
The IRAM Network Interface

Ioannis Mavroidis

Report No. UCB/CSD-00-1111

September 2000

Computer Science Division (EECS)

University of California

Berkeley, California 94720

The IRAM Network Interface

by Ioannis Mavroidis

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, Uni-

versity of California at Berkeley, in partial satisfaction of the requirements for the degree
of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor David A. Patterson
Research Advisor

(Date)

* * * * * * *

Professor Katherine Yelick
Second Reader

(Date)

The IRAM Network Interface

Ioannis Mavroidis

M.S. Report

Abstract

Vector IRAM (VIRAM) integrates vector processing with embedded DRAM technology on

the same chip to provide high multimedia performance at low energy consumption. This

level of integration makes VIRAM an attractive candidate as a building block for a high

density multi-processor system. One node in such a system would consist of its own proces-

sor, main memory and network interface, all tightly coupled on the same chip. This report

presents the design and architecture of a Network Interface targeted to a small-scale sys-

tem consisting of a few VIRAM chips connected on one board. Each chip communicates

using 4 narrow point-to-point bidirectional links that provide an aggregate peak throughput

of over 4 Gbps per direction. The proposed Network Interface was entirely implemented

and simulated in Verilog. We evaluate its performance under various communication pat-

terns, including hot-spot and all-to-all communication. We also discuss its weaknesses and

propose ways to overcome them.

Contents

1 Introduction 1

2 The Architecture 3
2.1 Architecture Overview . 3
2.2 Individual Components of the Architecture 5

2.2.1 Packet Descriptor . 5
2.2.2 DMA Engine . 7

2.2.3 Buffer and Queuing Architecture 8
2.2.4 Queue Manager . 10

3 Main Design Considerations 12
3.1 Routing . 12
3.2 Flow Control . 15

3.2.1 Stuffing . 16
3.2.2 Deadlocks . 17
3.2.3 Simulation Results . 18

3.3 Transmission Errors . 21

4 Verification 22

5 Performance 23
5.1 Latency . 23

5.2 Throughput . 24
5.3 Summary . 27

6 Related Work 28

7 Future Work 30

8 Conclusions 31

References

Acknowledgments

1 Introduction

VIRAM [Koz99] provides high multimedia performance with low energy consumption by
integrating vector processing with embedded DRAM technology. Vector processing allows

simple, fast and energy-efficient execution of multimedia kernels. By eliminating off-chip
accesses, embedded DRAM technology provides high memory bandwidth at low power.

A single IRAM provides a complete solution in some application domains; both high

performance multimedia processing and low power consumption make IRAM an ideal can-
didate for future PDA-like devices. On the other hand, the tight integration of processing

power and memory on the same chip also allows for a high density multiprocessor system,
by combining multiple IRAM chips on the same board.

A multi-IRAM configuration would offer enormous computing potential. Problems too
large or too slow on a single chip can potentially benefit from parallel execution. These

include streaming multimedia or DSP (e.g. video, radar) computations, sorting, scientific
simulations, speech processing, 3D graphics, and other applications with large data sets, or

large-scale simulations. Many of these candidate applications can be written to use bulk
synchronous communication, thus creating bursty all-to-all traffic, of messages mostly in
the order of a few hundred bytes. For such applications, high bandwidth is more important

than low latency.

Given that the IRAM project mainly targets low-power PDA-like devices, an assump-
tion that shaped a lot of the design decisions is that the Network Interface should be kept

simple and target multi-IRAM systems of only a few nodes, specifically 8 or 16 at most.
Our intention is to explore how a few IRAM chips can cooperate in solving the same

problem, rather than build a massively parallel high-performance system. For small-scale
systems, 4 bidirectional point-to-point links per chip are enough to establish full connec-
tivity with a small network depth. A bandwidth of around 1 Gbps per direction of each

link was also chosen as enough, considering Amdahl’s law and the time that the candidate
applications spend in computation and communication.

Since IRAM runs at 200 MHz, this bandwidth translates to 5 bits per clock cycle. In

order to account for the overhead of transmitting control information (such as message
headers, flow control and ECC), we used 6 pins per direction and we send control infor-

mation and data through the same pins. Using separate pins for the control information
would lead to underutilization of those pins. To reduce power consumption, these pins are
driven by custom-built synchronous low-swing transceivers that use an extra clock pin per

direction, totaling (6+1) pins/direction * 2 directions/link * 4 links = 56 pins dedicated to
the Network Interface.

Figure 1 shows a block diagram of a prototype board consisting of 8 IRAM chips using

1

their Network Interfaces to connect together with point-to-point links. The IRAM chip is

scheduled for fabrication in the early part of 2001. However, the Network Interface will not
be included in the chip, because the limited time available for the tape-out made focus shift
to other more vital components of its architecture (e.g. the design of the Floating Point

Unit). The implementation of a multi-IRAM system, including the underlying software
layer, the parallel applications that would run on top, and the custom laid-out transceivers,

was, at least temporarily, postponed.
The remainder of this report is organized as follows. Section 2 presents the Architecture

of the IRAM Network Interface. In Section 3 we discuss the main design considerations
and the decisions that we made. Section 4 shows the environment that we used to verify
our design. Section 5 presents the performance of the Network Interface under several

communication patterns. Section 6 describes related work and Section 7 discusses the
areas that need further work.

VFFU

VMFU

NI
SEND

TRXTRXTRXTRX

Cache
Data

Instruction
Cache

Scalar
Core

Flag Registers

Vector Registers

VAFUVAFU

VFFU

VECTOR UNIT

I/O
NI

RCV

SCALAR UNIT

Memory Interface

DRAM
BANK

0

7

1

MEMORY SYSTEM

NETWORK INTERFACE

NI

IRAM

NI

IRAM

IRAM

NI

IRAM IRAM

NI

IRAM

NI

IRAM

NI

IRAM

NI

NI

Figure 1: A small number of IRAM chips on the same board can comprise a high-performance

parallel machine for multimedia applications. The chips are connected with point-to-point links;

each chip has a peak performance of 3.2 GFLOPS (single precision) and 4 bidirectional links, each

operating at 1 Gbps per direction.

2

2 The Architecture

2.1 Architecture Overview

Figure 2 shows the block diagram of the Network Interface. It consists of a Packet De-
scriptor, a DMA Engine that accesses the on-chip DRAM, a Packetizer that assembles the

packets, a Router, a Queue Manager (not shown) that is responsible for handling multiple
FIFO queues in one shared memory, a Send and a Receive buffer, an Output Scheduler

that schedules packet departures, Flow Control logic, a Receive Interface that drains the
Receive Buffer, four input links and four output links.

We will next briefly explain the functionality of these components by describing how a

packet is sent or received by the Network Interface. Section 2.2 contains a more thorough
analysis of the functionality and hardware resources of some of the components.

Send Operation The Network Interface (NI) is memory-mapped as a virtual resource
and allows applications running on different IRAM chips to communicate without invoking

the operating system. Sending a message is a two-phase process of describe and launch,
as in [KA93] and [MKF+98]. To describe the message the user writes its destination and

data in the Packet Descriptor, a memory-mapped array of registers inside the NI that can be
accessed with ordinary user-level load and store instructions. Short messages can entirely

fit in this array. For longer messages, one or more DMA descriptions must be placed in
this array, and a DMA engine will replace each description with the appropriate memory
blocks before the message is transmitted.

When the user launches the message, the Packetizer collects the data from the Packet
Descriptor and the DMA engine, and assembles it in the format required for transmission.

To do this, it has to add doubleword stuffing where necessary (as will be explained in Sec-
tion 3.2.1), insert padding at the end (to make the packet size a multiple of the memory

width, which is 64 bits), append the doubleword that results from XOR’ing all data double-
words (used for error detection as will be discussed in Section 3.3), and finally append the

end-of-packet (EOP) signature. The Router will then look up the destination output link for
the packet, and based on its destination, will enqueue the packet to the corresponding FIFO
queue in the Send Buffer, where it will wait its turn for transmission. Keeping one FIFO

queue per packet’s source (local node or one of the four input links) and destination (one
of the four output links) promotes fairness among different connections and diminishes

head-of-line (HOL) blocking, as will be discussed in Section 2.2.3. A Queue Manager is
responsible for the dynamic sharing of the send buffer space among these FIFO queues.

