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Abstract

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then
searching for linear relations among the embedded data points. The embedding is performed
implicitly, by specifying the inner products between each pair of points in the embedding space.
This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix
that encodes the relative positions of all points. Specifying this matrix amounts to specifying the
geometry of the embedding space and inducing a notion of similarity in the input space—classical
model selection problems in machine learning. In this paper we show how the kernel matrix can
be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel
matrix associated with both training and test data this gives a powerful transductive algorithm—
using the labelled part of the data one can learn an embedding also for the unlabelled part. The
similarity between test points is inferred from training points and their labels. Importantly, these
learning problems are convex, so we obtain a method for learning both the model class and the
function without local minima. Furthermore, this approach leads directly to a convex method
to learn the 2-norm soft margin parameter in support vector machines, solving another important
open problem. Finally, the novel approach presented in the paper is supported by positive empirical
results.
Keywords: kernel methods, learning kernels, transduction, model selection, support vector ma-
chines, convex optimization, semi-definite programming

1. Introduction

Recent advances in kernel-based learning algorithms have brought the field of machine learning
closer to the desirable goal of autonomy—the goal of providing learning systems that require as
little intervention as possible on the part of a human user. In particular, kernel-based algorithms
are generally formulated in terms of convex optimization problems, which have a single global
optimum and thus do not require heuristic choices of learning rates, starting configurations or
other free parameters. There are, of course, statistical model selection problems to be faced within
the kernel approach; in particular, the choice of the kernel and the corresponding feature space are
central choices that must generally be made by a human user. While this provides opportunities for
prior knowledge to be brought to bear, it can also be difficult in practice to find prior justification
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for the use of one kernel instead of another. It would be desirable to explore model selection
methods that allow kernels to be chosen in a more automatic way based on data.

It is important to observe that we do not necessarily need to choose a kernel function—the
representation of a finite training data set via a kernel function is entirely specified by a finite-
dimensional kernel matrix (also known as a Gram matrix ) that contains as its entries the inner
products (in an appropriate feature space) between pairs of data points. Note also that it is possible
to show that any symmetric positive definite matrix is a valid Gram matrix, in the sense that it
specifies the values of some inner product. This suggests viewing the model selection problem in
terms of Gram matrices rather than kernel functions.

In this paper we focus on transduction—the problem of completing the labelling of a partially
labelled dataset. In other words, we are required to make predictions only at a finite set of points,
which are specified a priori. Thus, instead of learning a function, we need only learn a set of
labels. There are many practical problems in which this formulation is natural—an example is the
prediction of gene function, where the genes of interest are specified a priori, but the function of
many of these genes is unknown.

We will address this problem by learning a kernel matrix corresponding to the entire dataset, a
matrix that optimizes a certain cost function that depends on the available labels. In other words,
we use the available labels to learn a good embedding, and we apply it to both the labelled and
the unlabelled data. The resulting kernel matrix can then be used in combination with any of a
number of existing learning algorithms that use kernels. One example that we discuss in detail is
the support vector machine (SVM), where our methods yield a new transduction method for SVMs
that scales polynomially with the number of test points. Furthermore, this approach will offer us a
method to optimize the 2-norm soft margin parameter for these SVM learning algorithms, solving
another important open problem.

All this can be done in full generality by using techniques from semi-definite programming
(SDP), a branch of convex optimization that deals with the optimization of convex functions over
the convex cone of positive semi-definite matrices, or convex subsets thereof. Any convex set of
kernel matrices is a set of this kind. Furthermore, it turns out that many natural cost functions,
motivated by error bounds, are convex in the kernel matrix.

In Section 2, we recall the main ideas from kernel-based learning algorithms, and introduce
a variety of criteria that we use to assess the suitability of a kernel matrix: the hard margin,
the 1-norm and 2-norm soft margin, and the alignment. Section 3 reviews the basic definitions
and results of semi-definite programming. Section 4 considers the optimization of the various
criteria over a set of kernel matrices. For a set of linear combinations of fixed kernel matrices,
these optimization problems reduce to SDP. If the linear coefficients are constrained to be positive,
they can be simplified even further. If the linear combination contains the unity matrix, this can
be proven to provide us with a convex method to optimize the 2-norm soft margin parameter in
support vector machines. Section 5 presents error bounds that motivate one of our cost functions.
Empirical results are reported in Section 6.

Notation

For a square, symmetric matrix X, X º 0 means that X is positive semi-definite, while X Â 0
means that X is positive definite. For a vector v, the notations v ≥ 0, v > 0 are understood
componentwise.
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2. Kernel Methods

Kernel-based learning algorithms (see, for example, Cristianini and Shawe-Taylor, 2000; Schölkopf
and Smola, 2002) work by embedding the data into a Hilbert space, and searching for linear relations
in such a space. The embedding is performed implicitly, by specifying the inner product between
each pair of points rather than by giving their coordinates explicitly. This approach has several
advantages, the most important deriving from the fact that the inner product in the embedding
space can often be computed much more easily than the coordinates of the points themselves.

Given an input set X , and an embedding space F , we consider a map Φ : X → F . Given two
points xi ∈ X and xj ∈ X , the function that returns the inner product between their images in the
space F is known as the kernel function.

Definition 1 A kernel is a function k, such that k(x, z) = 〈Φ(x), Φ(z)〉 for all x, z ∈ X , where Φ
is a mapping from X to an (inner product) feature space F . A kernel matrix is a square matrix
K ∈ <n×n such that Kij = k(xi, xj) for some x1, . . . , xn ∈ X and some kernel function k.

The kernel matrix is also known as the Gram matrix. It is a symmetric, positive semi-definite
matrix, and since it specifies the inner products between all pairs of points {xi}n

i=1, it completely
determines the relative positions of those points in the embedding space.

Since in this paper we will consider a finite input set X , we can characterize kernel functions
and matrices in the following simple way.

Proposition 2 Every positive semi-definite and symmetric matrix is a kernel matrix. Conversely,
every kernel matrix is symmetric and positive semi-definite.

Notice that, if we have a kernel matrix, we do not need to know the kernel function, nor the
implicitly defined map Φ, nor the coordinates of the points Φ(xi). We do not even need X to be a
vector space; in fact in this paper it will be a generic finite set. We are guaranteed that the data are
implicitly mapped to some Hilbert space by simply checking that the kernel matrix is symmetric
and positive semi-definite.

The solutions sought by kernel-based algorithms such as the support vector machine (SVM) are
linear functions in the feature space:

f(x) = wT Φ(x),

for some weight vector w ∈ F . The kernel can be exploited whenever the weight vector can be
expressed as a linear combination of the training points, w =

∑n
i=1 αiΦ(xi), implying that we can

express f as

f(x) =
n∑

i=1

αik(xi,x).

An important issue in applications is that of choosing a kernel k for a given learning task;
intuitively, we wish to choose a kernel that induces the “right” metric in the space.

2.1 Criteria used in kernel methods

Kernel methods choose a function that is linear in the feature space by optimizing some criterion
over the sample. This section describes several such criteria. (See, for example, Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2002). All of these criteria can be considered as measures
of separation of the labelled data. We first consider the hard margin optimization problem.
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Definition 3 Hard Margin Given a labelled sample Sl = {(x1, y1), . . . , (xn, yn)}, the hyperplane
(w, b) that solves the optimization problem

min
w,b

〈w,w〉 (1)

subject to yi(〈w, Φ(xi)〉+ b) ≥ 1, i = 1, . . . , n,

if it exists, realizes the maximal margin classifier with geometric margin γ = 1/‖w∗‖2, where w∗ is
that w that optimizes (1).

Geometrically, γ corresponds to the distance between the convex hulls (the smallest convex sets
that contain the data in each class) of the two classes (Bennett and Bredensteiner, 2000).

By transforming (1) into its corresponding dual problem, the solution is given by

w(K) = 1/γ2 (2)
= 〈w∗,w∗〉
= max

α
2αT e− αT G(K)α : α ≥ 0, αT y = 0,

where e is the n-vector of ones, α ∈ Rn, G(K) is defined by Gij(K) = [K]ijyiyj = k(xi,xj)yiyj ,
and α ≥ 0 means αi ≥ 0, i = 1, . . . , n.

The hard margin solution exists only when the labelled sample is linearly separable in feature
space. For a non-linearly-separable labelled sample Sl, we can define the soft margin. We consider
the 1-norm and 2-norm soft margins.

Definition 4 1-Norm Soft Margin Given a labelled sample Sl = {(x1, y1), . . . , (xn, yn)}, the
hyperplane (w, b) that solves the optimization problem

min
w,b,ξ

〈w,w〉+ C
n∑

i=1

ξi (3)

subject to yi(〈w, Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

realizes the 1-norm soft margin classifier with geometric margin γ = 1/‖w∗‖2 , where w∗ is that w
that optimizes (3). This margin is also called the 1-norm soft margin.

As for the hard margin, by considering the corresponding dual problem, we can express the
solution of (3) as follows:

wS1(K) = 〈w∗,w∗〉+ C

n∑
i=1

ξi,∗ (4)

= max
α

2αT e− αT G(K)α : C ≥ α ≥ 0, αT y = 0.

Definition 5 2-Norm Soft Margin Given a labelled sample Sl = {(x1, y1), . . . , (xn, yn)}, the
hyperplane (w, b) that solves the optimization problem

min
w,b,ξ

〈w,w〉+ C
n∑

i=1

ξ2
i (5)

subject to yi(〈w, Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n
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realizes the 2-norm soft margin classifier with geometric margin γ = 1/‖w∗‖2 , where w∗ is that w
that optimizes (5). This margin is also called the 2-norm soft margin.

Again, by considering the corresponding dual problem, the solution of (5) can be expressed as

wS2(K) = 〈w∗,w∗〉+ C
n∑

i=1

ξ2
i,∗ (6)

= max
α

2αT e− αT

(
G(K) +

1
C

In

)
α : α ≥ 0, αT y = 0.

With a fixed kernel, all of these criteria give upper bounds on misclassification probability (see,
for example, Chapter 4 of Cristianini and Shawe-Taylor, 2000). Solving these optimization problems
for a single kernel matrix is therefore a way of optimizing an upper bound on error probability.

In this paper, we allow the kernel matrix to be chosen from a class of kernel matrices. Previous
error bounds are not applicable in this case. However, as we will see in Section 5, the margin γ
can be used to bound the performance of support vector machines for transduction, with a linearly
parameterized class of kernels.

We do not discuss further the merit of these different cost functions, deferring to the current
literature on classification, where these cost functions are widely used with fixed kernels. Our goal
is to show these cost functions can be optimized—with respect to the kernel matrix—in an SDP
setting.

Finally, we define the alignment of two kernel matrices (Cristianini et al., 2002). Given an
(unlabelled) sample S = {x1, . . . ,xn}, we use the following (Frobenius) inner product between
Gram matrices, 〈K1, K2〉F = trace(KT

1 K2) =
∑n

i,j=1 k1(xi,xj)k2(xi,xj).

Definition 6 Alignment The (empirical) alignment of a kernel k1 with a kernel k2 with respect
to the sample S is the quantity

Â(S, k1, k2) =
〈K1, K2〉F√〈K1, K1〉F 〈K2, K2〉F

,

where Ki is the kernel matrix for the sample S using kernel ki.

