
The XSet XML Search Engine and XBench XML Query

Benchmark

Ben Yanbin Zhao and Anthony Joseph

fravenben, adjg@cs.berkeley.edu

Report No. UCB/CSD-00-1112

September 2000

Computer Science Division (EECS)
University of California
Berkeley, California 94720



The XSet XML Search Engine and XBench XML Query

Benchmark

Ben Yanbin Zhao and Anthony Joseph
fravenben, adjg@cs.berkeley.edu

September 2000

Abstract

Internet-scale distributed applications (such as wide-area service and device discovery and
location, user preference management, Domain Name Service) impose interesting requirements
on information storage, management, and retrieval. They maintain structured soft-state and
pose numerous queries against that state. These applications typically require the implementa-
tion of a customized proprietary query engine, often not optimized for performance, and costly
in resources. Alternatives include using traditional databases, which can hamper 
exibility and
extensibility (both of which are critical requirements of Internet-scale applications), or LDAP
(Lightweight Directory Access Protocol), which poses composability problems and imposes rigid
structure on queries. This paper proposes a di�erent approach, based upon the use of the eXten-
sible Markup Language (XML) [8] as a data storage language, along with a main memory-based
database and search engine. Using XML allows applications to use dynamic, simple, 
exible
data schemes and to perform simpler, but faster queries. The approach yields a single, common
data management platform, XSet. XSet is an easy to use, main memory, hierarchically struc-
tured database with incomplete ACID properties. Preliminary measurements show that XSet
performance is excellent: insertion time is a small constant value, and query time grows logarith-
mically with the dataset size. A portable Java-based version of XSet is available for download,
both as a standalone application and as a component of the Ninja service infrastructure.

1 Introduction

The development of modern distributed applications has led to several interesting information stor-
age, management, and retrieval requirements. In particular, an increasing number of applications
are providing novel functionality by incorporating a fast searching component. For the lack of a
better term, we call this new class of applications \Query Enabled" applications. These applications
often maintain a mix of structured soft-state [9] and durable hard-state, and pose numerous queries
against that state. Examples of such applications are service- and device-location and discovery
protocols, such as DNS [25] and LDAP [19], and applications which make use of simple and fast
query functionality, such as searchable XML-enabled email systems and personal location trackers.
The problems with these applications are three-fold: their extensibility is often very limited due to
prede�ned, rigid data schemas; they pay for query power and 
exibility with added schema com-
plexity; and many of them o�er similar functionality with signi�cantly di�erent implementations,
duplicating e�ort and functionality.
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In this paper, we propose to unify this class of applications by using the eXtensible Markup Lan-
guage (XML) [8] as a data storage language along with a memory-based database and search engine
we call XSet. We then de�ne a set of data semantics we propose for these applications, with suf-
�cient semantic guarantees, that maximizes performance and concurrency. Finally, we provide a
simple benchmark for evaluating XML query engines, such as XSet.

We chose XML as a description language because it o�ers numerous bene�ts including structured
extensibility, strong data validation capabilities, powerful expressiveness, and ease of use. XML
accentuates structure by making explicit the inherent structure of the data, without imposing a
rigid schema. XML also provides 
exible validation through Document Type De�nitions (DTD).
Furthermore, XML tags allow direct reference to data �elds, extending expressiveness. Finally,
XML is text-based, and o�ers data encapsulation in a human readable form without high overhead.
These properties and a standardization e�ort make XML a natural choice for our needs.

1.1 Existing Database Models

Given the bene�ts that XML can bring to information management applications, there is the issue
of how to store and query XML documents. At �rst, a database-based approach would appear
to be an appropriate choice. We will argue, however, that for the set of metadata / distributed
applications we have introduced, a streamlined minimalistic approach should improve performance.

1.1.1 Relational and Object-Relational Approaches

There are currently two main thrusts of database design: relational and object-relational databases.
While relational databases have been extremely popular in existing industrial applications, object-
relational databases are becoming increasingly popular for supporting correlated data of di�erent
types and sizes, such those popularized by the World Wide Web.

We believe that there are two main reasons why neither database design is well-suited to the
search functionality required by distributed applications. The �rst involves the structure of XML
data, which is usually simple, but hierarchically organized. Relational databases are ill-equipped
to handle such a structure. Translating hierarchically structured documents into tabular relations
is an unnatural and complex mapping. Furthermore, a single query in a deeply nested tree may
require repeated table retrievals for each level of the tree. This intuition has been con�rmed by
recent work [4]. The authors showed that while most queries can be transformed into relational
queries, there were exceptions. Certain types of queries cannot be mapped into SQL, while other
simple queries on XML were mapped to large numbers of SQL queries, or single queries with
numerous joins.

The second and more fundamental argument against using traditional database systems is the strict
nature of database consistency. In our class of XML-enabled applications, consistency requirements
are generally less strict and more application-speci�c than those in a traditional database model.
For example, while directory applications such as LDAP may support transactions, they generally
make little use of such functionality, and treat inserts as independent operations. These relaxed
constraints can often be achieved through simpler application-speci�c algorithms that do not incur
the performance penalties associated with strict ACID properties.
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1.1.2 Semantics and Performance

Past work in the database community has recognized the evolutionary model of database appli-
cations, and their changing semantic requirements [6]. While other approaches to address these
changes give limited concessions for increased concurrency, we want to focus instead on the tradeo�
between semantics and performance.

Given these arguments against existing approaches in current database research, we decided to
develop a new XML storage and query mechanism called XSet. From a database perspective, XSet
can be described as a memory-resident, hierarchically structured database with support for an
incomplete set of the ACID semantics.

1.2 Evaluation

In Section 5, we present detailed performance analysis of a single-node XSet implementation. The
goal is to show that, by removing overhead due to transaction support, XSet can provide much bet-
ter performance. In practice, many industrial databases execute with relaxed runtime semantics,
giving up serializability for concurrency. There still remains a signi�cant overhead due to concur-
rency control and locking overhead. Concurrency is crucial to their performance, since synchronous
I/O is a major factor in response time. In a memory-resident database such as XSet, however, most
operations do not block on I/O; and therefore, enforcing coarse-grain locking per thread reduces
lock contention overhead while minimizing the performance sacri�ce. The results in this section
highlight the performance bene�ts of relaxing traditional database semantics by showing that the
resulting query processing time is low, and scales logarithmically as the size of the dataset.

