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Abstract

Many real-world domains have continuous features and actions, whereas the ma-
jority of results in the reinforcement learning community are for finite Markov decision
processes. Much of the work that addresses continuous domains either uses discretiza-
tion or simple parametric function approximators. A drawback to some commonly-used
parametric function approximation techniques, such as neural networks, is that para-
metric methods can “forget” and concentrate representational power on new examples.
In this paper, we propose a practical architecture for model-based reinforcement learn-
ing in continuous state and action spaces that avoids the above difficulties by using
an instance-based modeling technique. We present a method for learning and main-
taining a value function estimate using instance-based learners, and show that our
method compares favorably to other function approximation methods, such as neural
networks. Furthermore, our reinforcement learning algorithm learns an explicit model
of the environment simultaneously with a value function and policy. The use of a model
is beneficial, first, because it allows the agent to make better use of its experiences
through simulated planning steps. Second, the use of a model makes it straightforward
to provide prior information to the system in the form of the structure of the environ-
mental model. We extend a technique called generalized prioritized sweeping to the
continuous case in order to focus the agent’s planning steps on those states where the
current value is most likely to be incorrect. We illustrate our algorithm’s effectiveness
with results on several control domains.

Keywords: reinforcement learning, control,prioritized sweeping, instance-based learn-
ing
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1 Introduction

Imagine trying to learn how to safely drive a car using the standard methods of re-
inforcement learning. For many such methods, you would be asked to keep track of
the value of performing an action for all of the possible configurations of your car,
your hands, other cars, your tiredness, etc. In many reinforcement learning paradigms,
you would be expected to crash the car many times before learning the proper way to
drive. Of course, researchers in reinforcement learning have thought of and at least
partially addressed these issues — but the car example serves as a tangible reminder
of the difficulty of learning a skill in the real world. For example, it makes it clear
that it is critical to use function approximators to handle the huge configuration space
of driving. Given that real accidents are too costly a learning tool, it highlights the
importance of having and using a model of the environment so that reasoning and
planning can take place in the safety of simulation. Furthermore, because driving is a
real-time enterprise, it stresses a balance between pondering and acting — waiting too
long for a decision can easily cause accidents on a highway.

Motivated by the desire to apply reinforcement learning in continuous, real world
situations, this paper presents a reinforcement learning system that utilizes an instance-
based learner to represent the values of actions, a continuous dynamic probabilistic net-
work to represent the model of the environment, and a technique to focus computation
on planning episodes that are most likely to affect the success of later behaviors.

One approach to dealing with continuous environments is to simply discretize the
world and use standard explicit state-space methods on the discretized model [Mc-
Callum, 1995]. Although useful for some domains, discretization doesn’t scale well to
high dimensional spaces, and, despite some work on adaptive discretization, choosing
the discretization can be problematic. Coarse discretizations can yield unsatisfactory
policies, while fine-grained representations can be intractable. Another approach is to
use function approximators to represent the value of taking actions at different states
in the world. Parametric models such as neural nets [Bertsekas and Tsitsiklis, 1989;
Tesauro, 1989] or local averagers [Gordon, 1995] have often been used for this purpose.
However, these parametric models have the problem of “forgetting”, where all repre-
sentational power can be co-opted by new examples. This is unfortunate for control
problems, where dangerous situations may be seldom encountered once the behavior is
reasonable. Of course, nonparametric regression methods are insensitive to nonstation-
ary data distributions. Thus, we present a method for utilizing instance-based methods
in a reinforcement learning context to store the expected value of taking actions in the
environment.

