Data Replication in OceanStore

Dennis Geels
Unwversity of California, Berkeley

geels@Qcs.berkeley.edu

Report No. UCB/CSD-02-1217
November 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Data Replication in OceanStore

Dennis Geels
University of California, Berkeley
geels@cs.berkeley.edu

November 2002

Abstract

We present the design and implementation of the data
replication subsystem of OceanStore, a global-scale stor-
age system. QOur system automatically replicates data
on or near the the client machines where the data is
accessed, in order to improve locality, scalability, and
availability. These replicas cooperate to share data and
disseminate updates securely and efficiently.

Replicas also provide a flexible read interface that al-
lows applications to relax data consistency in exchange
for improved performance and availability. This inter-
face also supports retrieval of arbitrarily old versions of
client data (“time travel”).

1 Introduction

Wide-area, distributed storage systems can provide
much higher data accessibility and durability than more
localized alternatives. Their distributed nature allows
mobile users to access their files while traveling and
facilitates sharing among remote collaborators. To in-
crease durability, the storage system can place copies
of data objects! (files) on geographically distant ma-
chines, improving resistance to natural disasters and
power outages, in addition to normal failures and at-
tacks.

These benefits are diminished by the problems in-
troduced by distributed storage: security, complexity,
and performance. This paper presents a data replica-
tion system designed to mitigate these problems. Our
system, implemented as part of the OceanStore global-
scale storage system [27], automatically creates and
maintains soft-state replicas of data near client ma-
chines. Users then interact securely with these local
replicas, avoiding the high latency of wide-area network
communication.

1On the granularity of entire objects, blocks, or erasure-coded
fragments[9].

1.1 OceanStore

This section briefly summarizes some key features of
OceanStore, the storage system in which our replica
system was built.

OceanStore is a persistent data store designed to sup-
port billions of users and exabytes (108 bytes) of data.
Reaching this somewhat ambitious goal requires the co-
operation of millions of servers. OceanStore makes two
core assumptions to address this issue.

First, machines participate in a utility model; no sin-
gle entity must own or control all the machines in the
network. Consumers pay a monthly fee to a single ser-
vice provider, who buys and sells capacity with other
providers to ensure the guaranteed levels of durabil-
ity and availability. Each provider’s machines form an
autonomous administrative domain; cooperative data
replication across domains must be driven by mutual
profitability.

Second, OceanStore never entrusts the privacy or in-
tegrity of user data to any server. All objects are en-
crypted by the client, and servers operate only on the
resulting cyphertext. Updates to an object are pro-
cessed by an inner ring of machines participating in a
Byzantine fault tolerant protocol. The inner ring times-
tamps and digitally signs the object, allowing clients to
later verify its authenticity. Thus any server can store
copies of any data object, and clients can access their
copies securely.

1.2 Need for Replication

Such a storage system could function with only clients
and inner ring servers. Unfortunately, servers have lim-
ited CPU, storage, and network resources. As demand
for a data object increases, the object’s inner ring be-
comes a bottleneck.

Operation on a global-scale network presents further
problems. Clients unlucky enough to be far from any
servers in the ring will always see high access latency.
And clients lose all access to their data if the inner ring
becomes unreachable due to a network failure or due
to the basic connectivity problems common in mobile

App | App \ App

Client Handler OSsP
Tapestry
Network
VM
0s e P
AR . Ve
L P
/m -7
~ 1 --
< ~ - - -
Client ~ - - -
Tapestry

Primary | Byzantine
Replica | Agreement
Tapestry
Inner Ring Network
'</> M
= oS
2]
=4

Figure 1: A Client Request in OceanStore A client forwards a request (1) to the inner ring servers. They agree
on a response (2) which one server returns to the client (3).

networks.

1.3 Owur Approach

We attack these performance and availability problems
by automatically distributing copies of data objects to
servers near client machines, or possibly onto the client
machines themselves. We call these additional copies
replicas or secondary replicas, to distinguish them from
the primary replicas on the inner ring servers.

Secondary replicas function as local access points for
the data, absorbing most of the read traffic and possi-
bly reducing the update traffic as well. They can pro-
vide faster data access than the primary replicas, due to
shorter, more stable network connections and less heav-
ily loaded servers. They are also purely soft-state, so
that the system may quickly create or destroy replicas
as needed.

Replicas automatically organize themselves into mul-
ticast trees rooted at inner ring servers. They use these
trees to disseminate updates as quickly and efficiently
as possible. Conversely, client requests are passed up
the tree when they require more or fresher data than
the closest replica can provide.

Although an important locality optimization, this
second tier of replicas does not weaken the security or
consistency guarantees of the underlying storage sys-
tem. In OceanStore, as discussed above, all data is en-
crypted, and updates are signed, with timestamps, by
the inner ring. The read interface exported by replicas
include predicates that ensure the freshness of repli-
cated data. Clients can verify both that their updates
are processed correctly and that the data they read is
valid and consistent.

Due to the high latency and network failures common

in a wide-area system, clients may wish to relax their
consistency model in order to reduce communication
with remote servers. We extended the read interface so
that clients may explicitly allow slightly stale data in
exchange for faster access and higher availability.

We further extended the read interface to provide
access to arbitrary old versions of data. This “time
travel” ability is not directly related to the performance
or availability of the replication system;? however, it is
a natural extension to our read interface that takes ad-
vantage of the versioning nature of OceanStore, which
we discuss in Section 3.2.

The rest of this paper is organized as follows: in
the next section we frame our system against related
work. In Section 3 we present OceanStore in more de-
tail, concentrating on a client’s view of the base sys-
tem. We then describe the design and implementation
of our replication system in Sections 4 and 5, respec-
tively. We evaluate its performance in Section 6. In
Sections 7 and 8 we discuss the results and outline addi-
tional work planned for the future. Finally, we conclude
in Section 9.

2 Related Work

We have built a replication system that dynamically
places and maintains replicas on or near client ma-
chines. The replicas share data and disseminated up-
dates using a self-organizing multicast tree. They ex-
port a flexible read interface that allows clients to ac-

2Time travel indirectly improves availability by eliminating
data inaccessibility due to user error. Clients can easily examine
and restore data after accidental overwriting or deletion.

cept loose consistency semantics in exchange for faster
performance. The interface also enables “time travel”:
the ability to read the data as it existed at earlier points
in time. Finally, the authenticity and timeliness of all
data is verified using strong cryptography, so clients
can securely access their data without trusting remote
replicas.

We believe that our system is the first to combine
these characteristics; however, many previous storage
systems have provided one or more of them. In this
section we outline the related contributions from these
projects.

2.1 File Systems

Early distributed file systems such as AFS [32],
NFS [29], and Sprite [24] allowed multiple file servers
to cooperatively export a partitioned namespace. A
second generation, including Amoeba [23], Coda [31],
Echo [8], Ficus [25], Frangipani [35], and Harp [21],
replicated files across servers to improve availability.

This server-only replication is relatively static; client
machines connect directly to one of a small number of
servers for each file, and client caches are not shared.
The relatively small size and slow rate of replica migra-
tion obviate the need for sophisticated security models
and update propagation; clients and servers authen-
ticate each other, rather than the data, and replicas
broadcast updates (or at least notifications) to all other
replicas, whose locations are known.

Later some work on cooperative caching [14], as real-
ized in xF'S [7], adopted a decentralized storage model.
Cooperative caching allowed clients to capitalize on
available storage on their peers by sharing file caches.
These systems extended the trust relationship to peer
machines, and did not verify the validity of data re-
trieved from a client cache.

Most of these file systems have simple, inflexible con-
sistency models, designed to be approximations of nor-
mal UNIX single-copy semantics. Coda and Ficus both
support optimistic concurrency, which allows clients to
modify replicated data while disconnected. Neither
supports control of relaxed consistency in between these
two extremes. That aspect of our system draws instead
from recent work by Yu and Vahdat [38].

