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Abstract

In this paper we develop an optimized algorithm for performing the Fast Fourier Transform (FFT) on the
Vector IRAM (VIRAM) architecture in both the fixed- and floating-point domains. We discuss the impact of
various optimizations on the performance of the FFT algorithm on VIRAM, including both an analysis of
the usefulness of various VIRAM ISA features as well as a consideration of the performance and accuracy
consequences of performing the FFT computations in the fixed-point domain rather than the traditional
floating-point domain.

We compare the performance of our most-optimized FFT algorithm on a simulated version of VIRAM to that
of eleven high-end fixed- and floating-point Digital Signal Processors (DSPs) and DSP-like architectures,
and find that VIRAM outperforms all of the fixed-point DSPs and all but two of the special-purpose floating-

point FFT DSPs. On 1024-point FFTs, VIRAM achieves 1.3 GFLOP/s in floating-point mode, and 1.9

GOP/s in fixed-point mode.

Despite its high performance relative to the DSPs, however, we find that the VIRAM architecture is being
underutilized by as much as two thirds while running the FFT algorithm. We thus embark on an architec-
tural analysis to determine the underlying cause of this underutilization, and discover that it results from
bottlenecks in VIRAM’s memory functional units and memory access conflicts in VIRAM’s memory system.
For larger FFTs, the memory system impact becomes more severe, and we find that the number of memory
banks and subbanks plays a crucial role in the scalability of our algorithm’s performance to large FFT
sizes.

*This work was supported in part by the Advanced Research Projects Agency of the Department of Defense under contract DABT63-96-C-
0056, the National Science Foundation Infrastructure under grant no. CDA-9401156, the California State MICRO Program, and by a grant from
Intel. The information presented here does not necessarily reflect the position or the policy of the Government and no official endorsement should
be inferred. The author was supported in part by a National Science Foundation fellowship.
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1 Introduction portable devices. Section 3 describes a standard FFT
algorithm. Section 4 first discusses a straightforward
Fast Fourier Transforms (FFTs) are critical for manyectorization of that standard algorithm; it then com-
signal processing problems as well as for the incre@ares several optimizations to this algorithm and fin-
ingly popular multimedia applications that involvéshes with an analysis of the performance of the op-
images, speech, audio, graphics, or video. Sevealized algorithm. Section 5 discusses the adapta-
DSPs offer support to accelerate the computationtigfns made to the optimized floating-point version to
FFTs, often including hardware to improve the petreate an optimized fixed-point version; it then de-
formance of bit-reversals or transpose operations. §2fibes the performance of both the fixed-point and
these DSPs, the ones with the best performance figating-point versions, based on simulations, and
those that are specialized exclusively for computitigiishes with an error analysis of the fixed-point re-
FFTs and related transforms. The need for such speits. A comprehensive architectural analysis of the
cialization is primarily based on the observation thperformance results is given in Section 6. VIRAM'’s
FFT algorithms have poor temporal and spatial Iperformance results are then compared to both fixed-
cality, and therefore perform poorly on architecturgsoint and floating-point DSP performance in Sec-
that employ structures that rely on locality for petion 7; the performance is shown to be comparable
formance (such as caches and stream-buffers). #-existing DSPs for both floating-point-based and
though the algorithm chosen to compute the FHiked-point-based algorithms. Section 8 draws some
may be reorganized to improve data re-use [FJ98bnclusions and then makes some suggestions for fu-
FFT performance on conventional microprocessat®e implementations of the VIRAM architecture.
is typically limited by the poor memory bandwidth
and high memory latency on these machines.
To address these memory system issues, fhe Qverview of VIRAM
IRAM project is exploring an unconventional mi-
croprocessor design based on combining logic wly combining a vector processor with embedded
embedded DRAM (“Intelligent RAM”) to constructDRAM, one potentially exposes two orders of mag-
a single-chip system designed for low power antitude more memory bandwidth than is available in
high performance on multimedia applications. Thegpical multi-chip systems that are limited by bus
Vector IRAM (VIRAM) system adds a vector pro-bandwidth and pin counts [PA®7]. To take ad-
cessor to embedded DRAM in order to producevantage of that on-chip bandwidth without excessive
low energy, high performance design suitable for tkemplexity, area, or power, the VIRAM architec-
ever-growing market of portable devices [FP¥Z]. ture extends a RISC instruction set with vector pro-
Kozyrakis gives a more detailed overview of the Vleessing instructions. VIRAM’s general-purpose vec-
RAM implementation and shows that performanaer processor provides high performance on compu-
on a set of media kernels exceeds that of high-erzgions with sufficient fine-grained data-parallelism.
DSPs [Koz99]. However, the kernels examined WIRAM utilizes a delayed vector pipeliftdAsa98,
that paper do not include an FFT, and most of thenz99] to hide memory latency; consequently there
use primarily unit-stride memory accesses. In this no need for caches. Instead, VIRAM is built
paper we show that the general-purpose VIRAM deground a banked, pipelined, on-chip DRAM memory
sign is also well-suited to the memory access patteghat is well-matched to the memory access patterns
of the FFT, and that its performance rivals the besta vector processor.
performance of special-purpose DSPs for computingThus the VIRAM architecture conserves area

FFTs. while preserving the low-power benefits of a single
Section 2 gives an overview of the VIRAM ar-

chitecture paying careful attention to those architec- 1In such a pipeline the execution of all arithmetic operations

. - delayed for a fixed number of clock cycles after issue to match
twral details that impact the performance of the FF;T]'e latency of a worst-case memory access, thereby freeing the

It also discusses the key design features that makiine's issue stage. In this way the next instruction can be
VIRAM suitable for multimedia processing on smaliksued, and thus the pipeline does not stall for RAW hazards.
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chip because it avoids multiple accesses throughha 64-bit lanes can be subdivided into two or more
memory hierarchy, and because it does not requitigtual lanes Specifically, a64-bit lane can be di-
a high clock rate or the complexity of a superscalaided into two32-bit virtual lanes (which yields a
processor. Since one vector instruction initiatestatal of 8 virtual lanes), or into fourl6-bit virtual
set of operations on an entire vect®d (32-bit el- lanes (which yields a total df6 virtual lanes).
ements orl28 16-bit elements), VIRAM also has To fully utilize all the available computational
more compact instructions and greater code densibility of VIRAM, a vector operand register must
than the VLIW architectures currently being usesupply each virtual lane with one element per cycle.
in DSPs. TI's TMS320C6201 and TMS320C670This subset of a vector register's elements is known
Motorola/Lucent’s StarCore 440, Siemens (Infineoap anelement grou@nd there are always eighte-
Carmel, and Analog Device’s TigerSHARC are exnent groupsn a vector register that is filled to capac-
amples of such VLIW DSPs. This reduction in codigy. For example, foB2-bit data, the maximum num-
space and the corresponding reduction in instructiber of elements one vector register can hold4s
fetch bandwidth translate to power and performan&ince there ar8 virtual lanes, there arg elements
advantages. in one element groupand eightelement groupsn
VIRAM is a complete “system on a chip,” andne vector register.
therefore enjoys power, cost and area advantages
over multichip systems [PACI7]. In addition to the 22 VIRAM Memory Accesses
vector processor and embedded DRAM, VIRAM has
a superscalar MIPS core, a memory crossbar, andrthe VIRAM architecture there are three differ-
I/0 interface for off-chip communication. The proent ways to access memomynit-stride loads/stores,
totype implementation of VIRAM is designed to rurstrided loads/stores, andindexed loads/stores.
both the vector and scalar processor80@MHz. It Specifically, unit-stride loads/stores access consec-
has16 MB of DRAM organized inta8 banks with no utive elements of memory, whikgridedloads/stores
subbankg, four 100 MB/s parallel I/O lines, a 1.2V access memory using a constant jump between
power supply, and a power targetdivatts [Koz99]. addresses such as every other element or every
Since several of our experiments were performed eurth element. In both the unit-stride and the
fore the final VIRAM design decisions had been fstrided loads/stores, memory is accessed in a uni-
nalized, these earlier experiments assumed a memforyn pattern. Théndexedoads/stores, however, ac-
configuration of 32MB of DRAM with 16 banks andcess memory non-uniformly by accessing arbitrary

no subbanks. non-consecutive elements of memory. This non-
consecutive memory access pattern is also called a
2.1 VIRAM Pipelines gather/scatteand is accomplished in a vector archi-

tecture by using an array of indices that have been
VIRAM has four 64-bit pipelines, calledanes each pre-loaded into a separate vector register to compute
of which has two integer functional units; one of ththe memory addresses.
integer functional units also serves as afloating-pointThe VIRAM prototype implementation can gen-
functional unit. Each of these functional units sugrate four such memory addresses per cycle. For a
ports a multiply-add instruction that can complete umit-stride load or store, only one address need be
one cycle* To support narrower data widths, each afenerated per element group. Since there are eight

>The memory configuration has 2 semetrical wings, %Iement groups in a fully loaded vector register, all

banks/wing, 1 subbank/bank, 8192 rows/subbank, and 2@ight addresses can thus be generated in 2 cycles.

bits/row. So unit-stride loads and stores can execute with no
®Each figure is notated with the memory configuration thplipeline stalls caused by the address gene'ﬁator_

was assumed for the experiment being illustrated.
“4After the experiments in this paper were performed, it WA4RAM ISA and we assume in our simulations that it is imple-

decided that the floating-point functional units in the VIRAMnented. Note that the integer functional units in the VIRAM

prototype chip would not support the floating-point multiplyprototype chip do still support the multiply-add.

add instruction, although this instruction is still defined in the SIf the element groups do not start on a correct memory

2



For indexed or strided memaory accesses, howevegister would také2 cycles, one cycle per four el-
an address for each element being loaded or stoesdents. Thus fo32-bit data the strided and indexed
must be generatédiThis means that only 4 elementsnemory accesses take double the number of cycles
can be accessed per cycle. Recall that the numbeobthe unit-stride to do the access, but fog-bit
virtual lanes determines the number of elementsdata, the strided and indexed memory accesses take
an element group and that one element group canduedruple the number of cycles of the unit-stride to
computed upon in one cycle by VIRAM. If there arélo the access.

4 elements in an element group, as is the case for 64At the time the experiments in this paper were per-
bit data, then unit-stride, strided, and indexed meifiermed, the VIRAM prototype implementation and
ory operations will all be able to access 4 elemergsnulator did not decouple the memory functional
per cycle so all types of memory accesses using @it from the arithmetic functional unit pipeline.
bit data will go at the same speed and utilize all theherefore any stalls in the memory functional unit,
available computational ability of VIRAM. which are caused by the slower indexed or strided

However, when there are more than 4 elementsédgcesses or by memory bank conflicts, impact all the
an element group, as is the case for 32-bit and 16-¥s#ctor functional unit pipelines. Specifically, during
data, the unit-stride memory operations can still a@n indexed or strided memory access, the arithmetic
cess an entire element group in one cycle, since ofiictional unit pipeline is operating at half its full
one address need be computed for the entire elenganability for 32-bit data widths and at one fourth its
group. However, the strided and indexed memoﬁy" capability for 16-bit data widths. For 32-bit data,
operations for these narrower data widths can orljis means that one element group is processed by
access 4 elements per cycle, since a separate addhssgrithmetic functional unit in two cycles instead of
must be generated per element accessed and sfi SO for both of these cycles half of the available
the VIRAM hardware is limited by having only 4 adcomputational functional units are idle. In the case of
dress generators. 16-bit data the situation is exacerbated since one ele-

So generating the addresses for indexed am@ntgroup is processed by the arithmetic functional
strided loads and stores for the 32-hit and 16-bit dafit in four cycles instead of one, so for each of these
widths stalls the pipeline. The narrower the dafgur cycles three fourths of the available computa-
width, the more the situation is exacerbated. For dignal functional units are idle.
ample, for32-bit data, loading an entire vector reg- 10 address these deficiencies (which were re-
ister of MVL= 64 elements using unit-stride would/éaléd through our and other simulations), the fi-
take8 cycles, one cycle per element grotfoing nal VIRAM design was altered to include several
a strided or indexed load for the same vector regisRgrformance-enhancing improvements. One such
would take16 cycles, one cycle per four elementdmpProvement is the decoupling of the arithmetic
For 16-bit data a unit-stride load of an entire vectdtnctional unit pipeline from the memory functional
register containing MV 128 elements would still unit pipeline. With this new feature incorporated into
take 8 cycles, one cycle per element grotigHow- the chip, memory stalls for one single load or one

ever, a strided or indexed load for the same vecf@jfgle store will no longer stall the arithmetic func-
tional unit pipeline. Although the VIRAM prototype

boundary alignment, then it is possible that two addresses Wilill have a buffer to hold but one outstanding load or

have to be generated for one element group for a unit-stride gtore, the buffer size could be increased in a future
cess. In this case, the maximum number of addresses that W‘?Hll‘f)lementation

need to be generated to load or store a full vector register usin . .
a unit-stride would be exactly nine. %The effect of this improvement on our FFT im-

5The address for each element is computed by adding its dglementation is not reported in this paper since the
responding index register element’s value to a base address.VIRAM performance simulator has not yet incorpo-

"This assumes all element groups start on the correct m&Eted these features, and consequently we cannot get
ory boundary alignment. If this is not the case, then the entir — . .
load would take 9 cycles instead of 8. sﬁch results at '[hIS' time. Howeverf notwithstanding

8Same assumption as above, correct memory boundary this improvement, indexed and strided memory ac-

alignment. cesses should be used with care in the VIRAM ar-




chitecture. is well-suited to many of these applications. FFTs

In the VIRAM architecture, any instruction thagre also data-parallel, although the degree of paral-
operates on elements, such as the loads and stéeism depends on the size of the FFT and varies over
just described, must know how many bytes there dre course of the algorithm. As we will show, high
per element. This is accomplished in the VIRANperformance on short vectors is critical to the perfor-
ISA by setting a vector control register, thew con- mance of FFTs. VIRAM contains several features
trol register, to indicate the number of bytes per eleghat make short vector operations much more effi-
ment, also known as the data width. Each instructierent than in the vector supercomputers of the past,
that operates on elements does so under the constath as Cray’s C90 and T90. One such feature is a
of this vpw control register, and thus such instrudelayed pipeline organization that helps hide mem-
tions are able to access the correct number of bytey latency [Asa98, Koz99]. We will discuss addi-
per element. Consequently changing the contentdiofhal VIRAM design support for short vectors as
thevpw register causes the hardware to easily switttey become relevant to the problem of developing
from one data width to another. a high performance FFT algorithm.