Given our implementation of XSet, we want to compare its performance with similar XML query
engines. Choosing the metric of evaluation, however, is non-trivial. With the currently ill-de�ned
XML query languages, query engines may return drastically di�erent results for an identical query
on two di�erent sets of data. To produce a fair performance comparison that would re
ect real
application performance, we need to take a closer look at how applications use XML queries, and we
produce a set of benchmarks that accurately re
ect the result. We present the resulting benchmark
we call XBench, in Section 6.

1.3 Assumptions and Goals

In designing XSet, we make three assumptions about application workloads and environments: we
set the design goal that a single XSet server can handle a reasonably sized data collection, such as
a local area directory service; we avoid the problem of updating to conform to new XML standards
by assuming that our data model is constrained to a well-de�ned core set of XML functionality;
and we require that XSet servers have large amounts of memory (e.g., 1 to 2 GB, an amount that
is readily available in o�-the-shelf servers). In a few months, we expect this memory capacity to be
available in mid- to high-end workstations. Because of XSet's use of physical memory, it may incur
a higher performance penalty when the dataset size scales beyond memory capacity. In Section 9,
we propose a cluster model which ameliorates this problem.

Within these constraints, the primary goals of XSet are to support the XML storage, query, and
semantic requirements of \Query Enabled" applications, while accommodating a range of semantic
constraints and maintaining fast and scalable performance and simplicity.
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The rest of the paper is organized as follows: In Section 2, we present XSet's architecture, and
then discuss the implications on data semantics in Section 3, the implementation in Section 4, and
analyze XSet's performance in Section 5. Next, we explore several motivating applications that
use XSet's simple, high performance XML functionality in Section 7 and discuss related work in
Section 8. Finally, we discuss future work in Section 9 and conclude in Section 10.

2 Architectural Design

In this section, we discuss the use of XML as a type of semistructured data, provide a scenario that
motivates the need for XSet, and present the XSet architecture and its components.

2.1 Semistructured Data

The structure and organization of data is often a limiting factor in how it can be used by applica-
tions. Data with a �xed, well-de�ned structure, as in a relational database, allows static typing,
consistency checking, and well-de�ned queries, but can be con�ning should the data or query model
evolve. Free-form data supports all data types and query models, but nothing can be known about
the data statically.

Between these extremes is the semistructured data model provided by XML, a model that provides
many of the bene�ts of both extremes. Not only can one reason about (and validate) the data a
priori, but the data is also 
exible enough to adjust to new data and query models.

2.2 Motivating Scenario

To motivate the functional requirements for XSet, consider an academic or corporate campus of
the near future where people migrate between oÆces and buildings, and their networked personal
devices alert the environment to their presence while exporting interfaces for them to access local
resources.

Ideally, these users would like to utilize context-aware applications to access a wide range of ever-
changing data. For instance, a visitor wants to specify and �nd resources in their immediate
surroundings, such as their meeting contacts, video projectors, and available lecture halls. This ap-
plication query model works equally well in reverse. People who enter a building become temporary
services, and register their personal preferences and pro�les with local servers. Other applications,
such as group paging or meeting reminders, can then query the XSet server to locate and reach
users.

To support these type of applications using only traditional databases, it would be necessary to
design a large number of static schemas, ranging from personal location pro�les to printer speci�-
cations, to lecture room scheduling events. Given the dynamic nature of these resources, constant
rewriting of these schemas would be necessary to keep databases up to date. Furthermore, most
queries would not bene�t from transactional support and consistency guarantees available in most
transactional databases. Finally, these costs would be duplicated per administrative domain, and
possibly exacerbated by incompatible databases and schemas.

In the XSet world, these problems are solved through the use of the combination of schema stan-
dardization, semi-structured schemas, and the simplicity of XSet queries. XSet servers are easily
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deployed across administrative domains. Servers can bene�t from the lack of constraint on schemas,
to support a standardized core set of datatypes, while allowing for locally customized tags and ob-
jects as they appear. Also, the simplicity and directness of XSet queries reduce the implementation
e�ort necessary to extend the query processor interface to the user.

In our ideal environment: users, given a standard search and browse interface, can specify 
exible
queries on thin clients which translate the queries to XSet queries and send them to local servers.
An example of a common query might look for a color printer on the fourth 
oor, the nearest set
of accessible workstations with a DVD drive, or a lecture hall reserved with the visitor's name.
Descriptions of long-lived services are encoded in simple XML schemas, and stored on the server.
Short lived services such as roaming projectors and thin client docking stations might not conform
to any static schema, and would periodically broadcast their XML descriptions to the XSet server,
with a timeout period associated with each description. At regular intervals, a cleaner runs through
the server dataset and, following a 
exible user policy, �lters out any outdated services.

Under the covers, XSet servers parse and index incoming XML documents, optionally validate
them with a cached Document Type De�nition (DTD), and depending on the intended longevity of
the data, provide the appropriate level of durability. Incoming XML queries are parsed, and then
processed against the memory-resident index to access the documents. These queries could even
embed personal certi�cates that are matched to access control lists in service descriptions. Such
a resource discovery mechanism would handle large volumes of requests eÆciently with relaxed
semantic data guarantees.

2.3 Overall Design

XML Documents

XML

Index
Treaps

Backup

Paging /

Disk / Persistent Store

XML Backing Store

Write Ahead Log

Fuzzy Checkpoints

Recovery
Manager

R    M    I        I   N   T   E   R   F   A   C   E

XSet Client XSet ClientXSet Client XSet Client XSet Client

In-Memory
SetServer

Figure 1: Single XSet Server

Figure 1 shows the internals of a single XSet Server. A single server consists of several components:
a main-memory component, which we refer to as the SetServer, a disk-based component consisting
of a �le backing store, a write-ahead log, and a fuzzy checkpointing system. The SetServer includs
a XML index and a memory-resident data store.

During registration / insertion, the SetServer receives XML documents via a JavaRMI interface,
adds the documents to the disk backing store, parses the XML, and merges the document structure
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                     <OFFICE CLEAN="NO">443</OFFICE>

Matches:    <PERSON><FIRST>Ben</FIRST>
                      <LAST>Zhao</LAST>
                      <OFFICE CLEAN="NO" WINDOW="YES">
                      443</OFFICE>
                 </PERSON>

                 </PERSON>

Query:        <PERSON><FIRST>Ben</FIRST>

No Match:   <PERSON><FIRST>Ben</FIRST>
                      <OFFICE WINDOW="YES">443</OFFICE>
                 </PERSON>

No Match:   <PERSON><FIRST>Ben</FIRST>
                      <OFFICE>443</OFFICE>
                  </PERSON>

Figure 2: Sample Queries

into the hierarchical tag index structure. In the backing store, documents are assigned a monotoni-
cally increasing unique identi�er, which can be used in paging and logging operations. Each subtree
of the document is merged into the index. For each tag in the index, documents are stored as sets
inside a treap [28] (probabilistic self-balancing tree structures), each set indexed by a common tag
value. A single document would have its reference indexed into tag treaps, each corresponding to
XML tags inside the document. To summarize, tags are the keys used to access the index, and
document references are the �nal data values.