These distributed file systems may retain periodic
checkpoints of previous system state, but they do not
retain versions of individual files at a fine granularity,
nor do they provide a simple interface to automatically
retrieve these versions. OceanStore, like EFS [30], does
keep all (or most) versions of files. Our system was
designed to make time travel in OceanStore as simple
as that in EFS.

2.2 Databases

Although less related to OceanStore superficially, repli-
cated database management systems (DBMSs) have de-
veloped many of the same ideas. Franklin et al. [19]
give a survey and taxonomy of replica control (cache
consistency) mechanisms in the simpler, client-server
replicated systems.

Bayou [15] was a revolutionary distributed system;
it made some progress developing useful levels of re-
laxed consistency, using merge predicates and session
guarantees. Bayou replicas are more lightweight and
transient than normal DBMS servers, although they are
restricted to replicate full copies of the database. Up-
dates propagated to all replicas eventually using pair-
wise anti-entropy. Security was not addressed, and time
travel was not possible.

POSTGRES [34] explored versioning as a simplifying
design decision. The interface exported to retrieve data
from the past, like that later adopted by EFS, was the
first incarnation of accessible time travel.

Mariposa [33] built a market-based replication sys-
tem atop individual POSTGRES-based servers. Like
our system, Mariposa automatically constructed a dis-
semination tree for update streams. It also used the
flexibility of the underlying POSTGRES system to re-
laxed the consistency model by allowing a controlled
amount of staleness in the data. Unlike our system,
Mariposa used replication for load sharing, not for
client locality and availability. It also failed to address
the security issues raised by inter-domain data sharing.

2.3 Web Caches

Cooperative web caches, such as Harvest [10] and the
Summary Cache [18], serve web content from nearby
cached copies. Content Delivery Networks (CDN), ex-
emplified by Akamai [2], actively distribute and main-
tain replicas throughout a large, often proprietary, net-
work of servers.

Like our replication system, both types of systems
operate in the wide area and rely on locality for per-
formance and availability much more than traditional
distributed file systems. In fact, there is a large, inter-
esting body of work in the field of replica management,
which deals with algorithms for selecting locations for
replicas that maximizes the performance and/or avail-
ability of the system. Our work contributes little to
replica management research.

Although web content is usually read-only, web
caches and CDNs do provide some support for con-
trolling the staleness of caches and informing clients
(insecurely) of the freshness of the data.

Unlike our system, web caches and CDNs do not al-
low clients to authenticate the cached data they read,

nor do they provide a time travel interface. Both of
these weaknesses follow directly from a lack of support
in the underlying storage medium: web pages are usu-
ally neither versioned nor verifiable.

Recently the Internet Archive [4] introduced a time
travel interface for the world wide web called the “Way-
back Machine”. This interface provides access to a col-
lection of recent snapshots of a significant portion of the
web. Although an intriguing and well-engineered tool,
the Wayback Machine cannot provide the same granu-
larity and quality of time travel as our system due to
the lack of versioning support in the underlying web
content.

2.4 P2P File Sharing

Finally, our replication system perhaps has most in
common with recent peer-to-peer (P2P) file sharing
networks. These systems first appeared as distributed
file-swapping systems like Napster [1], Gnutella [3], and
Mojo Nation [5]. They were not designed for security
or locality.

Several P2P file sharing systems have been de-
signed to enable anonymous storage and censorship-
resistant publishing. This set includes the Eternity Ser-
vice [6], Freenet [12], FreeHaven [16], Publius [22], and
Mnemosyne [20]. They each provide various guarantees
of privacy and sometimes also data integrity.

These systems all assume that their data is im-
mutable, or at most modifiable by a single author, and
even then only rarely. Consistency and time travel are
therefore not meaningful topics. Locality and efficiency
are also not high priorities.

Recently the research community has explored P2P
file systems in great depth. Some projects, like CFS [13]
and PAST [17], provide both security and reasonable ef-
ficiency. Like the anonymous publishing systems, these
projects deal only with immutable data, and therefore
have a very simple consistency model and no support
or need for time travel.

Pangaea [28], like our base system, OceanStore [26],
does allow write sharing in a wide-area storage system.
They use an optimistic consistency model, with sup-
port for single-copy consistency when required. Like
our system, they replicate data where it is accessed,
and automatically form a multicast tree for dissemi-
nating updates. Unlike our system, they do not provide
any security checks.

3 Background
We have implemented data replication as a subsystem

of OceanStore, a global-scale storage system. In this
section we describe the portions of OceanStore relevant

to data replication, in order to provide enough back-
ground for later sections.

3.1 System Overview

OceanStore is a storage system composed of comput-
ers that communicate over the internet using an over-
lay network named Tapestry[40]. Each machine in
Tapestry is named by a 160-bit Globally Unique Identi-
fier (GUID)?. Messages sent to a machine are forwarded
across the overlay network “towards” its GUID.

Machines may also publish the names (GUIDs) of ob-
jects that they store. They publish an object GUID
label by sending a message addressed to this label
through Tapestry. The machines whose GUIDs closely
match the object GUID remember the publishing ma-
chine and forward subsequent messages for that label
back to the publisher. Clients can send requests to
an object, without knowing where the object is stored.
Moreover, if multiple machines publish the same la-
bel, Tapestry usually forwards messages to one that
is nearby in the underlying network. The details of
Tapestry’s implementation are not particularly relevant
to this paper; we will treat it as a magical routing black
box.

Client applications access OceanStore through a local
daemon process. This client-side software exports a file
system interface with NFS semantics in addition to its
richer, native API.

Client machines interact with a group of servers
known as the inner ring. These servers serialize and
process client requests using a Byzantine-fault-tolerant
agreement protocol that guarantees that a group of
3f + 1 servers can continue to operate correctly in
spite of arbitrary failures (including attack) by f of the
group. In practice, each inner ring consists of 4 power-
ful machines (f = 1) with high-bandwidth connections
to the internet backbone.

Each data object may reside on a distinct inner ring,
so the system can scale to a large number of objects.
Each server in a ring publishes itself using the data
object’s name as a label. Clients then address messages
with that label, and Tapestry routes them to one of the
servers which is closest.

A third important entity is the client’s OceanStore
Service Provider (OSP). The OSP chooses servers to
participate in its clients’ inner rings, and is responsible
for ensuring that a sufficiently large portion of each
ring (> 2/3) remains uncorrupted. Beyond this task
the OSP does not participate in client operation, and
is not important to data replication.

3We take the SHA1 hash of a machine’s public key to form its
GUID. The result is globally unique with extremely high proba-
bility.

Metadata Data
Timestamp: 102010066
a) Version #: 4 Cyphertext
Last VGUID: 4FE2
Metadata Data
Timestamp: 102010066 488
b) Version #: 23 3| Ao
Last VGUID: 552D C
E 2
z RN
BGUID: 62AC Vo0
0
E
1
2
- 7 R
£y ~ BGUID: 0E12
Cyphertext

Figure 2: Data Object Versions (a) A simple, small data
block. (b) The client data stored as a btree; the main
data block references other blocks by their BGUID.

Figure 1 illustrates the various OceanStore compo-
nents interacting to satisfy a client request.

3.2 Data Object Format

OceanStore is a versioning storage system. At a basic
level it simply stores immutable blocks of data; muta-
ble data objects are constructed by securely mapping a
single object name to a chain of versions.

3.2.1 Read-only Versions

The name of each immutable version, called its VGUID,
is a cryptographically-secure hash of its contents. This
naming convention allows clients to verify that they
have correctly received the data that they requested,
as we describe later.

Each version contains a metadata hashtable and
a byte array containing the client-encrypted data.
The metadata contains the version’s sequence number,
timestamp, and the name of the previous version, to
allow chaining.

