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Abstract

We study the new ANSI C type quali�er restrict, which allows programmers to specify pointers that
are not aliased to other pointers. The main contribution of this paper is a formal semantics for restrict
and a type and e�ect system for checking that restrict-annotated programs are correct with respect
to our semantics. We give an eÆcient inference algorithm for our type system and describe natural
extensions of our type system to include subtyping, parametric polymorphism, and affects clauses that
capture the e�ects of calling a function. We also discuss ways in which our type system di�ers from the
ANSI C standard.

1 Introduction

Almost all program analyses for languages with pointers must perform alias analysis : when a program
indirectly loads or stores through a pointer p, the analysis must determine to which location(s) p points.

The research literature abounds with proposed alias analysis techniques, including [LR92, And94, BCCH94,
EGH94, WL95, Ste96, Das00], some of which scale to very large programs [FFSA98, RF01, HT01]. Almost
all of these techniques are fully automatic. That is, the analyses take a bare program and infer all possible
aliasing.

While these techniques show great promise, we believe that alias analysis is too important and too brittle
to be left entirely to the compiler (see Section 1.3 for two examples). In this paper, we study restrict, a type
quali�er de�ned in the new ANSI C standard (C99) [ANS99]. Intuitively, if a programmer marks a function
parameter x in a C99 program with restrict, then a compiler may assume|without any checking|that
at the beginning of the function, no other paths are aliases of the location �x. This idea harks back to
the semantics of FORTRAN. The FORTRAN language speci�cation states that if the programmer passes
an array to a function multiple times under di�erent names, then that array may not be modi�ed by the
function, and it is up to the programmer to enforce this requirement [ANS78, ABM+97]. The quali�er
restrict tells a C compiler where to use FORTRAN-style semantics.

We believe that restrict is useful in any language with updateable references, not just C. In this paper,
we study restrict as an extension to the �-calculus with updateable references. Our version of restrict
stays close to the de�nition in the C99 standard but di�ers in some respects, discussed in Section 6. We
believe that our study of restrict in a concise formal system helps explain the C99 de�nition and may be
a guide to future revisions of the standard.

The main contributions of this paper are:

� We formalize restrict, giving it a precise semantics (Section 3).

�This research was supported in part by NSF CCR-9457812, NASA Contract No. NAG2-1210, NSF CCR-0085949, and
DARPA Contract No. F33615-00-C-1693.
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� We give a type and e�ect system [LG88] for checking that a restrict-annotated program is correct
with respect to our semantics (Sections 2 and 3).

� We present an O(kn+n�(n)) algorithm (Section 4) for type inference, where n is the size of the typed
program, k is the number of restrict annotations in the program, and �(�) is the inverse Ackerman's
function.

� We describe three natural extensions to our language: subtyping between function types [TJ95], para-
metric polymorphism, and an affects clause for describing the e�ects of calling a function (Section 5).

1.1 restrict

Let p be a pointer declared as
int *restrict p;

and suppose p points to object X. Then the C99 standard requires that, within the scope of p, all accesses
to X are through the name p.1

The quali�er restrict is useful because it allows the programmer to tell the compiler that certain
pointers are never aliased. The C99 speci�cation gives the following example code illustrating the use of
restrict ([ANS99], page 111):

void f(int n, int *restrict p, int *restrict q) {

while (n-- > 0)

*p++ = *q++;

}

Here because the types of p and q are annotated with restrict, the compiler can infer that *p is only
accessed through the name p and *q is only accessed through the name q, and thus *p and *q are not
aliased.

1.2 Types for restrict

We check the correctness of restrict annotations using a type and e�ect system. Pointers in our type
system are given types of the form ref �(�), meaning a pointer to abstract location �, where abstract location
� contains a value of type � .

Our type system proves judgments of the form

A ` e : � ;L

where L, an e�ect, is the set of abstract locations the evaluation of e may read or write. Intuitively, within the
scope of a restrict-quali�ed pointer p, we cannot dereference any aliases of p. We enforce this requirement
with constraints of the form � 62 L, which holds only if � is never accessed during evaluation of e.

Our type system admits an eÆcient inference algorithm. Our type inference system generates constraints
of the form �1 = �2, L � ", and � 62 L, where " is a variable ranging over sets of e�ects. As stated above,
these constraints can be solved in O(kn + n�(n)) time, where n is the size of the typed program and k is
the number of restrict annotations in the program.

1.3 Applications

We brie
y outline two useful applications of restrict.

1The ANSI C standard actually states that this property must hold only if X is modi�ed within the scope of p. We believe
this extra condition makes the de�nition of restrict more complicated to little bene�t (see Section 6).
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Optimization. As mentioned above, restrictwas added to the C standard to enable compilers to recover
non-aliasing information and thus to optimize pointer accesses. For example, given the code for function f()

above, a compiler can use the assumption that *p and *q are not aliased to reorder the assignments in the
loop across iterations. Without restrict annotations, a compiler has no indication of the programmer's
intention (that p and q are not aliased), and the programmer has no way to indicate that a compiler should
try to optimize the loop.

In the C standard restrict quali�ers are unchecked, and hence there is no guarantee that optimizations
that rely on restrict are valid. If a program using restrict type checks in our system, however, then the
restrict annotations are guaranteed to be correct (up to the usual C features that defeat the type system,
such as casting), and hence optimizations based on restrict are safe.

Strong Updates. A key bene�t of restrict that does not seem to be anticipated in the standard is local
recovery of the ability to perform strong updates [CWZ90] in a 
ow-sensitive analysis. Consider the following
code skeleton:

void foo(int *x) f: : : ① *x = e; ② : : :g

Here ① is the program point just before the assignment *x = e, and ② is the point just after the assignment.
Assume x does not appear to the left of ①.

Suppose we perform a standard forward data-
ow analysis on this program, and suppose loc is our
abstraction for the location that x points to. Let [[�]] be our interpretation function mapping program values
and expressions to abstract values.

There are two ways to handle the assignment to *x. If we know that loc is a single, unique location, then
we can perform a strong update so that after the assignment

[[ loc ]]② = [[e]]

On the other hand, if loc may represent more than one memory cell, then after the update loc summarizes
locations that contain both old and new information. Therefore, we perform a weak update, and after the
assignment

[[ loc ]]② = [[e]] [ [[ loc ]]①

which is more conservative.
Suppose, however, that x is declared with a restrict quali�er:

void foo(int *restrict x) f: : : ① *x = e; ② : : :g

Then at the beginning of foo, the programmer can access loc only through the name x. In other words, out
of all the possible run-time locations that loc represents, by adding a restrict quali�er the programmer
has speci�ed that the body of foo accesses only the single location passed as the argument x.

Therefore within the body of foo we can use a fresh location loc 0 as our abstraction for the location x

points to. Then at the assignment *x = e we can perform a strong update on loc 0. When foo returns *x
may again summarize many locations, so at the exit of foo we perform a weak update from loc 0 to loc .
Thus restrict lets us capture a common mutual exclusion pattern (see Section 5).

2 Language and Type Checking

We present our type system for restrict using an extended �-calculus. For example uses of restrict, see
Section 5. Section 6 discusses the issues in applying these ideas to C.
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We typecheck the following language:

e ::= v

j ref e Allocate memory initialized to e
j * e Dereference pointer e
j e1 := e2 Assign e2 to e1
j e1 e2 Apply function e1 to argument e2
j restrictx =e1 in e2

Restrict e1 to name x in e2
v ::= x Variable

j n Integer
j �x:e Function

Our language contains a new scoping construct

restrictx =e1 in e2

with the following meaning: x, which must be a pointer, is initialized to e1 and bound within the body e2.
Within e2, the only access to the location x points to is through x or values derived from x.

In C terms, the expression restrictx =e1 in e2 is equivalent to

{ T *restrict x = e1;

e2;

}

for some type T.
To enforce the semantics of restrict, our type system needs two non-standard features. We need to

explicitly model memory locations, and we need to track which locations evaluation may access. Our type
language is given by the following grammar:

� ::= � j int j ref �(�) j �1
L
�! �2

L ::= ; j f�g j L1 [ L2 j L� f�g

The base types, variables � and an integer type, are standard. Pointers are given types of the form ref �(�),
meaning a pointer to a value of type � . The � is an abstract location naming the location pointed to. In
alias analysis terms, � can be thought of as a label naming a location.

Functions are given types of the form �1
L
�! �2, meaning a function with domain �1, range �2, and e�ect

L. E�ects are sets of locations. Intuitively, a function of type �1
L
�! �2 may access (read or write) locations

in L when executed.
Our type system proves judgments of the form

� ` e : � ;L

meaning that expression e has type � in type environment �, and the evaluation of e may read or write the
locations in L. We write locs(�) for the set of locations occurring in the type � , de�ned as

locs(�) = ;
locs(int) = ;

locs(ref �(�)) = f�g [ locs(�)

locs(�1
L
�! �2) = locs(�1) [ locs(�2) [ L

The �rst case, locs(�) = ;, is sound for our monomorphic type system because � represents a base type. See
Section 5.3 for a discussion of this case for a polymorphic type system.