XSet supports both \soft-state" and persistent state. Whereas \soft-state" or short-lived data can
be handled by the main memory index and store alone, long-lived data makes use of the XSet
durability layer. An up to date copy of the dataset resides on stable storage. Modify operations
(inserts and deletes) are logged to a �nite-sized log bu�er in memory. The bu�er is 
ushed to
disk when full, or when an explicit 
ush operation is issued by the client. XSet also supports
fuzzy checkpoints (where data is still available during the checkpointing process), both at regular
intervals, and also by explicit client request. Additionally, XSet exposes functionality to the user
for explicitly paging documents in and out of the memory store, providing support for user-designed
paging policies.

Since many of the target applications deal with soft-state data, XSet also includes an optional data
cleaner that incrementally removes stale data at regular intervals.

In the following sections, we discuss the query model and several components in more detail.

2.4 Query Model

To simplify query composition and make query processing fast, we chose a simple XML document
subset model with minor functionality extensions.

XSet queries are themselves well-formed XML documents, with optional embedded query instruc-
tions for the query processor. XSet queries exploit the 
exibility of XML tag structure by using
the subset tag model, where satis�ability of the query is de�ned as whether an XML document's
tag structure is a strict superset of that of the query document. Tags that are not explicitly stated
in the XSet query are assumed to be \wildcards" that can match any XML tag value or subtree.
In query processing, collections of document references that match each search constraint undergo
global intersection to return the result set. Some simple query examples are shown in Figure 2.

Special query instructions passed to the XSet query processor are encoded inside the query as
non-standard XML attributes, and removed by XSet prior to processing the query. For example,
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a constraint that searches for an integer value in tag DOC between 10 and 20 would look like: <DOC
GT=\10" LT=\20" KEY T=\INTEGER">RANGEQ</DOC>

In addition to the XSet query model, several XML query languages have been proposed and imple-
mented, including XML{QL [11], LOREL [1], and XQL [26]. Compared to XSet, these languages
chose di�erent points on the simplicity vs. functionality tradeo� scale. On the same scale, XSet has
the least complex query model, and supports a much smaller set of queries. XSet queries can be
characterized as a subset of the XQL language, represented as a XML document. As a query model,
XSet queries also resemble the associative matching aspects of Linda Tuplespaces [13]. Linda di�ers
from XSet in that it is a distributed communication mechanism, rather than a standalone query
engine.

2.5 Tag Index

The tag index is a simple, hierarchical indexing structure. It can be characterized as a dynamic
structural summary of the documents in the dataset.

A B

T1 T2 T3 T4

W X Y Z

IndexRoot

Root1 Root2

C

T5

XML Index

B

Hello World

X Y

A

Root1
  <A>

  </A>
  <B>

  </B>

Document 1

    <X>Hello</X>

    <Y>World</Y>

<ROOT1>

</ROOT1>

parse
insert
into

Figure 3: Simple Indexing Example

When a document is indexed, its tag hierarchy is merged with the overall XSet tag index, and each
tag value from the document becomes the document index key for the corresponding tag Treap
in the main index. Figure 3 shows an indexing example of a short document. In this case, the
document reference would be inserted into Treap T2 with \Hello" as the key, and Treap T3 with
\World" as the key. Additionally, references to documents also keep any attributes and their values
attached to the relevant tag, so that they can be checked against queries with attribute constraints.

The key distinction between this index scheme and some other XML indices [24, 11] is the notion
of contextual semantics. We believe that the semantics associated with a tag value are only valid
given the exact context in which the tag appears. For example, the same tag for PHONENUMBER can
have entirely di�erent meanings whether it appears inside the sequence of tags PERSON -> HOME

-> ADDRESS or BUSINESS -> CONTACTINFO -> SHIPPING -> ADDRESS. For that reason, tags are
de�ned uniquely by a combination of context and tag name, and cannot be indexed purely on their
tag names. This type of contextual semantics is similar to path-based queries in LORE [24], except
the root node end of the path is �xed.
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2.6 Document Paging

Both advantageous and perhaps limiting to the XSet model is its dependence on large amounts
of physical memory. The memory overhead per document can be as large as 2kb, which can be
signi�cant for the smallest of documents. One solution is to remove from memory (page out) less
frequently referenced documents, keep their indexing information in memory, and read them back
from the backing store on disk (page in) on a on-demand basis. XSet provides such a 
exible paging
mechanism, while leaving policy decisions to the application writer.

Document objects in XSet export a paging interface which can be invoked by the user to exploit
application speci�c paging information. When documents are paged out to disk, their indexing
information remains in memory, and the document is paged in lazily if its is found to be a part of
a solution set.

Simple paging algorithms such as LRU, random, and MRU can be implemented easily using this
approach. Additionally, more complex algorithms, ones which better exploit XML tag structure,
can also be used. For example, one potential policy in a directory service could partition services by
type, and apply a prioritized LRU algorithm, giving priority to more dynamic service data, such as
the current location of a professor, while paging out more static data, such as his or her telephone
number.

2.7 Durability Mechanisms

Two related components provide the persistence and failure recovery functionality for long-lived
data in XSet. The in-memory SetServer interacts directly with the backing store on disk. It ensures
durability by adding the document to the backing store, and also pages documents out to disk as
needed to free up memory. The recovery manager (RM), exposes a useful set of recovery API calls
to both internal XSet components and the external application interface. These calls give explicit
control over all durability mechanisms, including the use and compaction of the write-ahead/redo
log, when and how often the fuzzy checkpointing mechanism is called, and the use of the in-memory
log bu�ers.

The redo log records log entries both before the beginning and after the end of each operation.
Each entry records the type operation it is and unique identi�ers of the document(s) operated
on. During recovery, this allows large numbers of logged operations to be aggregated eÆciently
into a single patch, and applied to a checkpointed index. When a logging operation discovers a
full log bu�er, it 
ushes the bu�er synchronously before proceeding. Further details of the fuzzy
checkpointing and redo log optimizations are discussed in Section 3.3.

