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Abstract

Many microprocessor instruction sets include instructions for
accelerating multimedia applications such as DVD playback,
speech recognition and 3D graphics. Despite general agree-
ment on the need to support this emerging workload, there are
considerable differences between the instruction sets that have
been designed to do so. In this paper we study the performance
of five instruction sets on kernels extracted from a broad mul-
timedia workload. Fach kernel was recoded in the assembly
language of the five multimedia extensions. We compare the
performance of each extension against other architectures as
well as to the original compiled C performance. From our
analysis we determine how well multimedia workloads map
to current architectures, what was useful and what was not.
We also propose two enhancements to current architectures:
strided memory operations, and superwide registers.

1 Introduction

Specialized instructions have been introduced by microproces-
sor vendors in order to support the specialized computational
demands of multimedia applications. The mismatch between
wide data paths and the relatively short data types found
in multimedia applications has lead the industry to embrace
SIMD (single instruction, multiple data) style processing. Un-
like traditional forms of SIMD computing in which multiple
individual processors execute the same instruction, multime-
dia instructions are executed by a single processor, and pack
multiple short data elements into a single wide (64 or 128-
bit) register, with all of the subelements being operated on in
parallel.

The goal of this paper is to quantify how architectural dif-
ferences between multimedia instruction sets translate into
differences in performance. Prior studies have primarily fo-
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cused on a single instruction set in isolation and have mea-
sured the performance on sets of kernels taken from ven-
dor provided libraries [Nguy99], [Bhar9§], [Allen99], [Chen96],
[Rice96], [Naka96], [Rang99]. Our contribution is unique as
we do not focus exclusively on a single architecture, and we
study the performance of kernels derived from a real measured
workload rather than those that have been established a pri-
ori. Our results are obtained from actual hardware measure-
ments rather than through simulation, instilling confidence in
our results.

Section 2 summarizes the multimedia workload we stud-
ied, and details the sixteen computationally important kernels
which we extracted from it. Our methodology for recoding the
kernels with multimedia instructions and their measurement
is described in Section 3. An overview of the five instructions
sets, and their implementations, is given in Section 4.

Our analysis is divided into two parts. Section 5 reflects
our experience in coding the kernels, and gives insight into the
useful and less than useful features of the multimedia instruc-
tion sets studied. In Section 6 we compare the performance
of the five instruction sets both against one another, as well
as their relative improvement over compiled (optimized) C
code. Finally, in Section 7 we propose two new directions for
multimedia architectures on general purpose microprocessors:
strided memory operations and superwide registers.

2 Workload

The lack of a standardized multimedia benchmark has meant
that workload selection is the most difficult aspect of any
study of multimedia. It was for this reason that we developed
the Berkeley multimedia workload [Sling00a]. In selecting the
component applications we strove to cover as many types
of media processing as possible: image compression (DjVu,
JPEG), 3D graphics (Mesa, POVray), document rendering
(Ghostscript), audio synthesis (Timidity), audio compression
(ADPCM, LAME, mpg123), video compression (MPEG-2 at
DVD and HDTV resolutions), speech synthesis (Rsynth),
speech compression (GSM), speech recognition (Rasta) and
video game (Doom) applications. Open source software was
used both for its portability (allowing for cross platform com-



parisons) and the fact that we could analyze the source code
directly.

In order to evaluate the various multimedia instruction
sets, we hand coded kernels selected from the elements of
the Berkeley multimedia workload. Those kernels were cho-
sen based on their computational significance and their suit-
ability for SIMD optimization. Table 1 lists the kernel codes
examined. Both Mesa kernels appear to take up a relatively
small amount of application CPU time, as software render-
ing (computing all stages of a rendering pipeline) was used
in the portable version of these applications. It was for this
reason that rasterization kernels were not included in the ker-
nels studied due to the ubiquity of 3D accelerator cards which
offload this from the CPU, and will continue to do so in the
foreseeable future. Although we expect that when enough
CPU cycles become available, much of the 3D rendering work-
load will be moved back onto the CPU and done in software
(for cost savings), the current trend is moving in the opposite
direction. First generation 3D accelerator cards took care of
the rasterization stage, but not 3D geometry computations.
Current 3D accelerator cards have also taken on the burden
of geometry computations, indicating that the growth in com-
plexity of 3D environments is outpacing that of CPU perfor-
mance, despite the best efforts of multimedia extensions.

3 Methodology

3.1 Berkeley Multimedia Kernel Library

Our goal is to measure the performance of existing multimedia
instruction sets on our set of important multimedia kernels.
Our first step was to we distill from our Berkeley multimedia
workload [Sling00a] a set of computationally important ker-
nel functions, from which we formed the Berkeley multimedia
kernel library (BMKL). All of the parent applications in the
Berkeley multimedia workload were modified to make calls to
BMKL rather than internal functions. From a performance
standpoint, no piece of code can be realistically extracted and
studied in isolation. By measuring a piece of code from within
a real system we can realistically see how the shared resources
of a computer system, such as CPU, caches, TLB, memory,
and registers, affect the code and are affected by it.

Encapsulating the kernels within a library with a well de-
fined interface allowed for: 1) low overhead measurement code
to be placed around library functions in order to make mea-
surements as non-invasive as possible, 2) different versions of
the library to be quickly substituted in order to aid testing,
3) the addition of new architectures to our study by starting
with a copy of the C reference library and then implementing
and debugging replacement SIMD assembly functions one at
a time.

3.2 Coding Process

As with DSPs, the most efficient way to program with mul-
timedia extensions is to have an expert programmer tune
software using assembly language [Kuro98]. Although this

is more tedious and error prone than other methods such as
hand coded standard shared libraries or automatic code gen-
eration by a compiler, it is a method that is available on every
platform, and allows for great flexibility and precision when
coding. We chose to code each kernel in assembly language
ourselves rather than measure vendor supplied optimized li-
braries in order to prevent differences in programmer ability
and time spent coding between the vendors’ from potentially
skewing our comparison.

All of the assembly codes in our study were written by the
same programmer (Slingerland) with an approximately equal
amount of time spent on each platform. Programming tools
for cycle-accurate instruction scheduling through simulation
were not used in order to equalize differences between the
tools available on each platform. Instructions were scheduled
sanely by keeping data consumption as far from data use as
possible, unrolling loops when of performance benefit, and
manually scheduling instructions so as to take advantage of
multiple functional units.

For reasons of practicability, we limited our optimizations
to the kernel level; we did not rewrite entire applications.
This had ramifications for data alignment and data structure
layout on some architectures. In some cases it was not prac-
tical to code a SIMD version of a kernel if an instruction set
lacked the requisite functionality. For example, Sun’s VIS
and DEC’s MVI do not support partitioned floating point, so
floating point kernels were not recoded for these platforms.
DEC’s MVI also does not contain any data communication
(e.g. permute, mix, merge) or partitioned integer multiply
instructions. If there was no compelling opportunity for per-
formance gain, kernels were not recoded from C. The C ver-
sion was considered to be a particular platform’s “solution”
to a kernel when the needed SIMD operations were not, pro-
vided. It might be supposed that hand coding would be supe-
rior to compiler generated code anyway, even without SIMD
instructions. Although this may have been true at one time
when instruction set architectures were designed with assem-
bly language programmers in mind, modern instruction sets
are targeted at compilers [Lawl92], [Patt96].

3.3 Measurement

Performance Monitoring Counters All of the micro-
processors studied include performance monitoring counters
to allow for interesting architectural events to be counted in
real time during program execution. Although performance
counters were sometimes used to guide our optimizations,
their primary purpose was to be nearly cycle-accurate timers
with which to measure the very short execution times of the
kernels in the BMKL.

C Compilers and Optimization Flags The most ar-
chitecturally tuned compiler on each architecture was used to
compile the C reference version of the Berkeley Multimedia
Kernel library. The optimization flags used were those which
give the best general speedup and highest level of optimization
without resorting to tuning the compiler flags to a particu-



Kernel Name Source Data Sat Native Src | Satic | %Static | % CPU

Application Type Arith Width | Lines Instr Instr Cycles
Add Block MPEG-2 Decode 8-bit (U) Vv 64-bits 46 191 0.1% 13.7%
Block Match MPEG-2 Encode 8-bit (U) 128-bits 52 294 0.4% 59.8%
Clip Test and Project Mesa* FP limited 95 447 0.1% 0.8%
Color Space Conversion JPEG Encode 8-bit (U) limited 22 78 0.1% 9.8%
DCT MPEG-2 Encode 16-bit (S) 128-bits 14 116 0.1% 12.3%
FFT LAME* FP limited 208 981 4.4% 14.5%
Inverse DCT MPEG-2 Decode | 16-bit (S) v 128-bits 75 649 0.3% 29.7%
Max Value LAME* | 32-bit (S) unlimited 8 39 0.2% 12.0%
Mix Timidity | 16-bit (S) V4 unlimited 143 829 1.0% 35.7%
Quantize LAME* FP unlimited 55 312 1.4% 15.3%
Short Term Analysis Filter GSM Encode | 16-bit (S) V4 128-bits 15 79 0.1% 20.2%
Short Term Synthesis Filter GSM Decode | 16-bit (S) v 128-bits 15 114 0.2% 72.7%
Subsample Horizontal MPEG-2 Encode 8-bit (U) V4 88-bits 35 244 0.3% 2.6%
Subsample Vertical MPEG-2 Encode 8-bit (U) v unlimited 76 478 0.6% 2.1%
Synthesis Filtering mpgl23* FP V4 512-bits 67 348 0.4% 39.6%
Transform and Normalize Mesa* FP limited 51 354 0.1% 0.7%

Table 1: Multimedia Kernels Studied - from left to right, the colums list 1) primary data type specified as N-bit
({Unsigned,Signed}) integer or floating point (FP), 2) if saturating arithmetic is used, 3) native width; the longest width
which does not load /store/compute excess unused elements, 4) static C source line count (for those lines which are executed),
5) percentage of total static instructions, 6) percentage of total CPU time spent in the kernel. The later three statistics are
machine specific and are for the original C code on a Compaq DS20 (dual 500 MHz Alpha 21264, Tru64 Unix v5.0 Rev. 910)

machine, compiled with GCC v2.8.1 (*) or DEC C v5.6-075.

lar kernel. The specific compiler and associated optimization
flags used on each platform are listed given in the Appendix.

4 Instruction Sets

In this paper we study five architectures with different mul-
timedia instruction sets (Table 2 lists the parameters for the
exact parts we used). Most of the instruction sets (AMD’S
3DNow!, DEC’s MVI, Intel’s MMX, Sun’s VIS) use 64-bit
wide registers, while Motorola’s AltiVec and Intel’s SSE are
128-bits wide. The size of the register file available on each
architecture varied widely, ranging from 8 64-bit registers on
the x86 based AMD Athlon and Intel Pentium III to 32 128-
bit wide registers with Motorola’s AltiVec extension.

All of the multimedia extensions support integer opera-
tions, although the types and widths of available operations
vary greatly. The earliest multimedia instruction sets (e.g.
Sun’s VIS and DEC’s MVI) had design goals limited by the
immaturity of their target workload and unproven benefit to
performance. Because of this, any approach which greatly
modified the overall architecture or significantly affected die
size was out of the question. Leveraging as much function-
ality as possible from existing chip architectures was a high
priority. Thus, the Sun and DEC extensions do not imple-
ment partitioned floating point instructions. Witness also the
difference between Intel’s first multimedia extension, MMX
(1997), which had as one of its primary design goals to not
require any new operating system support, and Intel’s SSE
(1999) which added new operating system maintained state
(8 128-bit wide registers) for the first time since the introduc-

tion of the Intel386 instruction set (1985).

The processors studied vary in terms of instruction latency
as well as the throughput per cycle. Processor clock rates
were all 500 MHz, with the exception of the Sun UltraSPARC
ITi, for which only a 360 MHz system was available. Al-
though multimedia extensions primarily focus on extracting
data level parallelism, most modern microprocessors are also
superscalar, and thereby allow for multiple multimedia in-
structions to be issued every cycle. All of the architectures
we looked at are fully pipelined, so barring any data depen-
dencies, one new SIMD instruction can begin per functional
unit each clock cycle. Typically, there are separate functional
units for SIMD integer and SIMD floating point processing, al-
though on the x86 architectures they are combined. [Sling00c]
surveys existing multimedia instruction sets in more detail.

Sun Sun’s UltraSPARC IIi processor incorporates the
VIS multimedia extension, which implements a set of SIMD
integer instructions that share the existing UltraSPARC float-
ing point register file. Partitioned multiplication is done
through 8-bit multiplication primitive instructions. A graph-
ics status register (GSR) is used to support data alignment
and scaling for pack operations.

Intel Intel’s Pentium III processor includes their original
SIMD integer MMX extension, as well as the newer SIMD
floating point SSE instruction set. MMX is a 64-bit wide
SIMD integer extension, which is mapped onto the existing
x87 floating point architecture and registers and introduces
no new architectural state (registers or exceptions). SSE is a



AMD Athlon DEC Alpha 21264 | Intel Pentium III Motorola G4 Sun UltraSPARC I1i
Clock [Current] (MHz) 500 [1000] 500 [667] 500 [1000] 500 [500] 360 [480]
SIMD Extension(s) MMX/3DNow!+ MVI MMX/SSE AltiVec VIS
SIMD Instructions 57/24 13 57/70 162 121
First Shipped June 1999 February 1998 February 1999 August 1999 November 1998
Transistors (210°) 22.0 15.2 9.5 6.5 5.8
Process (um) [Die Size (mm?)] 0.25 [184.0] 0.25 [225.0] 0.20 [104.6] 0.20 [83.0] 0.25 [147.5]
L1 $I Cache, $D Cache (Kbytes) 64, 64 64, 64 16, 16 32, 32 32, 64
L2 Cache (Mbytes) 0.5 4 0.5 1 2
Register File (# x width) FP(8x64b)/FP(8x64b) Int (31x64b) FP(8x64b)/8x128b 32x128b FP(32x64b)
Reorder Buffer Entries 72 35 40 6 12
Int, FP Multimedia Units 2 (combined) 2,0 2 (combined) 3,1 2,0
Int Add Latency 2 [64b/cycle] - 1 [64b/cycle] 1 [128b/cycle] 1 [64b/cycle]
Int Multiply Latency 3 [64b/cycle] - 3 [64b/cycle] 3 [128b/cycle] 3 [64b/cycle]
FP Add Latency 4 [64b/cycle] - 4 [64b/cycle] 4 [128b/cycle] -
FP Multiply Latency 4 [64b/cycle] - 5 [64b/cycle] 4 [128b/cycle] -
FP ~1/sqrt Latency 3 [32b/cycle] - 2 [64b/cycle] 4 [128b/cycle] -

Table 2: Microprocessors Studied - All parameters are for the actual chips used in this study. Clock lists the speed
for the specific part studied as well as the current (December 2000) maximum shipping clock speed. A SIMD register files
may be shared with existing integer (Int) or floating point (FP) registers, or be separate. Note that some of the processors
implement several multimedia extensions (e.g. Pentium IIT has MMX and SSE) - the corresponding parameters for each are
separated with “/”. A dash (-) indicates that a particular operation is not available on a given architecture, and so no latency
and throughput numbers are given. DEC’s MVI extension (on the 21264) does not include any of the listed operations, but
all MVT instructions have a latency of 3 cycles [64b/cycle].[Burd] [Noer] [AMD99] [AMDO00] [AMDWP] [Carl97] [Comp00]
[Intel97] [Intel99a] [Kesh99] [Kohn95] [Moto00] [Norm98] [Sun97]

follow on to MMX which is primarily a SIMD floating point
extension but also incorporates feedback on MMX from soft-
ware vendors in the form of new integer instructions. Unlike
MMX, the floating point side of SSE does add new architec-
tural state to the Intel architecture with the addition of an 8 x
128-bit register file and exceptions to support IEEE compliant
floating point operations. Although the SSE instruction set
architecture and register file are defined to be 128-bits wide,
the Pentium-III SSE execution units are actually 64-bits (two
single precision floating point elements) wide in hardware.
The instruction decoder translates 4-wide (128-bit) SSE in-
structions into pairs of 2-wide (64-bit) internal micro-ops.

AMD The AMD Athlon processor implements MMX
(which was licensed from Intel), in addition to AMD’s own
3DNow! extension which utilizes the same x87 floating point
registers and basic instruction formats as MMX, but adds
a partitioned single precision floating point data type. The
Athlon processor actually extends 3DNow! with Enhanced
3DNow! that adds floating point and integer operations to
make 3DNow! functionally equivalent to Intel’s SSE exten-
sion.

DEC The DEC (now Compagq, but we will refer to it as
DEC for historical consistency) Alpha 21264A processor in-
cludes the SIMD integer Motion Video Instructions (MVI)
multimedia extension. It is the smallest of the multimedia
instruction sets, weighing in with only 13 instructions. MVI
shares the existing Alpha 32-register integer register file. No-

tably, no SIMD saturating addition/subtraction, multiplica-
tion, or shift instructions are included.

Motorola Motorola’s MPC7400 (also known as the G4)
processor utilizes their 128-bit wide SIMD AltiVec extension
which supports a wide variety of integer data types, as well
as partitioned single precision floating point. A dedicated 32
x 128-bit register file is implemented, along with four non-
identical parallel, pipelined vector execution units. Hard-
ware assisted software prefetching is implemented, where by
a prefetch stream is set up by software, and fetched into the
cache independently by hardware.

5 Analysis

In the next section we use our experience coding each of the
sixteen kernels with five different multimedia extensions to
determine: 1) existing architectural features that are useful,
2) features that have been implemented, but don’t appear to
be useful, and 3) significant bottlenecks in current multimedia
architectures. Illustrating our discussion are code fragments
both from the original C source code of each kernel algorithm,
as well as the different SIMD implementations. The code frag-
ments consist of a few of the key central lines of code from a
given kernel. This gives an idea about the types of operations
and data types used. The data types of all of the variables
in our sample C code are specified in a platform independent
way such that the prefix indicates the type: INT: signed inte-
ger, UINT: unsigned integer, FP: floating point, followed by




N, the number of bits. The complete original C source code
for each kernel can be found in Appendix B. Source code for
the SIMD implementations of the BMKL are available on the
web at hitp://www.cs.berkeley.edu/ " slingn /research/.

5.1 Register File and Data Path

Multimedia instruction sets can be broadly categorized ac-
cording to the location and geometry of the register file upon
which SIMD instructions operate. Alternatives include the
reuse of the existing integer or floating point register files, or
implementing an entirely separate one. The type of register
file affects the width and therefore the number of packed ele-
ments that can be operated on simultaneously (vector length).

Integer Data Path Implementing multimedia instruc-
tions on the integer data path has the advantage that the
functional units for shift and logical operations need not be
replicated. Partitioned addition and subtraction are easily
created by blocking the appropriate carry bits. Modifications
to the integer data path to accommodate multimedia instruc-
tions can potentially adversely affect the critical path of the
integer data-path pipeline [Kuro98]. On the x86 (AMD, In-
tel) and PowerPC (Motorola) architectures the integer data
path is 32-bits wide, making a shared integer data path ap-
proach less compelling due to the limited amount of data level
parallelism possible.

Floating Point Data Path The reuse of floating point
rather than integer registers has the advantage of not being
shared with pointers and loop and other control flow variables.
In addition, multimedia and floating point instructions are not
typically used simultaneously [Kuro98]. All of the architec-
tures examined have floating point data paths which support
at least double-precision (64-bit wide) operations, which for
many architectures is wider than the integer data path.

Separate Data Path A separate data path has the ad-
vantage of simplifying pipeline control and increasing the
overall number of registers. Disadvantages include the need
for saving and restoring the new registers on context switches,
as well as the relative difficulty and high overhead of moving
data between register files.

SIMD Register Width Perhaps one of the most crit-
ical factors in SIMD instruction set design is deciding how
long vectors will be. If an existing data path is to be reused,
there is little choice, but when a new data path is to be de-
signed it makes sense to ask how wide is wide enough. Too
short of a vector length limits the ability to exploit data par-
allelism, while an excessively long vector length can degrade
performance and increase the amount of clean up code over-
head. The “native width” column of Table 1 specifies how
each of the multimedia kernels fits into one of the following
three categories:

1. unlimited width - Kernels that operate on data elements
which are truly independent and are naturally arranged

so as to be amenable to SIMD processing. The inner
loops of these kernels can be strip mined at almost any
width, with the increase in performance of a longer vec-
tor being directly proportional to the increase in vector
length.

2. limited width - Although data elements are independent,
there is overhead involved in rearranging input data so
that it may be operated on in a SIMD manner with longer
vectors. Thus, the performance advantage of longer vec-
tors is limited by the overhead (which typically increases
with vector length) required to employ them.

3. exact width - A kernel which has a precise natural width
which can be considered to be the right match for the
kernel. This width is the longest width which does not
load, store, or compute excess unused elements.

Long vectors can be a problem when their length exceeds the
natural width of an algorithm. A good example of this prob-
lem is the add block kernel, which operates on MPEG sub-
blocks (8 x 8 arrays of pixels). One input array (bp) consists
of signed 16-bit integer values and the other (rfp) of unsigned
8-bit integer (Algorithm 1).

Algorithm 1 Add Block - computed for each pixel in a
subblock

INT16 *bp; UINT8 *rfp; INT32 tmp;
tmp = *bp++ + *rfp; /* Add */
*rfp = tmp>255 ? 255 : (tmp<0 ? O :

tmp); /* Clip */

During the block reconstruction phase of motion compen-
sation in the decoder, a block of pixels is reconstituted by
summing the pixels in different subblocks. Consider the Al-
tiVec implementation of the add block kernel (Algorithm 2).
Motorola’s AltiVec is the only SIMD integer extension exam-
ined which is 128-bits wide; Intel’s SSE is only 128-bits wide
for packed floating point operations. Each time a row of the
8x8 rfp subblock is loaded on a 128-bit wide architecture, one
half of the vector is useless data which will be thrown away
when the rfp values are expanded to 16-bits.

Algorithm 2 AltiVec Add Block Fragment

;; unaligned vector load

lvx v3, 0, r3 ; v3: vector MSQ for initial bp0..bp7 vector
lvx v4, ri1, r3 ; vd: vector LSQ

;3 unaligned vector load

lvx v0, 0, r4 ; vO: vector MSQ

lvx vl, ri1, ré ; vl: vector LSQ

lvsl v2, 0, r4 ; v2: vector alignment mask for vperm

vXor v10, v10, v10 ; vio: O

vperm v0, v0, vi, v2 ;5 vO: rfp:1011121314151617IXIXIXIXIXIXIXIXI]
vperm v3, v3, v4, v5 ; v3: | bpO | bpl | bp2 | bp3 | bp4 | bps |
bp6 | bp7 |

addi r3, r3, 16 ; r3: bp += 8 (pointer to INT16)

vmrghb v1, v10, vO ; vO: | rfpOl rfpl| rfp2| rfp3| rfp4| rfp5l
rfp6| rfp7|

vaddshs vi1, v3, vl ; vli: bp + rfp [0..7]

vpkshus v1, vi, vl ; vi: rfp:|0111213141516171011121314151617]
stvewx vi, 0, r4 ; store rfp [0..3]

stvewx vl, ri12, ré ; store rfp [4..7]

add r4d, r4, r5 ; rd: rfp += (iincr + 8) (pointer to UINTS8)
vmov v3, v4 ; move current LSQ to next MSQ

As we saw in Table 1, most multimedia kernels are either
unlimited/limited or have most often have an exact required



width of 128-bits. The remaining exact native widths (64-,
88- and 512-bits) came up only once each. Thus, we consider
a total vector length of 128-bits to be best.

Number of Registers Multimedia applications (and
their kernels) can generally take advantage of quite large reg-
ister files. Not coincidentally, MicroUnity’s dedicated media
processor chip has a 64 x 64-bit register file, which can also be
accessed as 128 x 32-bits [Hans96], while the Philips Trimedia
TM-1 has a 128 x 32-bit register file [Rath96].

As an example of where large numbers of registers are useful
in our workload, consider the DCT and IDCT kernels (frag-
ments of the original codes are given in Algorithms 3 and 4).
The discrete cosine transform (DCT) is the algorithmic cen-
terpiece to many lossy image compression methods. It is sim-
ilar to the discrete Fourier transform (DFT) in that it maps
values from the time domain to the frequency domain, produc-
ing an array of coefficients representing frequencies [Kien99|.
The inverse DCT maps in the opposite direction, from the
frequency to the time domain.

Algorithm 3 DCT

extern FLOAT64 c[8]1[8]; /* transform coefficients */
INT16 block[81[8]; FLOAT64 sum; FLOAT64 tmp[8][8]1;
for (INT32 i=0; i<8; i++)
for (int j=0; j<8; j++) {
sum = 0.0;
for (int k=0; k<8; k++)
sum += c[jI[k] * block[i][k];
tmp[i] [j]1 = sum;

Algorithm 4 Inverse DCT - only row computation shown

INT32 x0,x1,x2,x3,x4,x5,x6,x7,x8
x7 = x8 + x3;

x8 -= x3;

x3 = x0 + x2;

x0 -= x2;

x2 = (181%(x4+x5)+128)>>8;
x4 = (181%(x4-x5)+128)>>8;

A 2D DCT or IDCT is efficiently computed as 1D trans-
forms on each row followed by 1D transforms on each column
and then scaling appropriately. A SIMD approach requires
that multiple data elements from several iterations be oper-
ated on in parallel for the greatest efficiency. This is straight-
forward for the 1D column DCT, since the corresponding el-
ements of each loop iteration are adjacent in memory (as-
suming a row-major storage format). A 1D row DCT is more
problematic since the corresponding elements of adjacent rows
are not. A matrix transposition (making corresponding "row"
elements adjacent in memory), then performing the desired
computation, and transposing the matrix back again (to put
the resulting data back in the correct configuration) can be an
effective way to compute the 1D row step of a 2D transform.
However, this was only of performance benefit for those archi-
tectures whose register files were able to hold the entire 16-bit
8x8 matrix at once. Since the DCT and IDCT both operate
on 8x8 2D matrices of 16-bit signed values, they require at
least 16 64-bit registers, or 8 128-bit registers.

5.2 Data Types

The data types supported by the different multimedia instruc-
tion sets include {signed, unsigned}{8, 16, 32, 64} bit values,
as well as single precision floating point. Most of the instruc-
tion sets do not support all of these types, and usually only
a subset of operations on each. In order to determine which
data types and operations are useful, we broke down the dy-
namic SIMD instruction counts on each architecture in two
ways: 1) data type distribution per instruction class (e.g. add,
multiply) and 2) data type distribution per kernel. Tables of
these categorizations are available in the Appendix.

In general, the video and imaging kernels (add block, block
match, color space, DCT, IDCT, subsample horizontal, sub-
sample vertical) utilize 8 and 16-bit operations. Audio ker-
nels (FFT, max val, mix stereo, quantize, short term analysis
filtering, short term synthesis filtering, synthesis filtering) ei-
ther use 16-bit values or floating point, while the 3D kernels
(clip test, transform) are limited almost exclusively to floating
point.

Integer Although image and video data is typically
stored as packed unsigned 8-bit values, intermediate process-
ing usually requires precision greater than 8-bits. Other than
for width promotion, most 8-bit functionality is wasted on
our set of multimedia kernels. In general, storage data types
(how data is stored in memory or on disk), although narrow
and therefore potentially offering the greatest degrees of par-
allelism, are simply too narrow for intermediate computations
to occur without overflow. A few operations inherently pro-
duce results that can not overflow the input data type. For
example, although an N-bit average operation internally uti-
lizes N +1 bits of precision to sum its two operands, the result
is rounded and shifted back to N-bits before being stored to a
register. Other operations such as the sum of absolute differ-
ences (SAD) produce a scalar result which fits in a destination
register of the same width as the packed operands or a scalar
register.

The signed 16-bit data type is the most heavily used be-
cause it is both the native data type for audio and speech
data, as well as the typical intermediate data type for video
and imaging. On the wide end of the spectrum, 32-bit and
longer data types are typically only used for accumulation
and simple data communication operations such as alignment.
Operations tend to be limited to addition and subtraction
(for accumulation), width promotion and demotion (for con-
verting to a narrower output data type) and shifts (for data
alignment).

Floating Point Single precision floating point plays an
important role in many of the multimedia kernels such as the
geometry stage of 3D rendering (the clipping and transform
kernels) and the FFT, where the wide dynamic range of float-
ing point is required. Only Intel’s recently announced SSE2
extension will offer a packed double precision data type, to
be targeted at applications other than multimedia such as
scientific and engineering workloads, as well as advanced 3D
geometry such as is used in raytracing [Intel00a], [Intel00b].



5.3 Operations

One of our primary goals is to separate useful SIMD opera-
tions from those that are not. The large differences in current
multimedia instruction sets for general purpose processors are
fertile ground for making such a determination because many
different design choices have been made. In the Appendix we
provide a table of SIMD instruction set functionality broken
down per kernel, the important points of which we discuss
here. Our analysis assumes that SIMD extensions are tar-
geted solely at the domain of multimedia applications. In
some cases, the targeted applications during the design of a
multimedia extension included DSP applications and others
which are not reflected in the Berkeley multimedia workload.

5.3.1 Arithmetic

Modulo/Saturation Modulo arithmetic “wraps around”
to the next representable value when overflow occurs, while
saturating arithmetic clamps the output value to the highest
or lowest representable value for positive and negative over-
flow respectively. Saturating arithmetic is useful both because
of its desirable aesthetic result in pixel based computations
(video and imaging) as well as the fact that it allows for over-
flow in multiple packed elements to be dealt with efficiently.
When adding pixels, modulo addition is undesirable since if
overflow occurs a small change in operand values may result in
a glaring visual difference (e.g. adding two white pixels results
in a black pixel). If overflow within packed elements were to
be handled similar to traditional scalar arithmetic, an over-
flowing SIMD operation would have to be repeated and tested
serially to determine which element overflowed. The added
cost of saturating arithmetic is that unlike modulo operations,
for which the same instruction works for both unsigned and
signed (2’s complement) values, saturating arithmetic neces-
sarily requires separate instructions since the values must be
interpreted by the hardware as a particular data type.

Modulo computations are important because they allow for
the results of SIMD optimized codes to be numerically identi-
cal to existing scalar algorithms. This is sometimes an impor-
tant consideration for the sake of compatibility and compa-
rability. The kernels in the BMKL which employ saturating
arithmetic are noted in Table 1. From this it is clear that the
most important types for saturating arithmetic are unsigned
8-bit and signed 16-bit integers. The IDCT kernel clamps to
a signed 9-bit range [-256..4-255], which can be accomplished
through a pair of max/min operations; we discuss these in
more detail later. Saturating 32-bit operations are of little
value since overflow is usually not a concern for such a wide
data type.

Shift SIMD shift operations are extremely important for
supporting fixed point integer arithmetic. A common se-
quence of operations is the multiplication of an N-bit inte-
ger by an M-bit fixed point fractional constant, producing
an (N + M)-bit result, with a binary point at the M*" most
significant bit. At the end of computation, the final result
is rounded by adding the fixed point fraction representing %,

and then shifting the sum right M-bits to eliminate the frac-
tional bits. Shifts are important operations for all data types,
and are critical for fixed point integer arithmetic, as well as
providing an inexpensive way to perform multiplication and
division by powers of two.

