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Abstract— Network Denial of Service (DoS) attacks are
increasing in frequency, severity and sophistication. Most
previous work has focused on network DoS attacks that take
advantage of a protocol to launch the attack. We take the
broader view that DoS attack is any malicious action which
reduces the availability of some resource to some users.
Meanwhile, it is highly desirable to be able to measure
quantitatively and verify claims pertaining to the security
of IT systems and services. As the first attempt to quantify
the resilience of a system to broad classes of network DoS at-
tacks, we propose a novel benchmarking methodology and
apply it to study the effect of a variety of attacks on direc-
tory services in a network setting. Preliminary simulations
show the rough ranking of network DoS resilience among
centralized directory services, replicated directory services
and the newly-emerged distributed directory services, such
as Tapestry. Finally, we discuss some potential approaches
towards DoS resilience based on our experiments.

I. I NTRODUCTION

Denial of Service (DoS) attacks are increasing in frequency
and severity. From 1989-1995 the number of DoS attacks in-
creased 50% per year [22]. In addition, a 1999 CSI/FBI survey
reported that 32% of respondents detected DoS attacks directed
against them [27]. More recently, Yankee Group, an Internet
research firm, reported that DoS attacks cost an estimated $1.2
billion in lost revenues in 2000 [15]. Yahoo, Amazon, eBay
and Microsoft’s name server infrastructure have suffered at-
tacks. To make things worse, automatic attack tools (such as
Tribal Flood Network (TFN), TFN2K, Trinoo and stacheldraht)
allow teenagers to launch widely distributed denial-of-service
(DDoS) attacks with a few keystrokes [11]. Besides these com-
mon flooding attacks, we consider a DoS attack to be any ma-
licious action which reduces the availability of some resource
to some users. For instance, an attacker might modify routing
packets to fool nodes into believing that the network is parti-
tioned, when in fact it is not. These are DoS attacks as well, and
with current trends in DoS sophistication, may threaten systems
to come.

Given the proliferation of network DoS attacks, many
mission-critical applications are built on products claiming var-
ious and suspect DoS resilient properties and services. It has led

to the widespread desire for a single number/graph by which to
rate/purchase/commit to the operation/improvement/retirement
of an IT system. However, although the field of “security met-
rics” has at least a 20-year history involving product evaluation
criteria identification, Information Assurance (IA) quantifica-
tion, risk assessment/analysis methodology development, and
other related activities; computer science has steadily frustrated
these activities: it has provided neither generally accepted nor
reliable measures for rating IT security or requisite security as-
surance. Also, inconsistent terminology usage has complicated
the development of IT metrics, such asrating, ranking, quanti-
fying, or scoringmeasurements. We recommend “quantifying”
and use it throughout the paper.

Facing the increasing need to develop quantifiable measures
of assurance in both industry and military, what is needed is
a general methodology for quantifying the resilience of a sys-
tem/service to broad classes of attacks. As the first steps to-
wards this ambitious goal, we propose a benchmarking method-
ology for network DoS attack and apply it to study various
directory/location services, including centralized/replicated di-
rectory services and the newly-emerged distributed directory
services. Our simulations also reveal some interesting findings,
e.g., why distributed DoS attack is fundamentally more severe
than single DoS attack and how to build a more DoS resilient
service infrastrcture.

The rest of the paper is organized as follows: We describe
our benchmarking methodology in the next section. Section III
explains the directory services studied in this paper. Queuing
analysis is applied in Section IV to predict how the QoS metrics
are affected under various flooding DoS attacks. We discuss our
simulation setup in Section V and give the results in Section VI.
Finally, some countering attack solutions are proposed in Sec-
tion VII, related work in Section VIII and conclusion in Section
IX.

II. B ENCHMARKING METHODOLOGY FORNETWORK DOS
ATTACK

In this section, we describe a primitive methodology that can
be used to measure and quantify the resiliency of arbitrary com-
puter systems/services to network Denial of Service (DoS).

Our network DoS benchmarking can be used for multiple
purposes:
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� To prove a system/service has DoS vulnerablities
� To assess and compare the DoS resilience of sys-

tems/services
� To support a certification process
� To identify DoS flaws for repair and improvement
There are many challenges remaining:
1) How to define a set of Quality of Service (QoS) metrics

for measurement?
2) How to develop a standard consistent network DoS sim-

ulation environment?
3) How to define a comprehensive set of network DoS at-

tacks?
4) How to determine a security ranking from a set of discov-

ered attacks?
5) How to differentiate between many systems/services that

can be DoS attacked?
We propose some general QoS metrics in subsection II-A and

address (2) in the context of Internet services (II-B). For (3), we
give a network DoS attack taxonomy and discuss some typi-
cal examples of each category because we can not exhaustively
cover all known DoS attacks in this paper (II-C). (4) and (5)
are solved with “multi-dimensional quantifying” at subsection
II-D.

A. Metrics

Essentially DoS attacks resourceavailability. Availability
refers to a spectrum of service quality, not to a choice of “avail-
able eventually” versus “completely down”. The particular
choice of QoS metrics depend on the type of system/service
being studied. Possible metrics may includeperformance, com-
pleteness, accuracyandcapacity, as we adopted from [5].

