
Giotto:

A Time-triggered Language for Embedded Programming

Thomas A. Henzinger Benjamin Horowitz Christoph Meyer Kirsch

University of California, Berkeley

ftah,bhorowit,cmg@eecs.berkeley.edu

Abstract. Giotto provides an abstract programmer's model for the implementation
of embedded control systems with hard real-time constraints. A typical hybrid control
application consists of periodic software tasks together with a mode switching logic for
enabling and disabling tasks. Pure Giotto speci�es time-triggered sensor readings, task
invocations, and mode switches independent of any implementation platform. Pure
Giotto can be annotated with platform constraints such as task-to-host mappings, and
task and communication schedules. The annotations are directives for the Giotto com-
piler, but they do not alter the functionality and timing of a Giotto program. By
separating the platform-independent from the platform-dependent concerns, Giotto en-
ables a great deal of
exibility in choosing control platforms as well as a great deal of
automation in the validation and synthesis of control software.

We illustrate the use of Giotto by coordinating a heterogeneous
ock of Intel x86 robots
and Lego Mindstorms robots.

0

Giotto program

functionality and timing

periodic software tasks and mode switches

Code for real-time platform

Control design

control law derivation

plant modeling

hardware mapping

computation and communication scheduling

Figure 1: Real-time control system design with Giotto

1 Introduction

Giotto provides a programming abstraction for hard real-time applications which exhibit time-
periodic and multi-modal behavior, as in automotive, aerospace, and manufacturing control. The
time-triggered nature of Giotto achieves timing predictability, which makes Giotto particularly
suitable for safety-critical applications.

Traditional control design happens at a mathematical level of abstraction, with the control
engineer manipulating continuous di�erential equations and possibly discrete mode switches using
tools such as Matlab or Xmath. Typical activities of the control engineer include modeling of the
plant behavior and disturbances, deriving and optimizing control laws, and validating functionality
and performance of the model through analysis and simulation. If the validated design is to
be implemented in software, it is then handed o� to a software engineer who writes code for a
particular platform (we use the word \platform" to stand for a hardware con�guration together
with a real-time operating system). Typical activities of the software engineer include decomposing
the necessary computational activities into periodic tasks, assigning tasks to CPUs and setting task
priorities to meet the desired hard real-time constraints under the given scheduling mechanism and
hardware performance, and achieving a degree of fault tolerance through replication and error
correction.

Giotto provides an intermediate level of abstraction, which permits the software engineer to
communicate more e�ectively with the control engineer. Speci�cally, Giotto de�nes a software
architecture of the implementation which speci�es its functionality and timing. Functionality and
timing are suÆcient (and necessary) for ensuring that the implementation is consistent with the
mathematical model of the design. On the other hand, Giotto abstracts away from the realization
of the software architecture on a speci�c platform, and frees the software engineer from worrying
about issues such as hardware performance and scheduling mechanism while communicating with
the control engineer. After writing a Giotto program, the second task of the software engineer
remains of course to implement the program on the given platform. However, in Giotto, this
second task, which requires no interaction with the control engineer, is e�ectively decoupled from
the �rst, and can in large parts be automated by increasingly powerful compilers. The Giotto design

ow is shown in Figure 1. The separation of logical correctness concerns (functionality and timing)
from physical realization concerns (mapping and scheduling) has the added bene�t that a Giotto
program is entirely platform independent and can be compiled on di�erent, even heterogeneous,
platforms.

1

control tasks
actuator

airplane dynamics

accelerometers
gyros and

air data sensor

GPS

tailplane/
elevator

aileron 1

aileron 2

rudder

actuators

INU task

GPS task

air data task

pilot stick task

pitch control

lateral control

throttle control

aileron 2 task

rudder task

20 Hz

10,000 Hz

5,000 Hz

10,000 Hz

5,000 Hz

2,500 Hz

2,500 Hz

10,000 Hz

10,000 Hz

10,000 Hz

10,000 Hz

sensor tasks

control laws

tailplane/elevator
task

aileron 1 task

pilot stick

sensors

flight control system

Figure 2: A
y-by-wire
ight control system

The basic functional unit in Giotto is the task, which is a periodically executed piece of, say,
C code. Several concurrent tasks make up a mode. Tasks can be added or removed by switching
from one mode to another. The periodic invocation of tasks and the mode switching are triggered
by real time. For example, one task t1 may be invoked every 3 ms, another task t2 every 1 ms, and
a mode switch may be contemplated every 6 ms. This time-triggered semantics enables eÆcient
reasoning about the timing behavior of a Giotto program, in particular, whether it conforms to the
timing requirements of the mathematical model of the control design.

A Giotto program does not specify where, how, and when tasks are scheduled. The Giotto
program with tasks t1 and t2 can be compiled on platforms that have a single CPU (by time sharing)
as well as on platforms with two CPUs (by parallelism); it can be compiled on platforms with
preemptive priority scheduling (such as most RTOSs) as well as on truly time-triggered platforms
(such as TTA [Kop97, BGP00, FMD+00b, FMD+00a]). All the Giotto compiler needs to ensure is
that the logical semantics of Giotto |functionality and timing| is preserved. In the last section,
we will introduce a mechanism for annotating a Giotto program with platform constraints, which
can be understood as directives to the compiler in order to make its job easier. A constraint
may map a particular task to a particular CPU, or it may schedule a particular communication
event between tasks in a particular time slot. These annotations, however, in no way modify the
functionality and timing of a Giotto program; they simply aid the compiler in realizing the logical
semantics of the program.