As an application component, XSet focuses on providing the mechanisms on top of which a wide
range of policies can be implemented. This is re
ected in the in-memory log bu�er, which is
regularly 
ushed to disk to ensure durability of operations. Varying the bu�er size controls the
tradeo� between performance (re
ected in frequency of I/O operations) and durability. Similarly,
there is no preset algorithm for determining when the document pager is run, and what order
documents are evicted from memory. Finally, we leave it to the application writer to de�ne an
algorithm that determines when and how often to checkpoint.
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2.8 Cleaner Mechanism

XSet also includes an optional data cleaner component for soft-state data management. Applica-
tions that periodically refresh their data can have the cleaner run at regular intervals with user
speci�ed policies to incrementally clean out the XML dataset. For example, transient user location
data could be invalidated after 5 minutes, while printer description documents could have a lifetime
of 5 days. This allows an administrator to provide customized soft guarantees on the freshness of
the dataset contents.

3 Semantic Guarantees

In this section, we de�ne the data semantics provided by XSet. We assert several assumptions
regarding the nature of data used by \Query Enabled" applications (see Section 1), general access
patterns on this data, and use them to motivate a data model that focuses on performance and
simplicity.

3.1 Partial ACID Semantics

To help the reader better gauge the relative semantics of XSet and typical databases, we discuss
XSet's semantics in terms of ACID [17] terminology, where ACID stands for Atomicity, Consistency,
Isolation, and Durability. As explained below, XSet does not support the notion of transactions,
and the semantic list below follow the context of a transaction-free model.

From the discussions of semantics in previous subsections, we summarize these points, which are
further explored in following sections:

� Atomicity: Atomicity is provided on the granularity of single operations.

� Consistency: Consistency is guaranteed. No inconsistency can occur during normal opera-
tions, since only one thread is allowed into the database at one time.

� Isolation: Isolation is not provided in the context of transactions, but single operations are
isolated via the lock mechanism.

� Durability: XSet provides full durability and recovery across failures, by providing a simple
and eÆcient combination of write-ahead logging and fuzzy checkpointing.

3.2 Applications Semantics

As stated above, XSet provides di�erent data semantics from those provided by typical database
systems. While XSet is a database providing full durability, it is motivated by applications which
gather soft-state data, and pose large numbers of queries against it. The queries are generally
self-contained, and single queries produce useful results. Directory services are an example which
exempli�es this class of applications. We optimized the XSet design towards certain properties of
data used in these applications, such as immutability and short lifetimes. Applications using data
that break these assumptions, however, can still bene�t from the overall XSet model.
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The �rst simpli�cation XSet makes is in its approach to concurrency. In database systems where the
majority of data is stored on disk, disk I/O cost dominates query latency. Concurrency is necessary
to maximize utilization of resources. XSet, however, is a main memory database, where memory
access latency is the dominating latency factor. As a result, threads spend few cycles waiting
for memory I/O; and increasing concurrency does not greatly bene�t latency, since the cost of a
context switch is comparable to a memory fetch operation. Also important in this consideration is
the absence of transactions in XSet. Transactional databases use concurrency to eliminate waiting
on user latency between operations in a transaction. This is no longer a concern in XSet. The
XSet design re
ects this shift of focus o� of concurrency control, by placing a global lock on the
server, and only allowing a single thread to enter at any time. This guarantees single operation
consistency trivially.

A second optimization derives from the types of documents XSet serves. Whereas traditional
databases operate on large numbers of small records in a single database, XSet targets large numbers
of small descriptive XML documents, the whole of which make up the XML database. These
documents can describe large numbers of di�erent objects such as services, preferences, people
and locations, and tend to be compact XML documents with limited number of attributes. XSet
optimizes for this type of small records by using a \replace-only" update model, where any changes
to a document are made by replacing the existing document with a new version. Documents become
immutable. We show in the next section how by using this model, we greatly reduce the complexity
of logging and recovery.

Finally, the majority of \Query Enabled" applications use an access model consisting of single
queries. The notion of transactions, while useful in certain contexts, is not used enough to justify
the additional complexity and performance overhead. Instead, we choose the single operation as the
granularity of operation. Furthermore, because data is immutable, and operations are independent,
modify operations in XSet become idempotent; that is, single operations can be repeated in order
without fear of making the database inconsistent.

3.3 Fast Recovery

Checkpoint

2 Roll-forward WAL

1 Restore Checkpoint1

2 Point of Failure

Begin Chkpt End Chkpt

Figure 4: Recovery Mechanism

As a result of XSet data semantics, recovery of failures is simple and eÆcient. In addition to a stan-
dard write-ahead log, XSet includes a fuzzy checkpointing mechanism. Because of the idempotent
nature of modify operations in XSet, a fuzzy checkpoint can be taken any time without extensive
use of locks. The begin checkpoint and end checkpoint operations are both logged, and the Log
Sequence Number (LSN) of the begin checkpoint operation is stored with the checkpoint. While
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the checkpoint itself is inconsistent, it is easily brought up-to-date by rolling forward all log entries
after the begin checkpoint operation.

Figure 4 is a simple illustration that demonstrates how recovery occurs after a system failure. We
assume that persistent storage, such as disk, survives major failures by using mechanisms, such
as replication or mirroring. After a system failure removes the memory contents of the server,
the recovery process follows two steps: First, the system restores a memory image using the fuzzy
checkpoint. Then, the system takes the Log Sequence Number (LSN) of the begin checkpoint
operation, and applies the redo log starting at that LSN. Because operations are idempotent, any
inconsistencies in the fuzzy checkpoint will be made consistent through the redo log.

As previously mentioned, log entries contain three �elds, the \begin" or \end" of an operation, the
type of operation, and unique identi�ers for documents it operates on. An additional optimization
made possible by the immutable data abstraction is that during recovery, the log can be traversed
to generate a compact, simulated mapping of \live" documents at the time of failure, each reference
by their identi�er. We use this mapping as a single patch, and apply it to the in-memory document
store, bringing it up-to-date in one single operation. This guarantees that only documents present
in memory at time of failure are loaded, and frequent insert/delete operations in the log will not
impact recovery time.

