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Abstract

We present three enhancements to graduated declustering, a mech-
anism for improving the performance robustness of I/O-intensive par-
allel programs. These enhancements are called write support, primary
copies, and logical partitioning. They serve to increase the number of
programs to which we can successfully apply graduated declustering.
We describe their need, present their design and implementation, and
evaluate their performance.

1 Introduction

Clusters of commodity servers, workstations, or personal computers are an
excellent platform for I/O-intensive software. They offer good scalability for
processor, memory, communication, and especially storage resources, all of
which can increase linearly with the number of nodes in the system. Clusters
also offer incremental scalability: given scalable software, they accommodate
increasing workloads with a simple addition of more nodes and switches.
Finally, clusters offer a good cost-to-performance ratio, benefiting from the
continually-improving technologies and economies of scale for components
such as microprocessors, DRAMs, and magnetic disk drives.

In this work, our interest is in identifying techniques that we can apply
when building high-performance I/O-intensive parallel programs for clus-
ters. Typically, writing software that attains the underlying hardware’s
peak performance is a difficult task, requiring an in-depth understanding
of both application algorithms and hardware performance characteristics.
Moreover, the cluster’s parallel environment complicates both software and
hardware.

Despite the challenges, prior work in this area has achieved great suc-
cesses. Shared-nothing parallel relational database systems (which run on
clusters) are available from a number of vendors, and they currently hold
the highest rankings for the Transaction Processing Performance Council’s
three database benchmarks (TPC-C, TPC-H at 1000 GB, and TPC-R) [8].
And beginning with NOW-Sort [1] in 1997, parallel sorting programs run-
ning on clusters have continually held the MinuteSort sorting-benchmark
record [6].

Experience gained from building and tuning NOW-Sort [2, 4] helped
Arpaci-Dusseau [3] to identify an interesting problem on clusters: perfor-
mance faults. Performance faults are unexpected fluctuations in the per-
formance of the components that comprise the system. Parallel programs
that assume uniform performance from system components will run afoul



of these faults, experiencing unpredictable load imbalance and, in turn,
unexpectedly-low performance.

In response to the problem of performance faults, Arpaci-Dusseau pre-
sented the concept of performance availability. A performance-available
parallel application is robust to performance faults; its performance de-
grades gracefully in their presence. With the thesis that modern paral-
lel and distributed systems must provide the proper primitives to support
performance availability, two performance-availability mechanisms — the
distributed queue and graduated declustering — were presented in the con-
text of River, a data-flow programming environment for the construction
of performance-robust I/O-intensive applications. These mechanisms were
shown to be sufficient for constructing a variety of database primitives that
are robust to disk performance faults. (River, the distributed queue, and
graduated declustering were initially described elsewhere by Arpaci-Dusseau
et al. [5])

In this report, we present three enhancements to the previous implemen-
tations of graduated declustering [3, 5], which we refer to as basic graduated
declustering. These three enhancements are

e write support,
e primary copies, and
e logical partitioning.

They serve to expand graduated declustering’s usefulness as a performance-
robustness mechanism. In addition to describing their design and implemen-
tation, we present performance results that compare graduated declustering
with our enhancements to basic graduated declustering, and also to a non-
robust parallel program.

The remainder of this report proceeds as follows. Section 2 provides
background information on our software model, on performance robustness,
and on performance-robustness mechanisms. Section 3 presents the design
and implementation of our three enhancements to basic graduated decluster-
ing, and Section 4 evaluates their performance. Finally, Section 5 discusses
related issues and future directions, and Section 6 concludes.

2 Background

This section provides background information. We first present our software
model, describing the type of I/O-intensive parallel software that this work



addresses. We also look at performance robustness as it applies to these
programs. Finally, we describe two performance-robustness mechanisms:
the distributed queue and basic graduated declustering.

2.1 Software Characteristics

We are interested in SPMD (single program multiple data) parallel programs
that spend a significant fraction of their running time in one or more I/0O-
intensive phases. These SPMD programs consist of a number of operating-
system processes distributed across some or all of the cluster’s nodes, with
at most one process per node. During the I/O-intensive phases, all processes
read or write large, contiguous blocks of data. (Random-access workloads
are not our focus.) These phases are I/O-intensive because, for their dura-
tion, all processes are nearly or completely I/O-bound, so that a slowdown
in any node’s I/O performance will create a bottleneck, slowing the process
on that node. Each I/O phase ends with a barrier, requiring that every
process completes the current phase before any process proceeds to the next
phase. As a result, slowdown of even a single process will result in global
program slowdown.

