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Abstract

We present a class of algorithms for Independent Component Analysis (ICA) which
use contrast functions based on canonical correlations in a reproducing kernel Hilbert
space. On the one hand, we show that our contrast functions are related to mutual
information and have desirable mathematical properties as measures of statistical de-
pendence. On the other hand, building on recent developments in kernel methods, we
show that these criteria and their derivatives can be computed efficiently. Minimizing
these criteria leads to flexible and robust algorithms for ICA. We illustrate with sim-
ulations involving a wide variety of source distributions, showing that our algorithms
outperform many of the presently known algorithms.

1 Introduction

Independent component analysis (ICA) is the problem of recovering a latent random vector
x = (z1,...,Ty,) from observations of m unknown linear functions of that vector. The
components of z are assumed to be mutually independent. Thus, an observation y =
(Y1, ..., Ym) is modeled as:

y = Az, (1)

where z is a latent random vector with independent components, and where A is an mxm
matrix of parameters. Given N independently, identically distributed observations of y,
we hope to estimate A and thereby to recover the latent vector z corresponding to any
particular y by solving a linear system.

By specifying distributions for the components z;, one obtains a parametric model
that can be estimated via maximum likelihood (Bell and Sejnowski, 1995, Cardoso, 1999).



Working with W = A~! as the parameterization, one readily obtains a gradient or fixed-
point algorithm that yields an estimate W and provides estimates of the latent components
via & = Wy (Hyvérinen et al., 2001).

In practical applications, however, one does not generally know the distributions of the
components z;, and it is preferable to view the ICA model in Eq. (1) as a semiparamet-
ric model in which the distributions of the components of z are left unspecified (Bickel
et al., 1998). Maximizing the likelihood in the semiparametric ICA model is essentially
equivalent to minimizing the mutual information between the components of the estimate
& = Wy (Cardoso, 1999). Thus it is natural to view mutual information as a contrast
function to be minimized in estimating the ICA model. Moreover, given that the mutual
information of a random vector is nonnegative, and zero if and only if the components of
the vector are independent, the use of mutual information as a function to be minimized is
well motivated, quite apart from the link to maximum likelihood (Comon, 1994).

Unfortunately, the mutual information is difficult to approximate and optimize on the
basis of a finite sample, and much research on ICA has focused on alternative contrast
functions (Amari et al., 1996, Comon, 1994, Hyvérinen and Oja, 1997). These have either
been derived as expansion-based approximations to the mutual information, or have had
a looser relationship to the mutual information, essentially borrowing its key property of
being equal to zero if and only if the arguments to the function are independent.

The earliest ICA algorithms were (in retrospect) based on contrast functions defined in
terms of expectations of a single fixed nonlinear function, chosen in an ad-hoc manner (Jut-
ten and Herault, 1991). More sophisticated algorithms have been obtained by careful choice
of a single fixed nonlinear function, such that the expectations of this function yield a ro-
bust approximation to the mutual information (Hyvérinen and Oja, 1997). An interesting
feature of this approach is that links can be made to the parametric maximum likelihood
formulation, in which the nonlinearities in the contrast function are related to the assumed
densities of the independent components. All of these developments have helped to focus
attention on the choice of particular nonlinearities as the key to the ICA problem.

In the current paper, we provide a new approach to the ICA problem based not on a
single nonlinear function, but on an entire function space of candidate nonlinearities. In
particular, we work with the functions in a reproducing kernel Hilbert space, and make use
of the “kernel trick” to search over this space efficiently.

We define a contrast function in terms of a rather direct measure of the dependence
of a set of random variables. Considering the case of two univariate random variables x{
and x9, for simplicity, and letting F be a vector space of functions from R to R, define
the F-correlation pr as the maximal correlation between the random variables fi(x1) and
fa(z2), where fi and fo range over F:

- B cov(fi(z1), fa(z2))
pr = gmax com(fim). folm)) = s o D)) 2 (var fa(we)) /2

Clearly, if the variables x1 and xo are independent, then the F-correlation is equal to zero.
Moreover, if the set F is large enough, the converse is also true. For example, it is well
known that if F contains the Fourier basis (all functions of the form x +— ¢“* where w € &),
then pr = 0 implies that z; and xo are independent.



To obtain a computationally tractable implementation of the F-correlation, we make use
of reproducing kernel Hilbert space (RKHS) ideas. Let F be an RKHS on R, let K (x,y) be
the associated kernel, and let ®(z) = K(-,z) be the feature map, where K (-, x) is a function
in F for each . We then have the well-known reproducing property (Saitoh, 1988):

f(z) = (®(x),f), VfEF VreckX.

This implies:
corr(f1(z1), f2(z2)) = corr ((2(21), f1), (®(22), f2)) -

Consequently, F-correlation is the maximal possible correlation between one-dimensional
linear projections of ®(x;) and ®(x2). This is exactly the definition of the first canonical
correlation between ®(z1) and ®(z2) (Hotelling, 1936). This suggests that we can base an
ICA contrast function on the computation of a canonical correlation in function space.

Canonical correlation analysis (CCA) is a multivariate statistical technique similar in
spirit to principal component analysis (PCA). While PCA works with a single random
vector and maximizes the variance of projections of the data, CCA works with a pair of
random vectors (or in general with a set of m random vectors) and maximizes correlation
between sets of projections. While PCA leads to an eigenvector problem, CCA leads to a
generalized eigenvector problem. Finally, just as PCA can be carried out efficiently in an
RKHS by making use of the “kernel trick” (Schélkopf et al., 1998), so too can CCA (as
we show in Section 3.2). Thus we can employ a “kernelized” version of CCA to compute a
flexible contrast function for ICA.

There are several issues that must be faced in order to turn this line of reasoning into
an ICA algorithm. First, we must show that the F-correlation in fact has the properties
that are required of a contrast function; we do this in Section 3.1. Second, we must show
how to formulate the canonical correlation problem with m random variables, and show
how to solve the problem efficiently using kernel functions. This is easily done, as we show
in Section 3.2. Third, our method turns out to require the computation of generalized
eigenvectors of matrices of size mN xmN. A naive implementation of our algorithm would
therefore require O(m3N?) operations. As we show in Section 4, however, by making use
of incomplete Cholesky decomposition we are able to solve the kernelized CCA problem in
time O(N (h(N/n))?), where 7 is a precision parameter and h(t) is a slowly growing function
of t. Moreover, in computing the contrast function, the precision 7 need only be linear in
N; consequently, we have a linear time algorithm. Finally, our goal is not simply that of
computing the contrast function, but of optimizing it, and for this we require derivatives of
the contrast function. Although incomplete Cholesky factorization cannot be used directly
for computing these derivatives, we are able to derive an algorithm for computing derivatives
with similar linear complexity in N (see Section 4.6).

There are a number of other interesting relationships between CCA and ICA that we
explore in this paper. In particular, for Gaussian variables the CCA spectrum (i.e., all
of the eigenvalues of the generalized eigenvector problem) can be used to compute the
mutual information (essentially as a product of these eigenvalues). This suggests a general
connection between our contrast function and the mutual information, and it also suggests
an alternative contrast function for ICA, one based on all of the eigenvalues and not simply
the maximal eigenvalue. We discuss this connection in Section 3.4.



The remainder of the paper is organized as follows. In Section 2, we present background
material on CCA, RKHS methods, and ICA. Section 3 provides a discussion of the contrast
functions underlying our new approach to ICA, as well as a high-level description of our
ICA algorithms. We discuss the numerical linear algebra underlying our algorithms in
Section 4, the optimization methods in Section 5, and the computational complexity in
Section 6. Finally, comparative empirical results are presented in Section 7, and we conclude
in Section 8.

2 Background

In this section we provide enough basic background on canonical correlation, kernel methods
and ICA so as to make the paper self-contained. For additional discussion of CCA see Borga
et al. (1997), for kernel methods see Scholkopf and Smola (2001), and for ICA see Hyvérinen
et al. (2001).

2.1 Canonical correlation

Given a random vector z, principal component analysis (PCA) is concerned with finding a
linear transformation such that the components of the transformed vector are uncorrelated.
Thus PCA diagonalizes the covariance matrix of z. Similarly, given two random vectors,
x1 and x9, of dimension p; and pa, canonical correlation analysis (CCA) is concerned
with finding a pair of linear transformations such that one component within each set of
transformed variables is correlated with a single component in the other set. Thus, the
correlation matrix between x1 and x is reduced to a block diagonal matrix with blocks of

1 .
size two, where each block is of the form ( N Plz ) The p;, at most p = min{py,p2} of
(]

which are nonzero, are called the canonical correlations.

As in the case of PCA, CCA can be defined recursively, component by component.
Indeed, the first canonical correlation can be defined as the maximum possible correlation
between the two projections ¢z and &1 2o of 71 and zo:

p(x1,72) = max corr(&] @1, &5 )
1,82
B cov(&Fzq, ' 29)
TRy T \1/2 T \1/2
; (var & xl) (var & xg)

T
C e &1 Cr2&2

G182 (5?01151)1/2 ( 502252)1/2’

Cnn Cri2

where C =
( Co1 Co
with respect to &1 and &», we obtain:

> denotes the covariance matrix of (z1,z9). Taking derivatives

_ & Chaéo

C — 51 71252
128 = TE

Cii&
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and
51T012§2

5502252

Normalizing the vectors & and & by letting §1TCH£1 =1 and §2TCQQ§2 = 1, we see that
CCA reduces to the following generalized eigenvalue problem:

(0 012>(§1>:p<011 0>(§1> )
Cgl 0 52 0 022 52 )
This problem has p; + py eigenvalues: {p1, —p1,...,pp, —pp,0,...,0}.

Note that the generalized eigenvector problem in Eq. (2) can also be written in following

f :
o (Cn 012)<§1)_(1+)(011 0)(51)
Ca1 O 3 P 0 Co & )7

with eigenvalues {1 + p1,1 — p1,...,1 4+ pp,1 — pp,1,...,1}. Note, moreover, that the
problem of finding the maximal generalized eigenvalue, A\pax = 1 4 Pmaz, Where ppae is
the first canonical correlation, is equivalent to finding the minimal generalized eigenvalue,
Amin = 1 — pmaz- In fact, this latter quantity is bounded between zero and one, and
turns out to provide a more natural upgrade path when we consider the generalization to
more than two variables. Thus henceforth our computational task will be that of finding
minimum generalized eigenvalues.

02161 = C228.

2.1.1 Generalizing to more than two variables

There are several ways to generalize CCA to more than two sets of variables (Kettenring,
1971). The generalization that we consider in this paper, justified in Appendix A, is the fol-

lowing. Given m multivariate random variables, 1, ..., Z,,, we find the smallest generalized
eigenvalue \(x1,...,xzy,) of the following problem:
Cn Cip - Cip &1 Chn 0 - 0 &1
Cor Coy -+ Cop &2 0 Cy -+ 0 &2
: : : : - : : : : ’ (3)
or, in short, C§ = ADE, where C is the covariance matrix of (x1,x2,...,2,) and D is the

block-diagonal matrix of covariances of the individual vectors x;.

As we discuss in Appendix A, the minimal generalized eigenvalue has the fixed range
[0,1], whereas the maximal generalized eigenvalue has a range dependent on the dimen-
sions of the variables. Thus the minimal generalized eigenvalue is more convenient for our
purposes.

2.2 Reproducing kernel Hilbert spaces

Let K(x,y) be a Mercer kernel (Saitoh, 1988) on X = RP, that is, a function for which the
Gram matriz K;; = K(x;,x;) is positive semidefinite for any collection {x;};—1, n in X.



Corresponding to any such kernel K there is a map ® from X to a feature space F, such
that:

K(z,y) = (2(2), 2(y))-

That is, the kernel can be used to evaluate an inner product in the feature space. This is
often referred to as the “kernel trick.”

