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Abstract

Recent research has shown there are two types of un-
certainty that can be expressed in first-order logic—
propositional and statistical uncertainty—and that both
types can be represented in terms of probability spaces.
However, these efforts have fallen short of providing a
general account of how to design probability measures
for these spaces; as a result, we lack a crucial compo-
nent of any system that reasons under these types of un-
certainty. In this paper, we describe an automatic pro-
cedure for defining such measures in terms of a prob-
abilistic knowledge base. In particular, we employ the
principle of maximum entropy to select measures that
are consistent with our knowledge and that make the
fewest assumptions in doing so. This approach yields
models of first-order uncertainty that are principled, in-
tuitive, and economical in their representation.

I ntroduction

Integrating representations of uncertainty with the expres-
sive semantics of first-order logic is the theme of much re-
search in Artificial Intelligence. Recent work has shown that
there are two types of uncertainty that can be expressed in
first-order logic: propositional uncertainty, where we are
uncertain of the truth of logical sentences, and statistical un-
certainty, where we are uncertain of the distribution of prop-
erties across objects (Bacchus 1990). This work also shows
that both types of uncertainty can be represented in terms of
probability spaces (Halpern 1990). However, these efforts
have fallen short of providing a general account of how to
design and represent probability measures for these spaces;
as a result, we lack a crucial component of any system that
reasons under propositional and statistical uncertainty.

In this paper, we describe an automatic procedure for
defining these measures in terms of a probabilistic knowl-
edge base that contains certain and uncertain first-order
knowledge. In general, our knowledge will be insufficient
to determine the measures uniquely, and so we adopt the
following strategy: we view the probabilistic knowledge
base as a set of constraints, and of the measures that satisfy
the constraints, we choose the one with maximum entropy
(Jaynes 1979). We show that this choice leads to models of
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propositional and statistical uncertainty that are principled,
intuitive, and economical in their representation.

We begin by reviewing the basic concepts underlying
propositional uncertainty and then discuss its connection to
the principle of maximum entropy. Next, we show how re-
cent algorithmic advances, which provide general-purpose
machinery to implement the maximum entropy principle,
may be applied to yield principled and compact represen-
tations of propositional uncertainty. We then extend the ap-
proach to include statistical uncertainty, and show how un-
certain knowledge of each type may be used to inform infer-
ences of the other. We conclude with a discussion of some
important issues and a summary of related work.

Degrees of Belief and Random Worlds

Nilsson (1986) was among the first to consider the prob-
lem of representing propositional uncertainty, i.e., uncer-
tainty regarding the truth of logical sentences. For exam-
ple, an agent may be unsure of the truth of such sentences as
flies(Tweety) or Vz(bird(z) — flies(z)), and may ascribe a
degree of belief (or probability of truth) to each. In this sec-
tion, we describe one approach, which has become known
as the random worlds formulation.

The truth of logical sentences is defined in terms of possi-
ble worlds. Let L be a finite first-order logic language (i.e.,
a collection of finitely many relation, function, and constant
symbols, along with the usual variable symbols, connec-
tives, quantifiers, and the equality symbol); let Sy be the
set of sentences of L.! A possible world (or structure) w
for L consists of: a set of objects O,, (called the domain of
w); a set of relations over the domain, each corresponding
to a relation symbol in L; and, a set of functions over the
domain, each corresponding to a function symbol in L. (As
usual, constant symbols can be treated as function symbols
of zero arity.) The universe of L, denoted Uy, is the set of
all possible worlds for L.

We can represent the semantics of first-order logic by a
deterministic valuation function V' : Sy, x U, — {T,F}: a
sentence is either true (T) or false (F) in each possible world.
Thus, if our agent knew which of the possible worlds is the
actual world, then it could apply the valuation function to

1While we focus on first-order logic languages, the framework
trivially admits propositional logic languages as a special case.



infer the truth or falsehood of every sentence with certainty.
We can therefore interpret its uncertainty regarding the truth
of sentences as derivative of an underlying uncertainty re-
garding which of the possible worlds is the actual world.