4 Implementation and Status

XSet has undergone several major modi�cations in both design and implementation and a distri-
bution is now publicly available in two forms: a stand-alone application1, and as an application
written using the Ninja distributed services framework [30]. XSet has also been integrated or
is being integrated in to several applications (see Section 7). In this section, we discuss XSet's
implementation details.

4.1 Implementation Platform

For portability and ease of implementation, we chose Java [16] as the programming language. As
a result, the stand-alone version of XSet is small (5000 lines) and runs without modi�cation on
several OS platforms.

The third major revision of XSet has been implemented on top of the Ninja distributed services
architecture. The Ninja operating environment strives to provide services with fault-tolerance, load
balancing and fast communication. The two versions of XSet are mostly identical in implementa-
tion.

XSet uses the XML4J parser from IBM Research Labs to parse XML. Since XSet uses the DOM
API [18], the implementation is largely parser independent, and minimal changes can be made to
integrate XSet with alternative parsers.

4.2 Persistent Datastore

For simplicity, XSet currently uses the �lesystem as its persistent backing store. Flushed log bu�ers
are appended to a single log �le, the head of which is truncated after each successful checkpoint

1The XSet distribution is available at: http://www.cs.berkeley.edu/~ravenben/xset.
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operation. This allows XSet to be easily portable, while leveraging large amounts of research in
�le system fault-tolerance and recovery. Furthermore, XSet's I/O interface can easily be modi�ed
to operate on top of an alternative backing store, such as a MMAP interface or a log-based �le
system [27].

4.3 Treaps

Treaps are probabilistically self-balancing trees that achieve O(Log2(n)) time for all operations [28].
As the data structures for indexing documents by their tag values, they were chosen for their
research value rather than performance. While a data structure with a larger branch factor such
as a B-tree would reduce the tree traversal time, the choice of treaps gave us a chance to explore
novel properties of a cartesian tree (trees using two indexing keys).

While treap performance characteristics are similar to other binary trees such as T-trees and red-
black or AVL trees, treaps have the advantage of preserving heap order on a secondary key. In
the naive case, this secondary key is a pseudo-random \priority" generated at insertion time, used
to provide self balancing qualities. In practice, this secondary key can be further manipulated by
the treap structure during accesses to implement speci�c heap order policies. One example of an
useful policy is to increment the priority with a small randomized number during each access, and
then rotate the treap to maintain heap order if necessary. The net result of such a policy is that
the values accessed most often tend to \rise" in the heap, providing shorter trips down from the
root node and exploiting temporal locality for improved performance. This property could prove
especially useful when considering cache versus main-memory performance on future systems [22].

Treaps have also been shown to be extremely eÆcient for parallel algorithms on ordered sets [7].
Using treaps allows us to investigate these fast parallel algorithms in distributed and parallel
versions of XSet.

5 Performance

In this section, we evaluate the performance and scalability under di�erent workloads of the current
XSet implementation. Our hypothesis is that given XSet's relaxed consistency constraints relative
to conventional database systems, XSet should yield very high performance.

5.1 Experimental Background

We performed XSet experiments on two platforms: Linux 2.0.36 with Blackdown.org's port of Sun's
JDK 1.1.7B (Intel Pentium II 350 Mhz with 128MB of memory), and Windows NT 4.0 Terminal
Server with Sun Microsystems' JDK 1.1.7B (Intel Pentium II Xeon 450Mhz with 1 GB of memory).
All measurements were taken with Just-In-Time compilers enabled. The TYA JIT2 was used on
Linux, and Symantec's JIT3 was used on Windows NT.

2The TYA JIT compiler is available at http://www.dragon1.net/software/tya/.
3The Symantec JIT compiler is included in all Sun Microsystems Java Development Kits (JDK) after 1.1.6.
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Figure 5: Query time versus dataset size (Linux and NT)
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5.2 Performance Components

There are three performance components in XSet's normal operation: validation, indexing, and
queries. Validation is the important one-time process of certifying that an XML document conforms
to an external DTD. Indexing is the process of adding a new XML document to an existing XSet
index. Indexing performance a�ects both �rst time insertions of documents and per document
recovery time after a crash. Finally, query processing is the latency involved in servicing a query.

5.3 Experimental Results

For the large data set, we converted an HTTP web server access log into small (slightly less than
1KB) XML �les, where each �le encoded the information for one HTTP request. The resulting tree
has a depth of 3 levels with an average branch factor of 5 at each tag. We did not use the complete
dataset for all of the experiments. Because of di�erent host memory sizes, the experiments on
Linux used 16100 �les, while the experiments on NT used 224330 �les. Figure 7 shows a sample
XML database �le.

While this is a large dataset, it is not an optimal choice. Most data about each HTTP access
is unique, so queries performing exact matches only return small result sets. Also, we found that
accesses by the same IP address tend to be grouped closely in the indexing sequence, resulting in IP
address locality in the storage treaps. To circumvent this problem in our measurements, the queries
in the query set are based upon a collection of IP addresses evenly distributed in the database. We
then averaged the results across the query set.
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<?xml version="1.0"?>
<WEBLOG>
  <SOURCEIP>www.yahoo.com</SOURCEIP>
  <TIME>
    <DATE>
      <DAYOFMONTH>07</DAYOFMONTH>
      <MONTH>Dec</MONTH>
      <YEAR>1998</YEAR>
    </DATE>
    <TIMEOFDAY>
      <HOUR>01</HOUR>
      <MIN>57</MIN>
      <SEC>25</SEC>
    </TIMEOFDAY>
  </TIME>
  <TIMEZONE>-800</TIMEZONE>
  <ACTION>
    <COMMAND>GET</COMMAND>
    <LOCATION>/sequoia/schema/html/saif/section4.5.html</LOCATION>
    <HTTPPROTO>HTTP/1.0</HTTPPROTO>
  </ACTION>
  <RETCODE>200</RETCODE>
  <TRANSIZE>3868</TRANSIZE>
</WEBLOG>

Figure 7: A sample XML database �le

Figures 5 and 6 shows the time to perform a query as a function of the number of documents in
the dataset. The results show that, as expected, the query time grows logarithmically with the
dataset size (i.e., approximately 1.28 ms at 200 documents, 3.12 for 16,000, and 6.88 ms for 224,000
documents). From the �gure, one can also observe when a query takes XSet to an additional level
of a treap. A surprising result is that the Linux times closely match those for Windows NT, even
though they have di�erent processor speeds. It is likely that the similarity is a result of XSet being
memory bound on queries Note that the gap in Linux times between 2000 and 4000 �les is due to
outliers (they are not visible because they are o� the scale of the graph). The outliers are due to
the Java VM performing garbage collection during the measurement.