The most popular general performance metrics for network
services arerequest response latencyand request throughput.
As most services are end-to-end services, the metrics should
also be end-to-end. For example, web page request latency
should include both lookup latency and retrieval latency (as-
sume no caching).Time to recoveris another interesting met-
ric, which measures how long the system takes to restore to its
original performance after an attack.

Network DoS attack effects on these metrics sometimes can
be studied through analytical models, such as queuing theory.
With certain assumptions, the theoretical analysis may provide
some insight on how the system behave under various degrees
of network DoS attacks.

B. Simulation Setup

The challenge for benchmarking DoS attack is to haveaccu-
racy andreproducibilitywithout a real-world testbed environ-
ment. Thus we need to set up realistic networks and workloads
for simulation.

B.1 Network Configuration

Both synthetic and real network topologies can be used for
benchmarking. Synthetic topology can be generated by GT-
ITM [48], Tiers [29] or BRITE [32].

GT-ITM generates a transit-stub graph in stages, first a num-
ber of random backbones (transit domains), then the random

structure of each back-bone, then random “stub” graphs are at-
tached to each node in the backbones. This method ensures
that the resulting sub-graph is taken at random from all pos-
sible (connected) graphs. Tiers was designed to generate net-
works whose topology resembles that of typical internetworks;
in particular, Tiers was designed to capture the presence of lo-
cality and hierarchy in internetworks. More recently, BRITE
was proposed as a parametrized topology generator that can be
used to study the relevance of possible causes for power laws
and other metrics recently observed in Internet topologies, such
as preferential connectivity and incremental growth.

For real network topology, we can use the Internet Au-
tonomous Systems (AS) topology graph from National Labo-
ratory for Applied Network Research (NLANR) [18] or the In-
ternet maps from the SCAN project of USC [12]. The AS topol-
ogy graph models the connectivity between Internet AS, where
each node in the topology represents an AS. It was generated
based on BGP tables. The Internet maps from SCAN was col-
lected for MBone and other ISPs in 1999. Each node represents
a MBone router and these maps are anonymized–they do not
contain router IP addresses.

Neither the synthetic nor the real topology above has
bandwidth information. We can extend it with commonly-
configured network bandwidth. Take the transit-stub model as
an example, based on recommendations in [28], [26], we can
model links internal to the transit domains as T3 (45Mb/s),
edges connecting stub networks to the transit domains as T1
(1.5Mb/s) and edges within a stub domain as “Fast Ethernet”
(100Mb/s).

Queuing policy plays a critical role in system resource allo-
cation, e.g., the network congestion management. However, as
the attackers often spoof their IP addresses, it does not make
much difference for using smarter queuing policies without au-
thentication of the IP addresses. We can just use the simplest
drop-tail (FIFO) queueing for simulation.

B.2 Workload Generation

To build the network DoS attack benchmark, we need to gen-
erate a continuous realistic workload and to measure and ana-
lyze the quality of service. Similar to the topology generation,
we can use the synthetic workload or real trace workload. Syn-
thetic workload characterizes the properties of the Internet ser-
vice traffic. For example, there are two classical World Wide
Web (WWW) traffic models as following and one can expect
that a real-life workload would be some mix of workloads sim-
ilar to the one considered.
� Zipf’s law Previous studies [1], [13] observes that the pop-

ularity of pages requested by clients, as well as popularity
of pages on a given web site, follow Zipf’s law, which basi-
cally says that if pages are ranked according to their access
frequency, then the popularity of the page with ranki is
proportional to1/i. Thus, in this workload, clients choose
objects according to Zipf’s law, where the object number
corresponds to its popularity rank.

� Hot-cold All objects are divided randomly into hot and
cold, with the majority of objects (e.g. 90% [38]) going
to the cold bucket and the rest to the hot bucket. The hot
objects takes the majority of requests (e.g. 90% [38]). This
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workload models the situation when entire web sites vary
in popularity.

Real Internet traffic can be found at [30], but the trace con-
tains many more hosts than we can simulate. Thus certain pre-
processing and filtering are necessary before simulation.

In order to perform DoS benchmarks, it is also necessary to
provide a means of generating attacks and apply them to the
system under test,attack injection. We can first measure the
system without attacks to set up a baseline, then to test it under
variousattack workloads.

C. Threat Model

C.1 Taxonomy

According to the classification of DoS attacks by the CERT
Coordination Center [8], we consider the following DoS attacks
in our methodology:

� Consumption of network connectivity and/or bandwidth;
� Consumption of other resources, such as crucial kernel

data structures, CPU and storage space;
� Destruction or alteration of configuration information.
We do not consider:
� Physical destruction or alteration of network components;
There are many dimensions for simulating the network DoS

attacks. Attack workload may containgeneral attacks and
application-specificattacks. The most popular network DoS at-
tack is the flooding attack, in which the attacker(s) keeps inject-
ing bogus requests to the victim(s). Flooding attacks not only
overload victim’s resources (such as queues and CPU), but also
swamp the local router, gateway and links. Usually, the flood
traffic is sent at constant rate [16].

C.2 DDoS Attack Network Model

DoS attack can also be classified assingleor point-to-point
attacks andmultiple distributedattacks. There are four major
point-to-point DoS techniques: TCP SYN flooding, UDP flood-
ing, ICMP flooding and Smurf attacks [16]. Distributed Dos
(DDoS) attack combines the point-to-point DoS attack above
with a distributed and coordinated approach to create a power-
ful program capable of slowing network communications to a
grinding halt.