The probabilistic way to model this uncertainty is with a
random world T, i.e., a random variable that ranges over
the possible worlds in U; W is governed by a distribution
(or measure) Py, called a world model. An agent’s world
model expresses its degree of belief that any possible world
is the actual world, and can be used to compute the degree
of belief (sentence probability) of a sentence « as:

Py{a} 2Py Up) = Y Py(w) )
weUy

where U = {w € Uy, : V(a,w) = T} is the set of models
of .. This notation generalizes naturally to sets of sentences,
allowing us to express conditional degrees of belief.

Several intuitive properties follow immediately from the
random worlds formulation. For example, for all world
models Py;,: if o = g then Py {a} = Py {8}; if
is valid, then Py, {a} = 1; if a is unsatisfiable, then
P, {a} = 0; Py {a} + Py {-a} = 1forall ; and if
a = B thenPy {a} <Py {f}tand Py {f|a} =1.

Random Worldsand Maximum Entropy

Given a probabilistic knowledge base that expresses our
propositional uncertainty, we would like to compute degrees
of belief for new sentences. Specifically, we will assume
a probabilistic knowledge base consisting of a set of facts
A ={o,...,an} and aset of beliefs B = {$1,...,6n};
each fact «; is a sentence that is known to be true with cer-
tainty, and each belief 3; is a sentence accompanied by a
corresponding degree of belief P, {3;} (that is not 0 or 1).

The random worlds formulation allows us to reason under
propositional uncertainty, given a world model. Thus, we
view the task of reasoning from a probabilistic knowledge
base as essentially that of building this measure. However,
we are immediately faced with a problem of identifiability:
in general, our probabilistic knowledge base can be compat-
ible with infinitely many possible world models. We can ei-
ther accept this indeterminacy (and perhaps compute bounds
on degrees of belief), or introduce an additional criterion that
eliminates it. We pursue the latter approach.

The principle of maximum entropy (Jaynes 1979) repre-
sents one method of selecting a unique measure. In this
framework, we view our knowledge base as a set of con-
straints that must be satisfied by the world model: it must
assign zero probability to worlds inconsistent with the facts,
and it must agree with the sentence probability of each be-
lief. Of all such measures, we select the one with maximum
entropy; in information-theoretic terms, this corresponds to
selecting the measure that makes the fewest assumptions
necessary to be consistent with our knowledge base.

The maximum entropy principle is a general technique for
selecting a unique measure in underdetermined problems,
but we can give it further justification in the context of mod-
eling random worlds. Paris (1999) and others have shown
not only that maximum entropy world models are consistent

with several common sense reasoning principles—such as
insensitivity to renaming, indifference to irrelevant informa-
tion, and the assumption of independence in the absence of
explicit information to the contrary—but that they are deter-
mined by them; that is, any process that translates a proba-
bilistic knowledge base into a world model and is consistent
with these common sense reasoning principles must yield a
maximum entropy world model.

The Automatic Construction of
Maximum Entropy World Models

While the maximum entropy approach was suggested in
Nilsson’s original paper, no general purpose algorithm to
implement it was provided.? Recent theoretical and algorith-
mic advances in the Statistics and Machine Learning com-
munities provide us with the necessary tools to give a gen-
eral solution. We first give a brief introduction to the frame-
work, and then show how it may be applied to the problem
of constructing maximum entropy world models.

Maximum Entropy Probability M odels

Suppose we wish to model a random variable Y that ranges
over some finite set of values V. We have access to a ref-
erence distribution P (for example, an empirical distribu-
tion), and we wish to summarize this distribution by another,
simpler distribution Q. that models Y" in terms of a number
of features. In particular, we select a set of feature func-
tions F = {fi, f2,.-., fn}, Where each feature function
fi + Y — R maps possible values of Y to real numbers;
intuitively, a feature function’s output indicates the degree
to which the corresponding feature is present.