Finally, the Output Scheduler will multiplex the FIFO queues of the send buffer to the
corresponding output link for transmission. Figure 2 for simplicity only shows the queues

3

R
ec

ei
ve

In

te
rf

ac
e

R
ou

te
r

R
ou

te
r

R
ou

te
r

R
ou

te
r

R
ou

te
r

6464

in
fo

 c
on

su
m

er
)

(a
ls

o
Fl

ow
 C

on
tr

ol
Sc

he
du

le
r

O
ut

pu
t

6

in
pu

t l
in

k
3

64
6

in
pu

t l
in

k
0

64
6

in
pu

t l
in

k
1

64

(A
dd

 d
ou

bl
e

st
uf

fi
ng

, p
ad

di
ng

, X
O

R
, E

O
P)

Pa
ck

et
iz

er

6

in
fo

 p
ro

du
ce

r
Fl

ow
 C

on
tr

ol

in
pu

t l
in

k
2

ou
tp

ut
 li

nk
 3

ou
tp

ut
 li

nk
 2

ou
tp

ut
 li

nk
 1

3

Se
nd

 B
uf

fe
r

(2
56

 x
 6

4)

012 12in
pu

t l
in

k
3

0231 03

R
ec

ei
ve

 B
uf

fe
r

(2
56

 x
 6

4)

in
pu

t l
in

k
1

2lo
ca

l n
od

e

in
pu

t l
in

k
0

in
pu

t l
in

k
2

(p
ac

ke
t s

ou
rc

e)

13 0

(d
es

t o
ut

pu
t l

in
k

#)

6
64

ou
tp

ut
 li

nk
 0

D
M

A

25
6

bi
ts

/c
yc

le
 =

 6
.4

 G
B

/s
ec

 (
m

ax
)

ba
nk

s
D

R
A

M

Pa
ck

et
 D

es
cr

ip
to

r

D
M

A
 p

ai
rs

da
ta

he
ad

er

Figure 2: Block diagram of the Network Interface. Packets are described in the Packet Descriptor,

assembled by the DMA engine and the Packetizer, buffered by the Router to the buffer and queue

that corresponds to their destination, and scheduled for transmission by the appropriate output link

by the Output Scheduler.

4

multiplexing for output link 0. The queues of each output link are served in a round-robin

fashion. If due to congestion the send buffer of the local node becomes full, Flow Control
logic will signal the neighboring nodes, whose output schedulers will get notified and stop

transmitting data to the local node until its buffer has space to accept it, as described in
Section 3.2.

Receive Operation When a packet that is destined to the local node is received

through one of the input links, the Router enqueues it to the corresponding queue of the
receive buffer. The receive buffer keeps one queue per input link, and one queue for the

local node. This last queue allows one node to send a packet to itself, which can prove
useful in cases where more than one thread has to run on the same node. The number of

threads can exceed the number of nodes if, for instance, software did not know the number
of nodes or was built for some other system.

This work does not include the implementation of the Receive Interface. Further work

is needed to notify the user using a polling or a user-level interrupt mechanism of a packet
reception and allow for storeback of the packet to main memory with the use of the DMA

engine (see Section 7).

2.2 Individual Components of the Architecture

2.2.1 Packet Descriptor

As we mentioned in Section 2.1, sending a message is a two-phase process: first describe,

then launch. Figure 3 shows the format of a packet description. Our implementation was
influenced by Alewife machine [KA93], which used a very similar approach. A message is

described by writing directly to a memory-mapped array of 64 32-bit registers. The Packet

Descriptor consists of this array and its associated logic. The array is statically split into
4 16-register parts, each of which is able to store one packet description. Head and tail

pointers are used to manage this array as a circular buffer of packet descriptions. This
allows the user to have at most 4 descriptions with pending transmissions.

The user describes a packet by writing directly into the Packet Descriptor using
memory-mapped store instructions. Each packet description consists of a header, followed

by zero or more 6-word tuples of explicit data operands, followed by zero or more 3-word
tuples of DMA descriptions. Packet transmission begins with the data operands followed
by data from each of the DMA descriptions. The number of explicit data operands has

to be multiple of 6. Since the total description length is at most 16 words (including the
header), a maximum of 12 operands or a maximum of 5 DMA descriptions (though, not

at the same time) can fit in the description. The shortest valid packet description contains
only one word for the header. Figure 3 shows a packet description with 6 operands and 2

5

0

6−word tuples
of Operands

3−word tuples
of DMA

11 bits

28

Source

31 1420

Dest

6 bits 6 bits 3 bits6 bits

Reserved

0
1

header
operand 0
operand 1
operand 2
operand 3
operand 4
operand 5

unused
unused
unused

DMA description 1

DMA description 2
Stride

Double

Double

Stride
Length

Length
Start

Start

15
14
13
12
11
10
9
8
7
6
5
4
3
2

Figure 3: Format of a packet description. A packet contains explicit operand data, followed by

memory blocks specified by DMA operations. The header of the packet contains information on

how many operands and how many DMA operations its description has.

DMA descriptions.
A DMA engine (described in Section 2.2.2) will replace each DMA description with the

corresponding memory block before the message is transmitted. The header of the packet

contains information on the number of operands and DMA descriptions, the source and
destination node ID’s, and 11 bits reserved for future use. These bits, in a future implemen-

tation, could indicate the Process ID of the destination process, a message classification in
system-level, or user-level message, and so on.

Since describing a packet is a multi-cycle user-level operation, it can get interrupted
– for example, due to an interrupt or context switch – and leave a partially constructed

description in the Packet Descriptor. In order to be able to use the network, any partially
constructed packet descriptions have to be saved and later restored, before control returns
to the interrupted user-level process. Thus, the Packet Descriptor also provides the ability

to read its contents via memory-mapped load instructions.
Once a packet has been described, it can be atomically launched via a load instruction

from a specific memory-mapped address. This load instruction enqueues the current packet
description for transmission if the queue is not full – that is, if there are less than four

pending packet transmissions – and will return an error code if the queue is full, which
indicates that the user will have to retry. Enqueuing a packet for transmission is atomic,
which implies that after a successful launch, the descriptor array may be modified without

affecting previous messages.

6

2.2.2 DMA Engine

The DMA engine initiates the main memory requests that correspond to the DMA descrip-
tions in the packet description, waits for data to arrive, and stores it in internal buffers. It

supports two kinds of DMA operations; sequential and strided. Sequential DMA will fetch
from memory a certain number of 32-bit words beginning at a specified starting address.

Strided DMA is for 32-bit (word) or 64-bit (doubleword) elements and the elements can be
spaced by a certain stride. Figure 4 shows a block diagram of the DMA engine. It consists
of two parts; the Address Generator and the Data Receiver.

pending
request

received data

32

doublestridelengthstart

32−bit bus

DRAM banks

grant

Data to Packetizer

DMA description from Packet Descriptor

memory latch (256 bits)

addr1 addr2addr0 addr3 mode req

Data Receiver

Address Generator

Figure 4: Block diagram of the DMA engine. The Address Generator generates the main memory

requests for strided or sequential DMA operations, and the Data Receiver uses a 32-bit bus to

retrieve data from memory and forward it to the Packetizer.

Address Generator This part of the DMA engine creates the memory requests that
correspond to a certain DMA operation. Main memory, which is external to the Network

Interface, defines the following interface. There are four address registers, each with one
valid bit (not shown in the Figure), one request signal, one grant signal, and another signal
to select the mode of operation.

There are two modes of operation. In the first, 64 bits of data will be fetched from each

of the four addresses that has its valid bit set. In the second, 256 bits of data will be fetched
from the first address of the four. Even though the second mode seems to be a special case

7

of the first one, where all 4 addresses are valid and they are spaced by 8 bytes, using the

second mode is faster for sequential data. For this reason, sequential DMA uses the second
mode of operation and strided DMA uses the first. In either mode, at most 256 bits of data
will be fetched by one request.

This data will be latched in a 256-bit wide register which is close to main memory and
dedicated to this interface (requests to memory by other devices will not overwrite it). The

requests from the DMA engine use virtual addresses, which will be translated to physical
before the main memory access, by hardware which is external to the Network Interface.

Data Receiver The Data Receiver part of the DMA engine accepts the data from
the memory latch and forwards it to the Packetizer for the necessary stuffing and padding.
Since the Network Interface will probably not be physically close to main memory in the

floorplan of the chip, a narrow bus from main memory to Data Receiver is desirable in
order to reduce wiring. Thus, the Data Receiver uses a 32-bit wide bus to read the 256-bit

memory latch in 8 cycles. 32 bits per cycle are still enough since, even if all four 6-bit wide
output links transmit data at their peak throughput, they will still need at most 24 bits per

cycle to be fully-utilized.

