisons sequen-
tially would be time consuming. Instead, all comparisons can
be performed in parallel as in Figure 10 (for a Type 3 tree).
In this case, the simple solution is to take the leftmost leg thidie description of each arc includes an AOP/result combina-
is currently true (that is, the first one that was created). Ittisn which we match against each entry of the AGBHR. Once
also possible for none of the legs to be true for a given nodlee comparisons are made, we can identify paths through the
This is discussed in the Algorithm section. Additionally, in otree that lead to leaves, which are two-bit saturating coun-
der to keep the trees bounded, we put some limit on the nugrs. The final prediction is made using the predictions of the
ber of legs that each node can have, as well as a limit on Vagid path(s), as described further in Section 6. The outcome
maximum height of each tree. of the branch then modifies (increments or decrements) the

The nodes in this tree have a slightly ambiguous meaning gﬁynter(s) used. Note that Figure 10 is only representational;
one could imagine the question at each node being, “Whic ofOptlmlzed design would likely use dynamic matching logic

the AOP/outcome pairs among the possible legs can be fo trr](aatlng the AGBHR like a CAM).
in the current AGBHR?" To traverse the tree, we start at the

root and keep following legs that are in the AGBHR until we

reach a leaf, which gives us a prediction. 5 Algorithm

T NT
T NT T
0

In this section, we discuss an online learning algorithm to pro-
duce good decision trees. Section 6 will show how the intro-
spective processor implements this algorithm.

Each of the above decision trees can be represented by a com-

bined vector of AOPs (for the nodes or arcs) and 2-bit coun-

ters. When a branch is encountered, its decision tree (vectcg;p_[ Constructing Decision Trees

bits) must be fetched from somewhere. Assume that we use a

fast cache of decision trees. Given the description of the deci-

sion tree, we can combine it with the current execution histo-cgge,tr,ee ::onstrt'i‘ctlon a'%ﬁ”:hm 'f] S"".‘"ar fgr all Lhrr]ee ty;()jes .Of.
(AGBHR) to perform a prediction. cision trees. Assume that each unique branch has a decision

tree associated with it. The decision tree starts out null, and
Conceptually, traversing a decision tree involves starting at thedes are added as correlations are found between the current

4.4 Fast Decision Tree Traversal



Decision Tree AGBHR complex computations, the introspective processor uses Cor-

] ] e ] relation Frequency Counters (CFCs).
/T 1 ] =e= ] A CFC is ann-bit saturating counter. For Type 1 decision
O Q) . | . . Comparaors trees, each CFC is associated with three things:
/ \: - - - successive level)
- H] ] sns
O Q - - - e the address of the branch that's being predicted;

2-bit counters

= Comparator e the AOP of a possibly correlating branch in the AGBHR;
Results
Prediction Selector and

| Fia predcion ¢ the outcome (Taken/Not Taken) of the same possibly cor-
relating branch in the AGBHR.

Figure 10: Decision Tree Traversal: Comparators simultane-
ously compare each leg (or node) against the AGBHR. The
results are used in conjunction with the 2-bit saturating codn-the case of Type 2 and 3 decision trees, we also associate
ters to make a prediction, as described in detail in Section &ach CFC with one more thing: a node or leg specification.
With these two tree types, we are attempting to learn corre-
lations for each node or leg individually. In order to avoid

branch and the execution history. For instance, suppose thafasing between CFCs, we need to keep track of which node
Taken outcome for a given AOP always coincides with a Takgp|eg each CFC is tracking.

outcome for the branch in question. If this happens frequently

enough (i.e. there is a correlation), we reflect that by addin§ifice each tree is of bounded size, we may label each indi-
node or link to the decision tree. vidual node (or leg) of the complete tree with a different inte-

ger. Thus, a “Node/Leg ID” is added to each CFC to specify
Type 1 trees are filled in one level at a time (as opposed to @Rgt the CFC is studying the given correlation exclusively for
node at a time). When a correlation is discovered, each nodghigk particular node (or leg). When a branch executes on the
the highest empty level of the decision tree is set to this AQBmputation processor, we take a look at the current AGBHR
That is, if the decision tree is empty, then the root node is $gid find all the possible places we could add a new node (or
to this AOP; if there is only a root, then both of its children angg) to the tree (and still be consistent with the contents of the
set to this AOP; etc. AGBHR). We then create or increment/decrement all the ap-

With Type 2 and 3 decision trees, each tracked correlatiorP[QPriate CFC_S for each of the elements of the AGBHR and
additionally associated with a particular empty location infgr each possible ”‘?de (or leg). When_ a CFC saturates, we
particular tree (a node for Type 2 trees, a leg for Type 3). Wh%rﬁow exactly where it should be placed in the tree.

a CFC saturates, we know exactly where to add it. For all thiggch CFC measures the extent of the correlation between the

types, the maximum height of the tree is set (in order to fagiranch currently being predicted and a recently Taken or re-

itate hardware design), so any further learning is discardggntly Not Taken branch. Upon each branch execution on the

Additionally, for Type 3 trees, the maximum width (number adomputation processor, the introspective processor takes the

legs per node) is also bounded. We explore the sensitivity Wikanch address and outcome, as well as the complete AGBHR.

respect to tree size in Section 7. Each element of the AGBHR consists of an AOP and a corre-
sponding outcome.

