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ABSTRACT

Pen-based user interfaces are becoming ever more popular.
Gestures (i .e. ,  marks made with a pen to invoke a
command) are a valuable aspect of pen-based UIs, but they
also have drawbacks. The challenge in designing good
gestures is to make them easy for people to learn and
remember. With the goal of better gesture design, we
performed a pair of experiments to determine why users
find gestures similar. From these experiments, we have
derived a computational model for predicting perceived
gesture similarity that correlates 0.56 with observation. We
will incorporate the results of these experiments into a
gesture design tool, which will aid the pen-based UI
designer in creating gesture sets that are easier to learn and
more memorable.
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INTRODUCTION

Pen and paper is a versatile, powerful, and ubiquitous
technology [17]. Pen-based user interfaces are becoming
more widespread [9] and have great promise in power and
versatility [4, 8, 17, 25]. Gestures, or commands issued with
a pen, are one desirable feature of pen-based UIs. Because
command and operand can be specified in one stroke, they
are fast [5]. They also are commonly used and iconic,1
which makes them easier to remember than textual
commands [19]. Gestures are useful on displays ranging
from the very small, where screen space is at a premium, to
the very large, where controls can be more than arm’s re
away [20].

A survey of PDA users [14] showed that users thin
gestures are powerful, efficient, and convenient. They w
more gestures in applications and the ability to define th
own gestures. However, the survey also revealed proble
with gestures. Specifically, users often find gestur
difficult to remember, and they become frustrated when 
computer misrecognizes gestures. Users of other syst
have also found gestures to be awkward [7].

1.  By “iconic”, we mean that the gesture shape suits or suggest
meaning.
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We believe gestures can be difficult to use because they are
difficult to design. We are developing a tool to assist pen-
based UI designers in creating and evaluating gestures for
pen-based UIs [15]. The primary benefit of the tool will be
to advise designers about how to improve their gesture set.
For example, it will notify the designer of gestures that: 1)
are likely to be perceived as similar by users, 2) may be
difficult for users to learn and remember, and 3) may be
misrecognized by the computer. This advice will enable the
designer to improve their gestures early in the design
process before investing in expensive user studies.

The current work is an investigation into gesture similarity.
The goal of this work is  to develop a computable,
quantitative model of gesture similarity that can be
incorporated into the gesture design tool. Perceived
similarity is useful for designers to know because it affects
how easily users can learn and remember the gestures. We
contend that similar operations with a clear spatial mapping,
such as scroll up and scroll down, should be assigned
similar gestures. Conversely, gestures for more abstract
operations that are similar, such as cut and paste, may be
easily confused if they are visually similar.

To determine what features affect perceived gesture
similarity, we ran a pair of experiments to measure the
similarity of a variety of gestures. The data collected in
these experiments enabled us to derive an algorithm for
computing how similar novel gestures are. In conjunction
with information about the impact of gesture similarity on
their ease of learning and recall (from another experiment
whose results are being analyzed), this will allow our
gesture design tool to provide better advice.

The remainder of the paper is organized as follows. The first
section discusses related work. The next section describes
the gesture similarity experiments. A discussion of the
results of both experiments follows. Finally, we present
future work and conclusions.

RELATED WORK

This section discusses relevant prior work. The first
subsection gives some background on pen-based user
interfaces, which is the context for this work. The second
discusses prior work on perceptual similarity of gesture-like
shapes. The last section introduces multi-dimensional
scaling, a data analysis technique used in our experiments.

Pen-based interfaces

The device that popularized pen input was the Apple
Newton MessagePad. It was designed primarily for pen
input. It minimized the use of overlapping windows and
encouraged the user to focus on one document at a time. Its
core applications were a notepad, to-do list, calendar/
scheduler, and address book. By default it recognized text as
it was entered, but the user could elect to enter ink and
rs in Computing Systems (SIGCHI ‘00).
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recognize it later. It also supported a small number of
gestures for editing text and drawings. Our work deals with
the same type of gesture used on the Newton: single-stroke
and iconic. The Newton’s handwriting recognition was
widely criticized when it was first introduced, but by the last
model the recognition had greatly improved.