One particularly attractive instantiation of such a feature space is the reproducing kernel
Hilbert space (RKHS) associated with K. Consider the set of functions {K(-,z) : x € X'},
where the dot represents the argument to a given function and x indexes the set of functions.
Define a linear function space as the span of such functions. Such a function space is unique
and can always be completed into a Hilbert space (Saitoh, 1988). The crucial property of
these Hilbert spaces is the “reproducing property” of the kernel:

f(x) = (K(x), f) VfeF. (4)

Note in particular that if we define ®(x) = K(-,z) as a map from the input space into the
RKHS, then we have:

(®(x), @(y)) = (K(,2), K(y)) = K(z,y),

and thus ®(z) = K(-,z) is indeed an instantiation of the “kernel trick.”

For concreteness we restrict ourselves to translation-invariant kernels in this paper; that
is, to kernel functions of the form K(z,y) = k(x — y). In this case the RKHS can be
described succinctly using Fourier theory (Girosi et al., 1995, Smola et al., 1998). Indeed,
for a given function k, F is composed of functions f € L?(RP) such that:

FwP
/W s < . (5)

where f(w) is the Fourier transform of f and v(w) is the Fourier transform of & (which must
be real and positive to yield a Mercer kernel). This interpretation shows that functions in
the RKHS F have a Fourier transform that decays rapidly, implying that F is a space of
smooth functions.

Finally, consider the case of an isotropic Gaussian kernel in p dimensions:
1 2
K(z,y) = Go(z —y) = exp { —o5lle —yll” ) -

In this case the Fourier transform is v(w) = (2w0?)P/? exp (—U—;HwHQ), and the feature
space F, contains functions whose Fourier transform decays very rapidly. Alternatively,
functions in F, can be seen as convolutions of functions of L? with a Gaussian kernel
G,/ 3(x) = exp (—%HxHQ) Note that, as o increases from 0 to oo, the functions G,/ 5
range from an impulse to a constant function, and the spaces F, decrease from L?(RP) to
J.



2.3 Independent component analysis

The independent component analysis (ICA) problem that we consider in this paper is based
on the following statistical model:

y = Az, (6)

where x is a latent random vector with m independent components, A is an m X m matrix
of parameters, assumed invertible, and y is an observed vector with m components. Based
on a set of N independent, identically distributed observations of the vector y, we wish to
estimate the parameter matrix A.! From the estimate of A we can estimate the values of
corresponding to any observed y by solving a linear system of equations. The distribution of
x is assumed unknown, and we do not care to estimate this distribution. Thus we formulate
ICA as a semiparametric model (Bickel et al., 1998).

Our goal is to find a maximum likelihood estimate of A. Let us first consider the
population version of ICA, in which p*(y) denotes the true distribution of y, and p(y)
denotes the model. We wish to minimize the Kullback-Leibler (KL) divergence between the
distributions p* and p: D(p*(y) || p(y)). Define W = A~1, so that # = Wy. Since the KL
divergence is invariant with respect to an invertible transformation, we can apply W to y
in both arguments of the KL divergence, which implies our problem is equivalent to that of
minimizing D(p*(z) || p(x)).

Let p(x) denote the joint probability distribution obtained by taking the product of the
marginals of p*(z). We have the following decomposition of the KL divergence (see Cover
and Thomas, 1991):

D(p*(x) || p(x)) = D(p"(x) [| p(x)) + D(p(x) || p(2)),

for any distribution p(x) with independent components. Consequently, for a given A, the
minimum over all possible p(z) is attained precisely at p(x) = p(x), and the minimal value
is D(p*(x) || p(x)), which is exactly the mutual information between the components of
x = Wy. Thus, the problem of maximizing the likelihood with respect to W is equivalent
to the problem of minimizing the mutual information between the components of x = Wy.

ICA can be viewed as a generalization of principal components analysis (PCA). While
PCA yields uncorrelated components, and is based solely on second moments, ICA yields
independent components, and is based on the mutual information, which is in general a
function of higher-order moments. Clearly an ICA solution is also a PCA solution, but the
converse is not true. In practice, ICA algorithms often take advantage of this relationship,
treating PCA as a preprocessing phase. Thus one whitens the random variable y, multiply-
ing y by a matrix P such that § = Py has an identity covariance matrix. (P can be chosen
as the inverse of the square root of the covariance matrix of y). There is a computational
advantage to this approach: once the data are whitened, the matrix W is necessarily or-
thogonal (Hyvérinen et al., 2001). This reduces the number of parameters to be estimated,
and, as we discuss in Section 5, enables the use of efficient optimization techniques based
on the Stiefel manifold of orthogonal matrices.

!The identifiability of the ICA model has been discussed by Comon (1994). Briefly, the matrix A is
identifiable, up to permutation and scaling of its columns, if and only if at most one of the component
distributions p(z;) is Gaussian.



In practice we do not know p*(y) and thus the estimation criteria—mutual informa-
tion or KL divergence—must be replaced with empirical estimates. While in principle one
could form an empirical mutual information or empirical likelihood, which is subsequently
optimized with respect to W, the more common approach to ICA is to work with approx-
imations to the mutual information (Amari et al., 1996, Comon, 1994, Hyvérinen, 1999),
or to use alternative contrast functions (Jutten and Herault, 1991). For example, by using
Edgeworth or Gram-Charlier expansions one can develop an approximation of the mutual
information in terms of skew and kurtosis. Forming an empirical estimate of the skew and
kurtosis via the method of moments, one obtains a function of W that can be optimized.

We propose two new ICA contrast functions in this paper. The first is based on the
F-correlation, which, as we briefly discussed in Section 1, can be obtained by computing
the first canonical correlation in a reproducing kernel Hilbert space. The second is based on
computing not only the first canonical correlation, but the entire CCA spectrum, a quantity
known as the “generalized variance.” We describe both of these contrast functions, and their
relationship to the mutual information, in the following section.

3 Kernel independent component analysis

We refer to our general approach to ICA, based on the optimization of canonical correla-
tions in a reproducing kernel Hilbert space, as KERNELICA. In this section we describe
two contrast functions that exemplify our general approach, and we present the resulting
KERNELICA algorithms.

3.1 The F-correlation

We begin by studying the F-correlation in more detail. We restrict ourselves to two random
variables in this section and present the generalization to m variables in Section 3.2.1.

Theorem 1 Let x1 and x9 be random wvariables in X = RP. Let K1 and Ko be Mercer
kernels with feature maps ®1, ®o and feature spaces Fi, Fo C R¥. Then the canonical
correlation pr between ®1(x1) and Po(x2), which is defined as

e (fl,fzn)aeaj)-‘(lxyr2 corr((@1(21), f1), (Pa(z2), f2)),
s equal to
PE = e xR corr(f1(w1), f2(z2)). 7
Proof This is immediate from the reproducing property (4). -

The choice of kernels K7 and K5 specifies the sets J; and F» of functions that we use to
characterize independence, via the correlation between fi(x1) and fo(x2). While in general
we can use different kernels for 1 and xo, for notational simplicity we restrict ourselves in
the remainder of the paper to cases in which the two kernels and the two feature spaces are
equal, denoting them as K and F, respectively.



Note that the larger F is, the larger the value of the F-correlation. For Gaussian kernels
in particular, the F-correlation increases as o decreases. But for any value of o, the F-
correlation turns out to provide a sound basis for assessing independence, as the following
theorem makes precise:

Theorem 2 (Independence and F-correlation) If F is the RKHS corresponding to a
Gaussian kernel, pr = 0 if and only if the variables y1 and yo are independent.

Proof We mentioned earlier that the first implication is trivial. Let us now assume that
pr = 0. Since F is a vector space, we have:

=  max corr(f1(x1), f2(z2))],
r (fl,fz)efxf| (f1(z1), fa(z2))]

which implies cov(fi(z1), f2(z2)) = 0, or, equivalently, E(fi(z1)f2(z2)) = E(f1(21))E(f2(z2)),
for all fi, fo € F. For any given wy € R and 7 > 0, the function z — e~ /27 0T hag g
Fourier transform equal to v/2rre™" @=0)*/2 and thus satisfies the condition in Eq. (5)
as long as 7 > ¢/v/2. Consequently, if 7 > o/1/2, it belongs to F and we have, for all real

w1 and way:
E <€iwlx1+iw2x2ef(:t%+x§)/27'2) - E (eiwlx1efx%/272> E (eingg 6713/272> )
Letting 7 tend to infinity, we find that for all wy and ws:
E (e’iw1a}1+’iw2x2) - E (eiwlim) E (e’iwgarz)

which implies that x1 and z5 are independent (Durrett, 1996). [ |

3.2 Kernelization of CCA

To employ the F-correlation as a contrast function for ICA, we need to be able to compute
canonical correlations in feature space. We also need to be able to optimize the canonical
correlation, but for now our focus is simply that of computing the canonical correlations in
an RKHS.? (We discuss the optimization problem in Section 5).

In the case of two variables the goal is to maximize the correlation between projections
of the data in the feature space. A naive implementation would simply map each data
point to feature space and use CCA directly in the feature space. This is likely to be very
inefficient computationally, however, if not impossible, and we would prefer to perform all
of our calculations in the input space.

Let {z1,...,2)V} and {zi,..., 20} denote sets of N empirical observations of z1 and
Ty, respectively, and let {®(z]),..., ®1(2xd)} and {Po(xd), ..., ®o(2))} denote the cor-
responding images in feature space. Suppose (momentarily) that the data are centered
in feature space (i.c., S.p_, ®1(zh) = S0 Po(zh) = 0). We let pr(x1, ) denote the

2 Melzer et al. (2001) have independently derived the kernelized CCA algorithm for two variables that

we present in this section. A similar but not identical algorithm, also restricted to two variables, has been
described by Fyfe and Lai (2000).




empirical canonical correlation; that is, the canonical correlation based not on population
covariances but on empirical covariances. Since, as we shall see, pr(z1,z2) depends only on
the Gram matrices K; and Ky of these observations, we also use the notation pr(Ki, Ks2)
to denote this canonical correlation.

As in kernel PCA (Schoélkopf et al., 1998), the key point to notice is that we only need
to consider the subspace of F that contains the span of the data. For fixed f; and fa, the
empirical covariance of the projections in feature space can be written:

N
— 1
cov({®1(21), f1), (Pa(22), f2)) = > <q’1($]f)a f1> <‘1)2(~’U]2€)a f2> - (8)
k=1
Let &1 and Ss represent the linear spaces spanned by the ®-images of the data points. Thus
we can write f1 = Zszl b ®(xk) + i and fo = Zszl b ®(xk) + f5-, where fi- and f5- are
orthogonal to §; and Ss, respectively. We have:

N N
cov((®1(21), f1), (R2(2), f2) = %Z<@1<x’f),2ai¢<xi)> <@2<x’5>,2a§¢<xé>>
k=

i=1 j=1

DD oiKi (a2 Ka(w), a5)e

where K; and Ks are the Gram matrices associated with the data sets {2} and {z%},
respectively. We also obtain:

_ 1
var ((®1(z1), f1)) = NOQTKlKqu

and

— 1
var (<q)2($2), f2>) = NO[%KQKQCMQ.

Putting these results together, our kernelized CCA problem becomes that of performing
the following maximization:

T
N (6% KlKQOéQ
K, Ky) = max L .
P (K, K) a1, aaeRN (ol K2a1)12(ad K2ap)1/?