2.2.3 Buffer and Queuing Architecture

The Network Interface uses internal memory, called the “send buffer”, to buffer incoming
packets, instead of dropping them when more than one packet contends for the same inter-

nal resource or the same output link. The organization and management of this buffer is
integral to the design performance and complexity.

Research in switch architecture has proposed various ways of organizing such buffers.

Input, output and cross-point organizations use more than one memory array (placed close
to the input links, output links or at their internal “intersections” respectively), and may

result in poor utilization and high cost. Shared buffering, which uses only one buffer, has
both the best performance and the lowest cost, but may pose too high bandwidth demands

for a single buffer to satisfy. Since bandwidth was not a problem for our implementation,
we used shared buffering.

Size To determine the width and number of ports for this internal buffer, we need to
make a worst-case analysis of what bandwidth it should be able to provide. In the worst
case, all four input and four output links are simultaneously active. Since each link is 6-bits

wide, the Router may need to write 24 bits per cycle (data coming from the input links) and
the Output Scheduler may need to read 24 bits per cycle (data destined to the output links).

One 32-bit wide two-port memory array could supply this bandwidth. Instead, we opted
for a 64-bit wide array with only one port since it occupies approximately half the area of

8

Clock cycle Memory access

0 Input link 0 writes 64 bits OR local node writes 64 bits
1 Output link 0 reads 64 bits OR local node writes 64 bits

2 Input link 1 writes 64 bits OR local node writes 64 bits
3 Output link 1 reads 64 bits OR local node writes 64 bits

4 Input link 2 writes 64 bits OR local node writes 64 bits
5 Output link 2 reads 64 bits OR local node writes 64 bits
6 Input link 3 writes 64 bits OR local node writes 64 bits

7 Output link 3 reads 64 bits OR local node writes 64 bits

Table 1: Timing of the memory accesses to the send buffer. All write accesses are executed through

the Router which stores incoming packets from the input links or the local node to their correspond-

ing queues. All read accesses are executed through the Output Scheduler which forwards data from

the appropriate queues to the output links for transmission.

a same size two-port, 32-bit wide array. The bandwidth requirement can still be satisfied

with appropriate multiplexing of the memory accesses through the same port. The size of
the memory should be in the order of a few KBytes due to area and power considerations.

Thus, two 256× 64 (2 KBytes) memory arrays were used, one for the send buffer and one
for the receive buffer.

Timing Table 1 shows the timing of the accesses to the send buffer; the sequence of
8 cycles shown in the Table is continuously repeated. Each access happens if the corre-

sponding data exists. If both the links and the local node want to access the buffer, priority
is given to the links. With this timing each input link is able to write 64 bits every 8 cycles,

which is more than enough since it can only receive 6 bits/cycle. Similarly, each output
link is able to read 64 bits every 8 cycles, which is more than enough since it can only
send 6 bits/cycle. The receive buffer has the same timing for its write accesses, and thus

it is possible that both the receive and the send buffer are written during the same cycle
(by different sources). This fixed timing, independent of the actual incoming or outgoing

packets, greatly simplifies the design.

As Table 1 implies, the Output Scheduler may start reading a packet out of the send
buffer and transmitting it through the output links, before the complete packet has been
received. For example, each 64-bit doubleword of a packet that arrives through input link

1 and has to be transmitted through output link 2, will stay in the send buffer for 4 cycles
(cycles 2 to 5 in Table 1), assuming that no other packet is using the same output link.

This ability is called virtual cut-through [KK79], and greatly reduces the communication
latency.

9

Double buffering is used at the input links (see Figure 2), because it is not possible to

guarantee that the buffer will be available for storing the 64-bit input data at precisely the
desired time, for two reasons: first, packet arrivals are not synchronized, and second, there
is a mismatch in the throughput of data received by an input link (6 bits/cycle) and the

throughput of data transferred from an input link to the send buffer (64 bits/8 cycles).

Similarly, double buffering at the output links is required in order to keep them fully-

utilized (when there is data available), because of the mismatch in the throughput of data
transmitted through an output link and the throughput of data provided to an output link by

the send buffer.

Organization The send buffer (see Figure 2) holds one FIFO queue for each input-
output link pair, except for the input-output links that belong to the same bidirectional link

(a packet that arrives through input link i will never need to be transmitted through output
link i, since both links connect to the same neighboring node). This organization is very

similar to shared cross-point buffering which has important performance and Quality of
Service (QoS) advantages over input queuing, and buffer cost and utilization advantages

over output queuing [KVE95].

By keeping separate queues for each output, if one of the output links is not able to

transmit – if, for example, due to congestion the send buffer of the node it connects to,
is full – the other output links are not affected since their data reside in separate queues
which will not be blocked. The opposite situation, where different packet flows share the

same FIFO queue, results in what is known as head-of-line (HOL) blocking [KHM87],
leading to performance degradation. Also, by keeping separate queues for each input link

and multiplexing them in a round-robin fashion per output link, we achieve fairness among
different connections that share the same output link.

2.2.4 Queue Manager

As we described in Section 2.2.3, the send and receive buffers are dynamically shared

among multiple queues. Each queue holds a number of 64-bit elements that have to be
transmitted in a FIFO order over an output link. A Queue Manager per buffer is responsible

for the management of its space. It accepts enqueue requests from the Router and dequeue

requests from the Output Scheduler at the fixed timing shown in Table 1.

In order to support dynamic sharing of the space, where any queue can arbitrarily grow

up or shrink, the queues are maintained as linked lists of 64-bit data elements. For each
element there is a pointer, which points to the next element in the queue. These pointers are

maintained in a separate memory so that they can be accessed simultaneously with the data
elements. Also, head and tail registers point to the first and last elements of each queue.

10

Head
Pointers

Tail
Pointers

Head
Pointers

Tail
Pointers

Hd[FreeQ]=NxtPtr[Hd[FreeQ]]

qID

FreeQ FreeQ

qID

Memory Memory

Tl[qID]=Hd[FreeQ]

NxtPtr[Tl[qID]]=Hd[FreeQ]

Hd[qID]=NxtPtr[Hd[qID]]

Tl[FreeQ]=Hd[qID]

NxtPtr[Tl[FreeQ]]=Hd[qID]

Enqueue to Queue qID Dequeue from Queue qID
NxtPtr NxtPtr

Figure 5: Queue Manager functionality. Each queue is maintained as a linked list of elements.

Dashed arrows show the changes needed for enqeueue and dequeue operations.

NxtPtr
Memory

Din

head pointers

tail pointers

Receive buffer

Din
Data to enqueue

AddrW

AddrR

Addr
256 x 64

256 x 8

Dout
Data from dequeue

queueID

Figure 6: The datapath for the Queue Manager. It uses a two-stage pipeline to support one operation

per cycle. Each doubleword in the receive buffer has one associated next pointer with it in the NxtPtr

Memory.

11

As Figure 2 shows there are 5 packet queues in the receive buffer and 16 in the send

buffer. The Queue Manager also maintains a Free Queue per buffer, which is a queue of
its free space. An alternative solution to keep track of the (fragmented) free space would
be to use a bitmap, but this would require a priority decoder and would be more expensive.

When the Router enqueues a new element, the data is written at the head element of the
Free Queue which is removed from it and is appended to the corresponding queue. When

the Output Scheduler dequeues an element, it is removed from its queue, and is appended
to the Free Queue.

Figure 5 illustrates with dashed arrows the operations that have to occur in order to
enqueue to or dequeue from a certain queue. As we see, both operations require one read

and one write access to the NxtPtr memory.

Figure 6 shows the datapath for the Queue Manager of the receive buffer. The topmost

head and tail pointers correspond to the Free Queue, and the rest are for the 5 packet queues.
The Queue Manager uses a two-stage pipeline; in the first cycle memory latches and tail

pointers are written, and in the second cycle memory accesses and write-back to the head
pointers take place. It supports one operation per cycle, except two back-to-back dequeue

operations, since this is not needed with the specified timing of Table 1. Two bypass paths
were used to avoid stalling due to data hazards. The first one bypasses the head pointer
of the Free Queue when we have two enqueue operations back-to-back, and the second is

needed when a enqueue to an empty queue is followed in the next cycle by a dequeue from
the same queue.

3 Main Design Considerations

This section describes the main design considerations and the decisions that were made.
These decisions were influenced by both design simplicity and performance considerations.