More recently, the 3Com PalmPilot has become a popular
pen-based platform. Its display is even smaller than the
Newton’s. Its applications have very few on-screen controls,
and the pulldown menu at the top of the screen is normally
hidden. Its core applications are the same as the Newton’s.
The Pilot does not recognize normal English letters, but
uses the Graffiti character set [12], which must be entered in
a dedicated area of the screen. It does not use gestures of the
kind we focus on, but instead uses a keyboard accelerator
facility. The user may write a special “command” stroke to
indicate that the next stroke is a command. For example, in
many applications “command” followed by the “d” stroke
invokes the delete operation.

Pens have been used in many di fferent computer
applications, on desktop- and on wall-sized displays. These
applications have included spreadsheets, word processors, a
disk manager, music editors, an equation editor, a GUI
design tool, an air-traffic control UI, and note-taking
applications [4, 6, 7, 10, 18, 25, 27].

Pens performed well for many of these applications. In their
standard office applications, Briggs and associates found
that users liked using a pen for navigation and positional
control, although not for text entry [4]. This is in spite of a
lack of pen-specific interaction techniques.

Wolf and colleagues added pen input and gestures for
editing operations to a drawing application, a spreadsheet
program, a music editor, and an equation editor [25]. Users
reported that gestures were easier to recall than keyboard
commands, and edited spreadsheet documents 30% faster
with the pen than with keyboard.

Zhao used a combination of gestures and menus to facilitate
object creation in a structured drawing program [27]. It
allowed users to draw the object creation gesture and select
from the object type menu in either order. This technique
could allow rapid access to many commands while limiting
the number of gestures that the user is required to learn.

Landay developed an interface design tool based on
sketching that was well-suited for pen input and gestures
[10]. It used iconic gestures of the same type as the ones in
our study for creating and editing the UI elements.

Chatty and Lecoanet discussed how pen input and gestures
are useful for air-traffic control [6]. Their interface allowed
controllers to navigate the airspace and change aircraft
attributes such as speed and heading. An evaluation of their
system showed that although a few gestures had to be
modified because of confusion, they were still useful.

Lopresti and Tomkins advocated treating electronic ink as a
first class datatype [16]. They developed a prototype system
that supported ink input and searching based on matching
feature vectors. This technique was used to search a library
of gestures using the gesture as the key.

We concentrate on gestures in the spirit of copy editing [13,
22] rather than marking menus [23], because we believe that
traditional marks are more useful in some circumstances.
For example, they can specify operands at the same time as
the operation, and they can be iconic. For simplicity of

analysis and because of restrictions in our gestu
recognizer, we use only single-stroke gestures.

Perceptual similarity

Psychologists have investigated similarity of simp
geometric shapes, which are less complex than our gestu
Attneave studied how changes in geometric and percep
properties of different kinds of simple figures influence
their perceived similarity [2]. Participants in one experime
reported how similar they perceived parallelograms 
differing sizes and tilts to be. Attneave found that similari
was correlated with the log of the area of the parallelogra
and with their tilt. Also, parallelograms that were mirro
images of one another were perceived as similar.

Another study by Attneave indirectly measured perceiv
similarity by measuring how easily names of triangles a
squares were remembered. The assumption was that sim
shapes will be misremembered. The squares varied
reflectance and area; the triangles varied in tilt and area. 
result of these experiments indicated that similarity of for
caused more confusion than similarity of area.

Based on these experiments, Attneave concluded 
following. In general, the logarithm of quantitative metric
was found to correlate with similarity. Also, if the range o
differences in stimuli is small, these differences are linea
related to perceived similarity, and when multipl
dimensions of the stimuli change, their dimensions comb
nearly linearly to give the change in perceived similarit
When the range of differences is large, the relationsh
between stimuli value and similarity is not linear, and t
stimuli do not combine linearly.

Lazarte and colleagues studied how rectangle height 
width affected perceived similarity [11]. They found tha
reported similarity was related to rectangle width and heig
and they derived a model to fit the reported similarity da
Also, they found that not only did different people us
different similarity metrics, but that the same participa
may have used different metrics for different stimuli.

Multi-dimensional scaling

Multi-dimensional scaling (MDS) is a technique fo
reducing the number of dimensions of a data set so t
patterns can be more easily seen by viewing a plot of 
data, usually in two or three dimensions. It takes as in
one or more sets of pairwise proximity measurements of 
stimuli. It outputs coordinates and/or a plot of the stimuli 
a predetermined number of dimensions (typically 2–3) su
that the pairwise inter-stimuli distances in the new spa
correlate with the input proximities of the stimuli.