Min/Max Min and max output the minimum or maxi-
mum values of the corresponding elements in two partitioned
input registers, respectively. A max instruction is clearly
useful in the maximum value search kernel, which searches
through an array of signed 32-bit integers for the greatest
maximum absolute value in the array. Max and min instruc-
tions have other less obvious uses as well. Signed minimum
and maximum operations are often used with a constant sec-
ond operand to saturate results to arbitrary ranges. The
IDCT kernel clips its output value range to -256...+255 (9-
bit signed integer), which does not correspond to the data
types supported by any of the multimedia extensions. Algo-
rithm 5 demonstrates clamping to arbitrary boundaries for
the Intel implementation of the IDCT.

Algorithm 5 Intel MMX /SSE IDCT

mmO, [CLIP_MIN]
mmO, [CLIP_MAX]
[esi + 0], mmO
mmO, [CLIP_MIN]
mml, mmO
mm2, mmO
mm3, mmO
mm4, mmQ
mm5, mmQ
mm6, mmO
mm7, mmO
mmO, [CLIP_MAX]
mml, mmQO
mm2, mmQ
mm3, mmO
mm4, mmO
mm5, mmQ
mm6, mmO
mm7, mmQ

pmaxsw
pminsw
movq

movq

pmaxsw
pmaxsw
pmaxsw
pmaxsw
pmaxsw
pmaxsw
pmaxsw
movq

pminsw
pminsw
pminsw
pminsw
pminsw
pminsw
pminsw

;; compute first element
53 in order to free mmO
; store x0 [0..3]

; clip to -256

; clip to +255

Although max and min can be synthesized through simpler
operations (operations which are useful in their own right),
the additional execution cost is simply too great to be prac-
tical. Rather than a single independent instruction, three
dependent instructions are required. An arbitrary clamping
operation can also be simulated with packed signed saturat-
ing addition. The representable range of a signed fixed point
number (a bits to the left of the binary point, b bits to the
right) is —2¢ < x < 2% — 27t For example, if we need to limit
a value, X, to the range —j.. + k:

1. (29— 2%) — k — Tpos
2. X+ Tpos— x

3. X —Tpos — X

These three steps limit X to +K. (A = represents satu-
rating overflow, where as a — symbolizes modulo overflow.)
Three more operations are required to limit X to the desired
floor value:

1. —2°4j — They



2. X4+ Tpeyg = X

3. X —Tpey — X

Architecturally, the implementation cost of max and min in-
structions should be low since the necessary comparators must
already exist for saturating arithmetic. The only difference is
that instead of comparing to a constant, a register value is
used instead. An added advantage that we have found is that
in many cases where comparisons are required, max and min
instructions are sufficient.

Comparisons We have found that integer control flow
instructions (e.g. packed comparisons) are seldom needed, ex-
cept on architectures without max/min operations (e.g. Sun’s
VIS). We found one instance where a specialized floating point
comparison was useful. In the project and clip test kernel, 3D
objects are first mapped to 2D space through a matrix mul-
tiplication of 1x4 vectors and 4x4 matrices. Objects are then
clipped to the viewable area to avoid unnecessary rendering.
The code fragment listed in Algorithm 6 is computed for each
vertex in a 3D scene every time a frame is rendered.

Algorithm 6 Clip Test and Project

FLOAT32 ex = vEye[i][0], ey = vEyel[i][1], ez = vEye[i]l[2], ew =
vEye[i] [3];

FLOAT32 cx =m0 * ex + m8 * ez, cy = mb * ey + m9 * ez;

FLOAT32 cz = m10 * ez + ml4 * ew, cw = -ez;

UINT8 mask = O;

vClip[i][0] = cx; vClip[il[1] = cy; vClip[i][2] = cz; vClip[i][3] = cw;
if (cx > cw) mask |= CLIP_RIGHT_BIT;

else if (cx < -cw) mask |= CLIP_LEFT_BIT;

if (cy > cw) mask |= CLIP_TOP_BIT;

else if (cy < -cw) mask |= CLIP_BOTTOM_BIT;

if (cz > cw) mask |= CLIP_FAR_BIT;

else if (cz < -cw) mask |= CLIP_NEAR_BIT;

Motorola’s AltiVec includes a specialized comparison in-
struction, vempbfp, which deals with boundary testing. This
is done by testing all of the clip values in parallel to see if
any clipping is needed, and branching to act as a fast out if
no clipping is necessary. This technique is extremely effective
because no clipping is the common case, with most vertices
within the screen boundaries. An example of this is shown
in the clip test kernel from Mesa’s 3D rendering pipeline (Al-
gorithm 6). For the Mesa “gears” application, the fast out
case held true for 61946 of the 64560 (96.0%) clipping tests
performed in our application run of 30 frames rendered at
1024x768 resolution.

Sum of Absolute Differences A sum of absolute dif-
ferences (SAD) instruction operates on a pair of packed 8-bit
unsigned input registers, summing the absolute differences
between the respective packed elements in two registers and
placing (or accumulating) the scalar sum in another register.
The block match kernel is the only one in which sum of abso-
lute differences (SAD) instructions is used. Algorithm 8 lists
the core lines of the block match kernel utilized by MPEG-2
encoding. Block match sums the absolute differences between
the corresponding pixels of two 16x16 macroblocks. The orig-
inal application code also includes three other variations on

Algorithm 7 Motorola G4 Clip Test and Project

HH ;vi: | ex | cy | cz | cw |
vspltw v2, vi, 3 ;3 v2: | cw | cw | cw | cw |
vempbfp. v3, vi, v2 ; v3: bit mask of clip comparisons

;3 set cr6 to 0x2 if all test values are within boundaries
1i ri2, 0

mcrf crQ, cr6

bc COND_TRUE, 0x2, fast_out

vempgtsw v4, v0, v3 ; v4: > test, - mask if clipping
vempgtsw v5, v3, vO ; vb: < test, + mask if clipping
vand vé4, vé4, v27

vand v5, vb, v28

vor v4, v4, vb ; v4: | maskQO| maskl| mask2| mask3|
vsldoi vh, v4, v4, 8

vor v4, v4, vb

vsldoi vh, v4, v4, 4

vor v4, v4, vb ; v4: | mask | mask | mask | mask |
vspltb v4, v4, 15 5 v4: | M| M|...| M| M| [0..15]
stvebx v4, 0, rb ; store mask to mask_temp

1bz ri12, 0(xb) ; r12: mask

1bz ri5, 0(x7) ; rls: clipMask[i]

or r15, r15, ri12

stb rl5, 0(x7) ; r1b: clipMask[i] |= mask

or r13, r13, r12 ; r13: +tmpOrMask |= mask

fast_out:

addi r7, r7, 1 ; r7: clipMask++ (pointer to UINT8)
and rl4, rl14, r12 ; ri14: +tmpAndMask &= mask

addic. r3, r3, -1 ; n--

bc COND_FALSE, ZERO_RESULT, loop

block match which compute horizontal, vertical or both hor-
izontal and vertical interpolation before calculating the sum
of absolute differences.

Algorithm 8 Block Match

UINT8 blk_1[161[16]; UINT8 blk_2[16]1[16]; INT32 sad=0; INT32 diff;
for(j=0; j<h; j++)
for(i=0; i<16; i++) {
if ((diff = blk_1[jI1[i] - blk_2[j1[i]1)<0)
diff = -diff;
sad+=diff;
}

Although DEC’s MVI extension is quite small (only 13 in-
structions), one of the few operations that DEC did include
was SAD. DEC architects found (in agreement with our ex-
perience) that this operation provides the most performance
benefit of all multimedia extension operations [Rubi96]. In-
tel’s MMX, although a much richer set of instructions, did not
include this operation (it was later included in both AMD’s
3DNow!+ and Intel’s SSE extensions to MMX). Sun’s VIS
also includes a sum of absolute differences instruction.

The Motorola G4 microprocessor was the only CPU in our
survey which did not include some form of SAD operation,
forcing us to synthesize the SAD operation from other in-
structions (Algorithm 9). Although Intel’s SSE extension
(see Algorithm 10) includes the psadbw instruction, this of-
fers only a one cycle performance advantage when compared
to the AltiVec implementation. In some ways this compari-
son is misleading since Intel’s extension is 64-bits wide, while
Motorola’s is 128-bits; the question of performance should be
absolute, not relative to Intel. In order to estimate the latency
of a hypothetical SAD instruction for a 128-bit extension such
as AltiVec, we examine the latency of this instruction on the
other (64-bit) architectures:



Processor Instruction Latency:Throughput
Intel Pentium III PSADBW 5 cycles : 1 every 2 cycles
AMD Athlon PSADBW 3 cycles : 1 every 1 cycle
Sun UltraSPARC ITi PDIST 3 cycles : 1 every 1 cycle
DEC Alpha 21264 PERR 2 cycles : 1 every 1 cycle

The latency of a 128-bit instruction would be higher than
the 64-bit instructions listed in the table because this in-
struction requires a cascade of adders to sum (reduce) the
differences between the elements. An N-bit SAD instruction
(M = N/8) can be broken down into steps: 1) calculate M
8-bit differences, 2) calculate the absolute value of the dif-
ferences, 3) perform loga M cascaded summations. The archi-
tects of the 64-bit DEC MVI extension comment that a 3-cycle
implementation of PERR would have been easily achievable,
but in the end the architects achieved a more aggressive 2-
cycle instruction [Carl97]. If a SAD operation were to be im-
plemented in Motorola’s AltiVec, we estimate it would have
a latency of 4 cycles. This would certainly be a superior so-
lution compared to the 9 cycle solution shown in Algorithm
9.

Algorithm 9 Motorola G4 Block Match - SAD portion
(starting with vmaxub instruction) takes 9 cycles

55 vl: block #1, line #1, pixels [0..F]
;3 v4: block #1, line #2, pixels [0..F]
;3 v6: block #2, line #1, pixels [0..F]

vavgub vi, vi, v4
vmaxub v7, vl, vé
vminub v8, vl, vé
vsububs v7, v7, v8
vsumé4ubs v31, v7, v31
vsumsws v31, v31, vO

vl: vertically interpolated pO..pF

v7: max [0..F]

v8: min [0..F]

v7: abs_diffs [0..F]

v31: | SAD_O | SAD_1 | SAD_2 | SAD_3 |
v3t: | 0 | 0 | 0 | sAD |

H
H
H
H
H
H

Algorithm 10 Intel Pentium III Block Match - SAD
portion (starting with first psadbw instruction) takes 8 cycles

block #1, line #1, pixels [0..7]

block #1, line #1, pixels [8..F]

block #1, line #2, pixels [0..7]

block #1, line #2, pixels [8..F]

;3 mm2: block #2, line #1, pixels [0..7]

;35 mm6: block #2, line #1, pixels [8..F]

pavgb mml, mm3 ; mml: vertically interpolated pO..p7
pavgb mm5, mm4 mm5: vertically interpolated p8..pF
psadbw mml, mm2 mmli: | O | O | O ISADO| Pixels 0..7
psadbw mm5, mmé mm5: | O | O | O ISAD1| Pixels 8..F
paddd mml, mm5 mmi: | O | O | O | SAD|

53 mml:
53 mmb:
53 mm3:
53 mmé:

H
H
H
H

Average. In addition to compute the sum of absolute dif-
ferences, half-pixel interpolation, for which MPEG-2 encoding
offers three varieties, is also important; vertical interpolation
is shown in Algorithms 9 and 10. Interpolation is done by
averaging a set of pixel values with pixels offset by one hori-
zontally, vertically or both. The original C MPEG-2 code first
performs the interpolation, and then computes the sum of ab-
solute differences on the result. SIMD interpolation can be
performed through 8-bit unsigned average instructions (again
see Algorithms 9 and 10). DEC’s MVTI extension does not in-
clude a packed average instruction, but a similar interpolation
operation can be done by averaging the result of several SAD
operations using scalar integer arithmetic (since the result of
a SAD instruction is a scalar value).

Integer average operations were only used in the block
match kernel. This kernel operates on 8-bit unsigned val-
ues, so this is the only type of “average” instruction that was
useful within our workload.

High Latency Function Approximation. Applica-
tions such as 3D rendering have kernels which use floating
point mathematical functions, such as reciprocal and square-
root, that are very high latency. On some architectures these
scalar functions are computed in software, while others have
hardware instructions. Full IEEE compliant operations re-
turn 24-bits of mantissa. The computation of these functions
is iterative, so the number of bits of precision returned is di-
rectly proportional to an operation’s latency. It is for this
reason that all of the SIMD floating point extensions (AMD’s
3DNow!, Intel’s SSE and Motorola’s AltiVec) include approx-
imation instructions for % and % These are typically im-
plemented as hardware lookup tables, returning k-bits of pre-
cision. In Intel’s SSE, for example, approximate reciprocal
(rcp) and reciprocal square root (rsqrt) return 12-bits of
mantissa. Motorola’s AltiVec also returns 12-bits of precision
for both the reciprocal and reciprocal square root approxima-
tion instructions.

In the transform and normalize kernel, graphics primitives
are transformed to the viewer’s frame of reference through
matrix multiplications. The code shown in Algorithm 11 is
computed for each vertex in a 3D scene.

Algorithm 11 Transform and Normalize

FLOAT64 tx, ty, tz, len, scale;

FLOAT32 ux = ul[i][0], wuy = ul[il[1], wuz = u[i][2];
tx = ux * m[0] + uy * m[1] + uz * m[2];

ty = ux * m[4] + uy * m[5] + uz * m[6];

tz = ux * m[8] + uy * m[9] + uz * m[10];

len = sqrt( tx*tx + tyxty + tz*tz );

scale = (len>1E-30) ? (1.0 / lemn) : 1.0;
v[il[0] = tx * scale; v[il[1] = ty * scale;
v[il[2] = tz * scale;

The transform kernel has at its heart a floating point re-
ciprocal square root operation (%) One unique aspect of
Intel’s SSE instruction set is that not only does it include 22-
bit precise (mantissa) approximations of % and %, but it also
includes full precision (24-bits of mantissa) versions of divi-
sion and +/z. Of course, this added precision comes at a price
- namely much higher latency (their full precision instructions
are not pipelined) than the pipelined 22-bit approximations
derived from processor internal lookup tables. All of the float-
ing point multimedia extension vendors, including Intel, point
out the Newton-Raphson method for improving the accuracy
of approximations through specially derived functions. In the
case of % it is possible to iteratively increase the precision
of an initial approximation through the equation:

1 =20 —(0.5-a-a5 —0.5-20) =0.5-20-(3.0—a-zq) (1)

Employing an approximation instruction in conjunction
with the Newton-Raphson method to achieve full precision
is actually faster than the full precision version of the in-
struction that Intel provides. Compare the code fragments in
Algorithms 12 and 13, which have execution times of 25 vs.



36 cycles. One iteration of the Newton-Raphson method is
enough to improve a 22-bit approximation to the full 24-bit
precision of IEEE single precision.

Algorithm 12 Intel Approximated Square Root - 25

cycles

;o xmm3:  tx"2+ty~2+tz~2 [0..3] (len=sqrt(tx~2+ty~2+tz~2))

; xmm7: 0.5 [0..3]

; xmm5: 3.0 [0..3]

rsqrtps xmm4, xmm3 ; xmm4: rsqrtps(a)

movaps  xmm6, xmm3

mulps xmm6, xmmé ; xmm6: a*rsqrtps(a)

mulps xmm6, xmmé ; xmm6é: axrsqrtps(a)*rsqrtps(a)

mulps xmm4, xmm7 ; xmmé4: O.5*rsqrtps(a)

subps xmm5, xmm6 ; xmmb: 3.0 - a*rsqrtps(a)*rsqrtps(a)
mulps xmm4, xmmb ; xmm4: [1/len1|1/len2|1/len1|1/1lenO|
;3 sqrt(a) = ax(1/sqrt(a))

mulps xmm3, xmmé4 ; xmm3: | len3 | len2 | lenl | lemO

Algorithm 13 Intel Full Precision Square Root - 36
cycles

5 xmm3:
5 xmm3:
sqrtps

tx + ty + tz [0..3] (len=sqrt(tx+ty+tz))
a [0..3]
xmm3, xmm3

; xmm3: sqrt(a)

The added cost of the Newton-Raphson method is of the
additional register space needed to hold intermediate values
and constants. AMD’s 3DNow! extension circumvents this
by including instructions to internally perform the Newton-
Raphson method, rather than having the programmer imple-
ment it (Algorithm 14). The only odd thing about AMD’s
reciprocal square root instructions are that they are actually
scalar; they only produce one result value, based on the lower
packed element.

Algorithm 14 AMD Approximated Square Root - 20

cycles

; mm3:  tx~2+ty~2+tz"2 [0] (len=sqrt(tx~2+ty~2+tz~2))
pfrsqrt mm4, mm7 ; mmd: |~1/len0 |~1/lenO
movq mm5, mmé4

pfmul mm4, mmé4

pfrsqitl mm4, mm7

pfrcpit2 mm4, mmb5 ; mmd: | 1/1len0 | 1/1lenO
pfmul mm7, mmé ;mm7: | lenO0 | 1len0 |

5.3.2 Exceptions

Techniques for handling exceptions that occur during SIMD
processing are very similar to those employed when dealing
with packed overflow. Checking result flags or generating an
exception from a packed operation requires considerable time
to determine which packed element caused the problem. In
most cases where an exception might be raised it is possi-
ble to fill in a value which will give reasonable results for
most applications. This speeds execution because no error
condition checking need be done, and is is similar to satu-
rating integer arithmetic where maximum or minimum result
values are substituted rather than checking for and report-
ing positive or negative overflow. Both AMD’s 3DNow! and
Motorola’s AltiVec extensions do not implement IEEE com-
pliant floating point exceptions. Only Intel’s SSE implements

10

full IEEE compliant SIMD floating point exceptions, and in-
cludes a control/status register (MXCSR) to mask or unmask
packed floating point numerical exceptions.

5.3.3 Floating Point Rounding

Intel’s SSE offers two modes of rounding: IEEE compliant
and another, faster, flush to zero (FTZ) mode. Flush to zero
(FTZ) clamps to a minimum representable result in the event
of underflow (a number too small to be represented in sin-
gle precision floating point). Fully compliant IEEE floating
point supports four rounding modes. Most real time 3D appli-
cations use the FTZ rounding mode since they are not partic-
ularly sensitive to a slight loss in precision [Thak99]. 3DNow!
supports only truncated rounding (round to zero). All of Mo-
torola’s AltiVec floating point arithmetic instructions use the
IEEE default rounding mode of round to nearest. The IEEE
directed rounding modes are not provided.

5.3.4 Type Conversion

Width promotion is the expansion of an N-bit value to some
larger width. For unsigned fixed point numbers this requires
zero extension or filling any additional bits with zeros. Zero
extension is usually not specified as such in a multimedia ar-
chitecture because it overlaps in functionality with data re-
arrangement instructions such as unpack or merge. If packed
values are merged with another register which has been zeroed
prior to merging the result is zero extension. Signed element
unpacking is not as simple, but is rarely supported directly
by hardware; only the AltiVec instruction set includes it. It
can be synthesized with multiplication by one since a multi-
plication yields a result that is the overall width of both its
operands.

Video and imaging algorithms use an 8-bit unsigned data
type. Audio and speech algorithms, on the other hand, typi-
cally employ signed 16-bit values, but because multiplication
by a fractional fixed point constant is a common operation,
these values are often unpacked as a natural consequence of
computation. So, although a signed unpack operation would
likely be faster than multiplication by 1, it is seldom necessary
to resort to this in practice.

All data types that occur in multimedia should be sup-
ported for packing and unpacking even for those widths not
directly supported by arithmetic operations. It should always
be possible to convert to a width that is supported for compu-
tation. Although we do not otherwise examine HP’s MAX-
1/MAX-2 extensions, as no hardware employing them was
available to us at the time of this work, they are good exam-
ples of where not following this guidline can cause problems.
We have noted the importance of the 16-bit data width. HP’s
MAX-1/MAX-2 instruction sets only support operations on
16-bit wide values. Partitioned 8-bit operations were consid-
ered, but rejected due to insufficient precision. Wider packed
data types (e.g. 32-bit) were not included due to insufficient
parallelism. What this approach overlooks is that fact that
even though many intermediate computations require greater
precision than 8-bits, many types of video and imaging data



are stored this way in existing multimedia file formats. Thus,
packing and unpacking to and from 8-bit precision is a very
common operation, which is not supported in hardware, mak-
ing HP’s extensions inefficient at processing this type of data.

5.3.5 Data Rearrangement

SIMD instructions perform the same operation on multiple
data elements. Because all of the data within a register must
be treated identically, the ability to efficiently rearrange data
bytes within and between registers is critical for performance.
We will refer to these types of operations as “data communica-
tion” instructions. Interleave instructions (also referred to as
mizing, unpacking or merging) merge alternate data elements
from the upper or lower half of the elements in each of two
source registers. Align or rotate operations allow for arbitrary
byte-boundary data realignment of the data in two source reg-
isters; essentially a shift operation that is done in multiples
of 8-bits at a time. Both interleave and align type operations
have hard coded data communication patterns. Insert and
extract operations allow for a specific packed element to be
extracted as a scalar or a scalar value to be inserted to a spec-
ified location. Shuffle (also called permute) operations allow
greater flexibility than those operations with fixed communi-
cation patterns, but this added flexibility requires that the
communication pattern be specified either in a third source
register or as an immediate value in part of the instruction
encoding.

The sufficiency of simpler data communication operations
is to some degree dependent on the vector length employed.
For example, 128-bit AltiVec vectors contain up to sixteen el-
ements, while a shorter extension such as Intel’s 64-bit MMX
contain at most eight of the same type of element. This means
that simple data rearrangement operations (e.g. merge) cover
a relatively larger fraction of all possible mappings in the case
of the shorter vector length. [Lee00] presents a novel set of
simple data communication primitives which can perform all
24 permutations of a 2x2 matrix in a single cycle on a pro-
cessor with dual data communication functional units. This
is useful because any larger data communication problem can
be decomposed into 2x2 matrices. Although this approach
might make some very complex data communication patterns
slow to compute, we have found that most multimedia al-
gorithms have patterns which are relatively simple. Because
of this we endorse [Lee00]’s technique for covering the data
communication needs of multimedia applications.

A related class of instructions that the AltiVec extension in-
cluded, that was quite useful, was a set of “splat” instructions,
which place either an immediate scalar or specified element
from a source register into every element of the destination
register. This was very useful when constants were required;
on other architectures it is necessary to statically store these
types of values in memory, and then load them to a register
when required.
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5.3.6 Prefetching

Prefetching is a hardware or software technique which tries to
predict data access needs in advance, overlapping memory ac-
cess with useful computation. Although we will not otherwise
examine the performance implications of prefetch instructions
(which would be a useful extension to this study), we men-
tion them briefly because they are often a part of multimedia
instruction sets due to the highly predictable nature of data
accesses in multimedia applications.

Software prefetch instructions are used to fetch data into
the cache from main memory without blocking true load/store
instruction accesses. Determining the ideal location for
prefetch instructions in a piece of code depends on many
architectural parameters. Unfortunately, these include such
things as the number of CPU clocks for memory latency and
the number of CPU clocks to transfer a cache line, which are
both highly machine dependent and not readily available to
the programmer.

Rather than issuing an explicit prefetch instruction for each
desired data prefetch, Motorola’s AltiVec uses a single data
stream touch instruction (dst) which indicates the memory
sequence or pattern that is likely to be accessed. We will refer
to this hybrid of hardware and software prefetching as soft-
ware directed prefetching to indicate that a separate prefetch
instruction need not be issued for each data element. A data
stream is defined by a sequence starting address, size of each
unit (up to 32 128-bit blocks), total number of units (up to
256), bytes between units (-32768..4+32767) and a 2-bit ID
tag for the stream. Hardware optimizes the number of cache
blocks to prefetch so it is not necessary for the programmer to
know the parameters of the cache system. A stream is fetched
either until all of the requested blocks have been brought into
the cache or another dst instruction is issued with the same
tag ID. The stream construct eliminates the instruction issue
overhead as well as the problem of determining the optimal
prefetch distance.

5.4 Bottlenecks and Unnecessary Features

In this section we discuss those features which appear in mul-
timedia instruction sets, do not appear to be useful, and are
not “free”; i.e. they aren’t a low (or no) cost side effect of
some other useful feature.

Instruction Primitives The VIS instruction set does
not include full 16-bit multiply instructions. It instead of-
fers multiplication primitives, the results of which must be
combined through addition (see Algorithms 15 and 16).

Algorithm 15 Sun VIS 16-bit x 16-bit —16-bit Multi-

ply

fmul8sux16  %f0, %f2, %f4
fmul8ulx16  %f0, %f2, %f6
fpadd16 %£4, %6, %£8

The Mix stereo kernel is a good example of the high cost
of synthesizing needed instruction functionality from other
primitives. Audio mixing consists of multiplying a vector of



Algorithm 16 Sun VIS 16-bit x 16-bit —32-bit Multi-

ply

fmuld8sux16 %f0, %f2, %f4
fmuld8ulx16 %f0, %f2, %f6
£padd32 Uf4, %6, %8

count input signals (sp[]) by a vector of mixing coefficients
chany, chans and summing the result (Algorithm 17). In the
Timidity MIDI music synthesis application, fixed point inte-
ger computations are used to mix the various signed 16-bit
instrument sounds into a 32-bit output buffer.

Algorithm 17 Mix Stereo

INT16 **sp_p; INT32 #x1lp_p; INT32 count; INT32 chan_1; INT32 chan_2;

INT16 s, *sp = *(sp_p); INT32 *1p = *(lp_p);
while (count--) {

s = *sptt;

*1p++ += s*chan_1;

*1p++ += s*chan_2;
}
*(sp_p)
*(1p_p)

sp;
1p;

Comparing the code snippet in Algorithm 18 to Algorithm
19 we can see that Sun’s approach of synthesizing function-
ality from primitives (especially in the case of synthesizing a
16-bit merge) is much more costly than using a single instruc-
tion.

Algorithm 18 Intel Mix

movq mmO, [esi] ;mmO: | s3 | s2 | si1 | sO |
movq mml, [edi] 5 mml: | 1pl | 1p0 |
movq mm2, [edi + 8] ; mm2: | 1p3 | 1p2 |
pshufw mm5, mmO, 00000000b ; mm6: | sO | sO | sO | sO |
pshufw mm6, mmO, 01010101b ; mm6: | si1 | si1 | s1 | s1 |
pmaddwd mm5, mm7 ; mm5: | sO*xright | sOxleft |
pmaddwd mm6, mm7 ; mm6: | slxright | slxleft |
paddd mml, mm5 ; mml: | 1p1° | 1p0° |
paddd mm2, mm6 ; mm2: | 1p3° | 1p2° |

The reason that the architects of VIS divided up 16-bit mul-
tiplication in this way was to decrease die area. Not providing
a full 16x16 multiplier subunit cut the size of the arrays in half
[Trem96b]. Unfortunately, dividing an operation into several
instructions (which are not otherwise useful in and of them-
selves) increases register pressure, decreases instruction de-
coding bandwidth and creates additional data dependencies.
Splitting SIMD instructions (which have been introduced for
their ability to extract data parallelism) can actually cripple
a superscalar processor’s ability to extract instruction level
parallelism. A multi-cycle operation can be a better solu-
tion than a multi-instruction operation because instruction
latencies can be transparently upgraded in future processors,
while poor instruction semantics can not be repaired without
adding new instructions.

Unused High Latency Approximation Instructions
Floating point approximation of % instructions, although
available on several platforms, did not find application in any
of the kernels we studied. AltiVec also includes approximate
logs and exp- instructions, which find application in the light-
ing stage of a 3D rendering pipeline; this is currently handled
by 3D accelerator cards, and not the CPU.
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Algorithm 19 Sun Mix

wr %g0, 6, %gsr !set alignment for right shift by 16

1d [%11 + 01, %f16 !'%f16:| 1p0 | XXXXXXXXXXX|

1d [%11 + 41, %f17 '%f17:| 1p0 | 1pil |

1d [%11 + 81, %f18 !%£18:] 1p2 | XXXXXXXXXXX|

1d [%11 + 121, %£f19 '%£19:] 1p2 | 1p3 |

! simulate 16-bit merge

fpmerge %£28, %f28, %f4 '%f4: |sO0_|sO_|_sO|_sOls1_|s1_|_s1|_s1

fpmerge %£29, %f29, %f10 '%f10:1s2_|s2_|_s2|_s2|s3_|s3_|_s3|_s3]|

faligndata %f4, %f4, %f6 1%£6: |_s1l_s11sO_IsO_l_sO|_sOlsi_|s1_|

faligndata %f10, %£10, %f12 !'%f12:|_s3|_s3|s2_Is2_|_s2|_s2|s3_Is3_]I

fpmerge %f6, %f4, %f8 1£8: | XXX|XXX|XXX|XXX| sO | sO |

fpmerge %£12, %£10, %f14 '%f14:|XXX|XXX|XXX|XXX| s2 | s2 |

fpmerge #E7, %hE5, %hf2 14£2: | XXX | XXX | XXX |XXX| sl | sl |

fpmerge %£13, %f11, %£26 !'%£26:|XXX|XXX|XXX|XXX| s3 | s3 |

fsrcis %£9, %hf2 1f2: | sO | sO | si1 | si]|

fsrcls %£15, %26 1%£26:] s2 | s2 | s3 | s3

! simulate 16x16 -> 32-bit multiply

fmuld8sux16 %f0, %f2, %f4

fmuld8ulx16 %f0, %f2, %f6

! simulate 16x16 -> 32-bit multiply

fmuld8sux16 %f0, %f3, %f8

fmuld8ulx16 %£f0, %f3, %f10

fpadd32 %f4, %f6, %fa ! %f4: | sOxchanl | sO*chan2

fpadd32 %£8, %f10, %f6 ! %f6: | slxchanl | sl*chan2

fpadd32 %f16, %f4, %f16 ! %f16: | 1p0°? | 1p1? |

fpadd32 %£18, %f6, %f18 ! %f18: | 1p2’ | 1p3’ |
Unused Pixel Conversion Instructions Motorola’s

AltiVec extension includes pixel pack (vpkpx) and pixel un-
pack (vupkhpx, vupklpx) instructions for converting between
32-bit true color and 16-bit color representations. These did
not find application within the BMKL, although it is possible
that they might be of utility in situations where AltiVec needs
to operate on 16-bit color data; many video games use 16-bit
textures, for example.

Unused Memory Access Instructions Sun’s VIS in-
cludes two sets of instructions for accelerating multimedia op-
erations with sophisticated memory addressing needs. The
first, edge8, edge16, and edge32, produce bit vectors to be
used in conjunction with partial store instructions to deal with
the boundaries in 2D images. The second group of address-
ing instructions include array8, array16 and array32 which
find use in wolumetric imaging (the process of displaying a
two dimensional slice of a three dimensional data). An ar-
ray instruction converts (x,y,z) coordinates into a memory
address. The Berkeley multimedia workload does not include
any volumetric imaging applications, so it is unsurprising that
these instructions found no utility in our workload.

Singular, Highly Utilized Resources Although we
usually think of SIMD architectures as extracting data level
parallelism, all of the implementations of the instruction sets
we have examined are also superscalar, with multiple parallel
SIMD functional units. In fact, unless the SIMD vector length
is long enough to hold the entire data set being operated on,
there is almost always the potential to extract instruction
level parallelism as well. In coding the kernels with Sun’s VIS
extension, it became clear that instruction level parallelism
was being compromised by the over utilized graphics status
register (GSR).