We can model the DDoS attack as a hierarchical structure
(Figure 1), with one or moreattackerscontrollinghandlers. A
handler is a compromised host with a special program running
on it. To eliminate a single point of failure, more than one han-
dler is found in practice. In turn, each handler controls multiple
agents, compromised hosts responsible for generating packet
streams directed toward the victim. Handler and agents are ex-
tra layers introduced to hide the attackers from view. In most
cases, each handler has equal power over its agents. Commu-
nication between the attacker and the handler,and between the
handler and the agents are calledcontrol traffic, while the com-
munication between agents and victims isflood traffic. Control
traffic can be TCP, UDP, ICMP or a combination of the three.
Each agent may use individual point-to-point denial of service
technique, or sometimes a combination thereof to generate the
flood traffic.

            

Fig. 1. Basic hierarchical structure of DDoS attacks

Each agent can choose the duration (“time”), size of packets
and type of packet flooding directed at the victims. The dura-
tion for each host may be evenly divided among all hosts, as in
“shaft” DDoS tool [16] or randomly chosen as in “TFN” DDoS
tool [6]. Also in “shaft” [16], the statistics on request generation
rates are possibly used to determine the “yield” of the DDoS
network as a whole. Agents can be dynamically added to the
simulation. Attackers stop adding when they find the number
of agents is sufficient to overwhelm the victim network through
the statistics collected. On the other hand, agents are dynami-
cally removed from the network to simulate the agent systems
are identified and taken off-line. And the statistics may help
the attackers to know when it is necessary to add more agents
to compensate for the loss. We can model the changes of the
agents in our benchmarks by turning off the attack requests of
an agent, waiting for exponentially distributed time intervals,
then turning on the attack again at another agent. The agents
may be widely distributed or co-located at certain sub-regions.

In general, the attack simulation parameters should be chosen
to cover a sufficient spectrum of attack traffic vs. legitimate
traffic ratio to show interesting results. This is also illustrated
by theoretical analysis in Section IV.

C.3 Destruction or Alteration of Information Attacks

There are numerous ways to launch this type of attack. For
example, an intruder may be able to alter or destroy configu-
ration information that prevents you from using your computer
or network. Another example is to corrupt the distance met-
rics, where a malicious node proclaims to a large set of distant
nodes that it is very close. Target nodes that believe the attacker
then include the attacker in their application-level routing ta-
bles, redirecting more traffic to the attacker. The attacker then
drops or denies those requests, denying access to existing re-
sources. There is no way we can exhaustively test all of the
possible attacks. We simulate and measure some typical exam-
ples for this category in our benchmarking.

D. Multi-dimensional Quantifying

Security is multidimensionalin that system A may be
stronger than system B on one dimension but weaker on an-
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other. Thus, any measures of the effectiveness of the security
of a system must also be multidimensional. Usually, the at-
tack taxonomy considered defines a set of dimensions, one for
each class of threat. Since there are many taxonomies, systems
developed according to different threat models may be hard to
compare. Our solution is to have a specific and well-defined
taxonomy (e.g., consider only the network DoS attacks) and
only quantify the security assurance in that category.

Dimensions should be ranked according to their relative im-
portance. For example, while no system may be satisfactory in
all dimensions, a system that is satisfactory in the important di-
mensions might be rated as acceptable. The ranking will also
depend on frequency, severity and sophistication of attacks in
that dimension. For instance, we may assign 50%, 30% and
20% as weights to the three classes of attacks in our taxon-
omy. Theresilience valueis the ratio of attacked performance
vs. normal performance. The performance here is a combina-
tion of the interested metrics. Or the resilience value may be
assigned as a binary number: “pass” (1) or “fail” (0).

Note that in each dimension, there may be multiple different
attacks with different severeness. Thus there will be multiple
resilience values for that dimension (e.g., the flooding attacks).
We can divide the dimension weight equally among these re-
silience values, or better, to assign the higher weight to the re-
silience value with more severe attack. Take flooding attack
for example, the weight can be assigned proportionally to the
amount of flood traffic. Thedimensional scoreis the weighted
sum of all resilience values in that dimension and thetotal score
is the weighted sum of all dimensional scores. Then the total
score can be used for rating or ranking.

From next section, we will apply this methodology to direc-
tory services as a case study.

III. D IRECTORY SERVICES

Current trends show that today’s inter-networks are extend-
ing their reach to a wide variety of devices over the wide-
area, while expanding their bandwidth capacity and reducing
latency. Applications expanding to leverage these network re-
sources find that locating objects on the wide-area network is
a serious problem. Additionally, the read-mostly, write few
model of the Internet and requirement for quick access has led
to wide-spread object replication, compounding the object lo-
cation problem. Extensive work on location services has been
done in a variety of contexts [46], [14], [21], [23], [49]. These
approaches can be categorized intoCentralized Directory Ser-
vice (CDS), Replicated Directory Services (RDS), and Dis-
tributed Directory Services (DDS). We use examples of these
categories to quantify the effects of DoS attacks on network
services.

A. Centralized and Replicated Directory Services

The primary challenge to build object location services for
the wide-area network is that of scalability. Until recently, ex-
isting work has focused on the use of statically configured hi-
erarchies to provide scalability ([46], [14]), compared to less
scalable alternative approaches ([21], [23]).