Design simplicity was dictated by the target platform, which is a small-scale parallel system
where any two nodes will either be directly connected or through a few intermediate nodes.

Only one intermediate is enough for a 8-node system.

3.1 Routing

Routing specifies how a packet chooses a path from the source to the destination node. For

each incoming packet the Network Interface has to determine if it is destined for the local
node, and, if not, its next hop.

Routing Decision The routing function that most network routers perform is very
challenging due to the increased bandwidth of the Internet, which translates to an increased

12

rate of incoming packets, and the huge number of possible destinations for each packet

[GLM98]. For our case, routing is substantially simpler due to the limited number of des-
tinations. The nodes are sequentially numbered by assigning a 6-bit id to each. The header
of each packet contains the ID’s of both its source and destination nodes. When a packet

arrives, the Network Interface compares its destination node ID with the local node ID to
determine if it is destined to the local node. If it is, it is stored in the receive buffer. If not,

we have to determine the output link for this packet, and store it to the corresponding queue
of the send buffer. A routing table, configured by the operating system, could potentially

be used to look up the next hop based on the packet’s destination. Instead, the current im-
plementation of the Network Interface selects as the output link number for a packet, the
one defined by the last 2 bits of its destination node ID.

4 5

76

1

3
2

0

3

0

2

1 0

3

2 3

1

32

1

3
2

0

0

2

1 0

3 2

0

3

0 0

2

1

1

1

1

3

2

Figure 7: Topology for a network of 8 nodes. Any destination node can be reached from any source

node by following the links numbered by (destination node ID mod 4). The dashed arrow shows

the path that a packet will follow from node 4 to node 3.

This simplistic routing limits the allowed network topologies. Figure 7 shows how 8
nodes can be connected. Each node is represented by a square box, with the node ID inside
it. Also shown are the link numbers of all (bidirectional) links. For example, links 0 and

1 of node 0 connect to link 0 of node 4 and link 0 of node 1 respectively, and links 2 and
3 of node 7 connect to link 3 of node 6 and link 3 of node 3 respectively. Finally, a heavy

dashed arrow shows the path that a packet will follow from node 4 to node 3. Destination
node 3 is reached by transmission through output link 3 of nodes 4 and 7. The depth – that

13

is, maximum distance between any two nodes – of this network is 2; any two nodes either

connect directly or through one intermediate node.

Note that this topology splits the nodes into two sets; nodes 0 through 3, and nodes 4
through 7. If we imagine each one of these sets of nodes on a different plane, then we have
a dimensional routing, where we first route on the same plane and then follow the z-axis to

the destination node.

Use of Lanes In a wormhole network, variable size packets are fragmented into fixed
size flits before entering the network. The head flit, which carries the destination of the

packet, is routed from the source to the destination node, and all other flits follow in-order
along the same route. In single-lane wormhole routing, the flits of each packet are never

interleaved with flits of other packets, which can create a behavior similar to head-of-line

blocking in input queuing; if a packet is stopped because of contention and not all its flits fit

in the receiver’s buffer, then the packet holds its incoming link, thus blocking other packets
from using it. An example of a commercial single-lane switch is Myrinet [BCF+95].

Multi-lane wormhole routing [Dal92] [KSS96] solves this problem by preventing one

flow from affecting another, and allowing unblocked traffic to proceed. To achieve this
independence among flows, it defines a number of lanes and partitions the receiver buffer
into separate space for each lane. When a packet is ready to be transmitted through the

output link, it waits until a free lane exists, and then acquires such a lane by tagging all its
flits with the lane number before transmitting them. In this way, flits from different packets

can be interleaved on the same link (since their tag allows the receiver to tell them apart),
and a congested connection is prevented from filling up the receiver’s buffer. An example

hardware implementation of multiple lanes is iWarp [BCC+90].

Our implementation uses single-lane wormhole routing since the added complexity of
multiple lanes was not justified given our target platform which differs in a lot of ways

from a general purpose network. In our target system only one user application runs in
parallel on several nodes and one primary interest is bulk-synchronous applications, in

which a software layer can easily schedule communication events to avoid congestion. If
the application is well-balanced, then the traffic that it creates will either be uniform (e.g.
for all-to-all communication) or hot-spot (e.g. for reduction operations). In both cases the

performance advantages of having multiple lanes are rather limited. In the first case with
uniform traffic, there will be no single points of contention. In the latter case, the messages

are usually small and will not create contention. Even in the case that they do, all traffic is
destined to the contended destination and multiple lanes would not help. The small depth

of our target network is another reason against the complexity of multi-lane design.

Using a single-lane, we did not have to split a packet into flits; one-by-one the dou-
blewords of a packet (with padding, the length of a packet is guaranteed to be multiple of

14

64 bits) are read from the send buffer and transmitted through the output link. Data from

different packets are not interleaved on the same link.

3.2 Flow Control

Flow Control (FC) prevents the network buffers from overflowing by controlling the trans-
mission rate of the sources when their collective demands exceed the network or the desti-
nation capacity. Without FC, packets would need to get dropped and retransmitted, which

would consume expensive network bandwidth. Rate-based and credit-based are the two
most popular schemes for flow control. Figure 8 illustrates the operation of these two flow

control schemes.

Sender

���������
���������
���������
���������

�����������
�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

���������
���������
���������

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Receiver

credit

cell cell

Sender

2
credits

Receiver

bufferbuffer

low wm

high wm

START

STOP

Credit−based flow controlRate−based flow control

Figure 8: Simple schemes for rate-based and credit-based flow control.

With rate-based FC, buffer overflow is prevented by adjusting the transmission rate of
the sender depending on the occupancy of the downstream buffer. The simplest form of

rate adjustment is to completely stop transmission (rate = 0) when buffer occupancy at
the downstream node exceeds a certain high watermark and restart it (rate = peak) when
occupancy falls below a certain low watermark.

Under credit-based FC, a packet is only transmitted to the downstream neighbor if the
transmitter knows that buffer space is available for it at the receiver. Several protocols

have been proposed both for wide area networks with adaptive dynamic buffer allocation
[KBC94], and for local area or multiprocessor networks [KSS96]. In the latter, the receiver

(statically) allocates some buffer space for each transmitter, and each transmitter keeps a
counter of how much of its space at the receiver is free. This “credit count” is decremented

every time a packet departs and is incremented when a credit token is received; credits are
sent back from the receiver to the corresponding transmitter every time a packet’s worth of
buffer space becomes available. Per-flow FC can be achieved if the sender keeps per-flow

credit counts (i.e. different counts for different destinations).
Credit-based FC usually results in higher buffer utilization than rate-based FC. How-

ever, the above implementation of credit-based FC is possible when for each input link we
(statically) allocate its own buffer space in the receiver’s buffer, but this may again lead

15

to poor buffer utilization. When, as in our case, multiple input links dynamically share

the same buffer and one link can potentially fill up the whole buffer, credit-based FC is
harder to implement. The credit count of each transmitter would indicate its guaranteed

space in the receiver’s buffer. The sum of all credit counts when the buffer is empty should
be (much) less than the actual buffer size, leaving space to be dynamically shared among

the active connections. In order for the receiver to guarantee space to the transmitters it
would need to keep track of all their credit counts as well as the free space of its buffer.
The decision of when and where to send a credit back is much more complex: freeing

up buffer space does not always imply sending back a credit, and vice versa. Also, the
bandwidth that a simple credit-based FC scheme consumes for the transmission of credits

may be non-negligible, when, as in our case, FC information uses the same pins as data.
For these reasons a simplistic start/stop rate-based FC seemed more appropriate and was

implemented.

In our implementation the Network Interface of the local node sends a FC SB STOP
signal to all its four neighbors when the free space of its send buffer becomes less than 32

64-bit doublewords (i.e. occupancy exceeds the high watermark). The space of 32 doubles
is needed to absorb any traffic that the four neighbors might send before they receive the
signal and actually stop transmitting data. When the free space of the send buffer exceeds

64 doubles (i.e. occupancy falls below the low watermark) a FC SB START signal is sent
in order to resume transmission. Similarly, overflow of the receive buffer is prevented with

the use of signals FC RB STOP and FC RB START. The distance of 32 doubles between
the two watermarks puts a low upper limit in the bandwidth used for FC information.

In contrast to the neighboring nodes, the Router of the local node is prevented from

storing any data into the send (or receive) buffer when its occupancy exceeds the low wa-
termark (not the high watermark as is the case for the neighboring nodes). In this way,

when the local buffer fills up due to contention, we give priority to incoming traffic over
locally generated traffic, in the hope that the resources occupied by the incoming traffic

(such as links and buffer space) will get freed up and contention will diminish.