This can also be viewed as the cosine of the angle between two bi-dimensional vectors K1 and
K2, representing the Gram matrices. If we consider K2 = yyT , where y is the vector of {±1} labels
for the sample, then

Â(S, K, yyT ) =
〈K, yyT 〉F√

〈K, K〉F 〈yyT , yyT 〉F
=

〈
K, yyT

〉
F

n
√〈K, K〉F

, (7)

since
〈
yyT , yyT

〉
F

= n2.

3. Semi-Definite Programming (SDP)

In this section we review the basic definition of semi-definite programming as well as some important
concepts and key results. Details and proofs can be found in Boyd and Vandenberghe (2001).
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Semi-definite programming (Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd, 1996;
Boyd and Vandenberghe, 2001) deals with the optimization of convex functions over the convex
cone1 of symmetric, positive semi-definite matrices

P =
{
X ∈ Rp×p | X = XT , X º 0

}
,

or affine subsets of this cone. Given Proposition 2, P can be viewed as a search space for possible
kernel matrices. This consideration leads to the key problem addressed in this paper—we wish to
specify a convex cost function that will enable us to learn the optimal kernel matrix within P using
semi-definite programming.

3.1 Definition of Semi-Definite Programming

A linear matrix inequality, abbreviated LMI, is a constraint of the form

F (x) := F0 + x1F1 + . . . + xqFq ¹ 0.

Here, x is the vector of decision variables, and F0, . . . , Fq are given symmetric p × p matrices.
The notation F (x) ¹ 0 means that the symmetric matrix F is negative semi-definite. Note that
such a constraint is in general a nonlinear constraint; the term ”linear” in the name LMI merely
emphasizes that F is affine in x. Perhaps the most important feature of an LMI constraint is its
convexity: the set of x that satisfy the LMI is a convex set.

An LMI constraint can be seen as an infinite set of scalar, affine constraints. Indeed, for a given
x, F (x) ¹ 0 if and only if zT F (x)z ≤ 0 for every z; every constraint indexed by z is an affine
inequality, in the ordinary sense. Alternatively, using a standard result from linear algebra, we may
state the constraint as

∀Z ∈ P : trace(F (x)Z) ≤ 0. (8)

A semi-definite program (SDP) is an optimization problem with a linear objective, and linear
matrix inequality and affine equality constraints.

Definition 7 A semi-definite program is a problem of the form

min
x

cT x (9)

subject to F j(x) = F j
0 + x1F

j
1 + . . . + xqF

j
q ¹ 0, j = 1, . . . , L

Ax = b,

where x ∈ Rq is the vector of decision variables, c ∈ Rq is the objective vector,and matrices F j
i =

(F j
i )T ∈ Rp×p are given.

By convexity of its LMI constraints, SDPs are convex optimization problems. The usefulness of
the SDP formalism stems from two important facts. First, despite the seemingly very specialized
form of SDPs, they arise in a host of applications; second, there exist ”interior-point” algorithms
to globally solve SDPs that have extremely good theoretical and practical computational efficiency
(Vandenberghe and Boyd, 1996).

One very useful tool to reduce a problem to an SDP is the so-called Schur Complement Lemma,
which will be invoked later in this paper.

1. S ⊆ Rd is a convex cone if x, y ∈ S, λ, µ ≥ 0 ⇒ λx + µy ∈ S.
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Lemma 8 (Schur Complement Lemma) Consider the partitioned symmetric matrix

X = XT =
(

A B
BT C

)
,

where A, C are square and symmetric. When det(A) 6= 0, we define the Schur complement of A
in X by the matrix S = C − BT A−1B. The Schur Complement Lemma states that if A Â 0, then
X º 0 if and only if S º 0.

To illustrate how this Lemma can be used to cast a nonlinear convex optimization problem as
an SDP, consider the following result:

Lemma 9 The quadratically constrained quadratic program (QCQP)

min
x

f0(x) (10)

subject to fi(x) ≤ 0, i = 1, . . . , M,

with fi(x) , (Aix + bi)T (Aix + bi) − cT
i x − di, is equivalent to the semi-definite programming

problem:

min
x,t

t (11)

subject to
(

I A0x + b0

(A0x + b0)T c0
Tx + d0 + t

)
º 0,(

I Aix + bi

(Aix + bi)T cT
i x + di

)
º 0, i = 1, . . . , M.

This can be seen by rewriting the QCQP (10) as:

min
x,t

t

subject to t− f0(x) ≥ 0,

−fi(x) ≥ 0, i = 1, . . . , M.

The convex quadratic inequality t − f0(x) = (t + c0
Tx + d0) − (A0x + b0)T I−1(A0x + b0) ≥ 0 is

now equivalent to the following LMI, using the Schur Complement Lemma 8:

(
I A0x + b0

(A0x + b0)T c0
Tx + d0 + t

)
º 0.

Similar steps for the other quadratic inequality constraints finally yields (11), an SDP in standard
form (9), equivalent to (10). This shows that a QCQP can be cast as an SDP. Of course, in practice
a QCQP should not be solved using general-purpose SDP solvers, since the particular structure
of the problem at hand can be efficiently exploited. The above does show that QCQPs, and in
particular, linear programming problems, belong to the SDP family.
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3.2 Duality

An important principle in optimization—perhaps even the most important principle—is that of
duality. To illustrate duality in the case of an SDP, we will first review basic concepts in duality
theory and then show how they can be extended to semi-definite programming. In particular,
duality will give insights into optimality conditions for the semi-definite program.

Consider an optimization problem with n variables and m scalar constraints

min
x

f0(x) (12)

subject to fi(x) ≤ 0, i = 1, . . . , m,

where x ∈ Rn. In the context of duality, problem (12) is called the primal problem; we denote its
optimal value p∗. For now, we do not assume convexity.

Definition 10 Lagrangian The Lagrangian L : Rn+m → R corresponding to the minimization
problem (12) is defined as

L(x, λ) = f0(x) + λ1f1(x) + . . . + λmfm(x).

The λi ∈ R, i = 1, . . . , m are called Lagrange multipliers or dual variables.

One can now notice that

h(x) = max
λ≥0

L(x, λ) =
{

f0(x) if fi(x) ≤ 0, i = 1, . . . , m
+∞ otherwise

(13)

So, the function h(x) coincides with the objective f0(x) in regions where the constraints fi(x) ≤
0, i = 1, . . . , m are satisfied and h(x) = +∞ in infeasible regions. In other words, h acts as a
”barrier” of the feasible set of the primal problem. Thus we can as well use h(x) as objective
function and rewrite the original primal problem (12) as an unconstrained optimization problem:

p∗ = min
x

max
λ≥0

L(x, λ). (14)

The notion of weak duality amounts to exchanging the ”min” and ”max” operators in the above
formulation, resulting in a lower bound on the optimal value of the primal problem. Strong duality
refers to the case when this exchange can be done without altering the value of the result: the
lower bound is actually equal to the optimal value p∗. While weak duality always hold, even if the
primal problem is not convex, strong duality may not hold. However, for a large class of generic
convex problems, strong duality holds.

Lemma 11 Weak duality Even if the original problem (14) is not convex, we can exchange the
max and the min and get a lower bound on p∗:

d∗ = max
λ≥0

min
x
L(x, λ) ≤ min

x
max
λ≥0

L(x, λ) = p∗.

The objective function of the maximization problem is now called the (Lagrange) dual function.
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Definition 12 (Lagrange) dual function The (Lagrange) dual function g : Rm → R is defined
as

g(λ) = min
x
L(x, λ)

= min
x

f0(x) + λ1f1(x) + . . . + λmfm(x). (15)

Furthermore g(λ) is concave, even if the fi(x) are not convex.

The concavity can easily be seen by considering first that for a given x, L(x, λ) is an affine function
of λ and hence is a concave function. Since g(λ) is the pointwise minimum of such concave functions,
it is concave.

Definition 13 Lagrange dual problem The Lagrange dual problem is defined as

d∗ = max
λ≥0

g(λ).

Since g(λ) is concave, this will always be a convex optimization problem, even if the primal is not.
By weak duality, we always have d∗ ≤ p∗, even for non-convex problems. The value p∗−d∗ is called
the duality gap. For convex problems, we usually (although not always) have strong duality at the
optimum, i.e.,

d∗ = p∗

which is also referred to as a zero duality gap. For convex problems, a sufficient condition for zero
duality gap is provided by Slater’s condition:

Lemma 14 Slater’s condition If the primal problem (12) is convex and is strictly feasible,
i.e., ∃ x0 : fi(x0) < 0, i = 1, . . . , m, then

p∗ = d∗.

3.3 SDP Duality and Optimality Conditions

Consider for simplicity the case of an SDP with a single LMI constraint, and no affine equalities:

p∗ = min
x

cT x subject to F (x) = F0 + x1F1 + . . . xqFq ¹ 0. (16)

The general case of multiple LMI constraints and affine equalities can be handled by elimination
of the latter and using block-diagonal matrices to represent the former as a single LMI.

The classical Lagrange duality theory outlined in the previous section does not directly apply
here, since we are not dealing with finitely many constraints in scalar form; as noted earlier, the
LMI constraint involves an infinite number of such constraints, of the form (8). One way to handle
such constraints is to introduce a Lagrangian of the form

L(x, Z) = cT x + trace(ZF (x)),

where the dual variable Z is now a symmetric matrix, of same size as F (x). We can check that
such a Lagrange function fulfills the same role assigned to the function defined in Definition 10 for
the case with scalar constraints. Indeed, if we define h(x) = maxZº0 L(x, Z) then

h(x) = max
Zº0

L(x, Z) =
{

cT x if F (x) ¹ 0,
+∞ otherwise.

(17)
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Thus, h(x) is a barrier for the primal SDP (16), that is, it coincides with the objective of (16) on
its feasible set, and is infinite otherwise. Notice that to the LMI constraint we now associate a
multiplier matrix, which will be constrained to the positive semi-definite cone.

In the above, we made use of the fact that, for a given symmetric matrix F ,

φ(F ) := sup
Zº0

trace(ZF )

is +∞ if F has a positive eigenvalue, and zero if F is negative semi-definite. This property is
obvious for diagonal matrices, since in that case the variable Z can be constrained to be diagonal
without loss of generality. The general case follows from the fact that if F has the eigenvalue
decomposition F = UΛUT , where Λ is a diagonal matrix containing the eigenvalues of F , and U is
orthogonal, then trace(ZF ) = trace(Z ′Λ), where Z ′ = UT ZU spans the positive semi-definite cone
whenever Z does.

Using the above Lagrangian, one can cast the original problem (16) as an unconstrained opti-
mization problem:

p∗ = min
x

max
Zº0

L(x, Z).

By weak duality, we obtain a lower bound on p∗ by exchanging the min and max:

d∗ = max
Zº0

min
x
L(x, Z) ≤ min

x
max
Zº0

L(x, Z) = p∗.

The inner minimization problem is easily solved analytically, due to the special structure of the
SDP. We obtain a closed form for the (Lagrange) dual function:

g(Z) = min
x
L(x, Z) = min

x
cT x + trace(ZF0) +

q∑
i=1

xi trace(ZFi)

=
{

trace(ZF0) if ci = −trace(ZFi), i = 1, . . . , q
−∞ otherwise.