There are several decisions to make in using MDS. On
how to use data from multiple participants. A simp
method is to average the pairwise proximities and analy
the resulting proximity matrix as if it came from a singl
participant. However, there is evidence that this meth
does not give good results [1], and it also prohibi
analyzing the differences among participants. Fortunate
we were able to use a version of MDS, INDSCAL [26], th
takes as input a proximity matrix for each participant a
takes individual differences into account.

Another dec is ion when using MDS is how man
dimensions to use in the analysis. Like other MDS metho
INDSCAL outputs how well the distances it produce
correlate with the input proximities. A graph of thi
correlation vs. dimension ideally has an obvious “knee” 
the graph, which indicates the number of dimensions to u
To appear in Proceedings of Human Factors in Computing Systems (SIGCHI ‘00).



Also, a rule of thumb for standard MDS is to use no more
than a quarter as many dimensions as there are stimuli.2

How to measure distance is another issue in doing MDS
analysis. The most often used metric is Euclidean distance,
which is a special case of the Minkowski distance metric:

where d is the distance, there are r dimensions, and  is
the coordinate of point i on dimension a [26]. When p is 2,
this is Euclidean distance. Another common p value is 1, in
which case it is called city-block or Manhattan distance.
Infinity is also sometimes used for p, which makes the sum
equal to the distance along the dimension that differs most.
There are sometimes psychological reasons to prefer city-
block or Euclidean [24], but generally researchers use the
metric that fits their data best.

The final step in MDS analysis is assigning meaning to the
axes. Sometimes the experimenter may know the axes in
advance. In this work that was not the case, and so two
methods were used to determine the axes: 1) inspecting
plots of the stimuli and 2) correlation with measurable
quantities. More details of MDS analysis are available in
[26].

GESTURE SIMILARITY EXPERIMENTS

To better understand the principles people use to judge
gesture similarity, we performed an experiment to measure
how people perceived similarity among gestures in a
predefined set. We hoped that the experiment would enable
us to derive metrics for predicting the human-perceived
similarity of gestures.

We ran this experiment twice with different data sets and
different subjects in order to confirm our results. The two
trials are described below.

Similarity Trial 1

In the first experiment, we attempted to make a gesture set
consisting of gestures that varied widely in terms of how
people would perceive them. The gesture set is shown in
Figure 1. It was designed by one of the authors (Long)
based on personal intuition with two criteria in mind: 1) to
span a wide range of possible gesture types, and 2) to have
differences in orientation (e.g., 14 and 15, 20 and 22).

We considered whether the participants should draw the
gestures or not. Drawing them would mimic actual usage
more closely, but it would have lengthened the experiment.
In order to accommodate more participants and more
gestures, we decided not to have participants draw the
gestures. Instead, the test program animated the gestures to
show participants the dynamic nature of the gestures.

Participants

We recruited twenty-one people from the general student
population to participate in the experiment. We only
required that they be able to operate the computer and
tablet. Each participant was paid $10 (US).

Equipment

For the main part of the experiment participants used a
display tablet (a Mutoh MVT-12P) attached to an IBM PC
compat ible  computer  runn ing  Windows NT.  The
experimental application was written in Java.

Procedure

Part icipants  were fi rs t  shown an overview of the
experiment, which outlined the tasks they would perform.
Participants were then shown the tablet and the task was
explained to them. The program displayed all possible
combinations of three gestures, called triads. The order of
the triads was randomized independently for each
participant, as was the on-screen ordering of gestures within
each triad. Figure 2 is a representative screen shot of the
triad program. For each triad, participants selected the
gesture that seemed most different from the others by
tapping on it with a pen. The program recorded the
selections of the users and computed the dissimilarity
matrix.

The program was run using a practice gesture set of five
gestures, shown in Figure 3, so that participants could
become famil iar with the program and the tablet .
Participants were asked to select the gesture in each triad
that seemed most different to them. After the practice, they
performed the task again using the experimental gesture set
of fourteen gestures (Figure 1). All participants saw all

2.  ALSCAL uses more information than standard MDS, so it is
reasonable to think that more dimensions would be valuable.
Unfortunately, we were unable to find an analysis of how many.
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Figure 1 Gesture set for first gesture similarity experiment. A dot 
indicates where each gesture starts. (Gestures are not numbered 1, 

2, 3... because they were chosen from a larger set.)