From the perspective of Denial of Service attacks, a central-
ized directory service is most vulnerable. A replicated directory
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Fig. 2. Example of Tapestry mesh routing. Node 0325 is rout-
ing to node 4598 in a mesh using hexadecimal digit representa-
tion

service, where multiple servers handle requests using replicated
location information, provides higher availability, but is still rel-
atively easy to target and attack. Hierarchical approaches, such
as DNS [35], can be seen as variations of the centralized ap-
proach, where attacking a server working at a hierarchical level
can make data at that level unavailable. Meanwhile, the partial
caching effects of DNS (i.e., the hosts usually cache some of the
direcotry information, but not all of them) makes it, to some ex-
tent, between the CDS and RDS. Given the complextiy of sim-
ulating real DNS, our simplified models can roughly define the
bounds for how it will behave under DoS attack. Our simula-
tions will show the vulnerability of these approaches compared
to the decentralized approach described below.

B. Distributed Directory/Location Services

Recent networking research has begun to explore decentral-
ized location services and its applications [49], [39], [45]. De-
centralized location services offer an evenly distributed infras-
tructure for locating objects quickly, with guaranteed success
and locality (clients should find the replica of an object closest
to them). Instead of depending on a single server for resolving
the location of an object, a query in this model traverses mul-
tiple overlay nodes in the network in a “combined routing and
location” model. With respect to Denial of Service attacks, the
lack of a single target in decentralized location services means
they provide very high availability under attack. The impact of
successfully attacking and disabling a set of nodes is limited to
a small set of objects.

One of these decentralized location services is the
Tapestry [49] project at U. C. Berkeley. Tapestry is similar
to the randomized distributed data structure first introduced by
Plaxton, Rajamaran and Richa in [37]. Object location is re-
solved by directly routing a message to a given object using an
overlay routing network. In Tapestry, every server in the sys-
tem is assigned a unique random node-ID. These node-IDs are
then used to construct the mesh of neighbor links forming the
overlay, as shown in Figure 2. In this figure, each link is labeled
with a level number that denotes the stage of routing that uses
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this link. In the example, the links are constructed by taking
each node-ID and dividing it into chunks of four bits. The Nth

level neighbor-links for some Node X point at the 16closest
neighbors1 whose node-IDs match the lowest N-1 nibbles of
Node X’s ID and who have different combinations of the Nth

nibble; one of these links is always a loopback link. If a link
cannot be constructed because no such node meets the proper
constraints, then the scheme chooses the node that matches the
constraints as closely as possible. This process is repeated for
all nodes and levels within a node.

The key observation to make from Figure 2 is that the links
form a series of random embedded trees, with each node as the
root of one of these trees. As a result, the neighbor links can
be used to route from anywhere to a given node, simply by re-
solving the node’s address one link at a time—first a level-one
link, then a level-two link, etc. To use this structure for data
location, we map each object to a single node whose node-ID
matches the object’s GUID in the most bits (starting from the
least significant); call this node the object’sroot. If information
about the GUID (such as its location) were stored at its root,
then anyone could find this information simply by following
neighbor links until they eached the root node for the GUID.
As described, this scheme has nice load distribution properties,
since GUIDs become randomly mapped throughout the infras-
tructure.

This random distribution would appear to reduce locality;
however, it achieves locality as follows: when a replica is
placed somewhere in the system, its location is “published” to
the routing infrastructure. The publishing process works its way
to the object’s root and deposits a pointer at every hop along
the way. This process requiresO(log n) hops, wheren is the
number of servers in the world. When someone searches for
information, they climb the tree until they run into a pointer, af-
ter which they route directly to the object. In [37], the authors
show that the average distance traveled is proportional to the
distance between the source of the query and the closest replica
that satisfies this query.

IV. A NALYTICAL MODEL WITH QUEUING THEORY

In this section, we use queuing theory to analyze the DoS at-
tack effects on the quality of service provided by a single server
with exponentially distributed interarrival time, exponentially
distributed service time and infinite buffer size (M/M/1 queue).
We will study the average response latency and throughput of
the system.

We define the following notations:
� Tser: average service time;
� req: average number of legitimate requests/second;
� �: server utilization;
� r: the ratio of the number of attack requests vs.req;
� Tq: average waiting time per request;
� Tall: average response latency (Tser + Tq);
� throughput: legitimate throughput/second
Then the total request arrival rate is(r+1)req. Because

Tq =
Tser�

1� �
(1)

1“Closest” means with respect to the underlying IP routing infrastructure.
Roughly speaking, the measurement metric is the time to route via IP.
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Fig. 3. Average response latency of a single server on flood-
ing DoS attack. X-axis is the ratio of the number of attack re-
quests vs. legitimate requests; Y-axis is the average response
latency(sec)
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Fig. 4. Throughput of a single server on flooding DoS attack.
X-axis is the ratio of the number of attack requests vs. legitimate
requests; Y-axis is the legitimate thoughput (number of requests
satisfied/sec)

� = (r + 1)reqTser (2)

Thus

Tq =
T 2
serreq(r + 1)

1� (r + 1)reqTser
(3)

Tall = Tser + Tq = Tser +
T 2
serreq(r + 1)

1� (r + 1)reqTser
(4)

throughput =
1

(r + 1)Tall
=

1

(r + 1)(Tser +
T 2
ser

req(r+1)
1�(r+1)reqTser

)

(5)
If we assumeTser to be 0.1ms,req to be 100/sec (these num-

bers are chosen so that the system in not saturated before at-
tack), Fig. 3 and 4 show the trends how the average response
latency and legitimate throughput change as the attack ratior

increases. These figures also tells us how to choose the simu-
lation parameters (flood traffic vs. legitimate requests rate) to
cover enough spectrum of various DoS effects.