We de�ne locs(�) as
S
x:�2� locs(�). In proving judgments, our type system uses auxiliary constraints of

the form � 62 L (notice that syntactically the set locs(�) can be considered an e�ect L), which holds if � does
not appear in the set L.

Figure 1 gives the type checking rules for our language. We brie
y discuss the rules.
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� ` x : �(x); ;
(Var)

� ` n : int; ;
(Int)

� ` e : � ;L

� ` ref e : ref �(�);L
(Ref)

� ` e : ref �(�);L

� ` * e : � ;L [ f�g
(Deref)

� ` e1 : ref
�(�);L1 � ` e2 : � ;L2

� ` e1 := e2 : � ;L1 [ L2 [ f�g
(Assign)

�[x 7! �1] ` e : �2;L

� ` �x:e : �1
L
�! �2; ;

(Lam)

� ` e1 : �1
L
�! �2;L1 � ` e2 : �1;L2

� ` e1 e2 : �2;L1 [ L2 [ L
(App)

� ` e1 : ref
�(�);L1

�[x 7! ref �
0

(�)] ` e2 : �2;L2

� 62 L2 �0 62 locs(�; �; �2)

� ` restrictx =e1 in e2 : �2;L1 [ L2 [ f�g
(Restrict)

� ` e : � ;L �1; : : : ; �n 62 locs(�; �)

� ` e : � ;L� f�1; : : : ; �ng
(Down)

Figure 1: Type Checking Rules

� (Var) and (Int) are standard.

� (Ref) constructs a pointer type. Notice that � is unconstrained in this rule, because initialization is
not an update in our semantics.

� (Deref) deconstructs a pointer type. Since operationally a dereference reads a location, we add �, the
abstract location pointed to by e, to the e�ect set.

� (Assign) updates a location. As with (Deref), we add � to the e�ect set, since the assignment updates
e1. Notice we require that the type of e2 and the type pointed to by e1 match. Since those types may
themselves contain abstract locations �, this rule enforces a kind of may-alias analysis in the style of
Steensgaard [Ste96].

� (Lam) constructs a function type with e�ect L, the e�ect of evaluating the function body e.

� (App) deconstructs a function type. Notice that the e�ect of e1 e2 includes the e�ect of evaluating e1,
the e�ect of evaluating e2, and the e�ect of calling the function e1.

The key rule in this system is (Restrict). Recall that the semantics of restrictx =e1 in e2 state that
during the evaluation of e2, the object x points to may only be accessed through x. To enforce this rule with
types, (Restrict) binds x to a type with a fresh abstract location �0. With this binding we can distinguish
accesses through x (or values derived from x), which have an e�ect on location �0, from accesses through
aliases of x, which have an e�ect on location �. Within the scope of e2 only accesses through x are allowed.
Hence the constraint � 62 L2.
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The �nal hypothesis of (Restrict), �0 62 locs(�; �; �2), prevents x from escaping the scope of e2. Consider
the following program:

let x = ref 0 in

let p = : : : in

(restrict q = x in

p := q;

①

restrict r = x in

**p)

Suppose x has type ref �x(int). By (Restrict), the types of q and x can contain di�erent abstract locations. Let
q's type be ref �q (int), where �x 6= �q . Now if the clause �0 62 locs(�; �; �2) were not included in the hypothesis
of (Restrict), the assignment p := q would typecheck. At program point ①, we would have two di�erent
names for the same location|�q and �x|even though neither is restricted. Thus the dereference **p

would typecheck even though the program is semantically invalid. We forbid �0 from escaping in (Restrict)
to prevent this problem.

An alternative formulation is to use a 
ow-sensitive type system, where in (Restrict) x is given the type

ref �
0

(�) within e2's scope, and escaping occurrences of x are given the type ref �(�) after the restrict. We
did not pursue this strategy because it is signi�cantly more complex, and to be useful restrict must be
easily understood by programmers.

Finally, notice that the conclusion of (Restrict) contains the e�ect f�g, i.e., restricting a location is itself
an e�ect. This naturally forbids the following program:

restrict y = x in

restrict z = x in

*y

The last rule, (Down), states that e�ects on any non-escaping location can be removed from the e�ect
set [GJLS87, LG88, Cal01]. The rule (Down) is the one non-syntactic rule in our system. We can construct
a purely syntax-directed version of our system by incorporating down into the type rules.

Lemma 1 A proof of � ` e : � ;L can be rewritten to contain at most one occurrence of (Down) in sequence.

Lemma 2 A proof of � ` e : � ;L can be rewritten so that the only uses of (Down) are as the �nal step in
the proof, the hypothesis of (Lam), or the e2 hypothesis of (Restrict).

Proof: All rules except (Down), (Lam), and (Restrict) are monotonic in their e�ects. That is, for each rule
except (Down) and (Lam) the set of e�ects in the conclusion is a superset of all the sets of e�ects in the
hypotheses. Now, for any e�ect sets L and L0 we have

(L� f�1; :::; �ng) [ L0 = (L [ L0)� f�i1 ; :::; �img

where
f�i1 ; :::; �img = f�1; :::; �ng \ :L

0

Thus we can always move a use of (Down) above one of the hypotheses below the conclusion.
In (Restrict), we can move uses of (Down) from above the e1 hypothesis to below the conclusion. We

cannot move arbitrary uses of (Down) from above the e2 hypothesis because of the constraint � 62 L2. 2
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l 2 dom(S)

S ` l! l;S
[Var/Loc]

S ` n! n;S
[Int]

S ` e! v;S0 l 62 dom(S0)

S ` ref e! l;S0[l 7! v]
[Ref]

S ` e! l;S0 l 2 dom(S0)

S ` * e! S0(l);S0
[Deref]

S ` e1 ! l;S0 S0 ` e2 ! v;S00

l 2 dom(S00) S00(l) 6= err

S ` e1 := e2 ! v;S00[l 7! v]
[Assign]

S ` �x:e! �x:e;S
[Lam]

S ` e1 ! �x:e;S0 S0 ` e2 ! v;S00

S00 ` e[x 7! v]! v0;S000

S ` e1 e2 ! v0;S000
[App]

S ` e1 ! l;S0

S0[l 7! err; l0 7! S0(l)] ` e2[x 7! l0]! v;S00

l 2 dom(S0) l0 62 dom(S0)

S ` restrictx =e1 in e2 !
v;S00[l 7! S00(l0); l0 7! err]

[Restrict]

Figure 2: Big-Step Semantics

Based on these two lemmas, we can eliminate (Down) and incorporate it into (Lam) and (Restrict):

�[x 7! �1] ` e : �2;L
�1; : : : ; �n 62 locs(�; �1; �2)
L0 = L� f�1; : : : ; �ng

� ` �x:e : �1
L0

�! �2; ;
(Lam0)

� ` e1 : ref
�(�);L1

�[x 7! ref �
0

(�)] ` e2 : �2;L2

�1; : : : ; �n 62 locs(�; �; �2) [ f�0g
L02 = L2 � f�1; : : : ; �ng

� 62 L02 �0 62 locs(�; �; �2)

� ` restrictx =e1 in e2 : �2;L1 [ L02 [ f�g
(Restrict0)

3 Semantics and Soundness

Figure 2 gives a big-step operational semantics for our language. Judgments are of the form S ` e! v;S0,
meaning that given store S (a map from locations to values), expression e evaluates to value v and new store
S0. Values are locations, integers, and functions. We implicitly assume that if S ` e! v;S0 is not provable
by the rules then S ` e! err;S. The token err is not a value.

Notice that our semantics contains no environment for variables. We use substitution to bind variables

7



to values. Locations are bound in the store to either values or err.
We only discuss two interesting features of the rules. First, [Assign] has a surprising case: We need to

check whether S00(l) is err before updating location l. We do not need to check for this explicitly in [Deref],
because the semantics are strict in err. However, because [Assign] does not examine the contents of l, we
need to add this check.

Second, [Restrict] uses copying to enforce restrict's semantics. To evaluate restrictx =e1 in e2, we
�rst evaluate e1 normally, which must yield a pointer l. Within the body of e2, the only way to access what
l points to should be via the particular value that resulted from evaluating e1. We enforce this by allocating
a fresh location l0 initialized with the contents of l, and then binding l to err to forbid access through l.
Recall that because our semantics is strict in err, any program that dereferences l within e2 will result in
err.

The soundness of our type system (see below) implies that no program evaluates to err, which in turn
implies that an implementation can safely optimize restrict by eliding the copy of l. Instead, in an
implementation restrict simply binds x to l.

Notice it is not an error to use the value l, but only to dereference it. When e2 has been evaluated we
re-initialize l to point to the value x points to, and then forbid accesses through l0. Forbidding access through
l0 corresponds to the requirement in the type rule (Restrict) that �0 not escape. An alternative formulation
is to rename occurrences of l0 to l after e2 �nishes. We could write this style of rule in a small-step semantics.