But this is equivalent to performing CCA on two vectors of dimension N, with covariance
K? KK

KK, K2

of CCA by solving the following generalized eigenvalue problem:

(i 07 ) (5 )= (% ) () g

based on the Gram matrices K7 and K>.

matrix equal to ) Thus we see that we can perform a kernelized version

10



If the points ®(x¥) are not centered, then although it is impossible to actually cen-
ter them in feature space, it is possible to find the Gram matrix of the centered data
points (Scholkopf et al., 1998). That is, if K is the Nx N Gram matrix of the non-centered
data points, then the Gram matrix K of the centered data points is K = NyK Ny where
No=1-— %1 is a constant matrix.> Whenever we use a Gram matrix, we assume that it
has been centered in this way.

3.2.1 Generalizing to more than two variables

The generalization of kernelized canonical correlation to more than two sets of variables is
straightforward, given our generalization of CCA to more than two sets of variables. We
simply denote by K the m/NxmN matrix whose blocks are K;; = K; K}, and we let D denote
the mN xmN block-diagonal matrix with blocks K2. We obtain the following generalized
eigenvalue problem:

K? KKy - KK, oy K 0 - 0 ai
KyKy K3 - KK, o) \ 0 K3 -~ 0 Qs
KnKi KnKy --- K2 Qm 0o 0 --- K2 m,

(10)
or Ka = ADa for short. The minimal eigenvalue of this problem will be denoted A (K., Kny)
and referred to as the first kernel canonical correlation. We also extend our earlier termi-
nology and refer to this eigenvalue as an F-correlation.

Note that in the two-variable case we defined a function pr(z1,z2) that depends on
the covariances of the random variables 1 and x2, and we obtained an empirical contrast
function pg(z1,22) from pr(xi,z2) by substituting empirical covariances for population
covariances.? In the m-variable case, we have (thus far) defined only the empirical function
A 7(K1,...,Ky). In Appendix A.3, we study the properties of the population version of this

quantity, Ar(x1,...,2Tn), by relating Ax(z1,...,zy) to a generalized notion of “correlation”
among m variables. By using this definition, we show that Az(x1,...,z,,) is always between
zero and one, and is equal to one if and only if the variables x1,...,x,, are independent.

Thus we obtain an analog of Theorem 2 for the m-variable case.

For reasons that will become clear in Section 3.4, where we discuss a relationship be-
tween canonical correlations and mutual information, it is convenient to define our contrast
functions in terms of the negative logarithm of canonical correlations. Thus we define a con-

trast function M) . (z1,...,2m) = —% log Ar(x1,...,2,) and ask to minimize this function.
The result alluded to in the preceding paragraph shows that this quantity is nonnegative,
and equal to zero if and only if the variables z1, ..., z,, are independent, thus mimicking a

key property of the mutual information.

3The matrix 1 is an N x N matrix composed of ones. Note that 12 = N1.

“In fact the word “contrast function” is generally reserved for a quantity that depends only on data and
parameters, and is to be extremized in order to obtain parameter estimates. Thus pr(z1,z2) is a contrast
function. By also refering to the population version pr(z1,z2) as a “contrast function,” we are abusing
terminology. But this is a standard abuse in the ICA literature, where, for example, the mutual information
is viewed as a “contrast function.”

11



Algorithm KERNELICA-KCCA
Input: Data vectors y',42,...,y"V
Kernel K(z,y)

1. Whiten the data

2. Compute the centered Gram matrices K1, Ko, ..., K,, of the estimated
sources {z!, 22 ..., 2N}, where 2! = Wy’

3. Define j\f(K 1,...,Kp) as the first eigenvalue of the generalized eigen-

vector equation Ko = AD«

4. Minimize MAf(Kl, o Kn) = —% log 5\]—'(K1, ..., Ky,) with respect to W

Output: W

Figure 1: A high-level description of the KERNELICA-KCCA algorithm for estimating
the parameter matrix W in the ICA model. Note that steps (2) through (4) are executed
iteratively until a convergence criterion is met.

For the empirical contrast function, we will use the notation M,\f(Kl,...,Km) =
—% log Ar(K1,...,K,), emphasizing the fact that this contrast function depends on the
data only through the Gram matrices.

3.3 The KERNELICA-KCCA algorithm

Let us now apply the machinery that we have developed to the ICA problem. Given a set
of data vectors y',32,...,y", and given a parameter matrix W, we set 2 = Wy, for each
i, and thereby form a set of estimated source vectors {x!, 22, ... N }. The m components
of these vectors yield a set of m Gram matrices, K1, K, ..., K,,, and these Gram matrices
define a contrast function M Ar (K1, ..., Kp). We obtain an ICA algorithm by minimizing
this function with respect to W.

A high-level description of the resulting algorithm, which we refer to as KERNELICA-
KCCA, is provided in Figure 1.

We still have a significant amount of work to do to turn the high-level description
in Figure 1 into a practical algorithm. The numerical linear algebra and optimization
procedures that complete our description of the algorithm are presented in Sections 4 and 5.
Before turning to those details, however, we turn to the presentation of an alternative
contrast function based on generalized variance.

3.4 Kernel generalized variance

As we have discussed, the mutual information provides a natural contrast function for ICA,
because of its property of being equal to zero if and only if the components are independent,
and because of the link to the semiparametric likelihood. As we show in this section, there
is a natural generalization of the F-correlation that has a close relationship to the mutual
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information. We develop this generalization in this section, and use it to define a second
ICA contrast function.

Our generalization is inspired by an interesting link that exists between canonical corre-
lations and mutual information in the case of Gaussian variables. As we show in Appendix A,
for jointly-Gaussian variables z1 and z2, the mutual information, M (x1,x2), can be written
as follows:

1 p
M(z1,22) = =3 > log(1 —p}),
=1

where p; are the canonical correlations. Thus CCA can be used to compute the mutual
information between a pair of Gaussian variables. Moreover, Appendix A also shows that
this link can be extended to the mutual information between m variables. Thus, the m-
way mutual information between m Gaussian random variables, M (z1,z2,...,Zy), can be
obtained from the set of eigenvalues obtained from the generalized eigenvector problem
C¢ = ADE that we defined in Section 2.1.1. In particular, Appendix A shows the following:

P
M(xl,xg,...,xm)——%log%——%;log)\i, (11)
where \; are the generalized eigenvalues of C'¢ = AD¢.

This result suggests that it may be worth considering a contrast function based on more
than the first canonical correlation, and holds open the possibility that such a contrast func-
tion, if based on the nonlinearities provided by an RKHS, might provide an approximation
to the mutual information between non-Gaussian variables.

Let us define the generalized variance associated with the generalized eigenvector prob-
lem C¢ = ADE as the ratio det C'/ det D. The result in Eq. (11) shows that for Gaussian
variables the mutual information is equal to minus one-half the logarithm of the generalized
variance.

We make an analogous definition in the kernelized CCA problem, defining the kernel
generalized variance to be the product of the eigenvalues of the generalized eigenvector
problem in Eq. (10), or equivalently the ratio of determinants of the matrices in this problem.
That is, given the generalized eigenvector problem Ko = AD«, we define:

A det
or(Kq,...,Ky) =
.7:( 1 ’ m) det D
as the kernel generalized variance. We also define a contrast function Mgf(K 1yeooy K

~ 1 A
Mgf(Kl,. .. ,Km) = —510g5}‘(K1,. .. ,Km),

by analogy with the mutual information for the Gaussian case.

Although we have proceeded by analogy with the Gaussian case, which is of little
interest in the ICA setting, it turns out that MgF(Kl,...,Km) has as its population
counterpart a function Ms, (z1,...,%y) that is actually closely related to the mutual in-
formation between the original non-Gaussian variables in the input space. This result,
whose proof is sketched in Appendix B, holds for translation-invariant kernels of the form
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Figure 2: The mutual information (dashed), the approximation M;j, (z1,22) for o =
5,1,2,4,8,16 (dotted), and the limit Z(x1,z2) as o tends to zero (solid). The abscissa
is the angle of the first independent component in a two-source ICA problem. As o de-
creases, Ms, increases towards Z. See the text for details.

Ko (z,y) = G((x —y)/o). In particular, we show that, as o tends to zero, Ms,(21,...,Zm)
tends to a limit Z(z1,...,z,,) that is independent of the particular choice of G, for G that
satisfies positivity and decay conditions. Moreover, this limit is equal to the mutual infor-
mation up to second order, when we expand the mutual information around distributions
that are “nearly independent.”

Our result is illustrated in Figure 2. We compute the mutual information for a whitened
ICA problem with two known sources and two components, as the angle of the estimated
first component ranges from 0 to 90 degrees, with the independent component occurring at
36.5 degrees. The graph plots the true mutual information, the approximation M;, (x1,x2),
for various values of o, and the limit Z(z1,z2). The close match of the shape of Z(x1,x2)
and the mutual information is noteworthy.

3.5 The KERNELICA-KGYV algorithm

In the previous section, we defined an alternative contrast function, Mgf(:cl, cey Ty, 1N
terms of the generalized variance associated with the generalized eigenvector problem Ka =
ADa. Essentially, instead of computing only the first eigenvalue of this problem, as in the
case of the F-correlation contrast function, we compute the entire spectrum.

Based on this contrast function, we define a second KERNELICA algorithm, the KERNELICA-
KGYV algorithm outlined in Figure 3.

In summary, we have defined two KERNELICA algorithms, both based on contrast
functions defined in terms of the eigenvalues of the generalized eigenvector problem Ko =
ADa. We now turn to a discussion of the computational methods by which we evaluate and
optimize these contrast functions.
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Algorithm KERNELICA-KGV
Input: Data vectors y',42,...,y"V
Kernel K(z,y)

1. Whiten the data

2. Compute the centered Gram matrices K1, Ko, ..., K,, of the estimated
sources {z!, 22 ..., 2N}, where 2! = Wy’

3. Define 67 (K1, ..., Ky) = det K/ det D

4. Minimize Ms, (K1, ..., Ky) = —3logdz(Ki,. .., Ky) with respect to W

Output: W

Figure 3: A high-level description of the KERNELICA-KGYV algorithm for estimating the
parameter matrix W in the ICA model.

4 Computational issues

The algorithms that we have presented involve finding generalized eigenvalues of matrices
of dimension mN x mN, where N is the number of data points and m the number of
sources. A naive implementation of these algorithms would therefore scale as O(m3N?),
a computational complexity whose cubic growth in the number of data points would be a
serious liability in applications to large data sets. As noted by several researchers, however,
the spectrum of Gram matrices tends to show rapid decay, and low-rank approximations of
Gram matrices can therefore often provide sufficient fidelity for the needs of kernel-based
algorithms (Williams and Seeger, 2001, Smola and Schélkopf, 2000). Indeed, building on
these observations, we describe an implementation of KERNELICA whose computational
complexity is linear in the number of data points.

We have two goals in this section. The first is to overview theoretical results that
support the use of low-rank approximations to Gram matrices. Our presentation of these
results will be concise, with a detailed discussion deferred to Appendix C. Second, we
present a KERNELICA implementation based on low-rank approximations obtained from
incomplete Cholesky decomposition. We show both how to compute the KERNELICA
contrast functions, and how to compute derivatives of the contrast functions.

4.1 Theory

In Appendix C, we present theoretical results that show that in order to achieve a given
required precision 7, the rank M of an approximation to a Gram matrix K can be chosen
as M = h(N/n), where h(t) is a function that depends on the underlying distribution p(x)
of the data. Moreover, the growth of h(t) as t tends to infinity depends only on the decay
of p(x) as |z| tends to infinity. In particular, in the univariate case, when this decay is
exponential (Gaussian-like), we have h(t) = O(logt). When the decay is polynomial, i.e.,
=%, then h(t) = O(t'/4+) for arbitrary € > 0.
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These results imply that if we require a constant precision 7, it suffices to find an
approximation of rank M = O(log N), for exponentially-decaying input distributions, and
rank M = O(N'Y4*¢) for polynomially-decaying input distributions. These results are
applicable to any method based on Gram matrices, and thus we can expect that kernel
algorithms should generally be able to achieve a substantial reduction in complexity via
approximations whose rank grows slowly with respect to V.