V. EXPERIMENTAL SETUP

Our experimental framework is built on top of NS [3]. Fol-
lowing the methodology in Section II, we create a synthetic
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well-behaved system, inject malicious attacks into the system,
and measure the changes in availability of system resources.

We use a GT-ITM transit-stub model to construct five 1000
node graphs. Each graph is made up of five transit domains.
These domains are guaranteed to be connected. Each transit
domain consists of an average of eight stub networks. The stub
networks contain edges amongst themselves with a probability
of 0.5. Each stub network consists of an average of 24 nodes,
in which nodes are once again connected with a probability of
0.5. Bandwidths are configured as suggested in Section II. We
use drop-tail queueing for each node with the default NS queue
size 50.

Our network has 500 objects, each with three replicas placed
on three randomly chosen nodes. The sizes of objects are cho-
sen randomly from the interval 5kB - 50 kB. We generated syn-
thetic web traffic based on Zipf’s law and hot-cold pattern as
described in Section II. Nodes request a data object, wait for
it and then request another, such as when a user is following a
series of links in web pages.

A. Directory Server Operation

For our CDS simulations, a node sends each message to the
directory server and waits for the response. Upon receiving the
response, it communicates directly with the node hosting the
replica chosen by the directory server. The choice of which
replica server to return can either be “closest” in network dis-
tance, or random selection. There is no caching of object lo-
cations. The directory server is placed on a randomly chosen
non-transit node.

RDS setup are similar. We choose four random widely-
distributed non-transit nodes to be the directory servers. The
client may make the lookup request from a random directory
server or the closest directory server. The object replica loca-
tion returned is randomly selected.

For DDS, we implement a simplified version of Tapestry data
structures and algorithms as an extension to NS. All messages
between nodes are passed by NS’s full TCP/IP agent. Mes-
sages route directly to the closest object replica, and the replica
responds by sending the data contents directly to the request-
ing node. Our Tapestry data structures are statically built at the
start of the simulation using full knowledge of the topology, and
using hop count as the network distance metric. It should also
be noted that our implementation is un-optimized and is likely
slower than a real implementation would be.

B. The Attacks

We inject a variety of attacks into our simulations and mea-
sured the effect of the attacks on lookup requests. Assuming
that these attacks can actually be carried out, our results give an
idea of how much damage they can do.

B.1 Flooding Attacks

The first attacks we simulate flood some important node(s)
and overload their queues to reduce the number of legitimate
requests that can get to them as shown in our queuing analysis.

All the flooding simulations run for 200 seconds in NS time.
The flooding is accomplished by sending a constant bit rate
from a set of nodes to the attacked node. We vary the number

of flooding attackers; with DDoS attacks, we vary the severity
of flooding (i.e. bit rate) for “flood traffic” and ignore the “con-
trol traffic” for simplification. The attack “agents” are placed
on randomly-chosen non-transit nodes in different subnets from
the attacked node. Given present Internet infrastructure, it is not
easy to identify the spoofed agents, thus we set the life time of
each agent to be randomly among 0 - 200 seconds. To have a
conservative estimate of the DDoS resilience, we assume that
once an agent is taken off, another agent will be launched im-
mediately to keep the total number of agents constant.

For the centralized directory server case, we attack the direc-
tory server. The closest analogy in the Tapestry case is to flood
the root of an object. Whereas flooding the centralized direc-
tory server will affect the lookup of all objects, attacking a root
for a single object will pronouncedly affect only the attacked
object and others with the same root. So to produce interesting
results, we attack the root for a hot object. Tapestry trees are
more resilient to such an attack because not all requests for the
object will travel all the way to the root: some will be satis-
fied by other nodes on the insert path. For replicated directory
servers case, we attack all the directory servers. To have a fair
comparison, we attack the same number of root nodes of hot
objects.

We only studied static directory services; a more realistic
simulation of dynamic location services is our future work.

B.2 Destruction or Alteration of Information Attacks

As these attacks are system/service-specific, we only simu-
late and measure two attacks here as examples. A more compre-
hensive and systematic benchmarking will be part of our future
work.

The first attack is to compromise an important node to give
incorrect distance measurements as illustrated in Section II. We
compromise the directory server of CDS, a random directory
server of RDS and a root node of hot object of Tapestry for
comparison. The compromise is to insert a false edge with neg-
ligible latency for the pair of nodes with maximum distance.

The second attack is a Tapestry-specific attack, which has a
malicious Tapestry node spoofing as root nodes for all objects.
By replying with a negative result to any request it receives,
this attack can potentially convince clients the non-existence of
requested objects, denying them access to an existing resource.

