NFA-based Filtering for Efficient and Scalable XML Routing

Yanlet Diao, Hao Zhang, Michael]. Franklin

Computer Science Division

University of California, Berkeley

{diaoyl, nhz, franklin}@cs.berkeley.edn

Abstract

Soon, much of the data exchanged over the Internet will be encoded i XML. This
encoding can be used as the basis for sophisticated filtering and content-based routing of
data using XML queries. Filtering systems such as XFilter represent XML path expressions
as Finite State Machines and index them; In contrast, work on continuous query processing for
database systems has focused on grouping common parts of relational-style quertes. It 1is
clear that for scalable and efficient XML filtering and routing both types of techniques will
be needed. We propose a new approach based on Nondeterministic Finite Automata (NFA) that
indexes path expressions and captures the ovetlap between queries naturally. The approach
also has the potential of gracefully handling other problems in this environment such as
concurrent filtering and online updates. Preliminary experimental results show that the NFA

approach can dramatically improve filtering performance.

1 Introduction

The vast range of information available on the Internet has spawned tremendous interest in
techniques for filtering and routing of data based on user preferences. Systems that perform
this function are known as Publish/Subscribe systems. The ability to augment data with
semantic and structural information using XMIL-based languages raises the potential for
much mote accurate and useful delivery of data. In an XML-based publish/subsctibe
system, users express their interests as queries over XML documents. Typically these
quertes involve path expressions. Continuously arriving streams of XML documents are
filtered and routed based on these queries. For systems that support many users, filtering

efficiency and system scalability are of paramount concern.

Publish/subscribe systems have long been developed using Information Rettieval
techniques based on both the Boolean and the “bag-of-words” models. More recently
database researchers have been developing Continuous Query systems such as NiagaraCQ
[CDTO0], OpenCQ [LPT99] and TriggerMan [HCH99], that aim to provide similar
functionality using models based on relational and XML query languages. A key
optimization used by some of these systems is the grouping of similar queries in order to
improve performance and scalability by minimizing redundant work. At the same time,
other projects have mvestigated query-based filtering over streams of XML encoded-data
[AF00, ILWO0O0]. This latter work has focused on the efficient evaluation of path expressions
over streaming data, using some form of a Finite State Machine (FSM) to represent the path

expressions.

FSMs are a natural and effective way to represent and process path expression queries.
Each element of a path expression is mapped to a state. A transition is fired when an
element is found m the document that matches that transition from the currently active
state. If an “accept” state is reached, then the document is said to satisfy the query. When
an XML document arrives to be filtered, it can be parsed with an event-based parser; each
time a new element or the end of an element is encountered, an event is raised. These

events trigger transitions in the query FSMs.

The original wortk on XFilfer [AF00] focused on techniques to allow many queries
(FSMs) to be processed sizultaneously. XFilter implements a special index and related
optimizations so that when an XML document arrives to be filtered, the FSMs that represent
potential matching queries can be quickly identified and executed. ~ Such techniques were
indeed shown to be effective, but unlike the work on database continuous queries, no
attempt was made to eliminate redundant processing by combining similar queries. For
large-scale systems, however, it is likely that significant commonality among user interests
will exist. Thus, we have developed an alternative approach to supporting XMIL.-based
publish/subsctibe systems. Rather than representing each querty as a separate Deterministic
Finite Automaton (DFA), the approach we describe here combines multiple queries into a
single Nondeterministic Finite Auntomaton (NFA). The use of an NFA inherently allows a
dramatic reduction in the number of states needed to represent the set of user queries and
also greatly simplifies the bookkeeping that must be done while simultaneously processing

large numbers of queries. In addition, the approach also has the potential of gracefully

handling other problems in this environment such as concurrent filtering, online updates,

and disk-resident index structures.

The remainder of the paper is organized as follows: In Section 2 we introduce and
discuss the NFA-based model. In Section 3 we present the techniques of constructing a
combined NFA, building an index, and executing the NFA. Preliminary experimental results

are shown in Section 4. Section 5 concludes the paper with a discussion on future work.

2 An NFA-based Model

Following XFilter, our current work 1s based on XPath [CID99], which allows parts of XML
documents to be addressed according to their logical structure. A query path expression in
XPath is composed of a sequence of /location steps. Each location step consists of an axis, a
node test and zero or more predicates. An axis specifies the hierarchical relationship between the
nodes. The most common axes use a patent-child operator /> ot a descendent-or-self
operator “//”. A node test can be an element name or a wildcard operator “, which
matches any element name. Predicates can be applied to attributes of an element, to the
contents of an element, or may contain references to other elements in the document. In
our current NFA-based implementation, such predicates are not yet supported, so they are

not discussed further in this paper.

