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Abstract

In this paper we develop an optimized algorithm for performing the Fast Fourier Transform (FFT) on the
Vector IRAM (VIRAM) architecture in both the fixed- and floating-point domains. We discuss the impact of
various optimizations on the performance of the FFT algorithm on VIRAM, including both an analysis of
the usefulness of various VIRAM ISA features as well as a consideration of the performance and accuracy
consequences of performing the FFT computations in the fixed-point domain rather than the traditional
floating-point domain.

We compare the performance of our most-optimized FFT algorithm on a simulated version of VIRAM to that
of eleven high-end fixed- and floating-point Digital Signal Processors (DSPs) and DSP-like architectures,
and find that VIRAM outperforms all of the fixed-point DSPs and all but two of the special-purpose floating-
point FFT DSPs. On 1024-point FFTs, VIRAM achieves 1.3 GFLOP/s in floating-point mode, and 1.9
GOP/s in fixed-point mode.

Despite its high performance relative to the DSPs, however, we find that the VIRAM architecture is being
underutilized by as much as two thirds while running the FFT algorithm. We thus embark on an architec-
tural analysis to determine the underlying cause of this underutilization, and discover that it results from
bottlenecks in VIRAM’s memory functional units and memory access conflicts in VIRAM’s memory system.
For larger FFTs, the memory system impact becomes more severe, and we find that the number of memory
banks and subbanks plays a crucial role in the scalability of our algorithm’s performance to large FFT
sizes.

�This work was supported in part by the Advanced Research Projects Agency of the Department of Defense under contract DABT63-96-C-
0056, the National Science Foundation Infrastructure under grant no. CDA-9401156, the California State MICRO Program, and by a grant from
Intel. The information presented here does not necessarily reflect the position or the policy of the Government and no official endorsement should
be inferred. The author was supported in part by a National Science Foundation fellowship.
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1 Introduction

Fast Fourier Transforms (FFTs) are critical for many
signal processing problems as well as for the increas-
ingly popular multimedia applications that involve
images, speech, audio, graphics, or video. Several
DSPs offer support to accelerate the computation of
FFTs, often including hardware to improve the per-
formance of bit-reversals or transpose operations. Of
these DSPs, the ones with the best performance are
those that are specialized exclusively for computing
FFTs and related transforms. The need for such spe-
cialization is primarily based on the observation that
FFT algorithms have poor temporal and spatial lo-
cality, and therefore perform poorly on architectures
that employ structures that rely on locality for per-
formance (such as caches and stream-buffers). Al-
though the algorithm chosen to compute the FFT
may be reorganized to improve data re-use [FJ98],
FFT performance on conventional microprocessors
is typically limited by the poor memory bandwidth
and high memory latency on these machines.

To address these memory system issues, the
IRAM project is exploring an unconventional mi-
croprocessor design based on combining logic with
embedded DRAM (“Intelligent RAM”) to construct
a single-chip system designed for low power and
high performance on multimedia applications. The
Vector IRAM (VIRAM) system adds a vector pro-
cessor to embedded DRAM in order to produce a
low energy, high performance design suitable for the
ever-growing market of portable devices [FPC+97].
Kozyrakis gives a more detailed overview of the VI-
RAM implementation and shows that performance
on a set of media kernels exceeds that of high-end
DSPs [Koz99]. However, the kernels examined in
that paper do not include an FFT, and most of them
use primarily unit-stride memory accesses. In this
paper we show that the general-purpose VIRAM de-
sign is also well-suited to the memory access patterns
of the FFT, and that its performance rivals the best
performance of special-purpose DSPs for computing
FFTs.

Section 2 gives an overview of the VIRAM ar-
chitecture paying careful attention to those architec-
tural details that impact the performance of the FFT.
It also discusses the key design features that make
VIRAM suitable for multimedia processing on small

portable devices. Section 3 describes a standard FFT
algorithm. Section 4 first discusses a straightforward
vectorization of that standard algorithm; it then com-
pares several optimizations to this algorithm and fin-
ishes with an analysis of the performance of the op-
timized algorithm. Section 5 discusses the adapta-
tions made to the optimized floating-point version to
create an optimized fixed-point version; it then de-
scribes the performance of both the fixed-point and
floating-point versions, based on simulations, and
finishes with an error analysis of the fixed-point re-
sults. A comprehensive architectural analysis of the
performance results is given in Section 6. VIRAM’s
performance results are then compared to both fixed-
point and floating-point DSP performance in Sec-
tion 7; the performance is shown to be comparable
to existing DSPs for both floating-point-based and
fixed-point-based algorithms. Section 8 draws some
conclusions and then makes some suggestions for fu-
ture implementations of the VIRAM architecture.

2 Overview of VIRAM

By combining a vector processor with embedded
DRAM, one potentially exposes two orders of mag-
nitude more memory bandwidth than is available in
typical multi-chip systems that are limited by bus
bandwidth and pin counts [PAC+97]. To take ad-
vantage of that on-chip bandwidth without excessive
complexity, area, or power, the VIRAM architec-
ture extends a RISC instruction set with vector pro-
cessing instructions. VIRAM’s general-purpose vec-
tor processor provides high performance on compu-
tations with sufficient fine-grained data-parallelism.
VIRAM utilizes a delayed vector pipeline1 [Asa98,
Koz99] to hide memory latency; consequently there
is no need for caches. Instead, VIRAM is built
around a banked, pipelined, on-chip DRAM memory
that is well-matched to the memory access patterns
of a vector processor.

Thus the VIRAM architecture conserves area
while preserving the low-power benefits of a single

1In such a pipeline the execution of all arithmetic operations
is delayed for a fixed number of clock cycles after issue to match
the latency of a worst-case memory access, thereby freeing the
pipeline’s issue stage. In this way the next instruction can be
issued, and thus the pipeline does not stall for RAW hazards.

1



chip because it avoids multiple accesses through a
memory hierarchy, and because it does not require
a high clock rate or the complexity of a superscalar
processor. Since one vector instruction initiates a
set of operations on an entire vector (64 32-bit el-
ements or128 16-bit elements), VIRAM also has
more compact instructions and greater code density
than the VLIW architectures currently being used
in DSPs. TI’s TMS320C6201 and TMS320C6701,
Motorola/Lucent’s StarCore 440, Siemens (Infineon)
Carmel, and Analog Device’s TigerSHARC are ex-
amples of such VLIW DSPs. This reduction in code
space and the corresponding reduction in instruction
fetch bandwidth translate to power and performance
advantages.

VIRAM is a complete “system on a chip,” and
therefore enjoys power, cost and area advantages
over multichip systems [PAC+97]. In addition to the
vector processor and embedded DRAM, VIRAM has
a superscalar MIPS core, a memory crossbar, and an
I/O interface for off-chip communication. The pro-
totype implementation of VIRAM is designed to run
both the vector and scalar processors at200 MHz. It
has16 MB of DRAM organized into8 banks with no
subbanks,2 four 100 MB/s parallel I/O lines, a 1.2V
power supply, and a power target of2 watts [Koz99].
Since several of our experiments were performed be-
fore the final VIRAM design decisions had been fi-
nalized, these earlier experiments assumed a memory
configuration of 32MB of DRAM with 16 banks and
no subbanks.3

2.1 VIRAM Pipelines

VIRAM has four64-bit pipelines, calledlanes, each
of which has two integer functional units; one of the
integer functional units also serves as a floating-point
functional unit. Each of these functional units sup-
ports a multiply-add instruction that can complete in
one cycle.4 To support narrower data widths, each of

2The memory configuration has 2 semetrical wings, 4
banks/wing, 1 subbank/bank, 8192 rows/subbank, and 2048
bits/row.

3Each figure is notated with the memory configuration that
was assumed for the experiment being illustrated.

4After the experiments in this paper were performed, it was
decided that the floating-point functional units in the VIRAM
prototype chip would not support the floating-point multiply-
add instruction, although this instruction is still defined in the

the 64-bit lanes can be subdivided into two or more
virtual lanes. Specifically, a64-bit lane can be di-
vided into two32-bit virtual lanes (which yields a
total of 8 virtual lanes), or into four16-bit virtual
lanes (which yields a total of16 virtual lanes).

To fully utilize all the available computational
ability of VIRAM, a vector operand register must
supply each virtual lane with one element per cycle.
This subset of a vector register’s elements is known
as anelement groupand there are always eightele-
ment groupsin a vector register that is filled to capac-
ity. For example, for32-bit data, the maximum num-
ber of elements one vector register can hold is64.
Since there are8 virtual lanes, there are8 elements
in one element group, and eightelement groupsin
one vector register.

2.2 VIRAM Memory Accesses

In the VIRAM architecture there are three differ-
ent ways to access memory:unit-stride loads/stores,
strided loads/stores, andindexed loads/stores.
Specifically,unit-stride loads/stores access consec-
utive elements of memory, whilestridedloads/stores
access memory using a constant jump between
addresses such as every other element or every
fourth element. In both the unit-stride and the
strided loads/stores, memory is accessed in a uni-
form pattern. Theindexedloads/stores, however, ac-
cess memory non-uniformly by accessing arbitrary
non-consecutive elements of memory. This non-
consecutive memory access pattern is also called a
gather/scatterand is accomplished in a vector archi-
tecture by using an array of indices that have been
pre-loaded into a separate vector register to compute
the memory addresses.

The VIRAM prototype implementation can gen-
erate four such memory addresses per cycle. For a
unit-stride load or store, only one address need be
generated per element group. Since there are eight
element groups in a fully loaded vector register, all
eight addresses can thus be generated in 2 cycles.
So unit-stride loads and stores can execute with no
pipeline stalls caused by the address generator.5

VIRAM ISA and we assume in our simulations that it is imple-
mented. Note that the integer functional units in the VIRAM
prototype chip do still support the multiply-add.

5If the element groups do not start on a correct memory
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For indexed or strided memory accesses, however,
an address for each element being loaded or stored
must be generated.6 This means that only 4 elements
can be accessed per cycle. Recall that the number of
virtual lanes determines the number of elements in
an element group and that one element group can be
computed upon in one cycle by VIRAM. If there are
4 elements in an element group, as is the case for 64-
bit data, then unit-stride, strided, and indexed mem-
ory operations will all be able to access 4 elements
per cycle so all types of memory accesses using 64-
bit data will go at the same speed and utilize all the
available computational ability of VIRAM.

However, when there are more than 4 elements in
an element group, as is the case for 32-bit and 16-bit
data, the unit-stride memory operations can still ac-
cess an entire element group in one cycle, since only
one address need be computed for the entire element
group. However, the strided and indexed memory
operations for these narrower data widths can only
access 4 elements per cycle, since a separate address
must be generated per element accessed and since
the VIRAM hardware is limited by having only 4 ad-
dress generators.

So generating the addresses for indexed and
strided loads and stores for the 32-bit and 16-bit data
widths stalls the pipeline. The narrower the data
width, the more the situation is exacerbated. For ex-
ample, for32-bit data, loading an entire vector reg-
ister of MVL= 64 elements using unit-stride would
take8 cycles, one cycle per element group.7 Doing
a strided or indexed load for the same vector register
would take16 cycles, one cycle per four elements.
For 16-bit data a unit-stride load of an entire vector
register containing MVL= 128 elements would still
take8 cycles, one cycle per element group.8 How-
ever, a strided or indexed load for the same vector

boundary alignment, then it is possible that two addresses will
have to be generated for one element group for a unit-stride ac-
cess. In this case, the maximum number of addresses that would
need to be generated to load or store a full vector register using
a unit-stride would be exactly nine.

6The address for each element is computed by adding its cor-
responding index register element’s value to a base address.

7This assumes all element groups start on the correct mem-
ory boundary alignment. If this is not the case, then the entire
load would take 9 cycles instead of 8.

8Same assumption as above,i.e. correct memory boundary
alignment.

register would take32 cycles, one cycle per four el-
ements. Thus for32-bit data the strided and indexed
memory accesses take double the number of cycles
of the unit-stride to do the access, but for16-bit
data, the strided and indexed memory accesses take
quadruple the number of cycles of the unit-stride to
do the access.

At the time the experiments in this paper were per-
formed, the VIRAM prototype implementation and
simulator did not decouple the memory functional
unit from the arithmetic functional unit pipeline.
Therefore any stalls in the memory functional unit,
which are caused by the slower indexed or strided
accesses or by memory bank conflicts, impact all the
vector functional unit pipelines. Specifically, during
an indexed or strided memory access, the arithmetic
functional unit pipeline is operating at half its full
capability for 32-bit data widths and at one fourth its
full capability for 16-bit data widths. For 32-bit data,
this means that one element group is processed by
the arithmetic functional unit in two cycles instead of
one, so for both of these cycles half of the available
computational functional units are idle. In the case of
16-bit data the situation is exacerbated since one ele-
ment group is processed by the arithmetic functional
unit in four cycles instead of one, so for each of these
four cycles three fourths of the available computa-
tional functional units are idle.

To address these deficiencies (which were re-
vealed through our and other simulations), the fi-
nal VIRAM design was altered to include several
performance-enhancing improvements. One such
improvement is the decoupling of the arithmetic
functional unit pipeline from the memory functional
unit pipeline. With this new feature incorporated into
the chip, memory stalls for one single load or one
single store will no longer stall the arithmetic func-
tional unit pipeline. Although the VIRAM prototype
will have a buffer to hold but one outstanding load or
store, the buffer size could be increased in a future
implementation.

The effect of this improvement on our FFT im-
plementation is not reported in this paper since the
VIRAM performance simulator has not yet incorpo-
rated these features, and consequently we cannot get
such results at this time. However, notwithstanding
this improvement, indexed and strided memory ac-
cesses should be used with care in the VIRAM ar-

3



chitecture.
In the VIRAM architecture, any instruction that

operates on elements, such as the loads and stores
just described, must know how many bytes there are
per element. This is accomplished in the VIRAM
ISA by setting a vector control register, thevpw con-
trol register, to indicate the number of bytes per ele-
ment, also known as the data width. Each instruction
that operates on elements does so under the control
of this vpw control register, and thus such instruc-
tions are able to access the correct number of bytes
per element. Consequently changing the contents of
thevpw register causes the hardware to easily switch
from one data width to another.

2.3 VIRAM Peak Performance

The narrower data widths are particularly useful for
some DSP and multimedia computations. The num-
ber of virtual lanes and the number of functional
units determines the maximum number of operations
that can be executed in a single cycle in VIRAM.
For example, for single precision floating-point data
there are8 virtual lanes, and each virtual lane has
one floating-point functional unit, so8 floating-point
operations can execute in one cycle. For32-bit inte-
gers, again there are8 virtual lanes, but there are two
integer functional units per virtual lane, so16 inte-
ger operations can execute in one cycle. Since all the
functional units support a multiply-add instruction, if
all operations in the above examples were multiply-
adds, then the number of operations that can execute
in one cycle doubles for both cases.

Using multiply-adds, VIRAM’s peak performance
is 3:2 GFLOP/s9 for single precision floating-point,
6:4 GOP/s10 for 32-bit integer operations, and12:8
GOP/s for16-bit integer operations. Since the VI-
RAM chip and compiler are still under development,
the results in this paper are based on a near cycle-
accurate simulator for VIRAM and use hand opti-
mized vector assembly code for the FFT kernel.

Because multimedia applications have a high de-
gree of fine-grained data parallelism (such as paral-
lelism over all pixels in an image) a vector processor

93:2 GFLOP/s= 8 virtual lanes * 1 floating-point functional
unit/virtual lane * 2 operations/cycle * 200 Mcycles/second

106:4 GOPS = 8 virtual lanes * 2 integer functional
units/virtual lane * 2 operations/cycle *200 Mcycles/second

is well-suited to many of these applications. FFTs
are also data-parallel, although the degree of paral-
lelism depends on the size of the FFT and varies over
the course of the algorithm. As we will show, high
performance on short vectors is critical to the perfor-
mance of FFTs. VIRAM contains several features
that make short vector operations much more effi-
cient than in the vector supercomputers of the past,
such as Cray’s C90 and T90. One such feature is a
delayed pipeline organization that helps hide mem-
ory latency [Asa98, Koz99]. We will discuss addi-
tional VIRAM design support for short vectors as
they become relevant to the problem of developing
a high performance FFT algorithm.