All data accessed by all of the processes during a given phase should
be thought of as belonging to a single parallel file, which is to say that the
data comprise a single dataset that has been partitioned (or declustered, in
database terminology) across some or all cluster nodes, and is stored on
the disk drives attached to those nodes. The pieces into which a dataset is
partitioned are called fragments, and there is (at most) one fragment stored
per node. Partitioning is performed according to application criteria, so
fragments need not be equally sized, but we assume that each is large —
a hundred megabytes or more. During a single I/O phase, each process in
a parallel program accesses one fragment, so in a sense each process has
respounsibility for one contiguous range of bytes within the parallel file.

This software model is similar to that of NOW-Sort, and also reflects
the execution of some query operators in parallel relational database man-
agement systems.

2.2 Performance Robustness

Any cluster is likely to exhibit a variety of performance faults. This work
focuses on disk performance faults [3], which affect the performance of disk
I/0O. Such faults arise from a number of sources, including unpredictability
of system activity and of data layout on disk drives.



As explained in the previous section, a slowdown in any node’s I/O
system will lead to global program slowdown. The significance of this is
clear given the presence of disk performance faults, which will cause that
exact problem. In building performance-robust parallel programs, we seek to
minimize these slowdowns. The goal of the robustness mechanisms discussed
in the next section is just that: to minimize the effect of disk performance
faults and thereby avoid global program slowdown.

2.3 Two Performance Robustness Mechanisms

Prior work [3, 5] presents two mechanisms that we can employ to add
disk-performance-fault robustness to the I/O-intensive parallel programs de-
scribed above in Section 2.1. In this section, we outline those mechanisms,
pointing out key details of their design, implementation, and operation. Al-
though Arpaci-Dusseau [3] presents them as general producer-to-consumer
data transfer mechanisms, we simplify our discussion by considering them
solely in the context of disk I/0O.

Both mechanisms transfer data between disks and processes in units that
we call blocks. Blocks may be fixed or variable in size, as appropriate for
the application’s needs and the system’s performance characteristics. (We
explore the latter in Section 4.) Both mechanisms also rely on performance
redundancy to provide performance availability, in much the same way that
fault-tolerant systems rely on redundancy to provide availability. And as
a basic strategy for achieving performance robustness, they both perform
dynamic load balancing for I/0.

The overall goal of both mechanisms is the same: to prevent disk per-
formance faults from significantly slowing any process in a parallel program
relative to its peers. In this way they seek to provide graceful degradation
of program performance in the face of disk performance faults. But as we
shall see in the next two sections, their dynamic load-balancing strategies
for achieving this goal are very different.

2.3.1 The Distributed Queue: Write Robustness

The distributed queue provides performance robustness to parallel programs
as they write parallel files. It accomplishes this goal by combining flexibility
in application-level data-ordering requirements with credit-based flow con-
trol. The specific strategy of the distributed queue is to ensure that all
processes writing to a parallel file avoid slower disks, thereby sending more
data to faster disks. The essence of the algorithm behind the distributed



queue is to monitor the number of write requests queued at each disk and
to make load-balancing decisions, which are enabled by flexibility in data
ordering, based on that information.

The distributed queue requires that a parallel program’s semantics does
not require ordering to be maintained between blocks of data written by dif-
ferent processes, although it does maintain ordering between blocks written
by the same process. This leaves it free to write any block to any fragment.

This flexibility provides the performance redundancy necessary for per-
formance availability. Each process can write to any disk, and thus all pro-
cesses can avoid slow disks. Ensuring that processes avoid slow disks is the
distributed queue’s basic strategy. The dynamic load-balancing algorithm
that implements it is as follows.

Each process begins by allocating an equal number of credits to each
disk. Then, independently, each process repeatedly selects a disk at random
and, provided that the disk has at least one credit, sends a block to (and
subtracts a credit from) the selected disk. If the selected disk has no credits,
another is randomly selected. The requests sent to a given disk are queued
at that disk; when serviced, they generate a reply that returns one credit to
the corresponding process.

In this fashion, the number of requests enqueued by all processes at any
one disk is limited, and faster disks will tend to receive and service more
requests than slower disks. If any disk should suffer a performance fault, it
will receive fewer requests and in turn be charged with writing fewer bytes.
Probabilistically, the amount of data handled by any disk is proportional to
its performance (i.e., its delivered write bandwidth).