3.1 Soundness

We next sketch a proof of soundness. In our proof, we implicitly extend typing judgments to semantic values
in the following way. Locations l are represented in the proof as program variables, and thus their types
are stored in � and they typecheck using (Var). We implicitly treat evaluated and unevaluated integers
identically and use (Int) to typecheck both. Functions are represented not as closures but as syntactic
functions, as in standard small-step semantics subject-reduction proofs [WF94, EST95]. Thus evaluated
functions are typechecked using (Lam).

To show soundness we �rst show a subject-reduction result. We begin by introducing a notion of com-
patibility to capture when it is safe to evaluate an expression.

De�nition 1 (Compatibility) We say � and L are compatible with store S, written (�; L) � S, if

1. dom(�) = dom(S) and

2. for all l 2 dom(S), there exist �; � such that �(l) = ref �(�) and

�
� ` S(l) : � ; ; if S(l) 6= err

� 62 L if S(l) = err

Intuitively, (�; L) � S if an expression e that typechecks in environment � and has e�ect L can execute
safely in store S. Notice that the de�nition of compatibility requires dom(�) = dom(S), i.e., that expressions
typed in environment � may contain locations but not other free variables. This property is maintained
during evaluation because in [App] we implement function call with substitution.

As evaluation progresses the proof of subject reduction extends � with new locations allocated by ref

expressions. It is a property of our semantics and type system that these additions to � are safe, in the
following sense:

De�nition 2 (Safe Extension) We say that (�0; S0) is a safe extension of (�; S), written (�; S)) (�0; S0),
if

1. dom(�) = dom(S) and dom(�0) = dom(S0),

2. �0jdom(�) = �,

3. for all l 2 dom(S0)� dom(S), if S0(l) = err and �0(l) = ref �(�), then � 62 locs(�), and
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4. for all l 2 dom(S), if S0(l) = err then S(l) = err.

Here �0jdom(�)(x) is the restriction of �0 to the domain of �. Intuitively, (�; S)) (�0; S0) if the err-bound

locations in S0 are either also err-bound in S, or if they are fresh (do not appear in �).
With these de�nitions we can state our subject-reduction theorem. We use r to stand for a semantic

reduction result, either a value v or err.

Theorem 1 (Subject Reduction) If � ` e : � ;L and S ` e ! r;S0, where (�; L [ L0) � S for some L0,
then there exists �0 such that

1. �0 ` r : � ; ; (which implies r 6= err),

2. (�0; L0) � S0, and

3. (�; S)) (�0; S0)

Proof (Sketch): By induction on the structure of the derivation S ` e ! r;S0. The interesting case is
restrictx =e1 in e2.

By assumption, we know

� ` e1 : ref
�(�);L1

�[x 7! ref �
0

(�)] ` e2 : �2;L2

� 62 L2 �0 62 locs(�; �; �2)

� ` restrictx =e1 in e2 : �2;L1 [ L2 [ f�g

We also have S ` restrictx =e1 in e2 ! r;S0. By inspection of the semantic rules, this reduction must
have contained a reduction of e1:

S ` e1 ! re1 ;S
0
e1

We apply induction to show that there exists a �0e1 satisfying

1. �0e1 ` re1 : ref
�(�); ;

2. (�0e1 ; L2 [ f�g [ L0) � S0e1

3. (�; S)) (�0e1 ; S
0
e1
)

After this step, though, we cannot directly apply induction to the evaluation

S0e1 [re1 7! err; l0 7! S0e1(re1 )] ` e2[x 7! l0]! re2 ;S
0
e2

of e2. The problem is that we would need to show the following compatibility:

(�0e1 ; L2 [ f�g [ L0) � S0e1 [re1 7! err; l0 7! S0e1(re1 )]

But of course this compatibility does not hold, because re1 maps to err. We can solve this problem by
simply removing � from the e�ect set. But there is a deeper problem: although l0 is fresh, �0 may not be,

and thus there may be some location l00 such that �0e1(l
00) = ref �

0

(�) and S0e1(l
00) = err.

To solve this problem, we observe that the name �0 is arbitrary. We construct a substitution R = [�0 7! �00]
for some fresh �00. Then from

�[x 7! ref �
0

(�)] ` e2 : �2;L2

we conclude
R(�[x 7! ref �

0

(�)]) ` e2 : R(�2);R(L2)

Then using the hypothesis �0 62 locs(�; �; �2) in the type rule (Restrict), we derive

�[x 7! ref �
00

(�)] ` e2 : �2;R(L2)
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�; "� ` x : �(x); ;
(Var)

�; "� ` n : int; ;
(Int)

�; "� ` e : � ;L � fresh

�; "� ` ref e : ref �(�);L
(Ref)

�; "� ` e : � ;L � = ref �(�) �; � fresh

�; "� ` * e : � ;L [ f�g
(Deref)

�; "� ` e1 : �1;L1 �; "� ` e2 : �2;L2

�1 = ref �(�2) � fresh

�; "� ` e1 := e2 : �2;L1 [ L2 [ f�g
(Assign)

�[x 7! �]; "�[x 7!�] ` e : �2;L �; " fresh
"� [ locs(�) � "�[x7!�]

L \ ("�[x 7!�] [ locs(�2)) � "

�; "� ` �x:e : �
"
�! �2; ;

(Lam)

�; "� ` e1 : �1;L1 �; "� ` e2 : �2;L2

�1 = �2
"
�! � �; " fresh

�; "� ` e1 e2 : �2;L1 [ L2 [ "
(App)

�; "� ` e1 : �1;L1 �1 = ref �(�)

�0; "�0 ` e2 : �2;L2 �0 = �[x 7! ref �
0

(�)]
"� [ f�0g [ locs(�) � "�0

L2 \ ("�0 [ locs(�2)) � "
� 62 " �0 62 "� [ locs(�) [ locs(�2)

�; �0; �; " fresh

�; "� ` restrictx =e1 in e2 : �2;L1 [ " [ f�g
(Restrict)

Figure 3: Type Inference Rules

Now we can show the following compatibility:

(�0e1 ; R(L2) [ (L0 � f�g)) � S0e1 [re1 7! err; l0 7! S0e1(re1 )]

and thus apply induction to the evaluation of e2.
We apply the same renaming trick to uses of (Down). Because �1; : : : ; �n do not escape in (Down), their

names are arbitrary and we can freely rename them. 2

Given the subject-reduction theorem, soundness is easy to show:

Corollary 1 If ; ` e : � ;L, then ; ` e! r;S0, where r is not err.

Proof: First observe that (;; L) � ;. Then in our semantics every term can be reduced to some result r.
By the subject-reduction theorem, there is a �0 such that �0 ` r : � ; ;. Thus r is not err. 2

4 Inference

Figure 3 gives the type inference rules for our system. Our type rules generate three kinds of constraints
C, equality constraints between types, inclusion constraints between e�ects, and disinclusion constraints
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between locations and e�ects:

C ::= �1 = �2 j L � " j � 62 L

� ::= � j int j ref �(�) j �1
L
�! �2

L ::= ; j f�g j " j L1 [ L2 j L1 \ L2

Here " is an e�ect variable. Notice that inclusion constraints between e�ects are of the special form L � ",
which makes these constraints particularly convenient to solve.

In addition to the type environment �, during type inference we construct e�ect variables "� to contain
the set of e�ects occurring in environment �. As we extend environment � with a new binding x 7! � in
(Lam) and (Restrict), we generate a constraint

"� [ locs(�) � "�[x7!� ]

In this way we succinctly capture the set locs(�) without needing an explicit linear pass through �. We
brie
y discuss the rules.

� (Var) and (Int) are identical to the type checking rules except for the addition of "� to the left of the
turnstile.

� (Ref), (Deref), (Assign), and (App) are written with explicit fresh variables and equality constraints
between types.

� (Lam) incorporates (Down) according to Lemmas 1 and 2. Notice that we express (Down) as an
intersection property. Also notice that function types always have an e�ect variable " on the arrow.
In this way when we propagate equality constraints on types to equality constraints on e�ects, we will
always yield equalities between e�ect variables rather than between arbitrary e�ects.

� (Restrict) also incorporates (Down), written as an intersection property. (Restrict) is the only rule
that generates constraints of the form � 62 L.

Let m be the size of the initial program. Applying the type inference rules in Figure 3 takes O(m) time
and generates a system of constraints C of size O(m).

We split the resolution of the side constraints C into two phases. First, we apply uni�cation to solve the
type equality constraints �1 = �2. Figure 4a gives the type uni�cation algorithm as a series of left-to-right
rewrite rules. This step can be completed in O(m�(m)) time, where �(�) is the inverse Ackerman's Function.

After this �rst step, we replace the sets locs(�) by the set of locations contained in � (de�ned in Section 2).
Let n be the size of the program annotated with standard types. Notice that substituting for the sets locs(�)
takes time O(n), and the resulting constraint system is size O(n), because of our restriction that arrows are
always annotated with e�ect variables.

The resulting constraints are of the form L � " and � 62 L. We call such a system of constraints an e�ect
constraint system. A solution to an e�ect constraint system C is a mapping � from e�ect variables to sets
of locations such that �(L) � �(") and � 62 �(L) for each constraint L � " and � 62 L in C, where we extend
� from e�ect variables to arbitrary e�ects in the natural way. An e�ect constraint system is satis�able if
it has a solution. Notice that abstract locations are not in the domain of �|intuitively, after applying the
rules of Figure 4a, we treat abstract locations as constants.