3 Computing the FFT

The Fourier Transform is a mathematical technique
for converting a time-domain function into a fre-
quency spectrum. Given an N-element vectorx, its
1D Discrete Fourier Transform is another N-element
vectory given by the formula:

8j 2 f0; 1 : : : ; N � 1g yj =
PN�1

k=0 !jk
N xk;

where!jk
N = e

�2�ijk
N

N is referred to as the number ofpoints, and!jk
N

is the N-pointjkth root of unity. Thus the Fourier
Transform takes O(N2) steps to compute.

The Fast Fourier Transform (FFT) [CT65] takes
advantage of algebraic identities to compute the
Fourier transform inO(N logN) steps. The com-
putation is organized intolog2N stages (for aradix
2 FFT). In every stage each point is paired with an-
other, the same computations are performed between
the two, and the values are overwritten in the input
vector. For example, in the first stage,x0 andxN=2

are paired and the computations are as follows:

x00 = x0 + ! � xN=2

x0N=2 = x0 � ! � xN=2

where! is one of the roots of unity. We will call
this sequence of computations thebasic computa-
tion. Note that for complex data, thebasic computa-
tion would involve doing 1 complex multiply, 1 com-
plex add, and 1 complex subtract.
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In a complex FFT, both thexi’s and the roots of
unity are complex numbers; recall that one com-
plex multiplication involves 4 multiplies, 1 add, and
1 subtract,11 while a complex add/sub involves 2
adds/subs, one for the real portion and one for the
imaginary portion.12

Consequently, for a complex FFT, thebasic com-
putation is comprised of a total of 10 arithmetic op-
erations that are necessary to compute eachbutterfly,
or new pair of points, which corresponds to 5 arith-
metic operations per point.

4 Floating-Point FFT Vector Imple-
mentation

In this section, we describe a vector implementation
of the FFT algorithm described in Section 3. We start
with a straightforward, or “na¨ıve”, version, in sec-
tion 4.1. We then continue in sections 4.2 and 4.3 by
describing two optimizations to thenäıve algorithm
that allow it to take better advantage of the VIRAM
architecture and thereby obtain higher performance.
Throughout this section we develop the algorithm for
a radix-2, single precision (32-bit), complex FFT.

4.1 Näıve Vector Algorithm

Figure 1 illustrates the data flow pattern for the
Cooley-Tukey radix-2 FFT algorithm. In this algo-
rithm, which we will call thenäıve algorithm, there
arelog2 N stages for an N-point FFT. The example in
Figure 1 is for a16-point FFT, so it shows all of the
butterflies for each of thelog2 16 = 4 stages. The
points are labeled using their binary representation,
and thebutterfly groupsare indicated using vr1 and
vr2.

4.1.1 Näıve Vectorization

A natural vectorization of thisnäıve algorithm per-
forms the basic computation on a set of butterflies as

11(!real + i � !imag) � (xreal + i � ximag) = (!realxreal -
!imagximag)real + i � (!realximag + !imagxreal)imag

12(yreal + i � yimag) + (xreal + i � ximag) = (yreal + xreal)real
+ i � (yimag + ximag)imag

wherexreal represents the real part of x andximag represents the
imaginary part of x.

stage 2 stage 3 stage 4

time

vr1

vr2

0000

0001

0010

0011
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0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

stage 1

vr2

vr1

vr1

vr2

vr1

vr2

Figure 1:Data dependencies in the Cooley-Tukey FFT al-

gorithm. There are log2 N stages for an N-point FFT. In this

figure N = 16 so it haslog216 = 4 stages. For clarity, the fig-

ure only shows vector register 1 (vr1) and vector register 2

(vr2) which hold the real parts of the complex points. The

imaginary parts of the complex points are assumed to be in

vr3 and vr4.

one vector operation. In Figure 1, for example, the
first stage can be performed by loading the real and
imaginary parts of elements 0-7 (0000-0111) into
one pair of vector registers, vr1 for the reals and vr3
for the imaginaries, and elements 8-15 (1000-1111)
into a second pair of vector registers, vr2 for the reals
and vr4 for the imaginaries. Then the basic computa-
tion — the 10 arithmetic operations — is performed
using these 4 registers and the results in the four vec-
tor registers are then stored to memory. In the first
stage of this example, there are8 elements in each
of the vector registers, so thevector length(VL) is 8

and one vector instruction will cause the same oper-
ation to be performed on each of the8 elements. The
impact of instruction issue and memory access over-
heads will be minimized when the VL is closer to the
maximum vector length (MVL), which on VIRAM is
64 for 32-bit elements.

In the 16-point FFT depicted in Figure 1, no-
tice that since the first stage has a vector length of
8, which is exactly N/2, there is only onebutterfly
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groupand therefore there is only one vectorized ba-
sic computation to perform. In each successive stage,
the vector length is halved and the number of butter-
fly groups doubles. For every stage, each butterfly
group requires using a different root of unity for its
basic computation. So for this example, stage 1 uses
only one root of unity, stage 2 uses two roots of unity,
stage 3 uses four roots of unity, and stage 4 uses eight
roots of unity.

After all the basic computations have been com-
pleted for the last stage, the order of the elements is
bit reversed. This means, for instance that element
1 (0001) must be swapped with element8 (1000).
Similarly element 2 (0010) must be swapped with el-
ement 4 (0100). Therefore the final step in thisnäıve
algorithm is to do the bit reversed swapping of all the
elements so that the final array of elements in mem-
ory will be in the correct order. This bit reversal can
be accomplished in our implementation of thenäıve
algorithm by simply storing the results sitting in the
four vector registers using an indexed store. To do
the indexed store, an array of the appropriate offsets
is first loaded into a vector register and then these off-
sets are used to compute the appropriate bit reversed
address for each result element to be stored.

4.1.2 Alternatives to the Näıve Algorithm

This section clarifies why thenäıve algorithm de-
scribed above was the appropriate one upon which
to build. Observe that our implementation of the
näıve algorithm uses unit stride loads and stores for
all stages but the last one. After the last stage an
indexed store is used in order to place the final re-
sults in memory at a different location from the input
points in bit reversed order.13

There are two alternatives to doing the bit reversed
swapping — the indexed store — after the last stage.
The first is to load the points in bit reversed order
beforethe first stage. This requires a slight change
in the algorithm. Specifically the first stage would
have N/2 butterfly groups, each with a VL= 1. In
this case the number of butterfly groups would halve
and the VL would double for each successive stage,
until the last stage would have one butterfly group

13The bit reversal uses twice the memory space as an in-place
algorithm, which stores the results back into the original input
array.

with a VL=N/2. This alternative is the mirror im-
age of the one explained above which we chose to
implement. Both versions must access memory us-
ing a random access pattern. As mentioned above,
our implementation uses an indexed store after the
last stage and unit-stride loads and stores for all the
remaining stages. The alternative algorithm just de-
scribed uses indexed loads before its first stage and
unit-stride loads and stores for all of its remaining
stages. Therefore the two algorithms are exact mir-
rors of each other, so our choice to use one over the
other will have no impact on the performance data
we collected.

The second alternative to doing the bit reversed
swapping after the last stage is to repeatedly rear-
range the order of the elements between the stages.
This can be accomplished by either an indexed store
of the intermediate results after completing each
stage, or an indexed load of these intermediate val-
ues before doing each of the following stages. By
doing this intermediate element rearranging between
stages, the results after the last stage will then be in
the correct bit reversed order. This second alternative
would use a unit stride load before the first stage and
a unit stride store after the last stage. Each interven-
ing stage, however, would either use an indexed load
followed by a unit-stride store, or a unit-stride load
followed by an indexed store. Besides being much
more complicated to code, this second algorithm al-
ternative uses more indexed operations than either
the first alternative or ournäıve algorithm uses, so
we did not use it as the starting point for our research.

4.1.3 Performance of the Näıve Algorithm

Throughout this section all intermediate perfor-
mance figures that appear assume32-bit, floating-
point, single precision, complex arithmetic and give
performance numbers for FFT sizes that are assumed
to be powers of 2 and that range between4 and8192.
For all the figures in this section it was also assumed
that there were 32MB of memory divided into 16
banks with no subbanks.14

14We assume that most applications will perform a series of
FFTs, all of the same size, and we therefore precompute the
roots of unity and some other values that are determined by the
problem size. Thus these computations are not included in our
performance results.

6



Stage #

1 2 3 4 5 6 7 8 9 10

M
F

LO
P

S

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1024 points
512 points
256 points
128 points

IRAM Peak Performance (2000 MFLOPS)

VL=8=#lanes

VL=64=MVL
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shows the maximum performance for the 32-bit, floating-

point FFT computation that might be ideally attainable on

VIRAM, taking into account only the arithmetic operations.

Memory: 32MB, 16 Banks, No Subbanks.

Figure 2 shows the performance of thenäıve algo-
rithm in MFLOP/s for each stage of FFTs of various
sizes. The performance for a given stage depends
primarily on the length of its vectors, so as the vec-
tor length is halved from one stage to the next, the
MFLOP/s rate dramatically decreases as well.

The 2 GFLOP/s line in Figure 2 shows the max-
imum performance for the radix-2 complex,32-bit,
floating-point FFT computation that might be ide-
ally attainable on VIRAM, taking into account only
the arithmetic operations. As explained above, the
VIRAM hardware peak of3:2 GFLOP/s for single
precision floating-point can only be obtained when
multiply-add instructions are used; most other single
precision floating-point instructions have a hardware
limit of 1.6 GFLOP/s.15 Of the 10 arithmetic oper-
ations within a basic computation,2 multiplies and
2 adds can be combined into2 multiply-add instruc-
tions. Thus, the basic operation becomes2 multiply-

151:6 GFLOP/s= 8 virtual lanes *1 floating-point functional
unit/virtual lane *1 FP operation/cycle *200 Mcycles/second

Number of Percent of Percent of
FFT points Total Time Total Work

1024 94% 60%
512 95% 67%
256 96% 75%
128 97% 86%
64 100% 100%
32 100% 100%

Figure 3: The percentages of total time and total work

that the floating-point 32-bit complex naı̈ve FFT algorithm

spends in stages whose VL is less than MVL. Note: For all

FFT sizes less than 128 both percentages are 100% since the

VL starts out less than MVL.

adds,2 multiplies, and4 adds/subs, or a total of8
floating-point arithmetic operations, which results in
the 2 GFLOP/s maximum for this mix of instruc-
tions.16

The overall performance of this algorithm is a
disappointing 206 MFLOP/s for a1024-point FFT.
Looking at the performance for each stage in Fig-
ure 2, the reason becomes clear: the time is domi-
nated by the later stages of the FFT, which have short
vector lengths. For all the FFT sizes in Figure 2, the
first stage is somewhat slower than the second be-
cause the program start-up overhead is included with
the first stage only. Since the vector length is greater
or equal to MVL = 64 for the earlier stages, these ear-
lier stages (after the first) achieve a respectable rate
of 1400-1800 MFLOP/s, but the rates for the later
stages where the VL drops below MVL are much
lower. The performance degradation is especially se-
vere after the vector lengths fall below8, because not
all of the8 single precision virtual lanes, and there-
fore not all of the8 floating-point functional units,
are being fully utilized. Figure 3 gives the percent-
age of total time that thenäıve algorithm spends
computing in all the stages that have a VL less than
MVL and the percentage of total work that the work
in these stages represents. In particular, in a1024-
point FFT, 94% of the algorithm’s total time is spent
computing in the last 6 of the 10 stages, although the
work in these stages constitutes only 60% of the total
work.

162 GFLOP/s= 2 multiply-adds(MAs)/8 total * 3:2 GFLOP/s
+6 non-MAs/8 total�1:6 GFLOP/s
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4.2 Optimization #1: Auto-increment ad-
dressing

In order to optimize thenäıve FFT algorithm for VI-
RAM, the performance degradation observed in Fig-
ure 2 for the stages whose vector lengths were shorter
than MVL has to be reversed. With this as the focus,
our first optimization utilizes anauto-incrementfea-
ture for memory operations that automatically adds
an increment value to the current address in order to
obtain the next address. The auto-increment feature
is useful, for example, when processing a sub-image
of a larger image in order to jump to the appropriate
pixel in the next row. In the FFT it can be used to
jump between butterfly groups.

Without the auto-increment feature, scalar code is
needed to calculate the next address to be accessed.
The overhead for this scalar address manipulation
can be hidden only if the vector functional units are
kept busy for an equal or greater number of cycles.
Since the vector unit can complete8 single preci-
sion, floating-point element operations per cycle, and
since the scalar unit can complete only 2 per cycle,
there must be 4 vector element operations for ev-
ery one scalar operation for the scalar operation to
be hidden. Vector computations with short vector
lengths contain fewer vector element operations, and
thus can hide fewer scalar operations. Thus by re-
ducing the scalar code overhead for the stages whose
vector lengths are short, the auto-increment feature
helps to improve the performance of thenäıve algo-
rithm because there is less scalar code to hide.

4.2.1 Performance of the Auto-increment Opti-
mization

In Figure 4 the MFLOP/s rates for 32-bit, floating-
point, complex FFTs ranging in size from 4- to 8192-
points are presented in table form. The second,
third, and fourth columns contain the MFLOP/s rate
achieved by different versions of thenäıve algo-
rithm; from left to right these columns hold results
generated by: 1) the originalnäıve algorithm im-
plemented without the bit reversal rearrangement of
the final points and without the auto-incrementing
(No BR, No AI); 2) the same algorithm as (1) with
auto-incrementing added (No BR, AI); 3) the same
algorithm as (2) with the bit reversal added, (BR,

AI ). The rightmost two columns give the percentage
of MFLOP/s gained by adding: 1) only the auto-
increment feature to the originalnäıve algorithm,
and 2) both the auto-increment feature and the bit
reversing to the originalnäıve algorithm.

Unfortunately, there is only a 6% to 20% perfor-
mance improvement realized by utilizing the auto-
increment feature. For example, for a1024-point
FFT, the overall performance using thenäıve al-
gorithm without the auto-increment feature was 202
MFLOP/s, while with auto-increment it was 225
MFLOP/s, a gain of only 23 MFLOP/s.

As can be seen in Figure 4, the peak improvement
of 20% is reached for FFTs of size512, 256, and
128. Reducing the number of scalar operations for
FFTs of these sizes tips the ratio of scalar to vector
operations in just the right direction to realize this
20% benefit. However, when this ratio either grows
or shrinks auto-incrementing ceases to have a signif-
icant positive effect on performance.

Inspecting Figure 4 we observe that the improve-
ment in performance is lower for FFT sizes less than
128. Since 100% of the work done by these smaller
FFTs is being done in stages whose vector lengths
are shorter than MVL, the ratio of scalar to vec-
tor operations is quite large. This is because the
loops containing shorter vector lengths do fewer vec-
tor operations but still require the same number of
loop-controlling scalar operations as the loops con-
taining longer vector lengths and more vector opera-
tions. The auto-incrementing does reduce the num-
ber of scalar operations in each of these stages, but
for the smaller FFTs this small reduction in the num-
ber of scalar operations doesn’t really significantly
change the ratio of scalar to vector operations enough
to show a decent improvement in the overall perfor-
mance. In other words, the overall performance is
still limited by the comparitively large number of
scalar operations that remain even after employing
the auto-increment feature.