There is an interesting performance artifact observed in comparing the NT and Linux performance
measurements. While the Linux latency numbers increases smoothly, the NT measurements show
a \staircase" e�ect, where measurements jump across discrete latency levels. We conjecture that
this is due to a di�erence between the memory allocation policies of the NT and Linux Java JVM
implementations.

The second set of experiments measured the incremental increase in the size of the dataset as
documents are indexed (see Figure 8). The results show that the average increase is 3800 bytes
(400 byte standard deviation). While this number is signi�cantly larger than the document size
(slightly less than 1KB), we believe it is mostly due to constant factors (e.g., the data structures
used to store documents and index information). We expect that incremental growth will be linear
in the size of documents and not a multiplicative factor.

We also measured the variance in query times based upon the number of terms in the query.
However, because the dataset has too few terms, we did not get statistically signi�cant results.

6 XBench

Having taken a look at the XSet performance results, we would like to put the numbers in per-
spective with those of other XML databases. This calls for a suite of tests that provide a realistic
evaluation of XML query performance with respect to a variety of workloads. In addition, the tests
should focus in on the types of query operations that applications will most likely utilize.

15



2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

In
cr

em
en

ta
l D

at
as

et
 M

em
or

y 
U

sa
ge

 (
B

yt
es

)

Database Size (files)

Figure 8: Incremental dataset memory usage versus dataset size (Linux)

16



6.1 Functionality Space

In order to design a benchmark indicative of real application performance, we need to �rst analyze
the functionality provided by these query engines, and how they are utilized in current XML
applications. Their highly variable structure means that query performance on di�erent types of
XML documents can vary greatly, making the task of identifying XML querying patterns even more
important.

Because of the immaturity of the research area, the use of XML in various application spaces is
still being explored. Currently, the use of XML is focused in two main areas, metadata encoding,
and as an access method to large scale databases. These two modes of operation focus on di�erent
aspects of XML access, and would result in drastically di�erent performance.

6.1.1 XML Metadata

XML's 
exibility, low overhead, and readability make it ideal for encoding metadata. In applications
such as resource discovery, searchable E-mail clients, and meta-indices for �lesystems, XML provides
a valuable way to �nd and access metadata quickly.

Due to the dearth of deployed XML applications in the real world, establishing the nature of a
typical XML search workload is not a simple task. From initial experiences with XSet and its
applications, we have some knowledge about some common access patterns on XML metadata.
In our applications, we found that almost all of the queries involve simple searches across a large
number of small XML �les, with the target being a single XML �le or speci�c tag values selected
from the target XML �les. Queries are generally short, with string matching being the norm.
Documents are generally modi�ed by replacement, so updates are uncommon. Overall, queries
dominated updates and index operations in our applications.

6.1.2 Bulk Data Manipulation

At the other end of the scale, a di�erent set of applications use XML to encode relatively large
documents with size on the order of databases. In this case, the majority of manipulation and
searching occurs inside a single document, on the granularity of tags and subtrees.

One class of these applications deals primarily with data extraction and presentation. XML doc-
uments can be used as the canonical data format for persistent documents, which are modi�ed in
XML, and can be presented, transformed, or searched for in a variety of ways. The key operations
involved are searching for tags and subtrees, relationships between

Another application class uses XML as an intermediate schema type for transforming between
and querying across heterogeneous databases. Commercial products such as ObjectDesign Inc.'s
Excelon support queries against an XML cache generated from heterogeneous database backends.
Research e�orts such as XML-QL [11] seek to use XML to extract large volumes of data from legacy
databases for inclusion into new ones.

In general, operations on large-scale XML documents vary dramatically from those of XML meta-
data applications. Because of the inherent relational nature of the data, queries on these large
documents are very similar to SQL queries [11]. Queries may include multiple joins, selection,
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Document Set MaxDepth MaxBreadth DocSize NumDocs

Bulk-data
Shakespeare Major Plays 5 20 200K 37
Heart of Darkness Chapters 3 140 40K 4

Metadata
Printer Descr. 3 11 1K 20
Book Catalog Entries 3 8 1K 4080
Web Log Entries 4 8 1K 154,500,000

Table 1: XBench Dataset

and aggregation operations. In addition to complex queries, operations on these bulk XML docu-
ments will include incremental updates to the data. As a result, these XML datastores have high
consistency and transactional requirements.

6.2 Experimental Datasets

Given the two XML application classes we outlined above, we want to design a benchmark that
includes performance evaluation in both modes of operation. We have created a selection of XML
documents to support both metadata and bulk XML workloads.

The bulk document portion of the dataset includes XML versions of large literary works, including
the complete works of William Shakespeare and chapter by chapter XML representations of Joseph
Conrad's Heart of Darkness. The metadata portion of the dataset includes metadata from network
services (printers), bookstore catalog entries, and web access log entries. Table 1 summarizes the
general properties of the dataset.

In addition to these metadata �les, an XML data generator has been developed. It takes in
arguments on multiple characteristics of the XML tree, such as number of �les, breadth, and enu-
merated values versus random values inside tags. We believe this tool will be helpful in generating
customized workloads to predict query performance in new applications.

6.3 Workloads

There are two workloads in XBench, simulating sample operations on bulk XML documents and
metadata documents. There are seven performance tests in each workload.

In the bulk data workload, the performance tests focus on SQL style queries and a combination of
selection, join, and aggregation operators. A sample query on the Shakespearean play dataset is:
Find all scenes of each play, where the last line is spoken by the character who has the most lines
in the play.

In the metadata workload, performance tests are geared towards �nding a subset of the documents
which match a set of given criteria. For example, a search on the book catalog dataset is: Find
all books written by R. Allen Wyke in 1997. Because the aggregate nature of metadata XML �les,
several of the tests in this workload focus on scalability of performance to large numbers of XML
�les.
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Test Time in ms

LargeDBIndex 79950
SmallDBIndex 5780
LargeDBSimpleQ 6.88
MediumDBSimpleQ 5.6
SmallDBSimpleQ 1.24
MultConstQA 41.22
MultConstQB 146.3

Table 2: XBench on XSet

6.4 Benchmark Results

Because XSet supports XML querying focused on the metadata model, we only ran the metadata
portion of XBench on XSet. The results are summarized below in Table 2. All tests were run on an
Intel Pentium II 350 Mhz machine with 128 MB of memory, running Linux 2.0.36 with JDK1.1.7B
and the Tya JIT compiler.