In Section 2, we begin by describing a typical aerospace control scenario, which motivates the
design of Giotto. We give an informal introduction to Giotto in Section 3, followed by formal
de�nitions of syntax (Section 4) and semantics (Section 5). In Section 6, we use Giotto to coor-
dinate a heterogeneous
ock of Intel x86 robots and Lego Mindstorms robots. We conclude with
a brief discussion of ongoing work, speci�cally, a hierarchical version of Giotto (Section 7) Giotto
annotations for compilation on static priority preemptive RTOS (Section 8). In the �nal Section 9,
we relate Giotto to other work.

2

Priv

fIn Out

Figure 3: A task t

2 Motivating example

As a motivating example, we describe a
y-by-wire
ight control system [LRR92, Col99]. The
control system consists of three types of interconnected components (see Figure 2): sensors, CPUs
for computing control laws, and actuators. The sensors include an inertial navigation unit (INU),
for measuring linear and angular acceleration; a global positioning system (GPS), for measuring
position; an air data measurement system, for measuring such quantities as air pressure; and the
pilot's controls, such as the pilot's stick. Each sensor has its own timing properties: the INU, for
example, outputs its measurement 50,000 times per second, whereas the pilot's stick outputs its
measurement only 5,000 times per second.

Three separate control laws |for pitch, lateral, and throttle control| need to be computed.
The system has four actuators: two for the ailerons, one for the tailplane, and one for the rudder.
The timing requirements on the control laws and actuator tasks are shown in Figure 2. The reader
may wonder why the actuator tasks need to run more frequently than the control laws. The reason is
that the actuator tasks are responsible for the stabilization of quickly moving mechanical hardware,
and thus need to be an order of magnitude more responsive than the control laws.

We have just described one operational mode of the
y-by-wire
ight control system, namely
the cruise mode. There are four additional modes: the takeo�, landing, autopilot, and degraded
modes. In each of these modes, additional sensing tasks, control laws, and actuator tasks need
to be executed, as well as some of the cruise tasks removed. For example, in the takeo� mode,
the landing gear must be retracted. In autopilot mode, the control system takes inputs from a
supervisory
ight planner, instead of from the pilot's stick. In degraded mode, some of the sensors
or actuators have su�ered damage; the control system compensates by not allowing maneuvers
which are as aggressive as those permitted in the cruise mode.

3 Informal description of Giotto

In Giotto all data is communicated through ports. A port represents a typed variable with a
unique location in a globally shared name space (an implementation of the Giotto is, of course,
not required to be a shared memory system; we use the global name space for ports as a virtual
concept to simplify the de�nition of Giotto). A port is persistent in the sense that a port keeps its
value over time. There are mutually disjoint sets of input, output, environment, and entry ports in
a Giotto program. Each input and output port belongs to a Giotto task. The environment ports
represent sensors, and are updated nondeterministically by the environment of the Giotto program.
Entry ports will be discussed later in the context of modes.

A typical Giotto task t is shown in Figure 3. The task t has a set In of two input ports and a
set Out of two output ports, all of which are depicted by bullets. The ports of t are distinct from
all other ports in the Giotto program. In general, a task may have an arbitrary number of input

3

f

!

Priv

OutIn
p

�
src

Figure 4: An invocation of task t

f

!

Priv

� 0start �stop

Computation

�

p

Communication

src In

�start =

Instantaneous

Out

Figure 5: The time line for an invocation of task t

and output ports. A task may also maintain a state which can be viewed as a set of private ports
whose values are inaccessible outside the task. The state of t is denoted by Priv. Finally, the task
has a function f from its input ports and its current state to its output ports and its next state.
The task function f is implemented by a sequential program, and can be written in an arbitrary
programming language. For a given platform, the Giotto compiler will need to know the worst-case
execution time of f on each CPU. Each invocation of the task t executes the function f once.

Giotto tasks are periodic tasks: they are invoked at regularly spaced points in time. The
features of an invocation of the task t are shown in Figure 4. The invocation has a frequency
! given by a non-zero natural number. The real-time frequency of t will be determined later by
dividing the real-time period of the current mode by !. The task invocation speci�es connections
src from ports or constant values to input ports. The two input ports of t are connected to a
port p and a constant value �. The port p could be an output port of t or of another task, an
environment port, or an entry port of the current mode. The time line for an invocation of task
t is depicted in Figure 5. The invocation starts at some time �start with a communication phase
in which the value stored in port p and the constant value � are copied to the input ports In.
The Giotto semantics prescribes that the communication phase takes zero time. Instantaneous
communication is part of the Giotto logical abstraction from physical implementation details. The
instantaneous-communication abstraction can be realized physically by transferring new values at
any time before �start . The communication phase of the invocation of task t is followed by a
computation phase. The Giotto semantics prescribes that at time �stop the state and output ports
of t are updated to the (deterministic) result of f applied to the state and input ports of t at
time �start . The length of the interval between �start and �stop is determined by the frequency !.
The Giotto semantics does not specify when, where, and how the computation of f is physically
performed between �start and �stop . This abstraction and instantaneous communication are the
essential ingredients of the Giotto programmer's model.