For large versions the client data is stored in a btree,
and only the top block of the btree is included in the
data object itself. Other blocks are stored indepen-
dently and are referenced by their own name, a BGUID,
which is also a secure hash of the blocks contents*. This
btree format is also available to clients who wish to
index an object with explicit keys, rather than using

4Note that a VGUID is merely the BGUID of the top block
of a btree, which happens to also contain the metadata table.

the standard byte-array interface. Figure 3.2 illustrates
both version formats.

Storing btree blocks independently allows sharing
across objects and among multiple versions of a single
object. When the inner ring applies an update to an
object, producing a new version, it need only store new
copies of blocks which were added or modified. This
copy-on-write optimization allows OceanStore to save
old versions of an object efficiently.

3.2.2 Mutability Through Heartbeats

The set of versions comprising a single data object are
given another name, an active GUID (AGUID), equal
to a secure hash over the object’s human-readable name
and the public key of the owner. This AGUID is the la-
bel published by servers in the inner ring, as mentioned
above.

The inner ring produces signed, timestamped map-
pings from an object’s AGUID to the VGUID of its
most recent version. These mappings, which we call
heartbeats, are produced after each update or on a
client’s request.

3.2.3 Verifiability

A client can verify the authenticity of a heartbeat by
validating the inner ring’s public key, then checking the
signature on the heartbeat. The first step requires the
data object’s certificate (see Figure 4), and need not be
rechecked for each new heartbeat.

Given a valid heartbeat, the client can verify the
data of the corresponding read-only version by hash-
ing the data and comparing the result to the expected
VGUID. For large objects the client iteratively verifies
the BGUIDs at each level of the tree.

In fact, a client can verify a portion of a large btree
without reading the entire version. She only needs the
parent blocks of the data blocks she wants to verify.
Consequently, a client can store and verify very sparse
copies of a data object. We use this ability in our repli-
cation system to avoid the overhead of storing entire
data objects when only part is needed.

3.2.4 Temporary and Permanent Names

In theory, the OceanStore stores each version of ev-
ery data object permanently. To increase the durabil-
ity and availability of data blocks, OceanStore comple-
ments the data format described above with a second,
archival format. The latter is a set of fragments pro-
duced by erasure-coding the data block[36]. A client
can later reconstruct the data block given only a small
fraction of these fragments.

The name (BGUID) of each block is actually a hash
over two components: the secure hash of the online

form, called a BHASH, and the secure hash of the
archival fragments, called the FHASH. Each hash is
then stored with the converse format, allowing clients
to verify either form.

Unfortunately, the erasure-coding process is compu-
tationally expensive, requiring several milliseconds to
encode each block. Until the BGUID is ready, servers
and clients refer to blocks internally simply by their
BHASH.

These names are used only temporarily, yet provide
the same security guarantees within the context of the
object’s inner ring and clients. For the rest of the paper
we will ignore the distinction and simply use BGUID
or VGUID to refer to a block’s name.

3.3 Client Requests

There are three types of client requests.

3.3.1 Heartbeat Requests

The simplest request instructs the inner ring to pro-
duce and sign a new heartbeat. Clients use this request
to learn the VGUID of the most recent version of an
object.

3.3.2 Update Requests

OceanStore uses a predicate-based update interface,
similar to the system pioneered in Bayou[15]. This up-
date API allows great flexibility and supports a wide
range of consistency semantics.

For example, one update predicate requires that the
current version of a data object matches a specified
VGUID. Using this predicate, an application can im-
plement optimistic concurrency control (OCC), which
provides transactions with ACID semantics.

Conversely, an update predicate may check nothing
at all, if the client prefers to avoid conflict completely
and can accept looser consistency semantics. The full
set of available predicates is still under development.

Because all update responses and heartbeats must
be signed by the inner ring, all update requests must
naturally go to the inner ring. Each update contains a
list of (predicate,action) pairs; the inner ring evaluates
each predicate, in order, against the most recent version
of the data object. It applies the action corresponding
to the first successful predicate.

The response to an update request includes a heart-
beat naming the new version.

3.3.3 Read Requests

The primary replica software provides a very minimal
read interface. Clients may request individual blocks of
a version using their BGUID.

Read responses need not be signed, because the client
can verify that the block contents match the requested
BGUID. Therefore, unlike update requests, read re-
quests could be satisfied by any machine that happens
to have a copy of the block.

In practice the inner ring machines also host the
software components used in secondary replicas. They
therefore support the same rich interface, which allows
the client to read a data object by specifying its AGUID
and a user-level description of the desired portion of the
file. We describe this interface in detail, along with the
way an AGUID is mapped to a specific version, in Sec-
tion 4.6.

4 Design

We designed and implemented a data replication sub-
system to complement the basic OceanStore system de-
scribed in the previous section. Our system creates a
secure, self-organizing second tier of soft-state replicas
that sit between clients and the inner ring. This sec-
ond tier can satisfy most client heartbeat- and read-
requests, and may help reduce update traffic as well.

This work required two main additional components:
a secondary replica to store data objects and process re-
quests, and a dissemination tree to propagate updates
and requests among those replicas. This section de-
scribes the structure and operation of these two com-
ponents.

4.1 System Layout

Figure 3 shows how the second tier coordinates between
the inner ring (the primary tier) and clients.

A replica will be created automatically on the client
machine whenever possible. This collocation minimizes
access latency and eliminates much of the network traf-
fic generated by the client. Replicas can also be created
on other available servers, in order to form a more effi-
cient multicast tree or provide better support for weak
clients.

4.2 Local Replica Design

The functionality of a secondary replica is provided by
an OceanStore component (stage) that processes client
requests using locally cached copies of the data object.

Figure 4 illustrates the replica data structure. These
structures contain all the information required to map
client requests to specific versions, including recent
heartbeats and important version metadata such as se-
quence number and timestamp. Each replica consumes

Replica Stage

\Tapest

e e
MR

Replica Stage

2
Da\ ' =
Client _ -
with e __--"1
Replica Tapestry

Replica

Inner Ring '

Dissemination
Tree

-/l

Figure 3: Adding a Second Tier Additional software components allow client machines and other servers to host
soft-state replicas. Here a client asks to join the dissemination tree (1). A nearby replica receives the request

and responds (2).

AGUID: 5E38

PK ,Filename, PK

Signed by Owner: ‘ OWNER osP ‘

Signed by OSP: AGUID, PK IR

Certificate for PK:

Heartbeat: AGUID: 5E38 VG)D: 441D Timestamp: 102010706q
Versions: VGUID: 441D Version#: 65 Timestamp: 1020107066

Last \&UID: 414F

VGUID: 414F Version#: 64

Last VGUID: 0A8D

Timestamp: 1020098227

VGUID: F96F Version#: 59

Last@lD: 80DD

Timestamp: 1020084027

VGUID:80DD Version#: 58

Last VGUID: 4AC9

Timestamp: 1020082991

Figure 4: A Secondary Replica This data structure
contains the information required to verify updates and
map client requests to specific versions. A replica may
store a small subset of a version chain; missing links are
fetched if necessary.

less than 1.5KB® for certificates and heartbeats, plus
10 to 20 bytes per version in the history chain.

This data is purely soft-state; it is all available from
the inner ring and/or the OceanStore archive, and its
integrity is all verifiable, so local copies need not be
stored carefully.

The data object’s certificate verifies that the speci-

5 Assuming 1024-bit RSA signatures. Certificate size scales
linearly with signature length.

fied public key is the key used by the true inner ring
for the object. It contains a signature from the owner’s
OSP verifying the inner ring’s public key and a signa-
ture from the owner verifying the OSP’s public key. The
verification chain is complete by checking that the spec-
ified owner’s key and filename hash correctly to form
the AGUID.

The replica stage verifies this certificate chain and
then uses the inner ring’s public key to check the sig-
natures on all later updates and heartbeats.