As is reasonably well known in the reinforcement learning community, a model
of the environment can be used to perform extra simulated steps in the environment,
allowing extra planning steps to take place. In the extreme, the MDP in question could



be solved as well as possible given the current model at each step. Typically, however,
this is intractable, and certainly undesirable when the model is not very accurate.
Thus, most applications benefit from a middle ground of doing some extra planning
steps after each actual step in the environment. The technique of Prioritized Sweeping
[Andre et al., 1997; Moore and Atkeson, 1993] chooses the states to update based on a
priority metric that approximates the expected size of the update for each state. In this
work, we apply the principles of generalized prioritized sweeping [Andre et al., 1997]
to a continuous state and action space using an instance-based value-function and a
dynamic belief network (DBN) representation of the model. A potential disadvantage
of using a model is that it must be learned, which can be complicated for a complex
environment. However, by using a simple DBN for the model, we can take advantage
of prior knowledge about the structure of the environment, and are only left with the
problem of learning the parameters.

The structure of the paper is as follows. Section 2 first gives an overview of re-
inforcement learning and current value function approximation techniques. It then
describes our instance-based representation, an algorithm for learning and maintain-
ing the instance-based approximate value-function, and presents results of a simple
comparison with neural networks. Section 3 briefly describes model based reinforce-
ment learning, dynamic belief networks, and the representation that we use for the
model. Section 4 describes methods for choosing which planning steps to take, includ-
ing prioritized sweeping and how it applies to the continuous case when using DBNs
for the model and instance-based methods for the value-function. Section 5 discusses
the problems to which we have applied the system, and presents some results. Finally,
Section 6 presents some conclusions and future work.

2 RL and Value Function Approximation

The reinforcement learning framework that we assume in this paper is the stan-
dard Markov Decision Process (MDP) setup for reinforcement learning [Kaelbling and
Moore, 1996]. We assume that at each point in time the environment is in some state
s. At each step, the agent selects an action a, which causes the agent to transition to
some new state t. Furthermore, the agent can receive some reward r(s) that depends
only on the state s and not on the past. This is part of our assumption that the sys-
tem is Markovian so that the probability p(s|s,a) of reaching state s’ from state s by
executing a does not depend on how the system arrived at state s. In this setting, the
objective of the agent is to maximize its expected discounted accumulated reward.

In reinforcement learning, the optimal mapping from states to optimal behavior
(policy) is determined entirely by the expected long-term return from each state which
is called its value. Optimal decisions can be made in RL by learning the value, or
expected reward to go, of every state. The Q-function, Q(s,a), is defined as the



estimate of the expected long-term return of taking action a in state s. In this paper,
we will often refer to a state/action pair as a v, where a particular ¢' = ¥(s,a) for
some s and a. We will use ¥(s,a) to denote the state action pair composed of state s
and action a. Furthermore, we say that ¢! = s and 9! = a.

When a transition from state s to state s’ is observed under action a, the Q(s,a) =
Q(¥(s,a)) estimate is updated according to the following rule:

Q(¥(s,a)) + (1 = a)Q(s,a) + a[R+ YV (s')]

where R(¥(s,a) is the immediate reward received, « is the learning rate, v is a
discount factor, and the value of state s, V(s') = maxy Q(s',a’). Given a continuous
state space, some sort of function approximation is necessary, since it would be impos-
sible to represent the value function using a table. Generally, a parametric function
approximator, such as a neural network, is used: Q(s,a) = Q(s,a) = F(s,a,w) where
w is a parameter vector with k elements. The Q-function estimate is updated by first
calculating the temporal difference error, the discrepancy between the value assigned to
the current state and the value estimate for the next state: E < R+~V(s") — Q(s,a).
The weights in the function approximator are then updated according to the following
rule: w < w4+ aEVy F(s,a,w).

In our preliminary experiments in applying this method to the task of lane follow-
ing with the BAT [Forbes et al., 1997] simulator, we found that the technique had
reasonable success for the task of lane following, quickly learning to stay centered in
the lane with a simple reward function. Unfortunately, the RL controlled car was never
able to stay entirely centered within the lane and after driving near the center of the
lane for a period of time, it would “unlearn” and exhibit bad behavior. We suspect
that the unlearning occurred because the distribution of states tends to focus more
and more in the states just around the center of the lane, so there is forgetting of
the other states. Other neural network control algorithms control the distribution of
examples explicitly to prevent such interference. The intuition behind the forgetting
problem is as follows. For a particular distribution of examples, the network weights
will converge to a particular value in the steady state. If that input distribution shifts,
the parameters will once again shift again. It can be shown that after this shift, the
error on the previous examples will increase.