5.2 Discovering Correlations If we take the branch address in question and group it together
with any individual AOP and corresponding outcome in the

The introspective processor runs in parallel with a program @)(C—;BHR’ we have specified a unique CFC for a Type 1 tree

ecution on the computation processor and creates a set of o‘é ice all three elements listed above are specified). (For the

sion trees to be used for branch prediction during the same er types, we must do this for every possible node or leg in

Thus, the introspective processor must use an online decid mcom%I_ete trTe') Thu:’éELaRg'ven branch in quzstl(_)r;] and
tree learning algorithm to create the decision trees. corresponding:-element , We are concerned wit

unique CFCs. For each of these CFCs, if it already exists, then
A true online learning algorithm would use floating point opwe simply wish to increment it or decrement it. If the branch
erations. This is infeasible given that we would like the intrén question was Taken, we increment byIf Not Taken, we
spective processor to run in parallel with the computation precrement byi. On the other hand, if the CFC does not exist
cessor (and not fall behind by doing extremely complex ayelt, then it is created and initialized to a central vaRie( if
time-consuming operations). In order to approximate these are using:-bit saturating counters).



Computation Branch Executes Periodic or 3 tree, we may encounter a node during a traversal for which
Using Locally-Cacheg On-Demand Update  \,ha of the legs appear in the AGBHR. One solution to this

Processor o
Decision Trees problem would be to use another branch prediction mechanism
S (R (orto not make a prediction at all) in these instances. However,
Correlations CFC since this may turn out to be a frequent occurrence, we would
like a better way of dealing with this.

A second option would be to designate either the “Taken” or

Introspective Tate CRod_ Saturates p
Processor Update CF Update Tre
pf “Not Taken” leg as the default leg to be traversed. This

Figure 11: This flowchart shows the basic progression of t ) i . .
algorithms. The computation processor executes branches fegws Us to use the tree, but it results in rather arbitrary inter-

ularly and passes relevant data to the introspective proces? .
The introspective processor updates CFCs and adds releyagt third and best option is to add a third leg to each node,
nodes/legs to decision trees upon CFC saturation. The dgfed the “Not in AGBHR” leg, to be the default in case none
dated trees are sent to the computation processor (periodicgflthe other options can be taken. Not only does this avoid
or upon request) to be used for prediction. interference on either of the other two legs, but it allows the
decision tree to attempt to glean patterns from the absence of

. . . relevant AOPs in the AGBHR, as well as from their presence.
Now let us consider what this accomplishes. Suppose that a . :
. . This default leg has been found through testing to be vital to

Taken outcome for a given AOP strongly correlates with

Taken outcome for the branch in question. In that case, e effectiveness of all of the algorithms, so all of the tests in

€ - . :
- . . 7 h the “N AGBHR" leg.
corresponding CFC would be continuously incremented, thu(ECtIon use trees with the “Notin AG €9

resulting in a saturating value at the high end for the counter.

On the other hand, if a Taken outcome for the same AOP

strongly correlates with a Not Taken outcome for the branbflltiple Trees per Branch Thus far, we have assumed a
in question, the corresponding CFC would be continuoudpit of one tree per unique branch, but this restriction may
decremented, thus resulting in a saturating value at the low &inificantly limit the algorithm’s ability to learn a complex
for the counter. The size of thebit saturating counter mustbranch’s behavior. Obviously, many branches in a program

be chosen to be large enough to avoid accidental saturatid@d't need a decision tree at all because they occur less than
but small enough to allow fast learning. a dozen times over the entire run of the program (which is

not enough time to learn any behavior). Many other branches
Now we can finally understand exactly what the introspectiyg, pe accurately predicted by a single tree. However, there
processor does. When a branch is executed on the compgita- select few branches in each program which have a much
tion processor, the introspective processor grabs the addiggser number of instances than the others. These branches are
and outcome of the branch in question as well as the comyikely to be accurately represented by a single tree, and they
plete AGBHR. For each element in the AGBHR, the apprgre |ikely to pass through several phases or patterns throughout
priate CFC is modified as described above (being created thié execution, perhaps correlating with different branches at
does not exist yet, being incremented or decremented as@ferent times.
propriate if it does).

nce on the default leg, so the results are unpredictable.

For this reason, we should allow for the creation of multiple

decision trees per branch. However, we also need to be careful
5.3 Algorithmic Choices not to create decision trees haphazardly and unnecessarily, as

this will tend to deteriorate prediction accuracy. As a result,

Figure 11 shows pictorially the basic flow of the algorithnf@ly One decision tree is created at a time (since we expect a

described so far, as well as the interactions between the cGFRNCh to be in a single phase or pattern of execution at any

putation and introspective processors. As mentioned befd¥€n time), with additional trees being created as needed.

various modifications may be made to these algorithms in @te first tree is created normally as before. Once this tree is
der to improve effectiveness. Each of these modifications ag@e all CFCs corresponding to that branch in question are
performance benefits to the algorithm at the cost of desigaared, and we start anew. If the next CFC (corresponding
complexity and additional transistor count (and possibly ags this branch) to saturate is either the root or in the first level
ditional gate delays along the critical path). of the first tree, then we can safely assume that we are still
in the same pattern for this branch (since the same AOPs are

) . . most strongly correlating). In this case, we clear all the CFCs
Default Leg Consider the fact that, during a part'CU|anrresponding to this branch and start anew again.
traversal of the tree, the AOP specified by an encountered node

may not appear in the current AGBHR. Likewise, with a Typdowever, if a different CFC saturates before any of the previ-



Introspective Processor Computation Processor spective processor. These request messages are given prior-

ity and thus a second queue. These are handled as quickly as

— Processor ] Standard possible by the introspective software. The appropriate tree is
Processor fetched from the introspective processor’s cache and is sent to
‘ ‘ ‘ ‘ the computation processor.
f;ﬁe 2;;?2 FIFO FIFO p,!,did‘ion The comput.a_tion processor h'as 'onIy a single incpming FIEO
‘ ‘ Queues Queves | Hardware gueue. Decision trees are perlodlcglly sent by the introspective
[ ] processor to update the computation processor’s local cache.