Figure 2 Triad program.

Figure 3 Practice gesture set.
To appear in Proceedings of Human Factors in Computing Systems (SIGCHI ‘00).
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possible triads of gestures exactly once, for a total of

 triads.

When the experimental task was completed, participants
filled out a questionnaire which asked: 1) their impressions
of the task and program and 2) demographic information
about themselves. This questionnaire was a web form that
was filled out on a different computer than the one used for
the experimental task [21].
Analysis
The goals of the analysis were: 1) to determine what
measurable geometric properties of the gestures influenced
their perceived similarity and 2) to produce a model of
gesture similarity that, given two gestures, could predict
how similar people would perceive those two gestures to be.
The first goal was addressed using plots of gestures
generated by MDS. In these plots, the Euclidean inter-
gesture distances corresponded to the inter-gesture
dissimilarities reported by the participants. By examining
these plots, we were able to determine some geometric
features that contributed to similarity. To determine the
number of dimensions to use, we did MDS in two through
six dimensions and examined plots of stress and goodness-
of-fit (r2) versus dimension to find the “knee” in the curve3.
Similarity data was analyzed with MDS as interval/ratio and
as ordinal. The ordinal model gave a better fit, so it was
used for all subsequent analysis. We used Euclidean
distances since it provided a better fit to our data than the
city-block metric did.
The second goal was achieved by running regression
analysis to determine which of many measurable geometric
features of a gesture correlated with the reported similarity.
Regression also produced weights indicating how much
each feature contributed to the similarity. To compute the
similarity of two gestures, their feature values are
computed. The feature values and weights together give the
positions of the gestures in feature space. The similarity of
the gestures is given by the Euclidean distance between the
two gestures in the feature space, where smaller distance
means greater similarity.
The features used in our regression analysis came from a
few sources. Some features were taken from Rubine’s
gesture recognizer [22]. Others were inspired by plots from
the MDS analysis. The list of features that we thought might
predict similarity is given in Table 1. We wanted our model
to be computable, so we did not include in the final
regression analysis features whose values were only
obtainable by subjective judgement.
Results
We were able to derive a model of gesture similarity that
correlated 0.74 (p < 0.003, 2-tailed t-test) with the reported
gesture similarities.
The multi-dimensional scaling indicated that the optimal
number of dimensions was five (S-stress = .13, r2 = 0.76).
For ease of comprehension, we plotted the gesture positions
two dimensions at a time. Examination of the plot of
dimensions 1 and 2 (shown in Figure 4) quickly showed that
dimension 1 was strongly correlated with how “curvy” the
gestures were — for example, g5 and g40 are curvy and g32
and g28 are straight. The curviness metric was derived in an

attempt to capture our intuitive notion of curviness and
match this dimension from the MDS plot.4

It was observed in the MDS plots that short, wide gestu
were perceived as being very similar to narrow, tall on
and that both types were perceived as different from squ
gestures. Angle of bounding box represented the differe
between thin and square gestures, but not the similarity
tall vertical and short horizontal ones. We created the asp
feature to represent this relationship.
Table 2 shows which features strongly correlate with ea
dimension, based on a regression analysis. Although 
most important (i.e., lower numbered) dimensions a
predicted by relatively few features, the other dimensio
require many features.
A separate regression analysis was done for ea
dimension, using the computed feature values as 
independent variables. From these regressions we deriv
set of equations to predict the position of an arbitra
gesture in the feature space. Given the predicted position
two gestures, the degree of similarity humans wou

3.  Examination of stress vs. dimension and r2 vs. dimension is a
standard MDS technique for determining dimensionality.

14
3 

  364=

4.  Curviness of a gesture was computed by adding up all inter-
segment angles within the gesture whose absolute value was below
a threshold ( ). The threshold was chosen so that the metric
would agree with the author’s curviness judgements of gesture
trial 1.

1. Cosine of initial angle
2. Sine of initial angle
3. Size of bounding box
4. Angle of bounding box
5. Distance between first 

and last points
6. Cosine of angle between 

first and last points
7. Sine of angle between first 

and last points
8. Total length
9. Total angle
10. Total absolute angle
11. Sharpness

12. Aspect [abs(  – #4)]
13. Curviness
14. Total angle traversed / total

length
15. Density metric 1 [#8 / #5]
16. Density metric 2 [#8 / #3]
17. Non-subjective 

“openness” [#5 / #3]
18. Area of bounding box
19. Log(area)
20. Total angle / total absolute 

angle
21. Log(total length)
22. Log(aspect)

45°

Table 1 Possible predictors for similarity. Features 1-11 are taken 
from Rubine’s recognizer. Bold features were found to be 

significant and so are used in the model.