2.3 VIRAM Peak Performance 3 Computing the FFT

The narrower data widths are particularly useful f
some DSP and multimedia computations. The nu
ber of virtual lanes and the number of function
units determines the maximum number O.f operatio D Discrete Fourier Transform is another N-element
that can be executed in a single cycle in VIRAM, : )
. - . . vectory given by the formula:

For example, for single precision floating-point data

: ) . o
there ares thqal Iane;, and e_ach V|rtu_al Iang has Vie{0,1... N1} y =Nl
one floating-point functional unit, sofloating-point
operations can execute in one cycle. Bdibit inte-
gers, again there afvirtual lanes, but there are two
integer functional units per virtual lane, $6 inte- _ : ik
ger operations can execute in one cycle. Since all t[Ne'S referred to as the number pbints andwy

_ . . th - .
functional units support a multiply-add instruction, i the N-point;k r020t of unity Thus the Fourier
Transform takes QY“) steps to compute.

all operations in the above examples were multiply- he Fast Fourier T ; FET) [CT65] tak
adds, then the number of operations that can execu g e Fast Fourier Transform ( )1 ] takes

in one cycle doubles for both cases. advantage of algebraic identities to compute the

Using multiply-adds, VIRAM's peak IoerformanceFourler transform inD(N log N) steps. The com-

is 3.2 GFLOP/S for single precision ﬂoating-point,pmatlon is organized inting, IV stages (for aadix

6.4 GOP/S9 for 32-bit integer operations, ant.8 2 FFT). In every stage each point is paired with an-

GOP/s for16-bit integer operations. Since the VI-Other’ the same computations are p_erformed bgtween
. ; . Ehe two, and the values are overwritten in the input

RAM chip and compiler are still under development, ) .
ctor. For example, in the first stage, andz v/,

the results in this paper are based on a near cyéfs- : .
. are paired and the computations are as follows:
accurate simulator for VIRAM and use hand opti-
mized vector assembly code for the FFT kernel.
Because multimedia applications have a high de-
gree of fine-grained data parallelism (such as paral-
lelism over all pixels in an image) a vector process#herew is one of the roots of unity. We will call
°3.2 GFLOP/s= 8 virtual lanes * 1 floating-point functional t.hls sequence of computations tbaSI.C computa-
unit/virtual lane * 2 operations/cycle * 200 Mcycles/second t!on. Note Fhat for cqmplex data, tft&iSIC. computa-
9.4 GOPS = 8 virtual lanes * 2 integer functional ionwould involve doing 1 complex multiply, 1 com-
units/virtual lane * 2 operations/cycle200 Mcycles/second  plex add, and 1 complex subtract.

Yhe Fourier Transform is a mathematical technique
?f)'r converting a time-domain function into a fre-
uency spectrum. Given an N-element vectpits

—2mijk

wherewka =e

(L‘6 :£U0+CU'£EN/2
Y = —_ .
(I,‘N/z = 20 w xN/Q




stage 1 stage 2 stage 3 stage 4

vrl
vrl<
vr2

In a complex FFT, both the;'s and the roots of
unity are complex numbers; recall that one com-
plex multiplication involves 4 multiplies, 1 add, and

0010
1 . H vr
1 subtract! while a complex add/sub involves 2 0011% 2 EZ

adds/subs, one for the real portion and one for the V¢
imaginary portiont?

Consequently, for a complex FFT, thasic com-
putationis comprised of a total of 10 arithmetic op-
erations that are necessary to compute deadterfly, \
or new pair of points, which corresponds to 5 arith- 7[ jﬁ
metic operations per point. T

I\
1010
1011 X

vr2

4 Floating-Point FFT Vector Imple- 1100

mentation uorL-

1110

In this section, we describe a vector implementation 1111
of the FFT algorithm described in Section 3. We start time

with a straightforward, or “na@é”, version, in sec-
tion 4.1. We then continue in sections 4.2 and 4.3
describing two optimizations to thegive algorithm _ . .
fj N = 16 so it haslog, 16 = 4 stages. For clarity, the fig-

that allow it to take better advantage of the VIRA gure 50 11 Nasios. - stages. ror elarty, e g

ure only shows vector register 1 (vrl) and vector register 2
architecture and thereby obtain higher performance,

vr2) which hold the real parts of the complex points. The
Throughout this section we develop the algorithm for

ma inary parts of the complex points are assumed to be in
a radix-2, single precision (32-bit), complex FFT. w3 gnd 3;:) plexp

Egi/gure 1: Data dependencies in the Cooley-Tukey FFT al-
gorithm. There are log, N stages for an N-point FFT. In this

4.1 Nave Vector Algorithm _ _
one vector operation. In Figure 1, for example, the

Figure 1 illustrates the data flow pattern for thfrst stage can be performed by loading the real and
Cooley-Tukey radix-2 FFT algorithm. In this algoimaginary parts of elements 0-7 (0000-0111) into

rithm, which we will call thenaive algorithm, there one pair of vector registers, vrl for the reals and vr3
arelog, N stages for an N-point FFT. The example ifor the imaginaries, and elements 8-15 (1000-1111)
Figure 1 is for al6-point FFT, so it shows all of theinto a second pair of vector registers, vr2 for the reals
butterflies for each of théog, 16 = 4 stages. The and vr4 for the imaginaries. Then the basic computa-
points are labeled using their binary representatiaion — the 10 arithmetic operations — is performed

and thebutterfly groupsare indicated using vrl andusing these 4 registers and the results in the four vec-

vI2. tor registers are then stored to memory. In the first
stage of this example, there a8eelements in each
4.1.1 Nave Vectorization of the vector registers, so tivector length(VL) is 8

and one vector instruction will cause the same oper-

A natural vectorization of thisidive algorithm per- ation to be performed on each of thelements. The
forms the basic computation on a set of butterflies agpact of instruction issue and memory access over-

Wesreal + 1 - Wimag) - (Treal + i - Timag) = (WrealTreal - hea(_is will be minimized when the _VL is closerto_the
WimagTimag )real + 7  (Wreal Timag + WimagTreal )imag maximum vector length (MVL), which on VIRAM is

b _ 64 for 32-bit elements.
. ((ggeal +£ mylmag))wt(:vrealﬂ Timag) = (Yreal + Treal)real | he 16- -point FFT depicted in Figure 1, no-

imag imag /imag

wherez,.; represents the real part of x angh.. represents the tice that since the first stage has a vector length of
imaginary part of x. 8, which is exactly N/2, there is only onautterfly




group and therefore there is only one vectorized baith a VL=N/2. This alternative is the mirror im-
sic computation to perform. In each successive stagge of the one explained above which we chose to
the vector length is halved and the number of buttéemplement. Both versions must access memory us-
fly groups doubles. For every stage, each butterfyg a random access pattern. As mentioned above,
group requires using a different root of unity for it®ur implementation uses an indexed store after the
basic computation. So for this example, stage 1 udast stage and unit-stride loads and stores for all the
only one root of unity, stage 2 uses two roots of unitgemaining stages. The alternative algorithm just de-
stage 3 uses four roots of unity, and stage 4 uses eigtiibed uses indexed loads before its first stage and
roots of unity. unit-stride loads and stores for all of its remaining
After all the basic computations have been comstages. Therefore the two algorithms are exact mir-
pleted for the last stage, the order of the elementsdgs of each other, so our choice to use one over the
bit reversed This means, for instance that elemewmither will have no impact on the performance data
1 (0001) must be swapped with elemeén{1000). we collected.
Similarly element 2 (0010) must be swapped with el- The second alternative to doing the bit reversed
ement 4 (0100). Therefore the final step in théfve swapping after the last stage is to repeatedly rear-
algorithm is to do the bit reversed swapping of all thenge the order of the elements between the stages.
elements so that the final array of elements in meffais can be accomplished by either an indexed store
ory will be in the correct order. This bit reversal caof the intermediate results after completing each
be accomplished in our implementation of t@ve stage, or an indexed load of these intermediate val-
algorithm by simply storing the results sitting in thees before doing each of the following stages. By
four vector registers using an indexed store. To doing this intermediate element rearranging between
the indexed store, an array of the appropriate offsatages, the results after the last stage will then be in
is first loaded into a vector register and then these affie correct bit reversed order. This second alternative
sets are used to compute the appropriate bit reverseslild use a unit stride load before the first stage and
address for each result element to be stored. a unit stride store after the last stage. Each interven-
ing stage, however, would either use an indexed load
followed by a unit-stride store, or a unit-stride load
followed by an indexed store. Besides being much
This section clarifies why theaive algorithm de- more complicated to code, this second algorithm al-
scribed above was the appropriate one upon whignative uses more indexed operations than either
to build. Observe that our implementation of thghe first alternative or ounaive algorithm uses, so
naive algorithm uses unit stride loads and stores fafe did not use it as the starting point for our research.
all stages but the last one. After the last stage an
indexed store is used in order to place the final re- . .
sults in memory at a different location from the inpu‘*'l'3 Performance of the Né&ve Algorithm

points in bit reversed ordé?. _ . Throughout this section all intermediate perfor-
There are two alternatives to doing the bit reversgghnce figures that appear assufebit, floating-

swapping — the indexed store — after the last staggint, single precision, complex arithmetic and give

The first is to load the points in bit reversed ordgferformance numbers for FFT sizes that are assumed

beforethe first stage. This requires a slight changg pe powers of 2 and that range betwdemnds192.

in the algorithm.  Specifically the first stage woulgtoy 5| the figures in this section it was also assumed

have N/2 butterfly groups, each with a ¥L1. In {hat there were 32MB of memory divided into 16
this case the number of butterfly groups would halygnks with no subbanké.

and the VL would double for each successive stage

until the last stage would have one butterfly groulpl4We assume that most applications will perform a series of

FTs, all of the same size, and we therefore precompute the

13The hit reversal uses twice the memory space as an in-plagets of unity and some other values that are determined by the

algorithm, which stores the results back into the original inpptoblem size. Thus these computations are not included in our
array. performance results.

4.1.2 Alternatives to the Nave Algorithm




Number of | Percent of | Percent of
FFT points | Total Time | Total Work
2200 IRAM Peak Performance (2000 MFLOPS) 1024 94% 60%
jzzz | a— 512 95% 67%
1600 A 1 gé: gg::: 256 96% 75%
o 408 —$— 128 points 128 97% 86%
g e O vi=s=stanes 64 100% 100%
g O 32 100% 100%
ZZZ Figure 3: The percentages of total time and total work
04 ]

that the floating-point 32-bit complex naive FFT algorithm
spends in stages whose VL is less than MVL. Note: For all
FFT sizes less than 128 both percentages are 100% since the
VL starts out less than MVL.