Sun’s VIS architecture does not include partitioned shift
instructions, the GSR has a 3-bit addr_offset field which
is used implicitly for byte granularity alignment, as well



as a 4-bit scale_factor field for packing/truncation oper-
ations. The VIS GSR is a serializing bottleneck because any
time packing or alignment functionality is needed, it must be
pushed through the GSR. Because VIS lacks partitioned shift
operations, we found ourselves synthesizing such operations
with the packing and alignment operations where no other
algorithmic path was possible. Even with careful planning of
packing and alignment operations it was often necessary to
write to the GSR several times in each iteration of the loops
of our multimedia kernels. The serializing effect of this singu-
lar resource prevented VIS operations from proceeding at the
fullest possible degree of parallelism.

5.5 Alignment and Memory Traffic

Factors such as register file geometry (the number of registers
and their width), data path location (pre-existing integer or
floating point, or separate) and alignment issues are reflected
in the uncached memory traffic - the data accesses as seen
by the L1 data cache. Table 3 lists the average number of
bytes loaded or stored per function call. This was computed
by multiplying the number of dynamic load and store instruc-
tions executed by their widths in bytes.

From Table 3 we can see that Motorola’s and Sun’s im-
plementations sometimes seem to transfer (load and store)
more bytes in each function call than the AMD, DEC or Intel
implementations of the same kernel. We would expect the
Motorola and Sun implementations to spill registers to mem-
ory less frequently due to their larger register files (on average
we see that the register file geometry does affect memory traf-
fic as we might expect). This surprising result is actually an
artifact of how we computed memory traffic, rather than an
indication of an architectural shortcoming. Dynamic instruc-
tion counts alone are not a completely accurate predictor of
actual memory traffic, since some of the architectures (AMD,
DEC, Intel) support unaligned loads (hiding some loads issued
by the hardware which handles unaligned memory access in
the CPU) and the rest do not. Hardware support to efficiently
handle memory accesses that are not aligned are expensive in
both area and timing [Thak99].

Transparently Forced Alignment The AltiVec in-
struction set architecture does not provide for alignment ex-
ceptions when loading and storing data. Alignment is main-
tained by forcing the lower four bits of any address to be zero.
This is transparent to the programmer, so the programmer is
responsible for guaranteeing alignment, otherwise incorrect
data may be loaded or stored. We believe it is better that
performance and correctness issues due to alignment be made
explicit. The loading of incorrect data due to a mistaken
assumption about alignment would be an extremely difficult
bug to track down.

5.6 Overall Instruction Mix

Table 4 shows what types of instructions comprised the total
mix of dynamic instructions executed by each architecture.
Counts are for the code within the kernels only, and do not
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include instructions from the rest of each application. Control
state instructions are those which interact with special pur-
pose machine registers (e.g. the GSR on Sun’s VIS). Branches
and other data dependent codes such as conditional moves are
categorized as “control flow” type instructions.

We can see that SIMD kernels utilize a significant number
of scalar operations for pointers, loop variables and clean up
code; evidence that sharing the integer data path is not a
good idea. Intel’s SSE is a 128-bit wide extension, as com-
pared to AMD’s 64-bit wide 3DNow!, explaining why Intel’s
overall instruction count is lower by about 1 billion instruc-
tions. The same reasoning applies to Motorola’s G4 which
has the 128-bit wide (both packed integer and floating point)
AltiVec extension. DEC’s bloated instruction count is due to
the fact that their MVI extension is very limited in function-
ality (13 instructions in total), and so many operations need
to be done with scalar instructions.

Data communication operations represent the overhead
necessary to put data in a format amenable to SIMD op-
erations. Ideally, these types of instructions should make up
as small a part of the dynamic instruction mix as possible.
Table 4 reveals that the Motorola AltiVec extension executes
the largest percentage of these instructions. This is due to
two factors: 1) the wider register width means that it is less
likely that the data is arranged correctly as first loaded from
memory and 2) data communication operations are used by
AltiVec to simulate unaligned access to memory.

6 Performance Comparison

In order to establish a base line for performance, the average
execution time of the C and SIMD assembly versions of the
BMKL were measured on each platform (Table 5). A speedup
from 2x-5x was typical, although some kernels were sped up
considerably more than this. Note that the C compiler for the
Apple system running a pre-release version of OS X (devel-
oper’s preview 3) is known to be weak, making the speedup
of AltiVec over C look unrealistically good.

All of our performance measurements utilize the metric of
time rather than cycle or instruction counts. If all of the
architectures in our study had equal cycle times, then com-
paring cycle times would be valid, since time, in that case,
would simply be proportional. This is not the case, since the
Sun UltraSPARC IIi used in our study has a 360 MHz clock,
while the remainder of the chips are 500 MHz parts. Instruc-
tion counts are not valid measure for cross architectural com-
parisons, as each instruction set does not necessarily do the
same amount of work (computation) in the same number of
instructions, nor take a the same amount of time to perform
similar instructions.

In order to measure how well or how poorly a given plat-
form performs relative to the competition we use the metric
of percent deviation from the mean:

where t; is the time taken on platform ¢, and 7 is the average
performance (time) across all of the platforms examined for

t—t;

%DM = 100 - ( (2)



AMD DEC Intel Motorola Sun Average
Register File 8x64b (FP) 31x64b (Int) 8x64b (FP), 8x128b 32x128b 32x64b
Geometery
Add Block 296, 2.8% 249 18.2% 290 4.7% 431 -41.7% 256 16.0% 304
Block Match 356 27.7% 572 -16.2% 356 27.8% 730 -48.2% 448 9.0% 492
Clip Test & Project 5,261 -10.8% 6,755 42.3% 2,840 40.2% 2,139 54.9% 6,735 -41.9% 4,746
Color Space 14,517,360 -101.9% 2,073,744 71.2% 14,517,360 -101.9% 2,419,504 66.3% 2,419,296 66.3% 7,189,453
DCT 2,424 52.4% 19,008 -273.1% 2,420 52.5% 304 94.0% 1,320 74.1% 5,095
FFT 99,797 12.0% 171,163 -50.9% 95,117 16.1% 118,560 -4.5% 82,408 27.3% 113,409
IDCT 1,640 -60.6% 682 33.2% 1,640 -60.6% 320 68.7% 824 19.3% 1,021
Max Value 852 20.6% 782 27.1% 852 20.6% 2,098 -95.5% 783 27.1% 1,073
Mix Stereo 823 -17.5% 503 28.2% 823 -17.5% 505 27.9% 849 21.2% 701
Quantize 4,733 45.6% 7,391 15.1% 4,675 46.3% 21,098 -142.5% 5,609 35.5% 8,701
Short Term Anal. Filter 8584 -105.0% 3,056 27.0% 8584 -105.0% 272 93.5% 440 89.5% 4,187
Short Term Synth. Filter 7,100 -93.3% 3,448 6.1% 7,100 -93.3% 274 92.5% 441 88.0% 3,673
Subsample Horizontal 13,685,804 -67.3% 2,945,448 64.0%| 13,685,892 -67.3%| 5,642,508 31.0%| 4,930,600 39.7% 8,178,050
Subsample Vertical 8,300,932 -88.5% 1,123,328 74.5% 8,301,052 -88.5% 2,137,092 51.5% 2,160,040 51.0% 4,404,489
Synthesis Filter 4,080 2.2% 4136 -3.6% 4,144 -3.8% 3,273 18.0% 4,328 -8.4% 3,092
Xform & Normalize 3,037 -34.6% 1,976 12.5% 2,162 4.2% 1,659 26.5% 2,451 -8.6% 2,257
[Average [ 2,290,192]  -26.3%] 397,640 0.6%] 2,289,707] -20.4%] 646,923 18.3%] 601,052]  28.9%]

Table 3: SIMD Kernel Memory Traffic - data bytes transferred per call as seen by the L1 cache (in other words, uncached
memory traffic) are listed in the left subcolumns, with the percent deviation from the mean values (%DM) given in the right
subcolumns. Values in italics indicate kernels which are implemented in C due to lacking SIMD instruction set functionality.

AMD Athlon DEC 21264A Intel Pentium 11 Motorola G4 Sun UltraSPARC Ili
Int Load/Store 2.41E+08  (54%)| L51E+09 (20.3%)| 2.19E+08 (6.2%)| LOOE+08 (24%)| L47E+08  (2.6%)
Int Arithmetic 5.43E+08 (12.1%) | 2.18E+09 (29.0%)| 4.34E+08 (12.3%)| 8.65E+08 (19.1%)| L49E+09 (26.6%)
Int Control Flow 5.75E+08 (12.8%) | 8.41E+08 (113%)| 4.73E+08 (134%)| 6.26E+08 (138%)| 5.20E+08  (9.3%)
IntData 103E+08  (23%)| 4.98E+08 (6.7%)| 7.50E+07 (21%)| 475E407 (1L1%)| 0.00E+00  (0.0%)
Communication
FP Load/Store 142E+08  (3.2%) | 8.36E+08 (112%)| LAOE+08 (4.0%)| 3.35E+08 (7.4%)| 4.48E+08  (8.0%)
FP Arithmetic 0.00E+00  (0.0%) | L34E+09 (18.1%)| O.00E+00 (0.0%)| LO4E+08 (2.3%)| 4.69E+08  (8.4%)
FP Control Flow 0.00E+00  (0.0%)| LOSE+07 (0.1%)| O.00E+00  (0.0%)| O.00E+00 (0.0%)| 3.50E+08  (6.2%)
FPData 0.00E+00  (0.0%) | 0.00E+00 (0.0%)| 0.00E+00 (0.0%)| 8.73E+05 (0.0%)| 0.00E+00  (0.0%)
Communication
SIMD Load/Store 8.70E+08 (19.4%) | 0.00E+00  (0.0%)| 7.40E+08 (21.0%)| 8.12E+08 (17.9%)| 6.56E+08 (1L.7%)
SIMD Data 550E+08 (12.3%)| 0.00E+00 (0.0%)| 4.43E+08 (12.6%)| 7.67E+08 (17.0%)| 5.44E+08  (9.7%)
Communication
SIMD Int Arithmetic | 5.61E+08 (125%) | 2.28E+08  (3.1%) | 6.62E+08 (18.8%)| 5.36E+08 (11.8%)| 7.61E+08 (13.6%)
i'lg"WD Int Control 0.00E+00  (0.0%)| 0.00E+00 (0.0%)| 0.00E+00 (0.0%)| 5.23E+03 (0.0%)| 197E+08 (3.5%)
SIMD FP Arithmetic | 8.95E+08 (19.9%)| 0.00E+00 (0.0%)| 3.27E+08  (9.3%)| 3.12E+08  (6.9%)| 0.00E+00  (0.0%)
SI('\)"WD FP Control 291E+05 (0.0%)| 0.00E+00 (0.0%)| 146E+05 (0.0%)| 812E+04 (0.0%)| 0.00E+00  (0.0%)
Control State 824E+06  (0.2%) | 0.00E+00  (0.0%)| 8.35E+06  (0.2%)| L25E+07 (0.3%)| 2.16E+07  (0.4%)
Total 240E+09  100%] 7.45E+00  100%| 352E+09  100%| 4.53E+00  100%] 560E+09  100%

Table 4: Overall Instruction Mix - counts are listed with percentages in parentheses. Control state instructions are those
which interact with special purpose registers. Control flow instructions include branches as was as conditional moves and

comparisons.

a particular kernel. This metric indicates how much better
or worse than average, and provides a normalized result for
computing the average improvement or degradation in per-
formance. Table 6 lists the average %DM (the arithmetic
average of the %DM values for all of the kernels on a given
platform).

The algorithm employed by the original MPEG-2 encoder
DCT code (Algorithm 3) is not very efficient - it uses dou-
ble precision floating point where fixed point integer should
provide sufficient precision (and is typically faster on most
architectures) [IEEE91]. Because the DCT and IDCT algo-

rithms are of the same computational order of magnitude it
might seem strange that they demonstrate such different per-
formance improvements (Table 5). Unlike the original forward
DCT code which was computed in floating point, the scalar
inverse DCT source code (Algorithm 4) is written in fixed
point integer. Thus it is much more directly comparable to
our fixed point integer SIMD implementations.

The fact that the original C DCT algorithm is floating point
and the SIMD implementations are fixed-point integer meant
that it was not appropriate to use the original code as the “so-
lution” for the DEC Alpha architecture, which did not provide
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AMD Athlon DEC Alpha 21264 Intel Pentium 111 Motorola G4 Sun UltraSPARC i Arithmetic Mean

Add Block (9.6x) 1,087 114] (1.9x) 669) 350| (6.4%) 969) 152| (2.5¢) 1,054 423 (4.9%) 1,662) 32| [ (5.0x) 1,088] 276
Block Match (7.00) 1,801] 257| (2.6%) 979) 379| (4.9%) 1,855 381| (3.4%) 1,466) 437| (2.8%) 2,408 852| | (4.1x) 1,702) 461
Clip Test & Project (1.6x) 7,374 4,559 | (1.0x) 8,501 8591 (1.3x) 7,938 6,336] (2.6x) 8,906) 3,427[(1.0%) 12,222 12222| | (15%) 9,006) 7,027
Color Space (9.4x) | 122,108,855 12,924,258| (1.7x) | 22,399,926| 13,043,849 (5.6x) | 60,141,946 10,803,618| (4.5¢) | 58,043,968 12,959,530((2.7x)| 62,015,071 22994,253| | (4.8x) | 64,940,953 14,545,102
DCT** (16.9%) 24,332 1,438 (19.7%) 12,475 632 (31.1x) 38,192| 1,228 (36.6x) 33,176 907((9.2%) 30,922| 3,353| | (22.7%) 27,819) 1,512
FFT (2.0¢) 125,484 63,446| (1.0x) 67,321 67,321| (1.7%) 147,047 84,661| (2.0x) 232272 116828|(10x)|  111258]  111,288| | (1.5¢) 136,677 88,703
IDCT (3.6x) 2,999 827 (1.0x) 1,276 1,276 (2.8x) 2,772 993[ (3.9) 3,326] 847 (1.5x) 3,782) 2508| | (2.6x) 2,831 1,290)
Max Value (4.0¢) 2,407 604| (1.0x) 1,143 1,168 (3.8x) 2,536) 669| (6.6x) 4,110) 618 (0.7%) 6,165 8715| [ 3:2x) 3,272 2,355,
Mix Stereo (2.8x) 956 341 (1.0x) 616 616 (2.0x) 1,065) 528 (3.8x) 1,710) 446 (2.1X) 3,550) 1716] | (23x) 1579 729
Quantize (1.8x) 34,233 18,557 (1.0x) 19,549 19,549 (2.5%) 37,100 15,010| (21x) 29,488 14,335 (1.0x) 34,928 34,928| | (1L7%) 31,059 20,476
Short Term Analysis Filter (L5x) 15,268 9,887 (L.0X) 11,120) 11,120[ (15x) 16,129 11,003| (6.5%) 24,156 3,729| (2.5%) 36,773 15009 | (2.6x) 20,689 10,150)
Short Term SynthesisFilter | (2.9x) 21,849) 7,425 (L.0X) 19,208] 19,208| (7.6x) 43,582 5,759| (6.5%) 23,721 3,672| (3:2) 48,660 15202 | (4.2x) 31,404 10,253
Subsample Horizontal (14x) | 15977,835] 11,337,253| (10x) | 9,210,928| 9,264,521| (13x) | 15,777,956 11,714,792 (1.6x) | 17,472,826] 10,849,858|(0.9x)| 17,707,829] 19,521,092 | (1.3x) | 15,229,475| 12,537,503
Subsample Vertical (24x) | 25,517,638 10,791,669| (3.3x) | 14,680,887 4,487,870 (2.2x) | 21,969,585 10,049,618| (9.6x) | 29,349,708| 3,070,046|(3.8x)| 39,872,378 10457,565| | (4.2x) | 26,278,039 7,771,354]
Synthesis Filter (2.8x) 7,308 2,585 (L.0x) 4,900 4,900| (1.8x) 8,349) 4,718] (1.8x) 4,917 2,727 (1.0x) 7,138 7.138| | a7 6,522 4,414]
Transform & Normalize (2.5%) 11,527 4,507 | (1.0%) 7,990 7.990] (4.7x) 20,491 4,338( (27.4x) 81,985 2,998 (1.0x) 14,455 14,455| | (7.3x) 27,290 6,876)
[Arithmetic Mean [ (450 [ 10,240,997 2,197.989] (25x) | 2902.974] 1,683,709 (5.1x) | 6,138,595] 2,043,988] (7.6) [ 6,582,299 1,689,427] (2.5x)| 7,494,325] 3,325,038

|Geometric Mean [ 19 ] 47,328 15,063] (1.5%) | 27,110] 18,626] (3.1x) | 52,161 16,694 (4.8x) | 60,056] 12,416] (1.7%) | 66,825] 38,312]

Table 5: Average Time per Call (ns) - C times listed in normal font, SIMD assembly times listed in italics, speedup
shown to the left inside of (parentheses). Kernels with a grey background were not implemented in SIMD due to insufficient
instruction set functionality. (**) DCT kernel originally coded in floating point, but implemented in fixed point integer for

SIMD codes.

AMD Athlon DEC Alpha 21264 Intel Pentium 111 Motorola G4 Sun UltraSPARC Ili
Add Block 90.0% 0.1% 58.9%| -62.1% 38.6%) 268%|  26.2% 10.9% 44.8%| -50.6% 3.1%) 532%|  -35% 52.7%) -23.7%
Block Match 69.5% 5.8% 44.2%| -37.4% 42.5%] 17.8%| 182% -9.0% 175%| -188% 13.9% 52%| -315% -41.5%) -84.7%
Clip Test & Project 8.3% 18.1% 35.1%| -33.1% 4.6% “23%| -161% 11.9% 9.8%| 74.0% 1.1%) 51.2%| -331% -35.7% -73.9%
Color Space 97.6% -88.0% 111%]| -64.1% 65.5%) 10.3% | 164% 7.4%) 257%|  -6.3% 10.6% 10.9% | -43.6% 4.5% -58.1%
DCT** -25.5% 12.5% 4.9%| -131% 55.2%) 58.2%| 37.0% -37.3%) 188%| 61.0% -19.3% 20.0%| -59.4% -11.2%) 121.8%
FFT 28.4% 8.2% 285%| -351% 50.7%) 241%| 12.7% -7.6% 46%| 291% -69.9% -31.7% | -351% 18.6% -25.4%
IDCT 41.1% 5.9% 35.9%| 611% 54.9%] 11%| 8.6% 2.1%) 23.0%| 52.7% -17.5% 34.3%| -41.3% -33.6% -94.4%
Max Value 23.6% 26.4% 74.3%| -69.6% 65.1%) 50.4% | 17.7% 22.5% 716%| 106.3% -25.6% 737%| -78.0% -88.4% 270.1%
Mix Stereo 19.6% 39.5% 53.3%| -57.4% 61.0%) 156%| -14.1% 32.6%) 27.5%|  63.7% -8.3% 38.9%| -11.8% -124.8% 135.3%
Quantize 10.2% -10.2% 9.4%| -40.3% 37.1%) 45%| 47.6% -19.4% 26.7%|  22.8% 5.1%) 30.0% | -40.3% -12.5%) -70.6%
Short Term Analysis Filter -40.3% 26.2% 26%| -61.4% 46.3%] 9.6%| -43.3% 22.0%) -8.4%]| 150.3% -16.8%) 633%| -53% 77.7%) 47.9%
Short Term Synthesis Filter -30.5% 30.4% 27.6%| -76.4% 38.8%) 87.3%| 78.7% -38.8% 438% | 52.6% 24.5%) 64.2% | -24.4% -54.9%) 48.3%
Subsample Horizontal 12.4% -4.9% 9.6%| -20.7% 39.5%] 261%|  7.4% -3.6% 6.6%| 285% -14.7% 135%| -27.6% -16.3%) 55.7%
Subsample Vertical -44.2% 2.9%) -38.9%| -22.8% 44.1%) 42.3%| -48.4% 16.4% -29.3%| 1255% 1L7% 60.5%| -10.1% 51.7%) -34.6%
Synthesis Filter 68.3% -12.0%) 41.4% | -405% 24.9%] -11.0%|  53% -28.0% 69%|  7.3% 24.6% 38.2%| -405% -9.4% -61.7%
Transform & Normalize -65.7% 57.8% 33.1%| -86.3% 70.7%) -16.2%| -35.4% 24.9% 36.9%| 273.8% -200.4% 56.4%| -86.3% 47.0%] 110.2%
[Arithmetic Average [ 164% | 6.0%| 26.9%] -48.8% | 46.2%] 48%] 7.4% | 0.4%] 19.5%[ 60.7% | -18.8% 31.0%[ -35.7% | -33.8%] -82.3% |

Table 6: Percent Deviation from the Mean (%DM) - for data in Table 5, which is defined as 100 - (

?—_tl-

t

), where t; is

the time taken on platform 4, and f is the average performance (time) across all of the platforms examined for a particular

kernel.

sufficient SIMD instruction set functionality to implement a
SIMD version of the DCT. A C fixed-point integer DCT was
substituted, which is why a 19.7x speedup is shown in Table
5, even though we did not recode it.

AMD Athlon, Intel Pentium III The AMD Athlon
and Intel Pentium III processors in our study at first glance
appear to be very similar; both run at 500 MHz, and, as we
noted in Section 4, both share Intel’s MMX SIMD integer
extension. In fact, because we implemented the Intel kernel
set first, it was possible to simply reuse the same code for
the AMD SIMD version of many of the integer kernels in the
BMKL. The SIMD integer kernels include all but the clip test,
FFT, quantize, synthesis filter and transform kernels. It is
interesting to observe the differences in performance between
the two processors on what is often identical code. A few
salient architectural differences to note [Stil99]:

e Athlon has a 64 KB instruction, 64 KB data cache, while
Pentium IIT’s L1 caches are 16 KB/16 KB respectively

e Athlon has three instruction decoders working in parallel,
while Pentium IIT has only two

e Athlon’s pipeline is 10-cycles long, while Pentium IIT’s
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is 12-17 cycles; the cost of branches in the Pentium is
exacerbated by Pentium III’s weaker branch prediction
unit

Intel’s MMX instruction latency is lower (1 cycle SIMD
add/sub, 1 cycle shuffle, 3 cycle SIMD mult) compared
to Athlon (2 cycle SIMD add/sub, 2 cycle shuffle, 3 cycle
SIMD mult)

So, although the SIMD integer instruction set is the same in
both cases, AMD’s Athlon SIMD integer is a more powerful
implementation; its only deficiency is the higher simple SIMD
integer instruction latency when compared to the Pentium III.
We can see this very clearly in Table 5, although where each
architectural difference comes into play depends on the kernel.

One interesting case is that of the DCT and IDCT kernels
- the Pentium IIT is faster on the DCT, while the Athlon
is faster on the IDCT. This is surprising given that the two
kernels are algorithmically quite similar - each is basically a
mirror image of the other. Upon further investigation, we
found that the DCT code has shuffle instructions (pshufw)
in several places that are not scheduled well for the Athlon
instruction’s higher latency; a circumstance which was not
duplicated in the IDCT code.



In terms of multimedia, the greatest difference between
the two processors are their SIMD floating point extensions.
AMD’s 3DNow! is quite similar to MMX, reusing the eight
x87 floating point registers as 64-bit wide SIMD registers.
Intel’s SSE has new 128-bit wide registers and instructions,
although in the Pentium III implementation, each 128-bit in-
struction is actually decoded into two 64-bit wide micro-ops.
This does, however, give the Pentium III more overall register
space to work with. Other important architectural features
of the two SIMD floating point instruction sets:

e AMD’s 3DNow! FP latency (4 cycle add/sub, 4 cycle
multiply) is lower than Intel’s SSE (4 cycle add /sub, 5 cy-
cle multiply, throughput of 64-bits per cycle like 3DNow!)

In the arena of floating point operations, the AMD Athlon
architecture eliminates the only deficiency it had compared
to the Pentium IIT in SIMD integer - namely, slightly higher
instruction latency. From Table 6, we can see that overall
SIMD AMD Athlon code does 26.9% better than average,
while the Pentium III is 19.7% better than the average of all
of the multimedia instruction sets. Both chips perform well,
but the AMD Athlon matches or outperforms the Intel chip
on all but one SIMD floating point kernel: quantize.
Quantization is a process by which a real value is con-
verted to a discrete integer representation. An array of real
double precision floating point values, zr[], is converted to
an array of 32-bit integers, zi[], according to the function

@ili] = /\/arlil* + 0.4054. Note that original C implemen-

tation utilizes a lookup table for some values (not shown in
Algorithm 20).

Algorithm 20 Quantize

static INT32 lutab[10000];
INT32 1_end; FLOAT64 xr[]; INT32 ix[]; FLOAT64 *istep_p;
FLOAT32 temp;
for (i=0;i<1_end;i++) {
temp=(*istep)*fabs(xr[i]);
ix[i] = (int) ( sqrt(sqrt(temp)*temp) + 0.4054);
}

Although SIMD floating point instruction sets include ap-
proximations for \/LE’ rather than +/a, the equivalence v/a =
a - - can be used. The reason for AMD’s lackluster per-
formance on the quantize kernel is clear based on our earlier
discussion - AMD’s reciprocal square root instructions are ac-
tually scalar - they only produce one result value, based on
the lower packed element. This costs 3DNow! performance

for this highly square-root intensive kernel.

DEC Alpha 21264 From Tables 5 and 6 we see that
the DEC Alpha platform far outstrips the other systems in
terms of compiled C performance. It has been claimed that
a broader multimedia instruction set would not be useful on
Alpha, as an extension like Intel’s MMX only fixes x86 legacy-
architecture performance deficiencies which are not present
in the Alpha architecture [Rubi96]. Our performance com-
parison makes this sound rather dubious, as the kernels pro-
grammed with the extensions from AMD, Intel and Motorola

16

were able to not only match the performance of those on the
Alpha 21264, but often exceeded it.

Motorola G4 Motorola’s AltiVec was the only multime-
dia extension which was architected from the ground up - all
of the others in some way leverage existing resources. AltiVec
in many ways agrees with our design suggestions (e.g. a large
number of 128-bit wide registers), although in fact the in-
structions included in AltiVec are far more general than those
required by multimedia applications. Almost every possible
operation and data type is supported, which should allow it
to be applied to other application domains as well. A 128-
bit register width combined with latencies that are at least
as good as those found on the other (64-bit) architectures,
allows AltiVec to come in with the best overall performance
(31% better than average on SIMD accelerated code, accord-
ing to Table 6). However, performance on a few of the kernels
is still poor, especially on add block and the FFT. The add
block kernel’s problem has already been discussed - the 128-
bit register width is actually too long for this kernel, causing
unnecessary data to be loaded from memory. The reason for
the poor FFT performance is not entirely clear, although a
review of our code revealed that the way in which we coded
data to be stored to unaligned memory could be improved.

Sun UltraSPARC IIi The performance of the VIS mul-
timedia extension was mediocre at best, although we should
note that the UltraSPARC IIi processor examined is the only
one in our study running at 360 MHz (the other processors
all have a 500 MHz clock). It is also the oldest multimedia in-
struction set we have looked at, the second to be released after
HP’s MAX-1 (1996). As we have pointed out, this instruction
set suffers from some odd instruction choices (e.g. multipli-
cation primitives), missing functionality (no partitioned shift
operations) and a highly utilized control register that creates
a bottleneck (the graphics status register).

7 New Directions

In this section we describe two new ideas for future multime-
dia extensions based on features we found lacking during our
coding experience.

7.1 Strided Memory Access

Consider the difference between how memory is loaded into
a SIMD register in the horizontal and vertical subsampling
kernels. The original C sources for the horizontal and vertical
subsampling kernels are in Algorithms 21 and 22 respectively.
In the horizontal subsampling case, a vector load can only
directly retrieve the data from one iteration of the loop into a
register. For vertical subsampling, the n*"* element from each
of M loop iterations is loaded (M is the number of packed
element in a register) into a register without any data rear-
rangement. Because SIMD applies the same operation to all
of the elements of a vector, the vertical subsampling kernel
can be computed more efficiently.



Algorithm 21 Subsample Horizontal

UINT8 *src; UINT8 *dst; INT32 width; INT32 height;
for (j=0; j<height; j++) {
for (i=0; i<width; i+=2) {
I1tmp = (22*(src[i-5] + src[i+5])-52%(src[i-3]

+ src[i+3])

+159%(src[i-1] + src[i-1])+256%src[i] + 256)>>9;
/* clip result to UINT8 range 0..255 */
dst[i>>1] = 1tmp>255 ? 255 : (1tmp<0 ? O : 1tmp);
}
src+= width; dst+= width>>1;

}

Algorithm 22 Subsample Vertical

UINT8 *src; UINT8 *dst; INT32 width; INT32 height;
INT32 w, ltmp;
w width>>1;
for (i=0; i<w; i++) {
for (j=0; j<height; j+=2) {
/* FIR filter with 0.5 sample interval phase shift */
ltmp = (228*(srclwxj] + src[wxj+1])+70*(src[wx(j-1)] + srcl[wxj+2])
-37*(srclwxj-2] + srclwxj+3]1)-21%(srclw*j-3] + srclwxj+41)
+11x(srclw*j-4]1 + srclwxj+b])+5*(srclw*j-5] +
src[u*xj+6])+256)>>9;
/* clip result to UINT8 range 0..255 */
dst[w*(j>>1)]1=1tmp>255 ? 255 : (1tmp<0 ?

0 : 1ltmp);
src++;
dst++;

}

With current SIMD architectures, when registers contain
the data for a single loop iteration, either operations on some
of the packed elements must be nullified, or significant over-
head must go into transposing the data, wasting computation.
Although this worked acceptably well in the DCT and IDCT
kernels, there are some cases, such as image processing, when
it is not feasible to transpose an image - the overhead is far
too great.

We propose that SIMD architectures implement strided
load and store instructions to make the gathering of non-
adjacent data elements more efficient. This is similar to the
prefetch mechanism in AltiVec, except that the data elements
would be assembled together by the hardware into a single
register, rather than simply loaded into the cache. Of course
such a memory operation would necessarily be slower than
a traditional one, but it would cut down immensely on the
overhead that would have to go into reorganizing data as
loaded from memory. Strided loads and stores would have
three operands:

Instruction Syntax
Load Strided lvxstrd vD, rA, rB
Store Strided stvstrd vD, rA, rB

where in each case rA is the base address and rB contains
a description of the memory access pattern:

width width of the data elements to be loaded [2 bits], 00
— 8&bits, 01 = 16-bits, 10 = 32-bits, 11— 64-bits

offset number of bytes offset from the base address from
which to begin loading [6 bits], interpreted as an
signed value: -32..4-31

stride number of bytes between the effective address of

one element in the sequence and the next [24 bits],
interpreted as a signed value: -8388608..+8388607
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The color space conversion kernel is an excellent example of
where strided load and store instructions could be used. Pixel
data consists of one or more channels or bands, with each
channel representing some independent value associated with
a given pixel’s (z,y) position. A single channel, for example,
represents greyscale, while a three (or more) channel image
is typically color. The band data may be interleaved (each
pixel’s red, green, and blue data are adjacent in memory) or
separated (e.g. the red data for adjacent pixels are adjacent in
memory). In image processing algorithms such as color space
conversion we operate on each channel in a different way, so
band separated format is the most convenient for SIMD pro-
cessing. Converting from the RGB to Y CpCr color space is
done through the conversion coefficients shown in Algorithm
23.