Figure 4 MDS plot of dimensions 1 and 2 for first similarity 
experiment.

Dimension 1: Curviness & Angle/distance
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perceive is approximated by the Euclidean distance between
the gestures in the feature space. The derived model predicts
the reported gesture similarities with correlation 0.74 (p <
0.003, 2-tailed t-test). The MDS model upon which it is
based fits the data only slightly better, so this is a good fit.

Another interesting aspect of trial 1 was the differences
among participants. As expected, the degree that different
features affected similarity judgements varied across
participants. This disparity is consistent with the finding in
other perception experiments that different people judge
similarity using different features [11]. What was surprising
was that the participants seemed to be clumped into two
distinct groups. We separated the data for the two groups of
participants and analyzed them separately. However, the
resulting MDS models were not as good as the original,
combined model, so we did not pursue the analysis further.
It would be interesting to see if more participants reinforced
this trend and illuminated a pattern.

Participants took an average of 26 minutes to complete the
experimental task. The total time for each participant was
approximately 40 minutes.

Similarity Trial 2

The results of the first similarity trial were encouraging, but
we wanted to test the predictive power of our model for new
people and gestures. We also were interested in exploring
how systematically varying different types of features
would affect perceived similarity.

To investigate how varying particular features would affect
perceived similarity, three new gesture sets of nine gestures
each were created. The first was designed to explore the
effect of total absolute angle and aspect (Figure 5). The
second was designed to explore length and area (Figure 6).
The third was designed to explore rotation-related features
such as cosine and sine of initial angle (Figure 7).

In addition to examining the effects of particular features,
we wanted to determine the relative importance of the
features. The most straightforward way to perform this test
is to combine all gestures into one big set and have
participants look at all possible triads from the combined
set. Unfortunately, combining all of these gesture sets into
one results in far too many triads, based on the time per triad
taken for the first experiment. To allow us to compare the
three sets against one another without a prohibitively large
gesture set, two gestures from each of the three gesture sets
were chosen and added to a fourth set of gestures (see
Figure 8). All participants were shown all possible triads
from all four gesture sets.

Participants
Twenty new participants were recruited from the general
student population. As in trial one, the only requirement
was that they be physically able to use the computer and
stylus. Each participant was paid $15.

Equipment
The same equipment was used as in the first trial.

Procedure
The procedure was the same as in trial one, except that
participants saw triads from four gesture sets rather than
one. Each participant saw all possible triads of gestures

from each set, for a total of  triads.

D
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si
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Correlated features
(in order of decreasing importance)

1 Curviness, Angle / distance

2 Total absolute angle, Log(aspect)

3 Density 1, Cosine of initial angle

4 Cosine of angle between first and last points, Cosine of ini-
tial angle, Sine of initial angle, Distance between first and 
last points, Angle of bounding box

5 Aspect, Sharpness, Cosine of initial angle, Total angle

Table 2 Predictor features for similarity trial 1, listed in 
decreasing order of importance for each dimension.

Figure 5 Similarity trial 2, gesture set 1. It was used to explore 
absolute angle and aspect.

Figure 6 Similarity trial 2, gesture set 2. It was used to explore 
length and area.
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Analysis

This trial was analyzed using the same techniques as the
first trial, MDS and regression. First, a combined analysis
was done, using the data from all four gesture sets. The goal
of the combined analysis was the same as trial one: to
determine what  features  were used for s imilar i ty
judgements and to derive a model for predicting similarity.
Many pairwise dissimilarity measures were missing from
the data, because not all possible triads of all gestures were
presented to the participants. However, this was not a
problem because MDS can accommodate missing data.

In addition to the combined analysis, data from each of the
first three sets was analyzed independently. The focus of the
independent analyses was to determine how the targeted
features affected similarity judgements.

Lastly, the results of trial 1 were used to predict the
perceived similarity of the gestures in trial 2. These

predictions were compared with the similarities reported by
participants in trial 2.