The replica will not have a full version history in
general. Older versions will often be truncated, and
the chain may have gaps if the replica becomes discon-
nected temporarily or if messages are dropped. These
missing versions can easily be detected and fetched
when necessary.

4.3 Dissemination Tree

Replicas tie themselves into multicast trees that are
rooted at the primary replicas®. These trees distribute
certificates, heartbeats, and updates to the second tier.
They also provide a network up which replicas (and
clients) can pass requests that they cannot process lo-
cally, due to resource limitations.

The dissemination tree is crucial to efficient write
sharing. It keeps replicas loosely synchronized, which
makes systems with relaxed consistency models very
efficient. It also helps strict consistency models (like
OCC) by invalidating stale data and exposing conflicts
as early as possible. Earlier detection may even reduce

6In practice each data object therefore has a forest of four
distinct trees. We refer to them as a single tree for clarity.

AGUID: 5E38 Parent: 7A3C Depth in tree: 3
Children:
‘ Name: 2218 Lease: 20KB Remaining: 16KB ‘
‘ Name: 3FB8 Lease: 12KB Remaining: 10KB ‘
‘ Name:A6AS5 Lease: 200KB Remaining: 127KB ‘
Figure 5: Dissemination Tree State A simple data

structure which stores information required for com-
munication across the second tier.

the amount of update traffic, by eliminating conflicting
requests that are doomed to be rejected.

We chose to push updates down the dissemination
tree so that the secondary replicas stay as consistent
as possible. We could have adopted a lazier approach,
in which a replica requested the versions it needs, on
demand. That approach might consume less network
resources, but adds latency to the critical read path.
We look at this tradeoff in Section 6.

To create a dissemination tree, replica machines pub-
lish themselves using the data object’s AGUID as a la-
bel, much like the inner ring servers. New replicas join
the tree by sending a request addressed to this replica
label. The message contains a lease that specifies the
amount of traffic the new parent should send before
disconnecting the new child.

If the machine that receives the join request has suf-
ficient resources available, it records the new replica’s
GUID and sends it the certificate described in the pre-
vious section. The new parent will then answer requests
from the child and forward to it all messages received
from its own parent, until the child’s lease expires.

If the child replica remains active it can renew the
lease before that point and maintain continuous ser-
vice. In practice, the child repeats the join process
completely, with a more sophisticated request message.

This rejoin request may reach a different parent if
new replicas have appeared since the first join. We in-
clude the distance of the previous parent from the inner
ring in the request and ignore candidates which are far-
ther away. Thus the process of periodically rejoining
the tree may shrink the tree’s height but will never in-
crease it.

We discuss the overhead of maintaining these tree
links in Section 6.2.1.

4.4 Creating Replicas

New replicas are created on a client machine when a
client application first reads, or explicitly opens, a data

object. The data structures described in Section 4.2
are initialized and the machine joins the dissemination
tree as described above.

Replicas can also be created on nearby machines.
Clients may send a request, similar to the join requests
described above, but with a small Time-To-Live pa-
rameter. If the TTL expires before finding a replica,
the request instructs the last machine it reaches to cre-
ate a replica as proxy. This method of replica creation
is discusses in Section 8.2.

4.5 Updating Replicas

As discussed in Section 3, all update requests must be
processed by the inner ring. The primary replicas eval-
uate the update and, when successful, produce a new
version of the data object and a signed heartbeat veri-
fying the new version’s VGUID.

The primary replicas then forward the heartbeat
down the dissemination tree. It also sends the success-
ful action from the update, as well as the VGUID for
the previous version.

Each secondary replica, upon receipt of the update
response, applies the update locally. The replica stage
forwards the information from the response to a sepa-
rate software component, which applies the update. It
first checks that it has the correct initial version, fetch-
ing the required portions of that version if necessary.
It then applies the action to produce the blocks of the
new version. Finally, the replica stage verifies that the
new VGUID matches the signed heartbeat.

Because update actions are generally implemented
as logical, rather than physical changes, disseminating
the update requires less bandwidth than forwarding the
new data blocks would. Furthermore, if a replica is
dormant or satisfied with older versions, it may request
that its parent omit the update action completely and
forward only the heartbeat. These truncated messages
are only 400 bytes large.

Then the message serves as a signed invalidation mes-
sage, signaling that the previous version is no longer the
most recent. If the replica later requires fresh informa-
tion it must block on requests up the tree. The tradeoff
between full updates and invalidations is examined in
Section 6.2.4.

When the new version has been archived, the inner
ring distributes a second message, which contains a sec-
ond heartbeat and the FHASHes required to produce
the permanent names for the new data blocks. As with
the first response, this message can be truncated to save
bandwidth.

Inner Ring

AGUID
HB #4

Update
(v.3tov.4)

AGUID
Certificate
HB #4 B AGUID
v.4,3,2 Certificate
HB #4
v.3, 2
AGUID
HB #4
y

Figure 6: Updating the Second Tier The inner ring distributes an update response to replica A, which forwards
it to its children. Replica B strips out the large update, forwarding only the heartbeat to C. This removal saves

bandwidth to the small client C.

4.6 Reading a Replica

The true power of the second tier comes from its ability
to satisfy client read requests.

4.6.1 Read API

Secondary replicas export a rich interface through
which clients describe the data they wish to read. In
addition to the AGUID of the data object, clients spec-
ify a version predicate, a selection, and a desired failure
mode.

Version predicates restrict the set of versions of the
data object. Possible predicates are:

1. Version’s expiration date not yet reached

2. Version’s sequence number in specified range or at
least certain number

3. Version created in specified window or after certain
time

4. Version was most recent as of certain time

There is also a trivial predicate which explicitly names
a known VGUID as the only acceptable version.

One caveat is that the timestamps in heartbeats and
version metadata were set by the primary replicas. If
the secondary replica clocks are very skewed, the time-
based predicates may be undesirable.

Selections specify the range or ranges of bytes to
read, once a version is chosen. For keyed data objects,
the selection specifies a set of fields and ranges within
each field.

Clients may also specify a failure mode: how the
replica should behave if the request cannot be fully sat-
isfied locally. The replica may be instructed to fail im-
mediately, to return a partial answer, to request miss-
ing information from the dissemination tree and wait
to reply, or to return a partial answer and then request

the missing information. Simpler clients will probably
behave well only with complete answers or total fail-
ure; however, intelligent applications may prefer a fast,
partial response to a slow one or none at all.

4.6.2 Consistency Semantics

The read interface just described enables clients to
flexibly trade consistency guarantees for performance.
Strict version predicates may be used when clients re-
quire the absolute latest version of an object. When
freshness is less important, or when data objects change
less frequently, a client could increase the acceptable
range of versions to increase the ability of the replica
stage to satisfy the request locally.

For example, we recently implemented an NFS emu-
lation layer in the OceanStore prototype. Because NFS
has very loose guarantees for the delay before clients
see new versions, we used read requests that allowed
versions that were current at any point in a recent win-
dow. The dissemination tree then successfully kept the
replica fresh enough to handle all read requests locally.

4.6.3 Processing Requests

The replica stage searches the history chain for the end-
points that delimit the range of acceptable versions.
This search requires at most two binary searches’,
which is fast. As an optimization, the replica stage first
evaluates the predicate against the most recent known
version. If that version is accepted, which should be a
common case, the full history search is not performed.

If the version predicate is loose enough, like those
which implement NFS semantics, it can usually be sat-
isfied immediately. If not, or if the dissemination tree
has not kept the replica sufficiently up-to-date, the

7 Assuming that expiration dates are monotonic. If not, some
acceptable versions may be ignored by the binary search.

replica may have to fetch a newer heartbeat or miss-
ing metadata blocks. To illustrate, see Figure 4. If
a predicate required the version of that data object
that was current at exactly timestamp 102009000, the
replica stage would fetch missing versions 63 through
60 until it could satisfy the request.