Algorithm 23 Color Space Conversion

UINT8 *rowp, *y_p, *u_p, V_p;
INT32 red = *rowpt++, green = *rowp++, blue = *rowp++;

*y_p++ = +0.2558%red + 0.5022%green + 0.0975*blue + 16.5;
*¥u_p++ = -0.1476%red - 0.2899%green + 0.4375%blue + 128.5;
*v_p++ = +0.437b%red - 0.3664%green - 0.0711xblue + 128.5;

Algorithm 24 replaces thirty-eight instructions in the orig-
inal AltiVec color space conversion kernel (the corresponding
code fragment is listed in the Appendix). In the original Al-
tiVec code, it was necessary to load six permute control vec-
tors (each 128-bits wide) before executing the six vperm in-
structions required to rearrange the data into band separated
format.

Algorithm 24 Modified Color Space Conversion

rgb_to_yuv:

oris ri1l,r11 RED_PATTERN

oris r12,r12,GREEN_PATTERN

oris r13,r13,BLUE_PATTERN

lvxstrd v28,0,r3,r11

53 v28: |rO|r1|r2|xr3|rd|x5|r6|x7|r8|xr9|rA|rBlxrC|xD|rE|LF|
lvxstrd v29,0,r3,r12

35 v29: |gOlgllg2lg3lgdlghblgbligTlg8lg9lghigBlgClgDIgEIgF|
lvxstrd v30,0,r3,r13

55 v30: |b0|b1|b2|b3|b4|b5|b6|b7|b8|b9|bA|bB|bC|bD|DLE|bLF|

Traditional SIMD data communication operations have
trouble with data which is not aligned on boundaries which
are powers of two - in the case of color space conversion, visu-
ally adjacent pixels from each band are spaced 3 bytes apart.
Strided loads and stores are by definition unaligned, so this
would need to be handled by the load/store hardware in the
CPU. It would also make sense to have additional versions of
these instructions which would be a hint to circumvent the
cache (on a load) or to not do write-allocation (on a store)
if the cache lines containing the strided data elements would
not be of near-term utility.

7.2 Superwide Registers

Generally, multimedia data is stored in a packed format and
is loaded into registers into the same format. Frequently, un-
packing is required before operations are performed, and the
unpacked data, of course, no longer fits within a single regis-
ter. We therefore propose:



e registers that are wider than the data loaded into them
e implicit unpack with load

e implicit pack with store

Our design is in some ways similar to the as yet unimple-
mented MIPS MDMX instruction set [MIPS97]. The MIPS
MDMX extension has a 192-bit accumulator register as its ar-
chitectural cornerstone, with the more usual style of register
to register SIMD operations also included; non-accumulator
SIMD operations share the 64-bit floating point datapath.
The destination of normal SIMD instructions can be either
another SIMD register or the accumulator (to be loaded or ac-
cumulated). When accumulating packed unsigned bytes, the
accumulator is partitioned into eight 24-bit unsigned slices.
Packed 16-bit operations cause the accumulator to be split
into four 48-bit sections. This extra width allows for multiple
accumulations to occur without overflow.

What is good about the MDMX accumulator approach is
that implicit width promotion provides an elegant solution to
overflow and other issues caused by packing data as tightly as
possible. For example, multiplication is semantically difficult
to deal with on SIMD architectures because the result of a
multiply is longer than either operand [Lee97c|. This prob-
lem is avoided by the MDMX accumulator, because there is
enough extra space to prevent overflow.

Fixed point arithmetic is also more precise because full pre-
cision results can be accumulated, and the total rounded only
once at the end of the loop. Similarly, most scalar multimedia
algorithms only specify saturation at the end of computation.
This is because it is more precise to saturate once rather than
at every step of the algorithm. For example, if we are adding
three signed 16-bit values:

Saturation at Every Step: 32760 + 50 — 20 = 32747

Saturation at Last Step: 32760 + 50 — 20 = 32767

Unfortunately, in SIMD architectures where the packed ele-
ments maximally fill the available register space, the choice is
either to be imprecise (compute with saturation at every step)
or loose parallelism (explicitly promote the input data to be
wider). Saturating arithmetic can also produce unexpected
results since, unlike normal addition, the order of operations
matters.

While the MIPS MDMX solution may seem elegant in prin-
ciple, it ignores the architectural side of actually making such
a design fast. The accumulator is a singular (unique) shared
resource, and as such has a tendency to limit instruction level
parallelism. We found that the existence of only a single accu-
mulator was a severe handicap to avoiding data dependencies.
On a non-accumulator but otherwise superscalar architecture
it is usually possible to perform some other useful, non data
dependent operation in parallel so that the processing can
proceed at the greatest degree of instruction level parallelism
possible. On MDMX all computations which need to use the
accumulator must proceed serially.
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Low Precision High Precision
Storage Computation Storage Computation
8U 12Sx16 8U 24Sx8
16S 24Sx8 16S 48Sx4
32S 48Sx4 - -
32FP 32FPx4 - -

Table 7: Supported Data Types - data types are divided
into storage (how it is stored in memory) and computation
(the width of arithmetic and other instruction elements)

Supported Data Types In order to avoid the problems
with MDMX, we suggest that a normal register file architec-
ture be used, with the entire SIMD register file made wide
(for example, 192-bits). Supported memory (load and store)
data types include those that we have seen to be of impor-
tance in multimedia for intermediate and storage formats:
8-bit unsigned, 16-bit signed, 32-bit signed and single pre-
cision floating point. The data types actually supported by
packed arithmetic operations are different: 12-bit signed, 24-
bit signed, 48-bit signed and single precision floating point.
Depending on the algorithm it may be desirable to utilize the
extra bits of a superwide register for either accumulation or
data parallelism. We suggest supporting two memory widths:
64-bits (high-precision) and 128-bits (low-precision), which
are unpacked to different computational widths. This also
allows for better matching with algorithms that have differ-
ent natural widths (e.g. add block, which works best with a
64-bit vector length).

Packed floating point data types present an interesting de-
sign choice - we can either operate on:

1. four single precision values in parallel (not using 16 of

the bits in each register element)

. four single precision values which have been expanded to
a 48-bit extended precision format

3. six single precision values, exactly filling a 192-bit register

The downside of the second solution is that SIMD results may
not exactly match scalar results. In addition, the latency of
many floating point operations depends heavily on the preci-
sion being computed, so a more precise operation is a higher
latency one. The third solution, although attractive for its
additional data parallelism, is problematic because it would
require its own set of data rearrangement instructions based
on a six element (rather than four or eight element) vector.
For our sample design, we chose the first option.

Supported Operations Because we have fundamentally
changed the treatment of multimedia data types, we also need
to reexamine which operations are still valuable in this new
light. Several instructions are no longer useful:

e average - the only useful average instruction data type
within our workload was for 8-bit unsigned values. Av-
erage is only really useful on existing multimedia archi-
tectures because it allows for computation without width



promotion. On a superwide register architecture average
instructions are unnecessary, since the requisite function-
ality can be synthesized through shift and add (opera-
tions which are useful in and of themselves), and there is
already sufficient precision.

e saturating arithmetic - saturation is done implicitly dur-
ing packing. Of course, max and min instructions can
always be used if an exotic type of clamping (e.g. 9-bit
signed in the IDCT) need to be supported.

e pack/unpack - performed implicitly with loads and stores

e truncating multiplication - truncation predefines a set
number of result bits to be thrown away. This primarily
has application when multiplying n-bit fixed point val-
ues with fractional components which together take up
a total of m-bits of precision. Unfortunately, this plays
havoc with precision since it is usually desirable to trun-
cate once, at the end of a fixed-point computation, rather
than at every step. Because all of the high precision com-
putational data types in our design are more than wide
enough to hold the product of two storage data types,
overflow is never a problem.

In the Appendix we present our proposed instruction set (97
instructions in total) for a superwide register SIMD multime-
dia extension. Unlike existing instruction sets which are fun-
damentally byte-based, this instruction set is centered around
quantities which are multiples of 12-bits wide. This can be
though of as four extra bits of precision for every byte of ac-
tual storage data loaded.

Example A small example of how to code for the pro-
posed architecture is shown in Figure 1. Note that load and
store operations specify both the computational and storage
data type.
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Figure 1: Superwide Registers Example

8 Summary

8.1 Useful Features

Many of the architectural features of existing multimedia in-
struction sets attempt to get around the limitations of tightly

packed SIMD registers. With a superwide register architec-
ture, many of the reasons for these features are eliminated,
creating a simpler overall design. Our summary distills our
conclusions about standard tightly packed SIMD, although
we note were there are differences introduced by a superwide
register approach.

8.1.1 Register File

e Sharing the floating point datapath is usually preferable
to the integer data path because there is no contention
with pointer and loop variables, and less chance of af-
fecting the critical path of the processor. If no existing
data path is to be shared by SIMD instructions, a 128-
bit wide data path is optimal for most multimedia algo-
rithms, 192-bits in the case of a superwide architecture.

e Multimedia algorithms can take advantage of large reg-
ister files - we suggest at least 16 128-bit registers, or 32
64-bit registers.

8.1.2 Data Types

e 8bit signed data types are not useful. 8-bit unsigned
data types are most often used for storage, rather than
computation.

e 16-bit signed data types are the most common; they are
the intermediate (computational) data type for video and
the storage (and sometimes computational) data type for
audio and speech algorithms. Unsigned 16-bit values are
not useful.

e 32-bit signed values are most often used for accumulation.
Unsigned 32-bit values are not useful.

e Single precision floating point (32-bit) is found in the
audio and 3D graphics (geometry) kernels. We did not
come across a multimedia algorithm which required dou-
ble precision (64-bit) floating point.

8.1.3 Integer Arithmetic

e Saturation prevents overflow in a fast, numerically ac-
ceptable way for SIMD operations, although with our
proposed superwide register architecture, saturation is
really not needed except when packing.

e Max and min operations are an efficient way to per-
form SIMD comparisons as well as clamping to arbitrary
ranges. They are useful at all computational data widths.

e Average instructions we found only to be useful in the
MPEG encode block match kernel for interpolation (8-bit
unsigned data type). They are less useful on a superwide
register architecture, because there averaging can be done
through an add and subsequent shift right by one bit
without unpacking to a wider width.
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Shift operations of all types are useful at all data widths
- they are critical for fixed point arithmetic, and also pro-
vide an efficient means for data realignment and division
and multiplication by powers of two.

Sum of absolute difference instructions are only useful
for MPEG encoding and other video encoding algorithms
which utilize motion compensation (block match kernel -
8-bit unsigned data type).

8.1.4 Floating Point Arithmetic

%approximation instructions are useful; through multi-

plication they can also estimate /z and % A full pre-
cision version of this instruction is not necessary, as the
Newton-Raphson method can always be used to improve
the precision of the approximation.

Exceptions and sophisticated rounding modes (as speci-
fied by the IEEE floating point standard) are not neces-
sary for multimedia; in any instance of where these might
be used it is possible to substitute a reasonable value that
will allow computation to continue unhindered, and still
produce an acceptable result.

8.1.5 Data Rearrangement

A full permute operation (as is found in AltiVec) is very
flexible, but is probably overkill for most multimedia
applications where data rearrangement patterns can be
handled by simpler data rearrangement operations. How-
ever, it should be noted that in AltiVec the vperm instruc-
tion serves double duty as a means for aligning unaligned
data loads, so its capabilities are basically free.

[Lee00] presents a novel set of simple data communica-
tion primitives which can perform all 24 permutations of
a 2x2 matrix in a single cycle on a processor with dual
data communication functional units. We endorse this
technique because any larger data communication prob-
lem can be decomposed into 2x2 matrices, and because
most multimedia data rearrangement patters are simple;
they can be done in a single cycle. [Lee00]’s instructions
are preferable to vperm because they do not require a
permutation control vector to first be loaded into mem-
ory, as their data communication patterns are statically
defined.

8.1.6 Memory Operations

Hardware support to efficiently handle memory accesses
that are not aligned are expensive in both area and tim-
ing [Thak99]. Ideally, data would always be aligned by
software (e.g. the compiler or run-time architecture). In
some situations it is impossible to guarantee alignment.
The strided load and store operations which we have pro-
posed would be in many cases inherently unaligned, mak-
ing hardware support a requirement. Also, for example,
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in the motion compensation step of MPEG video cod-
ing, unaligned memory access is needed depending on
the motion vector [Kuro98], as the addresses of the refer-
ence macroblock can be random depending on the type
of motion search being performed.

Allowing only aligned memory accesses (and synthesiz-
ing unaligned accesses in software) can potentially per-
form better than unaligned access implemented in hard-
ware. However, silently accepting an unaligned address
and forcing it to be aligned (as in AltiVec) is a bad idea
as it can allow alignment errors (typically very difficult
to track down because they are intermittent) to go un-
noticed. Instead, an exception should be raised when
an unaligned access occurs, or hardware should support
unaligned memory access directly.

8.2 Bottlenecks and Unnecessary Features

¢ Instruction primitives (such as the multiplication instruc-

tion primitives found in Sun’s VIS) are a bad idea, as
they decrease instruction decoding bandwidth, increase
register pressure, and are not useful in and of themselves.
Even if the atomic version of an operation may be slow,
it is preferable because it is much easier to upgrade an
instruction’s latency in the next revision of an architec-
ture than it is to implement entirely new instructions,
rendering the previous instructions and any related ones
useless.

Motorola’s AltiVec extension includes pixel pack and un-
pack instructions for converting between 32-bit true color
and 16-bit color representations which we did not find
useful in the BMKL. Similarly, AltiVec includes approx-
imations for logs and exps, which also went without ap-
plication in our workload; they are used in lighting algo-
rithms for 3D rendering.

Sun’s VIS includes edge instructions for dealing with
boundaries in 2D image processing, as well as array in-
structions for volumetric imaging. Neither type of in-
struction was found to be useful to the Berkeley multi-
media workload.

In general, a singular (unique) resource (such as a con-
trol register, or accumulator) is a potential bottleneck
if it will be highly utilized. In the case of Sun’s VIS
graphics status register (GSR), their bottleneck could
have been avoided if SIMD shift instructions and bet-
ter data communication primitives had been included.
As it was, the GSR ended up being used to synthesize
this missing functionality, beyond its original designed
purpose. The MIPS MDMX accumulator register which
we briefly discussed is another example of this type of
problem.

8.3 New Directions

In addition to analyzing how well current multimedia instruc-
tion set features map to multimedia workloads, we also pro-



posed two new directions for multimedia instruction sets.

e Because SIMD architectures apply the same operation to
all of the elements in a packed register, there are many
cases where data is not optimally organized as loaded
from memory. This occurs when working with 2D data
types, such as video frames; either row or column pro-
cessing will not be natively arranged in a way that is
amenable to SIMD style processing. Typically, we would
like to load M data elements into a vector register, with
each element being loaded starting at some base address
and separated from each other by a constant byte off-
set. Similar to scatter-gather operations from traditional
vector architectures, we proposed implementing strided
loads and stores for packed registers. These are speci-
fied in a way that is similar to how prefetch streams are
specified in AltiVec.

e Based on the observation that storage and computational
data types are almost always different, we proposed a su-
perwide register architecture, which eliminates much of
the explicit packing and unpacking overhead that typ-
ically makes SIMD processing progress at less than its
maximal degree of data parallelism. We found that this
fundamental change in how data types are handled had
significant implications for instruction set design.
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1 Appendix A

1.1 Workload

Figure 1 depicts a typical 3D rendering pipeline. Rasteriza-
tion was not part of the kernels studied due to the ubiquity
of 3D accelerator cards which offload this from the CPU, and
will continue to do so in the foreseeable future. Although
we expect that when enough CPU cycles become available,
much of the 3D rendering workload will be moved back onto
the CPU and done in software (for cost savings), the current
trend is moving in the opposite direction. First generation
3D accelerator cards took care of the rasterization stage, but
not 3D geometry computations. Current 3D accelerator cards
have also taken on the burden of geometry computations, in-
dicating that the growth in complexity of 3D environments is
outpacing that of CPU performance, despite the best efforts
of multimedia extensions.

Rendering Pipeline
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Figure 1: 3D Rendering Pipeline

1.2 Methodology
1.2.1 Programming with SIMD

Shared Libraries One of the simplest ways to im-
prove application performance through SIMD instructions is
to rewrite shared system libraries to utilize them. FExisting
applications can immediately take advantage of the new in-
structions without recompilation. Many vendors also make
highly optimized SIMD multimedia libraries freely available
for incorporation into new applications. Although a library
based approach is simple, the restriction of media processing
hardware enhancements to system libraries also limits poten-
tial performance benefits. In the case of rewriting existing
libraries, an application’s performance will not improve un-
less it calls the appropriate system functions. Even if the
appropriate functions are used or an application is rewritten
to use them, data must be formatted as specified by the API
rather than as it might be most efficiently organized for a
particular application. [Lee96] The authors of [Bhar98] found
that enhancing existing applications with predefined libraries
of multimedia procedures was not the optimal way to utilize
the MMX instruction set. Applications which are truly able
to exploit multimedia instructions often require significant re-
structuring, as well as hand coding of the precise functions
needed. It was found that too often there was a mismatch
between the functions available in a library and what the tar-
get application required.
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Macros Macros are high level language “wrappers”
which programmers utilize as function calls within their C
or C++ code. Each multimedia instruction can be used as if
it were a C function call. The primary potential advantage to
this approach is that the compiler rather than the developer
performs machine specific optimizations such as instruction
scheduling and register allocation. The added level of abstrac-
tion also has the benefit that if the code needs to be compiled
for a platform without the media extensions, the macros can
simply be replaced with their high level language equivalents.
Despite the fact that macros are used within a high level lan-
guage, [Chen96] found that programming C applications with
multimedia instruction macros was difficult, likening it to typ-
ical DSP (assembly) coding. Additionally, contrary to the be-
lief that macros are superior to other programming methods
because the compiler can schedule instructions and register al-
location, [Allen99] found that upon examining output of the
SPARCompiler (v5.0), that instruction scheduling of the ex-
panded macro code was poor. In addition, macros were found
to inhibit the compiler’s more aggressive optimizations.

Compilers Ideally, high level language compilers would
be able to systematically and automatically identify paral-
lelizable sections of code and generate the appropriate SIMD
instructions. SIMD optimizations would then not just be lim-
ited to multimedia applications, but could be more generally
applied to any application exhibiting the appropriate type of
data parallelism. Although compilers which can automati-
cally identify and take advantage of situtations where SIMD
instructions can be used were until recently mostly limited to
experimental and research systems [SUIF]|, commercial com-
pilers which claim to provide this functionality are now avail-
able [Code00],[Intel00].

Subword operations typically support saturating arith-
metic, where as standard declarations of integers in high level
languages implicitly specify modulo addition. The lack of
languages which allow programmers to specify data types
and overflow semantics at variable declaration time has hin-
dered the development of compiler support for multimedia
instruction sets. Compilers should be able to determine sub-
word groupings on the basis of data parallelism and depen-
dency analysis, but modern dependence analysis techniques
are not suited to having multiple quantities in a single reg-
ister [Cont97]. Nearly all traditional compiler optimizations
are based on tracing which values are available and when.
[Fish98] suggests that symbolic tracking of arbitrary masked
bit patterns within a register is appropriate for partitioned
operations.

Optimizations that have been devised for parallel program-
ming often apply in a natural way to SIMD programming.
This is demonstrated in [Cheo97|, which applies the SUIF
vectorizer to generate vector operations. The SUIF (Stanford
University Intermediate Format) compiler, developed by the
Stanford Compiler Group, is a free infrastructure designed to
support collaborative research in optimizing and parallelizing
compilers [SUIF]. Because the SUIF vectorizer only performs
vectorization on parallel loops, generating infinite length vec-



tor operations, Sun VIS code is generated by strip mining
these vector operations into loop iterations of fixed sizes. In
order to strip mine a loop for SIMD processing, the loop must
be strictly parallel, and therefore without any iteration-borne
dependencies. In addition, it must be determined how densely
the data can be packed. In the realm of multimedia this is not
an easy thing to do, as there are often soft boundaries on pre-
cision, with the amount of tolerable noise being both difficult
to quantify and highly dependent on the type of application.
To be coded efficiently, all of the requisite operations within
the body of a strip mined loop must be supported for packed
data. Data must often be properly arranged and aligned to
allow for data parallel processing. Current SIMD instruction
set support is largely limited to those widths and operations
that the designers expected would be used in targeted multi-
media applications. [Luml97]

Assembly Language The efficient programming of mi-
croprocessors with multimedia extensions can only be at-
tained if experts tune their software using assembly language,
just as in DSP approaches [Kuro98|. Although this method is
more tedious and error prone than the other methods that we
have looked at, it is available on every platform, and allows for
great flexibility and precision when coding. Although many
previous studies of multimedia instruction set performance
have measured the optimized libraries provided by instruc-
tion set vendors, we chose instead to code each kernel for
every platform in pure assembly language ourselves. We felt
that differences in programmer ability and time spent coding
between the vendors’ libraries could potentially skew results,
and so a single programmer coded all of our kernels for a
roughly equal length of time. It was our goal to measure in-
struction sets, and not the intermediate programmers or tools,
leading us to chose direct assembly language coding for the
optimized codes examined in our study.

1.2.2 Programming Experience

Numerical Methods In order to program with SIMD
instructions it is useful to review low level concepts that are
easily overlooked or forgotten when programming in a high
level language like C or Java, but are of central importance
to a correct implementation in assembly language. There are
many heuristics for performing operations quickly in assembly
language. Additionally, if a needed operation is required by an
algorithm but not supported directly by an instruction set it
is unusually possible to synthesize the needed operation. The
only costs are a larger number of instructions and potentially
greater register pressure and execution dependencies.

The meaning of the 2V states of an N-bit binary word
depends entirely on its interpretation. For an unsigned N-
bit U(a.b) format fixed point number, the variable, a, is the
number of significant bits to the left of the binary point in an
N-bit value, and b is the number of bits to the right. Signed
two’s complement format numbers are denoted S(a.b), where
a =N —b—1 and b is the number bits to the right of the bi-
nary point. We discuss the properties of fixed point numbers
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are discussed in greater detail later. Floating point represen-
tations offer greater dynamic range in the same number of
bits as natural binary or fixed point representations. This is
accomplished by using a format similar to scientific notation
in decimal. Bits of precision are traded to extend the range
of representable values. Block floating point is a scaling tech-
nique in which a single exponent is used for all the data in a
block of fixed point integer data. This originated as a soft-
ware technique (as did floating point), but some digital signal
processors (DSPs) support this mode directly in hardware. It
has the advantage of being less expensive in terms of hardware
than floating point, as well as faster.

Integer Values The meaning assigned to any of the 2%V
states of an IN-bit binary word depends entirely on its inter-
pretation. Common binary representations include unsigned
integers, unsigned fixed-point rationals, signed two’s comple-
ment integers and signed two’s complement fixed-point ratio-
nals. Rational numbers are those numbers expressible as a/b
where a and b are both members of the set of integers, Z. Like
decimal (base 10) representations of rational numbers, binary
(base 2) representations assign a weighted power of the re-
spective base to each position of a number. Although we do
not usually think of a decimal number as having a limited
number of positions, binary numbers on computers have a
limited width. Consider an unsigned 8-bit binary fixed point
number format, which we will designate U(6.2):

bs b, by b, b, by b, b,
[1]0]

o|o|1|o$1|o\

As is conventional with decimal numbers, the above binary
number has been written with its most significant bits to the
left, and its least significant bits to right. The value of an
unsigned N-bit U(a.b) format fixed point number, z, is given

bN—1

by:
= (%) n;) 2", (1)

The variable, a, is the number of significant bits to the left
of the binary point in an N-bit value, and b is the number of
bits to the right. Like decimal (base 10) arithmetic, binary
(base 2) arithmetic contains an implicit binary point indicat-
ing the boundary between positions representing powers of
the base greater than zero and those signifying powers of the
base less than zero. Unsigned integer (or "natural binary")
representations are a special case of U(a.b) format fixed point
numbers where b = 0. Each bit, by, has a weight of 2*, so the
value of the above example binary number is 34.5.

Two’s complement is a method for representing signed
numbers which simplifies the underlying hardware implemen-
tation on digital computers. The two’s complement of a bi-
nary number, z, is given by taking the omne’s complement
(negating all the bits) and adding one. We will denote signed
two’s complement format S(a.b), where a = N —b—1 and b
is the number bits to the right of the binary point. The value
of an N-bit S(a.b) format number, x, is given by:



1 b N-2
€Tr = <§> [—QN_lxN_l + Z 2n$n (2)
n=0

We will use the notation X (a.b) to note when a rule is
applicable to either U(a.b) or S(a.b) format numbers. Fixed
point arithmetic has the following fundamental rules [Yates]:

1. Unsigned Wordlength - the number of bits required to

represent U(a.b) is a + b

. Signed Wordlength - the number of bits required to rep-
resent S(a.b) isa+b+1

Unsigned Range - the range of a U(a.b) fixed-point num-
beris 0 <z < 2% —27°

. Signed Range - the range of an S(a.b) fixed-point number
is —2¢ < g <2¢_2b

Addition Operands - the binary points of two numbers
must be aligned in order for addition or subtraction to
be performed. X(c.d) + X(e.f) is only valid if ¢ = e,
and d = f.

Addition Result - the sum of two N-bit binary numbers
requires N + 1 bits

Unsigned Multiplication - U(ay.b1) x U(az.b2) = U(ay +
ag.bl + bg)

Signed Multiplication - S(a1.b1) x S(as.b2) = S(a1 +az+
1.b1 + b2)

Shifting - a shift can either be considered a scaling opera-
tion, moving an entire binary value along with its binary
point:

X(a.b)>»n=X(a+n.b—n)
X(a.b) €< n=X(a—n.b+n)

or a multiplication/division by a power of two:

X(a.b)>»n=X(a—n.b+n)
X(ab)<n=X(a+n,b—n)

Floating Point  Floating point representations offer
greater dynamic range in the same number of bits as natural
binary or fixed point representations. This is accomplished
by using a format similar to scientific notation in decimal.
Bits of precision are traded to extended the range of repre-
sentable values. The IEEE 754 floating point standard is used
by almost all modern floating point hardware. The formats
associated with it are defined in Figure 2.

The IEEE standard assigns the largest and smallest num-
bers supported by the standard to be +3.4 x 103, and
4+1.2 x 10738 respectively for single precision, leaving some
bit patterns free for special values:

1. £0 - all of the mantissa bits and exponent bits being Os

25

+o00 - all of the mantissa bits 0s and all of the exponent
bits 1s

NaN - not a number

group of small un-normalized numbers 1.2 x 10738 to
+1.4 x 1074

Double precision IEEE floating point extends single precision
by adding extra bits to the exponent and mantissa extends
the range: +1.8 x 101398 to £2.2 x 107308 |

Block Floating Point  Block floating point is a scaling
procedure in which a single exponent is used for all the data
in a block of data. This originated as a software technique (as
did floating point), but some digital signal processors (DSPs)
support this mode directly in hardware. It has the advantage
of being less expensive in terms of hardware than floating
point, as well as faster.
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0x1020 Mantissa 7
0x101C Manti ssa_6
0x1018 Manti ssa_ 5
0x1014 Manti ssa_4
0x1010 Manti ssa_3
0x100C Manti ssa 2
0x1008 Mantissa_ 1
0x1004 Manti ssa_ O
0x1000 Shar ed Exponent

Figure 3: Example Block Floating Point Memory Map

To visualize how this works, consider the memory map
shown in Figure 3, which diagrams how eight block floating
point number and their shared exponent might be laid out
in memory. Floating point numbers have a greater dynamic
range because the distance between numbers gets larger as
the magnitude of the numbers get larger. The disadvantage
of block floating point is that all numbers must share the
greatest exponent of all the actual values. The mantissas
must be scaled to match this shared exponent, but because
there is a finite amount of precision in the mantissa, precision
can be lost. Block floating point only works well if a block of
data can have a wide possible range of values, but values are
clustered for a particular computation.

Endianness The memory order of bytes or endianness
of an architecture is an important consideration for assembly
language programming, especially when dealing with packed
data. Consider what happens when loading the first eight
pixels of an array of 8-bit greyscale image data into a 64-bit
multimedia register (Figure 4). The arrows in Figure 4 in-
dicate increasing memory addresses. Image data is normally
laid out as a 2D array, with spatially adjacent row elements

adjacent in memory. The first element in the array is in the
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Figure 2: IEEE 754 Floating Point Formats

upper left corner of the image. Machine endianness is impor-
tant because this determines the order in which packed bytes
are placed into registers.

63 56 55 48 47 40 39 32 31 2423 16
41 ] 43 ] 62 |139|188|205|195|191|
byte # 7 6 5 4 3 2 1 0
Little Endian

189/ 62 43 4

.120 73 57 69 68 4

91 55 58 52 53 51

81 M. 80 54 47
103 94 75 B 143 47 49 63 5655 4847 4039 3231 2423 1615 8
117 65 59 57 191195 [205 [ 188 [139 [ 62 | 43 | 41 |
137127 82 82 58 47 52 byte # 0 1 2 3 4 5 6 7
.129 122112 61 53 Bi g Endi an

Figure 4: Effect of Byte Order with Image Data

Synthesizing Multiply/Shift Multiplication of fixed-
point values by integer and fractional constants can be simu-
lated with right /left shift and add operations. Likewise, shifts
can be simulated with multiplication and division. None of
the multimedia extensions offer partitioned integer divide in-
structions, so only left shifts can be simulated with current
instruction sets. It is also useful to keep in mind that mul-
tiplication by a power of 2 on a platform without left shift
operations can be decomposed into a series of additions. If
the desired power of two is small this can be a performance
win if other operations can be done at the same time to com-
bat the added data dependencies. We found this useful on
Sun’s VIS when bit-wise left shifts were needed.

Synthesizing Absolute Value The absolute value of
an S(a.b) integer, X, can be synthesized as follows:

1. X — Xpos, 0— X — Xneg

2. maz(Xneg, Xpos) — Xpos

Floating point absolute value can be performed by AND’ing
a single precision value with Ox7FFFFFFF. This clears the sign
bit.

Synthesizing Floating Point Sign Negation Float-
ing point negation can be performed by XOR’ing a single
precision value with 0x80000000. This negates the sign bit.