2.3.2 Basic Graduated Declustering: Read Robustness

Graduated declustering provides performance-robustness to parallel pro-
grams as they read parallel files. It accomplishes this goal by combining
data replication with dynamic load balancing based on progress. The spe-
cific strategy of graduated declustering is to ensure that all processes reading
from a parallel file make progress at the same rate. The essence of the al-
gorithm behind graduated declustering is to monitor the progress of each
process and to make load-balancing decisions, which are enabled by replica-
tion, based on that information.

Graduated declustering assumes that each process reads one fragment in
its entirety. More significantly, graduated declustering assumes replication of
the dataset. The primary motivation for this replication is often availability
of the traditional sort, but performance availability comes as a welcome side



benefit.

In particular, graduated declustering assumes that the dataset has been
replicated according to the chained-declustering strategy [7]. Under this ap-
proach, each fragment is replicated, and the two replicas — called the pri-
mary fragment copy and the backup fragment copy— are laid out as follows.
With N nodes and N fragments, both numbered 0... N — 1, the primary
copy of fragment i is stored on node ¢ and the backup copy of fragment ¢ is
stored on node (i + 1) mod N.

This replication strategy provides the performance redundancy that is
necessary for performance availability. Each process can read its fragment
simultaneously from two disks, and (with the proper mechanism in place)
it can expect more bandwidth from one disk if the other should suffer a
performance fault.

As mentioned, graduated declustering’s strategy is to ensure that all
processes make progress at the same rate. Thus at any time during an I/O
phase, each process should have read the same fraction of its fragment. Since
fragments may vary in size, progress is measured by the relative fraction
read, rather than the absolute amount read. The load-balancing algorithm
that implements this strategy is as follows.

Each process reads from both of its fragment copies, so that each disk
has two readers. If a disk observes that one of its readers has fallen behind
the other, then it gives preference to the requests of the slow reader, serving
its requests until the slow reader has caught up. Clearly, processes must
inform disks of their progress; they do so by packaging that information
with each read request.

If either (or even both) of the disks storing a process’s fragment copies
should suffer a performance fault, this algorithm will effectively steal band-
width from the other two processes whose fragment copies are located on
the same disks. As a result, all readers will tend to make progress at ap-
proximately the same rate in spite of disk performance faults.

As discussed by Arpaci-Dusseau [3], there are limits to graduated declus-
tering’s tolerance of performance faults because only two replicas are avail-
able. Too-numerous or too-severe performance faults will cause uncor-
rectable load imbalance. Still, graduated declustering robustly accommo-
dates many common disk performance fault scenarios. And although we
do not explore this option, even-greater robustness to performance faults
can be achieved by generalizing graduated declustering to use three or more
replicas.

As an implementation note, we point out that the functionality of grad-
uated declustering resides in a runtime software layer that lies beneath the



parallel program, between it and the operating system’s file-access interfaces.
This layer must be aware of the chained-declustering fragment layout, and
must handle the routing of requests to the appropriate disks, the tracking
each process’s progress, the transmission of that progress information to the
disks, and the scheduling of requests at the disks. Rather than accessing file
data through operating-system interfaces, parallel programs access file data
through the interface to this graduated-declustering layer. The implementa-
tion of this layer then accesses file data through operating-system interfaces
on the program’s behalf.

3 Three Enhancements to Basic Graduated De-
clustering

This section presents our three enhancements to basic graduated decluster-
ing: write support, primary copies, and logical partitioning. We describe
them in turn, covering the motivation, design, implementation, and benefits
of each.

3.1 Write Support

Write support extends basic graduated declustering to handle writing data
as well as reading it, permitting the use of graduated declustering in place
of the distributed queue. Graduated declustering with the write-support
enhancement has two advantages over writing with the distributed queue.

First, equal progress for each process is an explicit goal with graduated
declustering, but not for the distributed queue. This will lead to better ro-
bustness (and better overall performance) for graduated declustering under
some circumstances, such when the cluster interconnect is congested [3, pp.
86-7].

Second, graduated declustering offers data placement that is far more
predictable. Data from a given process will be routed to one of only two
disks (those that hold the fragment’s primary and backup copies), whereas
the distributed queue may route data to any disk in the system. An im-
portant benefit of this difference is that ordering can easily be maintained
between blocks written by different processes. This ability to maintain or-
dering expands the range of programs to which we can add performance
robustness.