These requests pass up the dissemination tree, giving
parent replicas the opportunity to handle the request
without involving the inner ring. A client machine can
also send a heartbeat request directly to the inner ring,
but those requests are avoided at all costs. They require
long-distance communication and force the inner ring
to agree and sign a new heartbeat, which is expensive.

Once the predicate is satisfied, the replica chooses
the most recent version from the acceptable range and
forwards its VGUID and the read selection to a separate
software component, not described here, which walks
the data object’s btree and returns the bytes or blocks
specified by the selection.

The replica then sends the data and VGUID back
to the client. The client can verify that it received an
acceptable version by re-applying its version predicate.
If the client receives whole data blocks, rather than only
byte ranges, it can also reform the btree and check that
it hashes to the correct VGUID. In practice, the client
skips these checks if the replica is running on the same
machine.

In the future, the replica stage might not always
choose the latest version in the acceptable range. For
example, if little of that version is present locally, but
a slightly older version is fully cached, the former has
a higher chance of requiring off-node communication to
complete the read. This option is discussed more in
Section 8.4.

4.7 Reclaiming Resources

The second tier machines remove replicas when they
fall out of use or when their resources are needed for
more important tasks. Any remaining children in the
dissemination tree are notified, so that they can recon-
nect themselves elsewhere in the tree. Then, because
the local replica is only soft-state, it may simply be
thrown away.

5 Implementation

We built our replication system as a software com-
ponent for OceanStore servers. OceanStore is imple-
mented in Java, for portability and ease of prototyp-
ing. Currently the same code base runs both server
and client machines.

Internally, OceanStore servers employ a staged event-
driven architecture[37]. Each major software compo-

10

nent (e.g. network, cache management, update appli-
cation) is a self-contained, event-driven stage. Stages
communicate via an efficient publish/subscribe mes-
sage dispatcher. Administrators can add new stages
to servers to quickly add functionality, such as archival
storage or internal monitoring.

We implemented our replication system as two
stages, one to store the replicas and process requests,
and a second to maintain and operate the dissemination
tree. Each stage required a half-dozen request /response
message pairs for communication with each other and
other OceanStore stages. In total, the system consists
of approximately 8000 lines of Java and a few additional
files and scripts for testing. It was built in just under 6
months.

5.1 State Machine Structure

Each stage is organized as a large state machine. At a
very high level, each event received by a stage advances
its state and brings a request closer to completion.

In practice, the state for each data object is stored
in a single data structure indexed by its AGUID, and
they are kept almost completely independent. Each
request or response references the AGUID (sometimes
indirectly), and modifies the state of only that data
object.

Programming for the event-driven model complicates
the system somewhat. Asynchronous, message-passing
code benefits throughput and makes stages easy to ob-
serve and control, but increases the number of possible
failure conditions.

We found that we could simplify request processing
by breaking a stage down into many small methods,
each of which is responsible for only one type of event.
A central event handler dispatches each request (or re-
sponse) to a helper method for that type. The helper
method process the event, adjusts the replica’s state
as appropriate, and sends off a request or response to
continue the computation.

5.2 Difficulties

The most complex part of the code, by far, is the logic
that evaluates version predicates. We had designed a
fairly rich API for read requests, hoping to provide a
powerful means to navigate our versioning file system.
We also wanted to allow replicas to function properly
without requiring the entire history of any data object.

Unfortunately these two design goals were somewhat
at odds with each other, and complicated the imple-
mentation of the replica stage. The logic that searches
the version chain needed to understand the concept of
“gaps” in the chain, so that it could recognize cases in

Inner Ring

AGUID
Certificate
HB #4 B AGUID
v4,3,2 Certificate
HB #4
v.3,2
AGUID
Predicate: -
(>v4) - > C
Selection:
byte[2048—END]
FAILSTOP

Figure 7: Reading From the Second Tier Replica C cannot handle a read request that requires the latest version
of a data object. It therefore forwards the read request to its parent, Replica B.

which fetching more versions would or would not help
satisfy a predicate.

The gaps at the front of a version chain, where the
most recent version and heartbeats lie, are even more
troublesome. They may require fetching a new version,
a new heartbeat, or both. Fetching a heartbeat is itself
a two-phase process. First a replica asks other replicas
in the tree for a better heartbeat. If that request fails,
the replica must send a signed request to the inner ring,
because the inner ring only responds to paying clients.
Creating this signed request requires coordination with
the client and adds even more failure modes.

The asynchronous model meant that all communi-
cation, with the buffer cache, local client, or remote
replica, required storing the state of a pending request
and reviving it upon receipt of the matching response.
Restarting events also proved to be somewhat tricky, es-
pecially because each version predicate required slightly
different evaluation logic.

5.3 Simplifying Assumptions

We made three main assumptions in order to simplify
the implementation of our system.

First, as discussed in Section 4.3, we assume that
Tapestry can provide enough locality for us to build
reasonable dissemination trees. Developing our own
discovery service and managing our own locality met-
rics would have greatly increased the time required to
build this first prototype.

Second, much of our code ignores the naming duplic-
ity discussed in Section 3.2.4. It uses only the “tempo-
rary” VHASHes, which are always present in the online
form of data object blocks. We do remember perma-
nent names (VGUIDs) when available and convenient,
but we assume that the temporary names are never dis-
carded.

Finally, our code assumes that local clients are not

11

malicious. All messages from external machines is care-
fully checked, and all signatures are verified, but full
error checking is not performed on local messages. We
believe that this assumption is valid for now, because all
clients currently operate within the same address space,
and could probably damage the system more effectively
than by sending ill-formed requests.

6 Evaluation

We evaluated our replication system using synthetic
benchmarks and an emulated wide-area network. The
results suggest that the secondary replicas effectively
reduce client read latency. Also, the self-organizing dis-
semination trees propagate new data quickly and effi-
ciently.

6.1 Experimental Setup

We used two synthetic benchmarks to drive a real
OceanStore network with artificial client workloads.

6.1.1 Benchmarks

We designed the first benchmark to simulate data shar-
ing among collaborating users. Several clients open the
same data object, then concurrently submit random
read and write requests for five minutes, waiting five
seconds between requests. We model somewhat loose
consistency semantics: clients see each other’s writes as
soon as possible, but may read old versions for up to
five seconds without polling the server. In practice, up-
dates were pushed out the replicas fast enough to avoid
polling.

We used this benchmark mostly to measure the af-
fect of local replication on client read latency. It allows
us to vary the amount of write traffic in the mix, and

the think time between client requests gives the dis-
semination tree time to propagate updates. This last
detail lets us examine the performance of read requests
with some degree of isolation from the update stream
bandwidth.

Our second benchmark simulated single-source
streaming data. A single writer repeatedly overwrites
portions of a data object, with zero think time between
updates. Many readers continually query their local
secondary replica for the latest version of the data ob-
ject. When they detect a new version they reread the
data object.

This benchmark provides an excellent stress test for
the dissemination tree. We use it mainly to measure
the latency of update propagation.

6.1.2 Measurement Framework

We instrumented the OceanStore software to log certain
actions to a local, buffered file. After each experiment
the logs were automatically collected and correlated to
calculate the latency of cross-machine operations. This
technique consumed very little resources during the ex-
periment. It allows us, for example, to measure the
time required for an update response to reach the last
replica in the dissemination tree.

Measuring inter-machine communication on a granu-
larity of fractions of a milliseconds is difficult when the
clock skew across the network is more than ten millisec-
onds, and also when operating in Java, which does not
export a microsecond-granulary timer.

We handled for the latter problem by taking the aver-
age across many operations. We compensated for clock
skew during log correlation, but subtracting from all
log timestamps a local estimate of the source machine’s
clock skew. These estimates were updated periodically
using our own clock synchronization software.