4

f2

!2 = 2

Priv2

f1

!1 = 1

Priv1

Out1 Out2Ent

� = 10ms !entry = 1

e1

src2

src1

t1

t2

i4

i3

i2

i1 o1

o2

o4

o3

Figure 6: A mode m

A Giotto program consists of a set of modes, each of which repeats the invocation of a set of
tasks. The system described by a Giotto program is in one mode at a time. A mode may contain
mode switches, which specify transitions from the mode to other modes. A mode switch can remove
some tasks, and add others. Formally, a mode consists of a set of task invocations, a period, a
set of entry ports, a set of environment ports, an entry frequency, and a set of mode switches.
Figure 6 depicts a mode m, which contains invocations of a task t1 and a task t2. The period � of
m is 10 ms; that is, while the system is in mode m, its execution repeats the same pattern of task
invocations every 10 ms. The entry frequency !entry of m is one. The entry frequency of a mode
speci�es how often the mode may be entered (by switching out of another mode) during its period
�; in particular, the mode m can be entered only once every 10 ms, at the very beginning of its
period. The mode m has a singleton set of entry ports, namely, Ent = fe1g, and no environment
ports. The task t1 has two input ports i1 and i2 and two output ports o1 and o2, a state Priv1,
and a function f1. The task t2 is de�ned in a similar way. The invocation of t1 in mode m has a
frequency !1 of one, which means that t1 is invoked once every 10 ms while the system is in mode
m. The input port i1 of t1 is connected to the entry port e1 of mode m, and the input port i2 is
connected to the output port o3 of t2. The invocation of t2 has a frequency !2 of two, which means
that t2 is invoked once every 5 ms, as long as the system is in mode m. The input port i3 of t2 is
connected to the output port o2 of task t1, and the input port i4 is connected to the output port o4
of t2. Note that the output ports of the tasks in m are visible outside the scope of m as indicated
by the dashed lines. We will later see that mode switches may connect these output ports to entry
ports of other modes.

Figure 7 shows the exact timing of a single round of mode m, which takes 10 ms; while the
system in in mode m, one such round follows another. The round begins at the time instant �0
with an instantaneous communication phase for the invocations of tasks t1 and t2. According to
the connections of t1 and t2, the values stored in e1 and o3 are copied to the input ports of t1, and
the values stored in the output ports o2 and o4 are copied to the input ports of t2. The Giotto
semantics does not specify how the computations of f1 and f2 are physically scheduled; they could
be scheduled in any order on a single CPU, or in parallel on two CPUs. Logically, after 5 ms, at

5

!2 = 2

Priv2

!2 = 2

Priv2

!1 = 1

Priv1

f1

f2 f2

�2� 01�1� 00�0 � 02= = =

� = 10ms

v0 v1 v2

e1 e1

t1

t2 t2

Figure 7: The time line for a round of mode m

time instant �1, the results of the computation of f2 are written to the output ports of t2. The
second invocation of t2 begins with an instantaneous transfer of values stored in o4 and o2 to the
input ports of t2. Note that the value stored in o2 has not been updated since the time instant
�0, no matter if physically f1 has �nished its computation before �1 or not. Logically, the output
values of the invocation of t1 are not available before �2. Any physical realization that schedules
the invocation of t1 before the �rst invocation of t2 must therefore keep available two sets of values
for the output ports of t1. The round is �nished after writing the output values of the invocation
of t1 and of the second invocation of t2 to their output ports at time �2. The beginning of the next
round shows that the input port i3 is loaded with the new value produced by t1.

In order to give an example of mode switching we introduce a second mode m0, depicted in
Figure 8. The main di�erence between m and m0 is that m0 has a third task, t3, in addition to
the tasks t1 and t2 of mode m. The task t3 has a frequency !3 of eight in m0. Note that m0 also
doubles the frequency of t2 to four. The period of m0, which determines the length of each round,
is again 10 ms. This means that in mode m0, the task t1 is invoked once per round, every 10 ms;
the task t2 is invoked four times per round, every 2.5 ms; and the task t3 is invoked eight times
per round, every 1.25 ms. The connections of t1 and t2 in both modes are exactly the same. The
entry frequency of m0 is two, which means that m0 may be entered at the beginning of its round
or in the middle, after 5 ms. In addition to the entry port e1 of mode m, there is a second entry
port e2 in m0, which is connected to the input port i7 of t3. The input port i5 is connected to the
output port o4 of t2, and the input port i6 is connected to the output port o5.

A mode switch describes the transition from one mode to another mode. For this purpose, a
mode switch speci�es an exit frequency, an exit predicate, a target mode, and connections for the
entry ports of the target mode. Figure 9 shows a mode switch s from mode m to mode m0 with
an exit frequency !exit of two. The exit predicate is evaluated periodically, as speci�ed by the exit

6

f2

!2 = 4

Priv2

f1

!1 = 1

Priv1

f3

!3 = 8

Priv3

Out3Out1 Out2

�0 = 10ms !entry
0 = 2

src2

src1

Ent
0

src3

e1 e2

i1

i2

i3

i4

i7

i5
i6

o1

o2

o3

o4

o5

t1

t2

t3

Figure 8: A mode m0

frequency. The exit frequency of two means that the exit predicate is evaluated every 5 ms, in the
middle and at the end of each round of mode m. The exit predicate is a boolean-valued condition
on the entry and environment ports of m, and on the output ports of the tasks t1 and t2 invoked in
mode m. If the exit predicate evaluates to true, then a switch to the target mode m0 is performed.
The mode switch connects the output port o3 of task t2 to the entry port e2 of mode m

0, and the
entry port e1 is loaded with the constant value �. Like all Giotto connections, mode switches are
logically performed in zero time.