We de�ne a partial order on solutions, � � �0 i� for every e�ect variable " we have �(") � �0("). The
least solution to an e�ect constraint system is the solution � such that � � �0 for any other solution �0.

Lemma 3 If e�ect constraint system C has a solution, then C has a least solution.

Proof: Let � be any set of solutions of C. We claim that
T
�2� � is also a solution of C, where (

T
�2� �)(") =T

�2� �("). Suppose C contains a constraint � 62 L. Then by assumption for all � 2 � we have � 62 �(L).
Thus it must be that � 62

T
�2� �(L). Suppose C contains a constraint L � ". Then by assumption for all

� 2 � we have �(L) � �("). But then (
T
�2� �(L)) � (

T
�2� �(")).

Then since (
T
�2� �) � � for all � 2 �, the set of solutions of C has a least element. 2
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C [ f� = �g ) C[� 7! � ]
C [ fint = intg ) C

C [ fref �1(�1) = ref �2(�2)g )
C [ f�1 = �2g [ f�1 = �2g

C [ f�1
"
�! �2 = � 01

"0

�! � 02g )
C [ f�1 = � 01g [ f�2 = � 02g [ f" = "0g

C [ fother type eqng ) unsatis�able
C [ f�1 = �2g ) C[�1 7! �2]
C [ f"1 = "2g ) C["1 7! "2]

(a) Type Uni�cation

C [ f� 62 Lg )
C [ f� 62 "g [ fL � "g " fresh

C [ f; � "g ) C

C [ fL1 [ L2 � "g ) C [ fL1 � "g [ fL2 � "g
C [ f; \ L � "g ) C

C [ fL \ ; � "g ) C

C [ f(L1 [ L2) \ L � "g )
C [ f"0 \ L � "g [ fL1 [ L2 � "0g "0 fresh

C [ fL \ (L1 [ L2) � "g )
C [ fL \ "0 � "g [ fL1 [ L2 � "0g "0 fresh

(b) Constraint Normalization

Figure 4: Constraint Resolution

To test satis�ability of an e�ect constraint system, we �rst apply the rules in Figure 4b to translate the
constraints into the following normal form:

C ::= L � " j � 62 "

M ::= f�g j "
L ::= M jM \M

Notice that the rules in Figure 4b preserve least solutions but not arbitrary solutions. Also notice that in
Figure 4b we do not consider the case (L1\L2)\L � " or L\(L1\L2) � ". Inspection of the rules of Figure 3
shows that constraints with nested intersections are never generated. Applying the rules in Figure 4b takes
time O(n).

We view the inclusion constraints in a normal form e�ect constraint system as a directed graph:

Constraint Edge(s)
f�g � " �! "

"1 � "2 "1 ! "2
M1 \M2 � " M1 ! \

M2 ! \
\ ! "

The nodes of the directed graph are abstract locations � (with in-degree 0), e�ect variables " (with arbitrary
in-degree), and intersections \ (with in-degree 2). We generate a fresh \ node for each constraintM1\M2 �
".

Given a normal form e�ect constraint system, we test satis�ability by checking, for each constraint � 62 ",
whether � 2 S(") in the least solution S. Figure 5 shows the modi�ed depth-�rst search we use to check this
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Associate a count C(v) with each node v in the graph
Initialize C(v) = 0 for all v
Let W = f�g, the set of nodes left to visit
While W is not empty

Remove some node v from W

If v == " return unsatis�able
For each edge v ! "0

If C("0) == 0 then
C("0) = 1
Add "0 to W

For each edge v ! \
If C(\) == 0 then

C(\) = 1
If C(\) == 1 then

C(\) = 2
Add \ to W

Return satis�able

Figure 5: Checking satis�ability of � 62 "

condition. The algorithm in Figure 5 takes time O(n) for each � 62 " constraint. Given an initial program
with k occurrences of restrict, the system considered in Figure 5 will have O(k) constraints of the form
� 62 ". Hence the total time for this step is O(kn).

Therefore the total time for this algorithm is O(m�(m) + kn). Given that the typed program is strictly
larger than the untyped program, the algorithm runs in time O(n�(n) + kn), where n is the size of the
program annotated with standard types.

5 Examples and Extensions

We present some small examples that illustrate interesting features of our type system for restrict. We
write our examples in C, and unless otherwise speci�ed the behavior of each usage in our type system matches
C99.

The obvious application of restrict is to control the name through which a location is accessed. For
example, consider the following code:

{ int *restrict p = q;

*p; // valid

*q; // invalid

}

Since p is annotated with restrict, we may dereference p but we may not dereference q.
As another example, consider the following code, which shows how restrict-quali�ed pointers may be

passed from outer to inner scopes:

{ int *restrict p = ...;

{ int *restrict r = p;

*r; // valid

*p; // invalid

}

*p; // valid

}

Here within the scope of r we can dereference r but not p, and when r goes out of scope we recover the
ability to dereference p.
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As another example, consider

{ int *restrict p = ...;

int *r = p;

*r; // valid

}

Notice that binding p to r actually writes the value of p to memory (r is an l-value). In this case, within
the scope of p our type system allows us to store and retrieve the value of p from memory as long as that
memory does not escape the scope of p. This particular example is not allowed by the C standard.

The rule (Down) allows us to distinguish restricted locations in di�erent instances of the same function.
For example, consider the following code:

void foo(void) {

int a;

int *restrict p = &a;

foo(); // valid

*p = 3; // valid

}

Because a is purely local to the body of foo(), applying (Down) removes the e�ect on a from the e�ect set
of foo(). Thus foo() does not have any visible e�ect, and calling foo() within the scope of p is valid.

One of the most interesting properties of restrict is that it lets us recover non-aliasing information
from complicated aliasing conditions. For example, consider the following code:

{ lock *restrict l = a[i]->lock;

spin_lock(l);

...

spin_unlock(l);

}

In a standard type system all elements of an array have the same type. Thus in this example the pointer
l may point to a large set of possible locations. Recall from the introduction that restrict gives us the
ability to temporarily recover strong updates. Thus even though l may point to a large number of possible
locks, by annotating the type of l with restrict the programmer has guaranteed that they only access one
particular lock within the scope of l. Thus using a standard data-
ow analysis we can treat the calls to
spin lock and spin unlock as strong updates and successfully check whether this piece of code adheres to
a standard locking protocol (e.g., spin lock is never called twice in a row on the same lock).

5.1 affects Clauses

Our notation includes e�ect sets L on function types �1
L
�! �2. Clearly if we wish to apply our type system

to real source code, we need some notation for annotating function types with these e�ect sets.
One natural design is to use syntax similar to Java exceptions. We allow functions to be declared with

affects clauses of the form

void foo(int **x) affects *x, **x;

In our type system, x is given a type of the form

ref �(ref �
0

(int))

The affects clause means that foo() should be given the type

ref �(ref �
0

(int))
f�;�0g
�! void

The type checker incorporates this notation by using the declared e�ect set of foo wherever foo is used.
When the typechecker types the body of foo and computes its e�ect L, it veri�es that L = f�; �0g, i.e., that
the declared type was valid.
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5.2 Subtyping

We can extend our type and e�ect system to admit a form of subtyping among function types [GJLS87, TJ95].
Given our type system, it is natural to add a rule of the form

� 01 � �1 �2 � � 02 L � L0

�1
L
�! �2 � � 01

L0

�! � 02

and to add subsumption
� ` e : � ;L � � � 0

� ` e : � 0
(Sub)

to the typing rules.
Subtyping increases the usefulness of the type system in two ways. First, more programs will typecheck

with subtyping. Second, subtyping makes affects clauses easier to write. Since the programmer is likely
not to annotate functions with exactly the right set of e�ects, if we incorporate subtyping then instead
of requiring that the declared e�ect L0 or a function match exactly the inferred e�ect L, we can require
L0 � L. Our subject reduction and soundness theorems from Section 3 both hold in a system with (Sub).
Our inference algorithm can also be easily adapted to admit subsumption.

5.3 Parametric Polymorphism

Our type and e�ect system can also be extended with parametric polymorphism. Function types are extended
to polymorphically constrained types

� ::= � � � j 8~�~":�1
L
�! �2nC

Here ~� are the generalized abstract locations, ~" are the generalized e�ect variables, and C is a collection
of constraints of the form � 62 L, � 62 locs(�), and � 62 locs(�). The type rules are rewritten to track the
constraints generated in each sub-proof, e.g.,

�; C ` e1 : ref
�(�);L1

�[x 7! ref �
0

(�)]; C ` e2 : �2;L2

C ` � 62 L2 C ` �0 62 locs(�; �; �2)

�; C ` restrictx =e1 in e2 : �2;L1 [ L2 [ f�g
(Restrict)

We add the standard rules for quanti�cation and instantiation:

�; C ` e : � ;L ~�; ~" 62 locs(�)

�; C ` e : 8~�~":�nC
(Poly)

�; C ` x : 8~�~":�nC 0 C ` RC 0

R = [~� 7! ~�0; ~" 7! ~"0]

�; C ` x : R�
(Inst)

We restrict generalization to function types, as is standard [Wri95].
If we also allow type polymorphism in addition to location and e�ect polymorphism, then in (Restrict)

we may need to check constraints of the form � 62 locs(�) for some type variable � generalized in (Poly). In
this case we cannot de�ne locs(�) = ;, since � may be instantiated with a ref type at some point. Instead,
we carry the sets locs(�) syntactically in the polymorphically constrained types and expand them when the
type variables � are instantiated.