L | CFCUpdate E% DTree This needs to be done because, once the computation pro-

Hardware Cache cessor’s local tree cache contains a decision tree for a given
branch, the computation processor will no longer need to re-
Figure 12: This is a high level view of the system. The compyguest it. However, if the introspective processor continues to
tation processor consists of all the standard hardware, as wpllate that tree, the computation processor’s copy could grow
as a prediction mechanism and a local decision tree cache. dfage, so it needs to be updated. Additionally, a decision tree
introspective processor consists of the learning hardware, fway be sent in response to a direct request made by the com-
caches (one for decision trees, one for CFCs) and a process@tation processor. In both cases, the trees arrive at the same
gueue on the computation processor and are transferred to the

. computation processor’s decision tree cache.
ously most strongly correlated ones, then we have likely en-

tered a new stage of execution, so we create a new tree. This

second tree is built using the same techniques as the first S computation Processor
We continue creating trees like this for as long as is necessary. P

The computation processor has a local decision tree cache.

. Trees in this cache are periodically updated by the introspec-

6 |mp|ementat|0n tive processor, thus keeping the prediction mechanism up-to-
date. The size of this cache can be varied, but the number of
Cg(,acision trees used by a program is so small that replacement

In order to study the feasibility of these algorithms in practi . A . .
y y g P lsrare, and hit rate in this cache is barely an issue.

we must examine the details of a hardware implementati

The hardware of interest consists of the introspective proc¢e computation processor must use branches from its local

sor, the branch prediction mechanism on the computation pigcision tree cache to make predictions that can be used during

cessor and the communication mechanism connecting the gu@in. This means that it is necessary to make predictions in

(see Figure 12). The introspective and computation processpkingle cycle, which necessitates the use of specialized hard-

are preferably embedded on the same chip, thus allowing f@ire to traverse a decision tree fast enough.

fast communication between the two. Each of these compo- ) ) o )

nents is discussed individually in the following sections. ~ Whenabranch s encountered, its decision tree is fetched from
the local cache. If it's a cache miss, a request is sent to the
introspective processor for the desired decision tree. In this

6.1 Communication case, some othgr r_necham;m is used .t(,) make a pr_edlctlon, or
perhaps no prediction at all is made. Ifit's a cache hit, then the

. . . . tree must be traversed using the data currently in the AGBHR
The introspective and computation processors Communicats, o 1o make a prediction

by means of two uni-directional buses. The introspective pro-

cessor has two incoming FIFO gqueues corresponding to @anceptually, traversing a decision tree involves starting at the
two types of messages it can receive. Each time a branch isrext node, following one of its legs to a child node, and repeat-
ecuted on the computation processor, a message is sent tantp¢his until a leaf has been reached. Each leg corresponds to
introspective processor containing the address and outcosoene AOP, and that leg should only be traversed if the AOP ex-
These messages are all directed into one queue and hanidtsdn the current AGBHR. However, doing these comparisons
by the CFC-updating hardware, as described below. sequentially would take more than a single clock cycle, which

Th d f h b ived by the i would make the prediction useless. Thus, all of the compar-
e second type of message that may be received by the INfi@r ¢ 5o performed in parallel by multiple comparators.

spective processor is a request message from the computation

processor. If the computation processor misses in the déggure 10 gives a sketch of the hardware involved in travers-
sion tree cache (whether because of a replacement or a aujda tree. We would like to estimate the time involved here.
start miss), it may request that decision tree from the intr@ensider a Type 3 tree with depth three (Figure 13). Further,
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Figure 14: One possible design for the Prediction Selector in

Figure 13: This is a decision tree of height 3 and width 3. Thégure 10. The comparator results are used to select from
height is determined by the number of non-leaf levels. TREONY the possible predictions. A priority encoder is needed
width is the number of legs/node. If we are using the defadific® Multiple paths may be valid.

“Not in AGBHR” leg, this is included in the width. The 27

leaves at the bottom are each a 2-bit saturating counter.  \ve could save some time by using the approximate solution
shown in Figure 15. The valid bit for each path is ANDed
with the prediction that would be made by the corresponding

assume that each node has two AOP/result arcs to childrenlgadl node (the MSB of the 2-bit saturating counter), so each
one default arc. A quick computation yields+ 6 + 18 = 26  bitis now 1 if and only if the path is validndthe prediction

arcs that must be matched against the AGBHR. If we havédaken. These 27 results are ORed together, and this is used
12-element AGBHR, we neet x 26 = 312 comparators. as the prediction. Thus, the decision tree predicts Takanyif
Each comparator must compare two AOPs. If we are using #@did path predicts Taken. (Itis a simple matter to convert this
low-order 12 bits of each address as well as a 4-bit ordin@gsign into one using only NANDs and NORs.) This design
then we have 16-bit AOPs. So we need 312 16-bit compa@€s us a gate delay of 4 gates.

tors in order to perform all of the comparisons in parallel. Als

ted bef i Id probabl K 1o build a i Ests have shown that predictions made using this approxima-
suggested betore, it would probably make sense to build a ig }1 differ from predictions made using a priority encoder only
12 x 26 matrix of dynamic matching logic.