Figure 10 depicts the time line for the mode switch s performed at time �1. The system is in
mode m until �1 and then enters mode m0. Note that until time �1 the time line corresponds to the
time line shown in Figure 7. The execution of modem0 starts with an instantaneous communication
phase required by the mode switch. At time �1, the constant value � is copied to the entry port
e1 of m0, and the value stored in the output port o3 of t2 is copied to the entry port e2. At this
point, the mode switch is already �nished. All subsequent actions follow the semantics of the target
mode m0 independently of whether the system entered m0 just now through a mode switch, at 5
ms into a round, or whether the system started the current round already in mode m0. Speci�cally,
instantaneous communication phase for the invocations of tasks t2 and t3 follow: the input port i3
of t2 is loaded with the value from the output port o2 of t1; the input port i4 is loaded with the
value from the output port o4 of t2; the input port i5 of t3 is loaded with the value from the output
port o4 of t2; the input port i6 is loaded with the value from the output port o5 of t3; and the
input port i7 is loaded with the value from the entry port e2 of m

0. The output port o5 contains
either a well-de�ned initial value (if this is the �rst invocation of t3), or the value computed by the

7

!entry

m

Out1

�0

Out1 Out3

!entry
0

m0

o4o3

Out2Out2

e1

Ent

�

e2

Ent
0

e1

�
src

!exit = 2

Figure 9: A mode switch s from mode m to mode m0

most recent invocation of t3. Note that in the communication phase at time �5 the input port i1
of task t1 connected to the entry port e1 is loaded with the constant value � stored in the entry
port. In this way, task t1 may detect that a mode switch took place in the previous round. Since
entry ports may be used in connections and exit predicates, a mode with entry ports can be seen
as a parameterized version of the same mode without entry ports.

For a mode switch to be legal, the target mode is constrained so that all task invocations that
can be interrupted by a mode switch can be continued, logically without preemption, in the target
mode. In our example, the mode switch s can occur at 5 ms into a round of mode m, while the task
t1 is logically running. Hence the target mode m0 must also invoke t1. Moreover, since the period
of m0 is 10 ms, as for mode m, the frequency of t1 in m0 must be identical to the frequency of t1
in m, namely, one. Furthermore, 5 ms into a round must be a legal entry point for m0; that is, the
entry frequency of m0 has to be (at least) two. All of these conditions are indeed satis�ed by the
target mode m0, and the mode switch s at 5 ms into a round of m is followed simply by the second
half of a normal round of m0. If, alternatively, the period of m0 were 20 ms, then the frequency of
t1 in m0 would have to be two, and the entry frequency of m0 would have to be (at least) four.

4 Abstract syntax of Giotto

Rather than specifying a concrete syntax for Giotto, we formally de�ne the components of a Giotto
program in a more abstract way; fragments of sample Giotto programs written in a C like concrete
syntax can be found Section 6. A Giotto program consists of four components:

1. A set of port declarations. A port declaration (p;Type; init) consists of a port name p, a type
Type, and an initial value init 2 Type. We require that all port names are uniquely declared;
that is, if (p; �; �) and (p0; �; �) are distinct port declarations, then p 6= p0. We write Ports for the
set of declared port names. The set Ports is partitioned into a set EntryPorts of mode entry
ports, a set EnvPorts of environment ports, a set InPorts of task input ports, a set OutPorts

of task output ports, and a set PrivPorts of task private ports. Given a port p 2 Ports, we
write Type[p] for the type of p, and init[p] for the initial value of p. For environment ports
p 2 EnvPorts, the initial value init[p] is irrelevant and can be omitted.

A valuation for a set P � Ports of ports is a function that maps each port p 2 P to a value in
Type[p]. We write Vals[P] for the set of valuations for P. Given a valuation v 2 Vals[Ports],
we write v[P] for the restriction of v to the variables in P. A source for the ports P from the
ports P0 � Ports is a function that maps each port p 2 P either to a value in Type[p], or to a
port p0 2 P0 such that Type[p] = Type[p0].

2. A set of task declarations. A task declaration (t; In;Out;Priv; f) consists of a task name t, a

8

!2 = 2

Priv2

f1

f2

e1

� 00

v0 1

!1 = 1

Priv1

f3 f3 f3 f3

Priv2

f2

Priv2

v5

�5 � 05

!2 = 4 !2 = 4

f2

�0

2 3 4

e2

�1 � 04�4� 01 �2 �3 � 03� 02

�

� = 10ms

t1

t2 t2 t2

e1

Figure 10: The time line for the mode switch s at time �1

set In � InPorts of input ports, a set Out � OutPorts of output ports, a set Priv � PrivPorts of
private ports, and a task function f: Vals[In[Priv]! Vals[Out[Priv]. If (t; In;Out;Priv; �) and
(t0; In0;Out0;Priv0; �) are distinct task declarations, then we require that t 6= t0 and In \ In0 =
Out\Out0 = Priv\Priv0 = ;. We write Tasks for the set of declared task names. Given a task
t 2 Tasks, we write In[t] for the set of input ports, Out[t] for the set of output ports, Priv[t]
for the set of private ports, and f[t] for the task function.

3. A set of mode declarations. A mode declaration (m;�; !entry ;Ent;Env; Invokes;Switches) con-
sists of a mode name m, a mode period � 2 Q , an entry frequency !entry 2 N , a set
Ent � EntryPorts of entry ports, a set Env � EnvPorts of environment ports, a set Invokes

of task invocations, and a set Switches of mode switches. Task invocations and mode switches
are de�ned below. We require that all mode names are uniquely declared, and write Modes

for the set of declared mode names. Given a mode m 2 Modes, we write �[m] for the mode
period, !entry [m] for the entry frequency, Ent[m] for the set of entry ports, Invokes[m] for the
set of task invocations, and Switches[m] for the set of mode switches.

(a) Each task invocation (t; !; src) 2 Invokes[m] consists of a task t 2 Tasks, a task frequency
! 2 N , and a task source src for the input ports In[t] from the ports in Ent[m][Env[m][

9

Out[m], where Out[m] is the union of all sets Out[t] of output ports such that (t; �; �) 2
Invokes[m]. If (t; �; �) and (t0; �; �) are distinct task invocations in Invokes[m], then we
require that t 6= t0.