6.1.3 Infrastructure

Our main experimental testbed consists of a local clus-
ter of forty-two machines at Berkeley. Each machine in
the cluster is a IBM xSeries 330 1U rackmount PC with
two 1.0 GHz Pentium IIT CPUs, 1.5 GB ECC PC133
SDRAM, and two 36 GB IBM UltraStar 36LZX hard
drives. The machines use a single Intel PRO/1000 XF
gigabit Ethernet adaptor to connect to a Packet En-
gines PowerRail gigabit switch. The operating system
on each node is Debian GNU/Linux 3.0 (woody), run-
ning the Linux 2.4.17 SMP kernel. The two disks run
in software RAID 0 (striping) mode using md raidtools-
0.90. During our experiments the cluster is only lightly
loaded.

We simulated slightly larger systems by placing mul-
tiple virtual OceanStore machines on a each real ma-

12

chine. The memory, processing, and communication re-
sources of a secondary replica were light enough to allow
tens of machines to collocate in this method®. For our
experiments we placed primary replicas on their own
servers and grouped all other nodes eight per machine.

We simulated operation in a wide-area network using
an artificial transit-stub network [39] of 495 nodes. The
network had inter-domain latencies of approximately
150 ms and local-area latencies of 10-50 ms. The inner
ring servers were placed on well-connected nodes in dif-
ferent domains in the interior of the network. We then
distributed one hundred other nodes randomly through-
out the network

6.2 Results

We hoped to show that our replication system reduces
client read latency. Figure 8 shows that it can.

We ran the first (collaboration) benchmark in three
different operating modes and varied the percentage of
updates in the total requests traffic. In each case, 20
nodes (one fifth of the network) were given clients that
participated in the benchmark; the other 80 served only
as routing nodes in the overlay network.

The first set of bars shows the average read latency
for a basic system that cached only data blocks. The
second set shows the change when we also cache heart-
beats. For the third set we also pushed updates down
the dissemination tree and applied them automatically
at each secondary replica.

We broke total access time down into three parts:
first, the time required to verify the freshness of cached
data; second, the time spent evaluating the request’s
version predicate; finally, the time consumed reading
the data blocks out of the buffer cache.

The first set of bars shows the base time taken to
download a new heartbeat from the inner ring and fetch
a read-only version across the network. We believe that
the small drop at the end is due to faster communica-
tion on an unloaded network; under heavy write traffic
the inner ring’s agreement protocol becomes a bottle-
neck, and does not seem to conflict with network traffic
from clients. We are investigating this anomaly further.

The second set of bars shows that caching heart-
beats on secondary replicas does improve their read
latency slightly. The replicas are almost never have
to fetch new heartbeats (exceptions explained below),
which saves several hundred milliseconds. Unfortu-
nately, these replicas spend a great deal of time fetching
data blocks across the network, so the overall latency
improvement is small.

The first few bars of the second two sets show that
the replicas do still poll the inner ring for heartbeats

8The limiting factor was the large number of file descriptors
required by the OceanStore communication layer.

1 Smple Data 3°°°'; Also Caching
Caching Heartbeats

B 2000 20004
£]
)]
£]
-]
| HHHHHHHHH |
: o

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

13705
9290

3000 —

Multicast
Updates

Reading
i Data
Blocks

2000—:
Evaluating

B Version
Predicate

1000

Polling
[] Primary
Replica

0 10 20 30 40 50 60 70 80 90

Write Per centage of Requests

Figure 8: The Big Picture. Replication reduces access latency by handling more requests locally. Eagerly pushing
updates to replicas helps until write traffic overloads their machines.

when the request traffic is mostly reads. With fewer
(or no) new versions of the data object being pushed
down the dissemination tree, the replicas were forced to
explicitly request new ones to enforce their consistency
guarantees. This problem could be fixed by instructing
the inner ring to periodically broadcast new heartbeats
(hence the term heartbeat), or by instructing the sec-
ondary replicas to proactively request them. We plan
to implement both options.

The full replication system, shown by the rightmost
bars, greatly reduces the latency of the all three read
phases. Updates are pushed down the dissemination
tree and applied locally, so replicas rarely have to re-
quest additional data blocks from the network.

When the request traffic mostly consists of updates,
secondary replicas become CPU-bound as they try to
apply each update from 19 other clients. All local pro-
cessing slows, including the network layer responsible
for fetching missing metadata required by the read re-
quests. The resulting spike on the rightmost bars of the
graph suggests that overall performance would benefit
if the replicas avoided applying updates when under
heavy load, and instead distributed only invalidation
messages.

In the next few sections we discuss the performance
of individual system components in greater detail.

6.2.1 Dissemination Tree Maintenance

Creating a new replica involves contacting a current
replica, downloading the data object’s certificate, and

13

verifying that certificate. The first two phases are heav-
ily network-dependent. On the artificial topology used
for these experiments, they took on average approxi-
mately 400 ms, with a standard deviation of almost 300
ms. On a LAN we have rarely seen numbers over 50
ms. The last phase, certificate verification, is entirely
CPU-bound. It takes 10-20 ms on our machines, but we
believe this could be reduced by an order of magnitude
using optimized cryptography code.

6.2.2 Version Predicate Evaluation

Version predicate evaluation is extremely fast in the
common case, in which the replica stage can satisfy the
predicate with locally cached information. To measure
this speed we created a small client that repeatedly
queried the replica stage for pre-cached information.
Each predicate took 60 microseconds on average. That
number falls to 20 microseconds if we ignore the slowest
1% of the queries; these outliers each took tens of mil-
liseconds to complete, and were likely created by Java
garbage collection stalls.

We also measured the latency of this version predi-
cate evaluation during the experiment in Figure 8. Here
evaluation required much longer because the replica
stage often had to fetch new heartbeats or version meta-
data across the slow network.

Predicate evaluation slowed when we increased the
amount of write traffic, because the number of versions
to consider grew. The drastic increase in latency shown
by the last few bars is caused by CPU overload, as

Dissemination Message Distance vs. Second Tier Size

35t 135
(9]
g 3t 13
s
s 25 125
Qo
I
% 15| 115
o 1f 11
>
<
05t {05
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ o
0 10 20 30 4 5 6 70 8
Number of Replicas
Figure 9: Efficiency of dissemination tree. The sec-

ond tier multicast tree conserves network bandwidth by
sending messages across shorter links. The error bars
represent the standard deviation of the data.

discussed above, and is not representative of the system
in isolation.

6.2.3 Buffer Cache Performance

The final component of read latency is the time required
to fetch the data blocks from the version’s btree out
of the local buffer cache. Like other steps, the speed
of reading a btree depends greatly on the number of
blocks that must be requested across the network.

In our experiments reading a 4KB block from the net-
work took over 400 ms on average, with a standard de-
viation of more than 300 ms. Reading from local mem-
ory is nearly instantaneous. Consequently, the timely
application of updates can greatly reduce the latency
of this phase of a read, as shown in Figure 8.

6.2.4 Replica Control

We next measured the efficiency of the dissemination
tree. Our goal was to show that even a simple method of
creating the trees could propagate updates quickly, con-
serve network bandwidth, and reduce inner ring load.
We ran our streaming-data benchmark with various
numbers of clients reading the single data object. We
compared the performance of update propagation un-
der two dissemination policies. Under the “no multicast
tree” policy, all nodes sharing the object connected di-
rectly to an inner ring server to receive update results.
Using the “multicast tree” policy, readers ask the sys-
tem to create replicas in the middle of the network and
then connect to those replicas, locating them through
Tapestry. Ideally, many replicas will connect to com-
mon nodes in the network. The result would be a re-
duction in the network contention and inner ring load.
We wanted to show that the multicast tree conserves
network resources. Figure 9 shows the average num-

14

4000
Disseminate Updates

. to Replicas
Process Update
3000 = at Inner Ring

Send Update Request
@] to Inner Ring
E
Q@ 2000
E
'_

mnl\l i

10 20 30 40 50 60 70 10 20 30 40 50 60 70
Without Multicast Tree With Multicast Tree

Number of Replicas

o

Figure 10: The effect of the dissemination tree on sys-
tem performance. A small reduction in network usage
can have a significant impact on perceived performance
of the system. The dissemination tree shields the inner
ring from load allowing the whole system to respond
quicker.

ber of Tapestry hops crossed by dissemination messages
with and without a multicast tree. As the number of
replicas increases, the benefit of the multicast tree in-
creases. Because the topology Tapestry overlay net-
work is similar to the underlying network topology, a
reduction in the number of Tapestry hops indicates a
probable reduction in true network distance. We plan
to measure and compare these Tapestry-level measure-
ments to true network distance in our future work.