0.009% of the time (averaged across all benchmarks). Thus,

Given the comparator results, we can generate a 27-bit vedtgrean use this simplified design with its significantly reduced
specifying whether or not each path is valid given the curregitte delay with almost no loss in prediction accuracy.
':‘GBHFFE (one bt;t fotrheetlch of t?ﬁ 21 possmtlﬁ pathsbthrquthtEefven this design, we can estimate the gate delay for a single
Ors;)}; Vaﬁgﬁn; 'I('a;peaB tr:aoereso t?\r:a(\)/gitg?mg/?;v: ;'g;zt %rt]'diction. The comparators work in parallel, so they take a

. . ' . . al of (say) 4 gate delays. It takes one gate delay to gener-
a single bit set to 1. We now consider the design of the Prq (say) 4 g y 9 y1o9

L g ) e the path valid bits and another gate delay to generate the
diction Selector in Figure 10, which takes the results from t Codicti . - ,

' : ediction bits for all 27 paths. Determining whether there is
comparators and the MSBs of the 27 leaves (2-bit saturatg] P 9

. . - Yeast one high bit among these 27 bits takes another 3 gate
counters), and which produces a single branch prediction. delays. Thus, we could have a result in about 9 gate delays or
The straightforward approach is to take the leftmost valid p&®. More optimization is possible here, and dynamic logic and
and use its prediction. Since legs are added from the left, thigler gates (possible in SOI technology) will further reduce
will give a highly correlated valid leaf. Figure 14 shows suchthe latency for prediction.
design for the Prediction Selector. The 27 valid path bits (com-
parator results) are passed through a priority encoder which )
outputs five bits specifying the leftmost valid path. These bfs3  Introspective Processor
are used as control for a mux to select between the 27 possible
predictions (MSBs of the leaves). The introspective processor is responsible for updating CFCs,

The drawback of thi his th . deri dding nodes to decision trees and sending those trees to the
e drawback ofthis approach s that a priority encoderis re ymputation processor. CFC updates must be performed af-

tively complicated, and it must execute In series with the MY&r each executed branch on the computation processor. This

Using a standard design for a 27-to-5 priority encoder, we h%vt?curs very often (every one, two or three cycles generally),
a gate delay of approximately 8 gates. Likewise, for a 27-toz

. s& the CFC update mechanism is implemented in hardware to
mux, we have a gate delay of approximately 10 gates, for a

. 27 {Rake the common case fast.
tal delay of approximately 18 gates for the Prediction Selector,

which is too much for our single cycle prediction goal. In contrast, the addition of a node to a tree, the sending of a tree
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must be the complete address.

— N 9 N branch and outcome, it can simply keep its own copy of the
A o a o @ g @A E AGBHR (which is modified each time a branch arrives) with-
% j':ﬂ % g = o = o out having to receive it in a message. The addresses stored in
8F BF T8 3 § the AGBHR can use 12 or 16 low order bits of the branch, as
Z 5 Z s pd % zZ 35 mentioned before, in order to reduce hardware requirements.
IS 8 T B = B T Only the address for which a decision tree is being created
-1 > _a > 0> o>

The introspective processor only needs to keep track of two
types of data structures: CFCs and decision trees. One possi-
bility is to store these in one general main memory. However,
since these are the exclusive data items that will be handled by
the introspective processor, a better idea is to have a separate
“CFC cache” and “decision tree cache” (with no main mem-
ory). Each of these caches acts as a main memory for a single
type of data structure.

CFC Update Hardware The CFC update process must be
done in hardware to keep up with the flow of messages from
the computation processor. Each time a message arrives from
the computation processor, the introspective processor must
handle one CFC for each element of the AGBHR. Handling
a CFC means either creating a CFC, incrementing an existing
CFC by one or decrementing an existing CFC by one. If we
use a 12-element AGBHR, this means that 12 CFCs must be
found in the CFC cache on each message arrival. This would
clearly take too long if all 12 were located randomly through-

Figure 15: A simple but approximate design for the PredictiOit the cache.

Selector in Figure 10. The mechanism predicts Takemyf For this reason, each branch for which a decision tree is being
valid path predicts Taken. constructed has a contiguous block in the CFC cache allocated
to it. When a message arrives, the entire block can be fetched

to the computation processor and the replacement ofaCFC@Eg the address of the branch, and thus all corresponding

s can be fetched quickly. Since only one decision tree is
occur much less frequently, so these are handled by trappil)n%;n .
. . efhg created for each branch at any one time, each branch
to software. This avoids a good deal of hardware compleXs . .
. address has only a single block in the CFC cache.
ity that would be needed to manage these tasks completely in
specialized hardware. The size of this contiguous block is of prime importance, since
this limits the number of CFCs that may be associated with a
branch at any given time. Premature replacements in a CFC
Overview Each time a branch is executed on the computalock could cause inaccurate or inefficient trees to be built.
tion processor, a message is sent to the introspective proce€$dls are created for each of the 12 elements of the AGBHR
containing the address and outcome of the branch in questfon.each tree node being studied. Depending upon the com-
In Section 7, we report the results of investigations into usingkexity of the algorithm implemented (number of legs per
certain number of low order bits to identify each branch, ratheode, etc.), the “optimal” size of the block varies. However,
than the entire address. The end result is that 12 or 16 leten the more complex algorithms perform well with a block
are perfectly adequate for these algorithms on a 32-bit systeime of 128 CFCs, while a block size of 256 CFCs tends to
However, this is only true for the correlating branches. Tladlow trees to be constructed slightly more quickly.