3.2.1 Stuffing

As we mentioned above a FC signal has to be sent through the same pins that are used for
data transmission. It is also obvious that it has to be sent in a timely fashion. Thus, in order

to be able to send it in the middle of a packet’s data stream, and still be able to distinguish
it from real data, we used doubleword stuffing. With stuffing, in order to send a data double

that happens to be the same as one of the control doubles (this should be extremely rare) ,
we escape it by first sending an ESC double. Control doubles are defined to be the signals

16

used for FC, the padding, the EOP signature and the ESC double. A preceding ESC double
is used by the receiver to distinguish between data that looks like control, and real control

doubles.

3.2.2 Deadlocks

The above FC mechanism may result in the occurence of deadlock where no forward
progress can be made in the network and no packet can be delivered. In order to avoid

deadlocks, the FC mechanism should be able to guarantee that after the high watermark of
a send buffer is reached and all incoming packet flows are stopped, the Output Scheduler

will be able to drain the buffer at least down to the low watermark which will allow incom-
ing flows to resume. However, this is not guaranteed; it may be the case that the send buffer

becomes full of data that can not be transmitted through any of the output links.

Single buffer may
lead to Deadlock!

Single lane may
lead to Deadlock!

A

B C

Figure 9: A single buffer or a single lane shared by different flows can cause a circular dependency

and lead to deadlock.

Figure 9 depicts a situation that can lead to deadlock. Three different packet flows,

A → C, B → A and C → B, share common network resources: buffer space and
routing lanes. This sharing may create circular dependencies among the flows, and lead to

deadlock.

To see this, imagine for example that the send buffer of node B becomes full of data

from flow A → C, the send buffer of node C becomes full of data from flow B → A

and the send buffer of node A becomes full of data from flow C → B. Then, each flow

is waiting for some other flow to free up buffer space in order to be able to make forward
progress, which creates a circular dependency among the three flows leading to deadlock.

17

The source of this problem is that the current scheme for FC does not discriminate

among different flows; all incoming flows use the same buffer and, either they are all
stopped or none is. A per-flow FC scheme, which dedicates separate buffer space to each
flow is needed. Per-flow buffering would also result in higher performance by preventing

one flow from filling up the buffer space used by another and thus blocking it.

A similar deadlock situation arises with the use of a single lane per link. If it so happens

that the three flows of Figure 9 start transmitting packets at exactly the same time, then
each one will acquire the lane of one of the three output links. This creates again a circular

dependency among the flows that leads to deadlock; each flow needs to use an output link
that is occupied by some other flow.

For our case, the dimensional routing (Section 3.1), guarantees that in a network of up

to 8 nodes, there will be no circular dependencies created by the use of a single lane. For
more than 8 nodes, such dependencies can exist and multi-lane routing would be necessary

to avoid deadlocks: the number of lanes should be at least equal to the maximum number
of flows that share a link in a circular dependency.

However, the combination of single lane routing with a start/stop rate-based FC can be
the source of another situation for deadlock, which was actually the most frequent in our

simulations. Imagine, for example, the case where, due to hot-spot traffic, the send buffer
of a node becomes full of packets from various sources that have to be transmitted through
the same output link, and the FC stops all incoming flows. The Output Scheduler will

start transmitting one of these packets (the one whose source is the next one in a round-
robin fashion) which, due to single-lane routing, will occupy the output link until it is fully

transmitted. If it so happens that only its first few (less than 32) doublewords were received
in the send buffer when it reached the high watermark, this packet will indefinitely occupy

the output link, blocking all other outgoing flows. Transmission of these doublewords will
not make the buffer reach the low watermark and the incoming flows will never resume.
In an effort to alleviate this problem, if the source of the blocking packet is the local node,

the Router is notified to continue buffering the packet (even though the occupancy of the
send buffer exceeds the low watermark) if the send buffer has a free space of at least 16

doublewords. Thus, an output link will not get blocked due to a locally generated packet.

Again, per-flow FC would solve this problem. Converting to a per-flow FC scheme is

part of the future work (see Section 7).

3.2.3 Simulation Results

The effects of the above scheme for FC can be better understood by looking at some simula-
tion results. We simulated the network of Figure 7 and monitored the send buffer occupan-

18

cies under both hot-spot and random traffic. The receive buffers were constantly drained

by the receive interfaces (thus their occupancy stayed constant at zero). Figures 10 and 11
show how the buffer occupancies varied with time for these two kinds of traffic.

For hot-spot traffic, four different communication patterns are depicted in Figure 10. In
the following, the send buffer of node i will be briefly referred to as send buffer i.

Starting with Figure 10.a, we have two flows of packets destined to hot-spot node 0; one
originating from node 1 and another from node 4 which are received by node 0 through its
input links 1 and 0 respectively (see Figure 7). Since the throughput of these links is smaller

than the rate at which the packets are generated (i.e. read from the Packet Descriptor or
fetched through DMA from main memory), data accumulates in send buffers 1 and 4.

When occupancy reaches the low watermark, FC prevents the Routers of their nodes from
storing any more data into them, which effectively equalizes the rates at which packets

are generated and transmitted, and makes the buffer occupancies stay constant at the low
watermark.

In Figure 10.b one more flow, originating from node 5 (destined again to node 0), is

added. Since both flows from nodes 4 and 5 pass through send buffer 4 (see Figure 7), we
see that the rate at which data accumulates into it is higher than the corresponding rate of
send buffers 1 and 5. When the occupancy of send buffer 4 reaches the low watermark (just

before 1000 clock cycles), the Router stops storing data into it. From this point on, the flow
that originates from node 5 gets priority and is the only one that uses send buffer 4 whose

occupancy thus stays constant.

In Figure 10.c two more flows, originating from nodes 6 and 7 (destined to node 0), are
added. Now we have four flows (the ones from nodes 4, 5, 6 and 7) passing through send

buffer 4 (see Figure 7), whose occupancy increases at a high rate. When it reaches the low
watermark at time A, the local Router stops storing data into send buffer 4. Occupancy

keeps increasing, at a slightly lower rate, since there remain three incoming flows (from
nodes 5, 6 and 7) and only one outgoing (to node 0). When occupancy reaches the high

watermark at time B, a FC SB STOP signal is sent to all four neighbors, i.e. to nodes 0,
5, 6, and 7. After a small delay, the signal is received by these nodes who stop sending data
to node 4 (due to this delay occupancy of send buffer 4 actually goes higher than the high

watermark). This has two consequences; the occupancies of send buffers 5, 6 and 7 start
increasing at a higher rate, and the occupancy of send buffer 4 starts decreasing since it now

has one outgoing flow and zero incoming. When the latter drops below the low watermark
at time C, a FC SB START signal is sent to all four neighbors which results in resuming

the three incoming flows.

Figure 10.d shows the buffer occupancies when all nodes randomly send packets to
either of two hot-spot nodes; 0 and 7. As we see, send buffers 3 and 4 get congested with

19

buffer

low

high

watermark

size

watermark

buffer

low

high

watermark

size

watermark

Send buffer occupancy
(doublewords)

Send buffer occupancy
(doublewords)

0 20001000 3000

Time (clock cycles)

Send buffer occupancy
(doublewords)

Send buffer occupancy
(doublewords)

buffer

low

high

watermark

size

watermark

0 20001000 3000

Time (clock cycles)

a) Nodes 1 and 4 send packets to
hot−spot node 0

b) Nodes 1, 4 and 5 send packets to
hot−spot node 0

c) Nodes 1, 4, 5, 6 and 7 send packets to
hot−spot node 0

0 40002000 6000

Time (clock cycles)

buffer

low

high

watermark

size

watermark

A CB

nodes 0, 1, 2, 5, 6, 7

nodes 3, 4

nodes 5, 6, 7

node 4

node 1

node 4

nodes 1, 5

node 4

node 1

d) All nodes randomly send packets to
hot−spot nodes 0 and 7

30001000 20000

Time (clock cycles)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 260

 240

 220

 200

 180

 160

 140

 120

 100

 80

 60

 40

 20

 0

Figure 10: Rate-based FC prevents the send buffers from overflowing due to network congestion

created by hot-spot traffic.

20

multiple packet flows, and FC prevents them from overflowing.