(b) Each mode switch (m0; !exit ; �exit ; src) 2 Switches[m] consists of a target mode m0 2
Modes, an exit frequency !exit 2 N , an exit condition �exit , and a mode source src for the
entry ports Ent[m0] from the ports in Ent[m][Env[m][Out[m]. The exit condition �exit
is a function from Vals[Ent[m] [Env[m] [Out[m]] to B . If (�; �; �exit ; �) and (�; �; �0exit ; �)
are distinct mode switches in Switches[m], then we require that for all port valuations
v 2 Vals[Ent[m] [Env[m] [Out[m]] either �exit(v) = false or �0exit(v) = false. It follows
that all mode switches are deterministic.

4. A start mode start 2 Modes.

The mode frequencies of a mode m 2 Modes include (i) the entry frequency !entry [m], (ii) the task
frequencies ! for all task invocation (�; !; �) 2 Invokes[m], and (iii) the exit frequencies !exit for all
mode switches (�; !exit ; �; �) 2 Switches[m]. The highest mode frequency of m is called the number
of units of the mode m, and denoted !max [m]. A Giotto program is well-timed if the following
conditions are satis�ed:

Local harmonic period For all modes m 2 Modes and all mode frequencies !1 and !2 of m,
either !1=!2 2 N or !2=!1 2 N . Moreover, there exists a mode frequency of m, other than
the entry frequency !entry [m], which is one.

Global harmonic period For all modesm 2 Modes, task invocations (t; !; src) 2 Invokes[m], and
mode switches (m0; !exit ; �; �) 2 Switches[m], if !exit > !, then

1. (�[m]=!exit)=(�[m
0]=!entry [m

0]) 2 N , and

2. there exists a task invocation (t; !0; src) 2 Invokes[m0] with �[m]=! = �[m0]=!0.

5 Formal semantics of Giotto

A program counter (m;u) consists of a mode m 2 Modes, and an integer u 2 f0; : : : ; !max [m]� 1g
called the unit counter. A time stamp � is a rational number. Given a program counter (m;u)
and a task invocation (t; !; �) 2 Invokes[m], the task t is ready at unit u in mode m if u � !=u[m] 2
N (otherwise, the task t is running at unit u in mode m). A mode switch (�; !exit ; �exit ; �) 2
Switches[m] is enabled at unit u in mode m with respect to the port valuation v 2 Vals[Ports] if
both u � !exit=u[m] 2 N and �exit(v[Ent[m] [Env[m] [Out[m]]) = true. Let tmin [m] be a task with
minimal frequency in mode m, and let !min [m] denote the frequency of tmin [m] in m. An execution
of a Giotto program is an in�nite sequence

(�0; c0; v0); (�1; c1; v1); (�2; c2; v2); : : :

of triples, each consisting of a time stamp �i, a program counter ci = (mi; ui), and a port valua-
tion vi 2 Vals[Ports], such that conditions (1) and (2) below are satis�ed. Before we state these
conditions, we �rst de�ne what it means for a task to be completed : we call a task t completed
at (�i; ci; �) if the following conditions hold: (1) if ci = (mi; ui), then (t; !; �) 2 Invokes[mi]; (2) t
is ready at unit ui in mode mi; (3) there exists a previous triple (�j; cj ; vj) in the execution, with
j < i, and �j = �i��[mi]=!; (4) if cj = (mj; �), then (t; �; �) 2 Invokes[mj]. The two conditions that
must be satis�ed are:

10

1. �0 = 0, c0 = (start; 0), and v0 is de�ned as follows:

(a) If p 2 EntryPorts [OutPorts [PrivPorts, then v0(p) = init[p].

(b) Suppose that p 2 InPorts. If there is no task invocation (t; �; src) 2 Invokes[start] such
that p 2 In[t], then v0(p) = init[p]. Suppose that there is such a task invocation. If
src(p) 2 Type[p], then v0(p) = src(p); if src(p) 2 Ports, then v0(p) = v0(src(p)).

2. For i > 0:

(a) �i = �i�1 + �[mi�1]=!max [mi�1].

(b) If there is a mode switch (m0; �; �; �) 2 Switches[mi�1] which is enabled at unit ui�1 + 1
in mode mi�1 with respect to the valuation vi�1, then mi = m0. Otherwise, mi = mi�1.

(c) To de�ne ui, we �rst introduce some intermediate de�nitions for expository clarity.
Let umin equal (ui�1 + 1) mod (!max [mi�1]=!min [mi�1]). Intuitively, umin represents
the position in mi�1 in terms of the slowest task tmin [m]. Next, let unew equal umin �
(!max [mi]=!i) � (!min [mi�1]=!max [mi�1]), where !i is the frequency of tmin [mi�1] in mi.
The quantity unew is simply a scaling of umin that accounts for changes in frequency
between mi�1 and mi. Finally, de�ne ui to be unew + (!i � 1) � !max [mi]=!i.

(d) vi is de�ned as follows:

i. Suppose that p 2 EntryPorts. If there is no mode switch (�; �; �; src) 2 Switches[mi�1]
which is enabled at unit ui�1 + 1 in mode mi�1 with respect to the valuation vi�1,
then vi(p) = vi�1(p). Suppose that there is such a mode switch. If src(p) 2 Type[p],
then vi(p) = src(p); if src(p) 2 Ports, then vi(p) = vi(src(p)).

ii. Suppose that p 2 InPorts. If there is no task invocation (t; �; src) 2 Invokes[mi] which
is ready at unit ui in mode mi such that p 2 In[t], then vi(p) = vi�1(p). Suppose
that there is such a task invocation. If src(p) 2 Type[p], then vi(p) = src(p); if
src(p) 2 Ports, then vi(p) = vi(src(p)).

iii. Suppose that p 2 OutPorts [PrivPorts. If there is no task invocation (t; �; �) 2
Invokes[mi] which is completed at unit ui in modemi such that p 2 In[t], then vi(p) =
vi�1(p). If there is such a task invocation, then vi(p) = f[t](vi�1[In[t] [Priv[t]])(p).