The addition of write support to graduated declustering is based on the
simple observation that the basic graduated-declustering algorithm can work



just as well for writing as it does for reading, provided that each process
knows in advance how much data it will write. Performance redundancy
takes a different form here. Rather than having two fragment copies from
which a process may read each block, the write-support enhancement has
two fragment copies to which a process may write each block. (In fact, the
term fragment copy is a misnomer in this context because each one collects
only part of the data from the process that writes to it. They might more
accurately be called fragment portions. However, for consistency we will
continue to refer to them as fragment copies.)

The strategy is then to ensure that all processes writing to a parallel
file make progress at the same rate, and it essentially achieved by a simple
reversal the flow of data in graduated declustering. That is, data is trans-
fered from process to disk, rather than from disk to process. The only other
noteworthy difference from basic graduated declustering is that we must
maintain metadata regarding the ultimate destination (primary or backup
fragment copy) of each block if we wish to locate particular blocks later on.

Note that the write-support enhancement does not provide replication
when used with the chained-declustering fragment layout. Replication re-
quires that that each byte be written to both its primary and backup frag-
ment copies, thus eliminating the source of performance redundancy for
writing. If replication is required, it can be postponed until the parallel pro-
gram has completed, when missing bytes from the primary fragment copy
can be copied from the backup fragment copy and vice-versa. Or it can be
achieved with a different fragment layout that provides for writing a sec-
ond copy of each process’s output. Compared to the chained-declustering
fragment layout, this approach requires twice the number of disk drives for
equivalent performance.

3.2 Primary Copies

The primary-copies enhancement minimizes graduated declustering’s usage
of the backup fragment copies. In the absence of performance faults (or,
more accurately, when all disks offer the same performance), graduated
declustering with the primary-copies enhancement will not send any requests
to the backup fragment copies. Contrast this with basic graduated declus-
tering, which will send half of all requests to the backup fragment copies.
This change in behavior relative to basic graduated declustering provides
three significant benefits.

First, in the absence of performance faults, the disk drives will not be
multiplexed: they will serve requests only for the primary fragment copy that



they store. In contrast, under basic graduated declustering, all disk drives
must constantly serve requests for both the primary and backup fragment
copies that they store. When fragment copies are laid out contiguously on
disk, the disk-head seeks generated by this multiplexing eat into delivered
disk bandwidth, a potentially serious problem for I/O-intensive programs.

Arpaci-Dusseau notes this overhead and minimizes it to 5% (i.e., only
5% of the disks’ peak bandwidth is lost) by selecting a large block size [3,
p. 113]. We observe that his approach is based on the performance of the
two particular disk-drive models used in the experiment, which have peak
transfer bandwidths of about 5 MB/s and 9 MB/s. As technology improve-
ments increase transfer bandwidth — current drives are reaching t0 MB/s,
and the growth trend is about 40% per year — this approach requires that
block size scale accordingly. But, as also noted, excessively large blocks limit
graduated declustering’s ability to achieved its goal of equal progress for all
processes [3, p. 126].

Second, both graduated declustering and the distributed queue assume
that node I/O buses and the cluster interconnect offer sufficient excess band-
width to support the mechanisms’ requisite data transfers. Notably, in the
absence of any performance faults, graduated declustering still transmits
across the network half of all data read from disk, and the distributed queue
probabilistically transmits (N — 1) /N of all data written to disk, where N
is the number of processes in the parallel program. Each transfer consumes
bandwidth on the sender’s I/O bus, on the network links and switches, and
on the receiver’s I/O bus [4]. If a program’s intrinsic demand for these
resources does not leave sufficient headroom, performance-robustness mech-
anisms may cause them to become oversubscribed, in turn causing program
performance to suffer.

Third, as we shall see below in Section 4.2.2, the primary-copies enhance-
ment reduces the use of backup fragment copies (and improves performance)
even in the presence of performance faults.

The primary-copies enhancement is a straightforward change to the ba-
sic graduated-declustering algorithm, in which a process always reads from
both its primary and backup fragment copies. In contrast with the basic al-
gorithm, a process begins to read from its backup fragment copy only when
it falls behind the process whose primary fragment copy resides on the same
disk.