We believe our soundness proof can be easily adapted to admit parametric polymorphism, as can our
inference algorithm if we restrict ourselves to Hindley-Milner style let-polymorphism. We leave polymorphic
recursive type inference in the style of [TT94, RF01] as an open problem.

6 ANSI C

In this section we discuss some of the issues in checking restrict in C99. restrict is useful in any language
with updateable references, not just C, and that several of the issues in checking restrict in C99 have more
to do with particular features of C99 than with programming language fundamentals.
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Names. In C, almost all names refer to l-values, that is, ref -types in our notation. That means, for
example, if we declare

int *restrict p = ...;

then p may change during evaluation, which could change what object p points to. (Recall that in our
�-calculus notation, the name x in restrictx =e1 in e2 is an r-value.) The standard is imprecise on this
issue, suggesting that while it is invalid to update p to point to a di�erent restricted value, it may be
permissible to update p to a di�erent but non-restricted value.

There are several solutions to this problem. The simplest solution is to require that all restrict-quali�ed
pointers also be annotated with const, so that they cannot change. An alternative is to distinguish between
reading and writing an abstract location � in our e�ect sets, and then prevent the user from writing to the
location � corresponding to the l-value of p with constraints of the form wr(�) 62 L, where wr(�) is the e�ect
of writing to location �. A third solution, and the one most likely taken in a C compiler, is to perform a

ow-sensitive analysis limited to a single function body to determine whether p is updated to point within
the same object or whether it is updated with a new pointer (e.g., p++ versus p = q). The former should be
allowed, and the latter should be forbidden.

Initialization. Our �-calculus syntax for restrict forces the user to initialize restricted pointers as soon
as they are declared. C99 has no such requirement. However, we feel that requiring restricted pointers to
be initialized is not much of a burden, because the common case for restrict is for function parameters,
and function parameters are always initialized.

Over-Estimation of E�ects. The C99 standard de�nes restrict in a completely dynamic fashion. The
accesses to object X within a block B are those that occur at run-time when B is executed. Since our analysis
is static, we may over-estimate the set of locations accessed during evaluation, and hence we may fail to type
check a program that executes correctly according to the standard.

Arrays. The C99 standard contains the following example of a valid use of restrict ([ANS99], page 111):

void f(int n, int *restrict p, int *restrict q)

{

while (n-- > 0)

*p++ = *q++;

}

void g(void) {

extern int d[100];

f(50, d + 50, d); // ok

}

In this example, the user has implicitly split the array d into two disjoint smaller arrays, and then called
f knowing that as f traverses the arrays p and q it will only access the �rst 50 elements of each. In our
type system this program will fail to type check, because this property|accessing only 50 elements of each
array|cannot be deduced from the type of f. This application of restrict is useful in C, and must be
allowed. We feel that the best way to handle this situation in a manner consistent with C is to force the
programmer to insert a type cast at the call to f() to tell the compiler that d[0..49] and d[50..99] should
be treated as distinct objects.

Escaping pointers. The C99 standard explicitly allows certain pointers annotated with restrict to
escape the scope of their declaration. Speci�cally, a function whose body declares a restricted pointer p
may return the value of p. The only example of this in the standard is the de�nition of a function that returns
a pointer to a structure, one of whose �elds is annotated with restrict. Thus the motivation for allowing
escaping restricted pointers seems to be to handle this case of restrict in a structure declaration. We
believe (see below) that annotating structure �eld names with restrict is not well-de�ned in general. Thus
we do not support this usage, and our type system forbids restricted pointers from escaping entirely.
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Data Structures. The C99 standard contains an example in which a struct (a record type) contains a
restrict quali�er ([ANS99], page 112):

typedef struct {int n; float *restrict v;} vector;

This particular use of restrict is easy to handle in our system and semantically well-de�ned, since vector
is a shorthand for a pair, and thus we can think of all operations on vector as syntactic sugar for operations
on the individual elements of the pair. Thus we can rewrite

vector x = { 3, a };

... x.n ... x.v ...

as

int x_n = 3;

float *restrict x_v = a;

... x_n ... x_v ...

On the other hand, uses of restrict in de�ning recursive data structures are problematic. For example,
consider

struct list {int x; struct list *restrict next; };

What does restrict mean here? The problem is that the name next refers to a set of (possibly distinct)
objects rather than a single object in memory. For example, if we construct a circular list p, then p->next

and p->next->nextmay be the same. Is that forbidden by the restrict annotation? It seems not, because
both accesses go through the name next. Clearly, though, a compiler cannot use the name next to infer
anything about potential aliasing of list elements.

A compiler needs stronger information than restrict to infer non-aliasing of heap objects. One such
property is linearity or uniqueness [TWM95, BS96]. A unique object has at most one pointer to it at any
time. Thus if the next �eld of struct list were annotated as being unique, then a compiler could assume
(and enforce) that each element of p is distinct.

Modi�ed Objects. The de�nition of restrict given in the introduction of this paper is slightly simpler
than the standard's de�nition. Suppose that p is declared int *restrict p and that p points to object X.
Then the standard states that the restrict quali�er is only meaningful if X is modi�ed within the scope of
p. We refer to this as the mod semantics of restrict.

We consider the mod semantics of restrict unnecessarily complicated. The main reason we see to have
the mod semantics is that for optimization purposes there is no bene�t to restrict for locations that are not
modi�ed|optimizations must preserve read-write and write-write dependencies, but read-read dependencies
can be safely ignored.

However, from a language design point of view, it is undesirable to have a construct that is sometimes
ignored. This is especially a problem if we think of restrict as an annotation to aid the programmer.
For example, suppose we have the declaration f(int *restrict a, int *restrict b). Is it safe to call
f(x,x)? Under the mod semantics we cannot tell without either an affects clause (see Section 5.1) or
examining the source code for f. We believe that rather than use the mod semantics, we should use our
semantics and simply remove restrict quali�ers when they are unnecessary.

However, it is relatively easy to incorporate the mod semantics of restrict into our system. Rather than
having e�ects of the form �, we split e�ects into three kinds: rd(�), generated in (Deref), wr(�), generated
in (Assign), and rstr(�), generated in (Restrict). Then we split the type rule (Restrict) into two cases using
conditional constraints:

� ` e1 : ref
�(�);L1

�[x 7! ref �
0

(�)] ` e2 : �2;L2

�0 62 locs(�; �; �2) wr(�) 62 L2

wr(�0) 2 L2 ) � 62 L2

� ` restrictx =e1 in e2 : �2;
L1 [ L2 [ frstr(�)g

(Restrict00)
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Here � 62 L is shorthand for rd(�) 62 L, wr(�) 62 L, and rstr(�) 62 L, and similarly for � 62 locs(�) and
� 62 locs(�).

In (Restrict00) we use a conditional constraint to enforce the mod semantics. The constraint wr(�0) 2
L2 ) � 62 L2 is satis�able if either wr(�0) 62 L2 or � 62 L2. In other words, we only require that � is not
accessed in e2 if �

0 is modi�ed.
Notice that in (Restrict00) we still require that �0 not escape e2. As before this forbids having di�erent,

non-restricted abstract locations corresponding to the same concrete location. Finally, notice that it is an
error if � is modi�ed in e2 (formally wr(�) 2 L2). This is because if � is modi�ed in e2, then in the mod
semantics we also require � 62 L2, which is an immediate contradiction.

For type inference we proceed as before. We �rst infer � annotations. Next we normalize the constraints,
with the addition of replacing the constraints wr(�0) 2 L) � 62 L with wr(�0) 2 ") � 62 " and L � ".

Finally, after checking satis�ability of the � 62 " constraints, we check the conditional constraints. For
each constraint wr(�0) 2 " ) � 62 ", we use the modi�ed depth-�rst search procedure of Figure 5 to check
whether wr(�0) reaches ". If wr(�0) does not reach ", then the constraint is satis�able. If wr(�0) does reach ",
then the constraint is satis�able if and only if � 62 ", which we check with another call to the depth-�rst search
procedure. Since there are O(k) conditional constraints, where k is the number of restrict annotations in
the program, this step takes time O(kn), where n is the size of the typed program. Thus the whole inference
algorithm still takes time O(kn+ n�(n)).

7 Related Work

E�ect systems were �rst described by Gi�ord and Lucassen for FX-87 [GJLS87, LG88]. FX-87 includes
subtyping, polymorphism, and notation for declaring the e�ects of expressions [GJLS87]. One of the best-
known type and e�ect systems is the region type system proposed by Tofte and Talpin [TT94]. Our type
system bears some interesting similarities to region inference. The � annotations can be thought of as regions,
and we can apply the rule (Down) whenever we discover that a location is purely local to a lexical scope of
the computation [Cal01].