VI. RESULTS

A. Flooding Attacks

We perform several simulations of flooding attacks, for the
CDS, RDS and the Tapestry directory service. We apply the
simulations to both hot-cold workload and Zipf’s law work-
load. They give similar trend and results; thus here we only
show the results with hot-cold workload, averaged among the
simulations on five topologies.

A.1 Performance Comparison of CDS vs. Tapestry

First, we compare the performance of CDS with Tapestry.
The number of attacking nodes was either one or four. The
bit rate for the single attacker is 500 bytes or 2000 bytes every
5ms, while for DDoS attacks, the rate is varied from 500 bytes
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Fig. 5. Average response latency of CDS vs. Tapestry under
DoS flooding attacks

            

Fig. 6. Throughput of CDS vs. Tapestry under DoS flooding
attacks

every 20ms (least severe) to 500 bytes every 5ms (most severe),
with each agent set to the same rate. These numbers are chosen
to have reasonable ratios of attack bandwidth vs. legitimate
throughput to show some interesting results.

The results are shown in Figures 5 and 6, which reveal that
a single attacker does not significantly influence performance,
while the distributed attackers, each flooding at the same high
rate, cause severe denial of service. Thus as the attacks get more
severe, the average response latency of the CDS skyrockets and
the throughput dives. Interestingly, the trends match well with
the prediction from our analytical model in Section IV. On the
other hand, the Tapestry-based directory service shows resis-
tance to flooding attacks. It can be explained by the distributed
nature of Tapestry – there is no single server that keeps all the
lookup information. Under no attack, the Tapestry-based loca-
tion service performs slightly worse than the directory server,
especially in throughput. This is because an object request must
not only pass through several nodes on its way to the root, but
each of these nodes must do some processing of the request.

For each simulation, we normalize the the throughput under
various attack vs. normal throughput and plot as Figure 7. The

            

Fig. 7. Normalized thoughput of CDS vs. Tapestry under DoS
flooding attacks

normalized graph shows that the throughput of CDS drops to
6-7%, while Tapestry remains more than 90% of the original
throughput. Even the attacked object of Tapestry keeps more
than 50% of throughput under the most severe attacks. This is
because in Tapestry, a request travels toward the root until it
encounters a node which was on the insertion path of one of
the replicas (this node then forwards the request directly to the
replica). Thus even the root node is swamped, those “back-
pointers” can still help the clients to find a local replica.

In addition to performance comparison, we try to answer two
interesting questions regarding flooding DoS attack from our
experiments:

1) Why the distributed attack is fundamentally more severe
than the single attack? Is that only because more hosts
will have more power to inject flood traffic?

2) How do the different policies of CDS or RDS affect their
resilience?

For the first question, there are three other reasons revealed
from our experiments. One is that single DoS attack traffic is re-
stricted by the bottleneck bandwidth from the attacker to victim,
e.g., the T1 line in our experiment. Note that although the net-
work bandwidth keep increasing and the bottleneck bandwidth
in our simulation may be out of date soon, the machine power
also double every 18 months (Moore’s law). Thus the network
bandwidth may still limit the attackers’ impact, depending on
their connectivity. The second one relies on the distribution of
clients – the attacker swamps the path from itself to victim, any
client that shares some link of the path (especially the bottle-
neck link) will be affected. As shown by the two rightmost sets
of data in Figures 5, 6 and 7, the distributed attackers cause
more severe DoS than a single attacker, although they both in-
ject the same amount of flood traffic. Finally, as attackers or
agents are identified and taken offline from time to time, dis-
tributed attackers are much harder to eliminate completely.

The second question is answered in both this and next sub-
sections. For CDS, when there is no attack, the directory server
which chooses the optimal replica performs better than the one
that chooses a random replica for about 20% with throughput.
Surprisingly, with more and more severe attacks, the gap is
shrinking and finally the two perform similarly. One explana-
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Fig. 8. Dynamics of average response latency of CDS vs.
Tapestry under DoS flooding attacks

            

Fig. 9. Standard deviation dynamics of response latency of
CDS vs. Tapestry under DoS flooding attacks

tion for this phenomenon is that with more and more severe
attack, the directory lookup service becomes the bottleneck of
the whole system (web object retrieval). That is, the through-
put will be solely determined by the throughput of the directory
services. The time to do the actual retreival of the object is
negligable.

If we watch through the attacking process, Figures 8, 9 and
10 show the dynamics of the most severe flooding attack ef-
fects on the average response latency and throughput in CDS
and Tapestry simulations. The attack(s) start at 40 seconds and
end at 110 seconds. We filter the data of last 10 seconds, di-
vide the rest 190 seconds into five-second bins and calculate
the mean and standard deviation for each bin. The system’s
performance is degraded right after the DoS attack, however,
it is much slower for the system to restore its original perfor-
mance after stopping DoS attack. Given our simulation setup,
the time to recover for CDS with both policies are 40 seconds.
As Tapestry is not really affected much, its the time to recover
is 0.

            

Fig. 10. Dynamics of throughput of CDS vs. Tapestry under
DoS flooding attacks

A.2 Performance Comparison of RDS vs. Tapestry

We also run these simulations on replicated directory servers.
We put four directory servers on four widely-distributed non-
transit nodes. Two different policies are investigated: the client
can request random directory server or always request the clos-
est one. The latter assumes that the client can use some boot-
strap mechanism to find its closest directory server. We do not
simulate the overhead traffic to keep these directories consis-
tent.