Newton-Raphson Method The Newton-Raphson for-
mula for finding the root of an equation is defined:

= f(@:)/f (w1) (3

Tiy1 = 4
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Utilizing the above method, it is possible to generate equa-
tions for increasing the precision of approximations to 1/a:

mlzmo—(a-mg—mo) (4)
as well as 1/sqrt(a):
21 =20 —(05-a-25 —0.5 -29) =0.5-20-(3.0—a-a)) (5)

Both the reciprocal and reciprocal operations are common
in floating point 3D geometry routines. In the above equa-
tions, xg represents the first approximation, and z; is the it-
eratively higher precision result. This method approximately
doubles the number of significant digits for each iteration if
the initial guess is close. [Intel99b]

1.2.3 Performance Counters

Many architectures include a small number (2 - 4) of per-
formance counters. These are generally wide (up to 64-bits)
registers which are incremented when user selectable archi-
tectural events occur. The types of events vary greatly, and
are inherently architecture specific, but can be roughly cate-
gorized as follows:

branch prediction - conditional

branches

predicted /mispredicted

clock cycles - measures a duration in clock cycles

floating point - types/counts of floating point instructions ex-
ecuted

instructions - executed, retired
integer - types/counts of integer instructions executed
interrupts - number of external (hardware) interrupts

L1 T cache - misses, hits, lines in, lines out

L1 D cache - misses, hits, lines in, lines out

L2 cache - misses, hits

memory bus - snoop statistics, bus transaction statistics,

memory controller - memory requests, unaligned data refer-
ences

memory ordering - memory ordering instructions

SIMD - types/counts of SIMD instructions executed



AMD Athlon DEC Alpha 21264A Intel Pentium III Motorola G4 Sun UltraSPARC IIi
Counters #(width) 4 (48-bit) 2 (20-bit) 2 (40-bit) 4 (32-bit) 2 (32-bit)
branch predicition Vv 4 Vv
clock cycles 4 v 4 Vv vV
floating point Vv Vv
instructions v vV Vv Vv Vv
integer
interrupts 4 Vv
L1 I cache V4 V4 Vv vV
L11TLB Vv Vv Vv
L1 D cache V4 4 Vv v
L1 D TLB v Vv
L2 cache V4 v Vv Vv
memory bus 4 4 Vv Vv
memory controller V4 4
memory ordering 4 4 Vv
SIMD v v
stalls V4 4 Vv vV

Table 1: Performance Counter Comparison

stalls - reservation stations full, pipeline stalled, instruc-
tion decoder empty
TLB - misses, hits

Table 1 compares the types of events that can be counted
on the platforms in this study. Any counter may be able to
count any event, or each may cover a subset of those available.
Some architectures allow for counting to be toggled based on
the system state (user, supervisor) or when a marked process
is executing. Counter values indicate the number of times
events occur within a section of code, but are not sufficiently
accurate to determine precisely which instruction causes what
events. They give a general idea of where stalls or other de-
lays are coming from, but because they measure all events
the statistics from any profiling code are also necessarily in-
cluded. Careful measurement of such overheads sometimes
makes it possible to at least partially mask such effects. In
addition, measurements on processors which feature out of
order execution, may include count events caused by instruc-
tions preceding the counter read or miss events caused before
it, in program order.

All of the microprocessors studied include performance
monitoring counters. Although performance counters were
sometimes used to guide our optimizations, their primary pur-
pose was to be nearly cycle-accurate timers with which to
measure the very short execution times of the kernels in the
BMKL.

1.2.4 C Compiler Flags

Table 2 details the specific compiler flags used on each plat-
form to compile the C reference version of the BMKL. Note
that in the case of the AMD Athlon, Athlon specific instruc-
tion scheduling was not supported by v1.1.3 of PGCC.

1.3 Processors and Instruction Sets

Table 3 contrasts the operations provided by each instruction
set. Table 4 compares the SIMD functional units available
on each architecture studied. Any overlap with other scalar
integer or floating point functionality is noted.

1.4 Analysis
1.4.1 Overall Instruction Mix

Figure 5 depicts the overall instruction mix for each architec-
ture. This data is only for the code within the BMKL kernels,
and does not include instructions executed by the rest of each
application.

1.4.2 SIMD Operation Types per Kernel

Table 5 lists the SIMD instruction set coverage of each type
of functionality for the kernels and architectures studied. As
an example of how to read the table, the accelerated (SIMD)
Intel Pentium III kernel consists of 19.2% add/subtract inte-
ger SIMD instructions (of the total dynamic instruction count
for that kernel).

1.4.3 Multimedia Data Types

Table 7 breaks down the distribution of data widths for SIMD
instruction on a per-kernel basis. Table 6 lists the overall dis-
tribution of SIMD instructions executed based on the data
type used by each instruction and categorized according to the
type of operation. These counts are for the entire workload,
although SIMD instructions are only employed by the opti-
mized kernels in the BMKL. Data types are specified as either
sign-independent (e.g. 2’s complement addition), (U)nsigned,
or (S)igned N-bit numbers.
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Processor Compiler Flags

AMD Athlon PGCC v1.1.3 -0O6 -march=pentiumpro -finline-functions -ffast-math -mpentiumpro -fomit-frame-pointer
DEC Alpha 21264 Compaq C v6.1-011 -arch ev6 -fast

Intel Pentium III PGCC v1.1.3 -0O6 -march=pentiumpro -finline-functions -ffast-math -mpentiumpro -fomit-frame-pointer
Motorola 7400 (G4) MacOS X DP3 gcc -O4 -finline-functions -ffast-math -fomit-frame-pointer

Sun UltraSPARC IIi | Workshop Compilers v5.0 | -fast

Table 2: C Compilers and Optimization Flags

o
oQ ca [0} < > o —~
$3 | 8| b | £ | B s | 9| B | s | Bz ]| ¥
3 53 e 5 & £ = 7 2 a c
=3 52 < = s 5 3 o = 5
AMD Athlon 8,16 ug,u16 ug,u16 ug,u16 U16,S16 16,32,64 us S8,S16 FP FP 16 8,16,32 516,532 ug,u16
32,FP S8,S16 FP FP S32,FP 16,32,FP S16,S32
DEC 21264A U8,S16 uUs 16,32 uUs
Intel Pentium 111 8,16 ug,u16 ug,u16 ug,u16 U16,516 16,32,64 us S8,S16, FP FP 16 8,16,32 $16,S32 ug,u16
32,FP S8,S16 FP FP S32,FP 32 16,32,FP 516,532
Motorola G4 8,16 U8,U16,U32| U8,U16,U32 [ U8,U16,U32 ug,ui6 8,16,32 u8,u16,uU32 FP FP 8 8,16,32 516,532 us,uie
32FP $8,516,S32 | S8,S16,S32 | S8,516,S32 $8,S16 $8,516,S32 16,32,FP U32,S32
Fp Fp
Sun UltraSPARC I1i 16,32 U8,S16 U8 $16,S32 8 S32 U8,U16

Table 3: Data Types and Operations Supported - Data types are specified as ({Unsigned, Signed}) N-bit integers or
single precision (32-bit) floating point (FP). SAD refers to the sum of absolute differences operation.

| Processor | SIMD Functional Units - Instruction Classes Executed
AMD Athlon FADD Unit - x87 FP add/sub, MMX Integer add/sub/logic/shift, 3DNow! add/sub/logic
[AMD99][AMDO0] FMUL Unit - x87 FP multiply, MMX Integer add/sub/logic/shift/multiply, 3DNow! multiply/~ 1 /~ ﬁ
FSTORE Unit - x87 FP load/stores, 3DNow! loads/stores
DEC 21264 Integer Unit 0 - any integer or MVI instructions
[Comp00] Integer Unit 1 - any integer or MVI instructions
Intel Pentium III Unit 0 - Integer add/sub/logic/multiply, x87 FP add/sub, MMX add/sub/logic/multiply, SSE multiply/+/z/divide
[Intel99a][Kesh99] Unit 1 - MMX add/sub/logic/shift, Intger add/sub/logic/multiply/jump, SSE shuffle/add/sub/logic/~ L /~ ﬁ
Unit 2 - loads (all types)
Unit 3 - stores (all types)
Unit 4 - stores (all types)
Motorola G4 Load/Store Unit (LSU) - all load/store instructions, data transfer between register files
[Moto00] Vector Permute Unit (VPU) - pack/unpack/merge/splat/permute/select
Vector ALU (VALU) - three subunits, only one new sub-unit instruction can start each cycle:
Vector Simple Integer Unit (VSIU) - add/sub/max/min/compare/avg/rotate/shift/logical
Vector Complex Integer Unit (VCIU) - multiply/divide/sum across (reduce)
Vector Floating Point Unit (VFPU) - all vector floating point operations
Sun UltraSPARC IIi | Graphics Multiplier Unit - VIS multiply/compare/pack/pixel distance
[Norm98][Sun97] Graphics Adder Unit - VIS add/sub/data align/merge/expand/logic

Table 4: Multimedia Functional Units
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SIMD Integer SIMD Floating Point SIMD Scalar
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< e o o) s S B<d & < |5 |<S| o o > S o bod S S 3 £ [ e}
~ |AMD Athlon 14.1%) 7.1% 0.9%| 18.1%| 20.2%| 0.9%| 7.1%]| 30.8%) 0.9%
§ DEC 21264A 9.8%| 10.6%, 79.2%) 0.3%
@ |intel Pentium |11 14.2%| 7.1%) 0.9%| 18.1%| 20.3%| 0.9%| 7.1%] 26.9% 4.5%)
€ [MotorolaGa 6.5%) 6.5%) 30.5%)| 18.6%)| 5.5%| 12.9%]| 18.7%) 0.8%]
< Sun UltraSPARC Ili] 17.9% 17.9%) 15.2%| 25.6%| 1.0%| 8.9%| 12.4% 1.1%)
AMD Athlon 12.8%| 0.4% 0.4% 10.3%| 0.7% 0.6%| 9.3%| 22.7%| 1.2%) 41.8%)
% € DEC 21264A 2.9% 5.1%) 92.0%
S @|Intel Pentium I11 11.9%| 0.3%) 0.3%) 9.6%| 0.7% 0.6%| 8.7%| 21.2%| 1.1% 35.8% 9.8%)
@ =[Motorola G4 13.7%| 0.2%) 0.1%| 8.5% 0.3% 19.9%| 17.9%| 1.0%| 4.0%]| 33.9% 0.5%
Sun UltraSPARC I1i]  3.0%) 6.6%| 4.0%) 7.2% 23.0%| 23.2%)| 0.4%)| 0.4%]| 31.8% 0.4%)
% AMD Athlon 4.0%) 8.1%) 8.1%| 0.0%| 18.2%| 16.3%| 18.1%| 4.1%]| 23.1%)
DEC 21264A 26.8%)| 73.2%)
'; Intel Pentium I11 2.7% 5.4% 5.4%) 27.2%| 3.2%| 16.3%| 5.7%]| 33.9%
O [MotorolaG4 0.3% 3.6% 7.3%) 22.7%| 4.1%)| 0.8%)| 14.7%]| 42.0%| 0.7%]| 3.8%
Sun UltraSPARC Ili 29.8%)| 70.2%)
§ AMD Athlon 12.0% 2.0%) 12.0% 14.0% 0.0%| 26.0%| 22.0%| 1.3%| 6.0%] 4.0% 0.7%)
DEC 21264A 1.7%) 97.9%| 0.4%
(? Intel Pentium 11 12.1%) 2.0% 12.1%) 13.4%] 0.0%| 26.2%| 22.1%| 1.3%)| 6.0%| 4.0% 0.7%)
% Motorola G4 21.4%) 5.4% 21.4%) 14.3%) 25.6%| 2.4%)| 0.6%| 1.8%| 4.8% 2.4%)
O |Sun UltraSPARC I1i] 28.3%) 9.4% 28.3%) 15.0%| 3.1% 2.4%| 4.7% 8.7%)
AMD Athlon 19.2%) 3.7%) 9.6%) 9.6%) 0.1%| 24.1%| 19.6%| 1.5%| 8.0%| 4.5%
. |[DEC21264A 100.0%
8 Intel Pentium 111 19.2%| 3.7% 9.6%, 9.6%) 0.1%| 24.1%| 19.6%| 1.5%| 8.0%| 4.5%)
Motorola G4 24.5%) 3.8% 13.2% 9.4%) 30.4%| 2.6%) 3.5%] 12.2%) 0.5%)
Sun UltraSPARC Ili] 30.1% 5.7%) 23.0%) 19.0%| 9.0%) 57%| 6.9% 0.5%
AMD Athlon 14.4% 8.9%] 0.0%| 12.6%| 13.1%) 12.0%] 39.0%
DEC 21264A 42.6%| 57.4%,
E Intel Pentium 11 11.7%) 7.2%| 0.0%| 16.7%| 13.1% 11.4%] 40.0%)
Motorola G4 4.0%] 3.2%) 17.5%| 8.1%)| 0.0%]| 12.7%]| 38.9%| 15.6%[ 0.0%)
Sun UltraSPARC I1i 53.9%| 46.1%
AMD Athlon 19.7%) 4.1%]| 10.0%) 12.0%] 0.1%| 22.0%| 19.2%| 1.0%| 6.6%| 5.2%)
— |DEC 21264A 100.0%
8 Intel Pentium 111 19.7%| 4.1%| 10.0%, 12.0% 0.1%| 22.0%| 19.2%| 1.0%| 6.6%] 5.2%
— |MotorolaG4 23.9%) 3.5%| 3.5%| 9.6% 8.7% 32.8%| 2.6%| 0.4%)| 3.3%]| 11.3% 0.4%)
Sun UltraSPARC Ili] 26.8% 3.3%] 12.5%) 19.2%]| 11.7%) 10.0%] 15.8%) 0.6%
= AMD Athlon 7.9%) 7.9%| 15.9%) 0.2%| 0.5%| 15.8%[ 7.9% 36.1%) 7.9%)
DEC 21264A 4.2% 91.8% 4.0%)
2 Intel Pentium 11 7.9%) 7.9%| 16.0% 0.2%| 0.5%| 15.8%| 7.9% 36.0% 7.9%]
s |MotorolaG4 11.6%) 23.3%| 11.6% 0.2%] 53.1% 0.2%]
Sun UltraSPARC I1i]  5.8%) 11.7% 0.0%| 11.9%| 0.0%| 0.0%] 47.2%)| 23.3%)
) AMD Athlon 13.9% 13.9% 0.3%) 0.3%| 14.0%| 17.8% 13.9%] 25.7%
z |DEC 21264A 100.0%
@ |[Intel Pentium 111 13.5%) 13.5%) 0.3%) 0.3%]| 13.5%| 17.2% 13.5%]| 24.9%) 3.4%)
2 [Motorola G4 6.1% 6.19% 28.6%| 8.6% 6.1%] 44.1%) 0.3%
= Sun UltraSPARC I1i] 14.5% 14.5% 21.9%| 18.7%) 15.1%] 13.5% 1.8%)
© AMD Athlon 3.3%| 13.1% 3.3% 22.9%| 0.0%]| 13.1%| 3.3%[ 3.3%[ 3.3%| 21.5%| 13.1%| 0.0%)
N IDEC 21264A 26.6%| 71.2%]| 2.2%|
E Intel Pentium I11 3.0%| 6.0% 6.0%| 3.0%| 12.0%| 0.0%| 6.1%]| 3.1%| 3.0%| 6.0%| 24.7%| 24.1%| 3.0%)
S, Motorola G4 6.0% 3.0% 12.0%) 3.1%| 3.1%| 3.0%| 12.0%]| 31.9%| 25.4%)| 0.4%)
Sun UltraSPARC Ili 55.7%| 44.3%
£ .,|/AMD Athlon 18.9%) 3.4%) 6.9% 13.7% 0.0%| 24.0%| 15.5%| 0.9%| 6.9%] 9.8%
o 'B|DEC 21264A 100.0%
; g Intel Pentium I11 18.7%) 3.4% 6.8% 13.6% 0.0%| 23.8%| 15.3%| 0.9%)| 6.8%| 9.7% 0.9%
S <|MotorolaG4 23.7%) 3.6% 7.3%, 7.3%) 47.7%| 2.1%| 0.0%| 2.2%| 6.0%) 0.0%
@l Sun UltraSPARC I1i]| 43.5% 12.2%| 32.1%) 3.3%[ 0.9%| 0.0%| 0.9%] 4.0% 3.1%]
£ »|AMD Athlon 20.5%) 3.7%) 7.4%) 13.0%] 0.0%| 24.2%| 14.0%| 0.0%| 6.5%] 9.7% 0.9%
T ‘$|DEC 21264A 100.0%
,’__, g Intel Pentium I11 20.5%) 3.7% 7.4% 13.0% 0.0%| 24.2%| 14.0%| 0.0%| 6.5%] 9.7%| 0.9%)
S B|Motorola G4 24.1%) 3.7%) 7.4% 7.4%) 44.9%| 2.1%[ 0.0%| 2.3%| 8.0% 0.0%]
& Sun UltraSPARC I1i] 43.2% 12.9%) 31.8%) 2.5%| 0.9% 0.9%] 4.7% 3.1%|
v 5|AMD Athlon 8.4% 2.4%) 8.4% 1.2% 0.0%| 9.6%| 17.6%| 0.0%) 51.2%) 1.2%)
2 £|DEC 21264A 100.0%
g E Intel Pentium |11 8.4%) 2.4%) 8.4% 1.2%) 0.0%| 9.6%| 17.6%| 0.0%| 0.0%| 51.2% 1.2%)
§ '15 Motorola G4 10.1% 6.7% 6.7% 3.4% 16.8%| 6.7%| 0.0%| 3.4%| 42.8% 3.4%
Sun UltraSPARC I1i]| 17.4% 1.2%) 17.4% 14.3%| 8.7%| 4.4%| 2.5%| 33.5% 0.6%)
o [AMD Athlon 7.8%) 1.3% 7.8% 0.6%) 0.0%]| 16.2%| 16.2%[ 0.0% 49.4% 0.6%
=3 E DEC 21264A 14.8%| 84.9%) 0.3%
% “Z|Intel Pentium |11 7.7% 1.3%) 7.7% 0.6%) 0.0%| 16.0%| 16.0%| 0.0%| 0.0%] 48.1%, 2.6%
% >[Motorola G4 17.3%) 1.1%) 8.7% 1.4%) 32.5%)| 8.7%| 0.0%| 5.8%]| 24.5%) 0.0%]
Sun UltraSPARC 11i] 29.8% 1.2%) 28.6%) 15.5%| 7.1%| 1.2%| 2.4%| 14.3% 0.0%
» |AMD Athlon 18.4% 2.2%) 17.4%| 0.1%]| 11.0%| 35.3%| 1.0% 14.5%
B ,|DEC 21264A 10.2%)| 89.8%)
g =lIntel Pentium |11 2.3%) 12.4%) 2.3% 9.0%| 0.1%| 30.8%| 18.3%| 1.1% 15.0%) 8.9%)
& U [Motorola G4 2.6% 8.1% 2.6% 10.5%) 30.5%)| 26.4%)| 0.5%| 2.6%]| 15.4% 0.7%)
Sun UltraSPARC I1i 13.8%| 86.2%
e |AMD Athlon 9.6%| 2.4% 1.2%| 20.3%| 0.0%]| 35.9%| 16.7%| 3.6%[ 3.6%| 6.7%
5 |DEC 21264A 15.1%)| 84.9%)
B [Intel Pentium 11 9.5%| 1.2%) 1.2%) 19.1%j 37.9%| 16.7%| 3.6%| 3.6%| 7.4%
E Motorola G4 1.4%) 1.4%) 23.1%) 33.0%)| 5.6%)| 4.4%)| 16.7%]| 14.2% 0.1%
Sun UltraSPARC Ili 14.9%)| 85.1%)
AMD Athlon 6.8%| 0.1%| 0.0%| 1.1%]| 1.2%| 2.3%| 2.6%| 1.4%]| 4.4%| 3.3%| 0.0%| 0.0%| 0.9%| 0.0%| 2.3%]| 0.2%[12.9% [15.8%| 1.8%| 4.6%]34.3%| 3.3%| 0.7%
= |DEC 21264A 1.2%| 0.4% 1.5% 67.0%[29.2% | 0.8%
E Intel Pentium |11 7.8%| 0.1%| 0.0%| 1.3%| 1.4%| 2.6%| 3.0%| 1.6%| 2.6%| 0.9%| 0.0%| 0.0%| 1.0%| 0.5%| 3.2%]| 0.2%[11.8%[15.8% | 1.6%| 4.0%]|32.1%| 3.7%| 4.8%
O |Motorola G4 5.6% | 0.0%| 0.0%| 0.5%]| 3.8%| 1.1% 0.7%] 1.1%| 1.4%| 0.0%| 0.0%| 0.7%]| 0.0%| 3.7%] 0.0%[16.8%[10.2%| 1.0%| 7.6%]36.0%| 9.6%| 0.4%
Sun UltraSPARC || 6.0% 3.5% | 1.7% 3.6% | 2.0% 9.7%{10.2% | 0.3%| 1.5%]38.5%|22.6%| 0.4%

Table 5: Multimedia Functionality - each square lists the percentage of dynamic instructions a given type of SIMD
operation represented for each kernel. Kernel names are given in the left most column, which each kernel subdivided into
rows of results for each of the five platforms studied. A grey square indicates functionality not avalible with a given instruction
set, while a white square indicates an available operation Wh‘écél was not utilized.
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Figure 5: Overall Instruction Mix

1.4.4 Instruction Set Coverage

Figure 6 compares the coverage of the SIMD instructions ex-
ecuted by each architecture within the BMKL code.

1.5 More Kernels

In the next section we use our experience coding each of the
sixteen kernels with five different multimedia extensions to
determine: 1) existing architectural features that are useful,
2) features that have been implemented, but don’t appear
to be useful, and 3) significant bottlenecks in current multi-
media architectures. These kernels are only those which are
not discussed in the main body of the paper. Illustrating
our discussion are code fragments both from the original C
source code of each kernel algorithm, as well as the different
SIMD implementations. The code fragments consist of a few
of the key central lines of code from a given kernel. This
gives an idea about the types of operations and data types
used. The data types of all of the variables in our sample C
code are specified in a platform independent way such that
the prefix indicates the type: INT: signed integer, UINT: un-
signed integer, FP: floating point, followed by N, the number
of bits. The complete original C source code for each ker-
nel can be found in Appendix B. Source code for the SIMD
implementations of the BMKL are available on the web at
http://www.cs.berkeley.edu/ " slingn /research,/.

Add Block The add block kernel boils down to adding
a signed 16-bit value with an unsigned 8-bit value, and then
clipping the result to an 8-bit unsigned value. With the ex-
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ceptions of DEC’s MVI and Sun’s VIS, the other multimedia
extensions include saturating addition operations. In the case
of VIS, the only way to saturate values is during packing. For-
tunately, the add block kernel needs to pack the intermediate
16-bit result to 8-bits again, so this limitation of VIS ends up
not costing any additional instructions relative to the other
instruction sets.

Algorithm 1 VIS Add Block Fragment
%g0, 0x38, Ygsr !

wr set scale factor for packing (8-bit, no

fraction)

fzero  %£20

1dd [%o1], %f4 !t %f4: |rOlr1l|r2|r3|r4|r51x6]x7]
1ldd [%00 + 01, %f0 ! %£f0: | bpO | bpl | bp2 | bp3 |
1ldd [%00 + 81, %f2 ! %f2: | bp4 | bp5 | bp6 | bp7 |
fpmerge %£20, %f4, %f8

fpmerge %£20, %f5, %f6

fpaddl16 %f0, %f8, %f0 ! %f0: | r0? | r1®’ | r2’ | r3° |
fpadd16 %f2, %f6, %f2 !t %f2: | r4> | r5° | 6’ | x7° |
fpack16 %f0, %f0 ! %f0: |rOlril|r2lr3| X |
fpack16 %f2, %f1l t %f0: |r0lrl|r2|r3|r4|r5(|x6lr7]|
std %£0, [%holl ! store new rfp values back to memory

Color Space Conversion Although the original color
space conversion code is implemented in single precision float-
ing point, the calculation of the final 8-bit pixels values can
be done with sufficient precision with fixed point integers.
Fixed point multiplication is always done in three steps: 0)
pre-shift operands as necessary so that they have the same
binary point 1) multiply 2) round by adding fixed point value
representing 0.5 3) arithmetically shift result right the num-
ber of fraction bits. On many platforms, especially where
partitioned (SIMD) floating point operations are not avail-
able, being able to efficiently perform fixed point operations
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add subtract shift multiply | average | minimum | maximum| demote | promote | compare sad rsqrt recip add subtract shift multiply | average | minimum | maximum| demote | promote | compare sad rsqrt recip
os 0.00% 0.00% 0.00% os
mus | 0.00% 0.00% 0.26% 0.00% 0.00% 4.88% 7.25% mus 0.00% 0.00% 29.05% 49.39%
0s8 0.00% 0.00% 0.00% 0s8 0.00% 0.00%
016 0.00% 0.00% 0.92% 0.00% 016 7.93%
WU16| 2.03% 0.00% 0.00% 0.00% 0.00% 0.73% 2.52% mU16 0.00% | 10.58%
OS16 | 2.69% 2.24% 1.04% 6.28% 0.13% 3.14% 0.00% 0.00% 0.00% o S16 0.91% 0.91%
m32 | 11.71% | 0.10% 0.03% 0.00% 32 1.22%
ou32 0.00% 3.83% ou32
W S32 114% 2.20% 0.00% 0.00% W S32
|64 0.65% |64
oFP 7.61% 4.55% 22.50% 0.00% 0.00% 243% 0.02% 9.11% 0.00% oFP

(a) AMD Athlon (b) DEC Alpha 21264

3
il I |
s @ |
add | subtract | shift | multiply | average | minimum [ maximum| demote | promote | compare | sad rsqrt recip add | subtract | shift | multiply | average | minimum [maximum| demote | promote | compare | sad rsqrt recip

o8 0.00% 0.00% 0.00% o8 0.00% 0.00% 0.00% 2.01% 0.00%

mU8 0.00% 0.00% 0.37% 0.00% 0.00% 6.96% 10.32% mU8 0.00% 5.03% 0.36% 0.18% 5.03% 5.03% 0.00%

0S8 0.00% 0.00% 0.00% 0S8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

016 0.00% 0.00% 1.31% 0.00% 016 0.00% 0.00% 2.15% 0.00%

mU16| 2.90% 0.00% 0.00% 0.00% 0.00% 1.04% 3.60% mU16| 141% 0.00% 0.35% 0.00% 0.00% 0.00% 0.00% 0.18% 0.00%

mS16 | 3.84% 3.20% 1.42% 8.96% 0.19% 4.49% 0.00% 0.00% @S16 | 0.99% 0.60% 0.19% 3.58% 0.00% 0.09% 0.09% 0.69% 0.02% 0.00%

32 16.70% | 0.14% 0.05% 0.00% 32 0.00% 0.00% 0.00% 3.12% 0.00%

ous2 0.00% 0.29% Ous2| 0.00% | 0.00% | 0.00% 0.00% | 0.00% | 000% | 0.00% | 0.00% | 0.00%

W S32 1.63% 3.36% 0.00% WS32| 961% | 038% | 217% 0.00% | 0.00% | 534% | 1.28% | 0.00% | 0.00%

64 0.92% 64 22.14%

OFP | 524% | 3.70% 11.10% | 0.00% | 0.00% | 1.60% | 343% | 000% | 0.01% 321% | 0.00% OFP | 191% | 255% 14.99% 000% | 0.00% | 293% 0.01% 5.59%

(c) Intel Pentium IIT (d) Motorola G4

]
7
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= |
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! I 1 [ I 1 1 1
add subtract shift multiply | average | minimum | maximum| demote | promote | compare sad rsgrt recip
os
muUs 12.33% 11.10%
0ss
016 | 11.05% | 1.02% 0.00%
mU16
0 S16 20.18% 2.19% 0.41%
W32 | 16.04% | 4.81%
ou32 5.15%
m S32 1.86% 13.86%
=64
OFP

(e) Sun UltraSPARC IIi

Figure 6: Instruction Set Coverage - each square lists the percentage of dynamic instructions a given type of SIMD
operation represented for the BMKL code on each platform. Data types are listed in the loft most column, as N-bit {sign
independent, (U)nsigned, (S)igned, (F)loating (P)oint}. A white square indicates functionality not avalible with a given
instruction set.
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Sign Independent Unsigned Signed
8 [ 16 [ 32 | 64 | UB [U16[U32| SB[ S16 | S32 | FP
AMD Athlon 11.7%) 2.0%] 2.7%) 7.6%)
DEC 21264A
Intel Pentium I11 16.7% 2.9%] 3.8%) 5.2%)
Motorola G4 1.4%) 1.0%| 9.6%| 1.9%)
Sun UltraSPARC 117 11.0%]| 16.0%
AMD Athlon 0.1%] 2.2%] 4.5%]
DEC 21264A
Intel Pentium I11 0.1%) 3.2%) 3.7%]
Motorola G4 5.0%) 0.6%| 0.4%| 2.5%]
Sun UltraSPARC 11| 1.0%| 4.8%)
AMD Athlon 0.9%| 0.0%| 0.6%) 1.0%| 1.1%)
DEC 21264A
Intel Pentium I11 1.3%| 0.0%| 0.9%) 1.4%)| 1.6%)
Motorola G4 22.1%)| 0.4%) 0.2%| 2.2%]
Sun UltraSPARC 11|
AMD Athlon 6.3%) 22.5%
DEC 21264A
Intel Pentium I11 9.0%] 11.1%
Motorola G4 0.4%) 3.6%) 15.0%
Sun UltraSPARC 11| 20.2%
AMD Athlon 0.3%)
DEC 21264A
Intel Pentium I11 0.4%)
Motorola G4 0.2%)
Sun UltraSPARC 11|
AMD Athlon 0.1%]
DEC 21264A 0.9%)
Intel Pentium I11 0.2%)
Motorola G4 5.0%| 0.1%)
Sun UltraSPARC 11|
AMD Athlon 3.1%)
DEC 21264A 10.6% 0.9%)
Intel Pentium I11 4.5%) 1.6%)
Motorola G4 5.0%) 0.1%| 5.3%]
Sun UltraSPARC 11|
AMD Athlon 0.7%] 2.2%)| 2.4%)
DEC 21264A 7.9%| 1.2%|
Intel Pentium I11 1.0%] 3.4%| 3.4%]
Motorola G4 0.2%) 0.7%| 1.3%| 2.9%]
Sun UltraSPARC 11| 2.2%| 1.9%)
AMD Athlon 4.9%| 2.5%)| 3.8%)
DEC 21264A 29.1%
Intel Pentium I11 7.0%| 3.6%| 0.3%
Motorola G4 2.0%| 2.1%| 31% 0.0%)
Sun UltraSPARC 11| 12.3%
AMD Athlon 0.0%]
DEC 21264A
Intel Pentium I11 0.0%]
Motorola G4 0.0%| 0.0%
Sun UltraSPARC 11| 5.2%) 0.4%] 13.9%]
AMD Athlon 7.2%]
DEC 21264A 49.4%)|
Intel Pentium I11 10.3%
Motorola G4
Sun UltraSPARC 11| 11.1%
AMD Athlon 9.1%)
DEC 21264A
Intel Pentium I11 3.2%]
Motorola G4 5.6%
Sun UltraSPARC 11|
AMD Athlon
DEC 21264A
Intel Pentium I11
Motorola G4
Sun UltraSPARC 11|

Add

Subtract

Shift

Multiply

Average

Minimum

Maximum

Demote

Promote

Compare

SAD

~lsqrt(x)

~1/x

Table 6: Multimedia Data Types: Operations - each
square lists the percentage of dynamic SIMD instructions ex-
ecuted in the Berkeley multimedia kernel library (executed
as part of the Berkeley multimedia workload) for each data
type. A grey square indicates functionality not available with
a given instruction set, while a white square indicates an avail-
able operation which was not utilized
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8 16 32 64 FP

" [AMD Athion 36.3%|__63.1%
'8 |DEC 212647 221%| _77.9%
2 [intel Pentium 111 36.3%| _63.7%
2 [MotorolaGa 22.2%| _519% 25.9%)
Sun UlraSPARC 111 | 29.9%] _ 70.1%)
S [AMD Athion 29.4%| _14.4%| _36.2%)
= [DEC 21262A 90.9%| _ 91%
= [intel Pentium 111 77.3%|_22.7%)
8 [MotorolaGa 48.0%| _ 56%| 13.7%| _32.1%)
D [Sun UlwraSPARC 111 | 48.8%] _19.4%| _31.8%)
AMD Athion 9.4% 90.6%)
g DEC 21264A
= [Intel Pentium 111 100.0%)
S [MotorolaG4 25%| _ 4.1%| _93.4%
Sun UltraSPARC 111
 [AMD Atfion 13.0%|_71.4%| _ 3.9%| 11.7%)
& [DEC 212647 100.0%)
3 [Intel Pentium 11 12.7%|__684%| __ 7.6%| 11.4%)
3 [MotorolaG4 5.4%| _ 24.1%| _69.6%| _ 0.9%)
O [SinUlraSPARC 11T | 15.2%] _84.8%)
AMD Athion 56.7%| _AL8%| _ 1.5%)
. [DEC21264A
Q [intel Penium 11 70.4%| _27.8%| __19%
Motorola G4 52.3%| 44.2% 3.6%)
Sun UlraSPARC 111 | 12.8%] _48.9%| _38.3%)
AMD Athion 8.4% 91.6%)
. [DEC21260A
{& [Intel Pentium 11 100.0%)
Motorola G4 7.8%| 48.9%| 43.3%|
Sun UltraSPARC 111
AMD Athion 97.9%| _ 2.1%
. [DEC21264A
8 [intel Pentium 111 96.0%| __ 4.0%)
= [MotorolaG4 0.6%| _53.4%| _425%| _ 3.4%)
Sun UlraSPARC 111 | 19.0%] _ 81.0%)
AMD Athion 75.1%|_24.9%)
T [DEC21264A 100.0%)
% [Intel Pentium 111 75.1%)|_24.9%)
= [MotorolaG4 94.0%) 6.0%
Sun UltraSPARC 111 100.0%)
& [AMD Athlon 29.4%| _50.6%
< [DEC21264A
@ |Intel Pentium 111 100.0%|
Z [Motorola G4 31.2%| _AL6%| 27.1%)
Sun UlraSPARC 111 | 27.3%] _36.4%| _36.4%)
 [AMD Athion 7.2%) 52.8%)
S [DEC 21264
& [Intel Pentium 111 100.0%]
& [MotorolaGa 0.2%| _99.8%]
Sun UltraSPARC 111
<[AMD Athion 57.6%| _30.3%| _12.1%)
£ [DEC 212648
= [imel Pentium 111 65.5%| 20.7%| _13.8%
5 [MotorolaG4 34.1%| _36.7%)| _29.1%)
) [Sun UltraSPARC 111 36.5%| _63.5%
T [AMD Athlon 59.4%| _3L3%| _ 9.4%)
£ [DEC 212608
= [imel Pentium 111 67.9%| 21.4%| _10.7%
5 [MotorolaG4 36.0%| _38.8%)| _25.2%)
& [Sun UltraSPARC i 36.2%| _63.8%
T [AMD Athion 28.3%| _33.8%| _36.0%)
5 [DEC 212647
5 [Iniel Pentium 11 40.1%| _47.9%| _12.0%)
2 [Motorola G4 10.0%|__30.0%| _50.0%| _10.0%)
@ [Sun UltraSPARC 11} 48.3%| 5L.1%
> JAMD Athion 235%| _49.0%| _27.5%)
3 [DEC 21264A 100.0%)
& [Intel Pentium 11 30.8%| _64.1%| _ 5.1%)
2 [Motorola G4 16.8%| _35.7%| _37.8%| _ 9.8%)
B [Sun UlraSPARC 11T | 10.79%| _ 42.9%| _46.4%
= [AMD Athion T4%) 98.6%)
‘s [DEC 21264A
8 [intel Pentium 111 8.8% 91.2%]
2 [MotorolaG4 9.6%|  12.9%| _77.5%
@ [Sun UltraSPARC 1l
= |AMD Athion 20.4%) 59.6%)
5 [DEC 21264A
2 intel Pentium 111 100.0%)
= [MotorolaG4 15%| _98.5%)
Sun UltraSPARC 111

Table 7: Multimedia Data Types: Kernels - each square
lists the percentage of dynamic SIMD instructions in each
kernel executed for each data type. A grey square indicates a
kernel which was not implemented due to lacking instruction
set functionality, while a white square indicates an available
operation which was not utilized



is critical.
Algorithm 2 lists the code fragment from the original Al-

listed in Algorithm 3.

tiVec color space conversion kernel which corresponds to a Algorithm 3 Fast Fourier Transform (FFT) - all vari-
modified version using strided load and store instructions in ables are FLOAT32

the main body of this paper.