The dual problem can be explicitly stated as follows:

d∗ = max
Zº0

min
x
L(x, Z) = max

Z
trace(ZF0) subject to Z º 0, ci = −trace(ZFi), i = 1, . . . , q. (18)

We observe that the above problem is an SDP, with a single LMI constraint and q affine equalities
in the matrix dual variable Z.

While weak duality always holds, strong duality may not, even for SDPs. Not surprisingly, a
Slater-type condition ensures strong duality. Precisely, if the primal SDP (16) is strictly feasible,
that is, there exist a x0 such that F (x0) ≺ 0, then p∗ = d∗. If, in addition, the dual problem is also
strictly feasible, meaning that there exist Z Â 0 such that ci = trace(ZFi), i = 1, . . . , q, then both
primal and dual optimal values are attained by some optimal pair (x∗, Z∗). In that case, we can
characterize such optimal pairs as follows. In view of the equality constraints of the dual problem,
the duality gap can be expressed as

p∗ − d∗ = cT x∗ − trace(Z∗F0)
= −trace(Z∗F (x∗)).
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A zero duality gap is equivalent to trace(Z∗F (x∗)) = 0, which in turn is equivalent to Z∗F (x∗) = O,
where O denotes the zero matrix, since the product of a positive semi-definite and a negative semi-
definite matrix has zero trace if and only if it is zero.

To summarize, consider the SDP (16) and its Lagrange dual (18). If either problem is strictly
feasible, then they share the same optimal value. If both problems are strictly feasible, then the
optimal values of both problems are attained and coincide. In this case, a primal-dual pair (x∗, Z∗)
is optimal if and only if

F (x∗) ¹ 0,

Z∗ º 0,

ci = −trace(Z∗Fi), i = 1, . . . , q,

Z∗F (x∗) = O.

The above conditions represent the generalization to the SDP case, of the Karush-Kuhn-Tucker
(KKT) conditions of linear programming. The first three sets of conditions express that x∗ and
Z∗ are feasible for their respective problems; the last condition expresses a ”complimentarity”
condition that generalizes to the SDP case, the complementarity condition of linear programming.

For a pair of strictly feasible primal-dual SDPs, solving the primal minimization problem is
equivalent to maximizing the dual problem and both can thus be considered simultaneously. Al-
gorithms indeed make use of this relationship and use the duality gap as a stopping criterion. A
general-purpose program such as SeDuMi (Sturm, 1999) handles those problems efficiently. This
code uses interior-point methods for SDP (Nesterov and Nemirovsky, 1994); these methods have
a worst-case complexity of O(q2p2.5) for the general problem (16). In practice, problem structure
can be exploited for great computational savings: e.g., when F (x) ∈ Rp×p consists of L diagonal
blocks of size pi, i = 1, . . . , L, these methods have a worst-case complexity of O(q2(

∑L
i=1 p2

i )p
0.5)

(Vandenberghe and Boyd, 1996).

4. Algorithms for learning kernels

We work in a transduction setting, where some of the data (the training set) are labelled, and the
remainder (the test set) are unlabelled, and the aim is to predict the labels of the test data. In this
setting, optimizing the kernel corresponds to choosing a kernel matrix. This matrix has the form

K =
(

Ktr Ktr,t

KT
tr,t Kt

)
, (19)

where Kij = 〈Φ(xi), Φ(xj)〉, i, j = 1, . . . , ntr, ntr + 1, . . . , ntr + nt with ntr and nt the number of
labelled (training) and unlabelled (test) data points respectively. By optimizing a cost function
over the “training-data block” Ktr, we want to learn the optimal mixed block Ktr,t and the optimal
“test-data block” Kt.

This implies that training and test-data blocks must somehow be entangled: tuning training-
data entries in K (to optimize their embedding) should imply that test-data entries are automati-
cally tuned in some way as well. This can be achieved by constraining the search space of possible
kernel matrices: we control the capacity of the search space of possible kernel matrices in order to
prevent overfitting and achieve good generalization on test data.

We first consider a general optimization problem in which the kernel matrix K is restricted to
a convex subset K of P, the positive semi-definite cone. We then consider two specific examples.
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The first is the set of positive semi-definite matrices that can be expressed as a linear combination,

K =
m∑

i=1

µiKi, (20)

of kernel matrices from the set {K1, . . . , Km}. In this case, the set K is the intersection of a
low-dimensional linear subspace with the positive semi-definite cone P. Geometrically this can be
viewed as computing all embeddings (for every Ki), in disjoint feature spaces, and then weighting
these. The set {K1, . . . , Km} could be a set of initial “guesses” of the kernel matrix, e.g., linear,
Gaussian or polynomial kernels with different kernel parameter values. Instead of fine-tuning the
kernel parameter for a given kernel using cross-validation, one can now evaluate the given kernel
for a range of kernel parameters and then optimize the weights in the linear combination of the
obtained kernel matrices. Alternatively, the Ki could be chosen as the rank-one matrices Ki = viv

T
i ,

with vi a subset of the eigenvectors of K0, an initial kernel matrix, or with vi some other set of
orthogonal vectors. A practically important form is the case in which a diverse set of possibly
good Gram matrices Ki (similarity measures/representations) has been constructed, e.g., using
heterogenous data sources. The challenge is to combine these measures into one optimal similarity
measure (embedding), to be used for learning.

The second example of a restricted set K of kernels is the set of positive semi-definite matrices
that can be expressed as a linear combination,

K =
m∑

i=1

µiKi,

of kernel matrices from the set {K1, . . . , Km}, but with the parameters µi constrained to be non-
negative. This is a subset of the set defined in (20) above, and so it further constrains the class
of functions that can be represented. It has two advantages: we shall see that the corresponding
optimization problem has significantly reduced computational complexity, and it is more convenient
for studying the statistical properties of a class of kernel matrices.

As we will see in Section 5, we can estimate the performance of support vector machines for
transduction using properties of the class K: for a thresholded version of f(x), the proportion of
errors on the test data is, with probability 1− δ, bounded by

1
n

n∑
i=1

φ(Yif(Xi))

+
1√
n

(
4 +

√
2 log(1/δ) +

√
C(K)
nγ2

)
, (21)

where φ is the 1-norm margin cost function, γ the margin on the training set and C(K) is a certain
measure of the complexity of the kernel class K, which grows linearly with the trace of the kernel
matrices in K.

4.1 Hard margin

In this section, we derive the main optimization result of the paper: maximizing the margin of a
hard margin SVM with respect to the kernel matrix can be realized in a semi-definite programming
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framework. The soft margin case is an extension of this basic result and will be discussed in a later
section.

Inspired by (21), let us try to find the kernel matrix K in some convex subset K of positive semi-
definite matrices for which the corresponding embedding shows maximal margin on the training
data, keeping the trace of K constant:

min
K∈K

w(Ktr) s.t. trace(K) = c. (22)

We first notice a fundamental property of the margin, a property that is crucial for the remainder
of the paper.

Proposition 15 The quantity

w(K) = max
α

2αT e− αT G(K)α : α ≥ 0, αT y = 0,

is convex in K.

This is easily seen by considering first that 2αT e − αT G(K)α is an affine function of K, and
hence is a convex function as well. Secondly, we notice that w(K) is the pointwise maximum of
such convex functions and is thus convex.

Problem (22) is now a convex optimization problem. The following theorem shows that, for a
suitable choice of the set K, this problem can be cast as an SDP.

Theorem 16 Given a linearly separable labelled sample Sl = {(x1, y1), . . . , (xn, yn)} with corre-
sponding set of labels y ∈ Rn, the kernel matrix K ∈ K that optimizes (22) can be found by solving
the following problem:

min
K,t,λ,ν

t (23)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) e + ν + λy

(e + ν + λy)T t

)
º 0,

ν ≥ 0.

Proof We begin by substituting w(Ktr)—the squared inverse margin as defined in (2)—into (22),
which yields:

min
K∈K

max
α

2αT e− αT G(Ktr)α : α ≥ 0, αT y = 0, trace(K) = c, (24)

with c a constant. Assume that Ktr Â 0, hence G(Ktr) Â 0 (the following can be extended to the
general semi-definite case). From Proposition 15, we know that w(Ktr) is convex in K. Given the
convex constraints in (24), the optimization problem is thus certainly convex in K. We write this
as:

min
K∈K,t

t : t ≥ max
α

2αT e− αT G(Ktr)α, (25)

α ≥ 0, αT y = 0, trace(K) = c.
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We now express the constraint t ≥ maxα 2αT e−αT G(Ktr)α as an LMI using duality. In particular,
duality will allow us to drop the minimization and the Schur complement lemma then yields an
LMI.

Define the Lagrangian of the maximization problem (2) by

L(α, ν, λ) = 2αT e− αT G(Ktr)α + 2νT α + 2λyT α,

where λ ∈ R, ν ∈ Rn. By duality, we have

w(Ktr) = max
α

min
ν≥0,λ

L(α, ν, λ) = min
ν≥0,λ

max
α

L(α, ν, λ),

where ν ≥ 0 ⇔ νi ≥ 0 for i = 1, . . . , n. Since G(Ktr) Â 0, at the optimum, we have

α = G(Ktr)−1(e + ν + λy),

and we can form the dual problem

w(Ktr) = min
ν, λ

(e + ν + λy)T G(Ktr)−1(e + ν + λy) : ν ≥ 0.

This implies that for any t > 0, the constraint w(Ktr) ≤ t holds if and only if there exist ν ≥ 0 and
λ such that

(e + ν + λy)T G(Ktr)−1(e + ν + λy) ≤ t,

or, equivalently (using the Schur complement lemma), such that

(
G(Ktr) e + ν + λy

(e + ν + λy)T t

)
º 0

holds. Taking this into account, (25) can be expressed as:

min
K,t,λ,ν

t

subject to trace(K) = c,

K ∈ K,(
G(Ktr) e + ν + λy

(e + ν + λy)T t

)
º 0,

ν ≥ 0,

which yields (23). Notice that ν ≥ 0 ⇔ diag(ν) º 0, and thus an LMI.

Notice that if K = {K º 0}, this optimization problem is an SDP in the standard form (9). Of
course, in that case there is no constraint to ensure that a large margin on the training data will
give a large margin on the test data. Indeed, it is easy to see that the criterion would be optimized
with a test matrix Kt = 0.

Consider the constraint K = span{K1, . . . , Km} ∩ {K º 0}. We obtain the following convex
optimization problem:
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min
K

w(Ktr) (26)

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiKi,

which can be written in the standard form of a semi-definite program, in a manner analogous to
(23):

min
µi,t,λ,ν

t (27)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑
i=1

µiKi º 0,

(
G(

∑m
i=1 µiKi,tr) e + ν + λy

(e + ν + λy)T t

)
º 0,

ν ≥ 0.

Notice that the SDP approach is consistent with the bound in (21). The margin is optimized over
the labelled data (via the use of Ki,tr), while the positive semi-definiteness and the trace constraint
are imposed for the entire kernel matrix K (via the use of Ki). This leads to a general method
for learning the kernel matrix with semi-definite programming, when using a margin criterion for
hard margin SVMs. Applying the complexity results mentioned in Section 3.3 leads to a worst-case
complexity O(n4.5) when using interior-point methods to solve this particular SDP.