As mentioned in Section 5.3, we leave as an open problem inference for our type system with polymorphic
recursion. Given the similarities between our type system and Tofte and Talpin's region type system, we
believe that Tofte and Birkedal's region inference algorithm [TB98] can be adapted to our type system.

Automatic alias analysis has been heavily studied in recent years [And94, BCCH94, CRL99, Das00,
DMW98, Deu94, DRS98, EGH94, FRD00, HT01, HP98, LR92, SRW99, SH97, Ste96, WL95, YHR99,
ZRL96]. Our type system incorporates may-alias analysis to check the correctness of restrict annota-
tions. The may-alias analysis we use is very conservative, and in the future we plan to extend our type
system to use more precise may-alias analysis.

The key bene�t of our type system compared with a fully-automatic alias analysis is that the programmer
has control over the alias analysis and, by extension, any subsequent analyses (e.g., optimizations) based on
aliasing information. If the type system rejects a restrict annotation as being inconsistent, the programmer
knows that either their annotation is incorrect or the underlying may-alias analysis is overly conservative,
and they can take the appropriate steps to correct the problem. Once a program with restrict annotations
passes the type checker, the programmer knows at least some of the places where the compiler assumes
non-aliasing. We feel that this exposure of aliasing information is helpful to a programmers.

As described in the introduction, one of the most interesting properties of restrict is that it lets us
locally recover the ability to perform strong updates [CWZ90]. We believe that restrict can be added to
extend the 
ow-sensitive type systems of Walker, Smith, and Morrisett [SWM00, WM00] and Vault [FD01].
In these type systems, locations are either linear, which we will indicate by 1, or non-linear, which we will
indicate by ! [TWM95, BS96]. In these type systems, updates to linear locations, which represent a single
object, are strong updates, and updates to non-linear locations are weak updates.

In this kind of type system there is a natural subtyping relation 1 � !, i.e., it is safe to treat linear
locations as non-linear. We can relate restrict to this subtyping. The Calculus of Capabilities includes a
mechanism to temporarily promote linear locations to non-linear locations and then recover linearity in a
continuation [CWM99]. By using restrict we can capture a new and di�erent paradigm: We can locally
downcast non-linear locations to linear locations. The downcast from ! to 1 is safe because of the semantics
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of restrict. By adding a restrict quali�er to the type of a pointer p the programmer agrees that they
will only access *p through the name p. As long as that agreement is valid|i.e., within the scope of
restrict|an analysis can treat p as linear, and perform strong updates.

8 Conclusion

We have presented a formal semantics for restrict and a type and e�ect system for checking the correctness
of restrict annotations. While our type system does not address all the issues in checking restrict in
ANSI C programs, we believe that it captures the key properties that a restrict annotation should have. We
have shown that our proposed type and e�ect system is sound with respect to our semantics for restrict.
We have also presented a type inference algorithm for restrict and described natural extensions of our
system to include affects clauses, subtyping, and parametric polymorphism.
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A Proof of Soundness

In our soundness proof, we will implicitly extend typing judgments to values � ` v : � ;L in the following
way: Locations l will be represented in the proof as variables, and thus their types will be stored in � and
they will typecheck using the rule (Var). We will implicitly treat semantic integers as syntactic integers, and
use (Int) to typecheck them. Functions will be represented not as closures but as syntactic functions, as in
standard small-step semantics subject-reduction proofs [WF94]. Thus semantic functions can be typechecked
using (Lam). Notice that in the judgment � ` v : � ;L, the set L must always be ;, by simple inspection of
the type rules. We will use this property implicitly in our proof.

De�nition 3 (Compatibility) We say � and L are compatible with store S, written (�; L) � S, if

1. dom(�) = dom(S) and

2. for all l 2 dom(S), there exist �; � such that �(l) = ref �(�) and

�
� ` S(l) : � ; ; if S(l) 6= err

� 62 L if S(l) = err

Intuitively, (�; L) � S if an expression e that typechecks in environment � and has e�ects L can be run safely
in store S.

Lemma 4 If (�; L [ L0) � S then (�; L0) � S.

De�nition 4 (Extension) We say that (�0; S0) is an extension of (�; S) if

1. dom(�) = dom(S) and dom(�0) = dom(S0) and

2. �0jdom(�) = �

De�nition 5 (Safe Extension) We say that (�0; S0) is a safe extension of (�; S), written (�; S)) (�0; S0),
if

21



1. (�0; S0) is an extension of (�; S),

2. for all l 2 dom(S0)� dom(S), if S0(l) = err and �0(l) = ref �(�), then � 62 �, and

3. for all l 2 dom(S), if S0(l) = err then S(l) = err.

Intuitively, (�; S)) (�0; S0) if the abstract locations corresponding to new err locations in S0 don't appear
in �.

Lemma 5 If dom(�) = dom(S), then (�; S)) (�; S).

Lemma 6 If (�; S)) (�0; S0) and (�0; S0)) (�00; S00), then (�; S)) (�00; S00).

Lemma 7 (�-Renaming) If � ` e : � ;L and �0 62 �; �; L, then R(�) ` e : R(�);R(L) for any substitution
R = [� 7! �0].

Proof: The assumption �0 62 �; �; L means that �0 is completely fresh: it is does not appear anywhere in the
proof of � ` e : � ;L. 2

Lemma 8 (Substitution) If � ` v : � ; ; and �[x 7! � ] ` e : � 0;L, then � ` e[x 7! v] : � 0;L.

Theorem 2 (Subject Reduction) If � ` e : � ;L and S ` e ! r;S0, where (�; L [ L0) � S, then there
exists �0 such that

1. �0 ` r : � ; ; (which implies r 6= err),

2. (�0; L0) � S0, and

3. (�; S)) (�0; S0)

Proof: By induction on the structure of the proof S ` e! r;S0. Recall that for each rule of Figure 2, there
are corresponding reductions to err for cases for invalid programs. Thus for each case below, we will �rst
reason based on the shape of e to decide which possible rule we used, and then show that r is not err.

(Sub)

Assume without loss of generality that all uses of (Sub) are after uses of (Down). Observe that as the last
step of the proof � ` e : � ;L we may have used the rule (Sub):

� ` e : � 0;L � 0 � �

� ` e : �
(1)

By assumption we also know
S ` e! r;S0 (2)

(�; L [ L0) � S (3)

Then by (1), (2), (3), and the case analysis below (in which we assume without loss of generality that
the last rule applied was not (Sub)) there exists a �0 such that

�0 ` r : � 0; ; (4)

(�0; L0) � S

(�; S)) (�0; S0)

Then combining (4) and (1) we have
�0 ` r : � ; ;

and thus our conclusion holds.

Assume without loss of generality that the last rule applied in the proof was not (Sub).
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(Down)

Observe that as the last step of the proof � ` e : � ;L� f�1; : : : ; �ng we may have used the rule (Down):

� ` e : � ;L �1; : : : ; �n 62 �; �

� ` e : � ;L� f�1; : : : ; �ng
(5)

By Lemma 1 we can assume that the proof of � ` e : � ;L does not use (Down) as the last step. We want to
apply the case analysis below to show our conclusion, but �rst we need to do some more work, because we
need to know that it's safe to evaluate an expression with e�ect L.

By assumption we also know
S ` e! r;S0 (6)

(�; (L� f�1; : : : ; �ng) [ L0) � S (7)

Pick fresh �01; : : : ; �
0
n, that is, for all i

�0i 62 �; �; L; L0

�0i 6= �0j if i 6= j
(8)

Let
R = [�1 7! �01; : : : ; �n 7! �0n]

Then from (5) and Lemma 7 we have
R(�) ` e : R(�);R(L)

Then by (8) we derive
� ` e : � ;R(L) (9)

In other words, because �1; : : : ; �n did not escape the scope of e, their names are arbitrary, and we can repeat
the typing proof of e with any choice of names.

Now we want to show
(�; R(L) [ L0) � S (10)

Clearly from (7) we have dom(�) = dom(S), and for all m 2 dom(S) there are �m; �m such that �(m) =
ref �m(�m). If S(m) 6= err then we are done, since also from (7) we have � ` S(m) : �m; ;. So suppose that
S(m) = err. Then from (7) we know �m 62 (L� f�1; : : : ; �ng) [ L0. But since �m 2 � and �0i 62 � from (8)
we know that �0i 6= �m. Thus

�m 62 (L� f�1; : : : ; �ng) [ f�
0
1; : : : ; �

0
ng [ L0

and therefore �m 62 R(L) [ L0. Thus (10) holds.
Then by (9), (6), (10), and the case analysis below, there exists a �0 such that

�0 ` r : � ; ;

(�0; L0) � S0

(�; S)) (�0; S0)

Thus our conclusion holds.