Specifically, let there be N nodes, processes, and fragments, all num-
bered 0... N — 1; let process ¢ reside on node ; let the primary and backup
fragment copies reside on nodes ¢ and ¢ + 1 mod N, respectively; and let
P(i) € [0,1] represent the progress of process i (which can be thought



of as the fraction process i’s I/O completed so far). Then process i be-
gins reading from its backup fragment copy only when P(i + 1 mod N) —
P(i) > high_watermark. Likewise, it stops reading from its backup frag-
ment copy when P(i+ 1 mod N) — P(i) < low_watermark. By setting the
low_watermark to be less than high_watermark, we allow the difference
in progress between two adjacent (i.e., consecutively numbered, modulo N)
processes to wander within an acceptable range, as determined by the wa-
termarks. Values for the watermarks should be chosen to meet program
needs.

One key to implementing this enhancement is keeping each process
apprised of the quantity P(i + 1 mod N), the value of which is known to
the disk that holds process ¢’s backup fragment copy since it also holds the
primary fragment copy for process i+1 mod N. When a process is accessing
its backup fragment copy, this information can be included in messages sent
between the process and the backup-copy disk. On the other hand, when a
process is not accessing its backup fragment copy, periodic progress update
messages must be sent to it by the backup-copy disk.

3.3 Logical Partitioning

Logical partitioning accommodates parallel programs whose processes do
not wish to read exactly one fragment of a parallel file. An example is a
parallel sorting program running on a heterogeneous cluster, in which some
nodes have significantly faster processors or significantly more RAM than
other nodes. Here, the best performance is obtained by performing more
work on the more-powerful nodes. And this requires that those nodes read
or write more data than the others.

To accomplish this, the logical-partitioning enhancement allows pro-
grams to create a logical partitioning of the parallel file, in which each process
specifies an offset and range that together describe the portion of the paral-
lel file that is of interest to it. The graduated-declustering implementation
is modified to use a process’s progress in reading or writing its logical parti-
tion when making load balancing decisions, rather than measuring progress
relative to a single fragment, as the basic graduated-declustering algorithm
does. Additionally, at runtime the graduated-declustering layer must de-
termine which disk can handle a given access by comparing its offset and
length against metadata that describes the size, ordering, and location of
the parallel file’s fragment copies.
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4 Evaluation

In this section we evaluate the performance of the three enhancements de-
scribed in the previous section. We begin with the primary-copies enhance-
ment, and then move on to the logical-partitioning enhancement. Because
it seems natural to compare read performance with write performance, re-
sults for the write-support enhancement are given along the way. Before
beginning, though, we first describe our experimental setup.

4.1 Experimental Setup

All experiments were performed on a cluster of 16 Sun Ultra 1 Model 170
workstations. Each workstation contains the following hardware:

e a 167 MHz UltraSPARC-I processor with separate 16 KB first-level
instruction and data caches and a 512 KB second-level cache;

e 128 MB of RAM;

e two Seagate ST32430WC (Hawk 2LP, 2.15 GB, 5400 RPM) disk drives,
both attached to the workstation’s internal fast-narrow (10 MB/s)
SCSI bus and have outer and inner track bandwidths measured at
5.45 MB/s and 3.18 MB/s, respectively;

e a Myrinet network interface card attached to the SBus, capable of
transfers at around 40 MB/s; and

e a builtin 10 Mb/s Ethernet network interface.

Each node runs the Solaris 2.6 operating environment, with additional
drivers for the Myrinet network interface card to provide the Active Mes-
sages protocol, as well as Internet Protocol (IP) over Active Messages. Job
startup is performed over the Ethernet network, but all other communica-
tion takes place over the Myrinet network using TCP sockets transported
on IP over Active Messages. One of the two disk drives is reserved for op-
erating system files and swap space, and the other disk drive is used for our
experiments.

In many experiments, disk perturbations are introduced to simulate disk
performance faults. A perturbation is a process that repeatedly reads from a
disk file. Perturbations consume roughly 50% of a disk’s bandwidth. When
perturbations are applied to more than one disk, the perturbations are dis-
tributed in the “best” possible fashion, with (as much as possible) even
spacing between them, to prevent uncorrectable load imbalance.
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The data in all graphs reflect the results of five trials. Points are placed
at mean values, and error bars extend one standard deviation above and
below the mean. Note that error bars are present at every data point, but
the variance of the data is frequently so small that the error bars are too
short to be visible.