Again, the single flooding attack cannot affect the perfor-
mance much. So we only show the results of DDoS attacks in
Figure 11 and 12. When there is no attack, the multiple direc-
tory servers outperform Tapestry service by 20%-30% in terms
of throughput. Then we simulate four random non-transit at-
tack agents, each attack one directory server in different subnet
from the agent. For Tapestry, we have each of these agents to
attack the root node of a random hot object. The performance
of all these directory services remain mostly unchanged.

Furthermore, we have sixteen random non-transit attack
agents, each four from four different subnets attacking one di-
rectory server of RDS or the Tapestry root node of a random
hot object. The rate is varied from 500 bytes per 10ms (least
severe) to 500 bytes per 1ms (most severe), with each agent set
to the same rate.

In contrast to the CDS case, the optimal RDS always per-
forms better than the other two. The reason may be that al-
though the attackers swamp the bottleneck link from the direc-
tory server to the backbone (in our experiment, the T1 line con-
necting the stub domain and the transit domain), all the clients
in the same subnet as the directory server can still be serviced.
Thus replication and topology-aware locality can significantly
increase the DoS attack resilience for directory services. Mean-
while, Tapestry outperforms the random RDS on severe attacks.

B. Destruction or Alteration of Information Attack

For the “compromising the important node with a false edge
attack”, the CDS and RDS which access the random replica
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Fig. 11. Average response latency of RDS vs. Tapestry on
DDos flooding attacks

            

Fig. 12. Throughput of RDS vs. Tapestry on DDos flooding
attacks

are not affected (we assume that the directory server(s) are
not routers or gateways). The performance of CDS which ac-
cess the optimial replica was degraded to 85%. The impact
to Tapestry is neligible – overall performance reduced only by
2.2%, with resilience value 97.8.

We also simulate the Tapestry-specific node spoofing attack.
The effects of the attack are displayed in Figure 132. The attack
affects 24% of the network. With evenly distributed workload,
the resilience value is 0.76.

C. Quantifying

Following the methodology in Section II, we quantify the
network DoS resilience of CDS, RDS and Tapestry and rank
them in Table I. Since flooding attacks belong to both the first
and second categories of our taxonomy, they provide 80% (the
sum of the two dimensional weights) of the score. We simulate
all eight attacks in Figures 5, 6, 11 and 12 for all three types
of directory services and use the combination of latency and
throughput results. The weights are assigned in proportion to
their amounts of flood traffic. The two attacks in “destruction

2We reduce the simulation size to 100 nodes and 60 objects (15% hot) for
better visualization.

            

Fig. 13. Nodes accessing each replica of an attacked object.
Corruption of the neighbor tables at the black square node ren-
ders all the nodes enclosed by round-corner rectangles unable
to lookup the object.

or alteration of information” are comparable and have the same
weight.

Note that we did not test all possible attacks under all possi-
ble severeness, thus the ranking is by no means very accurate.
However, it does give an idea how these directory services dif-
fer in terms of network DoS resilience and how to apply the
general benchmarking methodology to a specific case.

VII. M ECHANISMS FORRESILIENCE TOATTACKS

Denial of Service attacks have varying impact depending on
the target system architecture. In the instance of location ser-
vices, there are several different approaches to minimize the
impact of attacks.

We discuss several potentially interesting approaches to-
wards DoS resilience:

A. Decentralization and Topology-awareness

A primary reason that today’s systems are extremely vulner-
able to DoS attacks is their primarily centralized design. In
terms of applications, most website content is delivered by a
single web server. In terms of infrastructure, clients on the In-
ternet hardcode a single DNS server into their network config-
uration. These design choices present to would-be attackers a
small number of clear targets to focus efforts on. Attacking and
disabling these targets results in wide-spread havoc.

As we learned from the experiments, replication and
topology-awareness dramatically improve the DoS resilience
of systems/services. Some form of Internet distance estima-
tion service, such as IDMap [19] may suffice for topology
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Directory services Flooding Distance corruption Node spoofing Total score Rank
attack (80%) attack (10%) attack (10%)

CDS, access random replica 0.027 1.0 1.0 0.2216 4
CDS, access optimal replica 0.023 0.85 1.0 0.2034 5
RDS, user request random dir server0.17 1.0 1.0 0.336 3
RDS, user request optimal dir server0.48 1.0 1.0 0.584 1
Tapestry 0.35 0.978 0.76 0.4538 2

TABLE I
Quantifying three types of directory services

awareness. Meanwhile, the advent of infrastructures such as
Tapestry make possible a decentralized model of operation,
where all nodes serve similar functions to similar sized client
pools. With no clear central target, and lots of less-important
potential targest, an attacker’s resources are spread thin in order
to make any impact on the performance of the overall system.

B. Obscure and Redundant Naming

In order to make a successful attack, an attacker needs to as-
sociate the set of physical node(s) that provide a given resource.
One way to prevent meaningful attacks is to obscure the name
of the given resource, so that attackers cannot readily identify
which physical nodes provide it. Another is to create and adver-
tise with multiple names for each protected resource, such that
an attacker cannot prevent clients from finding the resource.