Assume without loss of generality that the last rule applied in the proof was neither (Sub) nor (Down).
x

By assumption we have

� ` x : �(x); ;
(11)

S ` x! r;S0 (12)

(�; ; [ L0) � S (13)
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By (13), dom(�) = dom(S), so by (11), x 2 dom(S). Therefore we must have used the reduction

x 2 dom(S)

S ` x! x;S
(14)

So r = x and S0 = S. Let �0 = �. Then our conclusion trivially holds:

�0 ` x : �(x); ;

(�0; L0) � S0

(�; S)) (�0; S0)

where the last conclusion holds by Lemma 5.

n

Trivial.

ref e

By assumption we have
� ` e : � ;L

� ` ref e : ref �(�);L
(15)

S ` ref e! r;S0 (16)

(�; L [ L0) � S (17)

By (16) and inspection of the semantic rules, we must have applied a reduction for e:

S ` e! re;S
0
e (18)

By (15), (18), (17), and induction, there exists a �0e satisfying

�0e ` re : � ; ; (19)

(�0e; L
0) � S0e (20)

(�; S)) (�0e; S
0
e) (21)

By (19), re is not err. Thus the reduction (16) must in fact be

S ` e! re;S
0
e l 62 dom(S0e)

S ` ref e! l;S0e[l 7! re]
(22)

with S0 = S0e[l 7! re] and r = l (see (16)). Let

�0 = �0e[l 7! ref �(�)]

Clearly
�0 ` l : ref �(�); ;

Further, since by (22) we have l 62 dom(S0e), we also have l 62 dom(�0e) by (20), and therefore l 62 dom(�)
by (21). Thus (�0; S0) is an extension of (�; S). Further, since S0(l) = re 6= err we have

(�0e; S
0
e)) (�0; S0) (23)

Combining (23) and (21) by lemma 6, we have

(�; S)) (�0; S0)

Finally, by (20) we also have
(�0; L0) � S0
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since l 62 dom(S0e) and re 6= err.
Thus our conclusion holds.

* e

By assumption we have
� ` e : ref �(�);L

� ` * e : � ;L [ f�g
(24)

S ` * e! r;S0 (25)

(�; L [ f�g [ L0) � S (26)

By (25) and inspection of the semantic rules, we must have a reduction for e:

S ` e! re;S
0
e (27)

By (24), (27), (26), and induction, there exists a �0e satisfying

�0e ` re : ref
�(�); ; (28)

(�0e; f�g [ L0) � S0e (29)

(�; S)) (�0e; S
0
e) (30)

By (28) we know re is a value and is not err. By inspection of the type rules we can see that the only type
rule that can assign a value to the type ref �(�) is (Var). Notice that any uses of (Sub) in the proof (28) must
be trivial, since there is no subtyping under a ref type constructor. Therefore we see that re 2 dom(�0e),
hence re is in fact a location and re 2 dom(S0e) by (29). Therefore the reduction (25) must in fact be

S ` e! re;S
0
e re 2 dom(S0e)

S ` * e! S0e(l);S
0
e

(31)

with S0 = S0e and r = S0e(re) (see (25)). Let �
0 = �0e. Then clearly

(�0; L0) � S0

by (29), and
(�; S)) (�0; S0)

by (29) and (30). Further, by (28) we know �0(re) = ref �(�). Then since � 2 f�g [ L0, by (29) we know
S0(re) 6= err and

�0 ` S0(re) : � ; ;

Thus our conclusion holds.

e1 := e2
By assumption we have

� ` e1 : ref
�(�);L1 � ` e2 : � ;L2

� ` e1 := e2 : � ;L1 [ L2 [ f�g
(32)

S ` e1 := e2 ! r;S0 (33)

(�; L1 [ L2 [ f�g [ L0) � S (34)

By (33) and inspection of the semantic rules, we must have applied a reduction for e1:

S ` e1 ! re1 ;S
0
e1

(35)

By (32), (35), (34), and induction, there exists a �0e1 satisfying

�0e1 ` re1 : ref
�(�); ; (36)

25



(�0e1 ; L2 [ f�g [ L0) � S0e1 (37)

(�; S)) (�0e1 ; S
0
e1
) (38)

By (36) we see that re1 is not err. Thus by inspection of the semantic rules, in (33) we must also have
applied a reduction for e2:

S0e1 ` e2 ! re2 ;S
0
e2

(39)

By (32) and (38), we have
�0e1 ` e2 : � ;L2 (40)

Then by (40), (39), (37), and induction, there exists a �0e2 satisfying

�0e2 ` re2 : � ; ; (41)

(�0e2 ; f�g [ L0) � S0e2 (42)

(�0e1 ; S
0
e1
)) (�0e2 ; S

0
e2
) (43)

By (36) we know that re1 is a value and is not err. By inspection of the type rules we see that the only type
rule that can assign a value to the type ref �(�) is (Var). Notice that any uses of (Sub) in the proof (36) must
be trivial, since there is no subtyping under a ref type constructor. Therefore we see that re1 2 dom(�0e1 ),
hence re1 is in fact a location and re1 2 dom(S0e1) by (37).

Then by (43) we know that re1 2 dom(S0e2) and �0e2 ` re1 : ref
�(�). Then since � 2 f�g [ L0, by (42) it

must be that S0e2(re1) is not err. Therefore the reduction (33) must in fact be

S ` e1 ! re1 ;S
0
e1

S0e1 ` e2 ! re2 ;S
0
e2

re1 2 dom(S0e2) S0e2(re1 ) 6= err

S ` e1 := e2 ! re2 ;S
0
e2
[re1 7! re2 ]

(44)

where S0 = S0e2 [re1 7! re2 ] and r = re2 (see (33)). Let �
0 = �0e2 Clearly we have

�0 ` re2 : � ; ;

by (41). Combining (43) and (38) we have

(�; S)) (�0e2 ; S
0
e2
) (45)

Clearly, then, (�0; S0) is an extension of (�; S). And since S0(re1 ) = re2 6= err by (41), we have

(�; S)) (�0; S0)

Finally, also since re2 6= err and since re1 2 dom(S0e2) and �0 ` re1 : ref �(�), from (42) and (41) we can
conclude

(�0; L0) � S0

Thus our conclusion holds.

restrictx =e1 in e2
By assumption, we know

� ` e1 : ref
�(�);L1 �[x 7! ref �

0

(�)] ` e2 : �2;L2

�0 62 �; �; �2 � 62 L2

restrictx =e1 in e2 : �2;L1 [ L2 [ f�g
(46)

S ` restrictx =e1 in e2 ! r;S0 (47)

(�; L1 [ L2 [ f�g [ L0) � S (48)

By (47) and inspection of the semantic rules, we must have applied a reduction for e1:

S ` e1 ! re1 ;S
0
e1

(49)
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By (46), (49), (48), and induction, there exists a �0e1 such that

�0e1 ` re1 : ref
�(�); ; (50)

(�0e1 ; L2 [ f�g [ L0) � S0e1 (51)

(�; S)) (�0e1 ; S
0
e1
) (52)

By (50) we see that re1 is a value and is not err. By inspection of the type rules we see that the only type
rule that can assign a value to the type ref �(�) is (Var). Notice that any uses of (Sub) in the proof (50) must
be trivial, since there is no subtyping under a ref type constructor. Therefore we see that re1 2 dom(�0e1 ),
hence re1 is in fact a location and re1 2 dom(S0e1) by (51). Thus by inspection of the semantic rules, in (47)
we must also have applied

S0e1 [re1 7! err; l0 7! S0e1(re1 )] ` e2[x 7! l0]! re2 ;S
0
e2

(53)

with
l0 62 dom(S0e1) (54)

Before we can apply induction to e2, we need to do a little more work. Pick a fresh �00. That is, pick a �00

such that
�00 62 f�g;�;�0e1 ; �; �2; L2; L

0 (55)

Let
R = [�0 7! �00]

Then by Lemma 7 and (46) we have

R(�[x 7! ref �
0

(�)]) ` e2 : R(�2);R(L2)

which by (46) is equivalent to

�[x 7! ref �
00

(�)] ` e2 : �2;R(L2)

Combining this with (52), we derive

�0e1 [x 7! ref �
00

(�)] ` e2 : �2;R(L2)

Then by �-conversion, since l0 62 dom(S0e1) implies l
0 62 �0e1 by (51), we can rename x to l0 and derive

�0e1 [l
0 7! ref �

00

(�)] ` e2[x 7! l0] : �2;R(L2) (56)

Finally, before we can apply induction, we need to show compatibility between the type environment in (56)
and the store in (53). But which e�ect set should we use for compatibility? Clearly the set we choose cannot
contain �, because the store in (53) contains a location corresponding to � that maps to err. Thus we use
the following set Le2 :

Le2 = (L0 � f�g) [ R(L2)

Also let
�e2 = �0e1 [l

0 7! ref �
00

(�)]
Se2 = S0e1 [re1 7! err; l0 7! S0(re1 )]

where �e2 is from (56) and Se2 is from (53). Notice that �e2 is an extension of �0e1 , since by (54) and (51)
l0 62 �0e1 . We want to show

(�e2 ; Le2) � Se2 (57)

To see (57), �rst observe that re1 2 dom(S0e1) by (50) and (51), and observe that dom(�0e1) = dom(S0e1 )
by (51), and therefore dom(�e2) = dom(Se2 ).