The descendent-ot-self operator “//” means the associated node test can be satisfied at
any level at or below the current document level. These operators introduce non-
determinism into the model. When query evaluation 1s at such a node, if a matching element
arrives, the processing may either transition to the next state, or can remain in the current
state awaiting further input.
The bookkeeping

mechanisms used o Q1=/a/b
Q2=/a/c
Q3=/a/b/c Oa%
determinism can also be Q4=/a//b/c
Q5=/a/*/c
exploited when combining Q6=/a//c
. . . Q7=/a/*/*/c
multiple distinct queries Q8=/a/b/c

manage this non-

C/@{QS}
*
\Qé@aqn

Figure 1: XPath Queries and A Corresponding NFA

into a single machine.

Figure 1 shows an

example of an NFA that represents eight queries. A circle denotes a state, a directed edge
represents a transition, and the symbol on the edge represents the input symbol that triggers
the transition. Shaded circles represent states shared by queries. We use two concentric

circles to represent an accept state and mark it with the IDs of the corresponding queries.

In the figure, note that the common prefixes of all the queries are shared. Note also, that
the NFA contains multiple accept states, corresponding to the accept states of the individual
quertes. If multiple queries share the same accept state, then they are identical queries (recall

that predicates are not handled in this implementation).

An arriving document is parsed and the events raised by the parser drive the transitions
in the NFA. Since 1t 1s an NFA, many states can be active simultaneously. When an “end-
of-element” event is raised the execution must backtrack to previous states. A run-time
stack structure (described in the next section) is used to track the active and previously
processed states. Finally, it is important to note that, unlike an NFA used to check a regular
language, the filtering task here requires that processing continue until all possible accept
states have been reached. The queries corresponding to the set of accept states ultimately

reached are those that match the input document.

3 Implementation

3.1 Constructing a Combined NFA

As described in the previous section, two Location Steps: NFA Fragments:
common relationships specified in the axis of a /a Oa%Q
location step are given by the parent-child //a 05%83%0
operator ‘/” and the descendent-or-self operator /* O ;O

“//”. The wildeard operator “ is also Figure 2: Three Basic Location Steps and
supported in XPath to represent any element their NFA Fragments

name in a node test. Thus, the three basic location steps ate “/a”, “//a”, and “/*”, where @’
is an arbitrary element name.' Figure 2 shows the directed graphs, called NFA fragments, built
for these basic location steps. In the NFA fragment for location step “//a”, we introduce a

null transition marked by the symbol €’ to a state with a self-loop. This null transition is

1 XPath allows path expressions to begin with an element name. This is semantically equivalent to placing a
“//” operator at the beginning of the path, and is treated as such by the algorithm.

(@) (b) © (d)
Figure 3: Combining NFAs

needed so that when combining NFA fragments representing “//” and “/” steps, the
resulting NFA accurately maintains the different semantics of both steps (see the example in
Figure 3(c) below).

The NFA for a path expression can be built by concatenating all the NFA fragments for
its location steps. The final step of the NFA for a path expression 1s the accept state for
that expression. Once NFAs have been constructed for all the queries, the next task is to
combine them into a single NFA. This is done by inserting one query at a time. All query
NFAs share the same initial state. To insert a new query, we traverse the combined NFA
until either: 1) the accept state of the input query is reached, or 2) a state is reached for
which there 1s no transition that matches the corresponding transition of the input query. In
the first case, we make that final state an accept state (if it 1s not already one) and add the
query ID to the query set associated with the accept state. In the second case we create a
new branch from the last state reached in the combined NFA that consists of the
mismatched transition and the remainder of the query NFA. Figure 3 shows four examples

of this process.

Figure 3(a) shows the process of merging a fragment consisting of ““/a” with a state in
the combined NFA that represents a “/b” step. Figure 3(b) shows that this process treats
the “’ symbol in the same way that it treats the other symbols in the alphabet. Figure 3(c)
shows the process of merging a “//a” step with a “/b” step, while Figure 3(d) shows the
metging of a “//a” step with a “//b” step. Note that in all cases, the simple rule specified

above 1s followed.

The shared NFA shown in Figure 1 was the result of applying this process to the eight
queries shown in that figure. Note that the process can also be applied imncrementally, so that

new queries can easily be added to an existing system.

3.2 Building an Index

After creating a combined NFA, the NFA is translated into a tree structure for efficient
evaluation. In this index, a data structure is created for each state. The state data structure
contains: 1) The ID of the state, 2) type information about the state (i.e., if it is an accept
state ot a //-child as described below), 3) a small hash table that contains all the legal
transitions from that state, and 4) for accept states, a list of the corresponding queries is also
maintained. The transition hash table contains [symbol, statel D] pairs where the sy#zbol, which
1s the key, indicates the label of the transition, and the szaze]D is a pointer to the state that the

transition leads to.