Figure 2: Performance in MFLOP/s of each stage of a
floating-point, single precision, 32-bit, N-point, radix-2 FFT  adds,2 multiplies, and4 adds/subs, or a total of
using thenaive FFT algorithm on VIRAM for N = 128, 256,  floating-point arithmetic operations, which results in
512, and 1024. The circled points indicate the stage at whichthe 2 GFLOP/s maximum for this mix of instruc-
the VL=8=the number of virtual lanes. The double circlesin- tions?l6
dicate the stage at which VL=64=MVL. The 2 GFLOP/sline  The overall performance of this algorithm is a
shows the maximum performance for the 32-bit, floating- disappointing 206 MFLOP/s for &024-point FFT.
point FFT computation that might be ideally attainable on Looking at the performance for each stage in Fig-
VIRAM, taking into account only the arithmetic operations.  ure 2, the reason becomes clear: the time is domi-
Memory: 32MB, 16 Banks, No Subbanks. nated by the later stages of the FFT, which have short
vector lengths. For all the FFT sizes in Figure 2, the
. ) first stage is somewhat slower than the second be-
_ Figure 2 shows the performance of tive algo- 5,;se the program start-up overhead is included with
rithm in MFLOP/s for each stage of FFTs of varioug,e first stage only. Since the vector length is greater
sizes. The performance for a given stage depengds,, 5| to MVL = 64 for the earlier stages, these ear-
primarily on the length of its vectors, so as the Vef, giages (after the first) achieve a respectable rate
tor length is halved from one stage to the next, e 14901800 MFLOP/s, but the rates for the later
MFLOP/s rate dramatically decreases as well. stages where the VL drops below MVL are much
The 2 GFLOP/s line in Figure 2 shows the maxgwer. The performance degradation is especially se-
imum performance for the radix-2 comple3@-bit, yere after the vector lengths fall bel@&wbecause not
floating-point FFT computation that might be idey)| of the 8 single precision virtual lanes, and there-
ally attainable on VIRAM, taking into account onlyore not all of thes floating-point functional units,
the arithmetic operations. As explained above, thes being fully utilized. Figure 3 gives the percent-
VIRAM hardware peak o8.2 GFLOP/s for single gge of total time that thedive algorithm spends
precision floating-point can only be obtained whegymputing in all the stages that have a VL less than
multiply-add instructions are used; most other singi¢\/|_ and the percentage of total work that the work
precision floating-point instructions have a hardwayg these stages represents. In particular, i024-
limit of 1.6 GFLOP/s:> Of the 10 arithmetic oper- nint FET, 94% of the algorithm’s total time is spent
ations within a basic computatio, multiplies and computing in the last 6 of the 10 stages, although the

2 adds can be combined infomultiply-add instruc- \york in these stages constitutes only 60% of the total
tions. Thus, the basic operation becoresultiply- \york.

151.6 GFLOP/s= 8 virtual lanes *1 floating-point functional %2 GFLOP/s= 2 multiply-adds(MAs)8 total * 3.2 GFLOP/s
unit/virtual lane *1 FP operation/cycle 200 Mcycles/second 46 non-MAsR total #1.6 GFLOP/s
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4.2 Optimization #1: Auto-increment ad- Al). The rightmost two columns give the percentage
dressing of MFLOP/s gained by adding: 1) only the auto-
increment feature to the originalaive algorithm,

In order to optimize th@aive FFT algorithm for VI- 54 2) photh the auto-increment feature and the bit
RAM, the performance degradation observed in F'Eb'versing to the originataive algorithm.

ure 2 for the stages whose vector lengths were Shorteﬂnfortunately, there is only a 6% to 20% perfor-
than MVL has to be reversed. With this as the focus,;ce improvement realized by utilizing the auto-
our first optimization utilizes aauto-incrementea- jncrement feature. For example, forl@24-point
ture for memory operations that automatically aquq;T’ the overall performance using theive al-
an increment value to the current address in OrdergIBrithm without the auto-increment feature was 202
obtain the next address. The auto-increment feat‘Nﬁ?LOP/s, while with auto-increment it was 225
is useful, for example, when processing a sub-imagﬁ:Lop/S, a gain of only 23 MFLOP/s.
of a larger image in order to jump to the appropriate oq can be seen in Figure 4, the peak improvement
pixel in the next row. In the FFT it can be used tg¢ oo is reached for FFTs of sizel2, 256, and
jump between butterfly groups. 128. Reducing the number of scalar operations for
Without the auto-increment feature, scalar codefigTs of these sizes tips the ratio of scalar to vector
needed to calculate the next address to be accesggdyations in just the right direction to realize this
The overhead for this scalar address manipulatiofo, penefit. However, when this ratio either grows
can be hidden only if the vector functional units arg shrinks auto-incrementing ceases to have a signif-
kept busy for an equal or greater number of cyclgggnt positive effect on performance.
Since the vector unit can complegesingle preci- Inspecting Figure 4 we observe that the improve-
sion, floating-point element operations per cycle, ajgknt in performance is lower for FFT sizes less than
since the scalar unit can complete only 2 per cyclg)g  Since 100% of the work done by these smaller
there must be 4 vector element operations for v=Ts js being done in stages whose vector lengths
ery one scalar operation for the scalar operationdgs shorter than MVL, the ratio of scalar to vec-
be hidden. Vector computations with short vecteg, operations is quite large. This is because the
lengths contain fewer vector element operations, ag@ps containing shorter vector lengths do fewer vec-
thus can hide fewer scalar operations. Thus by §g; gperations but still require the same number of
ducing the scalar code overhead for the stages Whth?p-controIIing scalar operations as the loops con-
vector lengths are short, the auto-increment featquning longer vector lengths and more vector opera-
helps to improve the performance of thave algo- tjons, The auto-incrementing does reduce the num-
rithm because there is less scalar code to hide.  per of scalar operations in each of these stages, but
for the smaller FFTs this small reduction in the num-
ber of scalar operations doesn't really significantly
change the ratio of scalar to vector operations enough
to show a decent improvement in the overall perfor-
In Figure 4 the MFLOP/s rates for 32-bit, floatingmance. In other words, the overall performance is
point, complex FFTs ranging in size from 4- to 819till limited by the comparitively large number of
points are presented in table form. The secormtalar operations that remain even after employing
third, and fourth columns contain the MFLOP/s ratihe auto-increment feature.
achieved by different versions of theive algo- A good analogy of what is happening is that of
rithm; from left to right these columns hold resultgropping some coloring agent into a large bucket of
generated by: 1) the originalaive algorithm im- water. If we take two such buckets that have an equal
plemented without the bit reversal rearrangementahount of water (scalar operations) in them and if we
the final points and without the auto-incrementindrop the same amount of coloring agent (vector op-
(No BR, No Al); 2) the same algorithm as (1) witherations) into both buckets, the water in both buckets
auto-incrementing addedN6 BR, Al); 3) the same will be the exact same color. If we start again but re-
algorithm as (2) with the bit reversal adde®R, move a few teaspoons of water (the scalar operations

4.2.1 Performance of the Auto-increment Opti-
mization
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#FFT | NoBR | NoBR | BR & % | %
points | No Al Al Al Al | BR
8192 247 264 253 | 7% | 2%
1024 202 225 206 | 11% | 2%
512 186 223 196 | 20% | 5%
256 166 200 175| 20% | 5%
128 146 175 154 | 20% | 5%
64 123 145 129 | 15% | 5%

32 100 118 104 | 18% | 4%

16 78 90 79| 15% | 1%
8 56 62 56 | 11% | 0%
4 35 37 35| 6% | 0%

Figure 4: This table reports the MFLOP/s rates for 32-bit floating-point, complex FFTs ranging in size from 4 to 8192
points. The second, third, and fourth columns contain the MFLOP/s rate achieved by different versions of theaive algo-
rithm. From left to right these columns hold results generated by: 1) the originalnaive algorithm implemented without the
bit reversal rearrangement of the final points and without the auto-incrementing (No BR, No Al); 2) the same algorithm
as (1) with auto-incrementing added (No BR, Al); 3) the same algorithm as (2) with the bit reversal added, (BR, Al). The
rightmost two columns give the percentage of MFLOP/s gained by adding: 1) only the auto-increment feature to the original
naive algorithm, and 2) both the auto-increment feature and the bit reversing to the originalnaive algorithm.

eliminated by using the auto-increment feature) frogorithms used to generate these curves omit the final
one of the buckets, the color in the water will stibit-reversing. The x-axis useslag, scale for the
appear to be the exact same color although we knBWT sizes, which range from N = 4 to 8192.

that one of them is slightly less diluted and therefore The two curves practically coincide for the smaller
darker in color (better performance) than the otherFFT sizes. They move farther apart for a short dis-

As we see from Figure 4 the improvement itance where the 20% improvement is realized, and
performance from auto-incrementing is also lowénen they begin to converge so the gap between them
for FFT sizes higher thafi1l2 because these FFTsteadily decreases. We can therefore infer from
have many stages that operate with VL=MVL. Corkrigure 5 that as the FFT size increases, there is a
sequently during these stages that have VL=MVhigh probability that the increase in MFLOP/s per-
these FFTs generate many vector operations, whiohmance contributed by auto-incrementing will be-
hide most of the scalar operations. Therefore as twme negligible and insignificant. For this reason we
FFT size increases, the vector operations hide all theist find a more effective way to optimize the per-
scalar operations that are possible to hide. Thus foemance of thenaive algorithm.
benefit to be gained from auto-incrementing, whose
primary purpose is to reduce the number of sca@'rz_2 Bit Reversal Rearrangement
operations, disappears.

This behavior can be visually seen in Figure 3s just described, the top and bottom curves in Fig-
which shows the MFLOP/s performance for eacalre 5 represent the performance of thave al-
FFT size for thenaive algorithm implemented in gorithm when implemented with and without utiliz-
three ways. At this point, we will only concerring the auto-increment feature. However, neither of
ourselves with the top and bottom curves in tithese versions of the algorithm do the necessary bit
figure: the upper curve represents the performarresersal rearrangement of the final data points. Bit
of the naive algorithm with auto-incrementing andeversal rearrangement of data can be quite expen-
the bottom curve represents the performance of thiee on some machines because, like the FFT itself,
naive algorithm without autoincrementing. Both althere is little data locality. Furthermore, there is
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We now examine the middle curve in Figure 5
which shows the MFLOP/s performance of tigive
algorithm that has been implemented with both auto-
incrementing and the bit reversal rearrangement. Al-
though this third curve is between the two other
curves, it is very close to the bottom curve.

The actual percent improvement of the auto-
incrementing, bit reversing implementation over the
original naive implementation that had no auto-

250

200 +

150 -

MFLOPS

100 -

0 ] 9 piave wilhout autGincrement incrementing and no bit reversing is listed in the
—#— Naive with autoincrement and BR rightmost column of Figure 4. Although the im-
i k% e m o se o 102 provement follows the same pattern as that described
Size (#points in FFT), log scale above for auto-increment in that the FFTs of siZe

to 512 have the peak improvement of 5% with the
smaller and larger FFT sizes showing improvements
Figure 5: VIRAM performance, measured in MFLOP/s, |ess than 5%, the improvement percentages are much
of three implementations of thenaive FFT algorithm for  smaller. We can thus conclude that whatever perfor-
various FFT sizes. The first implementation,Naive without mance is gained from utilizing the auto-increment
autoincrement is the original naive algorithm with no bit  feature is all but lost doing the final bit reversal re-
reversal and no auto-incrementing. The second implementa- arrangement.
tion, Naive with autoincrementjust adds auto-incrementing
to the first. The third implementation, Naive with autonin-
crement and BR adds the bit reversal rearrangement to the
second. Alog, scale is used for the x-axis. Memory: 32MB,
16 Banks, No Subbanks. Due to the negligible performance gains from the use
of the auto-increment feature in theive algorithm,
alternative approaches that might yield a more sig-
a significant amount of address (pointer) arithmetigficant gain need to be considered if thaive al-
that is computed using scalar code. Adding MOgRyithm is to be optimized. One such approach is
scalar code to the originalaive algorithm would o regrganize the data layout in memory in order to
only exacerbate the problem that we are trying fRaximize vector lengths in the later stages of an FFT.
ameliorate by utilizing the auto-increment featurg, particular, by viewing the 1D vector as a 2D ma-
i.e., to reduce the scalar code density since it cafx and performing a reorganization equivalent to a
not by hidden behind the vector computations wheRyrix transpose operation, one can increase the vec-
the vector lengths are short. For this reason we gig length used for the later stages in theive al-
not implement a version of the original, non-autqyorithm. However, to keep full vector lengths, one
incrementingnaive algorithm with the bit reversal may have to do several in-memory transposss, 5
rearrangement. Instead we added the bit reversingjfes in al128-point FFT, which would clearly pose
the auto-incrementingaive algorithm. a performance problem, and would be even worse
The data in Figure 4 corroborate the claim th&br vectors smaller thah28 elements. Furthermore,
adding the bit reversal rearrangement does exacgnce an in-memory transpose in the VIRAM archi-
bate the scalar code bloat and therefore the perftaeture is implemented by doing an indexed load or
mance of any version to which it is added. We sem indexed store, both of which cause functional unit
that adding it to the auto-increment version of thaipeline stalls as described above, it became clear
naive algorithm adds an average of approximatethat in-memory transposes would have a negative
12% overhead to the MFLOP/s rate of the auteffect on the performance of theive algorithm.
increment version slowing it down by up to a factoFherefore this in-memory transpose alternative was
of 1.09. not considered a viable choice for optimizing the

4.3 Optimization #2: Transpose-based al-
gorithm
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naive algorithm on VIRAM. 4.3.2 Transpose example

For illustration purposes, assume MVLSandN =
4.3.1 In-register transposes 16. The first stage (and any previous stage in a larger
FFT) would be performed by vectorizing across the