We can summarize the reference distribution P by ap-
plying the principle of maximum entropy, and defining Q,
as the solution to the following optimization problem:

maximize: H(Qy)
subjectto:  Eq_ [fi] = Ep_ [/i]
where

wher @

H(Qy) =—)_ Qy(y)logQy(y)
yey

is the entropy of the distribution Q... That is, we seek a
distribution that agrees with the reference distribution on the
expectations of the feature functions and that has maximum
entropy. If the reference expectations Ep_ [f;] are our only
knowledge of Py, then the result of this optimization is a
distribution that agrees with our knowledge and makes the
fewest assumptions in doing so.

The maximum entropy optimization (2) must be per-
formed over all possible distributions Q,-, which seems a
daunting task. Consider a simpler method of summarizing
P, inwhich we perform maximum likelihood optimization
over the Gibbs (or log-linear) distribution

Q) & gy e {Z Aifi(y)}
=1

2Although an algorithm had been developed in the Statistics
community (Darroch & Ratcliff 1972), it seems Nilsson was only
aware of a somewhat less general formulation (Cheeseman 1983).



where A = {1, Ag, ..., A\, } are the parameters and

N {Z Az-fz-cy)}

yey

is a normalization factor. A surprising result proves not
only that the solutions to these optimizations are unique, but
that they are identical (Della Pietra, Della Pietra, & Lafferty
1997). Thus, we can calculate the maximum entropy dis-
tribution under expectation constraints by solving the maxi-
mum likelihood problem for Gibbs distributions.

Moreover, the maximum likelihood optimization for
Gibbs distributions has several nice properties. First, the ref-
erence expectations are sufficient statistics, and so the ref-
erence distribution itself is not necessary to carry out the
optimization. Second, maximum likelihood for Gibbs dis-
tributions is a convex optimization problem, and therefore
can be solved by hill-climbing algorithms like Generalized
Iterative Scaling (Darroch & Ratcliff 1972), Improved Itera-
tive Scaling (Della Pietra, Della Pietra, & Lafferty 1997), or
a number of more generic convex optimization algorithms.

Maximum Entropy World Models

The framework above has a natural application to the prob-
lem of modeling random worlds, but we face an immediate
obstacle: it requires the modeled variable’s range to be finite,
but the number of possible worlds can be infinite (because
possible worlds can have arbitrarily many objects).3A sim-
ple way to sidestep this difficulty is to impose a bound on the
number of objects in each possible world; for a fixed, finite
language, the set of such possible worlds is always finite.
Thus, we will assume that one of the facts in our knowledge
base is a sentence that enforces this constraint.*

As stated above, we seek a world model Qy;, with three
properties: (1) it should give positive probability only to
worlds consistent with the facts A4; (2) it should be consis-
tent with the sentence probability P, {3;} of each belief
Bi € B; and (3) of all world models with these properties,
Qy, should have maximum entropy.

To obtain Qy;,, we apply the maximum entropy frame-
work described above. First, we choose the range of the
random world to be /7, the set of worlds consistent with
the facts; this ensures the first property. Next, we choose the
appropriate set of features; for each belief 8; we include a
feature function fs, : Ut — {0, 1} defined by

fo(w) 2 { L ifV(B,w) =T

0 otherwise

Recall that the result of the maximum entropy optimization
is a distribution Q,, that agrees with P, on the feature

3The requirement that the variable’s range be finite stems from
the fact that every value is assigned a probability that is bounded
away from zero, yielding a finite sum only when the range is finite.