Furthermore, this gives a new transduction method for hard margin SVMs. Whereas Vapnik’s
original method for transduction scales exponentially in the number of test samples, the new SDP
method has polynomial time complexity.

Remark. For the specific case in which the Ki are rank-one matrices Ki = viv
T
i , with vi orthonor-

mal (e.g., the normalized eigenvectors of an initial kernel matrix K0), the semi-definite program
reduces to a quadratically constrained quadratic program (QCQP) (see Appendix A):

max
α,t

2αT e− ct (28)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αT y = 0,

α ≥ 0,

with v̆i = diag(y) vi(1 : ntr). This QCQP problem is a special form of SDP (Boyd and Van-
denberghe, 2001) which can be solved efficiently with programs such as SeDuMi (Sturm, 1999) or
Mosek (Andersen and Andersen, 2000). These codes use interior-point methods for QCQP (Nes-
terov and Nemirovsky, 1994) which yield a worst-case complexity of O(mn2

tr + n3
tr). This implies
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a major improvement compared to the worst-case complexity of a general SDP. Furthermore, the
codes simultaneously solve the above problem and its dual form. They thus return optimal values
for the dual variables as well—this allows us to obtain the optimal weights µi, for i = 1, . . . , m.

4.2 Hard margin with kernel matrices that are positive linear combinations

To learn a kernel matrix from this linear class K, one has to solve a convex optimization problem,
more precisely a semi-definite programming problem. General-purpose programs such as SeDuMi
(Sturm, 1999) use interior-point methods to solve SDP problems (Nesterov and Nemirovsky, 1994);
they are polynomial time, but have a worst-case complexity O(n4.5) in this particular case.

Consider a further restriction on the set of kernel matrices, where the matrices are restricted to
positive linear combinations of kernel matrices {K1, . . . , Km} ∩ {K º 0}:

K =
m∑

i=1

µiKi, µ ≥ 0.

Assuming positive weights yields a smaller set of kernel matrices, because the weights need not be
positive for K to be positive semi-definite, even if the components Ki are positive semi-definite.
Moreover, the restriction has beneficial computational effects: (1) the general SDP reduces to a
QCQP, which has the significantly lower complexity of O(mn2

tr +n3
tr); (2) the constraint can result

in improved numerical stability—it prevents the algorithm from using large weights with opposite
sign that cancel. Finally, we shall see in Section 5 that the constraint also yields better estimates
of the generalization performance of these algorithms.

Solving the original learning problem (26) subject to the extra constraint µ ≥ 0 yields:

min
K

max
α : α≥0,αT y=0

2αT e− αT G(Ktr)α

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiKi,

µ ≥ 0,

when w(Ktr) is expressed using (2). We can omit the second constraint, because this is implied by
the last two constraints, if Ki º 0. If we let trace(Ki) = ri, where r ∈ Rm, the problem reduces to:

min
µ

max
α : α≥0,αT y=0

2αT e− αT G(
m∑

i=1

µiKi,tr)α

subject to µT r = c,

µ ≥ 0,

16



where Ki,tr = Ki(1 : ntr, 1 : ntr). We can write this as:

min
µ : µ≥0,µT r=c

max
α : α≥0,αT y=0

2αT e− αT diag(y)(
m∑

i=1

µiKi,tr)diag(y)α

= min
µ : µ≥0,µT r=c

max
α : α≥0,αT y=0

2αT e−
m∑

i=1

µiα
T diag(y)Ki,trdiag(y)α

= min
µ : µ≥0,µT r=c

max
α : α≥0,αT y=0

2αT e−
m∑

i=1

µiα
T G(Ki,tr)α

= max
α : α≥0,αT y=0

min
µ : µ≥0,µT r=c

2αT e−
m∑

i=1

µiα
T G(Ki,tr)α,

with G(Ki,tr) = diag(y)Ki,trdiag(y). The interchange of the order of the minimization and the
maximization is justified by standard results in convex optimization (see, e.g., Boyd and Vanden-
berghe, 2001) because the objective is convex in µ (it is linear in µ) and concave in α, because the
minimization problem is strictly feasible in µ, and the maximization problem is strictly feasible in
α (we can skip the case for all elements of y having the same sign, because we cannot even consider
a margin in such a case). We thus obtain:

max
α : α≥0,αT y=0

min
µ : µ≥0,µT r=c

2αT e−
m∑

i=1

µiα
T G(Ki,tr)α

= max
α : α≥0,αT y=0

[
2αT e− max

µ : µ≥0,µT r=c

(
m∑

i=1

µiα
T G(Ki,tr)α

)]

= max
α : α≥0,αT y=0

[
2αT e−max

i

(
c

ri
αT G(Ki,tr)α

)]
.

Finally, this can be reformulated as follows:

max
α,t

2αT e− ct (29)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αT y = 0,

α ≥ 0.

This problem is a convex optimization problem, more precisely a QCQP (Boyd and Vandenberghe,
2001). Note once again that such problems can be solved with worst-case complexity of O(mn2

tr +
n3

tr). Note also that the optimal weights µi, i = 1, . . . , m, can be recovered from the primal-dual
solution found by standard software such as SeDuMi (Sturm, 1999).

4.3 1-Norm Soft margin

For the case of non-linearly separable data, we can consider the 1-norm soft margin cost function
in (3). Training the SVM for a given kernel involves minimizing this quantity with respect to w, b, ξ,
which yields the optimal value (4): obviously this minimum is a function of the particular choice
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of K, which is expressed explicitly in (4) as a dual problem. Let us now optimize this quantity
with respect to the kernel matrix K, i.e., let us try to find the kernel matrix K ∈ K for which the
corresponding embedding shows minimal wS1(Ktr), keeping the trace of K constant:

min
K∈K

wS1(Ktr) s.t. trace(K) = c. (30)

This is again a convex optimization problem.

Theorem 17 Given a labelled sample Sl = {(x1, y1), . . . , (xn, yn)} with corresponding set of labels
y ∈ Rn, the kernel matrix K ∈ K that optimizes (30) can be found by solving the following convex
optimization problem:

min
K,t,λ,ν,δ

t (31)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
º 0,

ν ≥ 0
δ ≥ 0.

The 1-norm soft margin case follows as an easy extension of the main result in the previous
section. A detailed proof is given in Appendix B.

Again, if K = {K º 0}, this is an SDP. Adding the additional constraint (20) that K is a linear
combination of fixed kernel matrices leads to the following SDP:

min
µi,t,λ,ν,δ

t (32)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑
i=1

µiKi º 0,

(
G(

∑m
i=1 µiKi,tr) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
º 0,

ν, δ ≥ 0.

Remark. For the specific case in which the Ki are rank-one matrices Ki = viv
T
i , with vi orthonor-

mal (e.g., the normalized eigenvectors of an initial kernel matrix K0), the SDP reduces to a QCQP
in a manner analogous to the hard margin case:

max
α,t

2αT e− ct (33)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αT y = 0,

C ≥ α ≥ 0,
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with v̆i = diag(y) vi(1 : ntr).
Solving the original learning problem subject to the extra constraint µ ≥ 0 yields, after a similar

derivation:

max
α,t

2αT e− ct (34)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αT y = 0,

C ≥ α ≥ 0.

4.4 2-Norm Soft Margin

For the case of non-linearly separable data, we can also consider the 2-norm soft margin cost
function (5). Again, training for a given kernel will minimize this quantity with respect to w, b, ξ
and the minimum is a function of the particular choice of K, as expressed in (6) in dual form. Let
us now optimize this quantity with respect to the kernel matrix K:

min
K∈K

wS2(Ktr) s.t. trace(K) = c. (35)

This is again a convex optimization problem, and can be restated as follows.

Theorem 18 Given a labelled sample Sl = {(x1, y1), . . . , (xn, yn)} with corresponding set of la-
bels y ∈ Rn, the kernel matrix K ∈ K that optimizes (35) can be found by solving the following
optimization problem.

min
K,t,λ,ν

t (36)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) + 1

C Intr e + ν + λy
(e + ν + λy)T t

)
º 0,

ν ≥ 0.

Proof After substitution of wS2(Ktr) as defined in (6), (35) becomes:

min
Kº0

max
α

2αT e− αT

(
G(Ktr) +

1
C

Intr

)
α : α ≥ 0, αT y = 0, trace(K) = c (37)

with c a constant.
We note that wS2(Ktr) is convex in K (it is the pointwise maximum of affine functions of

K). Given the convex constraints in (37), the optimization problem is thus certainly convex in
K. The theorem is a direct extension of the main result in Section 4.1. This can be seen by com-
paring (24) and (37). Replacing the matrix G(Ktr) in (23) by G(Ktr)+ 1

C Intr directly yields (36).
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Again, if K = {K º 0}, this is an SDP. Moreover, constraining K to be a linear combination
of fixed kernel matrices, we obtain:

min
µi,t,λ,ν

t (38)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑
i=1

µiKi º 0,


G(

∑m
i=1 µiKi,tr) + 1

C Intr e + ν + λy

(e + ν + λy)T t


 º 0,

ν ≥ 0.

Also, when the Ki are rank-one matrices, Ki = viv
T
i , with vi orthonormal, we obtain a QCQP

(see Appendix C):

max
α,t

2αT e− 1
C

αT α− ct (39)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αT y = 0,

α ≥ 0,

and, finally, imposing the constraint µ ≥ 0 yields:

max
α,t

2αT e− 1
C

αT α− ct (40)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αT y = 0,

α ≥ 0,

following a similar derivation as before.

4.5 Learning the 2-Norm Soft Margin Parameter τ = 1
C

This section shows how the 2-norm soft margin parameter of SVMs can be learned using SDP or
QCQP. More details can be found in De Bie et al. (2002).

In the previous section, we tried to find the kernel matrix K ∈ K for which the corresponding
embedding yields minimal wS2(Ktr), keeping the trace of K constant. Similarly, we can simul-
taneously and automatically tune the parameter τ = 1/C such that the quantity wS2(Ktr, τ) is
minimized, as is proposed in De Bie et al. (2002). First of all, consider the dual formulation (6)
and notice that wS2(Ktr, τ) is convex in τ = 1/C (being the pointwise maximum of affine and thus
convex functions in τ). Secondly, since τ →∞ leads to wS2(Ktr, τ) → 0, we impose the constraint
trace (K + τIn) = c. This results in the following convex optimization problem:

min
K∈K,τ≥0

wS2(Ktr, τ) s.t. trace (K + τIn) = c. (41)
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According to Theorem 18, this can be restated as follows:

min
K,t,λ,ν,τ

t (42)

subject to trace (K + τIn) = c,

K ∈ K,(
G(Ktr) + τIntr e + ν + λy
(e + ν + λy)T t

)
º 0,

ν, τ ≥ 0.