However, an alternative to the in-memory transpobatterflies as in thaaive algorithm using a maxi-
is to transpose the elements within the vector regisum vector length of as pictured in Figure 1. Since
ters themselves. This approach eliminates the negalgel in this example has one butterfly group with
for intermediate memory accesses (which clearly\V8. = MVL, one vectorized basic computation would
an optimization) and it keeps the vector lengths equsl performed on all correspondisgelement pairs,
to MVL throughout the later stages of thwive i.e, elements 0-7 with elements 8-15. Therefore, at
algorithm, thus eliminating our short vector lengtthe beginning of stage 2, the two pairs of registers
problem. Our new in-register transpose algorithr(i,e., the real pair, vrl and vr2, and the imaginary
called the"vhalf” algorithm, uses thenaive algo- pair, vr3 and vr4) hold intermediate values for ele-
rithm to vectorize all stages whose vector length fisents 0-7 and 8-15, respectively.
equal to or bigger than MVL. As explained earlier, the new VL for stagewill

The stage whose vector length equals MVL/2 wille 4, which is half the VL of stagd, and the new
be the first stage for which the in-vector registerumber of butterfly groups for stage will be 2,
transpose is utilized. For single precision data M\lvhich is twice the number in stage Since the stage
= 64, so the in-vector register transposing woullVL, which is 4, is MVL/2, stage? is the first stage
be performed for the lagt stages where the vectoin which the in-vector register transposes begin. The
length starts a82, and is repeatedly halved for eackirst stage2 butterfly group needs to pair elements
successive stage, until the last stage, when it is eqd& with their corresponding elements 4-7, while its
tol. second butterfly group needs to pair elements 8-11

Recall that the vector length determines how mamyth their corresponding elements 12-15 as depicted
elements there are in one butterfly group and eashder stage 2 of Figure 1.
butterfly group uses a different root of unity. When The first optimization is to rearrange the elements
VLis 32 and MVL is64, for instance, there aB2 el- in the vector registers in order to eliminate the need
ements in one butterfly group; so one vector registerdo the swap via memory accesses between each
can hold all the elements for 2 butterfly groups. Ilstage. The second optimization enables both stage
this case, when the basic computation is performbditterfly groups to be done together using one vec-
on the elements in this register, another register cotdized basic computation with a VL &f and it ex-
have its first 32 elements equal to the first root ténds this concept to all the remaining stages so that
unity and its second 32 elements equal to the secam@matter which stage is being computed VL is al-
root of unity so that two butterfly groups could bevays equal to MVL and multiple butterfly groups are
computed with one vectorized basic computation. computed using one basic computation.

Similarly, for the next stage whose VL would be Consequently, after the stagein-vector register
16, one vector register could holdbutterfly groups, rearrangement, the first set of vector registers (vrl
each havingl6 elements, and the vectorized baand vr3), which initially held the real and imaginary
sic computation can be performed on albutterfly parts for elements 0-7, would end up holding the real
groups using another vector register having 16 copesd imaginary parts for elements 0-3 followed by el-
of each of the first four roots of unity. In this manements 8-11. Likewise, after the rearrangement, the
ner, each basic computation could be performed second set of real and imaginary vector registers (vr2
vector registers with VL = MVL, so the algorithmand vr4), which initially held elements 8-15 would
would be optimized for all of the short vector lengtiend up holding elements 4-7 followed by elements
stages. Note that in the VIRAM architecture, to s&R2-15. Notice that for the real values, the rearrange-
the vector registers up with the proper pattern of tiieent essentially swaps the last four elements, 4-7, in
roots of unity, an indexed load must be used. vrl with the first four elements, 8-11, in vr2, and it
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stagelto 2 stage2to 3 stage3to 4

vrL [of1]2[sla][s[el7]  vr1 [o]2]2]3[s[s]w0[u] 1 01455:/91213
vr2 | 8] 9]10]11]12]13] 14] 15] vr2 [4]5] 6] 7]12]13] 14 15] vr2 | 2]3] 6] 7]10]11]14]15]

@ (b) (©

Figure 6: In-register movements for the final 3 stages of a 16-point FFT, illustrated with 8 elements per register. Each
diagram illustrates which points occupy each of the vector registers’ element slots before the indicated swap. This means
that diagram (b) illustrates the position of the elements after the swap indicated in diagram (a), and diagram (c) illustrates
the position of the elements after the swap indicated in diagram (b). Although it is not shown in the figure, after the swap
indicated by diagram (c), all the even numbered points are in vrl and all the odd numbered points are in vr2. Note that
just the vector registers which hold the real portions of each element,e., vr1 and vr2, are used in this figure. An identical
pattern of swapping would be done between the vector registers which hold the imaginary portions of each elemeirg,, vr3
and vr4

does an identical swap for the imaginary values Kigure 6, after the swap indicated by diagram (c) has
vr3 and vr4. occurred, vrl holds all the even numbered points and

This element swapping within the vector registe¥2 holds all the odd numbered points. Notice that
from stage 1 to stage 2 is illustrated in Figure 6. Miith each successive stage, the number of butterfly
this Figure, diagram (a) shows the points that are doups is still doubled and the number of elements in
cupying each element slot for vrl and vr2 before tig@ch butterfly group is still halved. What is different
indicated swap with arrows indicating the elemeni§ that multiple butterfly groups are being computed
that will be swapped, and diagram (b) shows ttsing one vectorized basic computation (with VL =
points that are occupying the element slots for boMVL = 8 for this example).
vector registers after the swap in diagram (a) has ocdf our example was &2 or 64-point FFT instead
curred. Notice that for stag®, with the elements of a16-point FFT, but the MVL remaine#, a whole
swapped as in diagram (b) and with another vectagw set ofl6 real and imaginary elementse., the
register holding the first root of unity in the first founextouter iterationbutterfly group, would be loaded
element positions and the second root of unity in tfirgo the four registers and stages 2 through 4 would
second four element positions, the vectorized babie performed for them in a similar fashion. This pro-
computation is being done once for two shorter butedure would iterate until the computations for all
terfly groups instead of twice, which illustrates théhe remaining groups dft elements had been com-
second optimization. pleted,i.e. all points in the N-point FFT had been

After the stage computations have thus been pep_omputed. Notice that the number of elements in
formed for these rearranged elements, the elemeh¥§ outer iteration butterfly group is always equal to
are once again rearranged in the vector registersMy’ L * 2 since two vector registers must be filled
a similar fashion to allow for stages 3 and 4 to paith MVL elements (unless the number of points in
done on those same setIif elements. These rearthe FFT is less that/ V'L « 2).
rangements are illustrated by diagrams (b) and (c) in

Flgu.re.6. ) ) - 4.3.3 Implementation of The In-register Trans-
Similarly, diagrams (b) and (c) illustrate the points pose

that are occupying each of the vector registers’ ele-

ment slots before the indicated swaps and arrows As illustrated above, the in-register FFTs require
dicated the elements that will be swapped. Diagrasomething akin to memory transpose operations but
(c) shows the points that are occupying the elemehé data stays within the vector register file; the in-
slots of vrl and vr2 after the swap indicated by diaegister data movement is much less expensive than
gram (b) has happened. Although not illustrated @oing memory accesses between each stage. Recall
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that Figure 6 shows the desired pattern of data moveContinuing this pattern for stage the vector con-
ment between register pairs in the final stages of ttnel register, vindex, is set td@, since we want to
16-point FFT, with the arrows indicating elementsove?2 conntiguous elements ardd = 2. The re-
that should be swapped. maining code is identical to the code given above,
To help provide this functionality in the VIRAM however the swapping pattern is very different. Re-
ISA, two new instructions were addeghalfup fer to diagram (b) in Figure 6 for a visual illustration
andvhalfdn . These instructions perform one-wapf the stage3 swapping pattern. In particular, af-
moves that shift a specified number of contiguous &&r copying the vrl elements into the temporary vec-
ements either upvhalfup ) or down {halfdn ) torregister, vr5, as before, twbalfup causes the
between registers. A sequence consisting of cdfirst and second elements of vr2 to be put into the
register-to-register copy followed by onbalfup third and fourth element slots of vrl and the fifth and
and onevhalfdn accomplishes the pattern of dataixth elements of vr2 to be put into the seventh and
movement required for the FFT. eigth element slots of vrl. This is then followed by
An argument in a control register (vindex) indithevhalfdn which causes the third and fourth ele-
cates the number of contiguous elements to be mowveents of vr5, which are identical to the original vrl
as well as the number to skip when more than onentents, to be put into the first and second element
group of elements will be moved. This number mustots of vr2 and the seventh and eighth elements of
be a power of two and is expressed as an exponefb to be put into the fifth and sixth element slots of
For instance if32 elements are to be moved, themr2. This then completes the swap for stdge
the number in the control register should iebe-  Diagram (c) in Figure 6 shows which points oc-
cause2® = 32. If 16 contiguous elements are to beupy the elements slots for vrl and vr2 after the
moved usingvhalfup and MVL = 64, the num- stage3 swaps have been completed. Notice that
ber in the control register should He This would vhalfup/dn ~ move mulptiple groups of contigu-
cause the first group db elements to be moved intoous elements and the number of groups moved is
higher numbered slots, the next groud 6felements controlled by the value in the vector control register,
to be untouched, the third group Id to similarly be vindex. With these new instructions, any FFT of size
moved to higher numbered slots, and the last grol@8 or larger (for32-bit values) and of siz€56 or
of 16 to be left alone. The pattern would be slightarger (for16-bit values) can be performed with the
different forvhalfdn . In that case the first group ofmaximum vector length throughout all stages of the
16 elements would be untouched, the second grocpmputation. These instructions could also be used
would be moved to lower numbered slots, the thitd stacka small number of shorter FFTs, for example
group would be left untouched, and the fourth growgxecuting fou32-point FFTs in parallel.
would be similarly moved to lower numbered slots. The implementation ofhalfup andvhalfdn
Using the saméd6-point FFT example as abovejn VIRAM was simplified due to the fact that these
the VIRAM code with the newvhalfup and two new instructions can be seen as extensions of
vhalfdn instructions that will accomplish the stagexisting VIRAM ISA support for fast in-register re-
2 swap described above is shown in Figure 7. ductions,e.g.,computing the sum of all elements in
For stage2 the vector control register (vindex) isone vector register. With reductions, one repeatedly
set equal t@®, since we want to mové contiguous moves the top half of the vector register to the bot-
elements an@? = 4. To do the stag@ swaps, first tom half of a second register, and performs a vector
vrl is copied to a temporary vector register, vr5, uaddition using half the vector length of the previous
ing thevmerge.vv instruction. Thevhalfup in- addition. This process is repeated until the vector
struction moves the first four elements in vr2 into tHength is one. This pattern of movement is similar to
last four element slots of vrl. Thnalfdn instruc- that induced bwhalfdn , with the exception that
tion then moves the last four elements in vr5, whickhhalfdn  adds the ability to move non-contiguous
are the original last four elements that were in vribjocks of elementsyhalfup generalizes that pat-
into the first four element slots of vr2. This then contern to work in the other direction as well.
pletes the swap for stage Although these new instructions were added to the
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li to, 2 # Loads 2 into general purpose register t0
ctc2 t0, vindex # Loads 2 into vector control register vindex

vmerge.vww vr5vr5,vrl  # Copies all the elements in vector register 1
# into temporary vector register 5

vhalfup vrl,vr2 # Moves the first 4 elements of vector
# register 2 {8-11) into the last 4 element
# slots of vector register 1 {4-7)

vhalfdn vr2,vr5 # Moves the last 4 elements of temporary
# vector register 5 (4-7) into the first 4
# element slots of vector register 2 (0-3)

Figure 7:This code illustrates the instructions that are necessary to do the stage 1 to stage 2 swap shown in Figure 6 for
the 16-point FFT example. The vector control registervindex , indicates how many and which elements thehalfup and
vhalfdn  operations should move. The code assumes that vrl holds the first 8 elements (0-7) and vr2 holds the second 8
elements (8-15). vr5 is a temporary vector register used to hold a copy of vrl.

VIRAM ISA to support the FFTs and other smalperformance that might be ideally attainable on VI-
transposes, the additional hardware support to doRaM, taking into account only the arithmetic opera-
was minimal. Given the recognized need for fast riens.

ductions in a variety of applications, the VIRAM de- As we observed in Figure 2, for all the FFT sizes
sign had already incorporated the inter-lane commut the128-point, the first stage is somewhat slower
nication hardware necessary to support doing thekan the second because the program start-up over-
reductions. This same hardware with a few addiead is included with the first stage only, and as long
tional control lines was required to implement thas the VL is larger or equal to MVL = 64, the perfor-
vhalf instructions [Koz99], so there was practicalljnance is maintained at a respectable 1.8 GFLOP/s.
zero hardware cost and much to be gained in implBhe performance curve for th28-point FFT is the
menting them. exception because its second stage, having a vector
length of MV L /2 = 32, does not meet this criteria.