We also observe the effect of the reduced network us-
age on the performance of the system. Figure 10 shows
the latency of the phases of an update, from the initial
request to the arrival of the response at each replica. A
modest reduction in network utilization can have a sig-
nificant affect on the performance of the system. When
employing the “no multicast tree” policy, the inner ring
nodes must handle load proportional to the number of
replicas sharing the object. When this number is large,
the load in serving all of the replicas impacts not only
the time to deliver results to the replicas, but also the
time it takes to create new versions of data.

When using the more advanced dissemination tree,
the inner ring nodes can create new versions more
quickly, and replicas receive notification of new nodes
more quickly on average. We believe that the jitter in
the graph is simply due to variance in the random place-
ment of client machines. We are currently checking this
hypothesis.

6.2.5 Replica Management

Currently our replication is somewhat naive, in that it
usually only places replicas on client machines. How-

ever, clients do have the ability to request remote ma-
chines to host a replica on their behalf-we used this
ability in the previous experiment. We are very inter-
ested in exploring the extent to which we can automate
the process of deciding where and when to request these
additional replicas.

As a preliminary investigation, we reran the previous
experiment and disabled the remote replicas. Our goal
was to see how well our current approach to remote
replicas work.

It turns out that disabling the remote replicas does
increase the network utilization. The general trend of
Figure 9 remained identical, but the new line was 6-
8% higher than when remote replicas were used. This
difference suggests that the remote replicas do help.

Unfortunately, the remote replicas also add approx-
imately 200 ms, on average, to the latency of update
propagation. The slower response time could be at-
tributed to somewhat longer dissemination trees, as one
would expect.

Thus our simple client-driven approach to replica
management seems to form more efficient, yet taller
multicast trees. It remains to be seen which property
will dominate when we scale the system beyond these
relatively small networks. We believe that more so-
phisticated replica management could achieve the same
benefits without increasing overall latency. For in-
stance, placing replicas on local network gateways or
very lightly loaded servers may perform better than the
current system, which ignores such information.

7 Discussion

We believe that our replication system will greatly im-
prove OceanStore’s real-world performance. These pre-
liminary results suggest that the second tier of repli-
cas really does improve latency and reduce load on
the inner ring. Of course, these results rely on syn-
thetic benchmarks running on an artificial topology.
Although both were designed for some degree of real-
ism, the true behavior of our replication system should
be examined in a true, global-scale network with real
users providing the workload.

The dissemination tree provides a surprising benefit,
considering its simplicity. Perhaps more sophisticated
heuristics [11] would improve its efficiency further. The
tree already understands how to periodically reconnect
links for robustness and simple adaptability; this inter-
face could be used by a plug-in optimization algorithm
to form better, less greedy links.

Eagerly pushing updates to replicas and applying
them locally is a great idea until write traffic begins to
dominate read traffic. We should add a simple switch
that disables the application of the update if the local

machine is already overloaded. We could the reduce
bandwidth consumption by requesting only invalidation
messages during times that we are unable to process the
full update anyway.

The overhead of downloading and verifying a data ob-
ject’s certificate and heartbeats seem to be amortized
well across the many reads a client performs against
the object. However, our system is poorly optimized
for a client who wishes to perform a single, small read
request. There are several clever solutions to this prob-
lem, some of which we discuss in the following section.
A simple solution would be to piggy-back a read request
onto the request to join a dissemination tree. That opti-
mization could eliminate the initial round-trip for each
data object.

One characteristic that we have not been able to mea-
sure accurately is the “freshness” of the second tier. We
would like to measure how often a client reads data for
which a newer version has already been created on the
inner ring. Alternately, we would like to enable clients
to specify their consistency requirements in terms of the
number of versions they can safely fall behind. Cur-
rently we can only measure and restrict the staleness of
a replica by its age, not the number of unseen versions.

Finally, the inconclusive results of our examination
of remote replicas (in Section 6.2.5) is disappointing.
We believe that replica management is one of the most
interesting directions in distribute storage research, but
our current experimental setup does not allow us to
scale to very interesting network sizes.

8 Future Work

There are several interesting experiments and optimiza-
tions we hope to analyze in the near future.

8.1 Replica Control

The ability to switch between propagating full updates
and smaller invalidation messages allows replicas to au-
tomatically tune the amount of bandwidth they con-
sume. The possible control algorithms and parameter
space should be explored more fully.

Perhaps more interestingly, we could modify the
OceanStore update format to explicitly include a se-
lection object, like read requests, which describes the
portions of the object modified by the update. We could
also add selections to dissemination tree leases, which
describe the portions of the object of interest to the
child.

These additions would allow sophisticated bandwidth
optimizations in the dissemination tree. First, par-
ents need only forward updates whose range overlaps
a child’s selection. Second, an invalidation message

15

would now invalidate only the specified portion of the
object. Parents could use this information to prune
down the selection leased by a child. Children could
use this information to prove that unaffected portions
of previous versions of the data object are still valid.

Selection objects are small relative to heartbeats and
updates, requiring only a few bytes per range. If neces-
sary, their size can be optimized by forming large ranges
which cover several smaller ones. This optimization
may cause an update to invalidation more data than
necessary, but does not affect correctness.

8.2 Replica Management

There is so much left in the world of replica manage-
ment. We have two main directions along which we
intend to explore.

First, we would like to implement a proactive replica
system which predicts user activity and creates local
replicas before they are needed. We can extract a great
deal of locality within and across user access streams,
even when user data itself is opaque. We can use this
information to cluster related files, and then monitor
and migrate clusters together. Hopefully clients will
often find their data ready and waiting for them when
they need it, hiding the initial request latency inherent
in demand-based replication.

Second, we will evaluate the potential of a game-
theoretic approach to replica management. By explic-
itly including bids and payments in inter-replica com-
munication, we can produce a more flexible and respon-
sive system than the simple lease-based approach built
so far. An economic model also provides a natural way
to distribute resources among competing clients and co-
operate across administrative boundaries.

8.3 Reading Tentative Data

We can extend the read API to allow clients to read
tentative data—versions created by updates that the
inner ring has not yet committed.

This functionality would require modest additions to
the APT and extra bookkeeping, but would significantly
increase client-perceived latency. When consistency re-
quirements are loose, or update conflicts are rare, ten-
tative data should prove very useful.

Tentative data is required for useful disconnected op-
eration, during which a mobile client cannot communi-
cate with the inner ring. We could even allow multiple
clients to share tentative data, allowing a group of dis-
connected clients to make useful progress.

16

8.4 Better Cache Management

Our current cache manager allows limited control over
the contents of the replica’s memory cache. We would
like to extend the replica stage’s knowledge of the
cache’s contents. It could then make better-informed
decisions when choosing a version to satisfy a client
read, or when deciding whether forwarding an entire
read request or merely requests for individual blocks
would best conserve network resources.

8.5 Reading Archival Data

Finally, we would like to extend second tier functional-
ity to operate in the absence of the primary tier.

The inner ring is an on-line entity, processing up-
dates for active data. When a client reads very old or
inactive data objects, the data must be read out of the
OceanStore archive instead.