Again, if K = {K º 0}, this is an SDP. Imposing the additional constraint that K is a linear
function of fixed kernel matrices, we obtain the SDP:

min
µi,t,λ,ν,τ

t (43)

subject to trace

(
m∑

i=1

µiKi + τIn

)
= c,

m∑
i=1

µiKi º 0,


G(

∑m
i=1 µiKi,tr) + τIntr e + ν + λy

(e + ν + λy)T t


 º 0,

ν, τ ≥ 0,

and imposing the additional constraint that the Ki are rank-one matrices, we obtain a QCQP:

max
α,t

2αT e− ct (44)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

t ≥ 1
n

αT α

αT y = 0,

α ≥ 0,

with v̆i = diag(y) v̄i = diag(y) vi(1 : ntr). Finally, imposing the constraint that µ ≥ 0 yields the
following:

max
α,t

2αT e− ct (45)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

t ≥ 1
n

αT α (46)

αT y = 0,

α ≥ 0,

which, as before, is a QCQP.

21



Solving (45) corresponds to learning the kernel matrix as a positive linear combination of kernel
matrices according to a 2-norm soft margin criterion and simultaneously learning the 2-norm soft
margin parameter τ = 1/C. Comparing (45) with (29), we can see that this reduces to learning an
augmented kernel matrix K ′ as a positive linear combination of kernel matrices and the identity
matrix, K ′ = K + τIn =

∑m
i=1 µiKi + τIn, using a hard margin criterion. However, there is an

important difference: when evaluating the resulting classifier, the actual kernel matrix K is used,
instead of the augmented K ′ (see, for example, Shawe-Taylor and Cristianini, 1999).

For m = 1, we notice that (43) directly reduces to (45) if K1 º 0. This corresponds to
automatically tuning the parameter τ = 1/C for a 2-norm soft margin SVM with kernel matrix
K1. So, even when not learning the kernel matrix, this approach can be used to learn the 2-norm
soft margin parameter τ = 1/C automatically.

4.6 Alignment

In this section, we consider the problem of optimizing the alignment between a set of labels and
a kernel matrix from some class K of positive semi-definite kernel matrices. We show that, if K is
a class of linear combinations of fixed kernel matrices, this problem can be cast as an SDP. This
result generalizes the approach presented in Cristianini et al. (2002).

Theorem 19 The kernel matrix K ∈ K which is maximally aligned with the set of labels y ∈ Rntr

can be found by solving the following optimization problem:

max
A,K

〈Ktr, yyT 〉F (47)

subject to trace(A) ≤ 1(
A KT

K In

)
º 0

K ∈ K,

where In is the identity matrix of dimension n.

Proof We want to find the kernel matrix K which is maximally aligned with the set of labels y:

max
K

Â(S, Ktr, yyT )

subject to K ∈ K, trace(K) = 1.

This is equivalent to the following optimization problem:

max
K

〈Ktr, yyT 〉F (48)

subject to 〈K, K〉F = 1
K ∈ K, trace(K) = 1.

To express this in the standard form (9) of a semi-definite program, we need to express the quadratic
equality constraint 〈K, K〉F = 1 as an LMI. First, notice that (48) is equivalent to

max
K

〈Ktr, yyT 〉F (49)

subject to 〈K, K〉F ≤ 1
K ∈ K.
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Indeed, we are maximizing an objective which is linear in the entries of K, so at the optimum
K = K∗, the constraint 〈K, K〉F = trace(KT K) ≤ 1 is achieved: 〈K∗, K∗〉F = 1. The quadratic
inequality constraint in (49) is now equivalent to

∃A : KT K ¹ A and trace(A) ≤ 1.

Indeed, A−KT K º 0 implies trace(A−KT K) = trace(A)− trace(KT K) ≥ 0 because of linearity
of the trace. Using the Schur complement lemma, we can express A−KT K º 0 as an LMI:

A−KT K º 0 ⇔
(

A KT

K In

)
º 0.

We can thus rewrite the optimization problem (48) as:

max
A,K

〈Ktr, yyT 〉F
subject to trace(A) ≤ 1(

A KT

K In

)
º 0

K ∈ K.

which corresponds to (47).

Notice that, when K is the set of all positive semi-definite matrices, this is an SDP (an inequality
constraint corresponds to a one-dimensional LMI; consider the entries of the matrices A and K as
the unknowns xi). In that case, one solution of (47) is found by simply selecting Ktr = c

nyyT , for
which the alignment (7) is equal to one and thus maximized.

Adding the additional constraint (20) that K is a linear combination of fixed kernel matrices
leads to

max
K

〈
Ktr, yyT

〉
F

(50)

subject to 〈K, K〉F ≤ 1,

K º 0,

K =
m∑

i=1

µiKi,

which can be written in the standard form of a semi-definite program, in a similar way as for (47):

max
A,µi

〈
m∑

i=1

µiKi,tr, yyT

〉
F

(51)

subject to trace(A) ≤ 1,(
A

∑m
i=1 µiK

T
i∑m

i=1 µiKi In

)
º 0,

m∑
i=1

µiKi º 0.
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Remark. For the specific case where the Ki are rank-one matrices Ki = viv
T
i , with vi orthonormal

(e.g., the normalized eigenvectors of an initial kernel matrix K0), the semi-definite program reduces
to a QCQP (see Appendix D):

max
µi

m∑
i=1

µi(v̄T
i y)2 (52)

subject to
m∑

i=1

µ2
i ≤ 1

µi ≥ 0, i = 1, . . . , m

with v̄i = vi(1 : ntr). This corresponds exactly to the QCQP obtained as an illustration in
Cristianini et al. (2002), which is thus entirely captured by the general SDP result obtained in this
section.

Solving the original learning problem (50) subject to the extra constraint µ ≥ 0 yields:

max
K

〈
Ktr, yyT

〉
F

subject to 〈K, K〉F ≤ 1,

K º 0,

K =
m∑

i=1

µiKi,

µ ≥ 0.

We can omit the second constraint, because this is implied by the last two constraints, if Ki º 0.
This reduces to:

max
µ

〈
m∑

i=1

µiKi,tr, yyT

〉
F

subject to

〈
m∑

i=1

µiKi,

m∑
j=1

µjKj

〉
F

≤ 1,

µ º 0,

where Ki,tr = Ki(1 : ntr, 1 : ntr). Expanding this further yields:〈
m∑

i=1

µiKi,tr, yyT

〉
F

=
m∑

i=1

µi

〈
Ki,tr, yyT

〉
F

= µT q, (53)〈
m∑

i=1

µiKi,
m∑

j=1

µjKj

〉
F

=
m∑

i,j=1

µiµj 〈Ki, Kj〉F

= µT Sµ (54)

with qi =
〈
Ki,tr, yyT

〉
F

= trace(Ki,tryyT ) = trace(yT Ki,try) = yT Ki,try and Sij = 〈Ki, Kj〉F ,
where q ∈ Rm, S ∈ Rm×m. We used the fact that trace(ABC) = trace(BCA) (if the products are
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well-defined). We obtain the following learning problem:

max
µ

µT q

subject to µT Sµ ≤ 1,

µ ≥ 0,

which is a QCQP.

4.7 Induction

In previous sections we have considered the transduction setting, where it is assumed that the
covariate vectors for both training (labelled) and test (unlabelled) data are known beforehand.
While this setting captures many realistic learning problems, it is also of interest to consider
possible extensions of our approach to the fuller setting of induction, in which the covariates are
known beforehand only for the training data.

Consider the following situation. We learn the kernel matrix as a positive linear combination of
normalized kernel matrices Ki. Those Ki are obtained through the evaluation of a kernel function or
through a known procedure (e.g., a string matching kernel), granting Ki º 0. So, K =

∑m
i=1 µiKi º

0. Normalization is done by replacing Ki(k, l) by Ki(k, l)/
√

Ki(k, k) ·Ki(l, l). In this case, the
extension to an induction setting is elegant and simple.

Let ntr be the number of training data points (all labelled). Consider the transduction problem
for those ntr data points and 1 unknown test point, e.g., for a hard margin SVM. The optimal
weights µ∗i , i = 1, . . . , m are learned by solving (29):

max
α,t

2αT e− ct (55)

subject to t ≥ 1
ntr + 1

αT G(Ki,tr)α, i = 1, . . . , m

αT y = 0,

α ≥ 0.

Even without knowing the test point and the entries of the Ki’s related to it (column and row
ntr +1), we know that K(ntr +1, ntr +1) = 1 because of the normalization. So, trace(Ki) = ntr +1.
This allows solving for the optimal weights µ∗i , i = 1, . . . , m and the optimal SVM parameters
α∗j , j = 1, . . . , ntr and b∗, without knowing the test point. When a test point becomes available,
we complete the Ki’s by computing their (ntr +1)-th column and row (evaluate the kernel function
or follow the procedure and normalize). Combining those Ki with weights µ∗i yields the final kernel
matrix K, which can then be used to label the test point:

y = sign(
m∑

i=1

ntr∑
j=1

µ∗i αiKi(xj , x)).

Remark: The optimal weights are independent of the number of unknown test points that
are considered in this setting. Consider the transduction problem (55) for l unknown test points
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instead of one unknown test point:

max
α̃,t̃

2α̃T e− ct̃ (56)

subject to t̃ ≥ 1
ntr + l

α̃T G(Ki,tr)α̃, i = 1, . . . , m

α̃T y = 0,

α̃ ≥ 0.

One can see that solving (56) is equivalent to solving (55) where the optimal values relate as
α̃∗ = ntr+l

ntr+1α∗ and t̃∗ = ntr+l
ntr+1 t∗ and where the optimal weights µ∗i , i = 1, . . . , m are the same.

Tackling the induction problem in full generality remains a challenge for future work. Obviously,
one could consider the transduction case with zero test points, yielding the induction case. If the
weights µi are constrained to be nonnegative and furthermore the matrices Ki are guaranteed to
be positive semi-definite, the weights can be reused at new test points. To deal with induction in
a general SDP setting, one could solve a transduction problem for each new test point. For every
test point, this leads to solving an SDP of dimension ntr + 1, which is computationally expensive.
Clearly there is a need to explore recursive solutions to the SDP problem that allow the solution of
the SDP of dimension ntr to be used in the solution of an SDP of dimension ntr +1. Such solutions
would of course also have immediate applications to on-line learning problems.

5. Error Bounds for Transduction

In the problem of transduction, we have access to the unlabelled test data, as well as the labelled
training data, and the aim is to optimize accuracy in predicting the test data. We assume that the
data are fixed, and that the order is chosen randomly, yielding a random partition into training
and test sets. For convenience, we suppose here that the training and test sets have the same size.

Fix a sequence S of 2n pairs (x1, y1), . . . , (x2n, y2n) from X × Y. Let π : {1, . . . , 2n} →
{1, . . . , 2n} be a random permutation, chosen uniformly, and let (Xi, Yi) = (xπ(i), yπ(i)). The
first half of this randomly ordered sequence is the training data, and the second half is the test
data. For a function f : X → <, we write the proportion of errors on the test data of a thresholded
version of f as

er(f) =
1
n
|{n + 1 ≤ i ≤ 2n : Yif(Xi) ≤ 0}|.

The following theorem shows that the error of a kernel classifier on the test data can be bounded
in terms of the average of a certain cost function of the training data margins, as well as properties
of the kernel matrix. For γ > 0, define the margin cost function φγ : < → <+ as

φγ(a) =




1 if a ≤ 0,
1− a/γ 0 < a ≤ γ,
0 a > γ.