An alternative approach is instance-based learning [Atkeson et al., 1997] (also
known as memory-based or lazy learning) that does not have this problem of for-
getting because all examples are kept in memory. For every experience, the example
is recorded and predictions and generalizations are generated in real-time in response
to query. Unlike parametric models such as neural networks, lazy modeling techniques
are insensitive to nonstationary data distributions.

Memory-based techniques have four distinguishing parts: (1) the distance metric
used to determine the similarity of two points, (2) the number of neighbors to consider
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for a query, (3) the weighting of those neighbors, and (4) the way of using the local
points to respond to a query.

A basic distance metric is Euclidean distance between a datapoint x and a query
point q where dp(x,q) = />, (z; — ¢;)?. However, these methods still work with
distance metrics which enable dimension scaling and skewing. In general, we will

assume that all neighbors are being used. A typical weighting function is the Gaussian
—d(z;,q)
where the weight to the ith datapoint is assigned as w; = e ™  where 7% is the kernel

width. Another function is the Epanechnikov kernel, w§ = 3/4(1 — d(z;, q)?), which has
the optimal asymptotic mean integrated squared error for a one-dimensional kernel. In
other words, the sum of the integrated squared bias and the integrated variance over
the function is as low as possible.

Given a distance metric and a weighting function, the predictions in instance-based
learning can be computed in a number of ways. In kernel regression, the fit is simply
> wiy

2w

3

a weighted average of the outputs y;,i € [1,n] of the neighbors:

Locally weighted regression (LWR) is similar to kernel regression. If the data is
distributed on a regular grid from any boundary, LWR and kernel regression are equiv-
alent. For irregular data distributions, LWR tends to be more accurate [Atkeson et al.,
1997]. LWR fits a local model to nearby weighted data. The models are linear around
the query point with respect to some unknown parameters. This unknown parame-
ter vector, b € R¥, is found by minimizing the locally weighted sum of the squared
residuals: F = %2?21 wi(x!'b — y;)? where x; € R* is the ith input vector, w; is the
corresponding weight, and q”'b is the output for the query.

Generally, instance-based learning techniques are used in supervised learning where
the true inputs and outputs are given throughout the training process. In reinforcement
learning, the examples are only estimates of the value that may be very inaccurate
initially. So while we improve our Q-estimates, we must update the out of date values
in the database. Locally weighted regression can then can be used to represent the
Q-function. Here, we perform what is known as a SARSA (state, action, reward, state,
action) backup [Singh and Sutton, 1996]. We are in state s;, perform action u;, and
we are given a immediate reward of ;11 as we arrive in state s;y1, and from there we
will choose, according to our policy, action u;y1. For every action, we can add a new
example into the database: Q; = 741 + YQ(S141,urr1). We update each Q-value
Q; in our database according to a temporal-difference update.

Qi +— Qi+ afrip1 +7Q(sp41,ur1) — Q(st, )|V, Qs ug)

For kernel regression,




, and for locally weighted regression,

k
VQ(st,u) = wi »_ q;Gyi

j=1

where Gj; is an element of the G = (Z7Z)~™'Z" and ¢; is the ith element of the query
vector q. For locally weighted regression, VQ(s¢, uy) = wj Z;’?Zl qjGj; where G;j is an
element of the kxn matrix G = (WX)T(WX))""(WX)T and ¢; is the ith element of
the query vector q. Instead of updating all elements, we can just update the nearest
neighbors. We want to credit those cases in memory which may have had a significant
effect on the Q(sy, uy) that were within the kernel width (7). Those cases make up
the nearest neighbors NN (s, u;) of the query point. By updating only the neighbors,
we can bound the overall update time per step.