Results
The best number of dimensions for MDS for the trial 2 data
was 3 (S-stress = 0.08663, r2 = 0.89539). Unfortunately,
when the data was plotted, the meaning of the dimensions
was not as obvious as in trial 1. (A plot of dimensions 1 and
2 is shown in Figure 9).

Table 3 shows which features correlate with each
dimension, based on a regression analysis. The derived
model predicts the reported gesture similarities with
correlation 0.71 (p < 0.000003, 2-tailed t-test). Separate
analyses of individual gesture sets (shown in Figures 5, 6,
and 7) revealed that: 1) bounding box angle is an important
feature and 2) alignment or non-alignment with the normal
coordinate axes is significant for similarity.

Analysis of the first gesture set (“50” series, shown 
Figure 5) gave a three dimensional MDS plot. This gestu
set was intended to show the effects of absolute angle 
aspect. We found that absolute angle is highly correla
with the first dimension (–0.81) and aspect is high
correlated with the second (–0.77). Unfortunately, th
absolute angles of gestures in this set covaried greatly w
the values of several other features, so it was not possib
determine whether absolute angle was significant. Stro
covariance with other features was not a problem for asp
However, bounding box angle correlated even mo
strongly with dimension two (–0.92) than aspect did.

Data from the second gesture set (“60” series, shown
Figure 6) were surprising. Its analysis was done in fo

Figure 7 Similarity trial 2, gesture set 3.It was used to explore 
rotation.

Figure 8 Similarity trial 2, gesture set 4. It includes gestures from
Figure 5, Figure 6, and Figure 7.

Figure 9 MDS plot of dimensions 1 and 2 for second trial in 
similarity experiment (combined data).

Dimension 1: Log(aspect), Density 1
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D
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ension

Correlated features
(in order of decreasing importance)

1 Log(aspect), density 1

2 Total absolute angle, Sine of angle between first & last points

3 Density 2, Non-subjective openness

Table 3 Predictor features for similarity trial 2 (using data from all 
trial 2 gesture sets).
To appear in Proceedings of Human Factors in Computing Systems (SIGCHI ‘00).
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dimensions. It was intended to discover the effect of length
and area, but although length and area correlate well with
dimension four (–0.83 and –0.92, respectively), they are
both only weakly correlated with the first three dimensions
(highest value of 0.46 for length and dimension 3). Since
INDSCAL dimensions are ranked in order of importance, it
appears that neither length nor area are very significant
contributors to similarity judgement.

The third gesture set (“70” series, shown in Figure 7) also
provided interesting results. One might expect similarity
among gestures that are rotations of one another to be
proportional to the amount of rotation, but this was not the
case. Instead, the gestures whose lines were horizontal and
vertical were perceived as more similar to one another than
to those gestures whose components were diagonal. The
perceived similarity of gestures whose components are
aligned in the same directions is consistent with findings on
texture in the vision community [3]. This set was analyzed
in five dimensions.

As in trial one, there were differences among participants in
their s imi lari ty judgements. Unl ike tr ia l  one, the
participants did not separate easily into two groups, but
consisted instead of one clump with outliers trailing off. We
experimented with removing outliers from consideration,
but they did not appreciably improve the MDS model.

Similarity analysis

To validate the models produced by the two trials, each
model was used to predict the similarities between all pairs
of gestures used in the other trial. These predictions were
compared with the reported similarities from the other trial.
The correlation between the prediction of trial 1 and the
data from trial 2 was 0.56 (p < 0.0005, 2-tailed t-test). The
correlation between the prediction of trial 2 and the data
from trial 1 was 0.51 (p < 0.058, 2-tailed t-test). Based on
these correlations, the model derived from experiment 1 is a
slightly better predictor of gesture similarity than the model
from experiment 2.

DISCUSSION

This section discusses the results of the experiments
described above and the challenges involved in designing
the experiments and analyzing their results.

Results

Human perception of similarity is very complicated, even
for simple shapes [11]. Shapes like pen gestures can be
viewed as similar or dissimilar based on many different
perceptual cues. In the face of this difficulty, we are pleased
at how well our model predicts similarity. It correlates with
its own data 0.74 (p < 0.003, 2-tailed t-test) and with novel
(i.e., trial two) data 0.56 (p < 0.0005, 2-tailed t-test).