The tests in the metadata workload focus on scalability tests in indexing and queries, as well as
multiple constraint queries. Indexing times indicate the full time taken to index a dataset. While
these results lack a basis for comparison, they are useful as a baseline performance measure for
future versions of XSet, as well as future XML query engines.

We had hoped to perform the XBench tests on additional XML databases such as LORE [24] or
ODI's Excelon [20]. LORE is a XML query engine which handles metadata queries similarly to
XSet, but provides a much richer set of funcitonality. Unfortunately, the current release of LORE
is not optimized for XML data, and the optimized version was not ready in time for the benchmark
to be performed and included in this paper.

7 Applications

In this section, we discuss several XML-enabled applications that are based upon XSet. Some of
these applications use XSet to simplify existing implementations, while others are new applications
that are made possible by XSet.

7.1 Service Discovery Service

The Service Discovery Service (SDS) [10] provided the original motivation for the design of XSet.
The SDS is a wide-area soft-state-based directory service that responds to client queries about
distributed services. Service descriptions are completely independent, so no notion of transactions
is necessary. Clients use XSet's 
exible query model to formulate powerful service description
queries.

The SDS currently incorporates XSet as a component and performance analysis of the SDS system
shows that XML queries are only a small component in the overall service discovery latency. Because
of the soft-state nature of the data, XSet's cleaner component is used to prune outdated service
descriptions from the dataset.
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7.2 Personal Activity Coordinator

Another example of an XSet application is the Personal Activity Coordinator (PAC), an application
written as part of the ICEBERG [31] application architecture which acts as an intelligent cache
of the current location and activities of ICEBERG users. Other ICEBERG applications query
the PAC in order to determine the ideal contact point for incoming communication. The current
implementation of the PAC uses an internal XSet server to store location- and application-speci�c
information and services application queries.

7.3 Automatic Path Creator

One of the key components of the Ninja [30] service infrastructure is the Automatic Path Creator
(APC), a component that constructs a data
ow path between multiple Ninja services to compose
a larger service. Inside the APC, an XSet server stores information on known subpaths and known
services, and queries against it as part of a graph search algorithm to genereate the logical path
composition. Here, data stores are short-lived, and the fast query times of XSet are crucial to
constructing paths within a reasonable response time.

7.4 FS-ML: secondary �le index

By focusing on performance, XSet is able to integrate XML searching functionality into low-level
applications, where performance is paramount. A meta-index on an existing �le system is yet
another example of such an application. By encapsulating a �le inode with its metadata, a user
can �nd a �le eÆciently by searching on any property associated with it, while the disk layout can
still be optimized by the underlying �le system. By making FS-ML a part of the operating system,
�le uniqueness can be detached from a directory hierarchy, and instead linked to a distinctive subset
of XML tagged �le properties.

The FS-ML �le meta-index would use a soft-state model to cache the most frequently accessed
�les, so that user queries could be ful�lled immediately while the rest of the index is paged in.
Furthermore, XML Linking [23] functionality can express relationships between individual �les,
and the extensibility of XML allows �le searching to naturally extend across the network with the
use of additional quali�er tags, e.g.

<FILESERVER>PLEIAIDES</FILESERVER>.

Recent work on the HAC �le system [15] discusses a system that closely resembles FS-ML in design
and functionality. Burra Gopal and Udi Manber suggest user queries to a semantic directory system
as an alternative �le access model. This is directly analogous to a 
exible XSet query on an index
of XML-based �le metadata. Furthermore, they also mention the notion of mapping remote �les
into the semantic directory using the notion of \name spaces." The FS-ML �leserver/network tag
references o�er an extensible superset of this functionality. While the FS-ML idea is untested and
untried, it has potentially several advantages over HAC, including modularity, ease of implemen-
tation, code reuse, and �le linking. The Semantic File System [14] also o�ers similar functionality
to FS-ML.
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7.5 Context-based E-Mail Searching

XML searching can lend new functionality to E-mail clients. If E-mail messages are stored with
XML tagged metadata, then E-mail clients could use XSet's 
exible interface to search E-mail
messages.

A scalable, modular E-mail client is now under development using the Ninja distributed services
infrastructure. Discussions are underway to integrate XSet inside to provide fast E-mail searching
functionality, as well as forming virtual \folders" on the 
y through XML searches. Furthermore,
E-mail messages can be described as XML documents, so that enhanced E-mail clients can embed
and search for speci�c XML tags using XSet.

8 Related Work

In this section, we discuss several XML storage and query e�orts in industry and academia, in-
cluding: object-oriented XML databases, several proposed XML query languages, and the LORE
DBMS. The discussions highlight some of the key tradeo�s between features and performance: XSet
lies on the end of less functionality (and thus less complexity) and more speed, while database sys-
tems and other XML repositories tend to choose a fuller feature set (with the added burden of
more complexity and thus lower performance on smaller, simple workloads).

8.1 Object-Oriented XML Databases

Most of the industry-based implementations of XML-stores are object-oriented database systems
that support XML as a native datatype. Two OODB systems that exemplify the industry XML
e�ort are eXcelon from Object Design Inc. [20] and Poet XML Repository from Poet Software [29].
While they diverge slightly in their goals (eXcelon for translation of heterogeneous database back-
ends and Poet for Electronic Data Interchange), both of them provide ACID semantics, which
imposes additional overhead on performance and concurrency.

8.2 Relaxed Semantics in Databases

Past work in the database community has recognized the changing semantic requirements of
database applications [6]. Several approaches have been taken in the context of full ACID database
systems to maximize concurrency by taking advantage of these weaker semantic needs.

Some of these e�orts have focused on how semantic information on datatypes can be exploited
to safely trade serializability or consistency for increased concurrency. Farrag and Ozsu analyze
in [12] a proposal to utilize semantic information to allow selected nonserializable schedules, and
also propose the notion of \relatively consistent" (RC) schedules, and concurrency mechanisms to
produce RC schedules. Similarly, Badrinath and Ramamritham de�ned a \recoverability" predicate
which is checked using a con
ict table of prede�ned con
icts between well-de�ned operations [5].
Since utilizing the semantic information incurs a high overhead, Agrawal et. al propose that users
intervene to make consistency assertions on abstract data types, which are then used to de�ne new
correctness criterion [2]. In [32], Wong and Agrawal de�ne the notion of bounded inconsistency,
where users can accept datatype-speci�c ranges of inconsistency in order to increase commutavity
of operations for increased concurrency.
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Additionally, there have been e�orts such as [21] which o�er increased concurrency without breaking
the bounds of traditionally serializability under conditions of low resource utilization [3].