There are some disadvantages to using these memory-based methods for value func-
tion approximation. First of all, memory and computation costs increase with more
data. The space required to store the new examples increases linearly with the num-
ber of examples. We can restrict the number of examples somewhat by eliminating
redundant examples. We should not enter any new examples which can be already be
predicted by the database within some small range €. Even so, most approaches using
memory-based learning do not have a problem with running out of memory. The time
costs are more limiting, since we can potentially have to iterate through all examples
on each query. We can restrict the number of datapoints which are used in a query by
only using the k£ nearest neighbors or by restricting the examples used to those within
some function of the kernel width. Using data structures such as kd-trees, lookup of
the nearest neighbors can be done in O(log n) average time, so that we look at the most
relevant neighbors first [Moore, 1991]. Memory-based methods tend to break down in
domains with high dimensions because of an exponential dependence of needed training
data on the number of input dimensions: the curse of dimensionality. Luckily, most
tasks only require high accuracy in small slices of the input space. For a robot with
more than 8 degrees of freedom, it would be impossible for the robot to experience all
significantly different configurations in a lifetime. The learning methods can construct
very accurate representations of the function where there are a number of examples.
Very often, memory-based methods work very well for problems with a limited number
(< 10) of input dimensions.

As discussed before, the optimal action in any state for a particular Q-function,
7(s) = argsup, Q(s,a). Finding the maximum value for an arbitrary function can be
a hopelessly complex exercise by itself. In domains where the action is represented by
a vector instead of a single scalar value, the maximum finding routine is accordingly
much more complex. We generally assume a unimodal distribution for the Q-values
with respect to a particular state for a particular state and scalar actions. We can then



Cart centering performance
0 T
T N T

210 b

20 b

230 |

Accumulated reward

-40 |

50 |

Optimal

Locally Weighted Regression -------

Kernel regression --------
Neural Net‘

60 I I I I I I I
10 20 30 40 50 60 70 80 920 100
Trials

Figure 1: Q-learning with different types of function approximators versus the optimal policy on the cart-centering domain.
The cart was started at various positions with 0 velocity. The first 20 trials at +/ — 1, the next 10 trials at +/ — 0.5, the next
10 trials at +/ — 0.25, and the final 10 trials at +/ — 0.125. At that point, the sequence was repeated again.

use a gradient ascent strategy to find an approximation to the optimal action for our
value function. Many algorithms discretize the action space, but for many control tasks,
insufficiently quantized actions can cause oscillations and unstable policies [Kumar and
Varaiya, 1986].

In order to test our instance-based Q-learning algorithm, we evaluated three func-
tion approximation algorithms in the cart centering domain. The domain is similar to
the one described in Section 5, but it is a bit simpler (i.e. smaller world and smaller
time step). In order to simulate the effects of a changing task, we moved the start
point closer to the goal as the agents completed the trials. We show the performance
of the controllers in comparison the the optimal policy derived with a Linear Quadratic
Regulator in Figure 1. The neural network performs relatively well, but when the start
state is moved back to the initial starting position, the neural network controller has
to relearn the value function for the outer states. The instance-based methods, lo-
cally weighted and kernel regression, had very little drop off in performance. LWR
was slightly closer to optimal. Nevertheless, we generally use kernel regression in our
subsequent problems because it is somewhat faster and more straightforward.

3 Model-based Reinforcement Learning

The standard problem in model-based reinforcement learning is to learn a model of
the environment simultaneously with an optimal policy. As the agent gains knowledge
of the world’s model, this information can be used to do various forms of planning,
which can update the agent’s value function without taking steps in the world. In



the ideal case, the agent would compute the optimal value function for its model of
the environment each time it updates it. This scheme is unrealistic since finding the
optimal policy for a given model is computationally non-trivial. Fortunately, we can
approximate this scheme, if we notice that the approximate model changes only slightly
at each step. We can hope that the value function from the previous model can be easily
“repaired” to reflect these changes. This approach was pursued in the DYNA [Sutton,
1990] framework, where after the execution of an action, the agent updates its model of
the environment, and then performs some bounded number of value propagation steps
to update its approximation of the value function. Each value-propagation step in
the standard model-based framework locally enforces the Bellman-equation by setting
V(s) < supge4 Q(s,a), where Q(s,a) = #(s) +7 [, p(s'|s,a)V(s'), where p(s'|s,a) and
7(s) are the agent’s approximate model, and V is the agent’s approximation of the
value function. In the SARSA framework [Singh and Sutton, 1996] that we utilize
in this paper, simulated value propagation steps are performed by taking simulated
steps in the environment, using the learned model. To do a value propagation for a
state/action pair ¢!, we simulate the action 1’ using the model, and calculate the
resultant state ¢g, where we then pick an action @bg, and calculate its value. Then, we
can update the value of ¢ as follows: Qui = (1 — @)Qyi + a(R(Y}) +7Qy:).