Note that for a given sequence of valuations for the environment ports, a Giotto program has
exactly one execution.

6 Example: Synchronized robots

As an example of a distributed, heterogeneous real-time platform consider a set of n logically
identical robots with di�erent hardware and operating systems. Each robot has a CPU, two motors,
and a touch sensor. The motors drive wheels and allow the robot to move forward, backward,
and sideward. The touch sensor is connected to a bumper. The n robots share a broadcast
communication medium. Figure 11 shows the behavior of the n robot system, where a circle
depicts the state of a robot and an arc represents a state transition. Note that here state is a
behavioral concept rather than, say, a Giotto mode. A robot which is either in the lead or evade
state is called a leader. A robot which is either in the follow or stop state is called a follower. We
will ensure that at all times there is a single leader and n� 1 followers.

Upon initialization the leader is in the lead state and determines the movements taken by all
n robots. The n� 1 followers are in the follow state and listen to the commands of the leader. All

11

StopLead

FollowEvade

My evasion

�nished

My sensor

pushed

Someone else's

sensor pushed
Someone else's

evasion �nished

My sensor

pushed

Someone else's

sensor pushed

Figure 11: Robot behavior

n robots move in the same way. Now, there are two possible scenarios. Either the leader's bumper
or the bumper of one of the followers is pushed. For simplicity, let us assume that, due to some
arbitration scheme, no more than a single bumper is pushed at the same time. Suppose that the
leader's bumper is pushed. Then the leader goes into the evade state while the n � 1 followers go
into the stop state. A robot in the evade state performs an evasion procedure for a �nite amount of
time, whereas a robot in the stop mode simply stops. When the leader is �nished with the evasion
procedure it goes back into the lead state, and the n � 1 followers return into the follow state.
Suppose now that the bumper of one of the followers is pushed. Then this robot goes into the
evade state while all other robots, including the leader, go into the stop state. Note that pushing
a bumper of a follower e�ectively makes this robot the new leader. This concludes the behavioral
model of the n robot system.

Figure 12 and 13 show a Giotto program that implements a two-robot system. Figure 12 shows
the port declarations. The environment port sensorX is true whenever the bumper of robot X is
pushed. The ports motorLX and motorRX are connected to the left and right motor of robot X,
respectively.

Figure 13 shows the mode declarations for four modes, where the leadFollow1 mode is the
start mode. Recall that each Giotto mode describes the behavior of the whole system. Since the
system consisting of all n robots is either in the lead-and-follow state or in the evade-and-stop state,
we use a leadFollowX mode and a evadeStopX mode for each leader X. In general, for n robots we
have get 2n modes. All modes run at a period of 500 ms with an entry frequency of one. Consider
the leadFollow1 mode, in which robot 1 is the leader. The command1 task runs once per round
and computes a command stored in its output port com. There are two more tasks, motorCtr1
and motorCtr2, each running at a frequency of �ve (i.e., every 100 ms), which control the motors
of both robots according to the command in com. The higher frequency of these tasks allows for
smoother control of the motors. The state of the touch sensors is checked once every round in the
three exit conditions. If the bumper of robot 1 is pushed, we switch to the evadeStop1 mode, in
which robot one performs an evasion procedure and robot 2 stops. Similarly, if the bumper of robot
2 is pushed, we switch to the evadeStop2 mode. Whenever both bumpers are pushed at the same

12

const STOP = 0;

// command

int com = STOP;

// mode finished

bool fin = TRUE;

// TRUE means pushed

bool sensor1; // robot 1 touch sensor

bool sensor2; // robot 2 touch sensor

// 0 means stop

int motorL1 = 0; // robot 1 left motor

int motorR1 = 0; // robot 1 right motor

int motorL2 = 0; // robot 2 left motor

int motorR2 = 0; // robot 2 right motor

Figure 12: Port declarations

time, we also switch to the evadeStop2mode. In the evadeStop1mode, the evade1 task computes
once per round the next evasion step, stored in com, and whether the current mode is �nished or
not, stored in the output port fin. Note that upon entry to the evadeStop1 mode, fin always
contains true. However, its value will be checked by the exit condition no earlier than at the end
of the �rst round after evade1 updates fin. There is also a task motorCtr1, running �ve times
per round, which controls the motors of robot 1 according to the evasion steps in com. The third
task motorCtr2 always reads the constant STOP, which causes robot 2 to stop during the evasion
maneuver. Whenever fin contains true, we switch to the leadFollow1mode. The implementation
of the two modes leadFollow2 and evadeStop2, in which robot 2 is the leader, works similarly as
described above.

A reasonable implementation of the two-robot Giotto program may assign the tasks commandX,
evadeX, and motorCtrX on robot X, respectively, with task motorCtrX having the highest priority
because of its shortest deadline. Then, the values in com, fin, and sensorX have to be communi-
cated between the two robots.

We have implemented this example with �ve robots on a heterogenous platform consisting of
three Lego Mindstorms robots and two Intel x86 robots. The Lego robots run an implementa-
tion of Giotto written in the programming language NQC [Bau99], and communicate via infrared
transceivers. The x86 robots run Giotto on VxWorks, and communicate via wireless Ethernet. In
addition, there is a sixth CPU that acts as a bridge, forwarding packets between the infrared and
wireless communications media. Video clips of the robots in action can be seen at

www.eecs.berkeley.edu/~fresco/giotto.

This example illustrates that Giotto provides a truly platform-independent abstract layer for real-
time programming.