“We view this restriction largely as a technicality, since in many
domains, the number of objects we wish to reason about can be
bounded. However, it does limit representation power: there are
first-order knowledge bases that are inconsistent in all worlds with
finite domains, but are consistent in worlds with infinite domains.

expectations. Given our choice of feature functions, we have

Eq,, [fs.(W)] = Quw U]) = Quw{Bi}

Therefore, we can view the maximum entropy optimization
(2) as solving the following problem:

maximize: H(Qy,)
subjectto:  Qu {Bi} =Py {Bi} (VBi € B)

Thus, applying the maximum entropy framework ensures
the second and third properties. The result of this process
is a maximum entropy world model of the form

A
Qw<w>é%exp > nfsw @

BeB

where Z(A) is the normalization constant.

A Simple Example

We illustrate the approach with the following example. Let
our language have four constants (Alice, Bob, Chris and
David), a unary relation symbol (male), and a binary rela-
tion symbol (married). Then our probabilistic knowledge
base could contain the following facts:

oy Vx(-married(z, x))

as : Vx,y(married(y, z) < married(z,y))

agz: Vzx,y,z(married(z,y) A married(z,z) — (y = 2))
ay : Vx,y(married(z,y) — —(male(z) < male(y)

a5 :  —male(Alice) A male(Bob) A male(David)

as well as the following beliefs:

B1: Py {male(Chris)} = 085
B2 : Py, {xz(married(Alice,z))} = 0.75

Given this probabilistic knowledge base, we would like to
construct a world model so that we can compute new degrees
of belief. First, we bound the number of objects we wish to
reason about; in this example we assume Alice, Bob, Chris
and David refer to four distinct objects. Next, we build the
corresponding maximum entropy world model Qy;;; its pa-
rameters are Ag, = 2.14 and Ag, = 0.11. Finally, using this
world model, we can compute new degrees of belief; for ex-
ample, we find that Q,,,{married(Alice, Bob)} = 0.28, but
Qyy {married(Alice, Chris)} = 0.19.

Statistical Uncertainty and Random Objects

So far, we have restricted our attention to representing and
reasoning under propositional uncertainty. However, as Bac-
chus (1990) and others have noted, there is another type of
uncertainty that can be expressed in first-order logic lan-
guages. Compare the following two statements:

With 90% probability, all birds fly. 4)
90% of all birds fly. (5)
Statement (4) expresses propositional uncertainty: a proba-
bility is ascribed to the proposition Vz(bird(z) — flies(z));

the proposition is either true or false, and the probability rep-
resents our degree of belief that the proposition is true. In



contrast, the truth of statement (5) is not in doubt; rather,
uncertainty is expressed regarding how properties are dis-
tributed across objects in the domain. In particular, (5) states
that were we to “sample” objects from the domain, 90% of
those satisfying bird(z) would also satisfy flies(z). This sort
of uncertainty is called statistical uncertainty.

We have shown that representing propositional uncer-
tainty can be reduced to representing uncertainty about
which of the possible worlds is the actual world. In con-
trast, when representing statistical uncertainty, we will (ini-
tially) assume we know which of the possible worlds is the
actual world. We consider a process in which we sample
objects randomly from the actual world and represent un-
certainty regarding the sorts of properties such objects will
have. As with degree of belief, this notion of randomness
can be formalized in terms of a probability space; we begin
by introducing some helpful notation.

We will view a formula with & free variables as a k-ary
predicate. Let ¢ be a k-ary formula with free variables
Z1,--.,2 and let w be a possible world; then we define
the support of ¢ in w as

0% 2 (o1, 08) € Ok : VI v/ (5, ) = T}

where V1#1/01,--@x/0k] js the valuation function altered such
that each variable symbol z; is interpreted as a reference to
the corresponding object o;. In other words, O is the set
of instantiations of ¢’s free variables that satisfy ¢ in w. If
® is a set of k-ary formulas, then the support of ® in w is
02 2 Nyes OF. Because an n-ary formula can trivially
be considered a k-ary formula for n < k, this definition
extends to the case where some formulas in ® have a natural
arity less than &.