In fact it is the first stage of th&28-point FFT that
hasaV L = 64 = MV L, and were it not for the start

up overhead being included, its first stage GFLOP/s
Figure 8 shows the MFLOP/s rate for each stagewbuld be close to the 1.8 mark as well.

the optimizedvhalf FFT algorithm. This implemen- Recall that the first stage in which the in-register
tation includes th@ewvhalfup andvhalfdn in- transposes occur is the stage in which VL = 32 =
structions, the auto-incrementing, software pipeliMVL/2. For each of the curves we see a steep dip in
ing, code scheduling, and it uses indexed loadstire performance of this stage because the GFLOP/s
each of the lash stages to load the roots of unity intoate for this stage includes the overhead for switch-
the vector registers with the correct pattern; the finialg from thenaive algorithm to thevhalf algorithm,
output points are bit reverse rearranged. The douhich incorporates thehalf algorithm setup for the
ble circles indicate the stages in which VL = MVL zroots of unity and the bit reversal. The stage imme-
64, and the open circles indicate the stages in whidiately following this first vhalf stage recovers, and
VL = 8, the number of virtual lanes. As in Figure 2for all the curves the next four stages maintain a per-
the 2 GFLOP/s line on the plot shows the maximuformance of 1.2 GFLOP/s, which indicates 60% uti-

4.3.4 In-register Transpose Performance Re-
sults
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of the 128-point FFT to be 440, of the 256-point FFT

to be 527, of the 512-point FFT to be 656, and of the
2200 PP ———— 1024-point FFT to be 977. This tells us the MFLOP/s

— rate for the last stage is getting better as the num-

i ber of points in the FFT increases. Since the ratio
4 128 points of floating-point operations to store operations is al-
ways 8 to 4, we would expect the MFLOP/s rate for
@ ! this last stage to be the same regardless of the size of
the FFT, and therefore we should not be seeing this
behavior. There are two possible reasons we see this
improvement in the vhalf last stage MFLOP/s rate as
A the FFT sizes increase.

Stage # The first reason for the increase in performance
of the last stage as the FFT size increases is that
larger point FFTs provide more chance for amortiz-

Figure 8:Performance of each stage of a floating point, sin- ing the cost of certain memory operations. In par-
gle precision, 32-bit, N-point FFT using the optimizedvhalf - tjcylar, the latency of the last store of the last vhalf
FFT algorithm on VIRAM for N = 128, 256, 512, and 1024. stage is completely exposed for the 128-point FFT,
The circled points indicate the stage at which the VL = 8 gjnce that store is the last operation of the entire FFT
= the number of virtual lanes. The double circles indicate calculation, and the stage is not considered complete
the stage at which VL = 64 = MVL. The 2 GFLOP/s line nj| gl its operations have been completed. When
shows the maximum performance for the 32-bit, floating- the EET size is 256-points or larger, the last mem-
point FFT computation that might be ideally attainable on ory store for the last vhalf stage is executed multi-
VIRAM, taking into account only the arithmetic operations. ple times, once for each 128-point group, or, in other
Memory: 32MB, 16 Banks, No Subbanks. words once for each outer loop iteration. Since the
last vhalf stage is considered complete when the last
outer loop iteration completes, only the last store in

Itlﬁ athL(gJFr;?g t?e?e \t/: alt st?ges. _Thetrelasonst HaL Jast vhalf stage of the last outer loop iteration has
© s rate for these stages IS not closer to elatency exposed; the latencies of the last stores

VIRAM peak of 2.0 GFLOP/s will be discussed bt the last vhalf stage in earlier iterations are hidden
Section 6. by the later iterations, since there are multiple func-
Notice also that for all the curves in Figure 8, thgonal units working at the same time. Since the num-
GFLOP/s rate for the last stage shows a steep degj@r of outer loop iterations increases with the size
dation. This is the effect of the bit reversal that isf the FFT, larger point FFTs have more opportunity
being done at the end of the last stage. Specificafyy amortizing the memory store overhead and cor-
the indexed store of the contents of each of the foigspondingly the last stages of the larger FFTs have
vector registers that hold the results is slowing thggher performances than those of the smaller FFTs.
memory functional unit pipeline, and therefore the The second reason that the MFLOP/s rate for the
arithmetic functional unit pipeline, by at least a factqgst stage gets better as the size of the FFT increases
of two. This occurs because the arithmetic functiongls to do with memory bank conflicts. Specifically,
unit pipeline is not decoupled from the memory funGince we know that memory bank conflicts will be
tional unit pipeline. If the memory unit experiencegependent on the layout of the data in memory, and
any bank conflicts from the random accesses iffyce the data will have a different layout for each
memory, then these conflicts will stall the memoryifferent size FFT, the differences we observe in the
functional unit even more, which in turn will stall\jE OP/s rate for the last stage of the various sized
the arithmetic functional units for the same nuMbetTs are partially attributable to different patterns of
of cycles. memory conflicts. Because the points of a smaller
Figure 8 shows the MFLOP/s rate for the last sta& T are closer together in memory than the points of

MFLOPS

VL=64=MVL OVL:S:#IaneS
T T

10
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alarger one, there is a higher probability that the c«
secutive addresses generated by the indexed si

for the smaller FFT sizes are in the same bank ¢ 2200 P
therefore these smaller FFTs experience more m S [P rer—
ory bank conflicts during the indexed stores of t 1o0p | | Naive with Al and BR
last stage than the larger ones do. For both of th ;10
reasons the last stage of the 1024-point FFT cc &
pletes with a better MFLOP/s rate than the others £ .-
Notwithstanding the slowdown in the last stage 600 ]
each curve, Figure 8 verifies that with the nealf 400
algorithm the total time is no longer dominated | 2‘“;7’—"—’_"__'——'—_'—_.
the time spent in the later stages of the FFT whi 128 2% sz 1024 208 0% 102
the vector length falls below MVL. As a matter ¢ Size (#points in FFT), log scale

fact, the time spent in the laStstages drops from the
94% that we saw with theaive algorithm to 70% _ _
with the vhalf algorithm, which includes the bit re-Figure 9: Comparison of the performance in MFLOP/s of
versal slowdown, and which comes closer to the 60R4/0ating point, single precision, 32-bit, N-point FFTnaive
of total work that the lasé stages represent inid® implementation with the optimized vhalf FFT implementa-
stage, 1024-point FFT. Since we observe no degfgP o VIRAM for N = 128, 256, 512, 1024, 2048, 4096, and
dation in performance similar to what we saw witB192. The 2 GFLOP/s line shows the maximum performance
thenaive algorithm when the vector lengths beconfar the 32-bit, floating-point FFT computation that might be
have solved the short vector length problem exhiffithmetic operations. A log, scale is used for the x-axis.
ited by thenaive algorithm. Memory: 32MB, 16 Banks, No Subbanks.

To corroborate this observation, Figure 9 com-

pares the overall MFLOP/s rate for each size FFT fgne to memory bank conflicts. We discuss this phe-
the two implementations: theaive algorithm and nomenon and explain its performance impact later in
thevhalf algorithm. Both implementations do the biection 6. Nonetheless, even the 1024-point rate of
reversing and the auto-incrementing. Tealf al- 1267 GFLOP/s, which is the highest rate in the fig-
gorithm in this figure is the same as the one in Figre, represents only a 63% utilization of the VIRAM
ure 8. As in previous figures, the 2 GFLOP/s line o)l potential. This behavior is due to architectural

the plot shows the maximum performance that migifiosyncrasies that will also be discussed more fully
be ideally attainable on VIRAM, taking into accounj Section 6.

only the arithmetic operations and the x-axis uses a
log, scale for the FFT sizes. ) )

In Figure 9 observe that for all the FFT size§ Fixed-Point FFT Vector Imple-
the vhalf 32-bit, floating-point implementation hasa  mentation
much higher MFLOP/s rate than the corresponding
ones from thenaive implementation, so clearly thein this section we describe how we extended the
in-register transposes are a useful feature for FHTifly-optimized floating-point algorithm to thé6-
on VIRAM. Looking at Figure 9, we also observait, fixed-point domain in an attempt to squeeze even
that as the FFT size increases, thlf implemen- more performance out of the VIRAM architecture.
tation yields a higher MFLOP/s rate than that of the
previous. sm.aller gize FFT until the 1024-point F':_E.l Adaptation For Fixed-Point Data
after which it begins to degrade for the 2048-point
FFT and then seriously drops for 4096- and 8192s a last step in implementating an efficient FFT
point FFTs. The large drop in performance starigorithm for VIRAM, we adapted the optimized
ing at an FFT size of 4096 for théhalf algorithm is floating-point algorithm developed in the previous
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sections to operate on fixed-point data. In doirdigit, which is the sign bit, and the binary digit im-
so, we hoped that we would be able to leverageediately to its right, which we illustrate as follows:
VIRAM’s increased integer performance (relative t8;bbb bbbb bbbb bbbb. These are the assumptions
floating-point performance) to achieve a commeme made about the input points and the roots of unity
surate increase in the performance of the FFT. When we converted the complex floating-point ba-
particular, recall that each VIRAM virtual lane hasic computation into a comparable fixed-point basic
two integer functional units, only one of which alscomputation.

serves as the floating-point functional unit. Since

fixed-point data is done using integer computations, . . . .
it seemed reasonable to expect the fixed point versé‘r:l3 The Fixed-Point Basic Computation

of the vhalf algorithm to double the performance Ofg|ow, we repeat the illustration from Section 3
the floating-point version. of the complex floating-point basic computation be-

Converting the floating-point algorithm to a fixedgyeen two complex pointsy, and X /5, which we

point one required changes in two areas of the alggii now call the top point and thebottompoint, re-
rithm. First the data size and type had to be converiggh ctively:

from 32-bit floating-point, single precision to6-bit

integers. In fixed-point mode, each integer has an
assumed binary point position, and its location after
each computation must be carefully tracked. Further-
more, care must be taken after each computationsferew is one of the roots of unity.

insure that the result does not overflow the 16 bits. o5 can pe seen, the basic computation consists of
For these reasons, the second area that had tGrge complex operations; the first is a complex mul-
changed to convert the floating-point algorithm 10fhly between a root of unity and theottom point,
fixed-point one was the basic computation. We wiljhich produces a complex product; the second and
discuss each of these changes in turn in the followiggt third are a complex add and a complex subtract

(L‘6 :£U0+CU'£EN/2
! e — .
(I,‘N/z = 20 w xN/Q

sections. between theéop point and the newly computed com-
plex product. The possibility of an overflow exists
5.2 Fixed-Point Data Size and Type for all three of these complex computations, so first

_ . . _ we discuss the fixed-point complex multiply and then
Our implementation of the fixed-point FFT algog,e fixed-point complex add and subtract.
rithm is designed to operate on input points that are

complex numbers where both the real and imagi-

nary parts are postive numbers betwéand2'5-1. 5.3.1 The Fixed-Point Complex Multiply
Therefore the binary point for each partis assumedltoth | itioly. i th s of unit

be to the right of the rightmost binary digit, which w N the complex muitiply, since the Toots ot unity are

illustrate as follows: Sbbb bbbb bbbb babhwhere between 1 and -1 inclusively, the magnitude of the
S is the sign bit and is where the binary point iScomplex product can never be larger than the magni-

assumed to be. tude of thebottompoint, so no overflow_wnl occu_r.

. : However, recall that the complex multiply consists
When computing any FFT, the roots of unity argf scalar multiplies. Two of the resulting products

always between 1 and -1 inclusively, and, as stated4 Ples. gp

above, for all our FET algorithms they are preconﬁa—re then added together, and the remaining two prod-

puted. As part of this precomputation for the fixedj-CtS. are subtracted, one from the other to obtain the
. . L gesired complex produét.

point algorithm, each root of unity is first compute c v th ibili . h

in floating-point form, then converted to integer form) on§erc]4uenty t_ e possibility eXftsht at an over-

and shifted to the left 15 binary positions. After éf)w mig dt occurll_r|1 one or mhorelo(IJ t ese mte;r_ne-

correction is done for the special case of 1, we ¢ [y products. However, should an intermediary

thus assume tha_lt the binary point for both pa_rts OM7y et + i - Wimag) + (Treal + - Timag) = (WrealZreal -
each root of unity is between the leftmost binary:magTimag)real + i - (WrealTimag + WimagTreal )imag
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product overflow, it will not cause an incorrect re5.3.2 The Fixed-Point Complex Addition and
sult for the following reasons; the final product can- Subtraction

not be greater in magnitude than that of th@tom o
point; the way that the two’s complements wrap frofyS stated above, once the multiplication has been

positive to negative and back to positive insures tHz@MPuted, the resulting complex product must be

the sum or difference of these intermediary producfded to and subtracted from the top point to com-

when left in awrappedstate if they happened to hav@lete the basic computation. Since the product has

overflowed, are nevertheless correct in their magfi€en shifted one bit to the right, before these calcu-

tude and sign after the entire complex multiplicatioliions can be performed the assumed binary points

has been completéd. Therefore we can safely asOf both operands must be aligned. Therefore the top

sume that the complex product will not exceed tRPINt'S real and imaginary parts must be shifted one
16-bit data width. bit to the right so that both operands have the form,

However, when doing the Complex mUItllecatlo ’SSbb bbbb bbbb bbbb(.b A side benefit of this shift

precision must be considered in addition to magﬁ?—that the results can then accomodate a carry to the

tude and overflow. Recall that the real and imagina§ft If the addition or subtraction causes the magni-

parts of the bottom point have the form Sbbb bbiijde Of the result to increase by one bit. Thus the
bbbb bbbb,, while the corresponding parts of th(gewmtermedlate top and bottom points will have the
root of unity have the form Sbbb bbbb bbbb bbb, oM Sbbb bbbb bbbb bbbb.bwhere the rightmost