Notice that the 1-norm soft margin cost function is a convex upper bound on this. We consider
kernel classifiers obtained by thresholding kernel expansions of the form

f(x) = 〈w,x〉 =
2n∑
i=1

αik(xi,x), (57)
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where w =
∑2n

i=1 αiΦ(xi) is chosen with bounded norm,

‖w‖2 =
2n∑

i,j=1

αiαjk(xi,xj) = α′Kα ≤ 1, (58)

where K is the 2n × 2n kernel matrix with Kij = k(Xi, Xj). With this constraint, the value
of the margin yf(x) is the distance in feature space between Φ(x) and the decision boundary.
Notice that wh, the w here, corresponds to the normalized version of wt, the optimal w in (3):
wh = wt/||wt||2 = γwt. Assuming b = 0 for simplicity (though without loss of generality), one can
see

ξi =




0 = φγ(yif(xi)) if yif(xi) = yi〈wh, Φ(xi)〉 = γyi〈wt, Φ(xi)〉 > γ,
1− yi〈wt, Φ(xi)〉 = 1− yi〈wh, Φ(xi)〉/γ

= φγ(yif(xi)) 0 < yif(xi) ≤ γ,
1− yi〈wt, Φ(xi)〉 ≥ φγ(yif(xi)) yif(xi) > γ.

Hence, γ as defined here is consistent with γ as defined in Section 2.1.
Let FK denote the class of functions on S of the form (57) satisfying (58), for some K ∈ K,

FK =

{
xj 7→

2n∑
i=1

αiKij : K ∈ K, α′Kα ≤ 1

}
,

where K is a set of positive semi-definite 2n× 2n matrices.
We are also interested in the class of kernel expansions obtained from certain linear combinations

of a fixed set {K1, . . . , Km} of kernel matrices. Consider the class FKB
, with

KB =




m∑
j=1

µjKj : K º 0, µj ∈ <, trace(K) ≤ B


 ,

and the class FK+
B
, with

K+
B =




m∑
j=1

µjKj : K º 0, µj ≥ 0, trace(K) ≤ B


 ,

Theorem 20 Let φ : < → <+ satisfy φ ≥ φγ. With probability at least 1− δ over the data (Xi, Yi)
chosen as above, every function f ∈ FK has er(f) no more than

1
n

n∑
i=1

φ(Yif(Xi)) +
1√
n

(
4 +

√
2 log(1/δ) +

√
C(K)
nγ2

)
,

where
C(K) = Emax

K∈K
σ′Kσ,

with the expectation over σ chosen uniformly from {±1}2n.

27



Furthermore,

C(KB) = BEmax
K∈K

σ′
K

trace(K)
σ,

and this is always no more than Bn, and

C(K+
B) ≤ B min

(
m, n max

j

λj

trace(Kj)

)
,

where λj is the largest eigenvalue of Kj.

Notice that the test error is bounded by a sum of the average over the training data of a margin
cost function plus a complexity penalty term that depends on the ratio between the trace of the
kernel matrix and the squared margin parameter, γ2. The kernel matrix here is the full matrix,
combining both test and training data.

The bound on the complexity C(K+
B) of the kernel class K+

B is easier to check than the bound
on C(KB). The first term in the minimum shows that the set of positive linear combinations of a
small set of kernel matrices is not very complex. The second term shows that, even if the set is
large, as long as the largest eigenvalue does not dominate the sum of the eigenvalues (the trace), the
set of positive linear combinations is not too complex. The proof of the theorem is in Appendix E.

6. Empirical results

We present results for hard margin and soft margin support vector machines. We use a kernel
matrix K =

∑3
i=1 µiKi, where the Ki’s are initial “guesses” of the kernel matrix. We use a poly-

nomial kernel function k1(x1,x2) = (1 + xT
1 x2)d for K1, a Gaussian kernel function k2(x1,x2) =

exp(−0.5(x1 − x2)T (x1 − x2)/σ) for K2 and a linear kernel function k3(x1,x2) = xT
1 x2 for K3.

Afterwards, all Ki are normalized. After evaluating the initial kernel matrices {Ki}3i=1, the weights
{µi}3i=1 are optimized according to a hard margin, a 1-norm soft margin and a 2-norm soft mar-
gin criterion, respectively; the semi-definite programs (27), (32) and (38) are solved using the
general-purpose optimization software SeDuMi (Sturm, 1999), leading to optimal weights {µ∗i }3i=1.
Next, the weights {µi}3i=1 are constrained to be non-negative and optimized according to the same
criteria: the second order cone programs (29), (34) and (40) are solved using the general-purpose
optimization software Mosek (Andersen and Andersen, 2000), leading to optimal weights {µ∗i,+}3i=1.
For positive weights, we also report results where the 2-norm soft margin hyperparameter C is au-
tomatically learned according to (45).

Empirical results on standard benchmark datasets are summarized in Tables 1, 2 and 3. The
Wisconsin breast cancer dataset contained 16 incomplete examples which were not used. The breast
cancer, ionosphere and sonar data were obtained from the UCI repository. The heart data were
obtained from STATLOG and normalized. Data for the twonorm problem data were generated as
specified by Breiman (1998). Each dataset was randomly partitioned into 80% training and 20%
test sets. The reported results are the averages over 30 random partitions. The kernel parameters
for K1 and K2 are given in Tables 1, 2 and 3 by d and σ respectively. For each of the kernel
matrices, an SVM is trained using the training block Ktr and tested using the mixed block Ktr,t

as defined in (19). The margin γ (for a hard margin criterion) respectively optimal soft margin
cost functions w∗S1 and w∗S2 (for soft margin criteria) are reported for the initial kernel matrices
Ki, as well as for the optimal

∑
i µ
∗
i Ki and

∑
i µ
∗
i,+Ki. Furthermore, the average test set accuracy
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(TSA), the average value for C and the average weights over the 30 partitions are listed. For
comparison, the performance of the best soft margin SVM with a Gaussian kernel is reported—the
soft margin hyperparameter C and the kernel parameter σ for the Gaussian kernel were tuned using
cross-validation over 30 random partitions of the training set.

K1 K2 K3
∑

i µ∗i Ki
∑

i µ∗i,+Ki RBF

Breast cancer d = 2 σ = 0.5
HM γ 0.0036 0.1055 - 0.1369 % 0.1219

TSA 92.9 % 89.0 % - 95.5 % 94.4 % 96.1 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.90/2.35/-1.25 0.65/2.35/0

SM1 w∗S1 77.012 44.913 170.26 26.694 33.689
TSA 96.4 % 89.0 % 87.7 % 95.5 % 94.4 % 96.7 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.90/2.35/-1.25 0.65/2.35/0

SM2 w∗S2 43.138 35.245 102.51 20.696 21.811
TSA 96.4 % 88.5 % 87.4 % 95.4 % 94.3 % 96.8 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 2.32/2.13/-1.46 0.89/2.11/0

SM2,C w∗S2 27.682 33.685 41.023 25.267
TSA 94.5 % 89.0 % 87.3 % 94.4 % 96.8 %
C 0.3504 1.48e+8 0.3051 6.77e+7
µ1/µ2/µ3 1.15/0/0 0/3.99/0 0/0/0.72 0.87/3.13/0

Ionosphere d = 2 σ = 0.5
HM γ 0.0613 0.1452 - 0.1623 0.1616

TSA 91.2 % 92.0 % - 94.4 % 94.4 % 93.9 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.08/2.18/-0.26 0.79/2.21/0

SM1 w∗S1 30.786 23.233 52.312 18.117 18.303
TSA 94.5 % 92.1 % 83.1 % 94.8 % 94.5 % 94.0 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.23/2.07/-0.30 0.90/2.10/0

SM2 w∗S2 18.533 17.907 31.662 13.382 13.542
TSA 94.7 % 92.0 % 91.6 % 94.5 % 94.4 % 94.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.68/1.73/-0.41 1.23/1.78/0

SM2,C w∗S2 14.558 17.623 18.975 13.5015
TSA 93.5 % 92.1 % 90.0 % 94.6 % 94.2 %
C 0.4144 5.8285 0.3442 0.8839
µ1/µ2/µ3 1.59/0/0 0/3.83/0 0/0/1.09 1.24/1.61/0

Table 1: SVMs trained and tested with the initial kernel matrices K1, K2, K3 and with the optimal
kernel matrices

∑
i µ
∗
i Ki and

∑
i µ
∗
i,+Ki. For hard margin SVMs (HM), the resulting

margin γ is given—a dash meaning that no hard margin classifier could be found; for soft
margin SVMs (SM1 = 1-norm soft margin with C = 1, SM2 = 2-norm soft margin with
C = 1 and SM2,C = 2-norm soft margin with auto tuning of C) the optimal value of the
cost function w∗S1 or w∗S2 is given. Furthermore, the test-set accuracy (TSA), the average
weights and the average C-values are given. For c we used c =

∑
i trace(Ki) for HM,

SM1 and SM2. The initial kernel matrices are evaluated after being multiplied by 3. This
assures we can compare the different γ for HM, w∗S1 for SM1 and w∗S2 for SM2, since the
resulting kernel matrix has a constant trace (i.e., everything is on the same scale). For
SM2,C we use c =

∑
i trace(Ki) + trace(In). This not only allows comparing the different

w∗S2 for SM2,C but also it allows comparing w∗S2 between SM2 and SM2,C (since we choose
C = 1 for SM2, we have that trace

(∑m
i=1 µiKi + 1

C In

)
is constant in both cases, so again,

we are on the same scale). Finally, the column RBF reports the performance of the best
soft margin SVM with RBF kernel, tuned using cross-validation.
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K1 K2 K3
∑

i µ∗i Ki
∑

i µ∗i,+Ki RBF

Heart d = 2 σ = 0.5
HM γ 0.0369 0.1221 - 0.1531 0.1528

TSA 72.9 % 59.5 % - 84.8 % 84.6 % 77.7 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -0.09/2.68/0.41 0.01/2.60/0.39

SM1 w∗S1 58.169 33.536 74.302 21.361 21.446
TSA 79.3 % 59.5 % 84.3 % 84.8 % 84.6 % 83.9 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -0.09/2.68/0.41 0.01/2.60/0.39

SM2 w∗S2 32.726 25.386 45.891 15.988 16.034
TSA 78.1 % 59.0 % 84.3 % 84.8 % 84.6 % 83.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -0.08/2.54/0.54 0.01/2.47/0.53

SM2,C w∗S2 19.643 25.153 16.004 15.985
TSA 81.3 % 59.6 % 84.7 % 84.6 % 83.2 %
C 0.3378 1.18e+7 0.2880 0.4365
µ1/µ2/µ3 1.04/0/0 0/3.99/0 0/0/0.53 0.01/0.80/0.53

Sonar d = 2 σ = 0.1
HM γ 0.0246 0.1460 0.0021 0.1517 0.1459

TSA 80.9 % 85.8 % 74.2 % 84.6 % 85.8 % 84.2 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -2.23/3.52/1.71 0/3/0

SM1 w∗S1 87.657 23.288 102.68 21.637 23.289
TSA 78.1 % 85.6 % 73.3 % 84.6 % 85.6 % 84.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -2.20/3.52/1.69 0/3/0

SM2 w∗S2 45.048 15.893 53.292 15.219 15.893
TSA 79.1 % 85.2 % 76.7 % 84.5 % 85.2 % 84.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -1.78/3.46/1.32 0/3/0

SM2,C w∗S2 20.520 15.640 20.620 15.640
TSA 60.9 % 84.6 % 51.0 % 84.6 % 84.2 %
C 0.2591 0.6087 0.2510 0.6087
µ1/µ2/µ3 0.14/0/0 0/2.36/0 0/0/0.02 0/2.34/0

Table 2: See the caption to Table 1 for explanation.