As mentioned above, statistical uncertainty is based upon
a notion of sampling objects from the domain. Let us assume
that w is the actual world. We define a random object of w to
be a random variable O ranging over O,,, the domain of w;
O is governed by a distribution P called an object model
for w. We will also require a notion of sampling tuples of
objects from the domain; to do this, we can extend an object
model to ascribe probability to k-tuples of objects via the
product construction:

k
A
P8(<01,02, . '7ok>) = H Pg(ol)
i=1

This reflects an assumption that objects are sampled inde-
pendently and identically distributed from the domain.®

Of course, we are not really interested in sampling par-
ticular objects. Rather, we are interested in the properties
they possess in the world; these properties are expressed us-
ing formulas. For a fixed world w, we can view a k-ary
formula ¢ as denoting O¢, the set of k-tuples of domain
objects for which ¢ is satisfied. This leads us to define the
formula probability of ¢ in w as

S} =P80 = Y

(01,...,05)EOS

Pg(<017 - ‘JOk))

5This choice is not motivated purely by simplicity; there are
more subtle reasons as well (Bacchus 1990, 89-90).

That is, the formula probability of ¢ in a world w is the
probability of drawing an instantiation of ¢’s free variables
from the domain of w so that ¢ is true in w. We can extend
this notation to sets of formulas, allowing us to express con-
ditional formula probabilities: if ® and ¥ are sets of k-ary
formulas (with P%{T} > 0), then P%{® | T} =2 PZ{d U
U} /Pg{¥} is the conditional probability ® holds given ¥
holds (under Pg). Thus, the quantity referred to in state-
ment (5) is exactly Pg {flies(z) | bird(z)}.

Formalizing statement (5) in these terms highlights the
fact that an agent’s concept of the actual world and its ob-
ject model represent independent explanations for the sta-
tistical predications it makes. The speaker reports the fact
that P {flies(z) | bird(z)} = 0.9; this may be a result of
the composition of the actual world w, the way in which the
agent samples the world, or some mixture of the two. For
example, it may be that there is only one flightless bird in
the actual world, but the agent samples it 10% of the time.
To rule out this indeterminacy, we will assume uniform ob-
ject models—each object is equally likely to be drawn from
a world. This assumption is valid if the agent makes objec-
tive observations, but can also be justified if our goal is to
model the agent’s statistical knowledge of the world rather
than its true composition (Bacchus 1990, 114-117).

Reasoning With Statistical Uncertainty
Under Maximum Entropy

Propositional and statistical uncertainty are complementary,
and there are two ways in which we can incorporate statisti-
cal uncertainty into the framework we have developed thus
far. In the first, we can use degrees of belief to generate sta-
tistical knowledge; in the second combination, we can use
statistical knowledge to alter our degrees of belief. We treat
each of these combinations in turn.

From Degrees of Belief to Statistical Knowledge

In the first combination, we allow our statistical estimates
to be influenced by our beliefs regarding the truth of sen-
tences. For example, if an agent is mostly certain that all
birds fly (a proposition), it should also think it likely that
a randomly-sampled bird would fly. Thus far, we have as-
sumed knowledge of the actual world w when performing
statistical inference; the natural way to effect this combina-
tion is to replace the actual world w with a random world
W, governed by a world model P;, (Halpern 1990).

Let Py, be a world model, and for each possible world
w let UF be a uniform object model for w. We define the
probability of a formula ¢ (over all worlds) to be

Po{d} = Y UL{$}Py {w) (6)

wEUL

We can define joint and conditional formula probabilities
similarly. Thus, we can represent uncertainty regarding the
objects of a fixed possible world using an object model P%;
but given a world model P;, and the assumption of uniform
object models, we can express statistical information about



the properties of objects across many possible domains.®
Returning to our example: an agent that strongly believes all
birds fly has a world model in which worlds with flightless
birds are improbable; when this agent samples a bird object
from the mixture of these worlds, the result will probably
come from a world in which all birds fly.