Since the product will have the same magnitude 3%1S dropped after the basic computation for the first
the bottom point, it will have 32 total bits and hav§tad€ has of the fixed-point algorithm has been com-

the form SSbb bbbb bbbb bbbh, bbb bbbb bbbb Pleted | |
bbbb. In subsequent stages, this pattern repeats. The in-

In the VIRAM architecture this multiplication PUt Points for each stage start out with the assumed
is implemented using themulhi  instruction that Pinary point moved one more binary position to the
takes two vector register operands each with 16ght than was the case for the inputs of the stage
bit elements and returns the high order 16 bits Bpmediately preceding it. Thus for each stage of a
the product for each corresponding element operdhgd-Point FFT, one bit of precision and magnitude
pair. Thus the binary point for each of these produdfs'OSt- In cher words the_results of aflxed-pomt FFT
is assumed to follow a non-existent bit immediatelyith N points must be shiftetbg, ' bits to the left
to the right of the rightmost bit, which is depicted b§o" Multiplied by2!°¢2 ) in order to obtain the cor-
the long form of the product given above. The maéeCt magnitude, since the f_lnal resglts must compen-
nitude of the product is the same as that of the bottG@te for these repeated shifts (equivalent to repeated
point, but one binary bit of precision has been lost fiViSions by 2) of the assumed binary point for each

the product as a result of the 16-bit multiplication. 1At29€-
effect we have shifted the product one bit to the right,

which is the same as dividing it B 5.3.3 The Fixed-Point Rounding Mode

18An example of this wrap around effect follows. In two’ . . . . .
complement representation, usng 4 binary digits, one can re}!egt'_ce that the_ lmplementatpn of the fixed-point
sent decimal values in the following range: -8,...,-1,0,1,...,7. @sic computation just described does not use the

we multiply 2 x 7 = 14, although the2 and the7 are within - multiply-add instruction that the floating-point ver-
this interval, thel4 = 1110 is technically an overflow. So thegjon used. Instead themulhi instructon was uti-

14 here is an example of an intermediary product that has OVﬁEed because it does the necessary rounding and
flowed but has been left in itsrappedstate. Assuming-8 is y g

a second intermediary product, the sur,+ (—8) = 6, pro- truncation to keep the fixed-point results from over-
duces a result, which expressed in binary is 1110 + 1000 flowing. VIRAM allows the programmer to choose
0110, where the leftmost 1, which is in the carry out position, gne of four kinds of rounding modes that, once cho-

completely dropped. The remaining 0110 is equal to 6, whi . . [N
is within the interval and which is the correct final sum despi%én’ will be subsequently used by all fixed-point in

the intermediary overflow and the 1 dropped from the carry cgfructions that provide rounding as part of their spec-
position. ification. For our implementation we used ttoeind
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to nearest evermode so that there would be n
bias caused by constantly rounding in one directit

Theround to nearest evemode avoids such biase 4000 ‘
by sometimes rounding up and sometimes round %00 e iz pans
down since the rounding is done in the direction 300 T mepane
whichever of the two even numbers on either side 2500

the digit being rounded is closest numerically to it

200

MOPS

1500

5.4 The Ramifications of Using 16-bit Wide 1000 |
Data 500 ©VL:128:MVL O\/Lzlez#lanes

Besides making the changes to the basic compi O T S S

tion just described, one additional change is requil Stage #

to actually complete the convertion of the floatin,_

point implementation of the optimized algorithm to

a fixed-point version; thepw vector control register Figure 10:Performance of each stage of a fixed-point, 16-
needs to be reset to indicate 16-bit wide data instedid N-point FFT using the optimized vhalf FFT algorithm
of 32-bit wide data. Although this is a simple tasken VIRAM for N = 256, 512, and 1024. The circled points
there are several important ramifications from maldicate the stage at which the VL = 16 = the number of vir-
ing such a change. Specifically, the number of virtulp! lanes. The double circles indicate the stage at which VL
lanes doubles froms to 16, and the number of ele-= 128 = MVL. Memory: 32MB, 16 Banks, No Subbanks.
ments per vector register, the MVL, doubles frém

to 128. In addition, recall that in the optimized algogesses, but for 16-bit data they are four times slower
rithm, the stage whose vector length equals MVL{Zan the unit-stride accesses. As we shall see in Sec-
is the first stage for which the in-vector register trangp, 6, this ramification has an impact on the perfor-

poses are utilized. For the floating-point versiopyance of the fixed-point implementation of tiealf
since MV L/2 = 32 the in-register transposes arg|gorithm.

utilized in the last6 stages; for the fixed-point ver-

sion, however, sincad/V L/2 = 64, the in-register

transposes are done for the lasitages.
Furthermore, just as they are used in the opti-

mized vhalf floating-point implementation, indexedas with the floating-point implementation, we
accesses are similarly used in the last stages of fiesent the fixed-point implementation of thlealf
vhalf fixed-point implementation. Specifically, in-algorithm in the context of computing radix-2 FFTs;
dexed loads are used in the vhalf stages to setdlpintermediate performance figures that appear in
the proper pattern of the real and imaginary roof§is subsection assume-bit, fixed-point, complex

of unity in vector registers in order to perform onlgrithmetic and give performance numbers for FFT
one vectorized basic computation on multiple buttesizes that are assumed to be powers of 2 and range
fly groups and thereby achieve VL = MVL for allbetweer256 and8192. For all the figures in this sec-
computations. In addition, recall that indexed stor@gn it was also assumed that there were 32MB of

are used at the end of the last stage to do the bit figemory divided into 16 banks with no subbanks.
versal rearrangement.

The_refore, another |mpor'Fant_ ramification _OEE.5.1 Performance per Stage of the Fixed-point
changing thevpw from a 32-bit width to a 16-bit -

, ) Vhalf Implementation
width concerns these indexed memory accesses. In
particular, because only four addresses can be geigure 10 shows the MOP/s rate for each stage of the
erated per cycle, fa32-bit data the indexed memoryoptimized vhalf FFT algorithm. Like the floating-
accesses are two times slower than the unit-stride point version, this implementation includes thew

5.5 Performance of the Fixed-point Vhalf
Implementation
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vhalfup  and vhalfdn instructions, the auto-this criteria. In fact it is the first stage of th¥56-
incrementing, software pipelining, and code schedyleint FFT that has a VL = 128 = MVL, and were it
ing. This fixed-point version also uses indexed loadst for the start up overhead being included, its first
in its vhalf stages to load the roots of unity into thetage GOP/s rate would be close to the 3.67 GOP/s
vector registers with the correct pattern, but in thas well.

case there are 7 such stages instead of 6, since thdotwithstanding their similarities, the floating-
MVL is 128 instead of 64; like the floating-point verpoint and fixed-point implementations differ greatly
sion, the final output points for the fixed-point vetin their hardware untilization for these earliegive
sion are bit reverse rearranged. As before, the datages, which are all the stages whose VL is greater
ble circles indicate the stages in which VL = MVL zthan or equal to MVL. For the floating-point version,
128, and the open circles indicate the stages in whitle naive stages had a utilization of 96% but for

VL = 16, the number of virtual lanes. the fixed-point version the utilization in the same ear-

Although it is not shown in Figure 10 note that 6.4er stages is a mere 5% This is due to architec-
GOP/s is the maximum performance for the radiural idiosyncrasies that will be discussed further in
2 complex16-bit fixed-point FFT computation thatSection 6.
might be ideally attainable on VIRAM, taking into Recall that the first stage in which the in-register
account only the arithmetic operatidfis As ex- transposes occur is the stage in which VL = 64 =
plained above, unlike the floating-poinhalf im- MVL/2. For each of the curves in Figure 10 we
plementation, the fixed-point version does not ugee a steep dip in the performance of this first stage
lize the multiply-add instruction. Thus in the fixedbecause the stage includes the overhead for switch-
point computation there ar arithmetic operations ing from thenaive algorithm to thevhalf algorithm,
per basic computation, all of which have the sanwéhich incorporates thehalf algorithm setup for the
6.4 GOP/s as the maximum rate attainable. Congeots of unity and the bit reversal. The stage immedi-
quently, no adjustment for this fixed-point mix of opately following this first vhalf stage recovers, and for
erations needs to be made to calculate the maximatthe curves, the next five stages maintain a perfor-
attainable GOP/s rate on VIRAM as was done for tfieance of 2.1 GOP/s, which indicates a 33%ti-
floating-point mix of operations. lization during these vhalf stages. Recall that the

Figure 10, which illustrates the fixed-poimhalf floating-point versign had a GQ%uti_Iization for th_e
performance, is very similar to Figure 8, which jIS@me stages. This under-utilization for the fixed-

lustrates the floating-poinvhalf performance, exceptPOi”t v_ersion will also be discussed in more detail
for the actual values of the GFLOPS/GOPS rate8 Section 6. _ _

Because of this similarity, many of the same obser-Analogous to the floating-point performance, for
vations that were made about the floating-peimalf all the fixed-point curves in Figure 10, the GOP/s rate
performance can be made for this fixed-poralf for the last stage shows a steep degradation. As be-
performance. In particular, for all the FFT sizes efore, this is the effect of the bit reversal that is being
cept the256 point, the first stage is somewhat slowéfone at the end of the last stage. Specifically, the in-
than the second because the program start-up ogexed store of the contents of each of the four vector
head is included with the first stage only, and as lofg@isters that hold the results is slowing the memory
as the VL is larger or equal to MVL = 128, the pel4‘_unct|onal unit pipeline, and therefore the arithmetic
formance is maintained at 3.67 GOP/s after the fifgfctional unit pipeline, by at least a factor of four in-
stage. Just as in the floating-point 128-point curvéi€ad of two as it is for the floating-point version. |f
the performance curve for the fixed-poiit6-point the memory unit experiences any bank conflicts from

FFT is the exception because its second stage, HA\® random accesses into memory, then, as with the
ing a vector length o/ V'L /2 = 64, does not meet floating-point, these conflicts will stall the memory

201.8 GFLOPS/2.0 GFLOPS * 100 = 90%
9.4 GOP/s= 16 virtual lanes/cycle *2 integer functional ~ ?'3.67 GOPS/6.4 GOPS * 100 = 57%
units/virtual lane *1 integer operation/functional unit 200 2221 GOPS/6.4 GOPS * 100 = 33%
Mcycles/second 231.8 GFLOPS/2 GFLOPS * 100 = 60%
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functional unit even more, which in turn will stal

the arithmetic functional units for the same numk

of cycles as well. Since the data width is small Oy ractpompeakperlomance (5400 MOPS)_
for the fixed-point implementation, this means th 6000 | e Fixcd point
more points fit into one bank, and therefore there i 4 Fostng ot
higher liklihood of having memory bank conflicts fc
the fixed-point narrower data widths of 16-bits thi
with the floating-point 32-bit wide data.

Figure 10 shows the MOP/s rate for the last ste 1
of the 256-point FFT to be 502, of the 512-point FF ook N
to be 670, and of the 1024-point FFT to be 805. Si 0
ilar to Figure 8 for the floating-point data, this ind
cates that the MOP/s rate for the last stage for
fixed-point data is getting better as the number ot

points. in the FFT increases. _ _ _ Figure 11: Comparison of the performance in MFLOP/s
As is the case for the_ floating-point VErsIoN, Wi the vhalf floating-point, single precision, 32-bit, N-point
can conclude that the differences we observe in ti'f\eTimpIementation with the performance in MOP/s for the

MOP/s rate between the various last stages are @t fixed-point, 16-bit, N-point FFT implementation on VI-

tributable to the amortization of the memory IatenquM for N = 128, 256, 512, 1024, 2048, 4096, and 8192. The

for the very last store as well as memory bank oz Gopis line shows the maximum performance for the 16-

flicts. As a matter of fact, for the fixed-point narg;t fixed-point FFT computation and the 2 GFLOPIs line

rower data it is even more likely than with the wideghows the maximum performance for the 32-bit, floating-

floating-point data that the addresses generated By FrT computation that might be ideally attainable on

the indexed stores for the smaller FFT sizes are\miAM, taking into account only the arithmetic operations.

the same bank since more points fit into one row gfjo; scale is used for the x-axis. Memory: 32MB, 16

the memory bank. Consequently the smaller FFEgqks No Subbanks.

experience more memory bank conflicts during the

indexed stores than the larger ones do. For these rea-

sons the last stage of the 1024-point FFT in Figure 10 exhibited by theaive algorithm since we do not

completes with a better MOP/s rate than the last ste@f¢serve the same degradation in performance that

of all the smaller sized ones. we saw with thenaive algorithm when the vector
Figure 10 verifies that for the fixed-poinvhalf engths become smaller than MVL.

aglorithm, the total time is also not dominated by

the time spent in the later stages of the FFT whet&s 5  performance Comparison of the Fixed-

the vector length falls below MVL. However the per- point and Floating-point Vhalf Implemen-

centages of time and work spent in these later stages  t4tions

must be adjusted appropriately for the fixed-point

stages, since thehalf algorithm is utilized for the However, since the floating-point implementation

last 7 stages instead of the last 6 as in the floatintas already proved that the new vhalf instructions

point version. For the fixed-point version illustratedemedied the short vector length problem exhibited

in Figure 10, the time spent in the lasstages dropsin the naive algorithm, that was not the objective

from the 96% that was seen in tingive floating- of converting the floating-pointhalf version into a

point algorithm to 82% with thehalf fixed-point al- fixed-point version. Our real objective, as stated at

gorithm, which includes the bit reversal slowdowrhe beginning of this section, was to leverage VI-

and which comes closer to the 70% of total work th®AM'’s increased integer performance relative to its

the last7 stages represent in1@ stage, 1024-point floating-point performance to achieve a commensu-

FFT. As with the floating-point case, the in-registeate increase in the performance of the FFT. In par-

transposes have solved the short vector length préibular we expected that the fixed-point implementa-

5000 -
4000 -

3000 |
Floating-point Peak
Performance (2000 MFLOPS)

MOPS (fixed-point)
MFLOPS (floating-point)

T T T T T
256 512 1024 2048 4096 8192

Size (#points in FFT), log scale
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tion MOP/s rate might approach or exceed twice 1
MFLOP/s rate of the floating-point implementatic

since VIRAM's peak fixed-point performance for th 110
FFT is 6.4 GOP/s compared to 2.0 GFLOP/s for t | 2 o
floating-point mix of operations, which is a ratio ¢
3.2 GOPSto 1 GFLOPS.