We will separately show in Section 4.3, however, that in the context of F-correlation and
the KGV, the precision 7 can be taken to be linear in V. This implies that the rank of the
approximation can be taken to be bounded by a constant in the ICA setting, and provides
an even stronger motivation for basing an implementation of KERNELICA on low-rank
approximations.

4.2 Incomplete Cholesky decomposition

We aim to find low-rank approximations of Gram matrices of rank M <« N. Note that
even calculating a full Gram matrix is to be avoided because it is already an O(N?) opera-
tion. Fortunately, the fact that Gram matrices are positive semidefinite is a rather strong
constraint, allowing approximations to Gram matrices to be found in O(M?2N) operations.
Following Fine and Scheinberg (2001), the particular tool that we employ here is the incom-
plete Cholesky decomposition, commonly used in implementations of interior point methods
for linear programming (Wright, 1999). Alternatives to incomplete Cholesky decomposition
are provided by methods based on the Nystrom approximation (Williams and Seeger, 2001,
Smola and Schélkopf, 2000). A difficulty with these methods in our context, however, is that
they require the matrix being approximated to be a Gram matrix with a specified kernel
(and not merely a general positive semidefinite matrix). This suffices for the computation
of the ICA contrast functions, but cannot be used for the computation of the derivatives of
the contrast functions, which involve matrices that cannot be expressed as Gram matrices.

Let us turn to a short description of incomplete Cholesky decomposition. A positive
semidefinite matrix K can always be factored as GGT, where G is an N x N matrix. This
factorization can be found via Cholesky decomposition (which is essentially a variant of
Gaussian elimination). Our goal, however, is to find a matrix G of dimension N x M
matrix, for small M, such that the difference K — GG” has norm less than a given value 7.
This can be achieved via incomplete Cholesky decomposition.

Incomplete Cholesky decomposition differs from standard Cholesky decomposition in
that all pivots that are below a certain threshold are simply skipped. If M is the number
of non-skipped pivots, then we obtain a lower triangular matrix G with only M nonzero
columns. Symmetric permutations of rows and columns are necessary during the factoriza-
tion if we require the rank to be as small as possible (Golub and Loan, 1983). In that case,
the stopping criterion involves the sum of remaining pivots.

An algorithm for incomplete Cholesky decomposition is presented in Figure 4. The
algorithm involves picking one column of K at a time, choosing the column to be added
by greedily maximizing a lower bound on the reduction in the error of the approximation.
After [ steps, we have an approximation of the form K; = GlGlT, where G is N x[. The
ranking of the NV —1[ vectors that might be added in the following step is done by comparing
the diagonal elements of the remainder matrix K — GlGrf. Each of these elements requires
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O(1) operations to compute. Moreover, the update of G; has a cost of O(IN), so that the
overall complexity is O(M2N).

The incomplete Cholesky method has many attractive features. Not only is its time
complexity O(M?N), but also the only elements of K that are needed in memory are
the diagonal elements (which are equal to one for Gaussian kernels®). Most of the other
elements are never used and those that are needed can be computed on demand. The
storage requirement is thus O(MN). Also, the number M can be chosen online such that
the approximation is as tight as desired.®

4.3 Regularization

Before turning to a discussion of how to use incomplete Cholesky decomposition to com-
pute the eigenstructure needed for our ICA contrast functions, we discuss the generalized
eigenvector problem that we must solve in more detail.

We must solve the generalized eigenvector problem Ka = ADa. The classical method for
solving such a problem involves finding a matrix C such that D = CTC, defining # = Ca, and
thereby transforming the problem into a standard eigenvector problem C~TKC™13 = A\B.
Unfortunately, however, our matrix D is singular (due to the centering). We thus need to
“regularize” D, replacing K and D by K, and D, defined as:

(K1 +r1)? KKy - KK,
Ky K, (Ko +rKI)? - Ky K,,
K:/-c = . . .
KK KnKy - (Kp+ kD)2
(K1 +kI)? 0 0
0 (Ky+KI)? -+ 0
DK = . . .
0 0 coo (Ko + KI)?

where k is a small positive constant. The regularization parameter x not only makes our
problem well-posed numerically, but also provides control over the statistical properties
of KERNELICA, by controlling the capacity of the space of functions used in forming the
contrast function. The constant k is one of the two user-defined numerical parameters of
our algorithm. (The other is o, the width of the kernel. We discuss the setting of these
parameters in Section 4.5.)

SCentering, which would make the diagonal elements different from one, can be done easily after the
Cholesky decomposition.

SNote that no bound is available concerning the relation between M and the optimal M for a given
precision. In our empirical work, however, we always obtained a rank very close to the optimal one. We
believe this is due to the fact that our Gram matrices have a spectrum that decays very rapidly. Indeed, as
pointed out in Wright (1999), a significant eigengap ensures that incomplete Cholesky has small numerical
error and yields a good approximation.
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Algorithm INCOMPLETECHOLESKY

Input: N XN matrix K
precision parameter n

1. Initialization: i = 1, K’ = K, P = I, for j € [1,N], Gj; = K;;
2. While Y0, Gj; > 1

e Find best new element: j* = argmax;c|; n] Gjj
e Update permutation P:
set P;; =0, Pj«j+ =0and Pjj» =1, Pj; =1
e Permute elements ¢ and j* in K’
column K7, ;< Ki,, i
row Kg,lm — K]’-*,lm
e Update (due to new permutation) the already calculated elements
of G: G < Gj= 1.
e Set G;; = /K],
e Calculate i*" column of G:
Gitini = g (K{H;m - Gz‘+1:n,sz'j)
e Update only diagonal elements:
for j € [i+1,N], G = Kj5 — Y1 G2,

3. Output P, G and M =

Output: an N xM lower triangular matrix G and a permutation matrix P such that
|[PKPT — GGT|| <n

Figure 4: An algorithm for incomplete Cholesky decomposition. The notation G .q refers
to the matrix extracted from G by taking the rows a to b and columns ¢ to d.
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Our kernelized CCA problem now reduces to finding the smallest eigenvalues of the
matrix:

I TH(KI)TK(K2) te TK(KI)TK,(Km)
,Eﬁ _ DEI/QIC,QD;UQ _ Tﬁ(KQ?T(Kl) I . TK(KQ);FK(K’I’H) )
P () (K1) (K )re(K2) - I

where r.(K;) = K;(K; + kI)~! = (K; + xI)"'K;. If we have an eigenvector & of /Em then
we have a generalized eigenvector defined by «o; = (K; + kI l‘lé}i, with the same eigenvalue.
In the case of the KGV problem, we need to compute det ICy.

For nonzero k these regularized criteria are smooth even when the K; lie in the space
of singular semidefinite matrices, which is important because we want to use the criteria in
gradient-based optimization algorithms.

Our regularization scheme has the effect of shrinking each eigenvalue of K; towards zero,
via the function A — A/(\ + k). Consequently, all eigenvalues less than a small fraction of
K (we use the fraction 1072 in our simulations) will numerically be discarded. This implies
that in our search for low-rank approximations, we need only keep eigenvalues greater than
n=10"3x.

In order to understand how to set x with respect to IV, it is useful to return to the
setting of F-correlation with two variables. In that case, pr is an estimator of the JF-
correlation pr(x1,z2), which is the maximal correlation between fi(x1) and fa(za) for
f1, fo in the corresponding feature spaces. Using the notation of Section 3.2, we have:
alT(Kl + /@'I)Qal = oleK%oq + 2/£alTK12a1 + /ﬁQOleal. Ignoring second-order terms in k, we
have:

of (K1 + kI)%ay ~ Nvar fi(z1) + 2x|| f1]]

Consequently, using regularization, pr is an estimator of the following quantity:

cov(fi(x1), fa(z2))

max .
freF (var fi(z) + F [ fl5) 2 (var fa(x2) + 5| fal5)1/2

In order to make our criteria asymptotically independent of the number of samples NV, we
thus let kK = KkoIN, where kg is a user-defined parameter. This has the numerical effect of
making our Gram matrices of constant numerical rank as N increases.

4.4 Algorithms for KCCA and KGV

We now show how to use incomplete Cholesky decomposition to solve the KCCA and KGV
problems. As we have seen, these problems reduce to eigenvalue computations involving
the regularized matrix K, in Eq. (12).

Using the incomplete Cholesky decomposition, for each matrix K; we obtain the fac-
torization K; ~ GiG;-r, where GG; is an N x M; matrix with rank M;, where M; < N.
We perform a singular value decomposition of G;, in time O(M?N), to obtain an N x M,
orthogonal matrix U;, and an M; x M; diagonal matrix A; such that
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Let M = % >, M; denote the average value of the ranks M;.

In order to study how to use these matrices to perform our calculations, let V; denote
the orthogonal complement of U;, such that (U; V;) is an N x N orthogonal matrix. We
have:

K; = UAU = (U; V) ( %Z 8 > U vi)"

If we now consider the regularized matrices r.(K;), we have:

R, 0

re(K) = (K + 61) 7 K; = (U V) ( 0 o

) (Ui Vi)' = UiRiU

where R; is the diagonal matrix obtained from the diagonal matrix A; by applying the
function A — ﬁ to its elements. As seen before, this function softly thresholds the
eigenvalues less than k. We now have the following decomposition:

IEK—L{RKUT+VVT—(UV)(R“ 0>(UV)T,

0 I
where U is mN xmM,V is mN x(mN —mM), R, is mM xmM, and (U V) is orthogonal:
U, 0 --- 0 Vi 0 --- 0
u—-1 "9 : V= 0
: 0 : 0
0 -~ 0 U, 0 --- 0 V,
I RUTUsRy - RyUTUp R
RoUTUL R, I oo RoULUpRom
RnUTU\R11 RpULUsRy - I

The nN (non negative) eigenvalues of K, sum to tr(K.) = nN. If K, # I then at least one

of these eigenvalues must be less than 1. Consequently, since IEK is similar to ( 7%)“ ? ),

the smallest eigenvalue of K. (with eigenvector a € R™V) is equal to the smallest eigenvalue
of R, (with eigenvector 3 € ™M), and the two eigenvectors are related through:

a=UB = B=UTa.
This allows us to compute the KCCA criterion. For the KGV criterion, we trivially have
det K, = det 73'{ ?. = det Ry.

We thus have reduced the size of our matrices from mN xmN to mM xmM. Once
we have borne the cost of such a low-rank decomposition, the further complexity is greatly
reduced. In the case of the first canonical correlation (the smallest eigenvalue of ICy) we
simply need to find the smallest eigenvalue of R, which has a cost of O(m2M?). In the case
of the generalized variance, we need to compute det KC,, = det R, which costs O(§(mM)),
where £(s) is the complexity of multiplying two sx s matrices (less than O(s%)). Thus the
complexity is greatly reduced: for M = O(1), the complexities after decomposition are

O(m?) and O(&(n)).
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4.5 Free parameters

The KERNELICA algorithms have two free parameters: the regularization parameter kg
and the covariance o of the kernel (assuming identical Gaussian kernels for each source). In
our experimental work we found that the KERNELICA algorithms were reasonably robust
to the settings of these parameters. Our choices were to let ko = 1073, and to set o = 1/2
for large samples (N > 1000) and o = 1 for smaller samples (N < 1000).