In an explicit state-space, it is possible to store the model simply as a table of
transition probabilities. Clearly, in a continuous domain, other forms of representation
are required. Moore and Atkeson [Atkeson and Schaal, 1997] used a simple constrained
parametric model of a robot arm in their learning from observation research. Other
researchers in robotics have used Kalman-filter style models for navigation under un-
certainty. In any complex reinforcement learning environment, however, there are often
many state variables, and the transition matrices for a Kalman-filter might well get
unwieldy. The curse of dimensionality can be somewhat sidestepped by using a model
that takes advantage of local structure.

3.1 Dynamic Probabilistic Networks

We now examine a compact representation of p(s|s, a) that is based on dynamic Prob-
abilistic networks (DPNs)[Binder et al., 1997]. DPNs have gone by several other names
as well, including Dynamic Bayesian Networks or Dynamic Belief Networks (DBNS).
DPNs have been combined with reinforcement learning before in [Tadepalli and Ok,
1996], where they were used primarily as a means of reducing the effort required to
learn an accurate model for a discrete world. [Andre et al., 1997] also used DPNs in
their work on extending prioritized sweeping.

We start by assuming that the environment state is described by a set of attributes.
Let Xq,...,X,, be random variables that describe the values of these attributes. For
now, we will assume that these attributes are continuous variables, with a predefined



range. An assignment of values z1, ..., x, to these variables describes a particular en-
vironment state. Similarly, we assume that the agent’s action is described by a random
variables A;. To model the system dynamics, we have to represent the probability of
transitions s—t, where s and ¢ are two assignments to X7,..., X, and a is an assign-
ment to A;. To simplify the discussion, we denote by Yi,...,Y, the agent’s state after
the action is executed (eg the state t). Thus, p(t|s,a) is represented as a conditional
probability density function p(Y3,...,Y, | X1,..., Xy, 41).

A DPN model for such a conditional distribution consists of two components. The

first is a directed acyclic graph where each vertex is labeled by a random variable and
in which the vertices labeled X1,..., X, and A; are roots. This graph specifies the
factorization of the conditional distribution:
P(Y1,...,Yn | Xi1,..., X, A1) = [Ii=, P(Yi | o(i)), where p(i) are the parents of Y;
in the graph. The second component of the DPN model is a description of the con-
ditional probabilities P(Y; | o(i)). Together, these two components describe a unique
conditional distribution. In the case of discrete variables, the simplest representation
of P(Y; | o(i)) is a simple table. For continuous variables, we need a parameterized
function to specify the conditional probabilities. In our case, we use a constrained form
of the exponential family where the function P(Y; | (7)) is represented by a Gaussian
with a mean that is a linear combination over a set of functions on the inputs, and a
variance over the same set of functions. That is, (V; | o(i) = N(0'¢p(o(i)),0?), where
©(o(7)) is a set of functions over the parents of the given state attribute. For exam-
ple, a node that was such a function of two parents X; and X5 might have the form:
N([90 + 91X1 + 92X2 + 93X1X2], 0'2).

It is easy to see that the “density” of the DPN graph determines the number
of parameters needed. In particular, a complete graph requires O(N?) parameters,
whereas a sparse graph requires O(N) parameters.