The robot example makes use of a set of libraries which provide run-time support for Giotto
programs. These libraries facilitate the implementation of a distributed time-triggered system
using commercial o�-the-shelf technology. Our libraries currently target Intel 80486 processors and
Ethernet because of the easy availability of these hardware elements.1 We use UDP/IP as our

1In general, Ethernet is not well-suited to hard real-time applications, because collisions and collision recovery

13

start leadFollow1() {

mode leadFollow1() period 500ms entryfreq 1 {

taskfreq 1 do int com = command1();

taskfreq 5 do (int motorL1, int motorR1) = motorCtr1(com);

taskfreq 5 do (int motorL2, int motorR2) = motorCtr2(com);

exitfreq 1 if (sensor1 && not(sensor2)) then evadeStop1();

exitfreq 1 if (sensor2 && not(sensor1)) then evadeStop2();

exitfreq 1 if (sensor1 && sensor2) then evadeStop2();

}

mode evadeStop1() period 500ms entryfreq 1 {

taskfreq 1 do (int com, bool fin) = evade1();

taskfreq 5 do (int motorL1, int motorR1) = motorCtr1(com);

taskfreq 1 do (int motorL2, int motorR2) = motorCtr2(STOP);

exitfreq 1 if (fin) then leadFollow1();

}

mode leadFollow2() period 500ms entryfreq 1 {

taskfreq 1 do int com = command2();

...

}

mode evadeStop2() period 500ms entryfreq 1 {

taskfreq 1 do (int com, bool fin) = evade2();

taskfreq 1 do (int motorL1, int motorR1) = motorCtr1(STOP);

taskfreq 5 do (int motorL2, int motorR2) = motorCtr2(com);

exitfreq 1 if (fin) then leadFollow2();

}

}

Figure 13: Two-robot Giotto program

communications protocol, and target the VxWorks operating system. We wish to emphasize that
our code may be ported to any processor with a single timer, and real-time operating system able
to use this timer, and to virtually any digital communications medium. In fact, since our timing
and synchronization requirements are quite simple, we could equally well target processors without
operating systems.

7 Hierarchical Giotto

Consider a task declaration (t; In;Out;Priv; f). The task function f: Vals[In[Priv]! Vals[Out[Priv]
can be implemented in any programming language, such as C. If we implement f itself as a Giotto
program, then we obtain hierarchical Giotto. For this purpose, we need to consider �nite executions
of a Giotto program. In a �nite execution, we run a Giotto program with start mode start for time
�[start]. Consequently, if no mode switch occurs, then exactly one round of the start mode is
executed. If a mode switch occurs before the �rst round of start is completed, then some task must
be invoked with task frequency one in mode start, and this task needs to continue in the target

can interfere with quality of service guarantees. However, we use a TDMA strategy to prevent collisions. Using this

strategy, we have found that collisions do not present a signi�cant problem.

14

mode. The �nite execution ends with the completion of this task, possibly after several mode
switches.

Consider a mode m and a task invocation (t; �; !) 2 Invokes[m]. The task function f[t] is de�ned
by a Giotto program g if the following three conditions are satis�ed:

1. The start mode of g has the period �[m]=!. We write �[g] for �[m]=!.

2. All input ports in In[t] are entry ports of the start mode of g, and all output ports in Out[t]
are output ports of g. The set Priv[t] of private ports contains the entry ports of g which are
not in In[t], the input ports of g, the output ports of g which are not in Out[t], and the private
ports of g.

3. The program g has no environment ports. This is required, because the results of g at time
�[g] must be deterministic. In a more general version of hierarchical Giotto, we replace task
functions by binary task relations, which can be implemented using Giotto programs with
environment variables. This is delayed to the full paper.

If the three conditions are met, then given a valuation v 2 Vals[In[t][Priv[t]], we write g(v) for the
Giotto program which results from g by changing, for each port p 2 In[t] [Priv[t], the initial value
of p to v(p). Let (�0; c0; v0); : : : ; (�n; cn; vn) be the (unique) �nite pre�x of the (unique) execution
of g(v) such that �n = �[g]. Then, g de�nes the task function f[t] which maps each valuation
v 2 Vals[In[t] [Priv[t]] to the valuation vn[Out[t] [Priv[t]].

8 Annotating Giotto with platform constraints

A Giotto program can in principle be run on a single suÆciently fast CPU, independent of the
number of modes and tasks, and of the worst-case execution time of tasks. However, taking into
account performance constraints, the timing requirements of a program may or may not be achiev-
able on a single CPU. Additionally, a particular application may require that tasks be located
in speci�c places, e.g., close to the physical processes that the tasks control. Lastly, in order to
guarantee fault-tolerance, redundant isolated CPUs may be desirable. For these reasons, it may be
necessary to distribute the work of a Giotto program between multiple CPUs. In order to aid the
compilation on distributed, possibly heterogeneous, platforms, we annotate Giotto programs with
platform constraints.

For now, we consider as target platform the most common sort of real-time operating system
(static priority preemptive) and a common, readily available type of network (Ethernet). (Other
operating systems |e.g., the TTA [Kop97]| and networks |e.g., the Controller Area Network
[Int93]| may permit more straightforward implementations, but these platforms are less common.)
Formally, a hardware con�guration consists of a set of hosts and a set of nets. A host is a CPU
which can execute Giotto tasks. A net connects two or more hosts and can transport values. The
passing of a value from an output port of one task (or from an entry port of a mode) to an input
port of another task (or to an entry port of a mode) is called a connection. An execution priority is
a positive integer. A time slot is an open interval (�1; �2) � R of real time. In order to implement
a Giotto program on our target platform, task invocations need to be mapped to priorities, and
connections need to be mapped to time slots. Speci�cally, a Giotto compiler takes as input a Giotto
program as well as a hardware con�guration and produces, before generating code:

� An assignment of task invocations to hosts and execution priorities. If two task invocations
are mapped to the same host, then the invocation with the higher priority will preempt the
invocation with the lower priority.