Send buffer occupancy
(doublewords)

buffer
size

high
waternark
low
watermark

0 20000 40000 60000

node 0 deadlock

Time (clock cycles)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 40

 20

 0

Figure 11: Random all-to-all communication resulted in deadlock after 20000 clock cycles.

Figure 11 shows the results from a simulation with random all-to-all traffic, where each
node continuously generated and launched random packet descriptions (with the only re-

striction that one DMA operation would request at most 240 bytes). The communication
resulted in deadlock after 20000 clock cycles and no progress could be made. The first

node to reach deadlock is node 0 (at the point shown in the Figure with an arrow), whose
send buffer got full of packets from nodes 0, 1 and 3 all destined to node 4, and the cor-

responding output link was indefinitely blocked by the last packet from node 3 which was
not fully received when FC stopped incoming flows. Thus, the deadlock resulted from the

combination of single-lane routing with indiscriminate FC, as discussed in Section 3.2.2.

3.3 Transmission Errors

With the use of error detection and correction codes (Reed-Solomon) close to the
transceivers (physical layer), we are able to tolerate transmission errors. Error tolerance al-

lows us to save power by lowering the transmission voltage and/or swing of the transceivers.
At a higher level, the Network Interface uses a very simple form of error detection

since we assume that most (if not all) errors are corrected at a lower level with the use of
the above codes; the doubleword that results from XOR’ing all packet’s doublewords is
appended to the end of the packet by the transmitter and is checked by the receiver.

21

4 Verification

The environment used for verification is depicted in Figure 12. The Network Interface
was entirely implemented and simulated in Verilog. A Software model, written in Perl, of
the functionality of each major module served as the golden model to compare against the

Verilog RTL implementation. The Verilog Programming Language Interface (PLI) allows
Verilog and Perl to communicate and thus compare the results of the two implementations

on the fly (instead of during post-processing).
Several directed tests and a lot of random testing was performed for each. When mul-

tiple components of the Network Interface are connected and operate together, the values
of the buses at their interfaces were monitored and checked on the fly. Monitored buses,
for example, include the data that the Packetizer forwards to the Router, or the data that the

Output Scheduler forwards to Output Link 0.

Receive
Interface

Receive
Interface

data
sent

data
sent

NI7.vNI0.v

data
received

data
received

Test.v

Test.pl

PLI

Perl

Packet
Descriptor

Packet
Descriptor

User0.pl User7.pl

Compare.pl

load/store instructions
(to describe & launch
random packet)

load/store instructions
(to describe & launch
random packet)

Verilog

space
free
space

free

Mismatch!
Stop Simulation

Figure 12: Verification Environment. Using Verilog PLI, Perl stimulates, monitors and checks the

operation of a 8-node network simulated in Verilog.

At the highest level, the network of Figure on page 13 was simulated and verified with

one user per node continuously creating random or hot-spot traffic of packets with random
number of explicit data operands and DMA descriptions. Whenever the Packet Descriptor

of a node has space to accept a new packet description, the corresponding user issues load
and store instructions to describe and then launch a new packet. The packet’s data and

destination are recorded in order to know what data each node should expect to receive. If
there is a mismatch between the expected data and the actually received data, the simulation

will stop.

22

5 Performance

5.1 Latency

W(− 6 cycles)

W(5* cycles)

W(5* cycles)(0+ cycles)

describe + launch

transmission: source −> intermediate hop

send buffer delay queuing delay

send buffer delay
(17 cycles)

queuing delay
(0+ cycles)

DMA
(8 cycles)

(8 cycles)
receive buffer delay

(8 cycles)
transmission: intermediate hop −> dest

Figure 13: Latency of a packet transmitted through one intermediate node. W is the number of

words that the packet contains, including the overhead for the header, padding, EOP and XOR.

Figure 13 shows where time is spent during a packet transmission from a source to a
destination node through one intermediate hop, which is the worst-case latency for a 8-

node system. In the first few cycles the user issues memory-mapped store operations to
describe the packet (at most 16 operations are needed since the maximum size of a packet
description is 16 words) and then one memory-mapped load instruction to launch it. After

the user launches the packet the fixed timing for the accesses to the send buffer (Table
1) may require to wait up to 8 cycles for the cycle that corresponds to the destination

output link. Then, the DMA engine will start fetching the requested data blocks from main
memory and enqueuing them in the corresponding queue of the send buffer at the rate of

1 word per cycle, assuming that no incoming traffic is destined to the same output link
(otherwise it would get priority in accessing the send buffer over the locally generated
traffic).

If there are other buffered packets waiting to be transmitted through the same output
link, the locally generated packet may experience a queuing delay until its queue is served

by the Output Scheduler (the queues are served in a round-robin fashion). The transmission
through the output link will take approximately 5 cycles per word, at a rate of 6 bits per
cycle.

When the first word of the packet is received by the intermediate hop, it may need to
wait up to 8 cycles to get access to the send buffer. It may also experience a queuing delay

at this intermediate hop, if there are other packets waiting to be transmitted through the
same output link. The transmission from the intermediate hop to the destination node will

take again approximately 5 cycles per word, and may happen in parallel with the reception
of the remainder of the packet from the intermediate hop (this is called virtual cut-through

as we mentioned in Section 2.2.3).

Finally, the packet is stored at the receive buffer of the destination node. Its last word
may need to wait up to 8 cycles after it is received, in order to get access to this buffer.

23

small packet large packet

0→ 1 76 692
0→ 1→ 5 102 718

Table 2: Actual best-case end-to-end latency through zero or one intermediate node, in clock cycles.

Node 0 is directly connected to node 1, and through one intermediate node, node 1, to node 5.

Virtual cut-through reduces the latency of the latter case.

Table 2 shows the latency of a packet transmission through zero or one intermediate
node. The numbers shown are the results from simulations where the buffers are initially

empty and only one packet is sent from node 0 to either node 1 or node 5. Thus, packet
transmission does not block due to congestion effects, resulting in best-case latency. The

small packet contains 24 bytes of data and the large packet contains 512 bytes of data,
which translate to 12 words and 134 words respectively, if we include the overhead for the
header, padding, EOP and XOR. The transmission times through a link that operates at its

peak throughput are 12 × 5 = 60 clock cycles for the small packet and 134 × 5 = 670

clock cycles for the large one. The difference between these transmission times and the

numbers of Table 2 is due to the rest of the latency components of Figure 13. As Table 2
also shows, virtual cut-through significantly reduced the per-hop latency to about 30 clock

cycles, independent of the packet size.

5.2 Throughput

We simulated the network of eight nodes shown in the Figure of page 13, and measured

its throughput for three different communication patterns; one-to-some, all-to-some and
all-to-all. In the first two, one or all the nodes, continuously send packets to a specific

subset of the nodes, which will be referred to as hot-spots, in a round-robin fashion. We
varied the number of hot-spots from 1 to 8. In the latter communication pattern, every node

continuously sends packets to all other nodes, again in a round-robin fashion. An all-to-all
communication can also be seen as a special case of an all-to-some communication with

8 hot-spots. All packets are of the same size; either small, containing 24 bytes of data, or
large, containing 512 bytes of data. A user at each node was assumed to drain the receive
buffer from any incoming packets, thus keeping its occupancy constant at zero. We also

assumed that the main memory of each node will not stall requests from the DMA engine.
For simplicity, in these simulations, the input and output links operated at a transfer rate of

one 32-bit word every 5 cycles, which results in a bandwidth of 1.28 Gbps per direction,
slightly higher than their real bandwidth.

24

For each node we measured the throughput of incoming (not locally generated) data

to both its send and receive buffers, which we will refer to as send buffer throughput and
receive buffer throughput respectively. The receive buffer throughput of the destination
nodes, indicates how fast data is received and thus is a direct measure of the network

performance.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

T
ot

al
 r

ec
ei

ve
 th

ro
ug

hp
ut

 (
G

bp
s)

Number of hot-spots

large packets
small packets

Figure 14: One-to-some communication. Total receive buffer throughput increases with the num-

ber of hot-spots, and is limited by the rate at which packets are generated.

One-To-Some Figure 14 shows the total receive buffer throughput of all hot-spots

– that is, the sum of their receive buffer throughputs – for a one-to-some communication,
when the number of hot-spots and the packet size vary. The configuration with hs hot-

spots consists of node 0 sending packets to nodes 1 through hs in a round-robin fashion.
For example, for 5 hot-spots node 0 repeatedly sends one packet to nodes 1, 2, 3, 4 and 5
(in this order).