A good analogy of what is happening is that of
dropping some coloring agent into a large bucket of
water. If we take two such buckets that have an equal
amount of water (scalar operations) in them and if we
drop the same amount of coloring agent (vector op-
erations) into both buckets, the water in both buckets
will be the exact same color. If we start again but re-
move a few teaspoons of water (the scalar operations

8



# FFT No BR No BR BR & % %
points No AI AI AI AI BR

8192 247 264 253 7% 2%
1024 202 225 206 11% 2%
512 186 223 196 20% 5%
256 166 200 175 20% 5%
128 146 175 154 20% 5%
64 123 145 129 15% 5%
32 100 118 104 18% 4%
16 78 90 79 15% 1%
8 56 62 56 11% 0%
4 35 37 35 6% 0%

Figure 4: This table reports the MFLOP/s rates for 32-bit floating-point, complex FFTs ranging in size from 4 to 8192

points. The second, third, and fourth columns contain the MFLOP/s rate achieved by different versions of thenaı̈ve algo-

rithm. From left to right these columns hold results generated by: 1) the originalnaı̈ve algorithm implemented without the

bit reversal rearrangement of the final points and without the auto-incrementing (No BR, No AI); 2) the same algorithm

as (1) with auto-incrementing added (No BR, AI); 3) the same algorithm as (2) with the bit reversal added, (BR, AI). The

rightmost two columns give the percentage of MFLOP/s gained by adding: 1) only the auto-increment feature to the original

naı̈ve algorithm, and 2) both the auto-increment feature and the bit reversing to the originalnaı̈ve algorithm.

eliminated by using the auto-increment feature) from
one of the buckets, the color in the water will still
appear to be the exact same color although we know
that one of them is slightly less diluted and therefore
darker in color (better performance) than the other.

As we see from Figure 4 the improvement in
performance from auto-incrementing is also lower
for FFT sizes higher than512 because these FFTs
have many stages that operate with VL=MVL. Con-
sequently during these stages that have VL=MVL,
these FFTs generate many vector operations, which
hide most of the scalar operations. Therefore as the
FFT size increases, the vector operations hide all the
scalar operations that are possible to hide. Thus the
benefit to be gained from auto-incrementing, whose
primary purpose is to reduce the number of scalar
operations, disappears.

This behavior can be visually seen in Figure 5,
which shows the MFLOP/s performance for each
FFT size for thenäıve algorithm implemented in
three ways. At this point, we will only concern
ourselves with the top and bottom curves in the
figure: the upper curve represents the performance
of the näıve algorithm with auto-incrementing and
the bottom curve represents the performance of the
näıve algorithm without autoincrementing. Both al-

gorithms used to generate these curves omit the final
bit-reversing. The x-axis uses alog2 scale for the
FFT sizes, which range from N = 4 to 8192.

The two curves practically coincide for the smaller
FFT sizes. They move farther apart for a short dis-
tance where the 20% improvement is realized, and
then they begin to converge so the gap between them
steadily decreases. We can therefore infer from
Figure 5 that as the FFT size increases, there is a
high probability that the increase in MFLOP/s per-
formance contributed by auto-incrementing will be-
come negligible and insignificant. For this reason we
must find a more effective way to optimize the per-
formance of thenäıve algorithm.

4.2.2 Bit Reversal Rearrangement

As just described, the top and bottom curves in Fig-
ure 5 represent the performance of thenäıve al-
gorithm when implemented with and without utiliz-
ing the auto-increment feature. However, neither of
these versions of the algorithm do the necessary bit
reversal rearrangement of the final data points. Bit
reversal rearrangement of data can be quite expen-
sive on some machines because, like the FFT itself,
there is little data locality. Furthermore, there is
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crement and BR, adds the bit reversal rearrangement to the

second. Alog2 scale is used for the x-axis. Memory: 32MB,

16 Banks, No Subbanks.

a significant amount of address (pointer) arithmetic
that is computed using scalar code. Adding more
scalar code to the originalnäıve algorithm would
only exacerbate the problem that we are trying to
ameliorate by utilizing the auto-increment feature,
i.e., to reduce the scalar code density since it can-
not by hidden behind the vector computations when
the vector lengths are short. For this reason we did
not implement a version of the original, non-auto-
incrementingnäıve algorithm with the bit reversal
rearrangement. Instead we added the bit reversing to
the auto-incrementingnäıve algorithm.

The data in Figure 4 corroborate the claim that
adding the bit reversal rearrangement does exacer-
bate the scalar code bloat and therefore the perfor-
mance of any version to which it is added. We see
that adding it to the auto-increment version of the
näıve algorithm adds an average of approximately
12% overhead to the MFLOP/s rate of the auto-
increment version slowing it down by up to a factor
of 1.09.

We now examine the middle curve in Figure 5
which shows the MFLOP/s performance of thenäıve
algorithm that has been implemented with both auto-
incrementing and the bit reversal rearrangement. Al-
though this third curve is between the two other
curves, it is very close to the bottom curve.

The actual percent improvement of the auto-
incrementing, bit reversing implementation over the
original näıve implementation that had no auto-
incrementing and no bit reversing is listed in the
rightmost column of Figure 4. Although the im-
provement follows the same pattern as that described
above for auto-increment in that the FFTs of size64

to 512 have the peak improvement of 5% with the
smaller and larger FFT sizes showing improvements
less than 5%, the improvement percentages are much
smaller. We can thus conclude that whatever perfor-
mance is gained from utilizing the auto-increment
feature is all but lost doing the final bit reversal re-
arrangement.

4.3 Optimization #2: Transpose-based al-
gorithm

Due to the negligible performance gains from the use
of the auto-increment feature in thenäıve algorithm,
alternative approaches that might yield a more sig-
nificant gain need to be considered if thenäıve al-
gorithm is to be optimized. One such approach is
to reorganize the data layout in memory in order to
maximize vector lengths in the later stages of an FFT.
In particular, by viewing the 1D vector as a 2D ma-
trix and performing a reorganization equivalent to a
matrix transpose operation, one can increase the vec-
tor length used for the later stages in thenäıve al-
gorithm. However, to keep full vector lengths, one
may have to do several in-memory transposes,e.g., 5
times in a128-point FFT, which would clearly pose
a performance problem, and would be even worse
for vectors smaller than128 elements. Furthermore,
since an in-memory transpose in the VIRAM archi-
tecture is implemented by doing an indexed load or
an indexed store, both of which cause functional unit
pipeline stalls as described above, it became clear
that in-memory transposes would have a negative
effect on the performance of thenäıve algorithm.
Therefore this in-memory transpose alternative was
not considered a viable choice for optimizing the
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näıve algorithm on VIRAM.

4.3.1 In-register transposes

However, an alternative to the in-memory transpose
is to transpose the elements within the vector regis-
ters themselves. This approach eliminates the need
for intermediate memory accesses (which clearly is
an optimization) and it keeps the vector lengths equal
to MVL throughout the later stages of thenäıve
algorithm, thus eliminating our short vector length
problem. Our new in-register transpose algorithm,
called the“vhalf” algorithm , uses thenäıve algo-
rithm to vectorize all stages whose vector length is
equal to or bigger than MVL.

The stage whose vector length equals MVL/2 will
be the first stage for which the in-vector register
transpose is utilized. For single precision data MVL
= 64, so the in-vector register transposing would
be performed for the last6 stages where the vector
length starts at32, and is repeatedly halved for each
successive stage, until the last stage, when it is equal
to 1.

Recall that the vector length determines how many
elements there are in one butterfly group and each
butterfly group uses a different root of unity. When
VL is 32 and MVL is64, for instance, there are32 el-
ements in one butterfly group; so one vector register
can hold all the elements for 2 butterfly groups. In
this case, when the basic computation is performed
on the elements in this register, another register could
have its first 32 elements equal to the first root of
unity and its second 32 elements equal to the second
root of unity so that two butterfly groups could be
computed with one vectorized basic computation.

Similarly, for the next stage whose VL would be
16, one vector register could hold4 butterfly groups,
each having16 elements, and the vectorized ba-
sic computation can be performed on all4 butterfly
groups using another vector register having 16 copies
of each of the first four roots of unity. In this man-
ner, each basic computation could be performed on
vector registers with VL = MVL, so the algorithm
would be optimized for all of the short vector length
stages. Note that in the VIRAM architecture, to set
the vector registers up with the proper pattern of the
roots of unity, an indexed load must be used.

4.3.2 Transpose example

For illustration purposes, assume MVL is8 andN =
16. The first stage (and any previous stage in a larger
FFT) would be performed by vectorizing across the
butterflies as in thenäıve algorithm using a maxi-
mum vector length of8 as pictured in Figure 1. Since
stage1 in this example has one butterfly group with
VL = MVL, one vectorized basic computation would
be performed on all corresponding8 element pairs,
i.e., elements 0-7 with elements 8-15. Therefore, at
the beginning of stage 2, the two pairs of registers
(i.e., the real pair, vr1 and vr2, and the imaginary
pair, vr3 and vr4) hold intermediate values for ele-
ments 0-7 and 8-15, respectively.

As explained earlier, the new VL for stage2 will
be 4, which is half the VL of stage1, and the new
number of butterfly groups for stage2 will be 2,
which is twice the number in stage1. Since the stage
2 VL, which is 4, is MVL/2, stage2 is the first stage
in which the in-vector register transposes begin. The
first stage2 butterfly group needs to pair elements
0-3 with their corresponding elements 4-7, while its
second butterfly group needs to pair elements 8-11
with their corresponding elements 12-15 as depicted
under stage 2 of Figure 1.

The first optimization is to rearrange the elements
in the vector registers in order to eliminate the need
to do the swap via memory accesses between each
stage. The second optimization enables both stage2
butterfly groups to be done together using one vec-
torized basic computation with a VL of8, and it ex-
tends this concept to all the remaining stages so that
no matter which stage is being computed VL is al-
ways equal to MVL and multiple butterfly groups are
computed using one basic computation.

Consequently, after the stage2 in-vector register
rearrangement, the first set of vector registers (vr1
and vr3), which initially held the real and imaginary
parts for elements 0-7, would end up holding the real
and imaginary parts for elements 0-3 followed by el-
ements 8-11. Likewise, after the rearrangement, the
second set of real and imaginary vector registers (vr2
and vr4), which initially held elements 8-15 would
end up holding elements 4-7 followed by elements
12-15. Notice that for the real values, the rearrange-
ment essentially swaps the last four elements, 4-7, in
vr1 with the first four elements, 8-11, in vr2, and it
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Figure 6: In-register movements for the final 3 stages of a 16-point FFT, illustrated with 8 elements per register. Each

diagram illustrates which points occupy each of the vector registers’ element slots before the indicated swap. This means

that diagram (b) illustrates the position of the elements after the swap indicated in diagram (a), and diagram (c) illustrates

the position of the elements after the swap indicated in diagram (b). Although it is not shown in the figure, after the swap

indicated by diagram (c), all the even numbered points are in vr1 and all the odd numbered points are in vr2. Note that

just the vector registers which hold the real portions of each element,i.e., vr1 and vr2, are used in this figure. An identical

pattern of swapping would be done between the vector registers which hold the imaginary portions of each element,i.e., vr3

and vr4

does an identical swap for the imaginary values in
vr3 and vr4.

This element swapping within the vector registers
from stage 1 to stage 2 is illustrated in Figure 6. In
this Figure, diagram (a) shows the points that are oc-
cupying each element slot for vr1 and vr2 before the
indicated swap with arrows indicating the elements
that will be swapped, and diagram (b) shows the
points that are occupying the element slots for both
vector registers after the swap in diagram (a) has oc-
curred. Notice that for stage2, with the elements
swapped as in diagram (b) and with another vector
register holding the first root of unity in the first four
element positions and the second root of unity in the
second four element positions, the vectorized basic
computation is being done once for two shorter but-
terfly groups instead of twice, which illustrates the
second optimization.

After the stage2 computations have thus been per-
formed for these rearranged elements, the elements
are once again rearranged in the vector registers in
a similar fashion to allow for stages 3 and 4 to be
done on those same set of16 elements. These rear-
rangements are illustrated by diagrams (b) and (c) in
Figure 6.

Similarly, diagrams (b) and (c) illustrate the points
that are occupying each of the vector registers’ ele-
ment slots before the indicated swaps and arrows in-
dicated the elements that will be swapped. Diagram
(c) shows the points that are occupying the element
slots of vr1 and vr2 after the swap indicated by dia-
gram (b) has happened. Although not illustrated in

Figure 6, after the swap indicated by diagram (c) has
occurred, vr1 holds all the even numbered points and
vr2 holds all the odd numbered points. Notice that
with each successive stage, the number of butterfly
groups is still doubled and the number of elements in
each butterfly group is still halved. What is different
is that multiple butterfly groups are being computed
using one vectorized basic computation (with VL =
MVL = 8 for this example).

If our example was a32 or 64-point FFT instead
of a16-point FFT, but the MVL remained8, a whole
new set of16 real and imaginary elements,i.e., the
nextouter iterationbutterfly group, would be loaded
into the four registers and stages 2 through 4 would
be performed for them in a similar fashion. This pro-
cedure would iterate until the computations for all
the remaining groups of16 elements had been com-
pleted, i.e. all points in the N-point FFT had been
computed. Notice that the number of elements in
this outer iteration butterfly group is always equal to
MV L � 2 since two vector registers must be filled
with MVL elements (unless the number of points in
the FFT is less thanMV L � 2).

4.3.3 Implementation of The In-register Trans-
pose

As illustrated above, the in-register FFTs require
something akin to memory transpose operations but
the data stays within the vector register file; the in-
register data movement is much less expensive than
doing memory accesses between each stage. Recall

12



that Figure 6 shows the desired pattern of data move-
ment between register pairs in the final stages of the
16-point FFT, with the arrows indicating elements
that should be swapped.

To help provide this functionality in the VIRAM
ISA, two new instructions were added,vhalfup
andvhalfdn . These instructions perform one-way
moves that shift a specified number of contiguous el-
ements either up (vhalfup ) or down (vhalfdn )
between registers. A sequence consisting of one
register-to-register copy followed by onevhalfup
and onevhalfdn accomplishes the pattern of data
movement required for the FFT.

An argument in a control register (vindex) indi-
cates the number of contiguous elements to be moved
as well as the number to skip when more than one
group of elements will be moved. This number must
be a power of two and is expressed as an exponent.
For instance if32 elements are to be moved, then
the number in the control register should be5, be-
cause25 = 32. If 16 contiguous elements are to be
moved usingvhalfup and MVL = 64, the num-
ber in the control register should be4. This would
cause the first group of16 elements to be moved into
higher numbered slots, the next group of16 elements
to be untouched, the third group of16 to similarly be
moved to higher numbered slots, and the last group
of 16 to be left alone. The pattern would be slightly
different forvhalfdn . In that case the first group of
16 elements would be untouched, the second group
would be moved to lower numbered slots, the third
group would be left untouched, and the fourth group
would be similarly moved to lower numbered slots.

Using the same16-point FFT example as above,
the VIRAM code with the newvhalfup and
vhalfdn instructions that will accomplish the stage
2 swap described above is shown in Figure 7.

For stage2 the vector control register (vindex) is
set equal to2, since we want to move4 contiguous
elements and22 = 4. To do the stage2 swaps, first
vr1 is copied to a temporary vector register, vr5, us-
ing thevmerge.vv instruction. Thevhalfup in-
struction moves the first four elements in vr2 into the
last four element slots of vr1. Thevhalfdn instruc-
tion then moves the last four elements in vr5, which
are the original last four elements that were in vr1,
into the first four element slots of vr2. This then com-
pletes the swap for stage2.

Continuing this pattern for stage3, the vector con-
trol register, vindex, is set to1, since we want to
move2 conntiguous elements and21 = 2. The re-
maining code is identical to the code given above,
however the swapping pattern is very different. Re-
fer to diagram (b) in Figure 6 for a visual illustration
of the stage3 swapping pattern. In particular, af-
ter copying the vr1 elements into the temporary vec-
tor register, vr5, as before, thevhalfup causes the
first and second elements of vr2 to be put into the
third and fourth element slots of vr1 and the fifth and
sixth elements of vr2 to be put into the seventh and
eigth element slots of vr1. This is then followed by
thevhalfdn which causes the third and fourth ele-
ments of vr5, which are identical to the original vr1
contents, to be put into the first and second element
slots of vr2 and the seventh and eighth elements of
vr5 to be put into the fifth and sixth element slots of
vr2. This then completes the swap for stage3.