For finite N, a value of o that is overly small leads to diagonal Gram matrices and
our criteria become trivial. On the other hand, for large N the KGV approaches the
mutual information as ¢ tends to zero, and this suggests choosing ¢ as small as possible.
Still another consideration, however, is computational—for small o the spectra of the Gram
matrices decay less rapidly and the computational complexity grows. This can be mitigated
by an appropriate choice of kg; in particular, the algorithm could choose k¢ so that the
number of retained eigenvalues for each Gram matrix is held constant. Clearly, there are
several tradeoffs at play here, and the development of theoretical guidelines for the choice
of the parameters is deferred to future work.

4.6 Derivatives

Our approach to ICA involves optimizing a contrast function defined in terms of a set of
m Gram matrices, where m is the number of components. These matrices are functions
of the weight matrix W, and thus our contrast functions are defined on a manifold of
dimension m(m — 1)/2 (see Section 5). For small m (less than m = 8 in our simulations),
the optimization can be based on simple techniques such as first-difference approximations of
derivatives, or optimization methods that require only function evaluations. Such techniques
are not viable for large problems, however, and in general we must turn to derivative-based
optimization techniques.

The derivatives of Gram matrices are not semidefinite matrices in general, and thus we
cannot directly invoke the low-rank decomposition algorithms that we have discussed in
previous sections. Fortunately, however, in the case of Gaussian kernels, it is possible to
express these matrix derivatives as as a difference between two low-rank positive semidefinite
matrices, and we can apply the incomplete Cholesky decomposition to each of these matrices
separately. The details of this computation are provided in Appendix D.

5 Optimization

An ICA contrast function is ultimately a function of the parameter matrix W. Estimating
ICA parameters and independent components means minimizing the contrast function with
respect to W. As noted by Amari (1998), the fact that W is an orthogonal matrix in the
ICA problem (once the data are whitened) endows the parameter space with additional
structure, and this structure can be exploited by optimization algorithms. The particular
formalism that we pursue here is that of a Stiefel manifold.
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5.1 The Stiefel manifold

The set of all m x m matrices W such that WTW = I is an instance of a Stiefel mani-
fold (Edelman et al., 1999). Our optimization problem is thus the minimization of a function
F(W) on the Stiefel manifold. The familiar optimization algorithms of Euclidean spaces—
gradient descent, steepest descent and conjugate gradient—can all be performed on a Stiefel
manifold. The basic underlying quantities needed for optimization are the following;:

e The gradient of a function F' is defined as

T
VF_8_F_W<8_F) W,

ow ow
where g—V@ is the derivative of F' with respect to W; that is, an m X m matrix whose
element (i, 7) is % .

e The tangent space is equal to the space of all matrices H such that WTH is skew-

symmetric. It is of dimension m(m — 1)/2 and equipped with the canonical metric
|H||. = 3 tr(HTH).

e The geodesic starting from W in the direction H (in the tangent space at W) is deter-
mined as Gy g (t) = Wexp(tWT H), where the matrix exponential can be calculated
efficiently after having diagonalized (in the complex field) the skew-symmetric matrix
WTH.

In our case, the calculation of the gradient is more costly (about 10 times) than the
evaluation of the function F'. Consequently, conjugate gradient techniques are particularly
appropriate, because they save on the number of computed derivatives by computing more
values of the functions. In the simulations that we report in Section 7, we used conjugate
gradient, with line search along the geodesic.

The ICA contrast functions do not have a single global optimum, and thus restarts are
generally necessary to attempt to find the global optimum. Empirically, the number of
restarts that were needed was found to be small when the number of samples is sufficiently
large so as to make the problem well-defined. We also found in our simulations that restarts
could be avoided by initializing the optimization procedure at the solution found by simpler
ICA algorithms (see Section 7).

6 Computational complexity

Let N denote the number of samples, and let m denote the number of sources. M is the
maximal rank considered by our low-rank decomposition algorithms for the kernels. We
assume that m < N.

e Performing PCA on the input variables is O(m?N)—calculating the covariance matrix
is O(m2N), diagonalizing the m x m matrix is O(m3) = O(m?N), and scaling is

O(m?N)
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e KCCA using incomplete Cholesky decomposition is O(m?M?N)—calculating the de-

m(m—1)

composition m times is m x O(NM?), then forming the matrix R, is X

O(M?N) = O(m?M?N), and finding its smallest eigenvalue is O((mM)?)

e KGV using incomplete Cholesky decomposition is O(m?M2N +m3M?3), which is usu-
ally O(m2M?N) because N is generally greater than mM—calculating the decompo-
sition m times is m x O(M2N), then forming the matrix R, is %=L x O(M2N) =
O(m?M?N), and finding its smallest eigenvalue is O((mM)3) = O(m3N M?)

e Computation of the derivative of the first kernel canonical correlation is O(m?M?2N)—
at most 3m? incomplete Cholesky decompositions to perform, and then matrix mul-
tiplications with lower complexity

e Computation of the derivative of the KGV is O(m3M?2N)—at most 3m? incomplete
Cholesky decompositions to perform, and then matrix multiplications with maximal
complexity O(m3M?N)

7 Simulation results

We have conducted an extensive set of simulation experiments using data obtained from a
variety of source distributions. The sources that we used (see Figure 5) included subgaussian
and supergaussian distributions, as well as distributions that are nearly Gaussian. We
studied unimodal, multimodal, symmetric, and nonsymmetric distributions.

We also varied the number of components, from 2 to 16, the number of training samples,
from 250 to 4000, and studied the robustness of the algorithms to varying numbers of
outliers.

Comparisons were made with three existing ICA algorithms: the FastICA algorithm (Hyvérinen,
1998, Hyvérinen and Oja, 1997), the JADE algorithm (Cardoso, 1999), and the extended
Infomax algorithm (Lee et al., 1999).

7.1 Experimental setup

All of our experiments made use of the same basic procedure for generating data: (1) N
samples of each of the m sources were generated according to their probability density
functions (pdfs) and placed into an m x N matrix X, (2) a random mixing matrix A was
chosen, with random but bounded condition number (between 1 and 2), (3) a matrix ¥
of dimension m x N was formed as the mixture ¥ = AX, (4) the data were whitened by
multiplying Y by the inverse P of the square root of the sample covariance matrix, yielding
an m X N matrix of whitened data Y. This matrix was the input to the ICA algorithms.
Each of the ICA algorithms outputs a demixing matrix W which can be applied to the
matrix Y to recover estimates of the independent components. To evaluate the performance
of an algorithm, we compared W to the known truth, Wy = A~!P~!, using the following

metric:
) - g3 (B S (Bm)
max; |a;;| 2m = max; |a;| ’
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(@ k= Inf (b) k=3.00 (€) k=-1.20
/\

(d) k=6.00 (e) k=6.00 (f) k=1.11
/\

(g) k=-1.68 (h) k=-0.74 (i) k=-0.50
() k=-0.53 (k) k=-0.67 () k=-0.47
(m) k=-0.82 (n) k=-0.62 (0) k=-0.80
(p) k=-0.77 (@) k=-0.29 (N k=-0.67

Figure 5: Probability density functions of sources with their kurtoses: (a) Student with
3 degrees of freedom; (b) double exponential; (c) uniform; (d) Student with 5 degrees
of freedom; (e) exponential; (f) mixture of two double exponentials (g)-(h)-(i) symmetric
mixtures of two Gaussians: multimodal, transitional and unimodal; (j)-(k)-(1) assymmetric
mixtures of two Gaussians, multimodal, transitional and unimodal; (m)-(n)-(o) symmetric
mixtures of four Gaussians: multimodal, transitional and unimodal; (p)-(q)-(r) assymmetric
mixtures of four Gaussians: multimodal, transitional and unimodal. All distributions are
scaled to have zero mean and unit variance.
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where a;; = (VW™1);;. This metric, introduced in (Amari et al., 1996), is invariant to
permutation and scaling of the columns of V' and W, is always between 0 and (m — 1), and
is equal to zero if and only if V' and W represent the same components. We thus measure
the performance of an algorithm by the value d(W, Wy), which we refer to in the following
sections as the “Amari error.”

7.2 ICA algorithms

We briefly overview the other ICA algorithms that we used in our simulations. The FastICA
algorithm (Hyvérinen, 1998, Hyvérinen and Oja, 1997) uses a “deflation” scheme to calcu-
late components sequentially. For each component a “one-unit contrast function,” based
on an approximation to the negentropy of a component, is maximized. This function can
be viewed as a measure of nongaussianity. The JADE algorithm (Cardoso, 1999) is a
cumulant-based method that uses joint diagonalization of a set of fourth-order cumulant
matrices. It uses algebraic properties of fourth-order cumulants to define a contrast func-
tion that is minimized using Jacobi rotations. The extended Infomax algorithm (Lee et al.,
1999) is a variation on the Infomax algorithm (Bell and Sejnowski, 1995) that can deal
with either subgaussian or supergaussian components, by adaptively switching between two
nonlinearities.

The three other algorithms were used with their default settings. Thus, no fine tuning
was performed to increase their performance according to the various sources that we tested.
We chose to do the same for the KERNELICA algorithms, fixing the Gaussian kernel width
to 0 = 1/2 and the regularization parameter to kg = 1073, except in the case of a small
sample size, i.e., N = 256, where we used o = 1.

7.3 Influence of source distributions

In a first series of experiments we tested the various algorithms on a two-component ICA
problem, with 256 and 1024 samples, and with all 18 possible source distributions. We
studied two kinds of ICA problem. In the first ICA problem, the two source distributions
were identical. For each of the 18 sources (a to r), we replicated the experiment 100 times
and calculated the average Amari error. The results are reported in Table 1. The table
also shows the average across these 18 x 100 simulations (the line denoted mean). In the
second ICA problem, we chose two sources uniformly at random among the 18 possibilities.
A total of 1000 replicates were performed, with the average over replications presented in
the line denoted rand in Table 1.

The results for the KERNELICA algorithms show a consistent improvement, ranging
from 10% to 50%, over the other algorithms. Comparing just between the KERNELICA
algorithms, KERNELICA-KGYV shows small but consistent performance improvements over
KERNELICA-KCCA.

In addition, the performance of KERNELICA is robust with respect to the source dis-
tributions. Performance is similar across multimodal (f, g, j, m, p), unimodal (a, b, d, e,
i, 1, o, r) and transitional (c, h, k, n, q) distributions. The KERNELICA algorithms are
particularly insensitive to asymmetry of the pdf when compared to the other algorithms
(see, e.g., case n).
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pdfs | Fica Jade Imax Kcca Kgv pdfs | Fica Jade Imax Kcca Kgv
a 8.5 76  56.6 76 6.5 a| 4.6 4.4 3.1 4.7 3.3

b | 10.7 8.7 614 77 64 b| 5.9 5.1 3.8 4.3 2.7

¢ 4.8 3.6 15.7 5.3 4.7 c| 24 1.6 2.0 2.7 1.7

d 3.5 2.7 221 2.8 27 d| 19 1.4 1.4 1.5 14

e | 12.7 84 333 102 9.0 e| 5.2 4.0 3.3 4.5 34

f] 238 181 454 22.0 20.0 f] 10.7 7.1 6.8 102 9.6

g| 183 145 554 3.1 29 g| 7.8 6.0 54.9 1.5 14

h| 12.1 8.6 36.6 59 4.8 h| 6.2 4.2 3.8 3.0 26

i| 227 16.1 420 123 9.5 il 10.7 8.1 114 5.0 44

j| 121 109 61.3 141 114 il 59 5.0 7.1 77 6.0

k 9.3 7.7 69.4 3.8 34 k| 54 4.2 4.5 1.7 14

1 6.8 5.1 222 3.5 3.0 1| 3.3 2.6 1.5 1.5 1.3

m 8.0 5.8 311 131 9.9 m | 4.0 2.7 4.4 23 13

n| 129 9.3 373 150 88 n| 5.5 4.0 28.9 29 1.8

o | 10.0 6.1 25.1 114 9.1 o| 4.1 2.9 3.9 50 3.3

p 9.7 70  26.7 70 5.5 p| 3.7 2.8 10.3 23 1.8

q| 41.7 328 443 106 9.2 ql| 174 124 411 39 26

r| 14.0 9.4 373 8.2 6.9 r| 6.2 4.6 5.0 4.2 3.1
mean | 13.4 10.1 40.2 9.1 74 mean | 6.2 4.6 11.0 3.8 2.9
rand | 10.9 9.6 27.6 7.3 6.0 rand | 6.4 4.7 10.5 3.2 23

Table 1: The Amari errors (multiplied by 100) for two-component ICA with 256 samples
(left) and 1024 samples (right). For each pdf (from a to r), averages over 20 replicates
are presented. The overall mean is calculated in the row labeled mean. The rand row
presents the average over 1000 replications when two (generally different) pdfs were chosen

uniformly at random among the 18 possible pdfs.
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m N #repl | Fica Jade Imax Kcca Kgv
2 250 1000 11 9 28 7 6
1000 1000 6 5 11 3 2

4 1000 100 19 15 35 13 9
4000 20 9 6 22 5 3

8 1000 20 34 39 87 31 32
4000 20 19 16 51 12 7

16 4000 10 40 36 99 22 13

Table 2: The Amari errors (multiplied by 100) for m components with N samples: m
(generally different) pdfs were chosen uniformly at random among the 18 possible pdfs.
The results are averaged over the stated number of replications.