In this paper we assume that the learner is supplied with the DPN structure and
the form of the sufficient statistics (the ¢(o(7))) for each node, and only has to learn
the 6;;, where ¢ indexes the node Y; and j the jth parameter of node Y;. The structure
of the model is often easy to assess from an expert. '

Learning the parameters for such a model is a relatively straightforward application
of multi-variate linear regression. For the purposes of this paper, we assume a constant
variance, although clearly this could be learned through experience using stochastic
gradient or other related techniques. Without the need to learn the variance of the
function at each node, we are left with simply determining the linear coefficients for
each equation. By keeping track of the values of the sufficient statistics, we can learn
the coefficients in an online manner at each node by solving a simple system of equa-

![Friedman and Goldszmidt, 1998] describe a method for learning the structure of DPNs that could be
used to provide this knowledge.



tions equal in size to the number of parameters (that can be derived simply from the
derivative of the squared error function).

4  Prioritized Sweeping

As discussed above, one of the key advantages of having a model is that we can use it
to do extra simulations (or planning steps). The general model-based algorithm that
we use is as follows:

procedure DoModelBasedRL ()
(1) loop

(2) perform an action a in the environment from state s, end up in state ¢

(3) update the model; let Ag,, be the change in the model

(4) perform value-propagation for ¥(s,a), let Ag,, be the change in the Q function

(5) while there is available computation time
(6
(7

choose a state/action pair, 1’
perform value-propagation for ¢', update Ag,,

~ ~—

There are several different methods of choosing the state and action pairs for which to
perform simulations. One possibility is to take actions from randomly selected states.
This was the approach pursued in the DYNA [Sutton, 1990] framework. Another
possibility is to search forward from the current state/action pair v, doing simulations
of the N next steps in the world. Values can then be backed up along the trajectory,
with those g-values furthest from 1) being backed up first. This form of lookahead
search is potentially quite useful as it focuses attention on those states of the world
that are likely to be encountered in the agent’s very near future.

However, there is another possibility. We can attempt to update those states where
an update will cause the largest change in the value function. This idea has been
expressed previously as prioritized sweeping [Moore and Atkeson, 1993] and as Q-
DYNA [Peng and Williams, 1993]. In [Andre et al., 1997], the idea was generalized to
non explicit-state based worlds through the principle that we should use the size of the
Bellman error as the motivating factor. In the SARSA framework, we want to update
those state/action pairs expected to have the highest changes in their value.

The motivation for this idea is fairly straightforward. Those g-values that are
the most incorrect are exactly those that contribute the most to the policy loss. To
implement prioritized sweeping we must have an efficient estimate of the amount that
the value of a state/action pair will change given an other update. When will updating
a state/action pair make a difference? First, when the value of the likely outcome
states has changed. Second, when the transition model has changed, changing the
likely output states. To calculate the priorities, we can follow [Andre et al., 1997] and
use the gradient of the expected update with respect to those parameters of our model
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(0,,) and value function (©,) that have recently changed. Let © represent the vector
of all of our parameters (composed of ©,, = 0;; U §,; for the model, and Qi for the
Q values). Then, we estimate the expected change in value by the gradient of the
expected update.

ElAq,] =~ |VE[a(R(¢§)+vV[s’1)1-Ae|
~ |[Via(R(y)) + / Vs ds')] - Ael?

Let us call priority(y*) the priority of a state/action pair ¥*, and let priority,;(¢¥)
be the priority contribution from the changes in reward parameter 7, priorityij(zpk) be
the priority contribution from the changes in model parameter 75, and pmomtyQ (4%)

be the priority contribution from the changes in the stored q-value 7. Flnally, let
©r(4*) represent the set of sufficient statistics for the reward node in our DPN model
calculated for state/action pair ¥, and let ; be the set of sufficient statistics for the
node for state attribute ¢ in the model. Then, by some straightforward algebra, we can
derive the following expressions for the priority.