4.2 Primary Copies and Write Support

In this section, we look at the performance of graduated declustering with
the primary-copies and write-support enhancements. To this end, we com-
pare three different programs.

Non-Robust incorporates no performance-robustness mechanism, instead
accessing data directly through read and write system calls.

Basic GD uses an implementation of basic graduated declustering with the
addition of the write-support enhancement.

Primary-Copies GD uses an implementation of graduated declustering
with both the primary-copies and write-support enhancements.

In each experiment, we run all three programs on 16 nodes, with one
process per node. FEach process reads or writes 150 MB of data, so the
program as a whole accesses 2.4 GB. The 2.4 GB of data are partitioned
into 16 fragments of 150 MB, stored one per node in a single file. The
fragments are replicated according to the chained-declustering strategy for
use by Basic GD and Primary-Copies GD. We used the Solaris directio
system call to disable file-system caching for all fragment copies.

4.2.1 Performance in the Absence of Faults

Our first set of experiments considers the effect of block size on the per-
formance of our three programs in the absence of any performance faults.
The goal of these experiments is to gain insight into the overhead of the two
graduated-declustering implementations.

The upper plot in Figure 1 shows read performance in the absence of
faults as transfer size increases from 4 KB to 4096 KB. Specifically, it shows
the bandwidth attained by the slowest process (the last to complete) in
the program, which is representative of the performance of a disk-bound
program absent faults.

Non-Robust attains peak disk bandwidth (approximately 5.45 MB/s)
with 8 KB transfers. Transfers of 4 KB are too small to amortize the over-
head of each disk request.

12



Effect of Transfer Size on Read Bandwidth

6 T T T T T T T T T T T

5
@ Lo
) K
\Z/ ) ! X .
e} //
2
k] % X
= .
B
52 |
;

1 K

x —— Non-Robust
o ---%--- Primary-Copies GD
--—-%--- Basic GD
0 1 1 1 1 1 1 1 I I I I
4 8 16 32 64 128 256 512 1024 2048 4096
Transfer Size (KB)
Effect of Transfer Size on Write Bandwidth
6 T T T T T T T T T T T

Bandwidth of Slowest Process (MB/s)
w

1
—+— Non-Robust
— ---%--- Primary-Copies GD
% -- BasicGD
0 1 1 1 1 1 1 1 I I I I
4 8 16 32 64 128 256 512 1024 2048 4096

Transfer Size (KB)

Figure 1: Effect of transfer size on performance. The bandwidth attained
by the slowest of the 16 processes is shown. Each process accesses 150 MB.
The block size is varied from 4 KB to 4096 KB. No faults are introduced.
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Basic GD performs substantially worse than Non-Robust with transfers
smaller than 512 KB. This slowdown is due to Basic GD’s continual disk
multiplexing. As transfer size grows, the cost of multiplexing is amortized
over larger transfers (each of which completes without interruption), and
performance improves accordingly. As Arpaci-Dusseau found with the same
experimental environment [3, p. 113], 1024 KB transfers bring Basic GD’s
performance to within 5% of the system’s peak (which is represented here
by Non-Robust).

Primary-Copies GD tracks Non-Robust’s performance closely with trans-
fers of 32 KB and larger because, absent performance faults, it performs
little or no disk multiplexing. However, it does perform noticeably slower
than Non-Robust with transfers smaller than 32 KB. Such transfers are too
small to hide the overhead of the graduated-declustering software, which
(in our implementation) performs socket-based interprocess communication
(IPC) to move data from the fragment copies into the processes. This IPC
proceeds through the operating-system kernel, resulting in significant pro-
cessor overhead when transfers are small. Small-transfer performance can
be improved by changing the implementation to avoid the operating sys-
tem during IPC operations, perhaps through the use of shared memory IPC
or by restructuring the software to eliminate the need for per-transfer IPC
entirely.

The lower plot in Figure 1 shows write performance in the absence of
faults as transfer size increases from 4 KB to 4096 KB in the absence of
performance faults. Relative to reading, writing exhibits a dramatic drop in
small-transfer performance for both Non-Robust and Primary-Copies GD.
The performance of both programs now tracks that of Basic GD rather
closely. Further comparison of the two plots in Figure 1 reveals that Basic
GD’s performance is highly similar in both.