branch in question must always be referred to by its complete

address, since we don’t want to start mixing up decision tréﬂ ure 16 summarizes the para!lel CFC L_deate Hardware.
due to aliasing. When a message arrives, the introspective processor thus

fetches the appropriate CFC block from the CFC cache. Each
The introspective processor must also have access to the celement in the AGBHR must be found in the block and incre-
plete contents of the AGBHR. However, since it receives eaulented or decremented (or created if it does not yet exist).

D

Prediction
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AGBHR

cFC Block of n CFCs mm
Cache|

n 12 Thus, each CML module generates three outputs: an updated
| e anen CFC, a “saturated” bit, and a bus containing the results from

are produced as outputs as well.

(43 - Outcome

g req cremy the comparators. The updated CFCs from all the CML mod-
g Counter Counter ules are combined into a block and sent back to the CFC cache.
sl Moiicf‘i;ition Moﬁzi;iitio" The other two outputs are both used to trap to software in rare
g

cases further described in the next section.

New
CFCO

New
CFCn-1

12 12

Saturated?
Matches?
Saturated?
Matches?

Software Support There are three instances in which we
trap to software on the introspective processor:

e request for a tree by the computation processor

e CFC saturation (a node needs to be added to a tree)

e CFC creation (if the CFC Update Hardware cannot find a

CFC Saturated

matching CFC)
Matches Matches
for AGBHR for AGBHR
Element 0? Element 11?

If a tree request arrives from the computation processor, the in-

Figure 16: This is an overview of the learning hardware on tHgspgctive processor fetches the request_ed tree and sends it off
introspective processor that handles CFC updates. This hg]sdgullckly as poss_lble. If no such tree eX|sts.yet (for e>§ample,
ware is activated each time an instance of a branch execu gﬁly n the exgcutlon of aprogram), then the mtrospecﬂye pro-
arrives from the computation processor. An overview of & SSor simply ignores the request. Any return communication

design of a Counter Modification Logic module is shown iﬁagarding the incomplete state of the tree would be complex
Figure 17 and unnecessary.

If any of the “saturated” bits are true, the system traps to soft-
ware in order to handle the adding of a node (or nodes) to the

Each CEC in the fetched CEC block is sent to a separgFeCiSion tree. This software has access to the saturated bits
Counter Maodification Logic (CML) module, along with aoroduce_d_by the C’MLS and to the newly updated CFC blogk.
complete copy of the contents of the AGBHR and the outcorﬁge decision tree is fetched from the cache and the appropriate

of the branch in question. The inner workings of a CML modiode is added to the tree, based on the contents of the satura-
ule are shown in Figure 1'7 tion bits. The tree is then put back into the cache, and some

CFCs (those with a path that matches the node that was just
Each element of the AGBHR is compared against the coreglded) in the block need to be invalidated. In order to avoid
sponding information of the CFC. The “path” associated wittoing 128 sequential fetches and comparisons, these invalida-
the CFC represents the path taken from the root node to tilbas are done in parallel by hardware.

node being studied by the CFC. Since the trees are of fixelslj hird fth aul h its of th
dimensions (for a given design), the simple solution is to nur:ﬁ- e third output of the CML modules, the results of the com-

ber the nodes of the tree in some order. Thus. the “pams\rators, is used for CFC creation. Each CML module com-
is simply the number of the node in question, so it takBEres each element of the AGBHR with one CFC. Thus, if

log(number of nodes in tree) bits to represent it. we want to look at the comparisons of a single element of the

AGBHR, we must look at one result from each of the CML
The result of each comparator in the CML is killed (set tmodules. For each element of the AGBHR, if no match is
0) if the CFC happens to be invalid (not yet initialized). Hound among any of the existing CFCs (see Figure 16), the
any match is found, the CFC counter is incremented or decsgstem traps to software to handle the creation of a new CFC
mented, depending on the outcome of the branch in questiar.possibly the replacement of an old one.

The Incrementer/Decrementer logic produces the value of ta this task, the software has access to the CFC block in ques-
counter (which may be unchanged) as well as a bit signtibn as well as the AGBHR and the results of the comparators.
ing whether the counter has saturated. The new value of Herdware comparators check all the valid bits in the block in
counter is put back together with the general information asarallel, and then a priority encoder selects out the first invalid
sociated with the CFC (which is unchanged), and this is outiLEC. If one exists, the software uses it. If no invalid CFCs ex-
as the new CFC. Additionally, the results from the comparatass then hardware comparators compare against the two high

12
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Figure 17: This is an overview of a single Counter Modification Logic module. It is responsible for updating a single CFC and

signaling a saturation.