Diagram (c) in Figure 6 shows which points oc-
cupy the elements slots for vr1 and vr2 after the
stage3 swaps have been completed. Notice that
vhalfup/dn move mulptiple groups of contigu-
ous elements and the number of groups moved is
controlled by the value in the vector control register,
vindex. With these new instructions, any FFT of size
128 or larger (for32-bit values) and of size256 or
larger (for16-bit values) can be performed with the
maximum vector length throughout all stages of the
computation. These instructions could also be used
to stacka small number of shorter FFTs, for example
executing four32-point FFTs in parallel.

The implementation ofvhalfup andvhalfdn
in VIRAM was simplified due to the fact that these
two new instructions can be seen as extensions of
existing VIRAM ISA support for fast in-register re-
ductions,e.g.,computing the sum of all elements in
one vector register. With reductions, one repeatedly
moves the top half of the vector register to the bot-
tom half of a second register, and performs a vector
addition using half the vector length of the previous
addition. This process is repeated until the vector
length is one. This pattern of movement is similar to
that induced byvhalfdn , with the exception that
vhalfdn adds the ability to move non-contiguous
blocks of elements;vhalfup generalizes that pat-
tern to work in the other direction as well.

Although these new instructions were added to the
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li t0, 2 # Loads 2 into general purpose register t0
ctc2 t0, vindex # Loads 2 into vector control register vindex

vmerge.vv vr5,vr5,vr1 # Copies all the elements in vector register 1
# into temporary vector register 5

vhalfup vr1,vr2 # Moves the first 4 elements of vector
# register 2 {8-11) into the last 4 element
# slots of vector register 1 {4-7)

vhalfdn vr2,vr5 # Moves the last 4 elements of temporary
# vector register 5 (4-7) into the first 4
# element slots of vector register 2 (0-3)

Figure 7:This code illustrates the instructions that are necessary to do the stage 1 to stage 2 swap shown in Figure 6 for
the 16-point FFT example. The vector control register,vindex , indicates how many and which elements thevhalfup and
vhalfdn operations should move. The code assumes that vr1 holds the first 8 elements (0-7) and vr2 holds the second 8
elements (8-15). vr5 is a temporary vector register used to hold a copy of vr1.

VIRAM ISA to support the FFTs and other small
transposes, the additional hardware support to do so
was minimal. Given the recognized need for fast re-
ductions in a variety of applications, the VIRAM de-
sign had already incorporated the inter-lane commu-
nication hardware necessary to support doing these
reductions. This same hardware with a few addi-
tional control lines was required to implement the
vhalf instructions [Koz99], so there was practically
zero hardware cost and much to be gained in imple-
menting them.

4.3.4 In-register Transpose Performance Re-
sults

Figure 8 shows the MFLOP/s rate for each stage of
the optimizedvhalf FFT algorithm. This implemen-
tation includes thenewvhalfup andvhalfdn in-
structions, the auto-incrementing, software pipelin-
ing, code scheduling, and it uses indexed loads in
each of the last6 stages to load the roots of unity into
the vector registers with the correct pattern; the final
output points are bit reverse rearranged. The dou-
ble circles indicate the stages in which VL = MVL =
64, and the open circles indicate the stages in which
VL = 8, the number of virtual lanes. As in Figure 2,
the 2 GFLOP/s line on the plot shows the maximum

performance that might be ideally attainable on VI-
RAM, taking into account only the arithmetic opera-
tions.

As we observed in Figure 2, for all the FFT sizes
but the128-point, the first stage is somewhat slower
than the second because the program start-up over-
head is included with the first stage only, and as long
as the VL is larger or equal to MVL = 64, the perfor-
mance is maintained at a respectable 1.8 GFLOP/s.
The performance curve for the128-point FFT is the
exception because its second stage, having a vector
length ofMV L=2 = 32, does not meet this criteria.
In fact it is the first stage of the128-point FFT that
has aV L = 64 = MV L, and were it not for the start
up overhead being included, its first stage GFLOP/s
would be close to the 1.8 mark as well.

Recall that the first stage in which the in-register
transposes occur is the stage in which VL = 32 =
MVL/2. For each of the curves we see a steep dip in
the performance of this stage because the GFLOP/s
rate for this stage includes the overhead for switch-
ing from thenäıve algorithm to thevhalf algorithm,
which incorporates thevhalf algorithm setup for the
roots of unity and the bit reversal. The stage imme-
diately following this first vhalf stage recovers, and
for all the curves the next four stages maintain a per-
formance of 1.2 GFLOP/s, which indicates 60% uti-
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lization during these vhalf stages. The reasons that
the GFLOP/s rate for these stages is not closer to the
VIRAM peak of 2.0 GFLOP/s will be discussed in
Section 6.

Notice also that for all the curves in Figure 8, the
GFLOP/s rate for the last stage shows a steep degra-
dation. This is the effect of the bit reversal that is
being done at the end of the last stage. Specifically,
the indexed store of the contents of each of the four
vector registers that hold the results is slowing the
memory functional unit pipeline, and therefore the
arithmetic functional unit pipeline, by at least a factor
of two. This occurs because the arithmetic functional
unit pipeline is not decoupled from the memory func-
tional unit pipeline. If the memory unit experiences
any bank conflicts from the random accesses into
memory, then these conflicts will stall the memory
functional unit even more, which in turn will stall
the arithmetic functional units for the same number
of cycles.

Figure 8 shows the MFLOP/s rate for the last stage

of the 128-point FFT to be 440, of the 256-point FFT
to be 527, of the 512-point FFT to be 656, and of the
1024-point FFT to be 977. This tells us the MFLOP/s
rate for the last stage is getting better as the num-
ber of points in the FFT increases. Since the ratio
of floating-point operations to store operations is al-
ways 8 to 4, we would expect the MFLOP/s rate for
this last stage to be the same regardless of the size of
the FFT, and therefore we should not be seeing this
behavior. There are two possible reasons we see this
improvement in the vhalf last stage MFLOP/s rate as
the FFT sizes increase.

The first reason for the increase in performance
of the last stage as the FFT size increases is that
larger point FFTs provide more chance for amortiz-
ing the cost of certain memory operations. In par-
ticular, the latency of the last store of the last vhalf
stage is completely exposed for the 128-point FFT,
since that store is the last operation of the entire FFT
calculation, and the stage is not considered complete
until all its operations have been completed. When
the FFT size is 256-points or larger, the last mem-
ory store for the last vhalf stage is executed multi-
ple times, once for each 128-point group, or, in other
words once for each outer loop iteration. Since the
last vhalf stage is considered complete when the last
outer loop iteration completes, only the last store in
the last vhalf stage of the last outer loop iteration has
its latency exposed; the latencies of the last stores
of the last vhalf stage in earlier iterations are hidden
by the later iterations, since there are multiple func-
tional units working at the same time. Since the num-
ber of outer loop iterations increases with the size
of the FFT, larger point FFTs have more opportunity
for amortizing the memory store overhead and cor-
respondingly the last stages of the larger FFTs have
higher performances than those of the smaller FFTs.

The second reason that the MFLOP/s rate for the
last stage gets better as the size of the FFT increases
has to do with memory bank conflicts. Specifically,
since we know that memory bank conflicts will be
dependent on the layout of the data in memory, and
since the data will have a different layout for each
different size FFT, the differences we observe in the
MFLOP/s rate for the last stage of the various sized
FFTs are partially attributable to different patterns of
memory conflicts. Because the points of a smaller
FFT are closer together in memory than the points of
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a larger one, there is a higher probability that the con-
secutive addresses generated by the indexed stores
for the smaller FFT sizes are in the same bank and
therefore these smaller FFTs experience more mem-
ory bank conflicts during the indexed stores of the
last stage than the larger ones do. For both of these
reasons the last stage of the 1024-point FFT com-
pletes with a better MFLOP/s rate than the others.

Notwithstanding the slowdown in the last stage of
each curve, Figure 8 verifies that with the newvhalf
algorithm the total time is no longer dominated by
the time spent in the later stages of the FFT where
the vector length falls below MVL. As a matter of
fact, the time spent in the last6 stages drops from the
94% that we saw with thenäıve algorithm to 70%
with the vhalf algorithm, which includes the bit re-
versal slowdown, and which comes closer to the 60%
of total work that the last6 stages represent in a10
stage, 1024-point FFT. Since we observe no degra-
dation in performance similar to what we saw with
thenäıve algorithm when the vector lengths become
smaller than MVL, clearly the in-register transposes
have solved the short vector length problem exhib-
ited by thenäıve algorithm.

To corroborate this observation, Figure 9 com-
pares the overall MFLOP/s rate for each size FFT for
the two implementations: thenäıve algorithm and
thevhalfalgorithm. Both implementations do the bit
reversing and the auto-incrementing. Thevhalf al-
gorithm in this figure is the same as the one in Fig-
ure 8. As in previous figures, the 2 GFLOP/s line on
the plot shows the maximum performance that might
be ideally attainable on VIRAM, taking into account
only the arithmetic operations and the x-axis uses a
log2 scale for the FFT sizes.

In Figure 9 observe that for all the FFT sizes,
thevhalf 32-bit, floating-point implementation has a
much higher MFLOP/s rate than the corresponding
ones from thenäıve implementation, so clearly the
in-register transposes are a useful feature for FFTs
on VIRAM. Looking at Figure 9, we also observe
that as the FFT size increases, thevhalf implemen-
tation yields a higher MFLOP/s rate than that of the
previous smaller size FFT until the 1024-point FFT,
after which it begins to degrade for the 2048-point
FFT and then seriously drops for 4096- and 8192-
point FFTs. The large drop in performance start-
ing at an FFT size of 4096 for thevhalf algorithm is
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due to memory bank conflicts. We discuss this phe-
nomenon and explain its performance impact later in
Section 6. Nonetheless, even the 1024-point rate of
1.267 GFLOP/s, which is the highest rate in the fig-
ure, represents only a 63% utilization of the VIRAM
full potential. This behavior is due to architectural
idiosyncrasies that will also be discussed more fully
in Section 6.

5 Fixed-Point FFT Vector Imple-
mentation

In this section we describe how we extended the
fully-optimized floating-point algorithm to the16-
bit, fixed-point domain in an attempt to squeeze even
more performance out of the VIRAM architecture.

5.1 Adaptation For Fixed-Point Data

As a last step in implementating an efficient FFT
algorithm for VIRAM, we adapted the optimized
floating-point algorithm developed in the previous
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sections to operate on fixed-point data. In doing
so, we hoped that we would be able to leverage
VIRAM’s increased integer performance (relative to
floating-point performance) to achieve a commen-
surate increase in the performance of the FFT. In
particular, recall that each VIRAM virtual lane has
two integer functional units, only one of which also
serves as the floating-point functional unit. Since
fixed-point data is done using integer computations,
it seemed reasonable to expect the fixed point version
of the vhalf algorithm to double the performance of
the floating-point version.

Converting the floating-point algorithm to a fixed-
point one required changes in two areas of the algo-
rithm. First the data size and type had to be converted
from 32-bit floating-point, single precision to16-bit
integers. In fixed-point mode, each integer has an
assumed binary point position, and its location after
each computation must be carefully tracked. Further-
more, care must be taken after each computation to
insure that the result does not overflow the 16 bits.
For these reasons, the second area that had to be
changed to convert the floating-point algorithm to a
fixed-point one was the basic computation. We will
discuss each of these changes in turn in the following
sections.

5.2 Fixed-Point Data Size and Type

Our implementation of the fixed-point FFT algo-
rithm is designed to operate on input points that are
complex numbers where both the real and imagi-
nary parts are postive numbers between0 and215-1.
Therefore the binary point for each part is assumed to
be to the right of the rightmost binary digit, which we
illustrate as follows: Sbbb bbbb bbbb bbbb�, where
S is the sign bit and� is where the binary point is
assumed to be.

When computing any FFT, the roots of unity are
always between 1 and -1 inclusively, and, as stated
above, for all our FFT algorithms they are precom-
puted. As part of this precomputation for the fixed-
point algorithm, each root of unity is first computed
in floating-point form, then converted to integer form
and shifted to the left 15 binary positions. After a
correction is done for the special case of 1, we can
thus assume that the binary point for both parts of
each root of unity is between the leftmost binary

digit, which is the sign bit, and the binary digit im-
mediately to its right, which we illustrate as follows:
S�bbb bbbb bbbb bbbb. These are the assumptions
we made about the input points and the roots of unity
when we converted the complex floating-point ba-
sic computation into a comparable fixed-point basic
computation.

5.3 The Fixed-Point Basic Computation

Below, we repeat the illustration from Section 3
of the complex floating-point basic computation be-
tween two complex points,X0 andXN=2, which we
will now call the top point and thebottompoint, re-
spectively:

x00 = x0 + ! � xN=2

x0N=2 = x0 � ! � xN=2

where! is one of the roots of unity.
As can be seen, the basic computation consists of

three complex operations; the first is a complex mul-
tiply between a root of unity and thebottompoint,
which produces a complex product; the second and
the third are a complex add and a complex subtract
between thetop point and the newly computed com-
plex product. The possibility of an overflow exists
for all three of these complex computations, so first
we discuss the fixed-point complex multiply and then
the fixed-point complex add and subtract.

5.3.1 The Fixed-Point Complex Multiply

In the complex multiply, since the roots of unity are
between 1 and -1 inclusively, the magnitude of the
complex product can never be larger than the magni-
tude of thebottompoint, so no overflow will occur.
However, recall that the complex multiply consists
of 4 scalar multiplies. Two of the resulting products
are then added together, and the remaining two prod-
ucts are subtracted, one from the other to obtain the
desired complex product.17

Consequently the possibility exists that an over-
flow might occur in one or more of these interme-
diary products. However, should an intermediary

17!real + i � !imag) � (xreal + i � ximag) = (!realxreal -
!imagximag)real + i � (!realximag + !imagxreal)imag
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product overflow, it will not cause an incorrect re-
sult for the following reasons; the final product can-
not be greater in magnitude than that of thebottom
point; the way that the two’s complements wrap from
positive to negative and back to positive insures that
the sum or difference of these intermediary products,
when left in awrappedstate if they happened to have
overflowed, are nevertheless correct in their magni-
tude and sign after the entire complex multiplication
has been completed.18 Therefore we can safely as-
sume that the complex product will not exceed the
16-bit data width.

However, when doing the complex multiplication,
precision must be considered in addition to magni-
tude and overflow. Recall that the real and imaginary
parts of the bottom point have the form Sbbb bbbb
bbbb bbbb�, while the corresponding parts of the
root of unity have the form S�bbb bbbb bbbb bbbb.
Since the product will have the same magnitude as
the bottom point, it will have 32 total bits and have
the form SSbb bbbb bbbb bbbb b�bbb bbbb bbbb
bbbb.

In the VIRAM architecture this multiplication
is implemented using thevmulhi instruction that
takes two vector register operands each with 16-
bit elements and returns the high order 16 bits of
the product for each corresponding element operand
pair. Thus the binary point for each of these products
is assumed to follow a non-existent bit immediately
to the right of the rightmost bit, which is depicted by
the long form of the product given above. The mag-
nitude of the product is the same as that of the bottom
point, but one binary bit of precision has been lost in
the product as a result of the 16-bit multiplication. In
effect we have shifted the product one bit to the right,
which is the same as dividing it by2.

18An example of this wrap around effect follows. In two’s
complement representation, usng 4 binary digits, one can repre-
sent decimal values in the following range: -8,...,-1,0,1,...,7. If
we multiply 2 � 7 = 14, although the2 and the7 are within
this interval, the14 = 1110 is technically an overflow. So the
14 here is an example of an intermediary product that has over-
flowed but has been left in itswrappedstate. Assuming�8 is
a second intermediary product, the sum,14 + (�8) = 6, pro-
duces a result, which expressed in binary is 1110 + 1000 = 1
0110, where the leftmost 1, which is in the carry out position, is
completely dropped. The remaining 0110 is equal to 6, which
is within the interval and which is the correct final sum despite
the intermediary overflow and the 1 dropped from the carry out
position.