Algorithm 2 AltiVec Color Space Conversion

PERM_O: .byte 0x00, 0x03, 0x06, 0x09, 0x0C, OxOF, 0x12, 0x15,
0x18, 0x1B, Ox1E, 0x00, 0x00, 0x00, 0x00, 0x00

PERM_1: .byte 0x01, 0x04, 0x07, 0Ox0A, 0xOD, 0x10, 0x13, 0x16,
0x19, 0x1C, Ox1F, 0x00, 0x00, 0x00, 0x00, 0x00

PERM_2: .byte 0x02, 0x05, 0x08, 0x0B, OxOE, Ox11, Ox14, 0x17,
0x1A, 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

PERM_3: .byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, OxOA, Ox11, 0x14, 0x17, Ox1A, 0x1D

PERM_4: .byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, OxOA, 0x12, Ox15, 0x18, Ox1B, Ox1E

PERM_5: .byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x10, 0x13, 0x16, 0x19, 0x1C, Ox1F

rgb_to_yuv:

1i ril, 16 ; immediate for unaligned vector loads

;3 Set up Vector Permutations

1i32 ri12, PERM_O

lvsl v31, 0, ri2 ; v31: vector alignment mask for vperm

lvx v19, 0, ri12 ; vi9: vector MSQ

lvx v20, ri1, ri12 ; v20: vector LSQ

addi ri12, ri12, 16

lvx v21, ri11, ri12 ; v21: vector LSQ

addi ri12, ri12, 16

lvx v22, ril, ri12 ; v22: vector LSQ

addi ri12, ri12, 16

lvx v23, ril, ri12 ; v23: vector LSQ

addi ri12, ri12, 16

lvx v24, ri11, ri12 ; v24: vector LSQ

addi ri12, ri12, 16

lvx vi6, ril, ri12 ; vi6: vector LSQ

addi ri12, ri12, 16

vperm v19, v19, v20, v31 ; v19: red permute vector #1

vperm v20, v20, v21, v31 ; v20: green permute vector #1

vperm v21, v21, v22, v31 ; v21: blue permute vector #1

vperm v22, v22, v23, v31 ; v22: red permute vector #2

vperm v23, v23, v24, v31 ; v23: green permute vector #2

vperm v24, v24, vi6, v31 ; v24: blue permute vector #2

;; Convert from Band-Interleaved to Band-Separated Format

lvsl v31, 0, r3 ; v31: vector alignment mask for vperm

1vx v25, 0, r3 ;5 v25: vector MSQ

1lvx v26, ril, r3 ; v26: vector LSQ

addi r3, r3, 16

1vx v27, ril, r3 ;5 v27: vector LSQ

addi r3, r3, 16

1vx v28, ril, r3 ; v28: vector LSQ

addi r3, r3, 16

vperm v25, v25, v26, v31
53 v26: |r0lg0Ib0Olrllglibl|r2/g2|b2lr3ig31b3irdlgdibdlrs|
vperm v26, v26, v27, v31
53 v26: |gb|b5lr6|gblb6Ir7|g7Ib7|r8lg8Ib8lr9Igdlv9irAlgAl
vperm v27, v27, v28, v31
55 v27: |bA|rBlgB|bB|rC|gC|bC|xrD|gD|bD|rE|IgE|bE|XF|gF |bF|
vperm v28, v25, v26, vi9
53 v28: |rOlrllr2|r3lr4lrb5|r6lr7 |r8lr9|rAlXX|XXIXXIXX|XX]
vperm v29, v25, v26, v20
53 v29: 1g0lgllg2lg3lg4lghblgblg71g8lg9lgh| XX XX XX XX |XX]
vperm v30, v25, v26, v21
53 v30: |bOIbl1b2|b31b4|b5Ib6|b7 b8IbI|XX|IXXIXX|XXIXX|XX]
vperm v28, v28, v27, v22
53 v28: |r0|rl1|r2|r3lrd|r5|r6|r7|r8|r9|rA|rB|rC|xD|rE|F|
vperm v29, v29, v27, v23
55 v29: |g0lgllg2lg3lg4lgblgblg71g8lg91gAlgBlgClgDIgEIgFI
vperm v30, v30, v27, v24
53 v30: |bOIbl1b2|b31b4|b5Ib6|b7|b8bIIbA|bBIbCIbDILE|bFI

FFT The fast Fourier transform (FFT) is an efficient
means for computing the discrete Fourier transform (DFT)
on sampled data. The FFT algorithm utilized by the LAME
mp3 encoder application is a split-radix type which is com-
puted recursively in single precision floating point. A few
sample lines of the central portion of the recursive code are
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xrl = xr + m2; xr2 = xrl + m4;
xil = xi + m2; xi2 = xil+ m4;
for (n = 0; n < m4; n++){

tmpl = *xrl + *xi2;

tmp2 = *xil + *xr2;

*xil = *xil - *xr2;

*xr2 = *xrl - *xi2;

*xrl = tmpl;

*xi2 = tmp2;

xri++; Xr2++; xil++; xi2++;
}

Unlike the original FFT kernel, which is a split radix real
FFT (only real input data is provided, although the output
is complex), we implemented SIMD versions of the FFT with
a more traditional complex radix-2 decimation in frequency
algorithm. Although this algorithm would be slower if imple-
mented in scalar code, it is much more amenable to SIMD
processing due to its more regular data accesses and much
more straight forward parallelization. The original real-value
split radix algorithm is highly data dependent, taking advan-
tage of known symmetries when operating on only real input
data. SIMD processing is most effective when there are no
instruction stream data dependencies.

One thing that became apparent when programming SIMD
versions of the FFT on different architectures is that longer
vectors require more sophisticated data communication op-
erations to support them. Consider the code snippets listed
in Algorithm 4 and Algorithm 5, both of which rearrange the
data as read from memory (typically in an FFT algorithm, the
real and imaginary components of a given data element are
stored adjacent in memory) such that one register contains all
of the real components and another all of the corresponding
imaginary values. The longer register width of Intel’s SSE
meant that a simple data communication operation such as
merge (punpckldq/punpckhdq) which are used in AMD’s ver-
sion of the kernel, are not sufficient - full shuffles (shufps) are
required instead.

Algorithm 4 AMD FFT

mov edx, [w_ptr]

movq mmé, [edx] ;mmé: | QO0.i | QO0.r |

movq mm5, [edx] ;mmb: | Q1.i | Qi.r |

add edx, [w_index]

movq mm7, mm6

punpckldqg mm6, mm5 ;mmé: | Qi.r | QO0.r |

punpckhdq mm7, mm5 ;mm7: | Q1.i | Q0.i |

Algorithm 5 Intel FFT

mov edx, [w_ptr]

movlps xmm6, [edx] ;5 xmm6: |XXXXXX|XXXXXX| Q0.i | QO0.r |
add edx, [w_index]

movhps xmm6, [edx] ; xmm6: | Q1.i | Ql.r | Q0.i | QO.r |
add edx, [w_index]

movlps xmm5, [edx] 5 xmm5: |XXXXXX|XXXXXX| Q2.i | Q2.r |
add edx, [w_index]

movhps xmm5, [edx] 5 xmm5: | Q3.1 | Q3.r | Q2.i | Q2.r |
shufps xmm6, xmm6, 11011000b ; xmm6: | Q1.i | Q0.i | Qi.r | QO0.r |
shufps xmm5, xmm5, 11011000b ; xmm5: | Q3.i | Q2.i | Q3.r | Q2. |
movaps xmm7, xmmé

movlhps  xmm6, xmm5 ; xnm6: | Q3.r | Q2.r | Q1.r | QO0.r |
shufps xmm7, xmm5, 11101110b ; xmm7: | Q3.1 | Q2.i | Q1.i | Q0.i |




DCT/IDCT As an example of where data communica-
tion operations are useful, consider Algorithm 6, which is
taken from the Motorola AltiVec DCT kernel. Simple merge
operations are completely sufficient for computing an 8x8 ma-
trix transpose.

Algorithm 6 AltiVec Matrix Transpose - matrix ele-
ments are 16-bits wide

53 v8: 10_010_110_210_310_410_510_610_71

53 v9: 11_011_111_211_311_411_511_611_71

53 vi0:  [2_012_112_212_312_412_512_612_7I

53 vil: 13_013_113_213_313_413_513_613_7I

53 vi2:  |4_014_114_214_314_414_514_614_7|

53 vi3: |5_015_115_215_315_415_515_615_7I

53 vid: 16_016_116_216_316_416_516_616_71

53 vib:  |7_017_117_217_317_417_517_617_71

vmrghh v0, v8, vi2 ;5 vO: 10_014_010_114_110_214_210_314_3]
vmrglh vi, v8, vi2 s vi: ]0_4/4_4]10_5/4_5/0_614_610_714_7|
vmrghh v2, v9, vi3 s v2: |1_0|5_011_1|5_1]1_2|5_2[1_3|5_3]|
vmrglh v3, v9, vi3 ; v3: 11_4|5_4|1_5|5_511_615_611_715_71
vmrghh v4, v10, vi4 ; v4: [2_016_012_116_112_216_212_316_3]
vmrglh v5, v10, vi4 ; vb: [2_4|6_412_5/16_5|2_616_6/2_716_7|
vmrghh v6, vi1l, vib ; v6: [3_0(7_0[3_117_113_2|7_213_317_3]|
vmrglh v7, vil, vib ; v7: |3_4|7_4|3_5|7_513_6|7_6[3_717_7]|
vmrghh v8, v0, v4 ; v8: 10.012_014_016_010_112_114_116_1]|
vmrglh v9, v0, v4 s v9: 10_212_214_216_2]10_312_314_316_3|
vmrghh v10, vi, vb ;5 vi0: |0_412_4|4_416_4]0_5]|2_514_5]6_5]
vmrglh vil, vi, v5 ; vil: 10_612_614_616_610_712_714_716_71
vmrghh v12, v2, v6 5 vi2: |1_013_015_017_011_113_115_117_11
vmrglh vi3, v2, v6 5 vid: 11_.213_215_217_211_313_315_317_31
vmrghh v14, v3, v7 s vid: |1_413_4|5_417_411_513_515_1]17_5I
vmrglh v15, v3, v7 s vib:  |1_613_615_617_611_713_7I15_717_7I
vmrghh v0, v8, v12 ; vO: 10.011_.012_013_014_015_016_017_0]
vmrglh vl, v8, vi2 s vi: |0_101_1]2_1(3_1]4_1|5_116_1|7_1]|
vmrghh v2, v9, vi13 s v2:  10_211_2]2_2|3_2]4_2|5_216_2|7_2|
vmrglh v3, v9, vi3 5 v3: 10_311_312_313_314_315_316_3|7_3|
vmrghh v4, v10, vi4 ; v4: [0_4|1_4/2_413_414_415_416_417_4|
vmrglh v5, vi0, vi4 ; vb: |0_5/1_512_513_5/4_515_516_5/7_5|
vmrghh v6, vi1l, vib ; v6: [0_6|1_6/2_6(3_6/4_6/5_6/6_6(7_6]|
vmrglh v7, vil, vib ; v7: |0_7|1_7[2_7|3_714_7|5_716_717_7]|

Max Value The maximum value kernel searches for the
maximum absolute valued element in an array of 32-bit signed
integers (Algorithm 7). The most critical instruction for this
kernel to proceed efficiently was, unsurprisingly, the max in-
struction. Although a maximum value search, as well as
the computation of absolute value can be done with bitmask
or partial store comparison results, these methods are far
less efficient. The difference can be seen in looking at the
SIMD code for the AMD Athlon (Algorithm 8), which in-
cludes max/min instructions, and Sun’s VIS (Algorithm 9),
which does not. Note that although the data type of the in-
put array is 32-bit wide integers, the values of the data do
not exceed signed 16-bit integers. Because of this, the AMD
kernel is able to take advantage of the added parallelism of
the smaller width. The Sun kernel is not able to do the same
because it depends on 32-bit wide data communication opera-
tions (16-bit data communication operations are not available
with VIS or the underlying SPARC v9 architecture).

Algorithm 7 Max Value Search

INT32 arr[], begin, end, i, max = O;
for ( i begin; i < end; it++ ) {
int x = abs( arr[il );
if ( x > max )
max = Xx;
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Algorithm 8 AMD Max Value

movq mml, [esi] ; mml: | vl | v0 |
pxor mm3, mm3 s;mm3: | O | O | O | O |
movq mm2, [esi + 8] ; mm2: | v3 | v2 |
packssdw mml, mm2 smml: | v3 | v2 | vi | vO |
psubsw  mm3, mml s mm3: | -v3 | -v2 | -v1l | -vO |
pmaxsw  mml, mm3 smml: | w3 | v2 | wvi | vO | ABS VAL
pmaxsw mm7, mml ; mm7: new max absolute values
Algorithm 9 Sun Max Value

1d [%g1l, %f4 ! %f4: | arr[0] | XXXXXXXXXXX|
1d [%gl + 41, %f5 ! %f4: | arr[0] | arr[1] |
fpsub32 %f0, %f4, %fé

fcmpgt32 %f6, %f0, %o5 ! %ob: mask of -arr[i]l > O

and %o5, 0x1, %o4

and %05, 0x02, %ob

fmovrsgz %o4, %f7, 4fb

fmovrsgz %05, %f6, %f4 ! %f4: | arr[0] | arr[i] | (abs val)
fempgt32 %f4, %£2, %ob ! %ob: mask of |arr[ill > max[il
and %o5, 0x1, %o4

and %o5, 0x2, %ob

fmovrsgz %o4, %f5, %f3

fmovrsgz %o5, %f4, #f2 ! Yf2: | max0 | maxl

Quantize The original scalar version of the quantize ker-
nel utilized a lookup table for certain ranges of input values in
order to speed up common cases. Unfortunately, a lookup ta-
ble approach is terribly inefficient for SIMD processing since
each each element needs to be processed separately. Even
so, full SIMD computations were faster than scalar code with
look up tables on all of the platforms supporting SIMD float-
ing point operations.

Subsample Horizontal/Vertical Subsampling arith-
metically combines pixels together to form a composite value.
The original MPEG-2 code accomplishes this through FIR fil-
tering. In the horizontal subsampling kernel, seven pixels are
weighted with coefficients and their products are summed to-
gether to create a composite pixel. The vertical subsampling
kernel similarly weights twelve pixel values. In either kernel,
each pixel value requires it’s own index into the array repre-
senting the image, which must be kept within the horizontal
and vertical boundaries of the image being operated on. Be-
cause of this, a large part of each iteration of these kernels is
a scalar portion in which the needed indices are computed.

The organization of data is critical to SIMD performance.
Consider the subsample horizontal (Algorithm 10) kernel on
the Motorola G4. Because of the format of the data in reg-
isters it is inefficient to operate on more than one loop itera-
tion at a time. However, in the case of vertical subsampling,
the data for multiple loop iterations can be loaded into each
register. In SIMD processing, the same operation is applied
to multiple data elements, so vertical subsampling is a much
more natural candidate for SIMD processing than the oth-
erwise computationally similar horizontal subsample kernel.
With a 64-bit wide SIMD extension, for example, eight ver-
tical subsample iterations can be processed in parallel. This
also means that all images must have horizontal dimensions
evenly divisible by eight, or a scalar “clean up” loop must be
coded to deal with any odd remaining widths. Many of our
other kernels required such clean up loops as well.



Algorithm 10 Motorola Subsample Horizontal

lvsl v31, r8, r3

lvx vli, r8, r3 ; MSQ

lvx v2, r9, r3 ; LSQ

;3 vi: |ImbBIXXIm3|XX|m1| i|p1|XX|p3|XX|p5|XX|XXIXX|XX|IXX]|

vperm vli, vi, v2, v31

;3 vi: Im5Im3Imil ilpllp3Ip5|XXIXX|XXIXX|XXIXX|XXIXX|XXI

vperm vi, vi, vi, v22

vmrghb v3, vO, vl ; v3: | m5| m3| m1| i | p1| p3| p5|XXX|
vmulesh v5, v3, v21 ; v5: | mb | ml | pl | p5 | <<SHMT
vmulosh v6, v3, v21 ; v6: | m3 | i | p3 | XXXXXXX|<<SHMT
vsumsws vb, v5, vO

vsumsws v5, v6, v6 ; v5: | 0 | 0 | 0 | t<<SHMT| ~
vaddsws vb, vb, v20 ; vb5: += ROUND

vsraw vb, vb, v23 ; vb: >> SHMT

vspltw v5, v6, 3 ; v6: | tmp | tmp | tmp | tmp |
vpkswss v5, vb6, vb6 ; v5: |tmp|tmp|tmp|tmp|tmp|tmp|tmp|tmp]
vpkshus v5, v6, v6 ; vb: ltltltltltititititititlititlititit]

srawi rib5, r7, 1 ; ri1b: i>>1

stvebx vb, r15, r4 ; dst[i>>1] = tmp

Algorithm 11 Short Term Analysis Filtering

INT16 *u; INT16 *rp; INT32 k_n; INT16 *s;
INT16 di, zzz, ui, sav, rpi; INT32 ltmp;
for (; k_n--; s++) {
di = sav = *s;
for (i = 0; i < 8; i++) {
ui ulil; rpi rplil; ulil
ltmp=ui + (rpi*di + 16384)>>15;

sav;

sav=1tmp>32767 ? 32767 : (1ltmp<-32768 ? -32768 : 1ltmp);
ltmp=di + (rpi%ui + 16384)>>15;
di=(1tmp)>32767 ? 32767 : (ltmp<-32768 ? -32768 : ltmp);
}
*s = di;
}

Short Term Analysis Filtering The central operation
of the short term analysis filtering kernel (Algorithm 11) is a
fixed point multiply accumulate operation, followed by clip-
ping (saturation) to a 16-bit signed value.

Algorithm 12 Short Term Synthesis Filtering

INT16 *v; INT16 *rrp; INT32 k; INT16 *wt; INT16 *sr;
INT16 sri, tmpl, tmp2; INT32 ltmp;
while (k--) {

sri = *wt++;

for (i = 8; i--;) {

ltmp=(rrpl[il*v[i] + 16384)>>15;

1tmp=1tmp>32767 ? 32767 : (1tmp<-32768 ? -32768 : 1ltmp);
ltmp=sri - ltmp;

sri=1tmp>32767 7 32767 : (1ltmp<-32768 ? -32768 : 1ltmp);
1tmp=(rrpl[il*sri + 16384)>>15;

ltmp=1tmp>32767 7 32767 : (1tmp<-32768 ? -32768 : 1ltmp);
ltmp=v[i] + ltmp;

v[i+1]=1tmp>32767 ? 32767 : (1tmp<-32768 ? -32768 : 1ltmp);
}

*sr++ = v[0] = sri;

}

Short Term Synthesis Filtering Very similar to short
term analysis filtering, the short term synthesis filtering ker-
nel (Algorithm 12) is also based on a fixed point multiply
accumulate operation, followed by clipping (saturation) to a
16-bit signed value.

Both the short term analysis filtering and short term syn-
thesis filtering kernels were originally coded in a way that
did not at first appear to be parallelizable in SIMD code. It
was necessary to diagram by hand the computational path
each element in the result followed in order to visualize what
operations could be performed in parallel.
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Synthesis Filtering Central to the synthesis filtering
kernel from mp3 audio playback (Algorithm 13) are both pos-
itive and negative multiply-accumulate operations in single
precision floating point. The final output audio samples must
then be converted and clipped to signed 16-bit integers.

Algorithm 13 Synthesis Filtering
FLOAT32 *window; FLOAT32 #bO; INT16 *samples;
INT32 j, step = 2; FLOAT32 sum;
for (j=16; j>0; j--) {

sum = *window++ * *b0++; sum -= *window++ * *bQ++;
sum += *window++ * *b0++; sum -= *window++ * *bQ++;
sum += *window++ * *bO++; sum -= *window++ * *b0++;
sum += *window++ * *bO++; sum -= *window++ * *bO++;
sum += *window++ * *b0++; sum -= *window++ * *bQ++;
sum += *window++ * *b0++; sum -= *window++ * *bQ++;
sum += *window++ * *bO++; sum -= *window++ * *bO++;
sum += *window++ * *bO++; sum -= *window++ * *bO++;

/* clip output sample to 16-bit signed integer */
*sample=sum>32767.0 ? 32767 : (sum<-32768.0 ?
window += 0x10;

samples += step;

32768 : sum);

Although not the only kernel to utilize multiply-accumulate
operations, the synthesis filtering kernel benefits from them
when they are available. Compare Algorithm 14 on the Mo-
torola G4 which has the vmaddfp instruction with Algorithm
15 on the Intel Pentium III, which does not have a float-
ing point multiply-accumulate operation. Both extensions are
128-bits wide.

A problem that often comes up in SIMD programming is
the need to sum all of the packed elements in a register. This
is often done at the end of an otherwise element independent
computation. Motorola’s AltiVec includes such sideways ac-
cumulation (also termed “reduction”) operations for integer
data types, but not for floating point. Intel’s MMX and SSE
instruction sets do not include reduction operations for any
data types. This is regrettable because such an operation
would find utility in this kernel (note the cumbersome way in
which even and odd elements are summed together at the end
of each code snippet).

1.6 Alignment

An aligned memory access is one that accesses a 2V byte size
data element at an address in which the lower N bits are all
zeroes. Alignment is generally important on all architectures
for performance reasons, as unaligned accesses typically suffer
a significant performance penalty or cause a run time excep-
tion, depending on the behavior specified by an architecture.
The Motorola and Sun instruction sets support only aligned
memory access, so it is necessary to load two adjacent vectors
of data and then rotate the data appropriately in order to
simulate unaligned memory access. As an example, consider
the sample Sun VIS code in Algorithm 16, loading the 64-bits
data element 0OxDEADBEEFFEEDFACE which is stored in
memory at address 0x1003 as shown below:




Algorithm 14 Motorola Synthesis Filtering

vperm vli, vi, v2, v20 ; vi:
lvx v4, r9, r3

vperm v2, v2, v3, v20 ; v2:
lvx vb, r10, r3

vperm v3, v3, v4, v20 ; v3:
lvx v6, 0, rd

vperm v4, v4, vb, v20 ; v4:
lvx v7, r7, rd

lvx v8, r8, rd

vperm v6, v6, v7, v21 ; v6:
lvx v9, r9, rd

vperm v7, v7, v8, v21 ; vT7:
lvx v10, r10, r4

vperm v8, v8, v9, v21 ; v8:
vmaddfp vi, vi, v6, vO ; vl
vperm v9, v9, vi10, v21 ; v9:
vmaddfp v3, v3, v8, v0 ; v3:
addi r3, r3, 0x80

vmaddfp vi, v2, v7, vl ;5 vl
addi r4, r4, 0x40 ; réd
vmaddfp v3, v4, v9, v3 ; v3:
addic. ri11, ri11, -1 5 j--
vaddfp vi, vi, v3 ; vl
vsldoi v2, vi, vi, 8 5 v2:
vaddfp vi, vi, v2 ;5 vl
vspltw v2, vli, O 5 v2:
vspltw v3, vi, 1 ; v3:
vsubfp v2, v2, v3 5 v2:
vctsxs vl, v2, O ;5 vl
vpkswss vl, vi, vl ;5 vl

| win_0 | win_1 | win_2 | win_3
| win_4 | win_5 | win_6 | win_7
| win_8 | win_9 | win_A | win_B |

| win_C | win_D | win_E | win_F |

| 0_0 | bO_1 | 1bO_2 | bO_3
| b0_4 | b0_5 | b0O_6 | bO_7
| b0_8 | b0_9 | bBO_A | DO_B |
| sumevnO | sumoddO | sumevn1 | sumodd1 |
| bO_C | bOD | bBOE | bOF |

| sumevn2 | sumodd2 | sumevn3 | sumodd3 |

| sumevnO | sumoddO | sumevn1 | sumodd1 |

: bO++ (x 16, pointer to FLOAT32)

| sumevn2 | sumodd2 | sumevn3 | sumodd3 |

| sumevnO | sumoddO | sumevn1 | sumodd1 |
| sumevn1 | sumodd1 | sumevnO | sumoddO |
| sum_evn|sum_odd | sum_evn|sum_odd|
| sum_evn|sum_evn|sum_evn|sum_evn|
| sum_odd | sum_odd | sum_odd | sum_odd |
SUM = sum_even - sum_odd

convert to integer

| SUM | SUM|SUM|SUM|SUM|SUM|SUM|SUM|

Algorithm 15 Intel

Synthesis Filtering

movups  xmmQ, [esi + Q]
movups xmm4, [esi + 16]
movups  xmm3, [ecx + O]
movups  xmm5, [ecx + 16]
movaps  xmm7, xmmO

shufps xmmQ, xmm4, 10001000b
shufps xmm7, xmm4, 11011101b
movaps  xmm6, xmm3

shufps xmm3, xmm5, 10001000b
shufps xmm6, xmm5, 11011101b
mulps xmmQ, xmm3

mulps xmm6, xmm7

subps xmmO, xmmé

movaps  xmm6, xmm3

shufps xmm3, xmm5, 10001000b
shufps xmm6, xmm5, 11011101b
mulps xmm2, xmm3

mulps xmm6, xmm7

addps xmmO, xmm2

subps xmmQ, xmm6

;3 merge sum values

movaps  xmm2, xmmO

shufps xmmO, xmmO, 00011011b
addps xmmO, xmm2

movaps  xmm2, xmmQ

shufps xmm2, xmm2, 10110001b
addps xmmO, xmm2

cvtps2pi mmO, xmmO
packssdw mmO, mmO
movd ebx, mmO
mov [edi], bx

; xmm0: |win_3|win_2|win_1|win_0|
;5 xmm4: |win_7|win_6|win_5|win_4|
5 xmm3: | b0O_3| b0_2| b0O_1| b0_0l
5 xmm5: | bO_7| bO_6| bO_5| b0_41|
; xmm0: |win_6|win_4|win_2|win_0|
5 xmm7: |win_7|win_5|win_3|win_1|
5 xmm3: | bO_6] bO_4| b0_2| b0_0l
5 xmm6: | bO_7| bO_5| b0O_3| bO_1]
; xmm0: sum += win_x*b0_x (even)
; xmm0: sum -= win_x*b0_x (odd)

5 xmm3: |b0_14|b0_121b0_10| b0_8|
5 xmm6: |b0_15[b0_131b0_11]| b0_9|
;5 xmmO: sum += win_x*bO_x (even)
; xmm0: sum -= win_x*b0_x (odd)

5 xmm2: |sum_3|sum_2|sum_1|sum_O|
5 xmmO: |sum_Olsum_1|sum_2|sum_3|
; xmmO: |s3+s01s2+s1ls1+s2[s0+s3|
; xmm2: |s2+s1]|s3+s0|s0+s3|s1+s2]
; xmmO: | SUM | SUM | SUM | SUM |
; mmO: | SUM | SUM |
; mmO: | SUM | SUM | SUM | SUM |
; ebx: | SUM | SUM |

store 16-bit sample

Algorithm 16 Sun VIS

Unaligned Memory Access

alignaddr %il, %g0, %11
1ldd [%111, %f2

ldd [411+8], %f4
faligndata  %f2, %f4, %f2

%11: aligned address (0x1000)
set GSR align_addr field to 0x3

%£2: 100/00]00|DE|AD|BE|EF |FE|
%f4: |ED|FAICE|00100100100100]
%£2: |DE|AD|BE|EF|FE|ED|FA|CE]|
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In the code fragment from Algorithm 16, the address of the
data to be loaded is in register %il. The alignaddr instruc-
tion adds this address to the offset (in this case, register %g0
is zero), clears the lower three address bits and places this
64-bit aligned address result in register %11. The lower three
bits of the intermediate result are placed in the graphics sta-
tus register for later use by the faligndata instruction. Two
consecutive register-width chunks of data must be loaded, and
then shifted to the original alignment with the faligndatain-
struction. The DEC Alpha and x86 architectures (AMD and
Intel) support unaligned access to memory, whereby the CPU
utilizes special hardware to perform exactly the same steps
(and thereby generates the same amount of memory traffic in
reality).