The moderate performance difference between Basic GD and the other
two programs when writing is attributable to the disk-head seeks caused by
Basic GD’s disk multiplexing. The interesting conclusion to be drawn here
is that the performance difference when reading is due to a similar amount
to the disk-head seeks caused by multiplexing, and is due to a much larger
amount to the loss of read prefetching in the disk drives (performed by on-
drive control logic, not by the operating system) that multiplexing causes.
Only by comparing multiplexing and non-multiplexing programs both when
reading and when writing (where prefetching does not occur) do we see how
significant the effects of prefetching and multiplexing on small-transfer read
performance are.

Before moving on, we point out that better small-transfer write perfor-

14



mance can be achieved by batching writes before issuing them to the disks,
as is typically done by file system buffer caches. Solaris’s buffer cache per-
forms this optimization, resulting in substantial performance improvements
in small-transfer write performance.

4.2.2 Performance in the Presence of Faults

Our second set of experiments considers the effect of performance faults on
the performance of our three programs. The setup for these experiments is
similar to that of Section 4.2.1, but with two differences:

1. the transfer size is fixed and
2. perturbations are introduced.

We vary the number of perturbed disks from zero to 16. As previously
stated, our perturbations are designed to reduce a disk’s performance by
about 50%.

To help us evaluate how well each program copes with performance faults
in an absolute sense, each graph in this section includes a line labeled Ideal,
which is meant to represent the behavior of an ideal performance-robustness
mechanism in the presence of performance faults. Its left endpoint is the
mean bandwidth of all 16 Non-Robust processes when there are no pertur-
bations, and its right endpoint is the mean bandwidth of all 16 Non-Robust
processes when there are 16 perturbations. (Both are averaged over all five
trials.)

Figure 2 shows the performance of all three programs with 64 KB trans-
fers when reading (upper plot) and when writing (lower plot).

For reading, Non-Robust’s performance performance is halved by the
introduction of just a single fault — the canonical argument in favor of
performance-robustness mechanisms.

Primary-Copies GD’s performance suffers less, dropping by only 25% in
the presence of one fault, and then degrading smoothly as more faults are
added. The magnitude of the performance drop caused by a single fault
is explained by the disk multiplexing that Primary-Copies GD performs in
response to a performance fault.

As we saw in Section 4.2.1, Basic GD’s performance with such small
transfers is relatively poor in the absence of faults. Low as performance
is to start, the introduction of a fault has little impact, and performance
degrades smoothly as further faults are added. Note that Primary-Copies
GD performs better than Basic GD even with faults.
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Figure 2: Effect of faults on performance. The bandwidth attained by the
slowest of the 16 processes is shown. Each process accesses 150 MB. The
block size is fixed at 64 KB. The number of faults is varied from zero to 16.
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Figure 3: Effect of faults on performance. The bandwidth attained by the
slowest of the 16 processes is shown. Each process accesses 150 MB. The
block size is fixed at 1024 KB. The number of faults is varied from zero to
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For writing, we see the same poor small-transfer performance of Sec-
tion 4.2.1, affecting all three programs. As a result, Primary-Copies GD
and Basic GD offer similar performance, which is substantially better than
Non-Robust’s in the face of performance faults.

Figure 3 shows the performance with 1024 KB transfers when reading
(upper plot) and when writing (lower plot). As can be seen, such large
transfers are highly effective in improving the performance of Basic GD,
which now runs only 5% to 10% slower than Primary-Copies GD, even in
the absence of faults. They also bring both GD implementations close to
the ideal performance.

4.3 Logical Partitioning

Our final experiment examines the performance of the logical-partitioning
enhancement. Our interest here is in learning whether or not graduated
declustering works as well with logical partitioning as it does without it.

To invoke the logical-partitioning enhancement, we vary the amount of
data read and written by the processes. As in our previous experiments, the
program as a whole handles 2.4 GB of data. Here, though, we change the ra-
tio of data handled by the evenly-numbered and oddly-numbered processes,
setting it at 1:1, 1:1.5, and 1:2. Thus with a 1:1 ratio, each process han-
dles 150 MB; with a 1:1.5 ratio, evenly-numbered processes handle 120 MB
while oddly-numbered processes handle 180 MB; and with a 1:2 ratio, evenly-
numbered process handle 100 MB while oddly-numbered processes handle
200 MB.

These ratios might represent, say, the difference in memory size or pro-
cessor speed between two groups of machines in a heterogeneous cluster. By
alternating the assignment of the larger and smaller datasets on an even-odd
basis, we eliminate some potential for uncorrectable load imbalance.