K1 K2 K3
∑

i µ∗i Ki
∑

i µ∗i,+Ki RBF

Twonorm d = 2 σ = 0.1
HM γ 0.1436 0.1072 0.0509 0.2170 0.2169

TSA 94.6 % 55.4 % 94.3 % 96.6 % 96.6 % 96.3 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 0.03/1.91/1.06 0.06/1.88/1.06

SM1 w∗S1 23.835 43.509 22.262 10.636 10.641
TSA 95.0 % 55.4 % 95.7 % 96.6 % 96.6 % 97.5 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 0.03/1.91/1.06 0.06/1.88/1.06

SM2 w∗S2 16.134 32.631 11.991 7.9780 7.9808
TSA 95.9 % 55.4 % 95.6 % 96.6 % 96.6 % 97.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 0.05/1.54/1.41 0.08/1.51/1.41

SM2,C w∗S2 16.057 32.633 7.9880 7.9808
TSA 96.2 % 55.4 % 96.6 % 96.6 % 97.2 %
C 0.8213 0.5000 0.3869 0.8015
µ1/µ2/µ3 2.78/0/0 0/2/0 0/0/1.42 0.08/1.25/1.41

Table 3: See the caption to Table 1 for explanation.

Note that not every Ki gives rise to a linearly separable embedding of the training data, in which
case no hard margin classifier can be found (indicated with a dash). The matrices

∑
i µ
∗
i Ki and∑

i µ
∗
i,+Ki however, always allow the training of a hard margin SVM and its margin is indeed larger
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than the margin for each of the different components Ki - this is consistent with the SDP/QCQP
optimization. For the soft margin criteria, the optimal value of the cost function for

∑
i µ
∗
i Ki and∑

i µ
∗
i,+Ki is smaller than its value for the individual Ki - again consistent with the SDP/QCQP

optimizations. Notice that constraining the weights µi to be positive results in slightly smaller
margins and larger cost functions, as expected.

Furthermore, the number of test set errors is usually smaller for
∑

i µ
∗
i Ki and

∑
i µ
∗
i,+Ki than

for each of the different components Ki. This supports the use of the error bound (21) and the
criteria proposed in Section 4. Also notice that

∑
i µ
∗
i,+Ki does often almost as well as

∑
i µ
∗
i Ki, and

sometimes even better: we can thus improve the computational complexity substantially without
a significant loss of performance. The performance of

∑
i µ
∗
i Ki and

∑
i µ
∗
i,+Ki is comparable with

the best soft margin SVM with RBF kernel. However, the RBF SVM needs additional tuning of
the kernel parameter using cross-validation, while the kernel learning approach doesn’t. Moreover,
when using the 2-norm soft margin SVM with auto-tuned hyperparameter C, we no longer need
to do cross-validation for C. This leads to an even smaller optimal cost function w∗S2 (compared
to the case SM2, with C = 1) and performs well on the test set, while it offers the advantage of
automatically adjusting C.

One might wonder why there is a difference between the SDP and the QCQP approach for the
twonorm data, since both seem to find positive weights µi. However, one shouldn’t forget that
the values in Table 3 are averages over 30 randomizations—for some randomizations the SDP has
actually found negative weights, although the averages are positive.

As a further example illustrating the flexibility of the SDP framework, consider the following
setup. Let {Ki}5i=1 be Gaussian kernels with σ = 0.01, 0.1, 1, 10, 100 respectively. Combining those
optimally with µi ≥ 0 for a 2-norm soft margin SVM, with auto-tuning of C, yields the results
in Table 4—averages over 30 randomizations in 80% training and 20% test sets. The test set
accuracies obtained for

∑
i µ
∗
i,+Ki are competitive with those for the best soft margin SVM with an

RBF kernel, tuned using cross-validation. The average weights show that some kernels are selected
and others are not. Effectively we obtain a data-based choice of smoothing parameter without
recourse to cross-validation.

µ1,+ µ2,+ µ3,+ µ4,+ µ5,+ C TSA SM2,C TSA RBF
Breast Cancer 0 0 3.24 0.94 0.82 3.6e+08 97.1 % 96.8 %
Ionosphere 0.85 0.85 2.63 0.68 0 4.0e+06 94.5 % 94.2 %
Heart 0 3.89 0.06 1.05 0 2.5e+05 84.1 % 83.2 %
Sonar 0 3.93 1.07 0 0 3.2e+07 84.8 % 84.2 %
Twonorm 0.49 0.49 0 3.51 0 2.0386 96.5 % 97.2 %

Table 4: The initial kernel matrices {Ki}5i=1 are Gaussian kernels with σ = 0.01, 0.1, 1, 10, 100
respectively. For c we used c =

∑
i trace(Ki)+trace(In). {µi,+}5i=1 are the average weights

of the optimal kernel matrix
∑

i µ
∗
i,+Ki for a 2-norm soft margin SVM with µi ≥ 0 and

auto-tuning of C. The average C-value is given as well. The test set accuracies (TSA) of
the optimal 2-norm soft margin SVM with auto-tuning of C (SM2,C) and the best soft
margin SVM with RBF kernel (RBF) are reported.
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In Cristianini et al. (2001) empirical results are given for optimization of the alignment using a
kernel matrix K =

∑N
i=1 µiviv

T
i . The results show that optimizing the alignment indeed improves

the generalization power of Parzen window classifiers. As explained in Section 4.6, it turns out that
in this particular case, the SDP in (51) reduces to exactly the quadratic program that is obtained
in Cristianini et al. (2001) and thus those results also provide support for the general framework
presented in the current paper.

7. Discussion

In this paper we have presented a new method for learning a kernel matrix from data. Our
approach makes use of semi-definite programming (SDP) ideas. It is motivated by the fact that
every symmetric, positive definite matrix can be viewed as a kernel matrix (corresponding to a
certain embedding of a finite set of data), and the fact that SDP deals with the optimization of
convex cost functions over the convex cone of positive semi-definite matrices (or convex subsets of
this cone). Thus convex optimization and machine learning concerns merge to provide a powerful
methodology for learning the kernel matrix with SDP.

We have focused on the transductive setting, where the labelled data are used to learn an
embedding, which is then applied to the unlabelled part of the data. Based on a new generalization
bound for transduction, we have shown how to impose convex constraints that effectively control
the capacity of the search space of possible kernels and yield an efficient learning procedure that can
be implemented by SDP. Furthermore, this approach leads directly to a convex method to learn
the 2-norm soft margin parameter in support vector machines, solving another important open
problem. Promising empirical results on standard benchmark datasets are reported; these results
underline the fact that the new approach provides a principled way to combine multiple kernels to
yield a classifier that may perform better than any individual kernel.

There are several challenges that need to be met in future research on SDP-based learning algo-
rithms. First, it is clearly of interest to explore other convex quality measures for a kernel matrix,
which may be appropriate for other learning algorithms. For example, in the setting of Gaussian
processes, the relative entropy between the zero-mean Gaussian process prior P with covariance
kernel K and the corresponding Gaussian process approximation Q to the true intractable posterior
process depends on K as

D[P ||Q] =
1
2

log det K +
1
2
trace

(
yT Ky

)
+ d,

where the constant d is independent of K. One can verify that D[P ||Q] is convex with respect to
R = K−1 (see e.g., Vandenberghe et al., 1998). Minimizing this measure with respect to R, and
thus K, is motivated from PAC-Bayesian generalization error bounds for Gaussian processes (see
e.g., Seeger, 2002) and can be achieved by solving a so-called maximum-determinant problem (Van-
denberghe et al., 1998)—an even more general framework that contains semi-definite programming
as a special case.

Secondly, the investigation of other parameterizations of the kernel matrix is an important topic
for further study. While the linear combination of kernels that we have studied here is likely to be
useful in many practical problems—capturing a notion of combining Gram matrix “experts”—it
is also worth considering other parameterizations as well. Any such parameterizations have to
respect the constraint that the quality measure for the kernel matrix is convex with respect to the
parameters of the proposed parameterization. One class of examples arises via the positive definite
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matrix completion problem (Vandenberghe et al., 1998). Here we are given a symmetric kernel
matrix K that has some entries which are fixed. The remaining entries—the parameters in this
case—are to be chosen such that the resulting matrix is positive definite, while simultaneously a
certain cost function is optimized, e.g., trace(SK) + log detK−1 where S is a given matrix. This
specific case reduces to solving a maximum-determinant problem which is convex in the unknown
entries of K, the parameters of the proposed parametrization.

A third important area for future research consists in finding faster implementations of semi-
definite programming. As in the case of quadratic programming (Platt, 1999), it seems likely
that special purpose methods can be developed to exploit the exchangeable nature of the learning
problem in classification and result in more efficient algorithms.
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Appendix A. Proof of result (28)

For the case Ki = viv
T
i , with vi orthonormal, the original learning problem (26) becomes

min
K

w(Ktr)

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiviv
T
i ,

or, according to (2),

min
K

max
α : α≥0,αT y=0

2αT e− αT G(Ktr)α (59)

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiviv
T
i .

Recall that

G(Ktr) = diag(y)Ktrdiag(y),

with

Ktr = K(1 : ntr, 1 : ntr)

=
m∑

i=1

µiKi(1 : ntr, 1 : ntr)

=
m∑

i=1

µivi(1 : ntr)vi(1 : ntr)T

=
m∑

i=1

µiv̄iv̄
T
i ,

where v̄i = vi(1 : ntr). Furthermore, because the vi are orthonormal, the µi in K =
∑m

i=1 µiviv
T
i

are the eigenvalues of K. This implies

trace(K) =
m∑

i=1

µi = eT µ

and

K º 0 ⇔ µ ≥ 0 ⇔ µi ≥ 0, i = 1, . . . , m.
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We can thus write (59) as:

min
µ : µ≥0,eT µ=c

max
α : α≥0,αT y=0

2αT e− αT diag(y)(
m∑

i=1

µiv̄iv̄
T
i )diag(y)α

= min
µ : µ≥0,eT µ=c

max
α : α≥0,αT y=0

2αT e−
m∑

i=1

µiα
T diag(y)v̄iv̄

T
i diag(y)α

= min
µ : µ≥0,eT µ=c

max
α : α≥0,αT y=0

2αT e−
m∑

i=1

µiα
T v̆iv̆

T
i α

= min
µ : µ≥0,eT µ=c

max
α : α≥0,αT y=0

2αT e−
m∑

i=1

µi(v̆T
i α)2

= max
α : α≥0,αT y=0

min
µ : µ≥0,eT µ=c

2αT e−
m∑

i=1

µi(v̆T
i α)2

with v̆i = diag(y) v̄i.
We interchanged the order of the minimization and the maximization. Standard results in

convex optimization (see e.g., Boyd and Vandenberghe, 2001) imply that we are allowed to do
this and still obtain the same optimal value, because the objective is convex in µ (it is linear in µ)
and concave in α, because the minimization problem is strictly feasible in µ, and the maximization
problem as well in α (we can skip the case for all elements of y having the same sign, because we
cannot even consider a margin in such a case). We further obtain:

max
α : α≥0,αT y=0

min
µ : µ≥0,eT µ=c

2αT e−
m∑

i=1

µi(v̆T
i α)2

= max
α : α≥0,αT y=0

[
2αT e− max

µ : µ≥0,eT µ=c

(
m∑

i=1

µi(v̆T
i α)2

)]

= max
α : α≥0,αT y=0

[
2αT e−max

i

(
c(v̆T

i α)2
)]

.