The tradeoff between the two approaches is the additional
register pressure and better awareness of alignment issues vs.
ease of programming. However, there is a hidden benefit to
explicitly aligned access: in the case where data is accessed
sequentially, subsequent accesses cost a single additional load,
as the previous upper half of the data to be shifted becomes
the next load operation’s lower half (at the cost of added reg-
ister pressure). In this way, aligned memory accesses simulat-
ing unaligned access can outperform hardware which trans-
parently performs unaligned access without recognizing the
continuity. In addition, the hardware to support unaligned
memory accesses is expensive both in terms of die area and
latency [Thak99).

1.7 Other Useful Features

Splat Instructions Because SIMD instructions perform
the same operation on each element, it is common to require
the same constants in each element as well. Being able to
avoid going to memory more often than necessary is a perfor-
mance win. Compare the AltiVec approach (Algorithm 17) to
Sun’s VIS (Algorithm 18). Sun’s solution is much more costly
because it must access memory once for each vector constant,
as opposed to once in the case of Motorola’s AltiVec.

Algorithm 17 AltiVec DCT Constant Initialization

;3 Load and Initialize Constants for DCT

lvsl v31, 0, r5

lvx vi7, ri1, r5

vperm v16, v16, v17, v31 ; v16: |K1|K2|K3|K4|K5|K6|K7|RDI|
vsplth v30, v16, 6 ;5 v30: |K7|K7|K7|K7|K7|K7IK7I|K7]|
vsplth v29, vi6, 5 ;5 v29: |K6|K6|K6|K6|K6|K6IK6|K6|
vsplth v28, vi6, 4 ; v28: |K5|K5|K5|K5|K5|K51K51K5]
vsplth v27, vi6, 3 5 v27: |K4|K4|K4|K41K4|K41K41K4|
vsplth v26, vi6, 2 ;5 v26: |K3|K3|K3|K3|K3|K3|K3|K3|
vsplth v25, vi6, 1 ;5 v25:  |K2|K2|K2|K2|K2|K2]|K2|K2]|
vsplth v24, vi6, 0 5 v24:  |K1|K1|K1|K1|K1|K1]|K1|K1]

1.8 Bottlenecks

Highly Utilized Singular Resources The color space
conversion kernel is an excellent example of the problem with
singular, highly utilized resources. Consider the initial step of
the color space conversion kernel which converts from band-
interleaved to a more SIMD-friendly band-separated pixel
form (Algorithm 19). The conclusion to be drawn is that



Algorithm 18 VIS DCT Constant Initialization

! load constants

sethi %hi(X1_

1dd [%o2 +

sethi %hi(K2_

1dd [%o2 +

sethi %hi(X3_

1dd [%02 +

sethi %hi(K4_

1dd [%o2 +

sethi %hi(K5_

1dd [%02 +

sethi %hi(X6_

1dd [%o2 +

sethi %hi(K7_

1dd [%02 +

VEC), %02
%lo(K1_VEC)], %£32 ! %£32: K1
VEC), %02
%lo(K2_VEC)], %£f34 ! %£f34: K2
VEC), %02
%1lo(K3_VEC)], %£36 ! %£36: K3
VEC), %02
%lo(K4_VEC)], %£f38 ! %f38: K4
VEC), %02
%lo(K5_VEC)], %£40 ! %£f40: K5
VEC), %02
%lo(K6_VEC)1, %f42 ! %f42: K6
VEC), %02
%lo(K7_VEC)], %f44 ! %f44: K7

resources that will be highly utilized should be duplicated in

order to allow for parallel instruction execution, otherwise a

bottleneck is created which prevents the extraction of instruc-

tion level parallelism.

Algorithm 19 VIS Color Space Conversion Kernel

rgb_to_yuv_loop:
! load band interleaved input data

alignaddr
ldd

ldd
faligndata
ldd
faligndata
ldd
faligndata
! convert

wr
faligndata
wr
faligndata
wr
faligndata
wr
faligndata
wr
faligndata
wr
faligndata
wr
faligndata

%0, %g0, %10

[%#10]1, %f2

[#10 + 8], %f4

%2, %f4, %f2 ! %f2: |ROIGO|IBOIR1|G1IB1|R2IG2]
[%10 + 161, %f6

#t4, %f6, %f4 ! %f4: |B2IR3|G3IB3|R4IG4|B4IR5]
[#10 + 241, %f8

#f6, %f8, %f6 ! %f6: |G5IB5|R61G6|B6IRT|G7IBT7|

from band interleaved to band separated format

! %f2: |ROIGO|IBOIR1|G1IB1|R21G2]
set alignment for <<24
%£8: |R11G1|B1|R2|G2|B2|R3|G3|
set alignment for <<48
%£10: |R2|G21B2|R31G3|B3IR4|G4]
set alignment for <<48

%t4, %f6, %f12 %£12: |R3|G3IB3|R41G4|B4IR5|G5]

%g0, 0x4, %gsr set alignment for <<32

%g0, 0x3, %gsr !
!
!
!
!
!
!

%f4, %f6, %fi4 ! J%f14: |R4|G4IB4|R5IG5|B5|IR6|G6]
!
!
!
!
!
!

%2, %f4, %f8
%g0, 0x6, %gsr
%£2, %f4, %f10
%g0, 0x1, Y%gsr

%g0, 0x7, %gsr set alignment for <<56
%f4, %f6, %f16 %f16: |R5|G5IB5|R61G6|IB6IRTIGT]
%g0, 0x2, %gsr set alignment for <<16
%£6, %f6, %f18 %£18: |R6|G6IB6|R7IG7|B7|G5|B5]
%g0, 0x5, %gsr set alignment for <<40
%£6, %f6, %f20 %£20: |R7|G7IB7/G5IB5|R61G6B6|

1.9 New Directions

1.9.1 Subsampling Memory Access

Figures 7a and 7b demonstrate the way in which the horizon-
tal and vertical subsampling kernels access memory, respec-

tively.

1.9.2 Sample Instruction Set

The instructions that comprise the proposed multimedia ex-

tension set are outlined Tables 8, 9, and 10.
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Arithmetic Instructions

Instruction Description
vadd12s 16 x 12s modulo addition
vadd24s 8 x 24s modulo addition
vadd48s 4 x 48s modulo addition
vaddfp 4 x fp addition
vsub12s 16 x 12s modulo subtraction
vsub24s 8 x 24s modulo subtraction
vsub48s 4 x 48s modulo subtraction
vsubfp 4 x fp modulo subtraction
vmult24s 8 x 24s multiplication
vmult48s 4 x 48s multiplication
vmultfp 4 x fp multiplication
vxsum24s 8 x 24s cross-wise summation
vxsum48s 4 x 48s cross-wise summation
vxsumfp 4 x fp cross-wise summation
vrsqrtefp 4 x fp reciprocal sqrt estimation
vclipfp 4 x fp clip test comparison
vand bitwise and
vor bitwise or
vxor bitwise exclusive or
vandc bitwise and with complement
vnor bitwise negated or
vsral2s shift right arithmetic
vsrll2s shift right logical
vsll2s shift left
vsra24s shift right arithmetic
vsrl24s shift right logical
vsl24s shift left
vsra48s shift right arithmetic
vsrl48s shift right logical
vsl48s shift left
vmax12s 16 x 12s maximum
vmax24s 8 x 24s maximum
vmax48s 4 x 48s maximum
vmaxfp 4 x fp maximum
vminl2s 16 x 12s minimum
vmin24s 8 x 24s minimum
vmin48s 4 x 48s minimum
vminfp 4 x fp minimum
vsadl2s 16 x 12s sum of absolute differences

Table 8: Arithmetic Instructions




Memory Instructions

Instruction Description
vld8ul2s 16 x 8u ->12s vector load
vld8u24s 8 x 8u->24s vector load
vld16s24s 8 x 16s->24s vector load
v1ld16s48s 4 x 16s->48s vector load
v1ld32s48s 4 x 32s->48s vector load
vildfpfp 4 x fp->fp vector load
vld192 1 x 192 vector load
vst12s8u 16 x 12s ->8u vector store
vst24s8u 8 x 24s->8u vector store
vst24s16s 8 x 24s->16s vector store
vst48s16s 4 x 48s->16s vector store
vst48s32s 4 x 48s->32s vector store
vstfpfp 4 x fp->fp vector store
vst192 1 x 192 vector store
vldstr64 strided load 64 total bits
vldstr128 strided load 128 total bits
vststr64 strided store 64 total bits
vststr128 strided store 128 total bits
vldsc8ul2s 8u->12s load scalar
vldsc8u24s 8u->24s load scalar
vldsc16s24s 16s->24s load scalar
vldsc16s48s 16s->48s load scalar
vldsc32s48s 32s->48s load scalar
vldscfpfp fp->fp load scalar
vstscl2s8u 12s->8u store scalar
vstsc24s8u 24s->8u store scalar
vstsc24s16s 24s->16s store scalar
vstsc48s16s 48s->16s store scalar
vstsc48s32s 48s->32s store scalar
vstscfpfp fp->fp store scalar
dss data stream stop
dst data stream touch
dstst data stream touch for store

Table 9: Memory Instructions
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(a) Horizontal Subsampling (b) Vertical Subsampling

Figure 7: Subsampling Memory Access - the bytes re-
quired to compute one loop iteration are circled, with an ar-
row indicating the direction the original algorithm moves on
subsequent iterations

Data Rearrangement Instructions
Instruction Description
vmrghl2 upper 8 x 12 merge
vmrgh24 upper 4 x 24 merge
vmrgh48 upper 2 x 48 merge
vmrgll2 lower 8 x 12 merge
vmrgl24 lower 4 x 24 merge
vmrgld8 lower 2 x 48 merge
vpermset12 16 x 12 permute subset
vpermset24 8 x 24 permute subset
vpermset48 4 x 48 permute subset
vcheck12 16 x 12 checkerboard
vcheck24 8 x 24 checkerboard
vcheck48 4 x 48 checkerboard
vexcheck12 16 x 12 reverse checkerboard
vexcheck24 8 x 24 reverse checkerboard
vexcheck48 4 x 48 reverse checkerboard
vsplt12 splat 12-bit element
vsplt24 splat 24-bit element
vsplt48 splat 48-bit element
vspltil2s splat immediate as 12s
vsplti24s splat immediate as 24s
vsplti48s splat immediate as 48s
vldsl load left permute control vector
vldsr load right permute control vector
vperm 12-bit permutation
vrotlil2 rotate left immediate by 12-bit multiples

Table 10: Data Rearrangement Instructions
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add_bl ock. c

#i ncl ude<pyr ogen. h>

/* move/ add 8x8- Bl ock from bl ock[conp] to backward_reference_frane */

/* copy reconstructed 8x8 bl ock from bl ock[conp] to current_frane[]

* | SO | EC 13818-2 section 7.6.8: Adding prediction and coefficient data
* This stage al so enbodi es sone of the operations inplied by:

* - ISO' | EC 13818-2 section 7.6.7: Conbining predictions
* - 1SO' | EC 13818-2 section 6.1.3: Macrobl ock
*/

extern UINT8 *dip;

void __pyrogen_add_bl ock(I NT16 *bp, U NT8 *rfp, INT32 iincr, INT32 addflag) {
int i, j;

i f(addflag) {
for (i=0; i<8; i++) {
for (j=0; j<8 j++) {
*rfp = dip[*bp++ + *rfp];
rfp++;

}

rfp+=iincr;

}

el se {
for (i=0; i<8; i++) {
for (j=0; j<8; j++) {
*rfp++ = Cip[*bp++ + 128];
}
rfp+=iincr;
}
}




bl ock_mat ch. c

#i ncl ude <pyrogen. h>

*Extracted from npeg2enc

/* Notes:
* *Code has been nodified for readability

*

* total absolute difference between two (16*h) bl ocks

* including optional half pel interpolation of blkl (hx,hy)

* bl k1, bl k2: addresses of top left pels of both bl ocks

* ol x: distance (in bytes) of vertically adjacent pels

* hx, hy: flags for horizontal and/or vertical interpolation
* h: hei ght of block (usually 8 or 16)

* distlim bail out if sum exceeds this value

I NT32 __pyrogen_bl ock_mat ch( Ul NT8 *bl ock_1, U NT8 *block_2, INT32 IXx,

hy, INT32 h, INT32 distlinm {
unsi gned char *pl, *pla, *p2;
int i,j;
int s,v;
s = 0;
pl = bl ock_1;
p2 = bl ock_2;
if (!hx && !hy)
for (j=0; j<h; j++)
{
if ((v =p1l[0] - p2[0])<0) vV = -v; s+=v;
if ((v =p1[1] - p2[1])<0) Vv = -v; s+=v;
if ((v =pl[2] - p2[2])<0) Vv = -v; s+= v,
if ((v =pl[3] - p2[3])<0) Vv = -v; s+=v;
if ((v =pl[4] - p2[4])<0) Vv = -v; s+=v;
if ((v =pl[5] - p2[5])<0) Vv = -v; s+=v;
if ((v =pl[6] - p2[6])<0) Vv = -v; s+= v,
if ((v =p1[7] - p2[7])<0) Vv = -v; s+=v;
if ((v =pl[8] - p2[8])<0) Vv = -v; s+=v;
if ((v =p1[9] - p2[9])<0) vV = -v; s+=v;
if ((v =pl[10] - p2[10])<0) v = -v; s+=v;
if ((v = pl[11] - p2[11])<0) Vv = -v; s+= v,
if ((v =pl[12] - p2[12])<0) v = -v; s+= v,
if ((v =p1[13] - p2[13])<0) v = -v; s+=v;
if ((v =pl[1l4] - p2[14])<0) v = -v; s+= v,
if ((v = pl[15] - p2[15])<0) v = -v; s+= v;
if (s > distlim
break;
pl+= 1x;
p2+= 1x;
}
else if (hx & !hy)
for (j=0; j<h; j++)
for (i=0; i<16; i++)
{
v = ((unsigned int)(pl[i]+pl[i+1]+1)>>1) - p2[i];
if (v>=0)
s+= v,
el se
s-= v;
}
pl+= 1x;

p2+= 1x;

I NT32 hx,

I NT32

}

}
else if (!hx && hy)
{
pla = pl + Ix;
for (j=0; j<h; j++)
{
for (i=0;
{
v = ((unsigned int)(pl[i]+pla[i]+1)>>1
if (v>=0)
s+= v;
el se
s-= v;
}

pl = pla;

pla+= |x;

p2+= 1x;
}

}
else /* if (hx & hy) */
{

i <16; i++)

pla = pl + Ix;
for (j=0; j<h; j++)
{
for (i=0;
{
v = ((unsigned int)(pl[i]+pl[i+1] +pla[i
if (v>=0)
s+= v,
el se
s-= v;
}

pl = pla;

pla+= |x;

p2+= 1x;
}

i <16; i++)

}

return s;




clip.c

#i ncl ude <pyrogen. h>

/* Vertex buffer clipping flags */

#define CLIP_RIGHT_BIT  0x01
#define CLIP_LEFT_BIT 0x02
#define CLIP_TOP_BIT 0x04
#define CLIP_BOTTOM BIT 0x08
#define CLIP_NEAR BI T 0x10
#define CLIP_FAR BIT 0x20
void __pyrogen_project_and_cliptest_perspective(U NT32 n,
*m const FLOAT32 vEye[][4], U NT8 clipMask[], U NT8 *orMask,
FLOAT32 nD = n{0], nb = n{5], nB = n{8], m = n{9];
FLOAT32 nl0 = n{10], nl4 = nf14];
Ul NT32 i ;
U NT8 t mpOr Mask = *or Mask;
U NT8 t npAndMask = *andMask;
for (i=0;i<n;i++) {
FLOAT32 ex = vEye[i][O], ey = vEye[i][1];
FLOAT32 ez = vEye[i][2], ew = vEye[i][3];
volatile FLOAT32 cx = nD * ex + B * ez
vol atile FLOAT32 cy = nb * ey +nmd * ez
volatile FLOAT32 cz =
vol atile FLOAT32 cw = -ez
U NT8 mask = 0;
vaip[i][0] = cx;
vaip[i][1] = cy;
vaip[il[2] = cz;
vaip[i][3] = cw
if (cx > cw mask | = CLIP_RIGHT_BIT;
else if (cx < -cw) mask |= CLIP_LEFT_BIT;
if (cy > cw mask | = CLIP_TOP_BIT;
else if (cy <-cw) mask |= CLIP_BOTTOM BIT;
if (cz > cw mask | = CLIP_FAR BIT;
else if (cz < -cw) nmask |= CLIP_NEAR BIT;
if (mask) {
clipMask[i] |= nask;

tmpOr Mask | = mask;

}
t npAndMask &= nask;

}
*or Mask = t mpOr Mask;
*andvask = t npAndMask;

FLOAT32 vdip[][4],

mlo * ez + nml4 * ew,

FLOAT32

U NT8 *andMask) {




col or _space.c

#i ncl ude <pyrogen. h>

| *
/*
| *
| *
/*
| *

Not es: Code extracted and cl eaned up from npeg2enc read_ppn(), */
conv444t 0422() and conv422t 0420 */

*

/

I nput: band interleaved RGB format */
Quput: band separated YWV formt */
*

/

static INT32 matrix_coefficients = 3;

void __pyrogen_rgb_to_yuv(U NT8 *input, U NT8 *y_base, U NT8 *u_base,

NT32 wi dth, INT32 height) {
INT32 i, j;
FLOAT64 cr, cg, chb, cu, cv;

ul

NT8 *yp, *up, *vp, *rowp

INT32 r, g, b;
FLOAT64 y, u, v;

st

< c<
T T T

ro

i
if

cr
cg
ch
cu
cv

fo

atic FLOAT64 coef[7][3] = {
{0.2125,0. 7154, 0. 0721}, /* ITUR Rec. 709 (1990) */

{0.299, 0.587, 0.114}, /* unspecified */
{0.299, 0.587, 0.114}, /* reserved */
{0.30, 0.59, O0.11}, /* FCC */
{0.299, 0.587, 0.114}, /* ITUR Rec. 624-4 SystemB, G */
{0.299, 0.587, 0.114}, /* SMPTE 170M */
{0.212, 0.701, 0.087}}; /* SMPTE 240M (1987) */
= y_base;
= u_base;
= v_base;
wp = i nput;

= matrix_coefficients;

(i>8)

i =3

= coef[i-1][0];
= coef[i-1][1];
= coef[i-1][2];
= 0.5/(1.0-ch);
= 0.5/(1.0-cr);

r (i=0; i<height; i++) {
for (j=0; j<width; j++) {
r = *rowp++,
g = *rowpt+;
b = *rowp++;
/* convert to YW */
y = cr*r + cg*g + ch*b;
u = cu*(b-y)
v = cvr(r-y);
*yp++ (219.0/256.0)*y + 16.5; /* nomi nal range:

*up++ = (224.0/256.0)*u + 128.5; /* 16..240 */
*vp++ = (224.0/256.0)*v + 128.5; /* 16..240 */

16..235 */

U NT8 *v_base,




dct.c

#i ncl ude <pyrogen. h>
/* fdctref.c, forward discrete cosine transform, double precision */

/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */

N
*

Disclaimer of Warranty

These software programs are available to the user without any license fee or
royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
any and all warranties, whether express, implied, or statuary, including any
implied warranties or merchantability or of fitness for a particular
purpose. In no event shall the copyright-holder be liable for any
incidental, punitive, or consequential damages of any kind whatsoever
arising from the use of these programs.

This disclaimer of warranty extends to the user of these programs and user’s
customers, employees, agents, transferees, successors, and assigns.

The MPEG Software Simulation Group does not represent or warrant that the
programs furnished hereunder are free of infringement of any third-party
patents.

Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
are subject to royalty fees to patent holders. Many of these patents are
general enough such that they are unavoidable regardless of implementation
design.

ok ok R X ok R X ok O X Ok R X Ok R X % F X % F

*
N

/* private data */
extern FLOAT64 c[8][8]; /* transform coefficients */

void __pyrogen_dct (I NT16 *bl ock) {
INT32 i, j, k
FLOAT64 s;
FLOAT64 t np[ 64] ;

for (i=0; i<8; i++) {
for (j=0; j<8 j++) {

s = 0.0;
for (k=0; k<8; k++) {

s += c[j][k] * block[8*i+k]
tnp[8*i+j] =s;

}
}

for (j=0; j<8 j++) {
for (i=0; i<8; i++) {
s = 0.0;

for (k=0; k<8; k++) {
s += c[i][Kk] * tnp[8*k+];
bl ock[8*i +j] = (int)floor(s+0.499999)
/*
* reason for adding 0.499999 instead of 0.5:

* s is quite often x.5 (at least for i and/or j = 0 or 4)
* and setting the rounding threshold exactly to 0.5 leads to an

* extremely high arithmetic implementat
* s being between x.5 and x.500001 (whi
* downwards instead of upwards) is assu
* (if at all)

*/




fft.c

#i ncl ude <pyrogen. h>

/* Replacement FFT routine for mp3 encoding.
Wedged in by Mike Cheng http://www.cryogen.com/mikecheng
Based upon split-radix fft by Malvar
from book: 'Signal Processing with Lapped Transforms™. Malvar, HS.

The reason this fft is so damn fast, is because mp3 encoding only uses
*real* FFTs. The previous fft routine included in the iso source is for
a complex->complex transform. But if the imaginary part of the signal
is zero (as it is for encoding sound), then you only have to do a
real->complex fft. This makes this new fft routine about twice the
speed of the old one.

There is another real->complex fft that is about another 30% than the
split-radix (in theory), but it may take me a lot longer to put in.

later
mike
*/

#defi ne BLKSI ZE 1024

#define MAXLOGM 25

#define TWOPI  6.28318530717958647692
#define SQHALF  0.707106781186547524401

void __pyrogen_pow_phase( FLOAT32 x_real [ BLKSI ZE] , FLOAT32 ener gy[ BLKSI ZE], FLOAT32 phi [
BLKSI ZE], INT32 N) {

INT32 i;

FLOAT32 *ep, *pp, *epn, *ppn;

FLOAT32 *xpl, *xpn;

ep = energy;

pp = phi;

xpl x_real;

xpn = &_real [N-1];

= *xpl * *xpl;
*pp++ = atan2( 0.0, (double)(*xpl++));
if (N==1024) {
for (i=1;i<512;i++) {
*ep = *xpl * *xpl + *xpn * *xpn;
if (*ep < 0.0005) {
*ep++ = 0. 0005;
*ppt++ = 0.0;
xpn--;
Xpl++;
}
el se {
ep++,;

*pp++ = atan2( -(double)(*xpn--), (double)(*xpl+t+) );

-

}

ep = &energy[513];

pp = &phi [513];

epn = &energy[511];

ppn = &phi [511];

for (i=1;i<512;i++) {
*ept++ = *epn--;

) *ppt+ = - *ppn--;

energy[512] = x_real [512] * x_real [512];
phi [512] = atan2 (0.0, (double)x_real[512]

el se {
for (i=1;i<N2;i++) {
*ep = *xpl * *xpl + *Xpn * *xpn;
if (*ep < 0.0005) {

*ep++ = 0.0005;
*pp++ = 0.0;
xpn- -;
Xpl++;
}
el se {
ep++;
*pp++ = atan2( - (double)(*xpn--), (doul
}
}
ep = &energy[ N 2+1] ;
pp = &phi [ N 2+1];

epn = &energy[ N 2-1];

ppn = &phi [N 2-1];

for (i=1;i<N2;i++) {
*ep++ = *epn--;

) *ppt+ = - *ppn--;

energy[N 2] = x_real[N2] * x_real [N 2];
phi[N2] = atan2 (0.0, (double)x_real [N 2])
}

Data unshuffling according to bit-reversed i

Bit reversal is done using Evans” algorithm.
"An Improved Digit-Reversal Permutation Algo
IEEE Trans. ASSP, Aug 1987, pp. 1120-25.

ook ok X X R NTT

static | NT32 brseed[256]; /* Evans’ seed table
static INT32 brsflg; /* flag for table build
void __pyrogen_BR pernut e( FLOAT32 *x, |INT32 | o
register INT32 1 g2, n;

INT32 i,j,inmax;

I NT32 off,fj, gno,
FLOAT32 tnp, *xp,

*brp;
*Xq;

| ogm >> 1;

92 =
=1 << 1g2;

|
n
if (logmé& 1) |g2++;
/* create seed table if not yet built */
if (brsflg !'=1lognm {

brsflg = | ogm

brseed[0] = O;

brseed[ 1] = 1;
jo<=192; j+){

for(j=2;
imx = 1 << (j - 1);
for (i=0; i < imax; i++){

brseed[i] <<= 1;

brseed[i + imax] = brseed[i] + 1;




fft.c

}
}
}

/* unshuffling loop */
for(off = 1; off < n; off++){

fj = n*brseed[off]; i = off; j = fj;
tmp = x[i]; x[i] =x[j]; x[j] = tnp;
xp = &[i];

brp = &brseed[1];

for(gno = 1; gno < brseed[off]; gno++){
Xp +=n;
j = f] + *brp++,;
Xq =X +j ;
tnp = *Xp; *Xp = *xq; *Xq = tnp;

}

}
}

/**************************************************************
* *
* Recursive part of split radix FFT algorithm

*
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void __pyrogen_srrec(FLOAT32 *xr, FLOAT32 *xi, INT32 logm {
static INT32 m nR2, m4, n8, nel, n;
static FLOAT32 *xri1, *xr2, *xil, *xi2;
static FLOAT32 *cn, *spcn, *sntn, *c3n, *spc3n, *snt3n;
static FLOAT32 tnpl, tnp2, ang, c, S;
static FLOAT32 *tab[ MAXLOGM ;

/* check range of |ogm */

if ((logm< 0) || (logm> MAXLOGW) ) {
fprintf(stderr, "Error: SRFFT logm= %l is out of bounds [% %]\n", logm 0, MAXL

exit(1);

/* conpute trivial cases */
if (logm< 3){
if (logm== 2){
Xr2 = xr + 2;
Xi 2= xi + 2;

tnpl = *xr + *xr2,;
*Xr2 = *xr - *xr2;
*Xr = tnpl;

tnpl = *xi + *Xi2;
*Xi2 = *xi - *xi2;
*xi = tnpl;

xrl = xr + 1;
xil=xi + 1

XTI 2++;

Xi 2++;

tmpl = *xrl + *xr2;
*Xr2 = *xrl - *xr2;
*xrl = tnpl;

tnpl = *xi 1l + *xi2;
*xi2 = *xil - *xi2;
*xil = tnpl;

Xr2 xr + 1;

Xi2 = xi + 1;
tnpl = *xr + *xr2,;

}

*Xr2 = *Xr - *Xr2;

*xr = tnmpl;

tmpl = *xi + *xi 2;
*Xi2 = *Xi - *Xxi2;
*Xi = tnpl;

Xrl = xr +2;

Xil = Xxi+2;

Xr2 = Xr+3;

Xi2 = xi + 3;

tnpl = *xrl + *xi2;
tnp2 = *xi 1l + *xr2;
*xil = *xil - *xr2;
*Xr2 = *xrl - *xi2;
*xrl = tnpl;

*xi2 = tnp2;
return;

o3

se if (logm== 1){
Xr2 = xr + 1;
Xi2 = xi + 1

tnpl = *xr + *xr2,;
*Xr2 = *Xr - *Xr2;
*xXr = tnmpl;

tmpl = *xi + *xi 2;
*Xi2 = *Xi - *Xxi2;
*Xi = tnpl;
return;

else if (logm== 0) return;

/* conpute a few constants */

m=1<<logm nm =m/ 2, M =n2/ 2, nB =

/* build tables of butterfly coefficients if
if ((logm>=4) && (tab[logm4] == NULL))({

}

/* allocate menory for tables */
nel =mt - 2;
if ((tab[logm4] = (FLOAT32 *) calloc(6 *
== NULL) {
exit(1);
}

/* initialize pointers */
cn = tab[logm4]; spcn = cn + nel; sncn =
c3n = sntn + nel; spc3n = c3n + nel; snt3n

/* conpute tables */
for (n =1; n <M n++){
if (n == nB) continue;
ang = n* TWOPI / m
¢ = cos(ang); s = sin(ang);
*cn++ = c; *spcn++ = -(s + c); *snmen++ =
ang = 3*n*TWOPI / m
¢ = cos(ang); s = sin(ang);
*c3n++ = c; *spc3n++ = -(s + c); *snc3n+

}

/* step 1 */

Xrl = xr; xr2
xil =xi; xi2

xrl + ng;
xil + n2;
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for (n =0; n <
tnpl = *xrl +
*Xr2 = *xril -
*xrl = tnpl;
tnmp2 = *xil +
*Xi2 = *xil -
*xil = tnp2;
Xr1++; Xr2++;
}
/* Step 2 */
Xrl = xr + n2;
Xil=xi + nP;
for (n =0; n<
tnmpl = *xrl +
tnp2 = *xi 1l +
*xil = *xil -
*Xr2 = *xril
*xrl = tnpl;
*Xi2 = tnp2;
Xr1++; Xr2++
}
/* Steps 3&4 */
xrl = xr + n2;
xil=xi + ne;

nm2; n++){
*Xr2;
*Xr2;

*Xi 2;
*Xi 2;

Xi 1++; Xi 2++;

Xr2 = xrl + mg;
Xi 2 = xi 1+ m4;
m; n++) {

*Xi 2;

*Xr2;

*Xr2;

*Xi 2;

Xi 1++; Xi 2++;

Xr2
xi 2

Xxrl + md;
xil + md;

if (logm>=4) {

nel =

m - 2;

cn = tab[logm4]; spcn = cn + nel; sncn = spcn + nel;

c3n = sncn + nel; spc3n = ¢3n + nel; snc3n = spc3n + nel;
}
Xr 14+, Xr2++; Xi 1++; Xi 2++;
for(n=1; n < m4; n++){
if (n==nB){
tmpl = SQHALF*(*xrl + *xi1);
*xil = SQHALF*(*xi1 - *xr1l);
*xrl = tnpl;
tnmp2 = SQHALF*(*xi 2 - *xr2);
*Xi2 = -SQHALF*(*xr2 + *xi2);
*Xr2 = tnp2;
}
el se {
tnp2 = *cn++ *(*xrl + *xil);
tnpl = *spcn++ * *xrl + tnp2;
*xrl = *spen++ * *xil + tnp2;
*xil = tnpl;
tnmp2 = *c3n++ * (*xr2 + *xi2);
tnpl = *spc3n++ * *Xr2 + tnp2;
*Xr2 = *snc3n++ * *xi 2 + tnp2;
*xi2 = tnmpl;
Xr 14+, Xr2++; Xi 1++; Xi 2++;
}
/* call ssrec again with half DFT length */
__pyrogen_srrec(xr, xi, logm-1);
/* call ssrec again twice with one quarter DFT |ength.