7.4 Increasing number of components

In a second series of experiments, we tested the algorithms in simulations with 4, 8 and 16
components. Source distributions were chosen at random from the 18 possible sources in
Figure 5. The KERNELICA algorithms were initialized using the outputs of other algorithms
and no restarts were performed. We also performed experiments using random initialization
and random restarts and obtained essentially identical results.

The results are presented in Table 2, where we see that KERNELICA yields a smaller
Amari error than the other ICA algorithms in all cases.

7.5 Robustness to Gaussianity

ICA algorithms are known to have difficulties when the sources are nearly Gaussian. To
address this issue, we studied a two-component ICA problem using two types of symmetric
distributions that were nearly Gaussian. The first type was supergaussian with small pos-
itive kurtosis, obtained by using a mixtures of two Gaussians with identical variance and
nearly identical means. The second type was subgaussian with small negative kurtosis, and
were obtained by using a mixtures of Gaussians with identical means and nearly identical
variances.

Figure 6 shows the performance of the algorithms as the kurtosis approaches zero, from
above and from below. We see that the KERNELICA algorithms are more robust to near-
Gaussianity than the other algorithms.

7.6 Robustness to outliers

Outliers are also an important concern for ICA algorithms, given that ICA algorithms are
based in one way or another on high-order statistics. Direct estimation of third and fourth
degree polynomials can be particularly problematic in this regard, and many ICA algorithms
are based on nonlinearities that are more robust to outliers. In particular, in the case of the
FastICA algorithm, the hyperbolic tangent and Gaussian nonlinearities are recommended
in place of the default polynomial when robustness is a concern (Hyvérinen and Oja, 1997).
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Figure 6: Robustness to near-Gaussianity. The solid lines plot the error of the KERNELICA
algorithms as the kurtosis approaches zero. The dotted lines plot the performance of the
other three algorithms.

We simulated outliers by randomly choosing up to thirty data points to corrupt. This
was done by adding the value +5 or —5 (chosen with probability 1/2) to a single component
in each of the selected data points. We performed 100 replications using source distributions
chosen uniformly at random from the 18 possible sources.

The results are shown in Figure 7. We see that the KERNELICA methods are signifi-
cantly more robust to outliers than the other ICA algorithms, including FastICA with the
hyperbolic tangent and Gaussian nonlinearities.

7.7 Running time

The performance improvements that we have demonstrated in this section come at a com-
putational cost—KERNELICA is slower than the other algorithms we studied. The running
time is, however, still quite reasonable in the examples that we studied. For example, for
N = 1000 samples, and m = 2 components, it takes 0.1 seconds to evaluate our contrast
functions, and 1 second to evaluate their derivatives (using Matlab with a Pentium 500 MHz
processor). Moreover, the expected scaling of O(m?N) for the computations of KCCA and
KGV was observed empirically in our experiments.

8 Conclusions

We have presented a new approach to ICA based on kernel methods. While most current
ICA algorithms are based on using a single nonlinear function—or a small parameterized
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Figure 7: Robustness to outliers. The abscissa displays the number of outliers and the
ordinate shows the Amari error.
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set of functions—to measure departures from independence, our approach is a more flexible
one in which candidate nonlinear functions are chosen adaptively from a reproducing kernel
Hilbert space. Our approach thus involves a search in this space, a problem which boils
down to finding solutions to a generalized eigenvector problem. Such a search is not present
in other ICA algorithms, and our approach to ICA is thus more demanding computationally
than the alternative approaches. But the problem of measuring (and minimizing) departure
from independence over all possible non-Gaussian source distributions is a difficult one, and
we feel that the flexibility provided by our approach is appropriately targeted. Moreover,
our experimental results show that the approach is more robust than other ICA algorithms
with regards to variations in source densities, degree of non-Gaussianity, and presence of
outliers.

Related work has been presented by Fyfe and Lai (2000), who propose the use of a
kernelized version of canonical correlation analysis as an ICA algorithm (for two-component
problems). Canonical correlation analysis in and of itself, however, is simply a feature
extraction technique—it can be viewed as an extension of PCA to two variables. CCA
does not define an ICA contrast function and it should not be expected to find independent
components in general. Indeed, in the experiments presented by Fyfe and Lai (2000),
independent components were not always present among the first canonical variates. It is
important to emphasize that in our approach, canonical correlation is used to define an ICA
contrast function, and this contrast function is subsequently optimized with respect to the
parameters of the model to derive an ICA algorithm.

Harmeling et al. (2002) have recently described work on kernel-based ICA methods
whose focus is complementary to ours. They show how linear ICA methods in feature space
can be used to solve nonlinear ICA problems (problems of the general form y = f(z), for
nonlinear f). Their method finds a certain number of candidate nonlinear functions of the
data as purported independent components. These candidates, however, do not have any
optimizing property in terms of an ICA contrast function that allows them to be ranked
and evaluated, and in Harmeling et al. (2002) the authors simply pick those components
that are closest to the known sources (in simulations in which these sources are known).
A possible solution to this problem may lie in combining their approach with ours, using
KERNELICA in the subspace of feature space identified by their method, and identifying
components sequentially.

The current paper provides a general, flexible foundation for algorithms that measure
and minimize departure from independence, and can serve as a basis for exploring various
extensions of the basic ICA methodology. There are several directions which we are currently
exploring.

First, our approach generalizes in a straightforward manner to multidimensional ICA (Car-
doso, 1998), which is a variant of ICA with multivariate components. Indeed, the Gram
matrices in our methods can be based on kernel functions computed on vector variables, and
the rest of our approach goes through as before. A possible difficulty is that the spectrum
of such Gram matrices may not decay as fast as the univariate case, and this may impact
the running time complexity.

Second, kernels can be defined on data that are not necessarily numerical (e.g., the
“string kernels” of Lodhi et al., 2001), and it is interesting to explore the possibility that
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our kernel-based approach may allow generalizations of ICA to problems involving more
general notions of “sources” and “mixtures.”

Third, the optimization procedures that we have discussed in this paper can be ex-
tended and improved in several ways. For example, so-called “one-unit contrast functions”—
objective functions similar to projection pursuit criteria that are designed to discover single
components—have been usefully employed in the ICA setting (Hyvérinen et al., 2001).
These functions involve optimization on the sphere (of dimension m — 1) rather than the
orthogonal group (of dimension m(m — 1)/2); this helps to tame problems of local minima.
In the KERNELICA setting, the KCCA or KGV between one univariate component and its
orthogonal subspace provides a natural one-unit contrast function. Note also that methods
exist to combine components obtained from one-unit contrasts into a full ICA solution.
These include “deflationary orthogonalization,” in which components are found one by one
and orthogonality is ensured by successive Gram-Schmidt projections, and “symmetric or-
thogonalization,” in which components are found in parallel and orthogonality is ensured
by symmetric orthogonalization (WWT)*l/ 2 of the demixing matrix . Finally, another
optimization technique that has been used in the context of ICA is Jacobi rotation (Car-
doso, 1999), which can be used to perform optimization of any function on the group of
orthogonal matrices. All of these techniques are applicable in principle to our approach.

Finally, a more thoroughgoing study of the statistical properties of KERNELICA are
needed. In particular, while we have justified our contrast functions in terms of their
mathematical properties in the limiting case of an infinite number of samples, we have not
yet studied the finite-sample properties of these contrast functions, including the bias and
variance of the resulting estimators of the parameters. Nor have we studied the statistical
adaptivity of our method as a semiparametric estimation method, comparing its theoretical
rate of convergence to that of a method which knows the exact source distributions. Such
analyses are needed not only to provide deeper insight into the ICA problem and our
proposed solution, but also to give guidance for choosing the values of the free parameters
o and kg in our algorithm.

A Canonical correlation and its generalizations

In the following appendices, we expand on several of the topics discussed in the paper. This
material should be viewed as optional, complementing and amplifying the ideas presented
in the paper, but not necessary for a basic understanding of the KERNELICA algorithms.

This first section provides additional background on canonical correlation, complement-
ing the material in Section 2.1. In particular, we review the relationship between CCA and
mutual information for Gaussian variables, and we motivate the generalization of CCA to
more than two variables.

A.1 CCA and mutual information

For Gaussian random variables there is a simple relationship between canonical correla-

tion analysis and the mutual information. Consider two multivariate Gaussian random

. . . . . . [ Cu1 Cr2

variables x1 and z9, of dimension p; and po, with covariance matrix C' = C C .
21 Ca2
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The mutual information, M (x1,z2) = [ p(z1, x2)log[p(x1, x2)/p(z1)p(x2)]dr1dxe, is readily
computed (Kullback, 1959):

1 det C
M — __1 e — . 14
(xl,-’/UQ) 5 0og <det Ch1 det CQQ) ( )

The determinant ratio appearing in this expression, det C'/(det C11 det Ca3), is known as the
“generalized variance.”

As we discussed in Section 2.1, CCA reduces to the computation of eigenvalues of the
following generalized eigenvector problem:

Cn C12)<§1) (Cn 0)(51)
=(1+ . 15
( Ca1 Oy &2 (L+) 0 Co &2 (15)
The eigenvalues appear in pairs: {1 — p1,1 4+ p1,...,1 — pp, 1 + pp,1,...,1}, where p =
min{py,p2} and where (p1,...,pp) are the canonical correlations.
For invertible B, the eigenvalues of a generalized eigenvector problem Az = ABx are
the same as the eigenvalues of the eigenvector problem B~!Ax = Az. Thus the ratio of

determinants in Eq. (14) is equal to the product of the generalized eigenvalues of Eq. (15).
This yields:

M1, 2) = 5 log [ [0 = po)(1 4 pi) = —3 > log(1 — p2) (16)
=1 =1

Thus we see that for Gaussian variables, the canonical correlations p; obtained from CCA
can be used to compute the mutual information.

While Eq. (16) is an exact result (for Gaussian variables), it also motivates us to consider
approximations to the mutual information. Noting that all of the terms in Eq. (16) are
positive, suppose that we retain only the largest term in that sum, corresponding to the
first canonical correlation. The following theorem, which is easily proved, shows that this
yields an approximation to the mutual information.