5.3.2 The Fixed-Point Complex Addition and
Subtraction

As stated above, once the multiplication has been
computed, the resulting complex product must be
added to and subtracted from the top point to com-
plete the basic computation. Since the product has
been shifted one bit to the right, before these calcu-
lations can be performed the assumed binary points
of both operands must be aligned. Therefore the top
point’s real and imaginary parts must be shifted one
bit to the right so that both operands have the form,
SSbb bbbb bbbb bbbb b�. A side benefit of this shift
is that the results can then accomodate a carry to the
left if the addition or subtraction causes the magni-
tude of the result to increase by one bit. Thus the
new intermediate top and bottom points will have the
form Sbbb bbbb bbbb bbbb b�, where the rightmost
bit is dropped after the basic computation for the first
stage has of the fixed-point algorithm has been com-
pleted.

In subsequent stages, this pattern repeats. The in-
put points for each stage start out with the assumed
binary point moved one more binary position to the
right than was the case for the inputs of the stage
immediately preceding it. Thus for each stage of a
fixed-point FFT, one bit of precision and magnitude
is lost. In other words the results of a fixed-point FFT
with N points must be shiftedlog2N bits to the left
(or multiplied by2log2 N ) in order to obtain the cor-
rect magnitude, since the final results must compen-
sate for these repeated shifts (equivalent to repeated
divisions by 2) of the assumed binary point for each
stage.

5.3.3 The Fixed-Point Rounding Mode

Notice that the implementation of the fixed-point
basic computation just described does not use the
multiply-add instruction that the floating-point ver-
sion used. Instead thevmulhi instructon was uti-
lized because it does the necessary rounding and
truncation to keep the fixed-point results from over-
flowing. VIRAM allows the programmer to choose
one of four kinds of rounding modes that, once cho-
sen, will be subsequently used by all fixed-point in-
structions that provide rounding as part of their spec-
ification. For our implementation we used theround
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to nearest evenmode so that there would be no
bias caused by constantly rounding in one direction.
The round to nearest evenmode avoids such biases
by sometimes rounding up and sometimes rounding
down since the rounding is done in the direction of
whichever of the two even numbers on either side of
the digit being rounded is closest numerically to it.

5.4 The Ramifications of Using 16-bit Wide
Data

Besides making the changes to the basic computa-
tion just described, one additional change is required
to actually complete the convertion of the floating-
point implementation of the optimized algorithm to
a fixed-point version; thevpw vector control register
needs to be reset to indicate 16-bit wide data instead
of 32-bit wide data. Although this is a simple task,
there are several important ramifications from mak-
ing such a change. Specifically, the number of virtual
lanes doubles from8 to 16, and the number of ele-
ments per vector register, the MVL, doubles from64
to 128. In addition, recall that in the optimized algo-
rithm, the stage whose vector length equals MVL/2
is the first stage for which the in-vector register trans-
poses are utilized. For the floating-point version,
sinceMV L=2 = 32 the in-register transposes are
utilized in the last6 stages; for the fixed-point ver-
sion, however, sinceMV L=2 = 64, the in-register
transposes are done for the last7 stages.

Furthermore, just as they are used in the opti-
mizedvhalf floating-point implementation, indexed
accesses are similarly used in the last stages of the
vhalf fixed-point implementation. Specifically, in-
dexed loads are used in the vhalf stages to set up
the proper pattern of the real and imaginary roots
of unity in vector registers in order to perform only
one vectorized basic computation on multiple butter-
fly groups and thereby achieve VL = MVL for all
computations. In addition, recall that indexed stores
are used at the end of the last stage to do the bit re-
versal rearrangement.

Therefore, another important ramification of
changing thevpw from a 32-bit width to a 16-bit
width concerns these indexed memory accesses. In
particular, because only four addresses can be gen-
erated per cycle, for32-bit data the indexed memory
accesses are two times slower than the unit-stride ac-
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cesses, but for 16-bit data they are four times slower
than the unit-stride accesses. As we shall see in Sec-
tion 6, this ramification has an impact on the perfor-
mance of the fixed-point implementation of thevhalf
algorithm.

5.5 Performance of the Fixed-point Vhalf
Implementation

As with the floating-point implementation, we
present the fixed-point implementation of thevhalf
algorithm in the context of computing radix-2 FFTs;
all intermediate performance figures that appear in
this subsection assume16-bit, fixed-point, complex
arithmetic and give performance numbers for FFT
sizes that are assumed to be powers of 2 and range
between256 and8192. For all the figures in this sec-
tion it was also assumed that there were 32MB of
memory divided into 16 banks with no subbanks.

5.5.1 Performance per Stage of the Fixed-point
Vhalf Implementation

Figure 10 shows the MOP/s rate for each stage of the
optimizedvhalf FFT algorithm. Like the floating-
point version, this implementation includes thenew
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vhalfup and vhalfdn instructions, the auto-
incrementing, software pipelining, and code schedul-
ing. This fixed-point version also uses indexed loads
in its vhalf stages to load the roots of unity into the
vector registers with the correct pattern, but in this
case there are 7 such stages instead of 6, since the
MVL is 128 instead of 64; like the floating-point ver-
sion, the final output points for the fixed-point ver-
sion are bit reverse rearranged. As before, the dou-
ble circles indicate the stages in which VL = MVL =
128, and the open circles indicate the stages in which
VL = 16, the number of virtual lanes.

Although it is not shown in Figure 10 note that 6.4
GOP/s is the maximum performance for the radix-
2 complex16-bit fixed-point FFT computation that
might be ideally attainable on VIRAM, taking into
account only the arithmetic operations19. As ex-
plained above, unlike the floating-pointvhalf im-
plementation, the fixed-point version does not uti-
lize the multiply-add instruction. Thus in the fixed-
point computation there are10 arithmetic operations
per basic computation, all of which have the same
6.4 GOP/s as the maximum rate attainable. Conse-
quently, no adjustment for this fixed-point mix of op-
erations needs to be made to calculate the maximum
attainable GOP/s rate on VIRAM as was done for the
floating-point mix of operations.

Figure 10, which illustrates the fixed-pointvhalf
performance, is very similar to Figure 8, which il-
lustrates the floating-pointvhalfperformance, except
for the actual values of the GFLOPS/GOPS rates.
Because of this similarity, many of the same obser-
vations that were made about the floating-pointvhalf
performance can be made for this fixed-pointvhalf
performance. In particular, for all the FFT sizes ex-
cept the256 point, the first stage is somewhat slower
than the second because the program start-up over-
head is included with the first stage only, and as long
as the VL is larger or equal to MVL = 128, the per-
formance is maintained at 3.67 GOP/s after the first
stage. Just as in the floating-point 128-point curve,
the performance curve for the fixed-point256-point
FFT is the exception because its second stage, hav-
ing a vector length ofMV L=2 = 64, does not meet

196:4 GOP/s= 16 virtual lanes/cycle *2 integer functional
units/virtual lane *1 integer operation/functional unit *200
Mcycles/second

this criteria. In fact it is the first stage of this256-
point FFT that has a VL = 128 = MVL, and were it
not for the start up overhead being included, its first
stage GOP/s rate would be close to the 3.67 GOP/s
as well.

Notwithstanding their similarities, the floating-
point and fixed-point implementations differ greatly
in their hardware untilization for these earliernäıve
stages, which are all the stages whose VL is greater
than or equal to MVL. For the floating-point version,
the näıve stages had a utilization of 90%20, but for
the fixed-point version the utilization in the same ear-
lier stages is a mere 57%21. This is due to architec-
tural idiosyncrasies that will be discussed further in
Section 6.

Recall that the first stage in which the in-register
transposes occur is the stage in which VL = 64 =
MVL/2. For each of the curves in Figure 10 we
see a steep dip in the performance of this first stage
because the stage includes the overhead for switch-
ing from thenäıve algorithm to thevhalf algorithm,
which incorporates thevhalf algorithm setup for the
roots of unity and the bit reversal. The stage immedi-
ately following this first vhalf stage recovers, and for
all the curves, the next five stages maintain a perfor-
mance of 2.1 GOP/s, which indicates a 33%22 uti-
lization during these vhalf stages. Recall that the
floating-point version had a 60%23 utilization for the
same stages. This under-utilization for the fixed-
point version will also be discussed in more detail
in Section 6.

Analogous to the floating-point performance, for
all the fixed-point curves in Figure 10, the GOP/s rate
for the last stage shows a steep degradation. As be-
fore, this is the effect of the bit reversal that is being
done at the end of the last stage. Specifically, the in-
dexed store of the contents of each of the four vector
registers that hold the results is slowing the memory
functional unit pipeline, and therefore the arithmetic
functional unit pipeline, by at least a factor of four in-
stead of two as it is for the floating-point version. If
the memory unit experiences any bank conflicts from
the random accesses into memory, then, as with the
floating-point, these conflicts will stall the memory

201.8 GFLOPS/2.0 GFLOPS * 100 = 90%
213.67 GOPS/6.4 GOPS * 100 = 57%
222.1 GOPS/6.4 GOPS * 100 = 33%
231.8 GFLOPS/2 GFLOPS * 100 = 60%
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functional unit even more, which in turn will stall
the arithmetic functional units for the same number
of cycles as well. Since the data width is smaller
for the fixed-point implementation, this means that
more points fit into one bank, and therefore there is a
higher liklihood of having memory bank conflicts for
the fixed-point narrower data widths of 16-bits than
with the floating-point 32-bit wide data.

Figure 10 shows the MOP/s rate for the last stage
of the 256-point FFT to be 502, of the 512-point FFT
to be 670, and of the 1024-point FFT to be 805. Sim-
ilar to Figure 8 for the floating-point data, this indi-
cates that the MOP/s rate for the last stage for the
fixed-point data is getting better as the number of
points in the FFT increases.

As is the case for the floating-point version, we
can conclude that the differences we observe in the
MOP/s rate between the various last stages are at-
tributable to the amortization of the memory latency
for the very last store as well as memory bank con-
flicts. As a matter of fact, for the fixed-point nar-
rower data it is even more likely than with the wider
floating-point data that the addresses generated by
the indexed stores for the smaller FFT sizes are in
the same bank since more points fit into one row of
the memory bank. Consequently the smaller FFTs
experience more memory bank conflicts during the
indexed stores than the larger ones do. For these rea-
sons the last stage of the 1024-point FFT in Figure 10
completes with a better MOP/s rate than the last stage
of all the smaller sized ones.

Figure 10 verifies that for the fixed-pointvhalf
aglorithm, the total time is also not dominated by
the time spent in the later stages of the FFT where
the vector length falls below MVL. However the per-
centages of time and work spent in these later stages
must be adjusted appropriately for the fixed-point
stages, since thevhalf algorithm is utilized for the
last 7 stages instead of the last 6 as in the floating-
point version. For the fixed-point version illustrated
in Figure 10, the time spent in the last7 stages drops
from the 96% that was seen in thenäıve floating-
point algorithm to 82% with thevhalf fixed-point al-
gorithm, which includes the bit reversal slowdown,
and which comes closer to the 70% of total work that
the last7 stages represent in a10 stage, 1024-point
FFT. As with the floating-point case, the in-register
transposes have solved the short vector length prob-
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lem exhibited by thenäıve algorithm since we do not
observe the same degradation in performance that
we saw with thenäıve algorithm when the vector
lengths become smaller than MVL.

5.5.2 Performance Comparison of the Fixed-
point and Floating-point Vhalf Implemen-
tations

However, since the floating-point implementation
has already proved that the new vhalf instructions
remedied the short vector length problem exhibited
in the näıve algorithm, that was not the objective
of converting the floating-pointvhalf version into a
fixed-point version. Our real objective, as stated at
the beginning of this section, was to leverage VI-
RAM’s increased integer performance relative to its
floating-point performance to achieve a commensu-
rate increase in the performance of the FFT. In par-
ticular we expected that the fixed-point implementa-
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tion MOP/s rate might approach or exceed twice the
MFLOP/s rate of the floating-point implementation
since VIRAM’s peak fixed-point performance for the
FFT is 6.4 GOP/s compared to 2.0 GFLOP/s for the
floating-point mix of operations, which is a ratio of
3.2 GOPS to 1 GFLOPS.

To see how we did, Figure 11 compares the over-
all MFLOP/MOP rates for each size FFT for the two
implementations: the fixed-point algorithm and the
floating-point algorithm. Both implementations do
the bit reversing and the auto-incrementing. The
floating-point implementation in this figure is the
same as the one in Figure 8 and the fixed-point im-
plementation in this figure is the same as the one in
Figure 10. As in previous figures, the 6.4 GOP/s
line shows the maximum performance for the 16-
bit fixed-point FFT computation and the 2 GFLOP/s
line shows the maximum performance for the 32-bit
floating-point FFT computation that might be ideally
attainable on VIRAM, taking into account only the
arithmetic operations. Alog2 scale is used for the x-
axis and the memory configuration is assumed to be
32MB of DRAM with 16 Banks and No Subbanks.

In Figure 11 we observe that for all the FFT sizes,
the 16-bit fixed-point MOP/s rate is approximately
1.5 faster than the corresponding 32-bit floating-
point MFLOP/s rate. Although this is a healthy
improvement, it is less than half of the potential
3.2 speed up. In addition, similar to the floating-
point case, we observe in Figure 11 that as the FFT
size increases the fixed-point implementation yields
a higher MOP/s rate than that of the previous smaller
size FFT until the 2048-point FFT, after which it be-
gins to degrade for the 4096-point FFT and then seri-
ously drops for the 8192-point FFT. The large drop in
performance starting at an FFT size of 8192 for the
fixed-point vhalf algorithm is due to memory bank
conflicts. We will discuss this phenomenon and ex-
plain its performance impact later in Section 6.

Furthermore, the 2048-point GOP/s rate of 2.22,
which is the highest rate in the figure, is achiev-
ing only a 35% utilization of the VIRAM full po-
tential yet it still doubles the 1.13 GFLOP/s rate of
the 2048-point 32-bit floating-point implementation.
As is the case for the 1024-point floating-point FFT,
the exceptional performance of the 2048-point 16-
bit fixed-point FFT is due to architectural idiosyn-
crasies, which will also be discussed more fully be-
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low in Section 6.
Although the running times of the fixed-point im-

plementation did not halve the running times of the
floating-point implementation for all FFT sizes, in
Figure 12 we see that for the 2048-point FFT, it cer-
tainly did. This figure compares the running times in
microseconds of the same fixed-point and floating-
point implementations used for Figure 11 for FFT
sizes from 256 points through 2048 points. Both Fig-
ure 11 and Figure 12 confirm that even though the
fixed-point implementation had a lower utilization
than the floating-point implementation, the fixed-
point implementation is still faster than the floating-
point implementation for all FFT sizes. How to im-
prove these times even further and why the fixed-
point implementation utilization is lower than the
floating-point implementation utilization are ques-
tions that will also be discussed in Section 6.

5.6 Error Analysis For The Fixed-point Re-
sults

The FFT algorithm is designed to work with contin-
uous data (i.e., the set of real numbers), which are
typically handled using floating-point computations.
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However, as we have seen above, it is possible to ob-
tain a respectable performance improvement in the
FFT by carrying out its computations using fixed-
point arithmetic. But, by performing the computa-
tions using fixed-point, we run the risk of introduc-
ing a significant amount of error into the computa-
tion. As described above, the result of a single exe-
cution of the fixed-point version of the FFT’s basic
computation loses one bit of accuracy compared to
its inputs; as a result, after running the entire FFT
algorithm, each input loses one bit of precision per
stage.

In this Error Analysis Section, we attempt to quan-
tify the impact of this loss of intermediate precision
on the quality of the final fixed-point output of the
FFT. To form a basis for comparison, we took the
same set of 16-bit integer-valued inputs used for the
fixed-point FFT experiments and ran them through
one of our floating-point FFT implementations. We
then divided each of the resultant outputs by2log2N

in order to rescale these floating-point output values
to match the range of the fixed-point FFT algorithm’s
output. The resulting values represent the “correct”
answer, that is the most precise result possible given
the limitations of the floating-point representation.