For large packets (512 bytes of data each) the throughput scales with the number of hot-
spots for up to 4 hot-spots, which indicates that all 4 output links of node 0 are fully utilized

when it communicates with its neighbors. When we add a fifth hot-spot the throughput
drops, indicating that the output links are not fully utilized. The reason is that now the

traffic is not uniformly distributed among the output links. Instead, output link 1 is used
for two flows of packets, the ones destined to nodes 1 and 5, while any other output link is
used for only one flow. The result is that the packets destined to nodes 1 and 5 occasionally

overflow the send buffer of node 0, not leaving space for the other flows. Adding a sixth
and a seventh hot-spot makes output link usage more balanced, and results in increased

utilization and throughput.

For small packets (24 bytes of data each) the throughput is limited by the rate that

25

the packets are generated and stored in the send buffer of node 0 by the Packetizer. The

overhead of reading the packet descriptions becomes significant when the packet consists
of only a few words.

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 r
ec

ei
ve

 th
ro

ug
hp

ut
 (

G
bp

s)

Number of hot-spots

large packets
small packets

Figure 15: All-to-some communication. Average receive buffer throughput drops with the number

of hot-spots, due to increasing network congestion and link usage by traffic that is not destined to

the receive buffers.

All-To-Some Figure 15 shows the average receive buffer throughput of the hot-spots
for an all-to-some communication, when the number of hot-spots and the packet size vary.
The configuration with hs hot-spots consists of every node sending packets to nodes 0

through hs − 1, excluding itself if it is one of the hot-spots, in a round-robin fashion. For
example, for 5 hot-spots, node 6 repeatedly sends one packet to nodes 0, 1, 2, 3 and 4 (in

this order), and node 2 repeatedly sends packets to nodes 0, 1, 3 and 4.

For up to 4 hot-spots the average receive buffer throughput is very close to its upper

limit, which indicates that all 4 input links of each hot-spot are fully utilized (each one
operates at 1.28 Gbps) by traffic destined to the receive buffer of the corresponding hot-

spot. When we add node 4 as a fifth hot-spot the throughput drops because some of the
hot-spots are now congested with traffic that they have to forward to other nodes; node 0
gets congested with packets destined to node 4, and vice versa.

The results are two-fold. First, congestion leads to underutilization of the links. Per-
flow flow control, as discussed in Section 3.2.2, would limit this problem. Second, a big

portion of the incoming throughput to a hot-spot is not destined to its receive buffer, but to
its send buffer instead since it has to be forwarded.

All-To-All Figure 16 shows the average receive buffer throughput of the nodes for
an all-to-all communication, when the locality and the packet size vary. Two different

26

0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 r
ec

ei
ve

 th
ro

ug
hp

ut
 (

G
bp

s)

Packet size (bytes)

neighbor-to-neighbor
all-to-all

Figure 16: All-to-all communication. Small packets lead to better link utilization, and thus in-

creased average receive throughput, by allowing the buffer to hold packets for all output links.

communication patterns were simulated. In the first, each node repeatedly sends one packet
to each other node. In the second, each node repeatedly sends one packet to each one of its

4 neighbors.

In the first communication pattern, congestion leads to underutilization of the links
(per-flow flow control would limit this problem), and again, as discussed before, a big

portion of the link throughput is consumed by traffic that has to be forwarded. The result is
decreased receive buffer throughput. Packet sizes close to the send buffer size (2 KBytes)

further decrease link utilization, since the buffer is not big enough to hold packets for all 4
output links. For this reason, big packets should be split into smaller ones at the sender and

reassembled by the receiver.

The second configuration, neighbor-to-neighbor, does not suffer from these problems
and results in considerably higher receive buffer throughput than the first one. There is no

congestion at all, and all incoming packets are destined to the receive buffers. The limiting
factor now is the rate by which packets are created by the packetizer. Again, a packet size

close to the size of the send buffer, leads to link underutilization.

5.3 Summary

As we saw in the above simulations, the network delivers performance close to its peak

when there is no congestion. The fixed timing of the memory accesses (Table 1) offered a
number of advantages: first, it is able to fully-utilize the throughput of the links, second,

it offers a very simple solution for implementing virtual cut-through which significantly
contributes to decreased latency, and third, it greatly simplifies the control logic of the

27

design since it decouples, up to a certain degree, its operation from the actual incoming

packets and their destinations.
However, when there is network congestion, due to hot-spot traffic or occasional traffic

fluctuations, a subset of the incoming packet flows to a Network Interface can overflow

its send buffer and block the rest of the packet flows from using it, which may result in
underutilization of the links that the latter flows would use for their transmission. A per-

flow Flow Control scheme, that isolates different flows by allocating separate buffer space,
or just by guaranteeing a minimum amount of space in a dynamically shared buffer, for

each, would increase performance. Per-flow FC is also necessary to avoid deadlocks, as
we discussed in Section 3.2.2. The buffer space of each flow would be individually flow
controlled using a credit-based or rate-based scheme.

6 Related Work

Our implementation was influenced in many ways by the design of the Communica-

tions and Memory Management Unit (CMMU) of the Alewife Multiprocessor at M.I.T.
[KA93, KCA+94, Kub98], which provides both a shared-memory and a message-passing

interface using a uniform underlying mechanism. A special store instruction, stio, is used
in the CMMU to describe a message by writing directly to the output descriptor array.

A message description contains a number of explicit data operands, followed by zero or
more address-length pairs that describe blocks of data that will be fetched from memory via

DMA. Another instruction, ipilaunch, is used to atomically launch a packet after it has been
described. When the first doubleword of the message is received, the CMMU generates a
reception interrupt. On entering the reception handler, the processor can examine the first

8 doublewords of the packet through the packet input window, which is memory mapped
and can be accessed through a special load instruction, ldio. Depending on the header, the

processor can take one of several actions which include discarding the message, transfer-
ring the message contents into processor registers, or instructing the CMMU to initiate a

storeback of the data into memory using a DMA engine. Several mechanisms are used to
provide protection between user-level, system-level and coherence-protocol messages.

Alewife uses an Elko-series mesh routing chip (EMRC) for Routing. The nodes in an
Alewife machine are organized in a two-dimensional mesh network, where each node is
connected to four neighboring nodes and to the local processor with point-to-point bidirec-

tional links that operate at a peak throughput of 0.9 bytes per cycle. Packets are routed first
in the “X” dimension and then in the “Y” dimension of the mesh network, using a single

lane per link. As we discussed in Section 3.1, in our implementation packets are first routed
on the same plane and then follow the z-axis to the destination node. Since the number of

28

IRAM Alewife

Links
Number of bidirectional links 4 5

Link throughput (bytes/cycle) 0.75 0.9

Buffer sizes
Send/Receive 256× 64 32× 65

Packet Descriptor 64× 32 8× 64

Flow Control
Uses same pins as data Yes No

Protocol Rate-based Ack-based

Routing
Topology 2-D mesh 2-D mesh

Number of lanes 1 1

Deadlock
Detection

Not implemented
Timer

Recovery “Divert mode”

Receive Interface
User Notification

Not implemented
interrupts/polling

Message Extraction DMA storeback

Table 3: Differences between the IRAM and Alewife Network Interfaces.

nodes per plane is fixed and equal to four, the network depth of our implementation does
not scale well for large numbers of nodes. However, for up to 16 nodes, which is the case

of interest to us, the network depth is the same as that of a two-dimensional mesh network.

Flow Control in Alewife is achieved by the use of separate pins that acknowledge the

reception and buffering of data at the receiver. In our implementation we used the same
pins for data and control information in order to reduce the pin-count.

Deadlocks at the protocol level are detected in Alewife with the use of a timer that

generates a network-overflow trap when the network queues are full and blocked for a
certain period of time. The network overflow handler places the network in “divert mode”,
where incoming packets are diverted to a special queue-overflow region of local memory,

until deadlock clears.

Table 3 summarizes some of the differences between the two designs. We should men-
tion that the CMMU of Alewife is a much more complete and sophisticated design that

lead to working implementations of complete systems with custom chips, operating sys-
tems, and compilers.

The FUGU multiprocessor system, a follow-on design to the Alewife also at M.I.T.
[MKF+98, Mac98], employs similar techniques for describing and launching a message.

However, it is targeted for use by multiple users, and thus uses sophisticated mechanisms to
make common cases fast while at the same time protecting one user process from another.