For the changes in the q function, we have:

priorityq, (%) = 7/p(sl|¢k) [W(\If(s',é),@bJ)Aw ] i€

Yy w(U(s',a),91)

Where s’ ranges over the set of possible outcomes from state/action pair 9*, and a is
the best action from state s’. For the changes in the model, we have

priority; (¥F) = @r (¥5)i Ay,

priovity (¢ / I [ — 0o (W) p(4E);80, | A

Now there is, of course, a problem with the above equations. We have to evaluate
the integrals in practice, which we can do by sampling. We must be careful, however,
to insure that the calculation of priorities remains a cheap operation in comparison
with the cost of doing a value update — otherwise it would be potentially advisable to

2In the above, note that we are working with the expected change in value of Q(¢!). To calculate the
likelihood that this change in the Q value affects the value of a state and thus the future policy, we have
to take into account the likelihood that the action ¢ is the chosen action. This is simply a multiplicative
factor on the priority, and the equations above, without this factor, remain an upper bound on the size of
the true priority. Furthermore, note that the final above equation is essentially the gradient of the Q(s,a)

part of the standard Bellman equation.
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spend the time on extra random updates, rather than on calculating priorities. To get
around this problem, we use the following approximation: E[V[s']] = V[E[s']]. This
approximation essentially uses the value of the expected outcome of the probability
distribution as the expected value. This will be a good approximation only in domains
where the value distribution is roughly symmetric about the expected outcome. For
example, if the value function is roughly linear about the mean, and the probability
distribution is roughly Gaussian, then this approximation will be correct. In more
complex or hybrid domains, doing more thorough sampling is probably required.

The result of this approximation is that we can use the mean outcome as the value
for s’, and the overall expression for the priority can be written as:

w(T(s',a),97)Ay;
Xy w(¥(s',a),9")

priority(¢k) = <Pr(7/’k)tA0r + 72 l +

i

N
W[S']Z{[S%%O(lﬁf)] > 90(¢§)jA9ij}

=1 Jj€Eparents(i)

where N is the number of state attributes, and w(¥(s’,a),1’) is the kernel function
from one stored g value to another.

There are several remaining algorithmic issues. First, we have to specify how we
choose an action . We want to avoid the full optimization that takes place when
choosing the optimal action at a state when we are computing an action a. Instead,
we use a weighted scaled combination of the actions of the neighbooring stored @,
such that the neighboring q values affect the action proportionally with respect to both
their distance from the state s’ and the relative goodness of their g-value. Second, we
must explain how we choose states for which to calculate the priority. In previous work
on prioritized sweeping [Moore and Atkeson, 1993; Andre et al., 1997],it was assumed
that priorities were calculated only for a small number of states. The predecessors of a
state were known exactly, and it was only those states where a priority calculation was
performed. In our domain, however, not only are there too many predecessor states
to enumerate, but they are difficult to compute given the possible complexity of our
model.

The fact that we have a priority estimate allows us to choose a large set of states for
which to evaluate the priority, and then to only perform updates on a reasonably small
number of these. We utilize a priority queue to implement this idea. We choose states
on which to evaluate the priority in two ways: (1) by randomly creating a state vector
according to the independent mean and variance of each attribute, and (2) by using
stochastic inference to deduce likely predecessor states using the model. The second
step would be computable for many simple conditional probability distributions, but
because of the fact that we allow arbitrary linear combinations of functions over the
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input, the exact backwards inference problem is difficult. For example, the functional
form of the conditional probability of a node can be an arbitrary polynomial, and thus
an exact solution is difficult or impossible. Thus, we use a simple MCMC technique to
find state/action pairs that, with high probability, result in the given state.

For a given state s, we generate an initial sample ¢/* nearby s with Gaussian noise.
We then use the Metropolis-Hastings algorithm [Metropolis et al., 1953] to find state
action pairs ¢’ approximately sampled from the distribution p(¢|s), where s is the
resultant state of the transition from ¢’. By Bayes rule, we have that p('|s) =
’M, where 7 is a normalizing constant. When applied to our situation, the
Metropolis-Hastings algorithm can be expressed as follows: (1) choose a candidate next

state/action pair ¥¢ using a simple symmetric piecewise Gaussian proposal distribution.
p(s|¥)p(¥°) ]

R ) T p(slR)p(vR) ]
The proposal distribution does not show up in our acceptance probability because it

is a symmetric distribution. This process gives us state/action pairs approximately
sampled from the desired distribution for which we can then calculate the priority.