Figure 5 shows the performance of Basic GD and Primary-Copies GD
with logical partitioning on 16 nodes when reading (upper plot) and writing
(lower plot). Specifically, it shows the average per-process bandwidth com-
puted based on the completion time for the slowest process in each program.
The transfer size is 1024 KB. The number of perturbations varies from zero
to 16. (In fact, the data for the 1:1 ratio are exactly those that were used
to produce Figure 3.)

Changes in the data ratio have essentially no effect on performance,
indicating that the logical-partitioning enhancement works well with both
Basic GD and Primary-Copies GD..

Figure 4 shows the performance with 64 KB transfers. For both reading
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Figure 4: Logical partitioning: effect of faults on performance . The average per-process
bandwidth (based on the completion time of the slowest process) is shown. The ratio of
data accessed by evenly- and oddly-numbered processes is varied. The block size is fixed
at 64 KB. The number of faults is varied from zero to 16.
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Logical Partitions: Effect of Faults on Read Performance (1024 KB Transfers)
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Figure 5: Logical partitioning: effect of faults on performance. The average per-process
bandwidth (based on the completion time of the slowest process) is shown. The ratio of
data accessed by evenly- and oddly-numbered processes is varied. The block size is fixed
at 1024 KB. The number of faults is varied from zero to 16.
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and writing, Primary-Copies GD’s performance improvement over Basic GD
is evident. We also notice somewhat greater variation in the read perfor-
mance of Primary-Copies GD when the data ratio changes. However, we can
still comfortably state that logical partitioning works well with graduated
declustering at this transfer size.

5 Discussion

As we have shown, graduated declustering has a great deal of flexibility
above and beyond its original implementations. Not surprisingly, there are
further enhancements to be made.

One possibility is to adaptively decrease each process’s primary-copies
high_watermark parameter as completion nears. This will allow a larger
initial value for more play in the system early on, reducing multiplexing and
improving disk utilization. Later on in the program’s execution, as progress
is made, the reduction in the high_-watermark parameter enables the system
to avoid skew in the key program performance metric: the slowest-process’s
completion time.

Another possibility is an implementation of graduated declustering for
applications with loose read-ordering requirements, such as parallel sorting.
In its initial phase, a parallel sorting program repartitions its entire dataset.
The range partitioning performed in that step has no dependence on the
initial ordering or placement of the dataset. This enables the construction of
a graduated-declustering implementation that requires no network transfers
of disk data, thus bringing the processor, I/O bus, and network overheads to
their bare minimums. (It is still necessary transmit control messages across
the network, but these transfers are limited in both size and number.) The
key to such a design is recognizing that the sort program does not care which
bytes of a parallel file are read by a given processes so long as each byte is
read by some process. In this case, graduated declustering can influence the
progress of a process by adjusting the amount of data that it must read from
the local disk, rather than by adjusting how quickly its must read data for
that process.

As a final thought, we consider the effect of current hardware trends on
the effectiveness and the importance of graduated declustering. 1.2 GHz
processors and 50 MB/second disk drives are currently available, and the
performance of those components, as well as that of networks, will continue
to improve in the future. Not only is disk performance growing rapidly,
but so is disk capacity (73 GB disks are now available), and capacity has
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been increasing more rapidly than performance. With more data to read
from each disk, transfer bandwidth will continue to be a bottleneck resource
in clusters that hope to achieve good performance for I/O-intensive appli-
cations. As a result, graduated declustering should continue to be a useful
mechanism for achieving consistently-good performance. Moreover, rapidly-
growing disk capacity increases the attractiveness of replication, and in turn
graduated declustering. Processor speed increases should continue to easily
handle the overhead of graduated declustering. And while networks may
bog down under graduated declustering if disk transfer performance contin-
ues to improve so rapidly, the primary-copies mechanism helps to address
that concern.

6 Conclusion

We have presented three enhancements to graduated declustering, a mech-
anism for use in the construction of I/O-intensive parallel programs that
are robust to disk performance faults. These three enhancements are write
support, primary copies, and logical partitioning. We described them, and
gave details of their design, implementation, and benefits. We evaluated
their performance, finding it to be good. Notably, the primary-‘copies en-
hancement offers consistently better performance than the original gradu-
ated declustering designs. Finally, we presented ideas for further enhance-
ments of graduated declustering and discussed the implications of current
hardware trends.
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