From Statistical Knowledgeto Degrees of Belief

In the second combination, we would like to inform our
degrees of belief with statistical knowledge. For ex-
ample, an agent that knows most birds fly (a statistical
fact) should assign zero probability to all worlds in which
this is not true. Doing so will raise its degree of be-
lief P, {flies(Tweety) | bird(Tweety)}, since the majority of
bird objects that the constant symbol Tweety could refer to
will also fly. Thus, this composition allows us to perform
direct inference, i.e., to reason from statistical knowledge
about populations to beliefs about individuals.

To make this possible, we follow Bacchus (1990) in ex-
tending the syntax of first-order logic so that we can make
statistical predications, i.e., logical sentences that are true
whenever certain statistical properties hold. We begin by
including a new unit of syntax which is distinct from for-
mulas and terms, called a proportion expression.” Rational
numbers are proportion expressions, as are statistical quan-
tifications of the form

[¢]{z1,zg,...,zk} and [¢|¢]{z1,zg,...,zk}

where ¢ and ¢ are formulas. Such expressions are called sta-
tistical quantifications because the variables z1, zs, ...,z
are bound within ¢ and 4». Proportion expressions are closed
under arithmetic, and may be combined with relational op-
erators (e.g., <, =, etc.) to form statistical predications.

We augment the semantics of the logic by interpreting
the arithmetic and relational operators in the usual way. Fi-
nally, we define the interpretation of [¢],, .. . ,inthe

possible world w to be Ug{¢}, the fraction of instantia-
tions of 21, xa, . ..,z that make ¢ true in w. Similarly, we
define the interpretation of [¢ |4 ], ., .4 inw to be

B{#| v} (or zero if UZ{¢ |4} is undefined).
Returning to our first example, statement (5) can be en-

coded by the following statistical predication:

In most worlds w, U {flies(x) | bird(z) } will not be exactly
0.9, in which case this sentence is false. (In fact, this can
only be true in worlds where the number of objects satisfy-
ing bird(z) is a multiple of 10.) The statement can be weak-
ened by using an interval, e.g., [flies(z) | bird(z)],, €
[0.85,0.95].

®Interestingly, sentence probabilities (Equation (1)) may be
seen as a special case of formula probabilities (Equation (6)), since
sentences are zero-arity formulas. Let « be a sentence and w a pos-
sible world. If V (o, w) = T, then Og, = {()} is the set containing
the empty tuple; if V(a, w) = F, then O% = 0.

"Unlike Bacchus (1990) and Halpern (1990), who define logics
of probability, we do not treat proportion expressions as first-class
objects; they are simply a new type of ground term.

Extending the logical language to admit statistical pred-
ications gives us two ways to inform our degrees of belief
with statistical knowledge. In the first, we condition on sta-
tistical predications when calculating degrees of belief; for
example, we can compute

P, {flies(Tweety) | bird(Tweety),
[flies(z) | bird(z)],,, > 0.9},

the probability that Tweety flies given he is a bird and over
90% of birds fly. In the second, we include statistical predi-
cations in the probabilistic knowledge base used to construct
the world model; they can be included as facts or as be-
liefs, allowing us to leverage certain and uncertain statistical
knowledge in the construction of our world model.

Extending the Example

Let us add a unary predicate dem to our “marriage” language
to indicate whether a person is a democrat or not. We now
add the following fact and beliefs to our knowledge base:

ag : [dem(z) «» dem(y) | married(z,y) ], .4 > 0.5
Bs : Py, {dem(Chris)} 0.7
Bs: Py {[male(z)|dem(z)],, > 0.5}

0.9

That is: 50% or more marriages pair people with the same
party affiliation; with 70% probability Chris is a democrat;
and, with 90% probability, 50% or more democrats are male.