15

� An assignment of connections to nets and time slots. If a connection is assigned a time
slot (�1; �2), then the transmission of this connection may only occur in the time interval
(�1 + �r; �2 + �r), where �r is time at which the current round of execution began. A Giotto
compiler guarantees the absence of transmission collisions by ensuring that two hosts do not
transmit data on the same network at the same time.

If no assignments that preserve the Giotto semantics exist, then the compiler fails.
It may be thought that the frequencies of task invocations are enough to determine priorities.

Indeed, using standard rate-monotonic techniques [Kle93], it would seem that, on a single host,
task invocations with higher frequencies simply need to have higher priorities than task invocations
with lower frequencies. However, it is important to design the task schedule together with the
communication schedule. A low-frequency task may produce an output that has to travel a long
way, and thus it may have to be transmitted earlier than the outputs of high-frequency tasks which
have little communication delays.

We permit the programmer to aid the compiler by giving directives, which are partial assign-
ments of tasks to hosts and execution priorities, and partial assignments of connections to nets and
time slots. Directives are given in the form of program annotations. They are useful for simplifying
the compilation task but also if external considerations need to be taken into account; for example,
a high-security task may have to be assigned to a particular host.

9 Related work

Giotto is inspired by the time-triggered architecture (TTA) [Kop97] on one hand, and by syn-
chronous programming languages [Hal93, Ber00] on the other hand.

The time-triggered, rather than event-triggered, paradigm to meet hard real-time constraints
in safety-critical distributed settings is realized in the TTA. Also the concept of mode and mode
switching is addressed there. However, while TTA encompasses a hardware architecture and a
communication protocol, Giotto provides a hardware-independent and protocol-independent ab-
stract layer for programming hard real-time constraints using time-triggered task invocation and
mode switching. While Giotto can be implemented on any platform that provides suÆciently
accurate clock primitives (or supports a clock synchronization algorithm), it is of course most
straight-forward to compile a Giotto program on the TTA.

The goal of Giotto |to provide a platform-independent programming abstraction for real-time
systems| is shared also by synchronous programming languages. There are other similarities,
such as the concept of multiform time and the assumption that value passing is instantaneous.
The spirit of Giotto, however, is fundamentally di�erent from the spirit of synchronous languages
in at least two respects. First, while synchronous languages are designed around zero-delay value
propagation, Giotto is based on unit-delay value propagation, because in Giotto, computation
does take time. This decision shifts the focus in essential ways; for example, for analysis and
compilation, the burden for the well-de�nedness of values is shifted from �xed-point considerations
to constraints about platform resources and performance (without platform constraints, in Giotto
all values are trivially well-de�ned). Second, Giotto is built around the concept of mode and
mode switch, which is fundamental for handling multi-modal control, fault tolerance, uncertain
environments, and resource sharing. The mode concept is not a primitive of synchronous languages:
while synchronous programs result from the concurrent composition of sequential (instantaneous)
functions, Giotto programs result from the sequential composition (namely, mode switching) of
concurrent (non-instantaneous) tasks. In hierarchical Giotto, a task itself can be implemented by

16

a Giotto program, which leads to the arbitrary nesting of concurrent and sequential composition.
For ongoing work on Giotto, see www.eecs.berkeley.edu/~fresco/giotto.

Acknowledgments. We thank Rupak Majumdar for implementing a prototype Giotto compiler
for Lego Mindstorms robots. We thank Dmitry Derevyanko and Winthrop Williams for building
our Intel x86 robots. We thank Edward Lee and Xiaojun Liu for inspiring hierarchical Giotto and
for help with a Ptolemy II [DGH+99] implementation of Giotto.

17

References

[Bau99] D. Baum. Dave Baum's De�nitive Guide to Lego Mindstorms. A Press, 1999.

[Ber00] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors,
Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[BGP00] J. Berwanger, R. Grie�bach, and M. Peller. Byte
ight: A new high performance
data bus system for safety-related applications. Automotive Electronics (Sonderaus-
gabe von ATZ und MTZ), pages 60{67, January 2000. In German. In English at
www.byteflight.com.

[Col99] R.P.G. Collinson. Fly-by-wire
ight control. Computing & Control Engineering,
10(4):141{152, August 1999.

[DGH+99] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Muliadi,
S. Neuendor�er, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Ptolemy II: Heteroge-
neous Concurrent Modeling and Design in Java. Technical Report UCB/ERL M99/44,
University of California, Berkeley, July 1999.

[FMD+00a] Thomas F�uhrer, Dr. Bernd M�uller, Werner Dieterle, Florian Hartwich, and Robert
Hugel (Robert Bosch). CAN network with time-triggered communication. In Proceed-
ings of the 7th International CAN Conference 2000, 2000.

[FMD+00b] Thomas F�uhrer, Dr. Bernd M�uller, Werner Dieterle, Florian Hartwich, and Robert
Hugel (Robert Bosch). Time-triggered communication on CAN (time-triggered CAN
| TTCAN). In Proceedings of the 7th International CAN Conference 2000, 2000.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1993.

[Int93] International Organization for Standardization. Road Vehicles | Interchange of Dig-
ital Information | Controller Area Network (CAN) for High-speed Communication
(ISO 11898), 1993.

[Kle93] M. Klein et al. A Practitioner's Handbook for Real-time Analysis: Guide to Rate
Monotonic Analysis for Real-time Systems. Kluwer, 1993.

[Kop97] H. Kopetz. Real-time Systems : Design Principles for Distributed Embedded Applica-
tions. Kluwer, 1997.

[LRR92] D. Langer, J. Rauch, and M. R�o�ler. Real-time Systems: Engineering and Applications,
chapter 14, pages 369{395. Kluwer, 1992.

18