Task

Number of Instructions

Tree Request
CFC Saturation
CFC Creation

4
14

10-38

7 Experimental Results

For our experiments, we used the SimpleScalar Toolset written

_ . by Todd Austin [5]. Modifications were made to SimpleScalar
Table 1: Instructpn count for the three software operat|051§ Mark Whitney (UC Berkeley) to allow it to run multiple
performed by the introspective processor. processors in parallel. Each processor is simply an instanti-
ation of the basic SimpleScalar simulator, with FIFO queues

order bits of each CFC. A CFC whose high order bits are B8Ng used for communication between the processors. Delays
or 10 should not be near saturation (whereas a CFC with hfjhthe FIFO queues allow simulation of real time communica-
order bits 11 or 00 may be close to saturation). At this poiﬁ‘ﬁ’” delay as well as a bandwidth limit on data transferred.

the software randomly selects one of the possible CFCs forgp of the twelve SPEC 2000 integer benchmarks [7] have
placement (a CFC is an acceptable candidate if it is valid &gk ysed in the simulations. Unless otherwise specified, re-
has high order bits 01 or 10). Once a candidate is found, fiis are reported for runs of the first 500 million branch in-
new information is put into place and the CFC block is writtegyctions of each benchmark program. This translates to runs
back to the CFC cache. of a few billion instructions total from each program. Num-
bers were found to converge by this point, so full program runs

: o . . were unnecessary. The branch prediction mechanism used as
Introspective Processor Utilization The introspective pro- the baseline is the YAGS prediction scheme [8]
cessor can be significantly simpler than the general purpose '

computation processor, but it must still be capable of kedgnless otherwise specified, each test uses Type 3 decision trees
ing up with all incoming requests. We'd like to get an ide@esults for tests using Type 1 or 2 decision trees clearly state
of the software complexity of each of the three possible intéhis). All of the tests allow multiple decision trees per branch,
rupts. Table 1 shows the instruction count for each of theaad all of the tests use decision trees which include the default
These counts do not include the time for the hardware assi¥et in AGBHR” legs discussed previously. Unless otherwise
tance mentioned above, so the actual execution time maystsed, each test uses the low order 12 bits of each branch ad-
increased by as many as 2 clock cycles. dress in the AOPs and AGBHR elements, and decision trees

of height three (including the root but not the leaves) and

For the simulations reported in Section7, we ran actual codc—:‘\,g)g‘th three (that is, three legs per node, including the “Not
the introspective processor in order to discover the true lo AGBHR” leg) ' ’

The end result is that, for all benchmarks tested, the introspec-

tive processor is idle for at least 50% of available softwa€n the hardware side, the tests use a 12-element AGBHR, a
cycles. In most cases, usage is around 20-30%. This medesision tree cache with a maximum capacity of 1000 deci-
that the introspective processor is in fact capable of keepsign trees on the computation processor, a decision tree cache
up with incoming requests. Later, we shall discuss a possiblith a maximum capacity of 10000 decision trees on the in-
use for these idle cycles. trospective processor and a CFC cache with a maximum ca-
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pacity of 1000 blocks of 128 CFCs each on the introspective  ** o YASSES
processor. Additionally, the introspective processor has two 12} Drees (Type 1) W“hegg"ET *SGZ
copies of the CFC Update Hardware (so two CFC blocks may Drees (Type 2) igth m'”"@AG = |
be updated independently each cycle), and queue overflow i§ o orres ype 2 v -V
simply dropped (that is, if branch executions arrive at the in- m 1

trospective processor more quickly than they can be handledi
by the hardware, the excess branch instances are dropped arﬁ
not used to learn trees). The introspective processor is alway§ os
a 2-way superscalar machine and, unless otherwise stated, the _

computation processor is a 4-way superscalar machine.
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7.1 Choosing a Decision Tree Figure 18: Normalized cycle count for executions using differ-
ent decision tree types and different algorithms, as compared

Three types of decision trees of varying complexity have beénthe YAGS scheme alone (4-way superscalar computation

presented. To determine the actual performance gains obtaffé@2-way superscalar introspective processor).

for the extra hardware of the more complex trees, these three

tree types have been tested using the default environment dé4 Height 2 ===

scribed above. Additionally, we use a 4-way superscalar coms |- = ESSE&% m R
. . . e L d

putation and a 2-way superscalar introspective processor. ;| S s ¢ i

The YAGS branch prediction scheme [8] is used as the baSes - - b
line for comparison. The “DTrees” scheme refers to a pr§—5 L
diction mechanism consisting entirely of the decision tree @I—4
gorithm described herein. The “DTrees with mini-YAGS%
scheme refers to a combination of the two schemes. In tfi$|
scheme, a meta-predictor is used to select between the DTrees
scheme and the regular YAGS scheme. The total number of
transistors used in the computation processor |mplementat|on 7
is equal in all three schemes. Thus, much smaller YAGS table$ bzip2 gec  gzip  mcf  parser twolf vortex vpr perlbmk gap

are used in the combined scheme to allow for some transistors

to be used for DTrees. Figure 19: Misprediction rate for the decision tree algorithm
(multiple trees per branch) using different maximum heights
Ythe trees (including the root but not the leaves).

i
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Figure 18 shows the relative performance (as determined
total cycle count normalized to the YAGS scheme) for the va
ious schemes for the ten benchmarks. With Type 1 decision
trees, the basic DTrees scheme dogs on average approximggewe” as to determine the *
aswell as YAGS_anne, bu_t the hybrid s_chgr_ne does show SOiM&ussed in Section 6.
performance gain over either of the individual ones. With
Type 2 trees, the DTrees scheme by itself gets a 4-5% p@maller decision trees result in simpler hardware and fewer
formance improvement over the basic YAGS scheme on avigansistors dedicated to the prediction mechanism. Unfortu-
age, while the hybrid scheme gets an average of 7-8% bettately, they also result in decreased accuracy. We would like
performance. Type 3 trees exhibit the best performance ito-minimize the size of decision trees used (both in height and
provement, as expected, gaining by 11% on average usingitheidth) while sacrificing as little prediction accuracy as pos-
pure DTrees scheme and by almost 16% on average usingsibée. Figure 19 shows that increasing tree height past three
hybrid scheme. (including the root but not the leaves) does not significantly
improve the accuracy of the algorithm. This is true for all ten
of the benchmarks.