Theorem 3 Let x1 and x2 be Gaussian random variables of dimension p1 and pa, respec-
tively. Letting p(x1,x2) denote the mazimal canonical correlation between x1 and x2, and
defining M,(z1,32) = —%log(1 — p?(x1,22)), we have:

My(x1,22) < M(x1,22) < min{pi, pa} M, (21, x2). (17)

Moreover, M,(x1,x2) is the mazimal mutual information between one-dimensional linear
projections of x1 and xo. Also, these bounds are tight—for each of the inequalities, one can
find x1 and xo such that the inequality is an equality.

A.2 Generalizing to more than two variables

We generalize CCA to more than two variables by preserving the relationship that we
have just discussed between mutual information and CCA for Gaussian variables. (For
alternative generalizations of CCA, see Kettenring, 1971).
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Consider m multivariate Gaussian random variables (z1,...,z,,), where z; has dimen-
sion p;. Let Cj; denote the p; X p; covariance matrix between z; and z;, and C the overall

covariance matrix whose (7, 7)th block is Cjj. The mutual information, M(z1,...,zy), is
readily computed in terms of C' (Kullback, 1959):
1 det C
M(z1,. .. ) = —=1 . 18
(561 CCm) 2 0% <det 011 - -det Cnn) ( )

We again refer to the ratio appearing in this expression, det C'/(det Cy; - - - det Cyy, ), as the
“generalized variance.”

As in the two-variable case, the generalized variance can be obtained as the product of
the eigenvalues of a certain generalized eigenvector problem. In particular, we define the
following problem:

Cii Ci2 - Ciy &1 Cn O -~ 0 &1
deafe)[vat e},

which we also write as C¢ = AD¢E, where D is the block-diagonal matrix whose diagonal
blocks are the Cy;. Given the definition of C' and D, the ratio of determinants of C' and D
is clearly equal to the generalized variance. Thus we have:

P
1
Al@q,.wxm):w—§§:thh (20)
=1

where \; are the generalized eigenvalues of C¢ = ADE. Defining CCA as the solution of
the generalized eigenvector problem C¢ = ADE, we again obtain the mutual information in
terms of a sum of functions of generalized eigenvalues.”

If we wish to obtain a single “maximal canonical correlation,” we can proceed by analogy
to the two-variable case and take the largest (positive) term in the sum in Eq. (20). Thus,
we define the first canonical correlation \(x1,. .., z,,) as the smallest generalized eigenvalue
of C¢ = ADE. We define My(z1,...,2m) = —%log Az1,...,2,) as an approximation to
the mutual information based on this eigenvalue. The following theorem, proved by making
use of Jensen’s inequality, shows that this approximation yields upper and lower bounds on
the mutual information, in the case of Gaussian variables:

)

Theorem 4 Let (x1,...,xy) be multivariate Gaussian random variables, where z; has di-

mension p;. We have the following lower and upper bounds on the mutual information
M= M(zi,...,2m):

A—1 P-1 P—-A
M>\+T<M)\— 5 log

< M < PM,, 21
51 A (21)

where My = My(x1,...,Zm), A= AZ1,...,Zm), and P =" p;.

"Note that the \; are all nonnegative and sum to P = >, pi- Note also that the A; do not occur in pairs
as they do in the two-variable case. Moreover, the terms in the sum in Eq. (20) are not all positive.
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Which of the properties of the classical definition of the first canonical correlation gen-
eralize to the m-variable definition? As we have already noted, the eigenvalues occur in
pairs in the two-variable case, while they do not in the m-variable case. This implies that
the specialization of the m-variable definition to m = 2, A(z1, z2), does not reduce exactly
to the classical definition, p(z1,x2). But the difference is unimportant; indeed, we have
p(z1,22) =1 — A(z1,22). A more important aspect of the two-variable case is the fact (cf.
Theorem 3) that there is a relationship between p(x1,z2) and one-dimensional projections
of x1 and xo. This relationship is an important one, lying at the heart of the properties of
F-correlation. In the following section, we prove that such a relation exists in the m-way
case as well.

A.3 F-correlation and independence

Let y1,...,ymn be univariate random variables, with correlation matrix C , a matrix whose
(4, 7)th element is corr(y;,y;). We define v(y1,...,ym) to be the minimal eigenvalue of C.
Note that a correlation matrix is symmetric with trace equal to m, and thus the eigenvalues
are nonnegative and sum to m. This implies that v(yi,...,%,) must always be between
zero and one, and is equal to one if and only if C' = I. That is, v(y1,...,ymn) = 1 if and
only if the variables 1, ...,y are uncorrelated. The function v, a function of m univariate
random variables, plays a similar role as the correlation between two random variables, as
shown in the following theorem:

Theorem 5 Let x1,...,x, be m multivariate random wvariables. Let \(x1,...,Ty) be
the first canonical correlation, defined as the smallest generalized eigenvalue of Eq. (19).
Then A(x1,...,%m) is the minimal possible value of v(yi,...,Ym), where yi,...,Ym are
one-dimensional projections of i,...,Tm:

ANzt .. @) = min v(Elzy, ..., ELxy,). (22)

517 Hem

In addition, \(x1,...,zym) = 1 if and only if the variables x1, ..., %, are uncorrelated.

Proof Let 5(£1Tx1, .oy &€L 2,,) denote the correlation matrix between (61 1, ..., &L z,,). If
the vectors & have unit norm then the (i, j)th element of C'(&{ 1, ..., &L xy,) is just €1 Cyjé5,
where Cj; is the correlation between x; and z;. We then have:

: T T T T
min v(& x1,...,&,T = min T1,...,E,T
min v(g Emm) e v(&i Emnm)

; T~ eT T
= min min G C&E x1, .., € xm)0B
[[61]|=-=I|&€m||=1 BER™, Hﬁ||=1 (& mm)

= T
= el s 1Zl(%) Cii (Bi€;)

Minimizing over all possible &1, ...,&,, and 8 of unit norm is the same as minimizing over
all possible ¢; such that > | ||¢;||* = 1. Consequently, by assembling all ¢;’s in one vector
¢, necessarily of unit norm, we have:

min v(& z1,..., L x,,) = min e ( = min ¢7 C( M1, .. ),
(i v mm) = A 12 S = ( 2
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which proves the first part of Theorem 5. Let us now prove the second part.

If the variables x1, ..., x, are uncorrelated, then any linear projections will also be un-
correlated, so V(£1Tx1, . ,fﬁxm) is constant equal to one, which implies by Eq. (22) that
A1, ..., xy) = 1. Conversely, if \(z1,...,zy,) = 1, then since v is always between zero and
one, using Eq. (22), for all &, v(¢F21,...,&L ) must be equal to one, and consequently,
the univariate random variables ¢f'zy, ..., L z,, are uncorrelated. Since this is true for all
one-dimensional linear projections, z1,...,x,, must be uncorrelated. |

Applying this theorem to a reproducing kernel Hilbert space F, we see that the F-
correlation between m variables is equal to zero if and only if for all functions fi,..., f;, in
F, the variables fi(z1),..., fm(zm) are uncorrelated. Consequently, assuming a Gaussian
kernel, we can use the same line of reasoning as in Theorem 2 to prove that the F-correlation
is zero if and only if the variables z1, ..., z,, are independent.

Concerning our second contrast function, the KGV, Theorem 4 shows that the KGV
is always an upper bound of a constant function ¢(A) of the first canonical correlation .
Since ¢ is nonnegative and equal to zero if and only if A = 1, this shows that if the KGV is
equal to zero, then the first canonical correlation is also zero, and the variables 1, ..., T.;,
are independent. As in the KCCA case, the converse is trivially true. Thus, the KGV also
defines a valid contrast function.

B Kernel generalized variance and mutual information

In Section 3.4 we noted that there is a relationship between the kernel generalized variance
(KGV) and the mutual information. In particular, we claim that the KGV approaches
a limit as the kernel width approaches zero, and that this limit is equal to the mutual
information, up to second order, expanding around independence. A full proof of this result
is beyond the scope of this paper, but in this section we provide a sketch of the proof. We
restrict ourselves to two univariate random variables and Gaussian kernels for simplicity.

B.1 Multinomial and Gaussian variables

We begin by establishing a relationship between a pair of multinomial random variables
and a pair of Gaussian random variables with the same covariance structure. Let  and y
be multinomial random variables of dimension p and ¢, respectively, and let P denote the
p X ¢ joint probability matrix whose (i, j)th element, P;;, is equal to P(x =i,y =j). As
usual, we also represent these variables as unit basis vectors, X € R and Y € RY, such
that P(X; =1,Y; =1) = P;.

Let p, denote a p-dimensional vector representing the marginal probability distribu-
tion of x, and let p, denote a g-dimensional vector representing the marginal probability
distribution of y. The covariance structure of (X,Y’) can be written as follows, where
D,, = diag(p,) and D, = diag(p,):

EXY")=P, EX)=p,, EY)=p, EBEXX")=D,, EYY")=D,,
which implies Cxy = P —pxpg, Cxx = D,, — pxpg, and Cyy = Dp, — pypg. Let X©
and Y¢ denote Gaussian random variables that have the same covariance structure as
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X and Y. It is easy to show that the mutual information between X¢ and Y@, which
we denote as Z, is equal to Z = —ilogdet(I — CTC) = —1logdet(I — CCT), where
C = D;l/Q(P PzDy, )D 12,

Near independence, that is, if we assume Pj; = pgipy;(1 + €;5) where € is a matrix with
small norm, we can expand Z as follows:

1 1
T=—7log det(I — CCT) ~ 3 tr(cct),
where C = D), 1/2(P — pf,;pZ)Dp_yl/2 = Dl/2 D;f Thus, we have:

1 1
I~ 3 tr(Dpstpyf-:T) =3 Zg?jp:m'pyj' (23)

Let us now expand the mutual information M = M (z,y), using the Taylor expansion
(1+¢)log(l+¢) ~ e +%/2:

M = pripyj(l + 51']') log(l + 51] mepy] Ez] + Ez] Z €ijPxiPyj s (24)
i ij

using Zij €ijPxiPyj = Zij(l + 5ij)p:m'pyj - Zij PziPyj = Zij Pij - Zij PziPyj = 1-1=0.

In summary, for multinomial random variables x and y, we have defined the quantity
Z(z,y) in terms of the mutual information between Gaussian variables with the same co-
variance. We have shown that this quantity is equal up to second order to the actual mutual
information, M (x,y), when we expand “near independence.” We now extend these results,
defining the quantity Z, which we will refer to as the Gaussian mutual information (GMI),
for continuous univariate variables.

B.2 A new information measure for continuous random variables

Let z and y be two continuous random variables. Their mutual information, M (z,y) =
[ p(z,y)log[p(z,y)/p(x)p(y)]dzdy, can be defined as the upper bound of the mutual infor-
mation between all discretizations of z and y (Kolmogorov, 1956). Behind this definition
lies the crucial fact that when refining the partitions of the sample space used to discretize
x and y, the discrete mutual information must increase.

By analogy, we generalize the GMI to continuous variables: the GMI Z(z,y) is defined
to be the supremum of Z(z4,y,) for discretizations (z4,yq) of  and y. In order to have a
proper definition, we need to check that when we refine the partitions, then the discrete GMI
can only increase. It is easy to check that the associated Gaussian random variables before
the refinement are linear combinations of the associated Gaussian random variables after
the refinement, which implies that the refinement can only increase the mutual information
between the associated Gaussian random variables. But this implies that Z can only increase
during a refinement.