To see how we did, Figure 11 compares the ov
all MFLOP/MOP rates for each size FFT for the tw
implementations: the fixed-point algorithm and tl
floating-point algorithm. Both implementations ¢
the bit reversing and the auto-incrementing. T
floating-point implementation in this figure is th 128 256 512 1024 208
same as the one in Figure 8 and the fixed-point i Size (#points in FFT), log scale
plementation in this figure is the same as the one
Figure 10. As in previous figures, the 6.4 GOP/s
line shows the maximum performance for the 16gure 12: Comparison of the performance in microsec-
bit fixed-point FFT computation and the 2 GFLOP/nds between thevhalf floating-point, single precision, 32-
line shows the maximum performance for the 32-Hitt, N-point FFT implementation and the vhalf fixed-point,
floating-point FFT computation that might be ideall§6-bit, N-point FFT implementation on VIRAM for N = 256,
attainable on VIRAM, taking into account only thé12, 1024, and 2048. Aog, scale is used for the x-axis. Mem-
arithmetic operations. Aog, scale is used for the x-ory: 32MB, 16 Banks, No Subbanks.
axis and the memory configuration is assumed to be

32MB of DRAM with 16 Banks and No Subbanks. , .
low in Section 6.

In Figure 11 we observe that for all the FFT sizes, L . o
au W v 'z Although the running times of the fixed-point im-

the 16-bit fixed-point MOP/s rate is approximatel . . L
P PP lementation did not halve the running times of the

1.5 faster than the corresponding 32-bit floating-

point MFLOP/s rate. Although this is a health Qating-point implementation for all FFT sizes, in

improvement, it is less than half of the potentidl 2" © 12 we see that for the 2048-point FFT, it cer-

3.2 speed up. In addition, similar to the floatin g?nly did. This figure compares the r_unning time; in
point case, we observe in Figure 11 that as the F roseconds of the same fixed-point and floating-

size increases the fixed-point implementation yielggmt implementations used for Figure 11 for FFT

a higher MOP/s rate than that of the previous smalldfFe> from 256 points through 2048 points. Both Fig-

size FFT until the 2048-point FFT, after which it be-'© 11 and Figure 12 confirm that even though the

gins to degrade for the 4096-point FFT and then Seftlfged-pomt implementation had a lower utilization

ously drops for the 8192-point FFT. The large drop .‘Ha” the floating-point implementation, the fixed-

performance starting at an FFT size of 8192 for tt?é’?nt implementation is still faster than the floating-

fixed-point vhalf algorithm is due to memory bankpomt implementation for all FFT sizes. How to im-

conflicts. We will discuss this phenomenon and eRfove these times even further and why the fixed-

plain its performance impact later in Section 6 point implementation utilization is lower than the

Furthermore, the 2048-point GOP/s rate of z_zfé(’)ating-point impleme_ntation ut_ilization are ques-
which is the highest rate in the figure, is achie\sl-OnS that will also be discussed in Section 6.

ing only a 35% utilization of the VIRAM full po-

tential yet it still doubles the 1.13 GFLOP/s rate of 6 Error Analysis For The Fixed-point Re-
the 2048-point 32-bit floating-point implementation. sults

As is the case for the 1024-point floating-point FFT,

the exceptional performance of the 2048-point 1&he FFT algorithm is designed to work with contin-
bit fixed-point FFT is due to architectural idiosynuous datai(e. the set of real numbers), which are
crasies, which will also be discussed more fully béypically handled using floating-point computations.

Time (usec)
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Fixed-painterors for 1024 point FFT tracted the corresponding “correct” value obtained
. via the floating-point code. Figure 14 summarizes
g some of the statistical properties of these estimated
o errors for several FFT sizes in table form. Notice that
in all cases the mean error is approximately zero, and
‘ that the standard deviations are small. We computed
RS 1 95% confidence intervals for the mean errors, and in
all cases 0 was contained in the interval, indicating
that it is statistically likely that the true error is zero.
Figure 13 shows the error distribution for the
1024-point FFT in a more graphical manner. The
figure shows side-by-side box-and-whisker plots for
the errors in both the real and imaginary components
of the FFT results. Recall that the box in a box-and-
Figure 13: Side-by-side box plots showing the error dis- Whisker plot includes the data from the lower quar-
tribtions for the fixed point, 1024-point FFT. The left box tile to the upper quartile (with the horizontal line in
shows the errors from the real components of the FFT re- the box being the median). The distance between the
sults, and the right box shows the errors from the imaginary Whiskers is four times the distance between the upper
components of the FFT results. and lower quartiles, and thus the whiskers give an in-
dication of the overall spread of the data. The small
circles indicate points that are statistically outliers.
However, as we have seen above, it is possible to obygtice in the figure that both the real and imag-
tain a respectable performance improvement in t[‘,\%,y errors are centered at zero and have symmet-
FFT by carrying out its computations using fixedsc gistributions. Interestingly, the imaginary values
point arithmetic. But, by performing the computanaye greater standard deviation and correspondingly
tions using fixed-point, we run the risk of introducmgre spread. We have been unable to find a satisfac-
ing a significant amount of error into the comput%ry explanation for this pheonomenon. The one no-
tion. As described above, the result of a single exgseaple outlier in the real case correspondggidhe
cution of the fixed-point version of the FFT's basigst FET output point. The first output point of every
computation loses one bit of accuracy comparedg@T corresponds to the vertical distance the entire
its inputs; as a result, after running the entire FFJ,rve is shifted above (or below) the x-axis. Specif-
algorithm, each input loses one bit of precision pgia|ly, if one draws a horizontal line whose equation
stage. isy = yo, then all the sine and cosine curves asso-
In this Error Analysis Section, we attempt to quartiated with a particular FFT would have this line as
tify the impact of this loss of intermediate precisiotheir center line. Since we used only positive 16-bit
on the quality of the final fixed-point output of théntegers for the fixed-point FFT input numbers for all
FFT. To form a basis for comparison, we took thgur experimentsy, will be a large number. Graphi-
same set of 16-bit integer-valued inputs used for thally this means the center line is located a large dis-
fixed-point FFT experiments and ran them througnce above the x-axis. With such a large number,
one of our floating-point FFT implementations. W is understandable that the error as we calculated it
then divided each of the resultant outputs2#>~  would also be larger than the other errors.
in order to rescale these floating-point output valuesFinally, we hypothesize that the error distribution
to match the range of the fixed-point FFT algorithmig statistically normal. Figure 15 shows two normal
output. The resulting values represent the “corregitobability plots that graph the quantiles of the 1024-
answer, that is the most precise result possible giesint real and imaginary error data against the quan-
the limitations of the floating-point representation. tiles of a standard normal distribution. The fact that
To estimate the errors introduced by the fixethese graphs show straight-line behavior indicates
point algorithm, we took each output value and sutixat the errors are most likely normally distributed.

3 - oo
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FFT Real Component

FFT Size| Mean | Median Min Max | Std.Dev.
1024 | 0.0117| 0.0758| -7.5330| 2.9930| 0.9991
512 | 0.0039| 0.0483]| -6.9470| 2.2510| 0.9870
256 | -0.0078| 0.0184| -4.6720| 2.8250| 0.9986

FFT Imaginary Component

FFT Size| Mean | Median Min Max | Std.Dev.
1024 | 0.0215| -0.0346| -8.1450| 8.4810| 2.2950
512 | -0.0039| 0.1078| -8.5540| 7.6060| 2.3215
256 | -0.0391| -0.0319| -6.8770| 5.5980| 2.2063

Figure 14:The mean, median, minimum, maximum, and standard deviation for the real and imaginary components of
the estimated errors for each fixed-point, 16-bit, N-point FFT where N = 256, 512, and 1024.

The imaginary values show a similar behavior as thank conflicts, and idle arithmetic functional units.
reals but with slightly heavier tails (as suggested Iy this section we will investigate all three of these
the larger number of outliers in the box plot). possibilities in an attempt to identify the architec-
From all of this data we can conclude that the etdral causes of the under-utilization of both the fixed-
ror behavior of the fixed-point algorithm is in facpoint and floating-point implementations. In doing
quite well-behaved. The errors are normally diso we will also be able to explain the behaviors that
tributed and centered around zero (and thus hav@ave been observed but not fully discussed in previ-
symmetric distribution). Furthermore, they have @us sections.
small standard deviation relative to the absolute sizeAs was discussed in Section 2, memory func-
of the actual result values. DSP experts who have tfenal unit stalls cause the arithmetic functional unit
spected our fixed-point output values say this is tipgpelines to also stall because the pipelines of these
best accuracy that can be achieved when using fixéahctional units are not decoupled. As a result, com-
point arithemetic to compute FFTs. Therefore we apgitational cycles are not being fully utilized. Most
satisfied that the fixed-point results that we obtainesemory functional unit stalls occur as a result of ei-
from our fixed-point FFT implementation are at leagiher memory bank conflicts or non-unit-stride mem-
as accurate as those obtained by current fixed-paing accesses. A memory bank conflict means that
DSPs. the memory unit is attempting to access a memory
bank that is already busy satisfying another mem-
ory request. The memory functional unit must then
6 Architectural Analysis of the Per- wait until the bank is free to handle its request, which
formance Results happens after the bank has satisfied the first request.
During the time the memory unit is waiting for the
Since the best hardware utilizations achieved for thank to become free, the arithmetic functional unit
fixed-point vhalf implementation was 35% and foRipeline also stalls. We will investigate the impact of
the floating-pointhalfimplementation was 63%, wethe non-unit-stride memory accesses and the impact
now investigate where the cycles not being utilize?f the memory bank conflicts in turn in the following
are going and why both the fixed-point and floatingwo sections.
point implementations do not perform closer to their
respective attainable peak performance on the
RAM architecture.
In the VIRAM architecture, there are three obvi-
ous candidates for the cause of under utilization Becall that indexed memory accesses are non-unit-
the hardware: indexed memory accesses, memstide accesses that take twice as long as unit-stride

Y1 Analysis of the Indexed Memory Ac-
cesses
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Normal Q-Q Plot, Reals Normal Q-Q Plot, Imags

Errors for 1024-point Reals
Errors for 1024-point Imags
0

Theoretical Quantiles Theoretical Quantiles

Figure 15:Normal probability plots of the real and imaginary error components for the fixed-point 1024-point FFT.

accesses for 32-bit data and four times as longiasVIFLOP/s of four versions of th&2-bit, floating-
unit-stride accesses for 16-bit data. This means tipaint vhalf implementation for N= 128, 256, 512,
during an indexed memory access the memory unif24, 2048, 4096, and192. Both experiments as-
and therefore the arithmetic functional units, stall esumed a 32MB memory configured with 16 banks
ery other cycle for 32-bit data and three out of eveand no subbanks and both figures uskeg scale
four cycles for 16-bit data. Since both the fixed-poiffibr the FFT sizes on the x-axis. The four versions of
and floating-poinvhalfimplementations use indexedhe vhalf implementation are the same for both fig-
loads in the vhalf stages to set up a vector registaes. The first version is the original implementa-
with the proper pattern of the roots of unity as wetlon that contains both the indexed loads of the roots
as indexed stores at the end of the last vhalf stageofaunity and the bit reversing indexed stores. In the
do the bit reversal rearrangement, we first investigatecond version the indexed loads have been replaced
the impact that these two indexed memory accessath unit-stride loads but the indexed stores are still
are having on the performance of both the fixed-poiptesent. The third version mirrors the second ver-
and floating-point implementations. sion by keeping the indexed loads but replacing the
Figure 17 compares the performance in MOP/s i(gpexed stgres with unit-stride stpres. Finally the
four versions of theshalf 16-bit, fixed-point imple- fourj[h version replages bo.th the mdexgd loads and
mentation for N= 256, 512, 1024. 2048, 4096 and the indexed stores with unit-stride versions of each.