7.2 Parameter Variations We also need to consider the width of the tree (the number of
legs per node). Remember that one of the legs is the default
Various tests have been performed to study the sensitivity“Nit in AGBHR” leg, so a tree with three legs/node actually
the prediction accuracy to the size and shape of decision treas only two distinct correlations per node. Figure 20 shows
used. The results of these tests have been used to deterthiaieslight gains can be achieved by increasing the number of
realistic values for these parameters in the performance tesgs/node from three to four, but almost no gain is achieved

typical” hardware requirements
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Figure 20: Misprediction rate for the decision tree algorithFigure 21: Misprediction rate for the decision tree algorithm
using different maximum number of legs per node (includingsing a varying number of address bits per element in the

the “Not in AGBHR” leg). AGBHR and AOPs.

T T
90 No Trees =
One Tree .

80

by making the trees any wider. As has been discussed in theo
Implementation section, the width of the tree very dramag-eo

More Than One

=

=

=]

cally impacts the number of transistors needed by the preécgo I
tion hardware on the computation processor. For this reasof, a
width of three legs/node has been used as the standard aq?o“@s
all of the other tests, sacrificing a small amount of accuracy for®

implementation feasibility. 20 |
Another decision that must be made is the number of low™ § 3 .

order address bits to use in the AOPs. Recall that each de? "
cision tree is associated with the complete 32-bit address of
some branch (in order to completely eliminate aliasing beiyre 22: Percentage of unique branches for which no deci-
tween trees), but the elements of the AGBHR and the AOEg, trees are built, exactly one tree is built, or more than one
in the trees use some number of low order bits to identif{e is built for the decision tree algorithm.

branches, thus reducing the size of the trees (and the hard-

ware) but allowing some aliasing to occur. Figure 21 clearly

shows that the low order 12 bits of each address are adeqFa@ Varying Hardware Constraints

to achieve near optimal performance for all ten benchmarks.

Nokt)e 'Fhati since b(;gncﬂesharz word?fallgned, or?lyllzolblts nzféjthe issue width of the computation processor is increased,
to be iImplemented in the hardware if we use the 12 low OrqgE ospective gains from effective speculation are increased
bits. This reduces both the storage requirements in the d%gl-we”_ Tests using Type 3 decision trees were performed

sion tree caches, AGBHR, etc., and the number of comparamﬁce, with a 2-way, 4-way and 8-way superscalar computa-
needed for the tree traversal hardware. tion processor. Since the introspective processor is supposed

Finally, we must consider the fact that the best algorithms k-be relatively simple, itis a 2-way superscalar machine in all
low multiple trees per unique branch. In order to determif@ses. The remaining parameters were set as described earlier.

how many trees are actually being built and thus how Iargeﬁ re 23 shows the relative performance (normalized cy-

gecmﬁn tfee carc]:hes need LO bﬁ  We study the phercen(;agfa ount) using a 2-way superscalar computation processor.
ranches in each program that have no trees at the end o Iﬁ?ees outperforms YAGS on nine out of the ten benchmarks
run, that have exactly one tree, and that have more than an average of about 10%. The combined scheme further

Figure 22 fShOWS the results of this te_st. Clearly, the vast " itperforms the simple DTrees scheme by an additional 5%.
jority of unique branches have so few instances that they don't

need any tree at all, while a tiny minority of branches (le§sgures 24 and 25 show similar results for a 4-way and 8-way
than 2% in all cases) need more than one tree to be prediciggerscalar computation processor, respectively. Both DTrees
accurately. and the combined scheme perform relatively better with in-

bzip2  gcc gzip mcf  parser twolf vortex vpr perlbmk gap
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Figure 23: Normalized cycle count for executions using algbigure 25: Normalized cycle count for executions using algo-
rithms with Type 3 trees (2-way superscalar computation arithms with Type 3 trees (8-way superscalar computation and

2-way superscalar introspective processor).

expected, the bare DTrees algorithm needs a certain
amount of base hardware before it begins performing well. We

@ure 26: Normalized cycle count for executions using algo-
rithms with Type 3 trees as the hardware budget on the compu-
tation processor is varied (averaged across all 10 benchmarks).

need enough hardware for the comparators and a local decision

All of these tests have been performed on a fixed hardw#ee cache large enough that it won’t be constantly thrashing.
budget. We also consider how these results are affected byoa designs of 150,000 transistors or more, the bare DTrees
16

perlbmk gap

vpr

In the combined scheralgprithm begin to exhibit diminishing returns

In the 8-way simulation
the transistors are divided evenly between the two scheme$ardware doesn

twolf  vortex

gce gzip mcf  parser

bzip2

change in the available hardware. The transistors under calgorithm shows performance improvement (decreased cycle
sideration are those being used for prediction on the compount) of 10-15% over the YAGS scheme. As the hardware

the computation processor is varied. Each point representsdtmaller versions of both YAGS and DTrees. As expected,
average performance across all ten benchmarks. Again, iiigre significant performance gains are observed, reaching al-
results have been normalized to the YAGS scheme, and anbst 20% performance improvement for some configurations.