To estimate the errors introduced by the fixed-
point algorithm, we took each output value and sub-

tracted the corresponding “correct” value obtained
via the floating-point code. Figure 14 summarizes
some of the statistical properties of these estimated
errors for several FFT sizes in table form. Notice that
in all cases the mean error is approximately zero, and
that the standard deviations are small. We computed
95% confidence intervals for the mean errors, and in
all cases 0 was contained in the interval, indicating
that it is statistically likely that the true error is zero.

Figure 13 shows the error distribution for the
1024-point FFT in a more graphical manner. The
figure shows side-by-side box-and-whisker plots for
the errors in both the real and imaginary components
of the FFT results. Recall that the box in a box-and-
whisker plot includes the data from the lower quar-
tile to the upper quartile (with the horizontal line in
the box being the median). The distance between the
whiskers is four times the distance between the upper
and lower quartiles, and thus the whiskers give an in-
dication of the overall spread of the data. The small
circles indicate points that are statistically outliers.

Notice in the figure that both the real and imag-
inary errors are centered at zero and have symmet-
ric distributions. Interestingly, the imaginary values
have greater standard deviation and correspondingly
more spread. We have been unable to find a satisfac-
tory explanation for this pheonomenon. The one no-
ticeable outlier in the real case corresponds toy0, the
first FFT output point. The first output point of every
FFT corresponds to the vertical distance the entire
curve is shifted above (or below) the x-axis. Specif-
ically, if one draws a horizontal line whose equation
is y = y0, then all the sine and cosine curves asso-
ciated with a particular FFT would have this line as
their center line. Since we used only positive 16-bit
integers for the fixed-point FFT input numbers for all
our experiments,y0 will be a large number. Graphi-
cally this means the center line is located a large dis-
tance above the x-axis. With such a large number,
it is understandable that the error as we calculated it
would also be larger than the other errors.

Finally, we hypothesize that the error distribution
is statistically normal. Figure 15 shows two normal
probability plots that graph the quantiles of the 1024-
point real and imaginary error data against the quan-
tiles of a standard normal distribution. The fact that
these graphs show straight-line behavior indicates
that the errors are most likely normally distributed.
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FFT Real Component

FFT Size Mean Median Min Max Std.Dev.
1024 0.0117 0.0758 -7.5330 2.9930 0.9991
512 0.0039 0.0483 -6.9470 2.2510 0.9870
256 -0.0078 0.0184 -4.6720 2.8250 0.9986

FFT Imaginary Component
FFT Size Mean Median Min Max Std.Dev.

1024 0.0215 -0.0346 -8.1450 8.4810 2.2950
512 -0.0039 0.1078 -8.5540 7.6060 2.3215
256 -0.0391 -0.0319 -6.8770 5.5980 2.2063

Figure 14:The mean, median, minimum, maximum, and standard deviation for the real and imaginary components of

the estimated errors for each fixed-point, 16-bit, N-point FFT where N = 256, 512, and 1024.

The imaginary values show a similar behavior as the
reals but with slightly heavier tails (as suggested by
the larger number of outliers in the box plot).

From all of this data we can conclude that the er-
ror behavior of the fixed-point algorithm is in fact
quite well-behaved. The errors are normally dis-
tributed and centered around zero (and thus have a
symmetric distribution). Furthermore, they have a
small standard deviation relative to the absolute size
of the actual result values. DSP experts who have in-
spected our fixed-point output values say this is the
best accuracy that can be achieved when using fixed-
point arithemetic to compute FFTs. Therefore we are
satisfied that the fixed-point results that we obtained
from our fixed-point FFT implementation are at least
as accurate as those obtained by current fixed-point
DSPs.

6 Architectural Analysis of the Per-
formance Results

Since the best hardware utilizations achieved for the
fixed-point vhalf implementation was 35% and for
the floating-pointvhalf implementation was 63%, we
now investigate where the cycles not being utilized
are going and why both the fixed-point and floating-
point implementations do not perform closer to their
respective attainable peak performance on the VI-
RAM architecture.

In the VIRAM architecture, there are three obvi-
ous candidates for the cause of under utilization of
the hardware: indexed memory accesses, memory

bank conflicts, and idle arithmetic functional units.
In this section we will investigate all three of these
possibilities in an attempt to identify the architec-
tural causes of the under-utilization of both the fixed-
point and floating-point implementations. In doing
so we will also be able to explain the behaviors that
have been observed but not fully discussed in previ-
ous sections.

As was discussed in Section 2, memory func-
tional unit stalls cause the arithmetic functional unit
pipelines to also stall because the pipelines of these
functional units are not decoupled. As a result, com-
putational cycles are not being fully utilized. Most
memory functional unit stalls occur as a result of ei-
ther memory bank conflicts or non-unit-stride mem-
ory accesses. A memory bank conflict means that
the memory unit is attempting to access a memory
bank that is already busy satisfying another mem-
ory request. The memory functional unit must then
wait until the bank is free to handle its request, which
happens after the bank has satisfied the first request.
During the time the memory unit is waiting for the
bank to become free, the arithmetic functional unit
pipeline also stalls. We will investigate the impact of
the non-unit-stride memory accesses and the impact
of the memory bank conflicts in turn in the following
two sections.

6.1 Analysis of the Indexed Memory Ac-
cesses

Recall that indexed memory accesses are non-unit-
stride accesses that take twice as long as unit-stride
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Figure 15:Normal probability plots of the real and imaginary error components for the fixed-point 1024-point FFT.

accesses for 32-bit data and four times as long as
unit-stride accesses for 16-bit data. This means that
during an indexed memory access the memory unit,
and therefore the arithmetic functional units, stall ev-
ery other cycle for 32-bit data and three out of every
four cycles for 16-bit data. Since both the fixed-point
and floating-pointvhalf implementations use indexed
loads in the vhalf stages to set up a vector register
with the proper pattern of the roots of unity as well
as indexed stores at the end of the last vhalf stage to
do the bit reversal rearrangement, we first investigate
the impact that these two indexed memory accesses
are having on the performance of both the fixed-point
and floating-point implementations.

Figure 17 compares the performance in MOP/s of
four versions of thevhalf 16-bit, fixed-point imple-
mentation for N= 256, 512, 1024, 2048, 4096 and
8192. Similarly Figure 16 compares the performance

in MFLOP/s of four versions of the32-bit, floating-
point vhalf implementation for N= 128, 256, 512,
1024, 2048, 4096, and8192. Both experiments as-
sumed a 32MB memory configured with 16 banks
and no subbanks and both figures use alog2 scale
for the FFT sizes on the x-axis. The four versions of
the vhalf implementation are the same for both fig-
ures. The first version is the original implementa-
tion that contains both the indexed loads of the roots
of unity and the bit reversing indexed stores. In the
second version the indexed loads have been replaced
with unit-stride loads but the indexed stores are still
present. The third version mirrors the second ver-
sion by keeping the indexed loads but replacing the
indexed stores with unit-stride stores. Finally the
fourth version replaces both the indexed loads and
the indexed stores with unit-stride versions of each.
Replacing the indexed accesses with unit-stride ac-
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The NoLoads-BR version replaces the indexed loads with

unit-stride loads but keeps the indexed stores. The Loads-
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cesses allows us to see what the performance of our
algorithms would be if the indexed accesses were as
fast as the sequential, unit-stride accesses. We can
then more precisely evaluate the current VIRAM im-
plementation of the indexed accesses.

In those versions in which indexed accesses have
been replaced by unit-stride accesses, the results are
not computationally correct since the wrong roots of
unity are being used in the basic computation and
since there is no bit reversal being performed after
the last stage. Since the purpose of this experiment
was to assess the impact that the indexed memory ac-
cesses are having on thevhalf implementations, the
fact that the results are incorrect has no relevance in
this case.

6.1.1 The “Ideal Size” FFT

There are several points to be made about the data
presented in Figures 16 and 17. First, notice that
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in Figure 16, all the floating-point curves peak for
the 1024-point FFT, whereas in Figure 17, the fixed-
point curves peak for the 2048-point FFT. This ef-
fect is due to the memory layout of the FFT data.
With the 16-bank, 2048-bit-wide memory configu-
ration we assumed, 1024 32-bit points (a total of
16*2048 bits) can be accessed in a sequential man-
ner such that every bank is accessed only once (each
bank access extracts a 2048-bit row containing 64
consecutive points). Similarly, 2048 16-bit points
can be accessed sequentially without bank conflicts.

These facts explain the peaks in the FFT perfor-
mance curves: for the floating-point FFT, which uses
32-bit data, the best performance is achieved when
the FFT operates 1024 points (a size which we will
denote theideal size), since the computation accesses
every bank in the memory system sequentially be-
fore returning to the first bank. For smaller FFTs,
the computation uses only a fraction of the banks,
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returning to the first bank more quickly and poten-
tially causing stalls until that bank is ready to service
a second request. For larger FFTs, multiple accesses
are required to at least some of the banks, increasing
the potential for memory conflicts and thus lowering
performance. An analogous explanation applies to
the fixed-point case, except there the “ideal size” for
the FFT is 2048 points.

6.1.2 The Indexed Loads

Another key point to be made concerning the data
in Figures 16 and 17 is in the effect of removing
the indexed loads. If we temporarily ignore FFT
sizes greater than the ”ideal size”, we see that the
lines corresponding to the case with indexed loads re-
moved (labeled “NoLoads” in the graphs) are a small
but constant amount higher than the corresponding
curves that include the loads. The fact that these
differences are constant indicates that the overhead
cost of the indexed memory load operations relative
to unit-stride load operations is fixed, and the differ-
ence between the lines measures this cost.

The fact that this cost is fixed and rather low is in
itself surprising. The explanation lies in the imple-
mentation details of ourvhalf algorithm. Recall that
the indexed loads are loading the real and imaginary
components of the roots of unity in specific patterns
into vector registers. For indexed accesses, one ad-
dress is generated for each element being accessed
and for each such address a separate memory re-
quest is made. Since the same root of unity is loaded
into several consecutive element slots of one vec-
tor register, several consecutive individual accesses
have identical addresses, are therefore clearly going
to the same bank, and as a consequence cause mem-
ory bank conflicts.

However, for each vhalf stage but the last one,
only 2 * MVL roots, which is enough to fill two vec-
tor registers, are loaded in this manner;24 one vector
register receives a set of real roots and the other re-
ceives a set of imaginary roots. Therefore the impact
of these indexed loads is held constant and does not
grow with the size of the FFT. The impact itself is
small because only 2 * MVL roots of unity are be-
ing loaded via these indexed operations per group per

24In the last vhalf stage, the roots of unity are loaded using
unit-stride loads, since each butterfly has a VL=1.

stage.

6.1.3 The Indexed Stores

In contrast, if we compare the lines in either Fig-
ure 16 or Figure 17 that correspond to the cases that
remove (noBR) and include (BR) the indexed store
of the bit reversal, we see that these lines are not
separated by a small or constant amount. Instead,
the gulf between the lines starts out large for small
FFTs, but gets much smaller as the FFT size ap-
proaches the ideal. This is due to the fact that for
the smaller FFT sizes the points are not spread out
among all the memory banks as they are for the larger
FFT sizes, especially for the ”ideal size” FFT, which
uses all the banks. Consequently the indexed stores
for the smaller FFTs incur more bank conflicts than
the larger FFTs up to and including the ”ideal size”
FFT.

The sharp drop for the FFTs whose size is larger
than the ”ideal size” is due to the fact that the indexed
stores are doing the final bit reversals. This means
that there is one independent store for every point in
the FFT. Clearly the number of indexed stores grows
linearly with the FFT size. As the number of points
in the FFT increases, so do the indexed stores and,
for sizes larger than the ”ideal size”, their accompa-
nying pipeline stalls. (The reasons for this special
behavior for FFTs that have the ”ideal size” and for
the extreme degradation when the FFT size is larger
than the ”ideal size” will be discussed in more detail
below.) Consequently the impact of these indexed
stores is far more deleterious on the performance of
ourvhalf implementation than the indexed loads are,
and the performance impact increases with increas-
ing FFT size after the ”ideal size”.

6.1.4 Fixed-point Verses Floating-point Gaps

Next, in comparing Figures 16 and 17, notice that
the gaps between the Loads/NoLoads lines and the
BR/noBR lines are significantly larger in the fixed-
point case than in the floating-point case. This dis-
crepancy is due to the fact that the fixed-point algo-
rithm operates with avpw of 16, compared to the
vpw of 32 for the floating-point case. With a 16-
bit vpw, the 16-bit indexed accesses take not two (as
is the case for the 32-bit accesses), but four times
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longer than the unit-stride accesses. Thus the in-
creased gaps for fixed-point are caused by the in-
herent slowdown that arises when indexed memory
operations are used on narrower data on VIRAM.

6.1.5 Utilization In The Vhalf Stages

Before addressing the question concerning the dele-
terious effect of the indexed stores for FFTs larger in
size than the ”ideal size”, while we are on the sub-
ject of the indexed loads in the vhalf stages, let us
briefly digress. The purpose of this digression is to
now explain why the utilization for each individual
vhalf stage is relatively low for both the fixed-point
implementation and the floating-point implementa-
tion.

Recall that we expected the utilization for each of
these interim vhalf stages to be high since the in-
terim stages do not load and store the intermediary
values for the input points as thenäıve algorithm
does, so they contain far fewer memory accesses.
Fewer memory accesses means fewer possible mem-
ory conflicts, which means fewer arithmetic func-
tional unit stalls.

By now part of the answer should be clear. Be-
cause of their inherent slowdowns, the indexed loads
of the roots of unity are stalling the arithmetic func-
tional units, and therefore the MFLOP/MOP rates
suffer and the utilization is poor. These effects are
more pronounced in the vhalf stages for the fixed-
point implementations (33% utilization) than for the
floating-point implementations (60%) because of the
factor of four over the factor of two slowdowns.
Without the indexed loads in these vhalf stages the
sustained utilization for each vhalf stage but the last
increases to 49% for the fixed-point and 72% for the
floating-point. Later in this section we will revisit
and complete this discussion of why the vhalf stages
do not have better hardware utilization even in the
absence of the indexed loads.

6.1.6 Impact of the Indexed Accesses

What can be said about the indexed accesses at this
point in our discussion is that the narrower the data
width, the more impact indexed accesses will have on
the performance of the FFT on VIRAM. For floating-
point 32-bit wide data thevhalf implementation uti-

lization for its ”ideal size” 1024-point FFT without
the indexed accesses is 69%. With the indexed ac-
cesses the utilization drops to 63%, a delta of only
6%. On the other hand, for the fixed-point 16-bit
wide data, the corresponding utilizations go from
47% to 30%, a delta of 17%, which is three times
the delta of the floating-point implementation. Fur-
thermore, as the FFT size increases, the deltas for
both the fixed-point and the floating-point will also
increase since the price paid for the indexed stores
grows with the FFT sizes larger than the “ideal size”.

6.2 Analysis of Memory Bank Conflicts

Let us now return to the question: why do the in-
dexed stores have such a deleterious effect on the
performance of both the fixed-point and floating-
point implementations for FFTs larger than 2048-
point FFTs? Recall that we saw this performance
drop of the 4096- and 8192-point FFTs in Figure 9
for the floating-pointvhalf implementation and in
Figure 11 for the fixed-pointvhalf implementation
in the previous two sections and we deferred our dis-
cussion of these observations to this section.

We can now account for this behavior. Above
we established that the impact of the indexed stores
grows with the size of the FFT. The larger the FFT
size, the more indexed stores. The more indexed
stores, the more stalls. But these stalls alone do
not account for the extreme drop in the MOP/s &
MFLOP/s rate that we observe in our figures. For
both the fixed-point and the floating-point implemen-
tations, the 8192-point size is a multiple of their re-
spective ”ideal size”s. Specifically, 1024 goes into
8192 eight times while 2048 goes into 8192 four
times. Thus for the firstnäıve stage where the but-
terfly starts with pointsx0 andxN=2, there will be
memory bank conflicts in accessing the top and bot-
tom halves of the butterfly because both access the
same bank.