This extended knowledge base yields a maximum entropy
world model with the parameters Ag, = 1.27, Ag, = 1.05,
Ag; = 2.65 and \g, = 4.45. Using it, we can calcu-
late our new degree of belief Q;,{married(Alice, Chris)}
to be 0.4. (Chris is probably a democrat, which increases
his chances of being male and therefore of being married
to Alice.) We can also calculate the statistical quantity
Qo{Fy(married(z, y)) |dem(z)} (the probability a demo-
crat is married) to be 0.57.

Discussion
Our proposal raises a number of interesting and important
issues, which we now briefly discuss.

Applying the principle of maximum entropy to random
worlds provides several nice inferential properties, but also
gives rise to some subtle issues. For example, encoding the
same problem domain with different languages can lead to
divergent predictions (Halpern & Koller 1995). Also, cer-
tain kinds of knowledge must be encoded with care to ob-
tain the desired semantics, e.g., causal knowledge (Hunter
1989). Finally, evidence and knowledge behave differently
under maximum entropy; i.e., conditioning on a sentence as
evidence and including it as a fact in the knowledge base can
yield different degrees of belief.? It is therefore important to

8(1 thank Andrew Ng for pointing this out) As an exam-
ple, let L be a propositional language with two symbols p and
g, and let our probabilistic knowledge base consist of the belief
that Py, {p A q} = 0.4. Then we find Qu {p|a} = 2/3 un-
der the corresponding maximum entropy world model Q. How-
ever, if we include q as a fact in this knowledge base, we then find

Q' {p} =04.



distinguish between sentences that are observed to be true in
a particular context, and those which are true in all contexts.

Another important issue is that of knowledge acquisition:
we have have made no mention of how the probabilistic
knowledge base we have assumed is to be obtained. In par-
ticular, the issue of obtaining statistical predications can be
troublesome; we refer the reader to (Bacchus et al. 1996,
Section 7.3) for a good discussion.

Finally, our proposal solves a knowledge representation
problem, but we are left with a formidable computational
problem: in general, it is intractable to compute sentence
and formula probabilities. In fact, for just a propositional
language, exact inference in this model is # P-complete and
approximate inference is NP-hard (Roth 1996). In practice,
this intractability stems from the enormous size of the sam-
ple space Uy ; it is exponential in the size of the language,
and doubly-exponential in the maximum domain size.

The situation here is much like that of probabilistic infer-
ence in graphical models: while inference in arbitrary graph-
ical models is intractable, exact (or approximate) inference
becomes tractable in models with sparse (or weak) depen-
dence structure. As we have discussed, maximum entropy
world models assume independence in the absence of ex-
plicit information to the contrary, and therefore can exhibit
significant independence structure. In current work, we are
examining how this independence structure can be leveraged
to speed exact and approximate inference.

Related Work

Grove, Halpern, & Koller (1994) were the first to present
a computational approach to reasoning from a knowledge
base of statistical information; in the special case where the
language consists only of unary predicates, they show that
degrees of belief can be approximated by maximum entropy
computations. Bacchus et al. (1994) extend their framework
so that the knowledge base may include beliefs as well as
statistical predications. Bacchus et al. (1996) discuss the
problem of direct inference, and show that their framework
exhibits several nice properties (many of which are shared
by the current proposal). However, the formalism cannot be
used with arbitrary first-order logic languages, as ours can.

There are now several works that extend logic programs
to represent propositional uncertainty. Probabilistic Logic
Programs (Lukasiewicz 1998) represent one such approach,
and have been extended to make use of maximum en-
tropy technigques when the world model is underdetermined
(Lukasiewicz & Kern-Isberner 1999). Sato & Kameya
(2001) present another extension of logic programs that ex-
presses uncertainty regarding facts (but not rules) in the
knowledge base, and whose parameters can be learned.
Stochastic Logic Programs (Muggleton 2002) also extend
logic programs to represent propositional uncertainty, but
the underlying measure is constructed over resolution proofs
rather than possible worlds.
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