Note that 1n addition to element names, two special symbols can be used in the hash
table. First is the wildcard symbol “°, which matches any element name. Second is a special
symbol for “//” steps. Rather than creating hash table entries for the null transitions to self-
loop states used to represent ““//” steps in the NFA, the null transition is tepresented using
the special “//” symbol and its hash table entty is set to point to the child (self-loop) state.
As described in the next section, transitions marked with “//” are treated specially by the
evaluation mechanism. This special treatment allows us to remove the self-loop from the

child state. We refer to such a child state as a //-child”.

Because each state has its own hash table, in effect, the NFA is translated into a tree of
hash tables. The implementation is thus a variant of a hash table based NFA, which has
been shown to provide small time complexity for inserting/deleting states, inserting/deleting
transitions, and actually performing the transitions [Wat97]. This is important for large NFA
systems, as studies have shown that the performance bottleneck for many practical NFA
systems is transition, including both the time spent in performing look ups on the transition

table and the time to do the actual transition [Mao97].

3.3 Executing the NFA
When an XML document artives, the execution of the NFA starts at the initial state. When a

new element name is read from the XML document, the execution engine follows all

3 {Q1} 5 51012 §
Index %D 1Q3,Q8} 116
/ 3976 3976
p 2 2 2
g 1 1 1 1
initial read a read b read c
match Q1 match Q3 Q8
Q5Q6 Q4
3976 Run-time
> 2 Stack
An XML Document:ab c /c /b /c 1 1 1
read /c read read /a

Figure 4: An Example of the NFA Execution. In the index, the number on the top-left of

each hash table is a state ID and hash tables with a bold border represent accept states. In

matching transitions from all currently active states. The transitions are performed as
follows. For each active state, four checks are performed. First, the incoming element
name is looked up in the state’s hash table. If it is present, the corresponding starelD is
added to the list of target states. Second, the hash table 1s checked for a “*” symbol, and if
one is present, its corresponding szazelD is added to the list. Third, the type information of
the state is checked, and if the state itself is a “//-child” state, then its own stazelD is added
to the list. Finally, the hash table is checked for the “//” symbol, and if one is present, the
//-child state indicated by the cotresponding statelD is processed immediately, according to
these same rules” Note that the processing done by the last two checks effectively
implements a “self-loop” from the combined NFA; as stated in the previous section, such

self-loops are removed when translating the combined NFA into its tree representation.

After all the currently active states have been checked in this manner, the list of target
states is pushed onto the top of the run-time stack. The target states then become the
“active” states for the next event. When an end of the element is encountered during the
XML document parse, the algorithm needs to backtrack to previously active states. In our

implementation, this backtracking 1s implemented by popping the run-time stack. When an

2 Note that we collapse any instances of multiple adjacent “//” operatots in to a single “//” opetator, which is
semantically equivalent. In this way, we ensure that the process does not traverse more than one additional
level in the tree, since //-child nodes do not themselves contain a “//” symbol.

accept state is reached during this processing, all of the queries associated with the state are

added to the list of matching queries.

An example of this execution model is shown in Figure 4. On the left of the figure is the
index created for the NFA of the eight queries shown in Figure 1. The right of the figure
shows the evolution of the contents of the runtime stack as an example XML document is

parsed.

4 Initial Performance Results

In order to examine the potential performance benefits of the NFA-based approach, we
implemented it and compared it to an implementation of the XFilter approach. Both of the
implementations were written in Java. For the experiments, we followed the experimental
set-up that was used in the original XFilter study [AFO0]. Due to space considerations, we
only summarize the key aspects of that set-up here. The reader is referred to [AF00] for
additional details. User queries and XML documents were created based on the NITF
(News Industry Text Format) DTD [Cov99]. XML documents were generated using IBM’s
XML Generator tool [IBM99]. We re-wrote the query generator of XFilter in Java that takes
a DTD as input and creates a set of XPath queries based on input parameters. We
developed an event-based parser using the Xerces toolkit [Apa99] that contains a validating
XML parser supporting SAX 1.0, a standard interface for event-based XML parsing [Meg98].
The experiments were performed on a Sun Ultra-5 workstation with 128MB memory

running JVM v1.1.6. All data structures were kept in memory in the experiments.