Constants have to be reconputed because they are static! */

m=1 << logm n2 = n2;

__pyrogen_srrec(xr+nm2, xi+n2, logm- 2);

m=1<<logm m = 3*(m4);
__pyrogen_srrec(xr+m, xi+m4, logm- 2);

/*********************************************'
* Direct transform
*

R R

void __pyrogen_srfft(FLOAT32 *xr, FLOAT32 *xi,
/* call recursive routine */
__pyrogen_srrec(xr, xi, logn;

/* output array unshuffling using bit-revers
if (logm> 1){
__pyrogen_BR pernute(xr, |ogm;
__pyrogen_BR pernute(xi, |ogm;
}
}

/* recursive part of rsfft algo. not externall
static void __pyrogen_rsrec(FLOAT32 *x, |NT32 |
static INT32 mn2, m4, n8, nel, n;
static FLOAT32 *xrl, *xr2, *xil;
static FLOAT32 *cn, *spcn, *snctn;
static FLOAT32 tnpl, tnp2, ang, ¢, S;
static FLOAT32 *tab[ MAXLOGM ;

/* check range of |ogm */

if ((logm<0)|| (lognmMAXLOGM)) {
fprintf(stderr,"log out of range: %\n",I|o
exit(-1);

}

/* conpute trivial cases */
if (logm<2) {
if (logm==1) { /* length m= 2%/
Xr2 = x + 1;
tmpl = *x + *xr2;
*Xr2 = *X - *Xr2;
*X = tnpl;
return;

else if (logm=0) return; /* length m=1 *,

}

/* conpute a few constants */
mel<<l ogm nR=n1 2; mMi=nR/ 2; nB=ni4/ 2;

/* build tables of butterfly coefficients if
if ((logm>= 4) && (tab[logm 4] ==NULL)) {
/* allocate menory for tables */
nel =n4- 2;
if ((tab[logm4] = (FLOAT32 *) calloc(3 *
fprintf(stderr,"cosine table nenory erro
exit(-1);

/* initialize pointers */
cn = tab[logm4]; spcn = cn+nel; sncn =spc

/* conpute tables */
for (n = 1; n<m4; n++) {
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if (n==nB) continue;
ang = n* TWOPI/m
c=cos(ang); s=sin(ang);
*cn++ = c; *spcn++ = -(S+C); *sncn++ = s
}
}

/* step 1 */
Xrl = x; Xxr2 = xrl+ng;
for (n=0; n< nR; n++) {

tmpl = *xrl + *xr2,;
*Xr2 = *xrl- *xr2,
*xrl = tnpl;
Xrl++; Xr2++;

}

/* step 2 */
xrl =x + n2 + m,;
for (n=0; n<m¥; n++) {
*xrl = - *xrl;
Xr 1++;

}

/* steps 3 and 4 */
Xrl =x +n2; xil =xrl + m4;
if (logm>=4) {
nel = mi-2;
cn = tab[logm4]; spcn = cn + nel; sncn =

Xr1++; Xi 1++;
for (n =1 ; n<md; n++) {
if (n==n8B) {

tmpl = SQHALF * ( *xrl + *xil);
*xil = SQHALF * ( *xil - *xrl);
*xrl = tnpl;
} else {

tnp2 = *cn++ * (*xrl + *xil);
tnpl = *spcn++ * *xrl + tnp2;
*xrl = *snon++ * *xil + tnp2;
*xil = tnpl;

Xr1++; Xi 1++;

}

/* call rsrec again with half DFT I ength */
__pyrogen_rsrec(x, logm1l);

/* call conplex DFT routine with quarter DFT
m=1 <<logm n2 =m2; mMd = 3 * (M 4);
__pyrogen_srrec(x+n2, x+n4,|ogm2);

/* step 5. sign change and data reorder */
m=1 <<logm n2 = nm2; mi=nR/2; nB=n#/2;
Xrl = x + n2 + mi;

Xr2 = x + m-1;

for (n=0; n<nB; n++) {

tnpl = *xrl,
*Xrl++ = - *xr2;
*Xr2-- = - tnpl;

}

Xxrl =x + n2 + 1;

Xr2 = x + m- 2;

for (n=0; n<nB;n++) {
tnpl = *xri,;

-C;

spcn + nel;

length */

*Xrl++ = - *xr2;
*Xr2-- = tnpl;
Xr 1++;

Xr2--;

}
if (logm==2) x[3]=x[3];

/* direct transformfor real inputs */

void __pyrogen_fft(FLOAT32 *arr_r, FLOAT32 *ar
/* call recursive routine */
__pyrogen_rsrec(arr_r, logm;

/* output array unshuffling using bit revers

if (logm>1) {
__pyrogen_BR pernute (arr_r,logn;
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#i ncl ude <pyrogen. h>
/* idct.c, inverse fast discrete cosine transform */
/* Copyright (C) 1996, MPEG Software Sinmulation Goup. All Rights Reserved. */

/
Di scl ai mer of Warranty

royalty on an "as is" basis. The MPEG Software Sinulation Goup disclains

inmplied warranties or nerchantability or of fitness for a particular
purpose. In no event shall the copyright-holder be liable for any
incidental, punitive, or consequential damages of any ki nd whatsoever
arising fromthe use of these prograns.

custoners, enployees, agents, transferees, successors, and assigns.

The MPEG Software Sinmulation Goup does not represent or warrant that the
prograns furnished hereunder are free of infringement of any third-party
patents.

Conmmrer ci al inplenmentations of MPEG 1 and MPEG 2 vi deo, including shareware,
are subject to royalty fees to patent holders. Many of these patents are
general enough such that they are unavoi dabl e regardl ess of inplenentation
desi gn.

B . T T T T R N T

/

JHRHER KA KK Ik A KKk kK Kk kKKK I KKK KKK K K IRk K kI kA Kk kA Kk h kX KKk [

/* inverse two di nensional DCT, Chen-Wang al gorithm */
/* (cf. | EEE ASSP-32, pp. 803-816, Aug. 1984) */
/* 32-bit integer arithnetic (8 bit coefficients) */
/* 11 nults, 29 adds per DCT */
/* sE, 18.8.91 */
/**********************************************************/
/* coefficients extended to 12 bit for |EEE1180-1990 */

/* conpliance sE, 2.1.94 */

JHRHE KA KK Ik KKKk kKK Kk kR KK I KKK KKK KK IRk K Kk kA Kk Kk kA Kk h kA KKk [

/* this code assunes >> to be a two’ s-conplenent arithnetic */
/* right shift: (-2)>>1 == -1, (-3)>>1 == -2 */

#define W 2841 /* 2048*sqrt(2)*cos(1*pi/16) */

#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */
#define WB 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
#define Wb 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
#define Wo 1108 /* 2048*sqrt(2)*cos(6*pi/16) */

#define W 565 /* 2048*sqrt(2)*cos(7*pi/16) */

/* private data */
extern INT16 iclip[1024]; /* clipping table */
extern INT16 *iclp;

/* row (horizontal) |DCT

*
7 pi 1

dst[k] = sumc[l] * src[l] * cos( -- * (( k +-) * 1)
=0 8 2

E R

where: c[0] = 128

These software progranms are available to the user without any license fee or

any and all warranties, whether express, inplied, or statuary, including any

This disclainmer of warranty extends to the user of these prograns and user’s

* c[1..7] = 128*sqrt(2)
*/

static void __pyrogen_idctrow| NT16 *bl k) {

I NT32 x0, x1, x2, x3, x4, x5, x6, x7, x8;

/* shortcut */
if (1((x1 = blk[4]<<11) | (x2 = blK[6])

= | (x
(x4 = blk[1]) | (x5 = blk[7]) | (x6 =

|
bl k[ 0] =bl k[ 1] =bl k[ 2] =bl k[ 3] =bl k[ 4] =bl k[ 5] =
return;

x0 = (bl k[ 0] <<11) + 128; /* for proper round

/* first stage */

x8 = WI* (x4+x5);
X4 = x8 + (WL- W) *x4;
x5 = x8 - (WL+W) *x5;
x8 = WB*(Xx6+x7);
X6 = x8 - (WB-Wb) *x6;
X7 = x8 - (VB+WB) *x7;

/* second stage */
x8 = x0 + x1;

x0 -= x1,
x1 W6* (x3+x2) ;
x2 x1 - (VR+WB) *x2;

x3 = x1 + (W2-WB) *x3;
x1 X4 + X6;

x4 -= X6;

X6 = x5 + Xx7;

x5 -= X7;

/* third stage */
X7 = x8 + x3;

X8 -= Xx3;

x3 = x0 + x2;

X0 -= x2;

x2 = (181*(x4+x5) +128) >>8;

(181* ( x4- x5) +128) >>8;

/* fourth stage */
bl k[ 0] = (x7+x1)>>8;

bl k[ 1] = (x3+x2)>>8;
bl k[ 2] = (x0+x4)>>8;
bl k[ 3] = (x8+x6)>>8;
bl k[ 4] = (x8-x6)>>8;
bl k[ 5] = (x0-x4)>>8;
bl k[ 6] = (x3-x2)>>8;
bl k[ 7] = (x7-x1)>>8;

/* colum (vertical) |DCT
*

* 7 m

* dst[8*k] = sumc[l] * src[8*I] * cos( -- *
* I =0 8

* where: c[0] = 1/1024

* c[1..7] = (1/1024)*sqrt(2)

*/

static void __pyrogen_idctcol (short *blk) {
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I NT32 x0, x1, x2, x3, x4, x5, x6, x7, Xx8§;
/* shortcut */

if (1((x1 = (blk[8*4]<<8)) | (x2 = blk[8*6]) | (x3 = blk[8*2]) |
(x4 = bIK[8*1]) | (x5 = bIk[8*7]) | (x6 = bIK[8*5]) | (X7 = blk[8*3]))) {
bl k[ 8*0] =bl k[ 8* 1] =bl k[ 8* 2] =bl k[ 8* 3] =bl k[ 8*4] =bl k[ 8*5] =bl k[ 8* 6] =bl k[ 8*7] =
i ¢l p[ (bl k[ 8*0] +32) >>6] ;
return;

}
x0 = (bl K[8*0] <<8) + 8192;

/* first stage */

x8 = WI*(x4+x5) + 4;
X4 = (X8+(WL- W) *x4) >>3;
x5 = (x8- (WL+WF) *x5) >>3;
x8 = WB*(x6+x7) + 4;
X6 = (X8-(WB-Wb) *x6) >>3;
X7 = (x8-(WB+WB) *x7) >>3;

/* second stage */
x8 = x0 + x1;
x0 -= x1;

x1 = WB*(x3+x2) + 4,

x2 = (x1- (W2+WB) *x2) >>3;
x3 = (x1+(W2- W) *x3) >>3;
X1 = x4 + X6;

x4 -= X6;

X6 = x5 + X7;

x5 -= Xx7;

/* third stage */
X7 = x8 + x3;

X8 -= Xx3;

x3 = x0 + x2;

X0 -= x2;

x2 = (181*(x4+x5)+128) >>8;
x4 = (181*(x4-x5)+128)>>8;

/* fourth stage */

bl k[ 8*0] = iclp[(x7+x1)>>14];
bl k[ 8*1] = iclp[(x3+x2)>>14];
bl k[ 8*2] = iclp[(x0+x4)>>14];
bl k[ 8%3] = iclp[(x8+x6)>>14];
bl k[ 8%4] = icl p[(x8-x6)>>14];
bl k[ 8*5] = icl p[(x0-x4)>>14];
bl k[ 8*6] = iclp[(x3-x2)>>14];
bl k[ 8*7] = iclp[(x7-x1)>>14];

}

/* two dinensional inverse discrete cosine transform*/
void __pyrogen_idct (I NT16 *idctBl ock) {
INT32 i;

for (i=0; i<8; i++)
__pyrogen_idctrow(idctBl ock+8*i);

for (i=0; i<8; i++)
__pyrogen_idctcol (idctBlock+i);
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#i ncl ude <pyrogen. h>
/*************************************************************************/

/* lame - ix_nmax */
/*************************************************************************/
INT32 __pyrogen_max_val (INT32 arr[], INT32 begin, INT32 end) {

int i, max = 0;

for (i = begin; i <end; i++) {
int x = abs( arr[i] );
if (x> mx )
nmex = X;
}

return max;
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#i ncl ude <pyrogen. h>

/* From Timdity++, mx.c*/
/* Timdity spends over 48%tine mXxing signals */
/* count and cc cover a w de range of values */

void __pyrogen_mi x_stereo(I NT16 **sp_p, INT32 **|p_p,
T32 channel _2) {
INT16 s;
I NT16 *sp =
INT32 *Ip =

*(sp_p);
*(1p_p);
while (count--) {

S = *sp++,;

*| p++ += s*channel _1;

*| p++ += s*channel _2;

}
*(sp_p) = sp;
*(Ip_p) = 1p;

| NT32 count,

I NT32 channel _1,

I'N
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#i ncl ude <pyrogen. h>

int _ _pyrogen_nint( double in) {
int t enp;

if(in<0) tenp = (int)(in - 0.5);
el se tenp = (int)(in + 0.5);

return(tenp);
}

void __pyrogen_quantize(INT32 | _end, FLOAT64 xr[], INT32 ix[], FLOAT64 *istep_p) {
INT32 i;
FLOAT32 istep = *istep_p;
FLOAT32 tenp;
static INT32 init=0;
#defi ne LUTABSI ZE 10000
static I NT32 |utab[ LUTABSI ZE];

if (init==0) {
init++;
for (i=0;i<LUTABSIZE;i ++)
lutab[i]=__pyrogen_nint (pow (FLOAT64)i/10.0,0.75)-0.0946);
for (i=1;i<LUTABSIZE;i ++)
if ((lutab[i]-lutab[i-1])==1) { /* we have a change over this interval */
lutab[i]=-1;
lutab[i-1]=-1;
i ++;
}
}

for (i=0;i<l_end;i++) {
tenmp=i step*fabs(xr[i]); /* step always positive -> tenp al ways postive */

if (tenp<0.499996)
i x[i]=0;
else if (tenp<l.862955)
ix[i]=1;
else if (tenp<3.565282)
ix[i]=2;
else if (tenp<5.506396)
ix[i]=3;
else if (tenp<7.638304)
ix[i]=4;
else if (tenp<9.931741)
i x[i]=5;
else if (tenp<1000.0) {
ix[i]=lutab[(int)(tenmp*10.0)];
if (ix[i]==-1) /* too close to an interface, calculate exact value */
ix[i] = (int)( sqrt(sqrt(tenp)*tenp) + 0.4054);

el se {
ix[i] = (int)( sqgrt(sqrt(tenp)*tenp) + 0.4054);

}
}
/* zero renmmining el ements */

for (;i<576;i++)
ix[i] = 0;
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#i ncl ude <pyrogen. h>

#define M N_WORD ((-32767)-1)
#defi ne MAX_WORD ( 32767)

#define MN_LONGADRD  ((-2147483647)-1)
#define MAX_LONGWORD  ( 2147483647)

#i fdef SASR /* >>is a signed arithnetic shift right */

#undef  SASR

#endi f

#defi ne SASR(x, by) ((x) >> (by))

/*

* #define GSM MULT_R(a, b) (* INT16 a, INT16 b, !(a == b == M N_WORD) *) \
* (OXOFFFF & SASR(((1NT32)(a) * (INT32)(b) + 16384), 15))

*/

#define GSMMULT_R(a, b) /* INT16 a, INT16 b, !(a == b == M N_WORD) */ \
(SASR( ((INT32)(a) * (INT32)(b) + 16384), 15 ))

# define GSMMILT(a,b) /* INT16 a, INT16 b, !(a == b == MN_WORD) */ \
(SASR( ((INT32)(a) * (INT32)(b)), 15 ))

# define GSML_MULT(a, b) /* INT16 a, INT16 b */ \
(((INT32) (a) * (INT32)(b)) << 1)

# define GSM L_ADD(a, b) \
((a) < 02 ( (b) >>07? (a) + (h) \
© (utnp = (UNT32)-((a) + 1) + (U NT32)-((b) + 1)) \
>= MAX_LONGWORD ? M N_LONGWORD : - (I NT32)utnp-2 ) \
((b) <= 07?2 (a) +(b) \
© (utnp = (UINT32)(a) + (UINT32)(b)) >= MAX_LONGAORD \
? MAX_LONGAORD : utnp))

/*

* # define GSM ADD(a, b) \

* ((I'tmp = (INT32)(a) + (INT32)(b)) >= MAX WORD \
* ? MAX WORD : Itmp <= MN_WORD ? M N_WORD : | tnp)
*/

/* Nonportable, but faster: */

#defi ne GSM ADD(a, b) \
((UINT32) ((I'tmp = (INT32)(a) + (INT32)(b)) - MNWORD) >\
MAX_WORD - M N WORD ? (I'tnp > 0 ? MAX_WORD : M N_WORD) : |tnp)

# define GSM SUB(a, b) \
((I'tnmp = (INT32)(a) - (INT32)(b)) >= MAX WORD \
? MMXWORD : Itmp <= MN_WORD ? MN_WORD : |tnp)

# define GSM ABS(a) ((a) <0 ? ((a) == MNWORD ? MAX WORD : -(a)) : (a))

This procedure conputes the short termresidual signal d[..] to be fed
to the RPE-LTP loop fromthe s[..] signal and fromthe local rp[..]
array (quantized reflection coefficients). As the call of this
procedure can be done in nmany ways (see the interpolation of the LAR
coefficient), it is assumed that the conputation begins w th index
k_start (for arrays d[..] and s[..]) and stops with index k_end
(k_start and k_end are defined in 4.2.9.1). This procedure also

needs to keep the array u[0..7] in menory for each call.

B 2

/
void __pyrogen_short_termanal ysis_filtering(register INT16 *u, register INT16 *rp,
gister INT32 k_n, register INT16 *s) {

re

register int

register

I NT16

regi ster | NT32

It np;
;os++) {
*S;
;<8 i) |
ulil];
rplil;
sav;

di, zzz, ui,

GSM_MULT_R(rpi,

GSM_ADD(

ui,

GSM_MULT_R(rpi,

GSM_ADD(

di,

di);
z227);
ui);
zzz );

sav,

/*

rpi;




short _termfilt.c

#i ncl ude <pyrogen. h>

#define M N_I NT16 - 32768
#defi ne MAX_I NT16 +32767
#def i ne ROUND +16384

#define cliplé(x) ((x)<M N_INT16) ? MN_INT16 : ((x)>MAX_INT16) ? MAX_|I NT16 :

/* k has two nodes - 13/14 and 120/ 130 with the sanple data file */
void __pyrogen_short_termsynthesis_filtering(INT16 *v, INT16 *rrp, |NT32 Kk,
, INT16 *sr) {

INT32 i;

INT16 sri, tnpl, tnp2;

while(k--) {

Sri = *W ++;

i =8;

while(i--) {
tnpl = (rrp[i]l*v[i] + ROUND)>>15;
sri = clipl6(sri - tnpl);
tmp2 = (rrp[i]*sri + ROUND)>>15;
v[i+1] = clipl6(v[i] + tnp2);

v[0] = sri;
*Sr++ = sri;
}
}
/* 4.2.10 */
/*
* This procedure conputes the short termresidual signal d[..] to be fed
* to the RPE-LTP loop fromthe s[..] signal and fromthe local rp[..]
* array (quantized reflection coefficients). As the call of this
* procedure can be done in many ways (see the interpolation of the LAR
* coefficient), it is assuned that the conputation begins w th index
* k_start (for arrays d[..] and s[..]) and stops with index k_end
* (k_start and k_end are defined in 4.2.9.1). This procedure also
* needs to keep the array u[0..7] in menory for each call.
*/

/* k_n has two nodes - 13/14 and 120/130 with the sanple data file */
void __pyrogen_short_termanalysis_filtering(INT16 *u, INT16 *rp, INT32 k_n,

INT32 i;

INT16 tnpl, tnp2;
INT16 sav[9];

I NT16 d[9];

while(k_n--) {
sav[0] = *s;
d[0] = *s;

for(i=0; i<8; i++) {
tnpl = (rp[i]l*d[i] + ROUND)>>15;
sav[i+1] = clipl6(u[i] + tnpl); /* sav[8] not used */

tmp2 = (rp[i]*u[i] + ROUND)>>15;

d[i+1] = clipl6(d[i] + tmp2); /* d[8] is the next value of s */
}
for(i=0; i<8; i++) {

u[i] = sav[i];

}

*S++

drsj;

(x)

INT16 *wt

INT16 *s)




short _termsynth.c

#i ncl ude <pyrogen. h>

#defi ne M N_WORD
#def i ne MAX_WORD

((-32767)-1)
( 32767)

#define M N_LONGAORD
#def i ne MAX_LONGANORD

((-2147483647) - 1)
( 2147483647)

#i fdef SASR /* >>is a signed arithnetic shift right */

#undef  SASR

#endi f

#defi ne SASR(x, by) ((x) >> (by))

/*

* #define GSM MULT_R(a, b) (* INT16 a, INT16 b, !(a == b == M N_WORD) *) \
* (OXOFFFF & SASR(((1NT32)(a) * (INT32)(b) + 16384), 15))

*/

#define GSMMULT_R(a, b) /* INT16 a, INT16 b, !(a == b == M N_WORD) */ \
(SASR( ((INT32)(a) * (INT32)(b) + 16384), 15 ))

# define GSMMILT(a,b) /* INT16 a, INT16 b, !(a == b == MN_WORD) */ \
(SASR( ((INT32)(a) * (INT32)(b)), 15 ))

# define GSML_MULT(a, b) /* INT16 a, INT16 b */ \
(((INT32) (a) * (INT32)(b)) << 1)

# define GSM L_ADD(a, b) \
((a) < 02 ( (b) >>07? (a) + (h) \
© (utnp = (UNT32)-((a) + 1) + (U NT32)-((b) + 1)) \
>= MAX_LONGWORD ? M N_LONGWORD : - (I NT32)utnp-2 ) \
((b) <= 07?2 (a) +(b) \
© (utnp = (UINT32)(a) + (UINT32)(b)) >= MAX_LONGAORD \
? MAX_LONGAORD : utnp))

/*

* # define GSM ADD(a, b) \

* ((I'tmp = (INT32)(a) + (INT32)(b)) >= MAX WORD \
* ? MAX WORD : Itmp <= MN_WORD ? M N_WORD : | tnp)
*/

/* Nonportable, but faster: */

#defi ne GSM ADD(a, b) \
((UINT32) ((I'tmp = (INT32)(a) + (INT32)(b)) - MNWORD) >\
MAX_WORD - M N WORD ? (I'tnp > 0 ? MAX_WORD : M N_WORD) : |tnp)

# define GSM SUB(a, b) \
((I'tnmp = (INT32)(a) - (INT32)(b)) >= MAX WORD \
? MMXWORD : Itmp <= MN_WORD ? MN_WORD : |tnp)

# define GSM ABS(a) ((a) <0 ? ((a) == MNWORD ? MAX WORD : -(a)) : (a))

/* k has two npdes - 13/14 and 120/ 130 with the sanple data file */
void __pyrogen_short_termsynthesis_filtering(register INT16 *v, register INT16 *rrp,
regi ster INT32 k, register INT16 *wt, register INT16 *sr) {

register int i;

register INT16 sri, tmpl, tnmp2;

register INT32 Itnmp; /* for GSM ADD & GSM SUB */

while (k--) {
Sri = *W ++;
for (i =8; i--;) {

/* sri = GSM_SUB( sri, gsmmult_r( rrp[il, v[i]l ) );

* (‘
15)

M N

*/
tmpl = rrp[i];
tmp2 = v[i];
tnp2 = ( tnpl == M N_WORD && tnp2 == M|
? MAX_WORD
OXOFFFF & (( (I NT32)tnpl
+ 16384) >>
sri = GSM SUB( sri, tnp2);
/* v[i+1l] = GSM ADD( v[i], gsmmult_r( r
*/
tnpl = ( tnpl == M N_WORD && sri ==
? MAX_WORD
OXOFFFF & (( (I NT32)tnpl

+ 16384) >>
v[i+1l] = GSM ADD( v[i], tnpl);

*sr++ = v[0] = sri;

* (‘
15)




sub_sanpl e_horiz.c

#i ncl ude <pyrogen. h>

extern UINT8 *dip;

/* horizontal filter and 2:1 subsanpling */
void __pyrogen_conv444t0422_npeg2( U NT8 *src, U NT8 *dst, INT32 width, INT32 height) {

int

j, inmb, inB, inl, ipl, ip3, ip5;

for (j=0; j<height; j++) {
for (i=0; i<width; i+=2) {

}

i b

i p3
i p5
/*

dst

(i<6) 2 0: i-5;
(i<3) 2 0: i-3;
(i<1) 2 0: i-1;

(i<width-1) 2 i+l : width-1;
(i<width-3) 2 i+3 : width-1;
(i<width-5) ? i+5 : width-1;

FIRfilter coefficients (*512): 22 0 -52 0 159 256 159 0 -52 0 22 */
[i>>1] = Aip[(int)(22*(src[inb] + src[ip5])

-52*(src[inmB] + src[ip3])

+159*(src[iml] + src[ipl])

+256*src[i] + 256) >>9];

src+= w dth;
dst += wi dt h>>1;

}




sub_sanple_vert.c

#i ncl ude <pyrogen. h>
extern UINT8 *dip;

/* vertical filter and 2:1 subsanpling */

void __pyrogen_conv422t 0420 _frame(U NT8 *src, U NT8 *dst, |NT32 width,

intw i, j, jnb, jmb, jnB, jn2, jnti;
int jpl, jp2, jp3, jp4, jp5, jp6;

w = wi dt h>>1;

/* intra frame */

for (i=0; i<w i++) {
for (j=0; j<height; j+=2) {
0: j

jmb = (j<5) ? i-5
jmd = (j<4) ?20: j-4
jmB = (j<3) 2 0: j-3;
jm = (j<2) ?2 0: j-2;
jm = (j<1) 2 0 : j-1;
jpl = (j<height-1) ? j+1 : height-1;
jp2 = (j<height-2) ? j+2 : height-1;
jp3 = (j<height-3) ? j+3 : height-1;
jp4 = (j<height-4) ? j+4 : height-1;
jp5 = (j<height-5) ? j+5 : height-1;
jp6 = (j<height-6) ? j+6 : height-1;

/* FIRfilter with 0.5 sanple interval phase shift */
+ src[wjpl])

dst[we(j>>1)] = dip[(int)(228*(src[wj]
+70* (src[ wj ml]

-37*(src[wjnR]
-21*(src[wj nB]
+11*(src[wj md]
+ 5*(src[wjnb]

}

SrC++;

dst ++;

}

+ o+ + + +

src[wejp2])
src[wjp3])
src[wej pd])
src[wej p5])
src[wrj p6]) +256) >>9] ;

I NT32 hei ght) {




synth_filt.c

#i ncl ude <pyrogen. h>
/* mpgl23 synthesis filtering kernel */
INT32 __pyrogen_synthfilt(FLOAT32 *w ndow, FLOAT32 *b0,

INT32 j;
INT32 clip = 0;

const INT32 step = 2;

FLOAT32 sum

for (j=16; j>0; j--) {
sum = *wi ndow++ * *pO++;
sum - = *wi ndow++ * *pbO++;
sum += *wi ndow++ * *b0++;
sum - = *wi ndow++ * *p0O++;
sum += *wi ndow++ * *pbO++;
sum - = *wi ndow++ * *bO++;
sum += *wi ndow++ * *p0O++;
sum - = *wi ndow++ * *pbO++;
sum += *wi ndow++ * *b0++;
sum - = *wi ndow++ * *p0O++;
sum += *wi ndow++ * *pbO++;
sum - = *wi ndow++ * *bO++;
sum += *wi ndow++ * *pO++;
sum - = *wi ndow++ * *pbO++;
sum += *wi ndow++ * *b0++;
sum - = *wi ndow++ * *pO++;

/* clip output sanple to 16-bit signed integer */
if(sum> 32767.0) {

*sanpl es = 32767;

[* clipt+; */

}

else if(sum< -32768.0) {
*sanpl es = -32768;
I* clip++; */

el se {
*sanpl es = sum

}

w ndow += 0x10;
sanpl es += step;

}

sum = w ndow 0x0] * bO[ OxO];
sum += wi ndow 0x2] * bO[ 0x2];
sum += w ndow 0x4] * bO[ 0x4];
sum += wi ndow 0x6] * bO[ Ox6];
sum += wi ndow 0x8] * bO[ 0x8];
sum += wi ndow| OxA] * bO[ OxA];
sum += wi ndow OxC] * bO[ OxC];
sum += wi ndow OxE] * bO[ OxE];

/* clip output sanple to 16-bit signed integer */
if(sum> 32767.0) {
*sanpl es = 32767;
[* clip++; */
}
el se if(sum< -32768.0) {
*sanpl es = -32768;
/* clip++; */

el se {

I NT16 *sanpl es,

INT32 bol) {

}

*sanpl es = sum

}

b0 -= 0x10;

wi ndow -= 0x20;
sanpl es += step;
wi ndow += bol<<];

for (j=15; j>0; j--) {
sum = -*(--w ndow) * *b0++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *b0++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *b0++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *b0++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *b0++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *bO++;
sum -= *(--w ndow) * *b0++;

/* clip output sanple to 16-bit signed int
i f(sum> 32767.0) {

*sanpl es = 32767;

I* clip++; */

}

else if(sum< -32768.0) {
*sanpl es = -32768;
[* clip++; */

}

el se {
*sanpl es = sum

}

b0 -= 0x20;

wi ndow - =0x10;

sanpl es += step;
}

return clip;




xformc

#i ncl ude <pyrogen. h>
#i ncl ude <stdio. h>

/*
* Apply a transformation matrix to an array of normal vectors:
* for i in0Oton-1do v[i] =u[i] *m

* where u[i] and v[i] are 3-elenment row vectors and mis a 16-el enent
* transformation matrix.

* The nornmals will be scaled to length 1.

*/

void __pyrogen_xformnormal s_3fv_transformnornalize(INT32 n, FLOAT32 v[][3], const FL

OAT32 nf{16], FLOAT32 u[][3]) {
INT32 i;

/* Transform and normalize */

FLOAT32 nD = n{0], m# = n{4], nB = n{8];
FLOAT32 nl = n{1], mb = n{5], n® = nf9];
FLOAT32 n2 = n{2], n6 = n{6], nlO = n{10];

for (i=0;i<n;i++) {
FLOAT64 tx, ty, tz;

{
FLOAT32 ux = u[i][0], wuy =u[i][1], wuz =u[i][2];
tx =ux * nD + uy * nL + uz * ng;
ty =ux * md +uy * nb + uz * ng;
tz =ux * nB + uy * m@ + uz * mo;

}

{
FLOAT64 | en, scale;
len = sqrt( tx*tx + ty*ty + tz*tz );
scale = (len>1E-30) ? (1.0 / len) : 1.0;
v[i][O0] = tx * scale;
v[i][1l] =ty * scale;
v[il[2] =tz * scale;

}

}