Secondary replicas would provide many of the same
benefits to readers of inactive data. Small modifica-
tions are required because certificates and data must
initially be read from the archive, rather than the inner
ring. Several consistency optimizations are also avail-
able, given the knowledge that no new versions will be
written.

9 Conclusion

We have built a data replication system for a global-
scale storage system. This system automatically places
soft-state replicas of data objects near the clients who
access them.

The replicas automatically organize themselves into a
multicast dissemination tree to distribute both updates
and requests. Clients access replicas through a flexible
API that allows verification of both the integrity and
the consistency of the results.

Our initial measurements suggest that our replication
system effectively reduce client read latency and that
the self-organizing dissemination trees propagate new
data quickly and efficiently

Much of our system relies on certain characteristics of
the underlying OceanStore. Specifically, our time travel
interface requires the versioning support present in the
OceanStore data format. Also, our security model re-
quires cryptographic support from the primary replica
servers. This currently limits the scope of our work to
the OceanStore system; however, we believe that the
dissemination tree and verification components of our
replica system are generally applicable. It should be
easily portable to other P2P storage systems if they
were extended to include signed, mutable data objects.

The system will now serve as a framework for future
research. We plan to explore more sophisticated replica

management and control mechanisms that will further
improve performance and stability for global-scale stor-
age.

10 Acknowledgments

I would like to thank my wonderful wife Cheryl for her
support and encouragement,.

I also owe a great deal of thanks to my fellow project
members, who built OceanStore and contributed a
great deal to my own work: Patrick Eaton, Sean Rhea,
and Hakim Weatherspoon. I would like to thank Mike
Franklin for helping with this report and Mike Howard
for fixing our toys when I broke them. Finally, I thank
my research advisor, John Kubiatowicz.

References

1] http://www.napster.com/.

[

[2] Akamai technologies, inc. http://www.akamai.com/.
[3] Gnutella. http://www.gnutellanews.com /information/.
[

internet archive machine.

http://www.archive.org/.

wayback

[5] Mojonation. http://www.mojonation.net/.

[6] R. Anderson. The eternity service. In Proceedings of
Pragocrypt, 1996.

[7] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,
D. Roselli, and R. Wang. Serverless Network File Sys-
tems. In Proc. of ACM SOSP, December 1995.

[8] A. Birrell, A. Hisgen, C. Jerian, T. Mann, and
G. Swart. The echo distributed file system. Techni-
cal Report 111, DEC SRC, 1993.

[9] J. Bloemer, M. Kalfane, M. Karpinski, R. Karp,
M. Luby, and D. Zuckerman. An XOR-based erasure-
resilient coding scheme. Technical Report TR-95-048,
The International Computer Science Institute, Berke-
ley, CA, 1995.

A. Chankhunthod, P. Danzig, C. Neerdaels,
M. Schwartz, and K. Worrell. A hierarchical in-
ternet object cache. In Proc. of USENIX Summer
Technical Conf., 1996.

Y. Chen, R. Katz, and J. Kubiatowicz. Dynamic
replica placement for scalable content delivery. In Proc.
of IPTPS, March 2002.

I. Clark, O. Sandberg, B. Wiley, and T. Hong. Freenet:
A distributed anonymous information storage and re-
trieval system. In Proc. of the Workshop on Design
Issues in Anonymity and Unobservability, pages 311—
320, Berkeley, CA, July 2000.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. of ACM SOSP, October 2001.

[10]

[11]

[12]

[13]

17

[14] M. Dahlin, T. Anderson, D. Patterson, and R. Wang.
Cooperative caching: Using remote client memory to
improve file system performance. In Proc. of OSDI,
November 1994.

A. Demers, K. Petersen, M. Spreitzer, D. Terry,
M. Theimer, and B. Welch. The Bayou architecture:
Support for data sharing among mobile users. In Proc.
of IEEE Workshop on Mobile Computing Systems &
Applications, pages 2-7, 1994.

R. Dingledine, M. Freedman, and D. Molnar. The
freehaven project: Distributed anonymous storage ser-
vice. In Proc. of the Workshop on Design Issues in
Anonymity and Unobservability, July 2000.

P. Druschel and A. Rowstron. Storage management
and caching in PAST, a large-scale, persistent peer-to-
peer storage utility. In Proc. of ACM SOSP, 2001.

L. Fan, P. Cao, J. Almeida, and A. Broder. Summary
cache: A scalable wide-area Web cache sharing proto-
col. In Proc. of ACM SIGCOMM Conf., pages 254—-265,
September 1998.

M. Franklin, M. Carey, and M. Livny. Transactional
client-server cache consistency: Alternatives and per-
formance. ACM TODS, 22(3):315-363, September
1997.

S. Hand and T. Roscoe.
steganographic storage.
2002.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the harp
file system. In Proc. of ACM SIGOPS, 1991.

A. Rubin M. Waldman and L. Cranor. Publius: A
robust, tamper-evident, censorship-resistant, web pub-
lishing system. In Proc. 9th USENIX Security Sympo-
stum, pages 59-72, August 2000.

[16]

[19]

[20] Mnemosyne: Peer-to-peer

In Proc. of IPTPS, March

[21]

[22]

[23] S. Mullender, G. van Rossum, A. Tanenbaum, R. van
Renesse, and H. van Staveren. Amoeba-a distributed
operating system for the 1990s. IEEE Computer, 23(5),

1990.

M. Nelson, B. Welch, and J. Ousterhout. Caching in
the sprite network file system. IEEE/ACM Transac-
tions on Networking, 6(1):134-154, February 1988.

T. W. Page Jr.,, R. G. Guy, J. S. Heidemann, D. H.
Ratner, P. L. Reiher, A. Goel, G. H. Kuenning, and
G. J. Popek. Perspectives on optimistically replicated,
peer-to-peer filing. Software Practice and Ezperience,
28(2):155-180, February 1998.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,
B. Zhao, and J. Kubiatowicz. Pond: The oceanstore
prototype. In Proc. of USENIX File and Storage Tech-
nologies FAST, 2003.

S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao,
H. Weatherspoon, and J. Kubiatowicz. Maintenance
free global storage in oceanstore. In Proc. of IEEE
Internet Computing. IEEE, September 2001.

[26]

(28]

29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

Y. Saito, C. Karamanolis, M. Karlsson, and M. Ma-
halingam. Taming aggressive replication in the pangaea
wide-area file system. In Proc. of OSDI, 2002.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the sun net-
work filesystem. 1985.

D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Car-
ton, and J. Ofir. Deciding when to forget in the Ele-
phant file system. In Proc. of ACM SOSP, December
1999.

M. Satyanarayanan. Coda: A highly available file sys-
tem for a distributed workstation environment. IEEE
Transactions on Computers, 39(4), 1990.

M. Satyanarayanan. Scalable, secure, and highly avail-
able distributed file access. IEEE Computer, 23(5),
May 1990.

J. Sidell, P. Aoki, S. Barr, A. Sah, C. Staelin, M. Stone-
braker, and A. Yu. Data replication in Mariposa. In
Proc. of IEEE ICDE, pages 485-495, February 1996.

M. Stonebraker. The design of the Postgres storage
system. In Proc. of Intl. Conf. on VLDB, September
1987.

C. Thekkath, T. Mann, and E. Lee. Frangipani: A scal-
able distributed file system. In Proc. of ACM SOSP,
1997.

H. Weatherspoon and J. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In Proc. of
IPTPS, March 2002.

Matt Welsh. The staged event-driven architecture for
highly concurrent server applications. Ph.D. Qualifying
Examination Proposal, 2000.

H. Yu and A. Vahdat. The costs and limits of avail-
ability for replicated services. In Proc. of ACM SOSP,
October 2001.

E. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Proc. of INFOCOM, 1996.

B. Zhao, A. Joseph, and J. Kubiatowicz. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, 2001.

18