29

When a message is received, a user-level interrupt is generated if the Group Identifier (GID)

in the header of the message matches the GID of the current process. Otherwise, a system-
level interrupt is generated. Protection is achieved by the use of timers to detect if a process

misbehaves and does not drain the network buffers from its messages. If this happens, the
process enters “divert mode” in which all of its incoming messages are buffered by the

operating system in the virtual memory of the application. In contrast to Alewife that
enters this mode at deadlock detection, this is a per process mode entered by one process
if it misbehaves. The virtual buffering path that the messages take during this mode is

transparent to the application and provides the illusion of a very large buffer. Apart from
protection, which is not that important for our target system, this unlimited buffering helps

to avoid application deadlock. In the worst cases where one node runs out of physical
memory, FUGU also relies on a extra logical network reserved to the operating system.

7 Future Work

As we discussed in Section 1, the implementation of a multi-IRAM system was postponed.
The following areas need further work for such an implementation.

Transceivers The transceivers are the custom layout-based designs, used to drive the
pins of each bidirectional link. They support a narrow, 6-bit wide, synchronous interface

with a separate clock signal. The clock frequency is one half of the data transmission
frequency and both edges are used. The nominal signal levels for both clock and data are 0

and 1.2 Volts. Further work is needed to build these transceivers and their associated error
detection and correction logic (see Section 3.3).

Performance and Deadlocks As we discussed in Section 3.2.2, switching from in-

discriminate to per-flow buffering and flow control would help in both deadlock avoidance
and performance. Maintaining separate buffer space for each flow of packets, or just guar-

anteeing some space in a shared buffer, would protect one flow from another. Hot-spot data
flows would not fill up the buffer space used by other flows thus blocking or delaying them,

or even more importantly leading to deadlock.
Receive Interface The receive interface of the current implementation provides a

basic primitive rather than a complete solution. It buffers incoming packets in the receive
buffer at queues corresponding to the packets sources, exports the free space of the buffer
and supports data retrieval from any queue. This basic primitive can be used to implement

a number of different mechanisms for message reception, some of which are described in
Section 6. For example, a solution similar to the one used in Alewife, would be to generate

an interrupt when the first doubleword of a packet arrives, and have the handler specify a
memory address to store the packet using a DMA engine.

30

Messaging Model and Applications Finally, work is needed in developing the soft-
ware that would run on top. This includes both a messaging model and parallel applications.

Depending on the implementation of the Receive Interface, messaging models similar to
MPI, Active Messages [vECGS92], Remote Queues [BCL+95], UDM [MKF+98] or Split-

C [CDG+93], are possible.

8 Conclusions

VIRAM is a vector microprocessor with embedded memory, optimized for multimedia
applications. Combining a number of VIRAM chips on the same board would provide a

high-density multi-processor system, able to offer enormous computing potential.
In this report we presented a Network Interface that would allow the communication

between different VIRAM chips. We described its architecture and discussed the issues of
Routing and Flow Control that arose during its implementation. As we saw, indiscriminate

Flow Control can lead to deadlock and thus an implementation would need to use a per-
flow Flow Control scheme instead. The decisions that we made are targeted to a small-

scale system consisting of 8 to 16 nodes. We simulated a network of 8 nodes and presented
its performance under different communication patterns. Future work includes building
the custom transceivers, switching to a per-flow Flow Control scheme that would avoid

deadlocks and diminish congestion effects, implementing mechanisms to handle message
reception, and building the parallel applications that would run on top.

Acknowledgments

There are several people to acknowledge. First of all my advisor, professor David Pat-
terson, for his overall guidance and remarks. I also wish to thank all the members of the

IRAM group in U.C. Berkeley, and in particular Christoforos Kozyrakis and Steve Pope, for
discussing several issues that arose during this work. I would also like to acknowledge pro-

fessor John Kubiatowicz, for being so helpful whenever I needed him. His work in Alewife
was the source of many ideas used in this project. Professor Kathy Yelick provided great
assistance with the understanding of the issues that arise at the application level. I also

want to thank professor Manolis Katevenis (University of Crete) for teaching me packet
switch architecture during my undergraduate years. This knowledge proved very useful

throughout this work. My brothers, Iakovos and Dimitris, helped a lot with both discussing
the design of the Network Interface and reviewing this report. Finally, I would like to thank

my parents, Manolis and Evangelia, for their love and support during my graduate studies.

31

32

References

[BCC+90] S. Borkar, R. Cohn, G. Cox, T. Gross, H. Kung, M. Lam, M. Levine, B. Moore,

W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Support-

ing Systolic and Memory Communication in iWarp. In 17th Annual International

Symposium on Computer Architecture, volume 18, pages 70–81, June 1990.

[BCF+95] Nanette Boden, Danny Cohen, Robert E. Felderman, Charles Seitz Alan Kulawik,

Jakov Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Net-

work. IEEE Micro Magazine, 15(1):29–36, February 1995.

[BCL+95] E. Brewer, F. Chong, L. Liu, S. Sharma, and J. Kubiatowicz. Remote Queues: Expos-

ing Message Queues for Optimization and Atomicity. In Proceedings of the Sympo-

sium on Parallel Algorithms and Architectures, Santa Barbara, CA, USA, pages 42–53,

1995.

[CDG+93] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,

Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel Programming

in Split-C. In Proceedings of Supercomputing, Portland, OR, USA, pages 262–273,

November 1993.

[Dal92] William Dally. Virtual-Channel Flow Control. IEEE Transactions on Parallel and

Distributed Systems, 3(2):194–205, March 1992.

[GLM98] P. Gupta, S. Lin, and N. McKeown. Routing Lookups in Hardware at Memory Access

Speeds. In IEEE Infocom, San Francisco, CA, USA, April 1998.

[KA93] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Multi-

processor. In Proceedings of 7th ACM International Conference on Supercomputing

(ICS), Tokyo, Japan, pages 195–206, July 1993.

[KBC94] H. Kung, T. Blackwell, and A. Chapman. Credit-Based Flow Control for ATM Net-

works: Credit Update Protocol, Adaptive Credit Allocation, and Statistical Multiplex-

ing. ACM SIGCOMM ’94 Symposium on Communications Architectures, Protocols

and Applications, London, UK, 24(4):101–114, September 1994.

[KCA+94] J. Kubiatowicz, D. Chaiken, A. Agarwal, A. Altman, J. Babb, D. Kranz, B. Lim,

K. Mackenzie, J. Piscitello, and D. Yeung. The Alewife CMMU: Addressing the

Multiprocessor Communications Gap. In Proceedings of Hot Chips VI Symposium,

Stanford University, CA, USA, August 1994.

[KHM87] M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing on a space-

division switch. IEEE Transactions on Communications, 35:1347–1356, December

1987.

[KK79] P. Kermani and L. Kleinrock. Virtual cut-through: a new computer communication

switching technique. Computer Networks, 3(4):267–286, September 1979.

[Koz99] Christoforos Kozyrakis. A Media-Enhanced Vector Architecture for Embedded Mem-

ory Systems. Master’s thesis, Technical Report UCB//CSD-99-1059, Computer Sci-

ence Division, University of California at Berkeley, July 1999.

[KSS96] Manolis Katevenis, Dimitris Serpanos, and Emmanouil Spyridakis. Credit-Flow-

Controlled ATM versus Wormhole Routing, July 1996.

[Kub98] John D. Kubiatowicz. Integrated Shared-Memory and Message-Passing Communi-

cation in the Alewife Multiprocessor. Ph.D. thesis, Technical Report MIT//LCS-744,

Massachusetts Institute of Technology, 1998.

[KVE95] Manolis Katevenis, Panagiota Vatsolaki, and Aristides Efthymiou. Pipelined Memory

Shared Buffer for VLSI Switches. In ACM SIGCOMM’95 Conference, Cambridge,

MA, USA, pages 39–48, August 1995.

[Mac98] K. Mackenzie. An Efficient Virtual Network Interface in the FUGU Scalable Worksta-

tion. Ph.D. thesis, Technical Report MIT//LCS-745, Massachusetts Institute of Tech-

nology, 1998.

[MKF+98] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee, A. Agarwal, and

M Kaashock. Exploiting two-case delivery for fast protected messaging. In Proceed-

ings of the Fourth International Symposium on High-Performance Computer Architec-

ture, Las Vegas, NV, USA, pages 231–42, February 1998.

[vECGS92] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages: a Mech-

anism for Integrated Communication and Computation. In Proceedings of the 19th

Annual International Symposium on Computer Architecture, Gold Coast, Queensland,

Australia, pages 256–266, May 1992.