The algorithm for prioritized sweeping is very similar to the algorithm presented
above for the general model-based case 4. The key difference is that priorities are
used to determine which simulations are performed. After each change to the model
or the value function, we call the update-priorities routine. The state/action pair with
the highest priority is chosen to be simulated at each iteration of the “while time is
available” loop.

(2) Accept the candidate new state/action pair with probability min [1.0,

procedure update-priorities (Ag, state, pQueue)
W = PickRandomPsi(NumStates) U UseMCMCForPsi(state)
for all ' € W
priority = RemoveFromQueuelfThere(y)*, pQueue)
priority += CalculatePriorityForValue(Ag, 1)
priority += CalculatePriorityForModel(Ag,, ")
PlaceOnQueueWithPriority (psi’,priority, pQueue)

5 Results

We tested our system on four continuous control domains: (1) cart-centering, (2) cart-
pole balancing, (3) lane following, and (4) tailgating. For the cart-centering problem,
we show the structure of the DPN, the function forms of the conditional density func-
tions, and comparative results against Q-Learning.

In the cart-centering problem [Santamaria et al., 1998], the task is to get a cart
centered and stopped in a one-dimensional space as quickly as possible, but without
extreme accelerations or velocities. The control action specifies a force that acts on the
cart. The problem is fairly simple, but is mildly interesting because the reward function
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Figure 2: DPN for the cart centering problem.
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Figure 3: Average reward per trial for the second cart centering problem.

restricts the set of optimal solutions to the problem. Note that this problem is the same
as the cart problem described in section 2, but is actually slightly more difficult because
of a difference in the time scale. The DPN for this problem is shown in figure 2. The
variables of this problem are z, the position of the cart; v, the velocity of the cart;
inWorld, a variable indicating whether the agent is still within the confines of the
world; a, the action specified by the agent; and R, the reward provided by the world.
The sets of sufficient statistics, ¢, for each variable, are as follows: ¢, = {z,v,a},
0o = {v,a}, pinw = {z}, P, = specified by user, pp = {inW, 22, a?}.

In the cart-pole balancing problem, the task is to keep a pole attached to the top of
a cart balanced and as vertical as possible. The goal state is to get the pole and cart to
have zero velocity and have the pole be perfectly vertical. The action is force exerted
on the cart, and the state variables are the position of the cart, x, the velocity of the
cart, v, the angle of the pole, angle, and the angular velocity of the pole, angledot. The
problem fully exercises the DPN representation that we use, as the functions sin(angle)
and cos(angle) are members of the set of sufficient statistics for several of the state

variables.
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Lane following is the task of keeping a car centered within a lane on a curved
highway within the BAT simulator [Forbes et al., 1997].

The tailgating problem is the task of maintaining a minimal safe following distance
from another car, again within the BAT simulator. Essentially, the task is never to
tailgate, but to still maximize speed.

We have applied our system to these four problems, and the preliminary results
are encouraging, indicating that the prioritized sweeping method has promise. Figure
Figure 3 shows results comparing the prioritized sweeping approach with instance-
based Q-Learning on the cart-centering problem. The graph shows average reward per
trial over ten runs.

6 Conclusions and Future Work

We have presented an approach to reinforcement learning in continuous state spaces.
We demonstrated a mechanism for maintaining the Q-function in instance-based func-
tion approximators, and presented an extension of the prioritized sweeping principle
for continuous domains using instance-based function approximators for the Q-function
and continuous dynamic probabilistic networks to represent the model. Our system is
able to work with complex conditional density functions in the DPN because we utilize
a stochastic sampling method (MCMC) to perform backward inference. In sum, the
method shows promise for problems with continuous states and actions, but as always,
there are are many active research directions that can build upon this work. For exam-
ple, we are working on extending the system to deal with arbitrary Generalized Linear
Models (GLiMs) in the DPN, and to partially observable worlds.
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