In contrast, our approach in XSet can be viewed as an extreme version of those proposed by [2],
[5] and [12]. Because these e�orts are generalized for di�erent datatypes, they require semantic
information on new datatypes in order to maintain levels of serializability. XSet, on the other
hand, targets XML as its datatype, and can exploit its well-known structure for further optimiza-
tion. Furthermore, the simplifying assumption of independent operations removes the need for
transactions along with any associated overhead.

8.3 Proposed XML Query Languages

Whereas XSet chooses an extremely simple query model with a small set of core query functionality,
several XML query language development e�orts are underway to provide much more robust and
powerful query models.

XML-QL from AT&T research labs [11] is an e�ort to standardize an XML query mechanism for
large volume data extraction and transformation. As a query language, XML-QL tries to stay true
to the SQL syntax, making choice extensions for XML functionality. Unlike XSet's focus on single
query latency, the XML-QL design focuses on features and very complex queries. As a result, an
XML-QL implementation is geared towards supporting extremely large transactions across large
portions of the dataset, but its high complexity level and high overhead would make it too complex
for our needs.

XML Query Language (XQL) [26] is a similar query language e�ort from Microsoft. It's similar
to XSet in that it abandons the SQL syntax in favor of a natural XML approach composed of
paths constructed from tag hierarchies. Unlike XSet, however, it supports a very complex syntax,
accepting complexity in query construction and processing for greater functionality. As with XML-
QL, we believe XQL is far more complex than is necessary for XSet's target applications.

8.4 LORE

LORE [24] is a database management system for semistructured data developed at Stanford Uni-
versity. While LORE and XSet are similar in basic functionality, LORE supports a much greater
feature set, as well as support for full database semantics, with multiple indexing methods, cost-
based query optimization, concurrent user support, and logging and recovery. LORE supports
LOREL [1], a query language for XML with similar descriptive power as XML-QL. Compared to
XSet, LORE's much richer functionality set makes it too complex for the low latency, soft consis-
tency information management applications XSet targets.

9 Future Work

Because of XSet's widespread applicability, there are several avenues for future expansion. The
main limitation to XSet's scalability is the dependence on main memory, and that can be solved
by building a clustered version of XSet, where single XSet servers communicate to dynamically
partition incoming data. In addition, signi�cant improvements can be made on the XBench suite,
to provide a more complete benchmark more indicative of real application performance.
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9.1 Clustered XSet

Despite the increasing availability and capacity of memory chips, main memory still remains the
only obstacle between XSet and large scale datasets. Our solution is to build an interserver com-
munication layer which allows servers to join a XSet server group, and dynamically repartition the
data as necessary to provide scalability. For an overloaded server handling queries on heterogeneous
datatypes, the naive solution is to partition data by its document type or DTD. This will likely not
solve the real problem, however, since large uniform datasets will still present scalability problems
for single XSet servers.

The data partitioning of homogeneous data can be done in two ways:

� Broadcast Query Model. One of the solutions to data partitioning is to decouple the data
partitioning from the query processing. Queries are forwarded to all available servers and
responses are gathered before aggregation and return to the client. Incoming documents are
hashed to a set size unique string using a good one-way algorithm such as SHA-1. A global
mapping which partitions the hashed space evenly among servers can be used to distribute
data.

In this model where queries are sent to all servers, there may be several disadvantages. First,
due to the random clustering, queries that want to search the entire dataset need to block
until all nodes in the cluster respond, increasing the response time to that of the slowest node.
Second, node failures pose a serious problem, and must be recognized promptly to minimize
impact on query latency. Finally, broadcasting queries to each node in a cluster will not scale
well as the number of nodes increases. This issue might be solved by the increasing bandwidth
available on System Area Networks, or the use of broadcast and snooping protocols.

� Introspective Partitioning. To solve the issues in the broadcast query model, we want to
examine how data can be intelligently partitioned, and queries selectively routed to nodes
with plausible return values. Any such design would have to deal with the fact that incoming
queries can query on any tag, meaning that no single tag can be used as the server partition
index.

To facilitate a solution, we propose this hypothesis:

For XML or other data queried by name-value pairs, when used in a speci�c application, the

frequency distribution of queries is not uniform across its tags or named attributes; Further-

more, in specialized applications, the majority of queries will be on a small minority of the

tags, which we can call \key tags."

To test this hypothesis, we can design an introspective data partitioning algorithm. We can
�rst initialize the server using the Broadcast Query Model, and process queries for some period
of time. During the initial runs, an introspective daemon can monitor all incoming queries,
and get a \rough" estimation of the most commonly used query tags, which can be then used
as a \primary key" for data partitioning. After the �rst data partitions are created, queries are
continuously monitored, and data can be repartitioned at di�erent granularity levels according
to changes in query patterns, data size, and server load. During repartitioning phases, the
cluster can either revert back to the broadcast model, or move data in incremental stages,
keeping partition maps consistent to maintain query routing.
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9.2 XBench Improvements

As the realm of XML applications solidi�es, it will become more clear how XML data will be
accessed. With some trace data and usage characteristics from real world applications, XBench
workloads can be tuned to better predict application performance. It would also be useful to
better understand XSet's relative performance advantages, by running XBench on the major XML
databases as they mature.

10 Conclusion

In this paper, we have shown how using XML as a data storage language, combined with a main
memory database and search engine, provides the class of Internet-scale applications with easily ex-
tensible, yet validatable data schemes. We simplify the query language, which enables applications
to perform simpler and faster queries.

We also avoid the problems associated with duplicate code development by providing a common
data management platform. The key to this �nal goal is XSet's 
exibility in how data is structured,
queried, and managed.

The performance results clearly show the bene�ts of relaxing consistency requirements and using
data structures that are better tailored to the datasets' inherent structure | query time scales
logarithmically with dataset size.

Finally, we o�er XBench, a rudimentary benchmark for measuring XML query performance. XBench
o�ers workloads for testing both bulk documents and small XML metadata documents.

A portable version XSet is available publicly and XSet is being used by several large-scale distributed
applications. We are continuing to re�ne the architecture based upon our experiences and others.
Future versions of XSet will address incremental scalability and dynamic data partitioning
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