Furthermore, as long as the distance between the
top point and the bottom point of the basic computa-
tion is a multiple of 1024 for floating-point and 2048
for fixed-point, these same types of memory conflicts
exist and consequently they, along with the incurred
stalls of the larger FFT sizes, impair the 8192-point
FFT performance of both implementations. One so-
lution to this problem is to make the number of banks
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in memory not a power of two, but this is not really
an option for VIRAM since it introduces too much
complexity which would eat up area and power, and
thus violate our design objectives. Another is to ei-
ther increase the number of memory banks, which
increases the total size of memory, or introduce sub-
banks into the memory configuration, which does not
increase the total size of memory.

6.2.1 Subbanks

Subbanks within the same bank allow multiple ac-
cesses to the same bank to be pipelined. Although
the bank has a data bus that handles only one request
at a time, with subbanks, more than one row within
the bank can be accessed and made ready to go as
soon as the bank’s data bus is free. The number of
subbanks within a bank determines the number of
rows that can be active at any one point within the
same bank since the subbanks within the same bank
have independent accessing to their own rows much
like banks have independent accessing to their own
rows (and subbanks). Without the existence of sub-
banks, a second access to the same bank has to wait
for the access ahead of it to complete, which takes an
entire memory cycle time, and no overlapping of the
row fetching can be done. The more banks a mem-
ory system has the more independent accesses it can
handle without producing a memory bank conflict.
The more subbanks a bank has the more pipelined
accesses it can handle without producing a subbank
conflict.

6.2.2 Varying the Memory Configuration

Figure 18 and Figure 19 answer the question of what
happens to the MFLOP/s & MOP/s performance of
both the floating-point, 32-bit, and the fixed-point,
16-bit, N-point FFT,vhalf algorithm when we vary
the memory configuration. In both figures alog2
scale was used for the FFT sizes on the x-axis and
the vhalf implementations used to generate the data
in both of these figures contains the indexed loads of
the roots of unity in the vhalf stages and the bit re-
versing indexed stores after the last vhalf stage. Five
different memory configurations were used as fol-
lows: 1) 32MB, 16 Banks, No Subbanks, 2) 32MB,
16 Banks, 4 Subbanks, 3) 32MB, 8 Banks, 8 Sub-

banks, 4) 16MB, 8 Banks, No Subbanks, 5) 16MB,
8 Banks, 4 Subbanks. Therefore each figure has five
performance lines. The 16MB memory configura-
tions were included here because it was decided that
the VIRAM prototype will have 16MB instead of
the original 32MB. As stated earlier, this change of
memory design occurred after much of the work for
these experiments had been done. Consequently we
wanted to see the impact that the smaller memory
size would have on the performance of thevhalf al-
gorithm.

Floating-point Memory Configurations In Fig-
ure 18 we see that all five curves coincide and are in-
creasing in MFLOP/s rate for FFT sizes 512 and be-
low. This indicates that for these size floating-point
FFTs there are no significant memory bank conflicts.
In this figure, the curve for the 16MB, 8Bank, no sub-
bank configuration takes a sudden dive down after
the 512-point data point. This is because the 16MB
memory size with 8 banks and no subbanks, allows
512 32-bit points to be accessed without revisiting
the same bank. Since this 16MB configuration is ex-
actly half of the 32MB, 16 bank, no subbank con-
figuration we saw in Figure 16, it makes sense that
half the number of accesses can occur without revis-
iting the same bank for the 16MB memory as for the
32MB memory with a very similar no subbank con-
figuration.

In addition, notice that the 32MB, 16 bank, no
subbank curve practically coincides with the 16MB,
8 bank, 4 subbank curve in Figure 18, although
the 16MB curve ends up yeilding a slightly higher
MFLOP/s rate for the 8192-point FFT than does the
32MB curve. Both of these curves peak at the 1024-
point data point and then take a dive. Again, this
is because 1024 points can be accessed from these
memory configurations without revisiting the same
bank or subbank.

The final two 32MB curves, one with 16 banks and
4 subbanks, the other with 8 banks and 8 subbanks
also coincide. Furthermore both of these curves yeild
a much higher MFLOP/s rate for the 8192-point FFT
since these memory configurations ameliorate the
memory conflict problems experienced when there
are fewer banks or no subbanks.
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Figure 18:Comparison of the performance in MFLOP/s of

the vhalf floating-point, 32-bit N-point FFT implementation

for N = 128, 256, 512, 1024, and 8192 with the following five

memory configurations: 1) 32MB, 16 Banks, No Subbanks,

2) 32MB, 16 Banks, 4 Subbanks, 3) 32MB, 8 Banks, 8 Sub-

banks, 4) 16MB, 8 Banks, No Subbanks, 5) 16MB, 8 Banks,

4 Subbanks. A log2 scale is used for the FFT sizes on the

x-axis.

Fixed-point Memory Configurations The fixed-
point curves in Figure 19 behave in a very similar
fashion as their floating-point counterparts in Fig-
ure 18 except for the 16MB, 8 bank, 4 subbank
configuration curve. Assuming this configuration
and 16-bit data points, 4096 points can be accessed
without revisiting the same subbank. Therefore the
MOP/s rate for the 8192-point FFT falls only slightly
below the ”ideal size” MOP/s rate for this configu-
ration. This is because for the 8192-point FFT, the
memory bank conflicts only affect the one and only
butterfly group in the very first stage of the FFT cal-
culation where the top and bottom points for every
basic calculation are exactly 4096 points apart. How-
ever, after this first stage, the gap between the top and
bottom points continuously halves, so for the second
stage the gap is only 2048. Thus after its first stage,
the 8192-point FFT with the 16MB, 8 bank, 4 sub-
bank memory configuration does not have to absorb
such an ill-fated memory conflict pattern again.
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Figure 19: Comparison of the performance in MOP/s of

the vhalf fixed-point, 16-bit N-point FFT implementation for

N= 256, 512, 1024, and8192 with the following five memory

configurations: 1) 32MB, 16 Banks, No Subbanks, 2) 32MB,

16 Banks, 4 Subbanks, 3) 32MB, 8 Banks, 8 Subbanks, 4)

16MB, 8 Banks, No Subbanks, 5) 16MB, 8 Banks, 4 Sub-

banks. A log2 scale is used for the FFT sizes on the x-axis.

6.2.3 The Impact of Memory Size and Configu-
ration

The conclusion we can draw from Figure 18 and Fig-
ure 19 is quite clear. Performance will drop signifi-
cantly for larger FFT sizes due to memory bank con-
flicts. This deleterious effect can be ameliorated best
by adding subbanks. Increasing the memory size
without utilizing subbank configurations might tem-
porarily help since it increases the number of inde-
pendent banks, but for a more robust solution against
memory conflict thrashing, the more subbanks per
bank, the better.

6.3 Analysis of Bottlenecks and Poor Hard-
ware Utilization

Although additional banks and subbanks will con-
siderably ameliorate the memory bank conflicts, we
cannot assume that this is all that is necessary to in-
crease the hardware utilization. As we saw in Fig-
ures 16 and 17, eliminating all the indexed accesses
from both the fixed-point and floating-pointvhalf im-
plementations achieved a higher utilization of the
hardware, but this utilization was still much lower
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than peak for both. For the floating-point implemen-
tation, after replacing all the indexed accesses with
unit-stride accesses, the highest overall MFLOP/s
rate attained regardless of the memory configuration
was 72%. Not surprisingly, this is the same utiliza-
tion that was achieved by each of the interim vhalf
stages under the same conditions. For the fixed-point
utilization the story is the same, but the utilization is
a much lower 49%.

Recall that in the interim vhalf stages, input
points are not loaded and result points are not stored
since the elements are transposed within the vec-
tor registers eliminating the need to access memory
each stage. Therefore for both the fixed-point and
floating-point implementations, we expect the vhalf
interim stage MOP/s & MFLOP/s rates to be close
to the highest possible. A 72% utilization for the
floating-point implementation and a 49% utilization
for the fixed-point implementation for these vhalf in-
terim stages indicates that something is happening
with these implementations that is preventing even
these stages from attaining closer to peak MOP/s &
MFLOP/s rates. It is the goal of this subsection to
clarify what exactly is happening.

To do so we must ascertain whether or not the
arithmetic functional units are being kept fully busy.
Furthermore, if the functional units are not being
kept fully utilized we must ascertain where in the im-
plementation this is the case and why they are not.
On the other hand, if the functional units are being
kept fully utilized we must then ascertain why the
MOP/s & MFLOP/s rates are not higher. To do this
assessment, we inspect carefully selected pipeline
traces from our simulator for the fixed-point and
floating-pointvhalf implementations. Specifically, to
generate the fixed-point and floating-point traces we
use the version of these implementations that replace
the indexed loads and stores with unit-stride loads
and stores. We use these versions of the implemen-
tations to generate the traces because, with all the ef-
fects of the indexed accesses removed, these versions
have the best performance and utilization of the VI-
RAM hardware that we have been able to achieve so
far. Why do they not do better?

Furthermore, the traces are generated using the
1024-point FFT size for the floating-point version
and the 2048-point FFT size for the fixed-point ver-
sion because these two cases experience the fewest

memory bank conflicts. Eliminating as many of the
memory effects as possible from the traces we are in-
specting will allow us to ascertain what else is effect-
ing the performance and utilization apart from the
memory system.

We will start at the beginning of the algorithm and
inspect each section of the algorithm as well as the
transitions between the sections in the traces. Recall
that the first section of both implementations starts
with the stages whose VL is greater than or equal
to MVL and uses thenäıve algorithm to vectorize
these stages. The next section of both implementa-
tions starts when VL = MVL/2 and uses the vhalf
method to vectorize the remaining stages. Thevhalf
algorithm divides all the points into groups contain-
ing 2*MVL points and then processes each group
through all the vhalf stages, thus completing all the
remaining FFT stage calculations for that group be-
fore starting with the next group. When all the
groups have been processed by the vhalf section, the
FFT implementation is done.

6.3.1 The Näıve Stages of the Vhalf Algorithm

In the first section of the algorithm, during thenäıve
algorithm stages, for both the fixed-point and the
floating-point implementations, the potential bottle-
neck is the memory functional unit. It is being
utilized 100% since for each group of MVL ele-
ments there are four unit-stride loads and four unit-
stride stores. In the floating-point implementation
the floating-point functional unit is idle for only 8
cycles per 2*MVL elements which is a decent use
of resources and which indicates that it is not stalled
waiting for the memory unit to feed operands to it.

Recall that even in thenäıve algorithm we saw
a 1.8 GFLOP/s rate for those stages whose VL was
greater or equal to MVL. Since the peak is 2.0
GFLOP/s, the utilization for these stages is 90% for
the floating-point implementation. In this case, re-
sources and demand for them are decently balanced.
Since the floating-point functional unit is idle for
only 8 cycles per 2 * MVL points despite the mem-
ory unit being fully utilized, the memory unit is not
a bottleneck.

In the same first section the trace for the fixed-
point implementation exhibits more idle cycles for
its two arithmetic functional units, FU1 and FU2, in
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thesenäıve algorithm stages than the floating-point
did for its one floating-point functional unit. Specif-
ically FU1 is idle for 30 cycles and FU2 is idle for
10 non-overlapping cycles. Since there are twice as
many arithmetic functional units and since the poten-
tial bottleneck is the memory unit, this makes com-
plete sense.

In thesenäıve stages of the fixed-point imple-
mentation, the memory unit is limiting the amount
of work coming in, and there are twice as many re-
sources to do the work once it comes in. Thus this
implementation gets about 57% utilization and oper-
ates around 3.7 GOP/s, where the peak is 6.4 GOP/s.
This under-utilization for the fixed-point implemen-
tation is easy to understand. The execution can only
go as fast as one memory unit, but the peak perfor-
mance, and therefore the utilization, is based upon
having two functional units going 100% of the time.
Unless a fixed-point or integer application is very
compute intensive, meaning it has a computation to
I/O ratio larger than 2:1, which the FFT, whose ra-
tio is approximately 1:1, does not have, high utiliza-
tion is difficult to achieve for this resource configu-
ration and is what we are experiencing for thevhalf
fixed-point implementation. Thus for this fixed-point
case the memory unit is definitely a bottleneck in the
näıve stages of the algorithm.

6.3.2 The Transition from the Näıve Stages to
the Vhalf Stages

During the time that the algorithm is transitioning
from thenäıve section to the vhalf section, in both
traces the memory unit is 100% busy and there are
idle cycles in the arithmetic functional units. Specif-
ically, for the floating-point trace the floating-point
functional unit has 26 idle cycles and for the fixed-
point trace, FU1 is idle 51 cycles while FU2 is idle
for 54 cycles, only some of which overlap. At this
point the memory unit is the scarce resource for both
traces, but the situation is exacerbated for the fixed-
point implementation because the one memory unit
must keep twice the number of functional units busy.
Thus in this transition section of the algorithm, the
memory unit is the bottleneck in both traces.

Specifically, in the vhalf section, at the beginning
of the execution of the first vhalf stage, six unit-
stride loads are done in both traces. Therefore we

see the memory unit once again being the bottleneck
for both traces during this first vhalf stage. How-
ever, since all the interim vhalf stages, which are all
the vhalf stages but the first and the last, have only
two unit-stride loads, which are supposed to access
the roots of unity, we do not expect the memory unit
to be the bottleneck for these interim stages in our
traces. Recall that these interim vhalf stages access
the correct roots of unity by doing indexed loads, but
for analysis purposes, our traces are from versions
that have replaced the indexed loads with the incor-
rect but non-stalling, more efficient unit-stride loads.

Thus during transition from thenäıve section to
the vhalf section and in the first vhalf stage, the al-
gorithm must store the output values from the last
näıve stage and then set up for the vhalf stages by
doing overhead loads in addition to the loads that ac-
cess the next set of input FFT points. It is these addi-
tional loads that upset the balance that achieved the
90% untilization for thenäıve stages in the floating-
point trace and that exacerbate the fixed-point situa-
tion even further.

6.3.3 The Floating-point Vhalf Interim Stages

During the vhalf interim stages, the floating-point
implementation keeps its one floating-point func-
tional unit almost 100% busy. However, many of the
vector instructions being executed are not part of the
8 being counted for the basic operation. As illus-
trated in Figure 7, twovmerges and fourvhal-
fup/dn instructions per 2*MVL points per vhalf
stage are necessary to accomplish the in-register el-
ement transposes. VIRAM carries out the execution
of these overhead instructions on both of the arith-
metic integer functional units, often in parallel.

However, since only one of these two functional
units can execute floating-point operations, it is of-
ten the case that the floating-point operations making
up the basic computation are blocked by overhead
instructions executing on that one FP-capable func-
tional unit. Thus, although this one FP-capable func-
tional unit is utilized almost 100%of the time, the
GFLOP/s rate that is achieved during each of these
interim vhalf stages for the floating-point implemen-
tation is 1.2 which translates to a 60% utilization.

At this point in the floating-point implementation,
just as we predicted, the bottleneck is not the mem-
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ory unit starving the arithmetic functional unit. In-
stead, the floating-point arithmetic functional unit is
100% utilized but much of the work that it is doing
is overhead work that does not contribute to a faster
GFLOP/s rate. This is the price that must be paid
to use the in-register transpose operations to amelio-
rate the ill effects of the shorter vector lengths expe-
rienced in thenäıve algorithm.

6.3.4 The Fixed-point Vhalf Interim Stages

The situation during the vhalf interim stages for the
fixed-point trace is slightly different than that of the
floating-point trace just discussed because the opera-
tions making up the basic computation can execute
on either of the arithmetic functional units in the
fixed-point implementation. The fixed-point trace
shows for each interim stage FU1 is idle only 2 cy-
cles while FU2 is idle 17 cycles. Since the total work
is being divided up between the two arithmetic func-
tional units fairly evenly and since both functional
units are being kept relatively busy, it would seem
that most of the work is getting done in parallel and
the GOP/s rate should be close to peak. Yet for these
stages the GOP/s rate is only 2.1 and the utilization
is a disappointing 33%.