We studied the performance of both approaches under different workloads. Workloads
were generated by changing the parameters of XML documents and user queries. Two
workload parameters used were the number of queries (Q) and the maximum depth of XML
documents and XPath queties (D). D took a value of {2, 4, 6, 8, 10}. We generated a set of
XML documents for each value of D in advance. At the beginning of each set of
experiments, we set D to a particular value and varied Q. For each Q value, we generated a
set of queries with the fixed D and QQ as input parameters, loaded them into either an XFilter
query index or an NFA structure. In these experiments (as in [AFO00]) the structures were
kept in memory. Then a set of documents generated using the same maximum depth value
(D) were read and matched against the queries. We measured “filter time” as the time to find

all queries that match one XML document — the cost of generating documents and queries

18000 4
16000 4
14000 4
12000 4
10000 4
8000 ——NFA

6000 - —&— XFilter
4000 +
2000 -

400
350
300
250
200
150
100
50

Filter Time (msec)

o
4

L 4
L 4

Number of States (x1K)

1 20 40 60 80 10 120
Number of Queries (x1K) Number of Queries (x1K)

Figure 5: Filter Time with Varying Q Figure 6: Number of States with Varying Q

were not included in this metric. The average filter time per document over a set of 20 XML

documents were used for the graphs shown below.

Similar results were found for sets of experiments with different values of D. In the
interest of space, we only show the results with D set to 6. Figure 5 shows the increase of
filter time as the number of queries is increased. It can be observed that the NFA approach
runs much faster than XFilter in this case. When the number of queries is large, the NFA
runs 5 to 8 times faster. The performance gain comes partly from grouping queries and

partly from fast transitions in the execution by using the new index.

To investigate the grouping benefits of the NFA approach, we also examined the
number of states required in the XFilter and NFA approaches to store the query set. Figure
6 shows the results of these measurements for the experiment just described (i.e., D=0).
The number of queries is also included in it for comparison. It can be observed that as
expected, the number of states in NFA increases at a much slower rate than the number of
states in XFilter because the latter does not group queries. Thus, we would expect the
performance of the NFA approach to scale much better the XFilter in large-scale

applications.

5 Conclusions

The vast range of mnformation available on the Internet and the expected popularity of XML
for data transfer has raised interest in techniques for large-scale filtering and routing of data
based on user preferences. In this paper, we proposed an NFA-based approach for
representing queries in an XML-based publish/subsctibe system. The advantages of this
approach are that it effectively indexes queries while also grouping them to avoid redundant

storage and processing. We described the implementation of the index and a corresponding

execution algorithm. Preliminary experimental results show using this approach greatly

improves filtering performance.

In a publish and subscribe system, there are many other issues to be solved. We believe
that the NFA-based approach has the potential of gracefully solving most problems. One 1s
concurrent filtering. Since our index does not change when the combined NFA is executed
and all the filtering processes are read-based processes, they can be performed concurrently.
Another problem is online updates. A locking mechanism can be applied to the tree-
structured index. A good schedule of updates based on the privilege of the user and the
urgency of the updates will provide better concurrency. Yet another problem is that when
the number of user queries is large, the index does not fit in memory any more. Parallel
computing based on hash table partitioning is naturally supported by our NFA-based

approach.

References

[Apa99] Apache XML project. Xetces Java Parser 1.2.3 Release. http://xmlapache.org/xerces-
j/index.html, 1999.

[AF00] M. Altinel, M. J. Franklin. Efficient Filtering of XML Documents for Selective
Dissemination of Information. In Proceedings of the 26" International Conference on Very Large
Data Bases, Sep. 2000.

[CDTO00] J. Chen, D. Dewitt, F. Tian and Y. Wang. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In Proceedings of 2000 ACM SIGMOD International
Conference on Management of Data, May 2000.

[CovI9] R. Covet. The SGML/XML Web Page. http:/ /www.w3.org/ TR /xslt, Nov. 1999.

[HCH99] E.N. Hanson, C. Carnes, L. Huang, M. Konyala, L.. Noronha, S. Parthasarathy, J. B. Park
and A. Vernon. Scalable Trigger Processing. In Proceedings of IEEE International Conference
on Data Engineering, Mar. 1999.

IBM99] A. L. Diaz, D. Lovell. XML Generatot.
http://www.alphawotks.ibm.com/tech/xmlgeneratort, Sep., 1999.

[ILWO00] Z. Ives, A. Levy, D. Weld. Efficient Evaluation of Regular Path Expressions on
Streaming XML Data. Technical Report, University of Washington, 2000.

[LPT99] L. Liu, C. Pu, W. Tang. Continual Queries for Internet Scale Event-Driven Information
Delivery. Special Issue on Web Technologies, IEEE TKDE, Jan. 1999.

[Mao97] V. L. Maout. Tools to Implement Automata, a First Step: ASTL. In Proceedings of the 2+
International Workshop on Implementing Auntomata, Sep. 1997.

[Meg98] Megginson Technologies. SAX 1.0: A free API for event-based XML parsing.
http://www.megginson.com/SAX/index.html, May, 1998.

[Wat97] B. W. Watson. Practical Optimization for Automata. In Proceedings of the 2# International
Workshop on Implementing Automata, Sep. 1997.

10

11