sue processor means that prediction accuracy has greatemiay superscalar computation processor has been used.
scheme is in the Pattern History Tables (PHTSs), while the bulision trees and a larger local cache can be included in the
(approximate transistor count) of the prediction mechanismtilnwe incorporate enough transistors in the design to include

pact on use of available resources.
tation processor. The primary use of transistors in the YA®S& the computation processor is expanded

of the transistors in the DTrees scheme is in the comparatidesign. However,
Figure 26 compares the three schemes as the hardware budgetvise

rithms with Type 3 trees (4-way superscalar computation ag

2-way superscalar introspective processor).
creased issue width, since the increased IPC of the wider is-

Figure 24: Normalized cycle count for executions using algo-
(Figure 25), the performance gain of the combined scheme

proaches or exceeds 20% for several benchmarks.

and in the local decision tree cache.



7.4 Analysis same introspective processor (for example, branch prediction
and memory prefetching). Of course, more research needs to
be done to be certain that this can be accomplished feasibly,

Given these performance results and the general trendshig-the strong possibility exists that the cost of the introspec-

scribed in Section 2, we can now take a look at the overtlle processor could be amortized over multiple algorithms.

gains offered by the introspective approach. The prediction

hardware on the computation processor uses approximately as

many transistors as a corresponding YAGS mechanism would

take. On the introspective side, we need to consider the hard-

ware required for the introspective processor and the decistdn Future Work

tree and CFC caches. Of course, the transistor count depends

heavily on the design of the caches, but a good estimate js

that the total transistor count of the introspective portion 3}‘3 prime area of further research on this topic is the expan-

the chip is approximately 50-100% of the transistor count oP" of the system state being studied by the introspective pro-

the computation portion. Thus, we are adding 50-100% to fHeSSOr- Currently, only the contents of the AGBHR are used
hardware complexity of the chip. to learn decision trees. This limits us to correlations between

branches. However, it may very well be that some branches
According to the general trends presented in the Introductiare highly correlated with data values, and thus inclusion of
a doubling of the number of transistors on a chip has histdtie register set in available system state would improve the ac-
cally resulted in a 25-30% performance improvement (at leastacy of the decision trees constructed.

over the last few years). Thus, a 50-100% increase in transis- . I . h hical | |
tor count (as in our design) would imply a 13-30% increaé@d't'ona y, decision trees or other graphical models could be

in performance, depending on the exact design chosen. & d to learn patterns other than branch outcomes. Introsp_ec—
results show a 15-20% performance improvement for mosti@f?! could be used to study the state of the system and build
the benchmarks. However, since these speedups are dud hs that can effectively predict data values, future memory

different effects (conventional speedups result from wider f£2¢€SS€S, etc. The basic idea remains the same however: study

sue, improved technology, etc., whereas our speedups C&q]réions of present system state and build models that can ac-

specifically from added parallelism and decreased rollback ifi@tely predict portions of future system state.
to better prediction), gains may differ depending on the exact
workload and configuration.

It is important to consider three additional factors when look- )
ing at these numbers. First of all, the general trends sect®n Conclusion
looks at increasing transistor counts over time. Successive

generations of chips come out every three years or so, which

means that the 25-30% performance improvementincludes th the n_umber of Fransistors per chip cqnstantly r'ising, we
creased clock rate, which is not included in our results. T ¢® reaching the point where more complicated uniprocessor

skews the results in favor of the general trends. esigns are simply not the best way to achieve improved per-
formance. We have presented an argument for introspective

Secondly, as chip complexity is increased, verification diftomputing as an alternative use of these abundant transistors.
culty increases superlinearly. For example, even though e introspective computing model involves devoting proces-
Intel P4 has about twice as many transistors as the Pl isi cycles for continuous, online analysis and adaptation.
more than twice as difficult to verify such a complex design. ) ) , .
However, our design involves two smaller processor which c’%ﬁ one possible use of th',s mode], we .devote Introspective
be verified individually (although this is somewhat offset biFSOUrCes to perform run-time optimizations such as branch
the additional verification which needs to be performed on t %edmtlon. We have shown that one of the simplest graphical

interface between the two processors). This means that,%FCtureS’ deC|s_|on trees, can b_e _effectlvely used to charac-
rize the behavior of a vast majority of branches. We have

similar gains, the introspective approach will more readily B
realized than will the standard approach. s%own how these trees can be learned and constructed by an

introspective processor in a timely manner, then used on the
Finally, much of the introspection work is done by the speemputation processor for accurate single-cycle predictions in
cialized hardware on the introspective processor (the CFC Wpe same run. The resulting gain in performance (more than
date Hardware). As mentioned earlier, the actual proces26% in some cases) is not unlike that which results by dou-
runs software for less than 50% of its available cycles for aling the number of transistors while widening an existing su-
benchmarks, much less in some cases. This gives rise topscalar design. Perhaps introspection will ultimately prove
possibility that multiple introspective algorithms could use the be a better way to achieve such gains.
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