There are two reasons that the GOP/s rate is only
a third of peak for each interim vhalf stage for the
fixed-point implementation. The first is the same as
in the floating-point implementation above; overhead
work is being done which does not contribute to a
faster MOP/s rate. However, for the fixed-point im-
plementaion, the situation is exacerbated by the ad-
ditional vector instructions, such as the vector shifts,
that must be used as part of the fixed-point basic
computation in order to track the assumed binary
point. These additional vector instructions are used
each time the basic computation is performed, but
they are not counted as one of the 10 fixed-point op-
erations that compose the basic computation for the
fixed-point calcuation when computing the peak rate
since they are considered overhead instructions for
doing the fixed-point arithmetic.

The second reason that the GOP/s rate is only
a third of peak for each interim vhalf stage in the
fixed-point trace is that there is not enough work
to keep two arithmetic functional units fully occu-
pied, so not all the resources are being utilized all

of the time. It should be noted, however, that the
fixed-point GOP/s rate of 2.1 is almost twice the 1.2
floating-point GFLOP/s rate. Consequently, having
the two arithmetic functional units working in paral-
lel despite the fact that they are not kept fully utilized
definitely has a positive impact on performance.

6.3.5 The Last Vhalf Stage and the Transition
Back to the First

For both implementations, the last vhalf stage does a
store of the four vector registers, for the top and bot-
tom reals and the top and bottom imaginaries, before
giving control back to the first vhalf stage in order
to reiterate the sequence of vhalf stages for the next
group of 2 * MVL points. Recall that the stores in
this stage should really be the bit reversing indexed
stores. But for the purposes of this analysis, we are
using the traces which are generated after replacing
these indexed stores with unit stride stores so that we
can separate what is going on as a result of the mem-
ory system from what is going on as a result of the
vector processor architecture.

For both implementations, the stores in the last
vhalf stage keep the memory unit fully utilized.
When control returns to the first vhalf stage six more
loads are issued, so once again the memory unit is
the bottleneck for the first vhalf stage. No vhalf
first stage basic operations can be executed until the
memory unit is free to read in the new values for the
next group of points, which can only happen after
the results from the last vhalf stage for the previous
group of points have been stored. In the floating-
point trace, the floating-point functional unit is idle
after returning back to the vhalf first stage for 14 cy-
cles. In the fixed-point trace both FU1 and FU2 are
each idle 26 cycles waiting for the memory unit to
supply the next basic operations’s operands. Once
again, the performance effects of the memory unit
bottleneck for the fixed-point trace are worse than
for the floating-point trace because not one but two
functional units are idle and they are idle for a longer
period of time. After this first vhalf stage has com-
pleted, the vhalf interim stages are repeated, fol-
lowed by the vhalf last stage once again.
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6.3.6 Summary of the Analysis

From the above analysis of both the fixed-point and
floating-point traces it is now clear when the func-
tional units are being kept fully busy and when they
are not. In addition, when the arithmetic functional
units are not being fully utilized it is clear where in
the algorithm this is happening and why this is the
case. When the arithmetic functional units are being
fully utilized we see why the MOP/s & MFLOP/s
rates, and therefore the utilization percentage, are not
higher. Specifically, we observe three different be-
haviors throughout the course of thevhalfalgorithm.
The first behavior only occurs for the floating-point
implementation. The second and the third occur for
both the floating-point and the fixed-point implemen-
tations.

The first behavior occurs in thenäıve section of
the algorithm only for the floating-point implemen-
tation, which has one floating point functional unit
and one integer functional unit. For all thenäıve
stages in the trace, the one floating-point functional
unit is kept busy while the memory unit is also 100%
fully utilized. In this case the memory unit is not
the bottleneck because the amount of work requir-
ing both resources is well balanced. The memory
unit, while operating at its fullest capacity of 100%
utilization, supplies exactly the right amount of data
to the floating-point functional unit to keep it busy
and not under-utilized. But this balance is precari-
ous, since as soon as more memory accesses are re-
quired, as they are when the algorithm transitions to
the vhalf section, functional unit utilization signifi-
cantly drops because the memory unit has become
the bottleneck. This is the dip we saw for the first
vhalf stage in Figure 8 for the floating-point imple-
mentation.

The second behavior occurs in the fixed-point
trace during thenäıve section of the algorithm, and
in both traces when the algorthm transitions from
thenäıve section to the vhalf section and then from
the last vhalf stage back to the first vhalf stage. At
each of these places in the traces, the memory unit
is the bottleneck, and the arithmetic functional units
are idle for a significant amount of time. The im-
pact of such a bottleneck for the fixed-point imple-
mentation is exacerbated by the fact that there are
two functional units that become idle instead of one,

and therefore there is adoubleimpact on the GOP/s
rate. This behavior now explains the poor GFLOP/s
rate observed for the first and last vhalf stages for the
floating-point implementation in Figure 8 as well as
the poor GOP/s rate observed for these same stages
for the fixed-point implementation in Figure 10.

The third behavior occurs for both traces during
the vhalf interim stages. In each of these stages for
both of the traces the functional units are doing over-
head work that does not contribute to the improve-
ment of the GFLOP/s or GOP/s rate. In the floating-
point trace the floating-point functional unit is almost
fully utilized and the integer functional unit is be-
ing used in parallel for part of the time during these
stages. In the fixed-point trace, since there are two
equivalent functional units, because of data depen-
dencies neither is fully utilized despite the fact that
there is additional overhead work to do for the fixed-
point basic computation.

We now have an explanation of why the best uti-
lization we can achieve even when we take out all the
indexed accesses is 72% for the floating-point im-
plementation and 49% for the fixed-point implemen-
tation. To achieve better utilization for both imple-
mentations, at the very least the one memory func-
tional unit needs to be decoupled from the arithmetic
functional unit pipeline. To attain an even better uti-
lization for both implementations the memory bot-
tlenecks would have to be eliminated. Two mem-
ory functional units might ameliorate the bottleneck,
but unless both memory units were decoupled from
the arithmetic functional unit pipeline, the stalls to
the functional unit pipeline caused by each mem-
ory unit would no doubt exacerbate rather than ame-
liorate the situation. In addition, having two mem-
ory functional units would undoubtedly cause addi-
tional memory bank conflicts since there would be
a higher probability of accesses being made to the
same bank. Therefore adding another memory func-
tional unit makes it all the more imperative to also
have a healthy number of subbanks configured into
the memory system to ameliorate some of these in-
evitable memory bank conflicts25.

25Although the results are not reported in this paper, several
experiments were run assuming two memory units per lane. The
results corroborated the claim made here; two memory units
without decoupling them from the arithmetic functional unit
pipeline and with no subbanks in the memory configuration ex-
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7 VIRAM vs. DSP Performance

In this section we will compare VIRAM’s perfor-
mance results with both fixed-point and floating-
point DSP performance.

Both Figure 20 and Figure 21 show the running
times in microseconds for various size FFTs for two
implementations of the optimizedvhalfalgorithm. In
both figures alog2 scale is used for the FFT sizes on
the x-axis. The single difference in the implemen-
tations is the memory configuration. The first mem-
ory configuration is 16MB, 8 banks, and no subbanks
(labeled “16MB”). The second memory configura-
tion is 32MB, 16 banks, and no subbanks (labeled
“32MB”). Recall that many of the experiments in this
paper were performed before the final design deci-
sions were made about the VIRAM chip. For these
experiments a 32MB, 16 bank, no subbank configu-
ration was assumed. At a later date it was decided
that the VIRAM prototype would have a 16MB, 8
bank, no subbank configuration. For this reason we
have included performance times for both memory
configurations.

Thevhalf implementation in both these figures uti-
lizes thenewvhalfup andvhalfdn instructions,
the auto-increment feature, software pipelining, and
code scheduling; the final output points are bit re-
verse rearranged. In Figure 20 thevhalf results are
for single precision, floating-point (32-bit), complex,
radix-2 FFTs. In Figure 21 thevhalf results are for
fixed-point (16-bit), complex, radix-2 FFTs.

Also included in Figures 20 and 21 are single data
points representing the FFT running times for var-
ious competitive CPU/DSPs for a single FFT size
(full data on the CPU/DSP results is presented in
Figure 22). Because the DSP results were obtained
from the DSP manufacturers and are intended to
showcase the performance of the DSPs, we assume
that they represent the performance on highly-tuned
DSP-specific FFT algorithms.

In Figure 20 we start to see the effects of fewer
banks in the 1024-point FFT since the time on VI-
RAM for the 16MB memory implementation is 52
microseconds while it is 40 microseconds for the
32 MB implementation. In Figure 21 the times for

acerbated the situation. For this reason we abandoned the idea of
putting two memory functional units into the VIRAM prototype.

both memory configurations is identical, and there-
fore there is only one line drawn for both memory
configurations.

As Figures 20 and 21 indicate, VIRAM is com-
petitive with the high-end, specialized DSPs for both
the fixed-point and floating-pointvhalf implementa-
tions. For example, for the 32 MB floating-point
FFT, it outperforms the TigerSHARC by a factor of
1.73, the ADSP-21160 by a factor of 2.3, and the
TMS320C6701 by an impressive factor of 3.1. VI-
RAM is also within a factor of 2.5 of the perfor-
mance of two other high-end DSPs: the Wildstar
runs at 1.6 times the performance of VIRAM, and
the Pathfinder-2 is 2.5 times faster.

As seen in Figure 21 for the fixed-point FFT,
VIRAM slightly betters the performance of the
Pathfinder-1 by a factor of 1.06, but it outper-
forms the Carmel by a factor of 1.78, and the
TMS320C6201 by an impressive factor of 4.3 for the
1024-point FFTs. For the 256-point FFTs VIRAM
equals the performance of the TigarSHARC, and it
outperforms the Pathfinder-1 by a factor of 1.125,
the Carmel by a factor of 1.25, the PowerPC 604e
by an incredible factor of 12.1, and the Pentium I by
an even more impressive factor of 21! As a matter of
fact, we could not find published numbers for any
CPU/DSP that outperformed VIRAM’s fixed-point
time.

We believe that VIRAM’s performance could
match or exceed the floating-point performance of
the Wildstar and the Pathfinder-2 and that it could
outperform the rest, in both fixed-point and floating-
point by an even bigger margin if the VIRAM ar-
chitecture were implemented commercially; the chip
that we have simulated here is an academic proof
of concept implementation, and as such does not
demonstrate the full potential of the architecture.

8 Conclusions

In this paper we have shown that, despite being
primarily designed for the broad consumer market
of portable multimedia devices, the general-purpose
Vector IRAM processor is capable of performing
FFTs that range in size from 256 points to 2048
points at performance levels comparable to or ex-
ceeding those of high-end floating-point and fixed-
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Figure 20:Performance in microseconds for thevhalf 32-bit, single precision, floating-point, N-point FFT implementation

for N = 128, 256, 512, and 1024 for two memory configurations: 1) 16MB, 8 banks, and no subbanks (labeled “16MB”), and

2) 32MB, 16 banks, and no subbanks (labeled “32MB”). Alog2 scale is used for the FFT sizes on the x-axis.
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Figure 21:Performance in microseconds for thevhalf 16-bit, fixed-point, N-point FFT implementation for N = 256, 512,

and 1024 for two memory configurations: 1) 16MB, 8 banks, and no subbanks (labeled “16MB”), and 2) 32MB, 16 banks,

and no subbanks (labeled “32MB”). A log2 scale is used for the FFT sizes on the x-axis.
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Floating-point DSPs

Processor MHz FFT Size �sec Reference Notes
Pathfinder-2 133 1024 16.8 [Inc] Estimated final MHz
Wildstar N/A 1024 25 [AMS] FPGA, 1 proc. elmt, no streaming, 32-bit
VIRAM 200 1024 36 this paper Vector
TigerSHARC 150 1024 69 [Deva] 32-bit, 4-way VLIW
ADSP-21160 100 1024 92 [Devb] 32-bit, Radix 4, SIMD, w/bit rev.
TMS320C6701 167 1024 124.3 [Ins] Radix 2, w/bit rev, 8-way VLIW
Pathfinder-2 133 256 4.1 [Inc] Estimated final MHz
VIRAM 200 256 9.5 this paper Vector

Fixed-point DSPs

Processor MHz FFT Size �sec Reference Notes
Pathfinder-1 80 1024 27.9 [Inc99] 32-bit, Block FP, used on Scorpio Board
Carmel 250 1024 47.4 [INF] 32-bit, Bit rev?, Custom LIW
TMS320C6201 200 1024 113.1 [Ins] Radix 2 w/bit rev
VIRAM 200 1024 26.8 this paper W/Index Load
TigerSHARC 150 256 7.3 [Deva] Radix 2
TigerSHARC 250 256 4.4 [Deva] Radix 2
Pathfinder-1 80 256 8.1 [Inc99] Block FP
Carmel 250 256 9 [INF] Bit rev?
PowerPC 604E 200 256 87 [Dub98] AltiVec SIMD, 3-way superscal.
Pentium I 200 256 151 [Dub98] MMX SIMD
VIRAM 200 256 7.2 this paper W/Index Load

Figure 22: Floating-point and Fixed-point running times for 1024-point and 256-point complex FFTs on VIRAM and

various DSPs and processors.

point DSPs and DSP-like architectures. VIRAM
outperforms all of the fixed-point DSPs and all but
two of the special-purpose floating-point FFT DSPs.
Specifically, on 1024-point FFTs, VIRAM achieves
1.3 GFLOP/s in floating-point mode, and 1.9 GOP/s
in fixed-point mode. At the same time VIRAM has
not compromised accuracy to achieve such perfor-
mance given that its fixed-point results are at least as
accurate as those generated by the current fixed-point
DSPs.

VIRAM achieves this performance through a com-
bination of a highly-tuned algorithm designed specif-
ically for the VIRAM’s model of vector processing,
a set of simple yet powerful ISA extensions that un-
derly that algorithm, and the efficient parallelism of
a vector processor embedded in a high-bandwidth,
on-chip DRAM memory.

Furthermore, we believe that the performance of
the VIRAM architecture on the FFT has the potential

to improve significantly over the results presented
here. As mentioned earlier, our simulation results
are based on the current proof-of-concept VIRAM
implementation, which has made compromises that
trade off potential performance for ease of imple-
mentation in an academic setting.

By extending the ability of the memory functional
unit to decouple itself from the arithmetic functional
unit pipeline, by increasing the number of subbanks
in the memory system in order to minimize mem-
ory bank conflicts, by adding an additional memory
functional unit to take advantage of such a robust
memory configuration, and by speeding up the in-
dexed memory accesses, a VIRAM commercial ver-
sion could not only improve its already outstanding
performance for the small sized FFTs in the 128- to
2048-point range, but it could also significantly im-
prove its performance on the 8192-point and larger
sized FFTs as well.
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Such enhancements would further increase the uti-
lization of the VIRAM hardware especially for the
narrower data widths where the VIRAM architecture
is currently being under utilized despite its high per-
formance relative to the DSPs.

We have seen that the VIRAM architecture’s “sys-
tem on a chip” approach is pushing the envelope of
the memory hierarchy to newer levels. We found
in our archtectural analysis no evidence of the old
bottlenecks of memory latency and bandwidth con-
straints. Instead we found the new boundaries and
limits in the realm of memory bank conflicts and
memory cycle times. VIRAM has changed not only
the order of magnitude of the bottlenecks but also the
whole philosophy of optimizing for them by expos-
ing the memory configuration as part of the memory
heirarchy.

In particular we found that for larger sized FFTs,
the number of memory banks and subbanks plays a
crucial role in the scalability of our algorithm’s per-
formance to large FFT sizes.

Finally, we believe that VIRAM occupies an in-
teresting space in the emerging market of hybrid
CPU/DSPs such as the Infineon TriCore, the Hi-
tachi SuperH-DSP, the Motorola/Lucent StarCore,
and the Motorola PowerPC G4 (7400). Like these
other chips, VIRAM includes both general-purpose
CPU capability as well as significant DSP mus-
cle, as demonstrated by its high performance on the
FFT. In addition, VIRAM’s vector plus embedded-
DRAM design may prove to have further advantages
in power, area, and performance over these more tra-
ditional processor designs.
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