We were pleased to find that a small number of features
explain the three most salient dimensions. In experiment 1,
we saw that dimensions one through three can be predicted
based on only two features each. Several possible
explanations exist for the larger number of features needed
for dimensions four and five. One is that the underlying
perceptual model is complex. Another is that the gesture set
used in the experiment was not complex enough or did not
vary in the right way to illuminate those dimensions.

It was surprising to us that neither length nor area were
significant factors in experiment 1, so the “60” series
(Figure 6) in trial 2 was designed to investigate the effect of
these two features. Trial 2 confirmed the results of trial 1;

neither length nor area was a significant feature f
similarity.
Our results are consistent with Attneave’s [2]. We foun
that the logarithm of aspect had more influence o
similarity than aspect itself. Also, the range of distanc
among feature values of our gestures was large and did
combine linearly (as shown by the better fit of the Euclide
distance metric over the city-block metric).
Design and Analysis
The primary challenge in designing both the similarity a
memorability experiments was creating good stimuli (i.e
gesture sets). For the first similarity experiment, we wan
the stimuli to span the perceptual feature space. Howe
this was difficult because we did not know the structure
the perceptual feature space in advance. We culled gest
from an informal survey of colleagues and from anoth
experiment [15] in an attempt to create a “well-rounded
gesture set.
For the second similarity trial, we wanted gestures th
varied with respect to particular features. Our gesture des
tool [15] was modified to display values for these feature
but the process was still difficult. In particular, some of th
features we wanted to investigate covaried with oth
features, which made the results difficult to interpret.
We were concerned at the outset that developing a mode
similarity would be complicated by differences among th
participants. However, in spite of the individual difference
the model does have predictive power. Although analyzi
different groups of participants separately was not useful 
our data, more data might make it feasible to create multi
models, each of which models a subset of users well. In 
case, a gesture design tool could use multiple similar
metrics and notify the designer about similar gestures alo
any metric. The designer may want two gestures to 
similar or dissimilar, depending on the semantics of t
operations they are used for.
The two similarity experiments each resulted in a model 
similarity, and they are different. It is difficult to say whic
is better, but we think the model from trial one is slight
preferable. It predicts the data from the other trial sligh
better than trial two predicts its data. Also, it uses mo
features, and thus may capture more about the underly
psychological model.
We found MDS to be very useful, but also limited. It wa
extremely helpful in the early stages of analyzing trial on
when we had little idea of what features might affe
similarity. It inspired us to invent several significan
features, including curviness, aspect, and density. Anot
potential benefit of MDS is the ability to analyze difference
in participants, which are discussed above. Although it w
useful for discovering candidate predictors for similarit
our use of MDS was qualitative. For the quantitativ
analysis, when we needed to create a predictive model,
used standard linear regression.

FUTURE WORK
We have run an experiment to investigate geomet
properties of gestures that influence learning time a
memorability, and to explore how similarity relates t
learnability and memorability. The analysis is not comple
but preliminary results indicate that when similar gestur
are used for similar operations, they are easier to remem
We plan to incorporate these discoveries about gest
similarity into a tool for gesture set design that we a
To appear in Proceedings of Human Factors in Computing Systems (SIGCHI ‘00).
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developing [15]. Gestures are an important part of pen-
based UIs, and we believe that designers of pen-based UIs
could greatly benefit from a gesture design tool that
informed them of gestures that may be difficult for the
computer to recognize or for people to learn and remember.
These experiments also suggest  avenues for more
psychological experiments. For example, it would be
interesting to measure memorability and similarity of other
gestures to validate and/or refine our current models. Also,
in the two experiments described here, participants saw
animated gestures but did not draw them. It is possible that
different similarity criteria would emerge if participants
drew the candidate gestures before judging their similarity.

CONCLUSIONS
Gesture set designers may want their gestures to be similar
or dissimilar depending on the semantics of the operations.
We have shown that perceptual similarity of gestures is
correlated with well-defined computable features such as
curviness.  With these features,  we have derived a
computable, quantitative model for perceptual similarity of
gestures that correlates 0.56 with reported similarity. Using
our model, we can predict how similar people will perceive
gestures to be. We expect similarity predictions to be a
useful addition to our gesture design tool.
Our model and our experiences of experimental design and
analysis should provide an excellent starting point for
further investigation into gesture similarity, memorability,
and learnability. When integrated with our gesture design
tool, our model will allow designers to create gestures that
are more memorable and learnable by users.
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