For the second component of compatibility, pick any m 2 dom(Se2), and suppose �e2(m) = ref �m(�m),
which holds trivially by (51) and the construction of �e2 . There are three cases:
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1. Suppose m = re1 . Then �m = �, and by construction of Se2 we have Se2(m) = err. But � 62 L2

by (46), and since �00 6= � by (55) therefore � 62 Le2 .

2. Suppose m = l0. Then �m = �00. By construction of Se2 we have Se2(m) = S0e1(re1 ). But by (50)
and (51) we have S0e1(re1 ) 6= err and �0e1 ` S0e1(re1) : � ; ;. But then since �e2 is an extension of �0e1 ,
we also have �e2 ` S0e1(re1 ) : � ; ;.

3. Suppose m 6= re1 ;m 6= l0. Then Se2(m) = S0e1(m) and �e2(m) = �0e1(m). By (55), it must be that
�m 6= �00. If S0e1(m) 6= err, then by (51) we have �0e1 ` S0e1(m) : �m; ;, and since �e2 is an extension
of �0e1 we also have �e2 ` S0e1(m) : �m; ;. Otherwise, suppose S0e1(m) = err. Then by (51) we have
�m 62 L2 [ f�g [ L0. Thus clearly �m 62 L0 � f�g. Since �m 62 L2 and �00 6= �m, we have �m 62 R(L2).
Therefore �m 62 Le2 .

Thus (57) holds.
Then by (56), (53), (57), and induction, there exists a �0e2 such that

�0e2 ` re2 : �2; ; (58)

(�0e2 ; L
0 � f�g) � S0e2 (59)

(�e2 ; Se2)) (�0e2 ; S
0
e2
) (60)

Now we're almost done. By (58) we see that re2 is not err. Combining this with the fact that re1 is not err
(from (50)) and with (49), (53), and (54), we see that the reduction (47) must have been

S ` e1 ! re1 ;S
0
e1

re1 2 dom(S0e1 ) l0 62 dom(S0e1)
S0e1 [re1 7! err; l0 7! S0e1(re1 )] ` e2[x 7! l0]! re2 ;S

0
e2

S ` restrictx =e1 in e2 ! re2 ;
S0e2 [re1 7! S0e2(l

0); l0 7! err]

(61)

with
S0 = S0e2 [re1 7! S0e2(l

0); l0 7! err]

and
r = re2

(see (47)). Let �0 = �0e2 . We show the conclusions of the inductive hypothesis one by one.
First, by (58) we have

�0 ` re2 : �2; ; (62)

Next we need to show
(�0; L0) � S0 (63)

We proceed as in the proof of (57). Clearly dom(�0) = dom(S0e2) by (59). And by construction of Se2 we
have re1 ; l

0 2 dom(Se2). Then by by (60) we see re1 ; l
0 2 dom(S0e2 ). Thus dom(S0) = dom(S0e2) = dom(�0e2) =

dom(�0).
For the second component of compatibility, pick any m 2 dom(S0), and suppose �0(m) = ref �m(�m),

which holds trivially by (59). There are three cases:

1. Suppose m = re1 . Then S0(m) = S0e2(l
0). Since Se2(l

0) 6= err, by (60) we see that S0e2(l
0) 6= err.

By the construction of �e2 and (60) we see that �0e2(l
0) = ref �

00

(�). But then by (59) we have
�0e2 ` S0e2(l

0) : � ; ;, and hence �0 ` S0(re1) : � ; ;.

2. Suppose m = l0. Then �m = �00 and S0(l0) = err. But then by (55) we know �00 62 L0.

3. Suppose m 6= re1 , m 6= l0. Then S0(m) = S0e2(m). Suppose S0e2(m) 6= err. Then from (59) we know
�0 ` S0(m) : �m; ;. Otherwise, suppose S0(m) = S0e2(m) = err. There are two cases. If m 2 dom(Se2 ),
then m 2 dom(S0) by (52). Then by (51) we know �m 62 L0. Otherwise, suppose m 62 dom(Se2 ). Then
by (60) �m 62 �e2 . But since � 2 �e2 (which we can conclude from (50) and the construction of �e2),
we know that �m 6= �. By (59) we have �m 62 L0 � f�g, and since �m 6= � we see that �m 62 L0.

28



Thus (63) holds. Finally, we need to show

(�; S)) (�0; S0) (64)

Clearly by (63) we have dom(�0) = dom(S0), and by assumption (48) we have dom(�) = dom(S). Also
by (52), construction of �e2 , and (60) we see that (�0; S0) is an extension of (�; S). So we just need to show
that it's a safe extension.

Pick any m 2 dom(S0). If S0(m) 6= err then we're done. Otherwise suppose S0(m) = err and �0(m) =
ref �m(�m). There are three cases:

1. Suppose m = re1 . This is impossible, since S
0(re1 ) = S0e2(l

0) 6= err.

2. Suppose m = l0. Then l0 62 dom(S) by (54) and (52). So we need to show �m 62 �. But �m = �00 by
construction of �e2 and (60). And �00 62 � by (55).

3. Suppose m 6= re1 ;m 6= l0. Then S0(m) = S0e2(m). If m 2 dom(S0e2) � dom(Se2 ) then by (60) we see
that �m 62 �e2 . But then by construction of �e2 and (52) we see �m 62 �.

Otherwise if m 2 dom(Se2) then by (60) we see that Se2(m) = err. But Se2(m) = S0e1(m). Then
there are again two cases. If m 2 dom(S0e1) � dom(S), then by (52) we see that �m 62 �. Otherwise if
m 2 dom(S) then by (52) we see that S(m) = err.

Thus (64) holds. Combining (62), (63), and (64) we see that our conclusion holds.

�x:e

Trivial.

e1 e2
By assumption we have

� ` e1 : �1
L
�! �2;L1 � ` e2 : �1;L2

� ` e1 e2 : �2;L1 [ L2 [ L
(65)

S ` e1 e2 ! r;S0 (66)

(�; L1 [ L2 [ L [ L0) � S (67)

By (66) and inspection of the semantic rules, we must have applied a reduction for e1:

S ` e1 ! re1 ;S
0
e1

(68)

By (65), (68), (67), and induction, there exists a �0e1 satisfying

�0e1 ` re1 : �1
L
�! �2; ; (69)

(�0e1 ; L2 [ L [ L0) � S0e1 (70)

(�; S)) (�0e1 ; S
0
e1
) (71)

By (69) we know that re1 is a value and is not err. By inspection of the type rules we see that the only type

rules that can assign a value to the type �1
L
�! �2 are (Var) and (Lam), possibly followed by an application

of (Sub). But by (70) we know that �0e1 assigns only reference types. Thus the proof (69) must in fact be

�[x 7! � 01] ` e : � 02;Lf

� ` �x:e : � 01
Lf
�! � 02; ;

�1 � � 01 � 02 � �2 Lf � L

� ` �x:e : �1
L
�! �2; ;

(72)

where re1 = �x:e.
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Further, by inspection of the semantic rules, in (66) we must also have applied a reduction for e2:

S0e1 ` e2 ! re2 ;S
0
e2

(73)

By (65) and (71), we have
�0e1 ` e2 : �1;L2 (74)

Then by (74), (73), (70), and induction, there exists a �0e2 satisfying

�0e2 ` re2 : �1; ; (75)

(�0e2 ; L [ L0) � S0e2 (76)

(�0e1 ; S
0
e1
)) (�0e2 ; S

0
e2
) (77)

From (75) we know that re2 is not err. Thus by inspection of the semantic rules, in (66) we must also have
applied a reduction for e[x 7! re2 ]:

S0e2 ` e[x 7! re2 ]! re;S
0
e (78)

Combining (71) and (77) we see
(�; S)) (�0e2 ; S

0
e2
) (79)

Now by (72) and (79) we see that
�0e2 [x 7! � 01] ` e : � 02;Lf (80)

where Lf � L. By (75) and �1 � � 01 from (72) we see that

�0e2 ` re2 : �
0
1; ; (81)

Then by (80), (81), and Lemma 8 we have

�0e2 ` e[x 7! re2 ] : �
0
2;Lf (82)

From (76) we have
(�0e2 ; Lf [ (L� Lf ) [ L0) � S0e2 (83)

Now by (82), (78), (83), and induction, there exists a �0e satisfying

�0e ` re : �
0
2; ; (84)

(�0e; (L� Lf ) [ L0) � S0e (85)

(�0e2 ; S
0
e2
)) (�0e; S

0
e) (86)

where r = re and S = S0e (see (66)). Let �
0 = �0e. Then clearly since � 02 � �2 by (72) we have

�0 ` r : �2; ;

from (84). Then we also have
(�0; L0) � S0

from (85). Finally, we get
(�; S)) (�0; S0)

combining (79) and (86). Thus our conclusion holds.

2

Given the subject-reduction theorem, soundness is easy to show:

Theorem 3 If ; ` e : � ;L, then ; ` e! r;S0, where r is not err

Proof: First observe that (;; L) � ;. Then in our semantics every term can be reduced to some result r.
By the subject-reduction theorem, there is a �0 such that �0 ` r : � ; ;. Thus r is not err. 2
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