Another property of the Gaussian mutual information that we will need in the following
section, one that is also shared by the classical mutual information, is that it is equal to
the limit of the discrete mutual information, when the discretization is based on a uniform
mesh whose spacing tends to zero.
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B.3 Relation with kernel generalized variance

Let us consider the feature space F, associated with a Gaussian kernel K (x,y) = glm G (£Y)
where G(z) = e~*/2. Let us denote Gy(z) = 217mG (%), such that [Gy(z)dz = 1. As

we saw in Section 2, the space F, can be viewed as the completion of the space of finite
linear combinations of functions of the form G, (x — x%) where 2* € R. Let {2'} be a mesh
of uniformly distributed points in R with spacing h. Using these fixed points, we define
F,{x'} to be the (finite-dimensional) linear span of the functions f; = G,(x —z*). Similarly
we define a mesh {y/} for the second random variable, and let F,{y’} denote the linear
span of the functions g; = G,(z — y7).

The contrast function M;, (o) based on the KGV is defined as the mutual information
between Gaussian random variables that have the same covariance structure as ®(x) and
®(y). Let M;,(h,o) be the mutual information between finite-dimensional Gaussian ran-
dom variables that have the same covariance structure as the projections of ®(z) and ®(y)
onto Fy{z'} and F,{y'}.

As the spacing h tends to zero and as the number of points tends to infinity, the spaces
Fo{z'} and F,{y’} tend to the feature space F,, so that Ms,(h,c) tends to Ms,(c).®> We
now relate the quantity M;, (h,o) to the Gaussian mutual information. We have:

E(f, () (g, (y)) = / Gz — )Gy — v )p(z,y)de dy

(
= [Go(2)Go(y) * p(z, )’ y7)
= PG o'( Zvy)

where pg,, a smoothed version of p, is well defined as a probability density function because
G is normalized. Similar formulas can be obtained for the other expectations:

E(fi, ®(z)) = (pc, )a("), E{g;, ®(z)) = (pc,)y(y’)

and covariances:
E(fi,®(x))(fj, ®(x)) x (pa,)z(z") if c < h < 1.

These identities ensure that, as h and ¢ tends to zero, the covariance structure of the pro-
jections of ®(z) and ®(y) onto F,{z'} and F,{y’} is equivalent to the covariance obtained
through the discretization on the mesh {x?, 47} of random variables having joint distribution
PG, - This implies that, as h and o tends to zero, Ms, (h,o) is equivalent to the Gaussian
mutual information of the variables  and y, smoothed by G,. Moreover, as the smoothing
parameter o tends to zero, pg, tends to p, and we see that Ms, (o) tends to Z. Thus the
KGV tends to the Gaussian mutual information, as claimed in Section 3.4.

C Spectrum of Gram matrices

The computational efficiency of our algorithms relies on the approximation of Gram matrices
by matrices of very low rank.? In this section we present theoretical results from functional

8This limiting process can be made rigorous, but doing so is outside of the scope of the paper.
“Note that a (non-centered) Gram matrix is always invertible, given distinct sample points and a Gaussian
kernel, so any low-rank representation of such a matrix is necessarily an approximation.
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analysis that justify the use of such approximations. For simplicity, we restrict ourselves to
Gaussian kernels, but many of these results can be generalized to other translation-invariant
kernels.

The rank of approximations to Gram matrices depends on the decay of the distribution
of the eigenspectrum of these matrices. As pointed out by Williams and Seeger (2000),
for one-dimensional input spaces the eigenvalues decay geometrically if the input density is
Gaussian. We discuss a generalizaion of this result in this section, showing that the decay
of the spectrum depends in general on the decay of the tails of the underlying distribution
p(z) of the data.

The study of the spectrum of Gram matrices calculated from a kernel K(z,y) is usually
carried out by studying the spectrum of an associated integral operator, and using the
Nystrom method to relate these spectra (Baker, 1977). We briefly review the relevant
machinery.

C.1 Integral Operators and Nystrom method

Let K € L2(R?xR?) denote a symmetric kernel and p(z) the probability density of a random
variable on R%. We assume that p is bounded and that the integral [y, w4 | K (2, y)|p(z)dzdy
is finite. We define the integral operator T, from L*(R?) to L?(R?), as follows:

T: ¢(y) — " K(z,y)p(z)o(x)dx. (25)
T is called a Hilbert-Schmidt operator (Brezis, 1980). It is known that the spectrum of such

an operator is a sequence of real numbers tending to zero, where the spectrum is defined as
the set of \; for which there exists ¢; € L%(R?) such that T'¢; = \;i¢;:

[ K)o @i = xoi(0), (26)

The eigenvalues A; and eigenvectors ¢; are often approximated using the “Nystrom method,”

which relates them to the spectra of Gram matrices of points sampled from p. That is, the

expectation in Eq. (25) is approximated by the sample mean T'¢(y) =~ % ch\le K(zk,y)o(xy),
where x are N data points sampled from p. Substituting this into the definition of an eigen-

vector in Eq. (26) and evaluating at y = x;, we get:

N

S K a)6ies) ~ hidi(ay), (21)
k=1

and thus ®; = (¢i(z1),...,¢i(zn))T is an eigenvector of the Gram matrix K = (K (2, z;))

with eigenvalue N\;:

1
NK@Z- = N®;.

Consequently, the eigenvalues of the Gram matrix K are approximately equal to N A, where
A ranges over eigenvalues of the integral operator. It is also possible to approximate the
eigenfunctions ¢; using this approach (see Baker, 1977).
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Decay of p(z) Bound of n(n) | Decay of A,
compact support 0(10g(1/77)) ¢—Anlogn

e /2 log(1/7) o

lz| =%, d > 2 77—5—1/d n—d+e

Table 3: Bounds for the number N(7n) of eigenvalues greater than 7, and the n-th eigenvalue
A of the integral operator T

Two problems arise: How fast does the spectrum of the integral operator decay for
various kernels K and densities p? How close are the eigenvalues of the Gram matrices
to N times the eigenvalues of the integral operator? In the following section, we overview
some theoretical results that give asymptotic bounds for the decay of the spectra of integral
operators, and we provide empirical results that relate the eigenvalues of Gram matrices to
the eigenvalues of the integral operator.

C.2 Spectra of integral operators

Widom (1963, 1964) provides some useful results regarding the spectra of the operator T'
defined in Eq. (25) for translation-invariant kernels of the form k(x —y). He shows that the
rate of decay of the spectrum depends only on the rate of decay of the Fourier tranform v(w)
of k, and of the rate of decay of the probability density function of the underlying input
variable x. Moreover, he provides asymptotic equivalents for many cases of interest. Most
of the results can be generalized to multivariate kernels. For the case of Gaussian kernels,
we summarize some of the pertinent results in Table 3. Note that except for heavy-tailed
distributions (those with polynomial decay), the spectrum vanishes at least geometrically.

C.3 Nystrom approximation

We now provide empirical results about how the spectra of Gram matrices relate to the
spectra of the associated integral operator. We study the Gaussian distribution, where an
exact result can be calculated, and the Student distribution with three degrees of freedom,
where a function of the form A\, = m can be fit tightly to the spectrum.'® In both cases,
we used distributions with unit variance.

We sampled N data points from these distributions, for N ranging from 23 to 2'3, and
computed the spectra of the resulting Gram matrices. The results are plotted in Figure 8.
We see that the spectrum of the Nx/N Gram matrix, which we denote as Ay y, is composed
of two regimes. For eigenvalues A\; y up to a given rank ko(IV), the eigenvalues are very
close to their limiting value \; /N, where )y is the k-th eigenvalue of the associated integral
operator. After ko(N), the spectrum decays very rapidly.

The important point is that the spectra of the Gram matrices decay at least as rapidly
as N times the eigenvalues of the integral operators. Consequently, we need only consider

low-rank approximations of order M = h(n/N), where as /N tends to zero, h(t) grows

0Note that this is consistent with the bounds in Table 3, since the Student distribution with three degrees
of freedom has a density that decays as |z|™*.
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as described in Table 3. Given that we choose the precision to be proportional to N, i.e.
n = noN, the number of eigenvalues we need to consider is bounded by a constant that
depends solely on the input distribution.

30

40

Figure 8: Spectra for two different input densities (top: Gaussian, bottom: Student distri-
bution with three degrees of freedom). The dashed lines are the exact or fitted (see text
for details) logarithm of the spectra log \x, plotted as a function of the eigenvalue number
k. (Left) The solid lines represent log %)\k,N, for N = 23,25 27 29 211 213 (Right) For
N = 21 = 2048, the solid line represents log %)\ka, plotted as a function of k, while
the lower and upper ends of the error bars represent the minimum and the maximum of
log %)\;ﬁ ~ across 20 replications.

D Derivatives

In this section we provide a discussion of the computation of the derivatives of our contrast
functions. The computation of these derivatives is a straightforward application of the chain
rule, where the core subroutine is the computation of the derivatives of the Gram matrices.
This latter computation is not entirely straightforward, however, and it is our focus in this
section. Note that the computation of the derivatives of a Gram matrix arises outside of the
ICA setting, and this material may therefore have utility for other kernel-based methods.

The key problem is that although the Gram matrix K is symmetric and positive semidef-
inite, its derivative with respect to some underlying variable is symmetric but not in general
positive or negative semidefinite. Consequently, incomplete Cholesky decomposition cannot
be used directly to find low-rank approximations of derivatives.
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Fortunately, for Gaussian kernels, it is possible to express the derivatives as sum and/or
difference of positive semidefinite matrices that themselves are Gram matrices, and to which
incomplete Cholesky decomposition can be applied. More precisely, if w € R" is a row of
our parameter matrix W, then the Gram matrix that we have to differentiate has its (a, b)th

element equal to exp {— 212 (waa — wab)Q}. Without loss of generality, let us differentiate
this expression around w = (1,0, ...,0)T. We obtain:
a K — 1 2 (%1 xbl) 2
(0w, K) = — 552 (Tal = 6)(Taj — Tpj)e 2 : (28)

.. . . _ 2 2 .
This is not a Gram matrix, because the Fourier transform of z +— x1xje 21/20% ig not real-
valued and nonnegative. We instead proceed by decomposing the derivative as a difference
of Gram matrices. Two cases arise:

o If j =1, from Eq. (28), we have a matrix whose elements are of the form f(zs, — xp1)
where f(z) = z2¢72°/20” Let f be the Fourier transform of f. The Fourier transform
of g(z) = /27" is v(w) = V2roe “"7"/2 and we have:

2 2
@) = ) =y
1

o 2wV 2roe™v 20%/2
= o2 ()—Jw\/—_wa2/2

o*v(w) — h(w) (29)
The function h = 02g — f has a nonnegative Fourier transform, which implies that the
matrix whose elements are 02g(z41 — 2p1) — f(Tq1 — Tp1) is positive semidefinite. Since

g(z) also induces a positive semidefinite matrix, we have managed to decompose our
derivative.

(V2moe™ U2/2)

o If j # 1, from Eq. (28), we have a matrix induced by a function of the form f(xq —
Ty, Taj — Tpj), where f(z,y) = zye=2°/20"  We use the following trick to reduce the
problem to the previous case. For a positive real number v, we write:

vy = 5(0% %) + 57 —9?) = 5 (0P + 77~ (& + ). (30)

Thus we can decompose the function f,(z,y) = xye*xg/ 20% 0=y? /277 g before, letting
[y (x,y) = go(x,y) + g4(x,y) — h(x,y) where g5, g, and h all have real positive Fourier
transforms. To approximate f based on f,, we note that:

(2, y) — fr(z,9)] < Jzyle 272 /242, (31)

Given that our goal is to obtain a descent direction and not an exact value for the
derivative, we can chose a large value of v (we used v = 50 in our simulations) and
obtain satisfactory results.!!

"Note that the variables & and y have unit variance, and thus by the Chebyshev bound %2 is unlikely to
be larger than v = 50.
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In summary, we have managed to decompose the derivatives of Gram matrices in terms of
the difference of two matrices to which we can apply our low-rank decomposition algorithm.
The final time complexity is O(m?M?2N) for the derivatives of the KCCA criterion and
O(m3M?N) for the KGV criterion.
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