This can be reformulated as follows:

max
α,t

2αT e− ct (60)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αT y = 0,

α ≥ 0,

which gives the result (28).

Appendix B. Proof of Theorem 17

After substitution of wS1(Ktr) as defined in (4), (30) becomes:

min
K∈K

max
α

2αT e− αT G(Ktr)α : C ≥ α ≥ 0, αT y = 0, trace(K) = c, (61)
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with c a constant.
Assume that Ktr Â 0, hence G(Ktr) Â 0 (the following can be extended to the general case).

We note that wS1(Ktr) is convex in K (it is the pointwise maximum of affine functions of K).
Given the convex constraints in (61), the optimization problem is thus certainly convex in K. We
write this as:

min
K∈K,t

t : t ≥ max
α

2αT e− αT G(Ktr)α,

C ≥ α ≥ 0, αT y = 0, trace(K) = c. (62)

We will now express t ≥ maxα 2αT e−αT G(Ktr)α as an LMI. This can be done in exactly the same
way as we did before for the hard margin: we express the constraint using the dual minimization
problem. This will allow us to drop the minimization and use the Schur complement lemma to
obtain an LMI.

Define the Lagrangian of the maximization problem (4) by

L(α, ν, λ, δ) = 2αT e− αT G(Ktr)α + 2νT α + 2λyT α + 2δT (Ce− α),

where λ ∈ R and ν, δ ∈ Rn. By duality, we have

wS1(Ktr) = max
α

min
ν≥0,δ≥0,λ

L(α, ν, λ, δ) = min
ν≥0,δ≥0,λ

max
α

L(α, ν, λ, δ),

where ν ≥ 0 ⇔ νi ≥ 0 for i = 1, . . . , n, similarly for δ. Since G(Ktr) Â 0, at the optimum, we have

α = G(Ktr)−1(e + ν − δ + λy),

and can form the dual problem

wS1(Ktr) = min
ν, δ, λ

(e + ν − δ + λy)T G(Ktr)−1(e + ν − δ + λy) + 2CδT e : ν ≥ 0, δ ≥ 0.

We obtain that for any t > 0, the constraint wS1(Ktr) ≤ t is true if and only if there exist ν ≥ 0,
δ > 0 and λ such that

(e + ν − δ + λy)T G(Ktr)−1(e + ν − δ + λy) + 2CδT e ≤ t,

or, equivalently (using the Schur complement lemma), such that(
G(Ktr) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
º 0

holds. Taking this into account, (62) can be expressed as:

min
K,t,λ,ν,δ

t (63)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) e + ν − δ + λy

(e + ν − δ + λy)T t− 2CδT e

)
º 0,

ν ≥ 0
δ ≥ 0,

which yields (31). Notice that ν ≥ 0 ⇔ diag(ν) º 0, and thus an LMI; similarly for δ ≥ 0. ¤

36



Appendix C. Proof of result (39)

For the case Ki = viv
T
i , with vi orthonormal, the learning problem becomes

min
K

wS2(Ktr)

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiviv
T
i ,

or, according to (6),

min
K

max
α : α≥0,αT y=0

2αT e− αT

(
G(Ktr) +

1
C

Intr

)
α (64)

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiviv
T
i ,

which is equivalent to

min
K

max
α : α≥0,αT y=0

2αT e− 1
C

αT α− αT G(Ktr)α (65)

subject to trace(K) = c,

K º 0,

K =
m∑

i=1

µiviv
T
i .

Comparing this to (59), we see that both formulations are identical except for the terms in the
objective function that only depend on α (and not on the kernel matrix, i.e., not on the weights
µi for K =

∑m
i=1 µiviv

T
i ): these are 2αT e − 1

C αT α in (65) instead of only 2αT e in (59). Those
terms are conserved through the entire further derivation of the hard margin case, as can easily be
checked in Appendix A. For this reason, the result for the 2-norm soft margin case can be obtained
by replacing 2αT e with 2αT e− 1

C αT α in the result (60) for the hard margin case. This yields

max
α,t

2αT e− 1
C

αT α− ct

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αT y = 0,

α ≥ 0,

with v̆i = diag(y) v̄i = diag(y) vi(1 : ntr). This is exactly (39).
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Appendix D. Proof of result (52)

For the case Ki = viv
T
i , with vi orthonormal, the original learning problem (50) becomes

max
K

〈
Ktr, yyT

〉
F

(66)

subject to 〈K, K〉F ≤ 1,

K º 0,

K =
m∑

i=1

µiviv
T
i .

Working this further out gives:〈
Ktr, yyT

〉
F

= trace(K(1 : ntr, 1 : ntr)yyT )

= trace((
m∑

i=1

µivi(1 : ntr)vi(1 : ntr)T )yyT )

=
m∑

i=1

µitrace(v̄iv̄
T
i yyT )

=
m∑

i=1

µi(v̄T
i y)2, (67)

〈K, K〉F = trace(KT K)
= trace(KK)

= trace((
m∑

i=1

µiviv
T
i )(

m∑
j=1

µjvjv
T
j ))

= trace(
m∑

i,j=1

µiµjviv
T
i vjv

T
j )

= trace(
m∑

i=1

µ2
i viv

T
i )

=
m∑

i=1

µ2
i trace(viv

T
i )

=
m∑

i=1

µ2
i trace(vT

i vi)

=
m∑

i=1

µ2
i (68)

with v̄i = vi(1 : ntr). We used the fact that trace(ABC) = trace(BCA) (if the products are well-
defined) and that the vectors vi, i = 1, . . . , n are orthonormal: vT

i vj = δij . Furthermore, because
the vi are orthogonal, the µi in K =

∑m
i=1 µiviv

T
i are the eigenvalues of K. This implies

K º 0 ⇔ µ ≥ 0 ⇔ µi ≥ 0, i = 1, . . . , m. (69)
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Using (67), (68) and (69) in (66), we obtain the following optimization problem:

max
µi

m∑
i=1

µi(v̄T
i y)2

subject to
m∑

i=1

µ2
i ≤ 1

µi ≥ 0, i = 1, . . . , m,

which yields the result (52).

Appendix E. Proof of Theorem 20

For a function g : X × Y → <, define

Ê1g(X, Y ) =
1
n

n∑
i=1

g(Xi, Yi),

Ê2g(X, Y ) =
1
n

n∑
i=1

g(Xn+i, Yn+i).

The proof of the first part involves the following five steps:
Step 1. For any class F of real functions defined on X ,

sup
f∈F

er(f)− Ê1φγ(Y f(X)) ≤ sup
f∈F

Ê2φγ(Y f(X))− Ê1φγ(Y f(X)).

To see this, notice that er(f) is the average over the test set of the indicator function of Y f(X) ≤ 0,
and that φγ(Y f(X)) bounds this function.

Step 2. For any class G of [0, 1]-valued functions,

Pr

(
sup
g∈G

Ê2g − Ê1g ≥ E

(
sup
g∈G

Ê2g − Ê1g

)
+ ε

)
≤ exp

(−ε2n

4

)
,

where the expectation is over the random permutation. This follows from McDiarmid’s inequality.
To see this, we need to define the random permutation π using a set of 2n independent random
variables. To this end, choose π1, . . . , π2n uniformly at random from the interval [0, 1]. These are
almost surely distinct. For j = 1, . . . , 2n, define π(j) = |{i : πi ≤ πj}|, that is, π(j) is the position
of πj when the random variables are ordered by size. It is easy to see that, for any g, Ê2g − Ê1g
changes by no more than 2/n when one of the πi changes. McDiarmid’s inequality implies the
result.

Step 3. For any class G of [0, 1]-valued functions,

E

(
sup
g∈G

Ê2g − Ê1g

)
≤ R̂2n(G) +

4√
n

,

where R̂2n(G) = E supg∈G
1
n

∑2n
i=1 σig(Xi), and the expectation is over the independent, uniform,

{±1}-valued random variables σ1, . . . , σ2n. This result is essentially Lemma 3 of Bartlett and
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Mendelson (2001); that lemma contained a similar bound for i.i.d. Xi, but the same argument
holds for fixed Xi, randomly permuted.

Step 4. If the class F of real-valued functions defined on X is closed under negations, R̂2n(φγ ◦
F ) ≤ 1

γ R̂2n(F ), where each f ∈ F defines a g ∈ φγ ◦ F by g(x, y) = φγ(yf(x)). This bound is the
contraction lemma in Ledoux and Talagrand (1991).

Step 5. For the class FK of kernel expansions, notice (as in the proof of Lemma 26 of Bartlett
and Mendelson (2001)) that

R̂2n(FK) =
1
n
E max

f∈FK

2n∑
i=1

σif(xi)

=
1
n
Emax

K∈K
max
‖w‖≤1

〈w,
2n∑
i=1

σiΦ(Xi)〉

=
1
n
Emax

K∈K

∥∥∥∥∥
2n∑
i=1

σiΦ(Xi)

∥∥∥∥∥
≤ 1

n

√
Emax

K∈K
σ′Kσ

=
1
n

√
C(K),

where σ = (σ1, . . . , σ2n) is the vector of Rademacher random variables.
Combining gives the first part of the theorem. For the second part, consider

C(KB) = E max
K∈KB

σ′Kσ = Emax
µ

m∑
j=1

µjσ
′Kjσ,

where the max is over µ = (µ1, . . . , µm) for which the matrix K =
∑m

j=1 µjKj satisfies the conditions
K º 0 and trace(K) ≤ B. Now,

trace(K) =
m∑

j=1

µjtrace(Kj),

and each trace in the sum is positive, so the supremum must be achieved for trace(K) = B. So we
can write

C(KB) = BE max
K∈KB

m∑
j=1

σ′
K

trace(K)
σ.

Notice that σ′Kσ is no more than λ‖σ‖2 = nλ, where λ is the maximum eigenvalue of K. Using
λ ≤ trace(K) = B shows that C(KB) ≤ Bn.

Finally, for K+
B we have

C(K+
B) = E max

K∈K+
B

σ′Kσ

= Emax
µj

m∑
j=1

µjσ
′Kjσ

= Emax
j

B

trace(Kj)
σ′Kjσ.
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Since each term in the maximum is non-negative, we can replace it with a sum to show that

C(K+
B) ≤ BEσ′


∑

j

Kj

trace(Kj)


 σ

= Bm.

Alternatively, we can write σ′Kjσ ≤ λj‖σ‖ = λjn, where λj is the maximum eigenvalue of Kj .
This shows that

C(K+
B) ≤ Bn max

j

λj

trace(Kj)
.
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