C. Separate Channels for Data and Control Transmission

Services deployed on top of the existing TCP/IP-based
Internet infrastructure automatically inherit vulnerability to
flooding-based DoS attacks. The existing infrastructure treats
packets impartially: routers are generally oblivious to the
source of traffic routed through them, and the same channels
are used to transmit both data and control information (“in-band
signaling”). To handle control information out-of-band, as the
phone network now does, can be used to deal with many of the
Internet’s security vulnerabilities.

D. Detection and Reaction

While the previous three approaches focus on making at-
tacks harder and more costly, we now discuss an approach
for handling the inevitable attacks that do happen. The gen-
eral approach is to quickly detect the attacks while they are in
progress, and either take action to eliminate the attack or its
impact, or failing that, notify authorities of its findings.

To detect DoS attacks in progress, recent research has pro-
vided several techniques for tracing DoS attacks with low over-
head [41], [43]. The IOS software of Cisco router can use ac-
cess lists to filter out attacks, characterize unknown attacks and
trace “spoofed” packet streams back to their real sources [24].
In addition to these protocol-specific techniques, we believe
that “introspection” or self-examination of a system, should oc-
cur on a regular basis on several potential layers (application,
link, transport, etc). Once an attack has been identified via ab-
normal behavior or protocol-specific mechanisms, group con-
sensus protocols can be used to provide a form of authority, and

create a way to eliminate the offending party. In the Tapestry in-
frastructure, if a large enough set of nodes agree on the identity
of a malicious node, they can actively sever the node’s connec-
tion to the overlay network, therefore refusing to relay its traffic
and rendering it harmless.

VIII. R ELATED WORK

Denial of service attacks have been studied for some time.
Early work by Gligor and Yu [20], [47] built on the classic no-
tion of a trusted computing base to define a “DoS Protection
Base”. Yu and Gligor also pointed out that denial of service is
in fact an attack on resource availability. Millen believed that
denial of service is fundamentally a problem of improper re-
source allocation [33], [34].

The recognition that denial of service is fundamentally a
problem of improperly reducing availability of resources has
inspired more recent work by Meadows [31], who has worked
on characterizing susceptibility of network services to DoS at-
tacks on resources used before a remote host can be authenti-
cated. Such network-based attacks are increasingly problem-
atic. Some such attacks rely on protocol weaknesses to con-
sume resources with minimal attacker effort, as in TCP SYN
flooding [42]; other attacks depend simply on the ability of an
attacker to produce sufficient traffic to overwhelm a victim by
brute force [10].

Several counters to network denial-of-service attacks have
been proposed. In [42], the authors investigated several ap-
proaches to fighting TCP SYN attacks and developed a tool
which actively monitored the network for suspicious attack be-
havior and terminated dangling connections left by the attacker.
In [44], the authors describe the use of an end-to-end resource
accounting in the Scout operating system to protect against
resource-based DoS attacks. Both these works present mi-
crobenchmarks testing the effectiveness of the proposed coun-
termeasure. Our approach differs partly in that we investigate
attacks on availability of a service, rather than on a particular
server.

There are more approaches proposed recently towards im-
proving DoS attack resilience, such as network ingress/egress
filtering [17], packet rate limiting and unicast reverse path for-
warding [25], improving intrusion detection capabilities (e.g.,
use Snort [40]), and auditing hosts for DDoS tools (e.g., use
NIPC find ddos [9]). In contrast, the mechanisms that we pro-
posed in Section VII focus on the more fundamental network
and services infrastructural improvements for DoS resilience.
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There has been a great deal of recent interest in quantify-
ing service availability. Brewer [4] suggests several metrics for
measuring availability of networked data services, of which the
latency and throughput metrics we use are some of the sim-
plest. Brown and Patterson [5] investigate the use of workloads
including benign faults as a way of benchmarking availability,
and applied their methodology to studying software RAID sys-
tems. Our work is similarly based on injecting faults into a
workload and investigating the effect, but our faults are mali-
cious in nature.

In 1999, International Organization for Standardization
(ISO) published “The Common Criteria for Information Tech-
nology Security Evaluation (CC) version 2.1” to be used as
the basis for evaluation of security properties of IT products
and systems [7]. Jennifer Bayuk recommended using an au-
tomated approach for assigning quantitiative weights or values
to the pre-defined criteria for assessment [2]. More recently,
“backscatter analysis” was proposed to estimate the denial-of-
service attack activity in the Internet [36].

IX. CONCLUSIONS ANDFUTURE WORK

We have proposed a benchmarking methodology to quantita-
tively characterize network DoS attacks and applied it to several
directory services, such as CDS, RDS and the newly-emerged
distributed directory services. Using elementary queueing the-
ory, we analyzed the effects of DoS flooding attacks on a sin-
gle server. We also created an NS network simulation with a
synthetic workload motivated by web-traffic. We then injected
malicious attacks into the system and measured the availabil-
ity, as characterized by latency, throughput and time to recover,
of the attacked services. Our simulation framework is the first
attempt to quantify the network DoS resilience of arbitrary sys-
tems/services. Finally, some potential approaches to improve
the network DoS resilience are proposed.

Future work includes simulating DoS attacks on dynamic
systems/services, applying our methodology to other services,
such as content distribution and web hosting and modeling a
greater variety of attacks for benchmarking as well as modeling
the proposed countermeasures we have suggested.
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