8192. Similarly Figure 16 compares the performanégeplacmg the indexed accesses with unit-stride ac-
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Figure 16:Comparison of the performance in MFLOP/s of Figure 17: Comparison of the performance in MOP/s of
four different versions of the vhalf floating-point, single pre- four different versions of the vhalf fixed-point, 16-bit N-point
cision, 32-bit, N-point FFT implementation for N = 128, 256, FFT implementation for N = 256, 512, 1024, 2048, 4096, and
512, 1024, 2048, 4096, and 8192. The Loads-BR version isth8192. The Loads-BR version is the original implementation
original implementation with the indexed loads and stores. with the indexed loads and stores. The NoLoads-BR version
The NoLoads-BR version replaces the indexed loads with replaces the indexed loads with unit-stride loads but keeps
unit-stride loads but keeps the indexed stores. The Loads- the indexed stores. The Loads-noBR version keeps the in-
noBR version keeps the indexed loads but replaces the in-dexed loads but replaces the indexed stores with unit-stride
dexed stores with unit-stride stores, and the NoLoads-noBR stores, and the noLoads-noBR version replaces both the in-
version replaces both the indexed loads and stores with unit- dexed loads and stores with unit-stride loads and stores. A
stride loads and stores. Aog, scale is used for the FFT sizes log, scale is used for FFT sizes on the x-axis. Memory:
on the x-axis. Memory: 32MB, 16 Banks, No Subbanks. 32MB, 16 Banks, No Subbanks.

cesses allows us to see what the performance of ou

algorithms would be if the indexed accesses Were'%sli:Igure 16.' all the floatlng-pom.t curves peak_ for
. o the 1024-point FFT, whereas in Figure 17, the fixed-
fast as the sequential, unit-stride accesses. We can

then more precisely evaluate the current VIRAM infomt. curves peak for the 2048-point FFT. This ef-
. . ect is due to the memory layout of the FFT data.
plementation of the indexed accesses.

In those versions in which indexed accesses haY\y'th the 16-bank, 2048-bit-wide memory configu-

been replaced by unit-stride accesses, the resultsra(aon we assumed, 1024 32-bit points (a total of

. . 16%2048 bits) can be accessed in a sequential man-
not computationally correct since the wrong roots 0

unity are being used in the basic computation ahgT such that every bank is accessed only once (each

. i . . ank access extracts a 2048-bit row containing 64
since there is no bit reversal being performed after . . . ) )
. . .~ copsecutive points). Similarly, 2048 16-bit points
the last stage. Since the purpose of this experimen . . .
. ; cah be accessed sequentially without bank conflicts.
was to assess the impact that the indexed memory &ac-
cesses are having on tlrbalf implementations, the These facts explain the peaks in the FFT perfor-

fact that the results are incorrect has no relevancemance curves: for the floating-point FFT, which uses
this case. 32-bit data, the best performance is achieved when

the FFT operates 1024 points (a size which we will
denote thédeal siz@, since the computation accesses
every bank in the memory system sequentially be-
There are several points to be made about the dfati@ returning to the first bank. For smaller FFTs,
presented in Figures 16 and 17. First, notice ththe computation uses only a fraction of the banks,

6.1.1 The “Ideal Size” FFT

26



returning to the first bank more quickly and poterstage.

tially causing stalls until that bank is ready to service

a seconql request. For larger FFTs, muItipIe_ acCesgeSs  The Indexed Stores

are required to at least some of the banks, increasing

the potential for memory conflicts and thus lowerinkbp contrast, if we compare the lines in either Fig-
performance. An analogous explanation appliesuoe 16 or Figure 17 that correspond to the cases that
the fixed-point case, except there the “ideal size” feemove (noBR) and include (BR) the indexed store

the FFT is 2048 points. of the bit reversal, we see that these lines are not
separated by a small or constant amount. Instead,
6.1.2 The Indexed Loads the gulf between the lines starts out large for small

FFTs, but gets much smaller as the FFT size ap-
Another key point to be made concerning the datfoaches the ideal. This is due to the fact that for
in Figures 16 and 17 is in the effect of removinghe smaller FFT sizes the points are not spread out
the indexed loads. If we temporarily ignore FFEmong all the memory banks as they are for the larger
sizes greater than the "ideal size”, we see that theT sizes, especially for the "ideal size” FFT, which
lines corresponding to the case with indexed loads [ges all the banks. Consequently the indexed stores
moved (labeled “NoLoads” in the graphs) are a sm@dr the smaller FFTs incur more bank conflicts than

but constant amount higher than the correspondiié larger FFTs up to and including the "ideal size”
curves that include the loads. The fact that thepeT.

differences are constant indicates that the overheadhe sharp drop for the FFTs whose size is larger

cost of the indexed memory load operations relatiygan the "ideal size” is due to the fact that the indexed
to unit-stride load operations is fixed, and the diffektores are doing the final bit reversals. This means
ence between the lines measures this cost. that there is one independent store for every point in
The fact that this cost is fixed and rather low is |fhe FFT. C|ear|y the number of indexed stores grows
itself surprising. The explanation lies in the implginearly with the FFT size. As the number of points
mentation details of owhalf algorithm. Recall that jn the FET increases, so do the indexed stores and,
the indexed loads are loading the real and imaginagy sizes larger than the "ideal size”, their accompa-
components of the roots of unity in specific patterfging pipeline stalls. (The reasons for this special
into vector registers. For indexed accesses, one Béhavior for FFTs that have the "ideal size” and for
dress is generated for each element being accesgRdextreme degradation when the FFT size is larger
and for each such address a separate memorytf@n the "ideal size” will be discussed in more detail
guest is made. Since the same root of unity is Ioadggbw_) Consequently the impact of these indexed
into several consecutive element slots of one vegores is far more deleterious on the performance of
tor register, several consecutive individual accessg§ vhalfimplementation than the indexed loads are,

have identical a.ddresses, are therefore Clearly gog}gj the performance impact increases with increas-
to the same bank, and as a consequence cause MEHEFT size after the "ideal size”.

ory bank conflicts.
However, for each vhalf stage but the last on
only 2 * MVL roots, which is enough to fill two vec-

tor registers, are loaded in this mand&gne vector Next, in comparing Figures 16 and 17, notice that
register receives a set of real roots and the other fige gaps between the Loads/NoLoads lines and the
ceives a set of imaginary roots. Therefore the impagR/noBR lines are significantly larger in the fixed-
of these indexed loads is held constant and does pgint case than in the floating-point case. This dis-
grow with the size of the FFT. The impact itself igrepancy is due to the fact that the fixed-point algo-
small because only 2 * MVL roots of unity are berithm operates with apw of 16, compared to the
ing loaded via these indexed operations per group R of 32 for the floating-point case. With a 16-
24| the last vhalf stage, the roots of unity are loaded usifjt VPW, the 16-bit indexed accesses take not two (as
unit-stride loads, since each butterfly has a VL=1. is the case for the 32-bit accesses), but four times

811.4 Fixed-point Verses Floating-point Gaps
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longer than the unit-stride accesses. Thus the lization for its "ideal size” 1024-point FFT without
creased gaps for fixed-point are caused by the the indexed accesses is 69%. With the indexed ac-
herent slowdown that arises when indexed memargsses the utilization drops to 63%, a delta of only
operations are used on narrower data on VIRAM. 6%. On the other hand, for the fixed-point 16-bit
wide data, the corresponding utilizations go from
47% to 30%, a delta of 17%, which is three times
the delta of the floating-point implementation. Fur-
Before addressing the question concerning the deleermore, as the FFT size increases, the deltas for
terious effect of the indexed stores for FFTs larger both the fixed-point and the floating-point will also
size than the "ideal size”, while we are on the sulncrease since the price paid for the indexed stores
ject of the indexed loads in the vhalf stages, let gsows with the FFT sizes larger than the “ideal size”.
briefly digress. The purpose of this digression is to

now explain. why the utilization for each _individu_ab_z Analysis of Memory Bank Conflicts

vhalf stage is relatively low for both the fixed-point

implementation and the floating-point implementad-et us now return to the question: why do the in-
tion. dexed stores have such a deleterious effect on the

Recall that we expected the utilization for each glerformance of both the fixed-point and floating-
these interim vhalf stages to be high since the ipeint implementations for FFTs larger than 2048-
terim stages do not load and store the intermedigrgint FFTs? Recall that we saw this performance
values for the input points as theive algorithm drop of the 4096- and 8192-point FFTs in Figure 9
does, so they contain far fewer memory accesshs. the floating-pointvhalf implementation and in
Fewer memory accesses means fewer possible méigure 11 for the fixed-poinvhalf implementation
ory conflicts, which means fewer arithmetic fundn the previous two sections and we deferred our dis-
tional unit stalls. cussion of these observations to this section.

By now part of the answer should be clear. Be- We can now account for this behavior. Above
cause of their inherent slowdowns, the indexed loads established that the impact of the indexed stores
of the roots of unity are stalling the arithmetic funogrows with the size of the FFT. The larger the FFT
tional units, and therefore the MFLOP/MOP ratesize, the more indexed stores. The more indexed
suffer and the utilization is poor. These effects agtores, the more stalls. But these stalls alone do
more pronounced in the vhalf stages for the fixedet account for the extreme drop in the MOP/s &
point implementations (33% utilization) than for thiMFLOP/s rate that we observe in our figures. For
floating-point implementations (60%) because of ti@th the fixed-point and the floating-point implemen-
factor of four over the factor of two slowdownstations, the 8192-point size is a multiple of their re-
Without the indexed loads in these vhalf stages thpective "ideal size”s. Specifically, 1024 goes into
sustained utilization for each vhalf stage but the 18192 eight times while 2048 goes into 8192 four
increases to 49% for the fixed-point and 72% for thignes. Thus for the firshaive stage where the but-
floating-point. Later in this section we will revisitterfly starts with pointsey and z/,, there will be
and complete this discussion of why the vhalf stagegmory bank conflicts in accessing the top and bot-
do not have better hardware utilization even in them halves of the butterfly because both access the
absence of the indexed loads. same bank.

Furthermore, as long as the distance between the
top point and the bottom point of the basic computa-
tion is a multiple of 1024 for floating-point and 2048
What can be said about the indexed accesses at thidixed-point, these same types of memory conflicts
point in our discussion is that the narrower the dagxist and consequently they, along with the incurred
width, the more impact indexed accesses will have stalls of the larger FFT sizes, impair the 8192-point
the performance of the FFT on VIRAM. For floatingFFT performance of both implementations. One so-
point 32-bit wide data thghalf implementation uti- lution to this problem is to make the number of banks

6.1.5 Utilization In The Vhalf Stages

6.1.6 Impact of the Indexed Accesses
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in memory not a power of two, but this is not reallypanks, 4) 16MB, 8 Banks, No Subbanks, 5) 16MB,
an option for VIRAM since it introduces too muct8 Banks, 4 Subbanks. Therefore each figure has five
complexity which would eat up area and power, amrformance lines. The 16MB memory configura-
thus violate our design objectives. Another is to eions were included here because it was decided that
ther increase the number of memory banks, whitie VIRAM prototype will have 16MB instead of
increases the total size of memory, or introduce suhe original 32MB. As stated earlier, this change of
banks into the memory configuration, which does natemory design occurred after much of the work for

increase the total size of memory. these experiments had been done. Consequently we
wanted to see the impact that the smaller memory

6.21 Subbanks size would have on the performance of thelf al-
gorithm.

Subbanks within the same bank allow multiple ac-
cesses to the same bank to be pipelined. Although
the bank has a data bus that handles only one request . . , . .
. . y .qLEfoatmg-pomt Memory Configurations In Fig-
at a time, with subbanks, more than one row within 4 o .
ure 18 we see that all five curves coincide and are in-
the bank can be accessed and made ready to go as

soon as the bank’s data bus is free. The numberctr)?asmg 'T‘ MFLOP/S rate for FFT S.'ZES 51.2 and pe-
low. This indicates that for these size floating-point

subbanks within a bank determines the number S .
Ts there are no significant memory bank conflicts.

rows that can be active at any one point within the '~ "
same bank since the subbanks within the same br%?\khls figure, the curve for the 16MB, 8Bank, no sub-

. . . %nk configuration takes a sudden dive down after
have independent accessing to their own rows mut?1 512-point dat int. This is b the 16MB
like banks have independent accessing to their oW -Point data point. This IS because the
) . memory size with 8 banks and no subbanks, allows
rows (and subbanks). Without the existence of sug- L : -
12[ 32-bit points to be accessed without revisiting

banks, a second access to the same bank has to wal . ) . o
for the access ahead of it to complete, which takestgﬁ same bank. Since this 16MB configuration is ex-

’ actly half of the 32MB, 16 bank, no subbank con-

entire memory cycle time, and no overlapping of the . I ;
mory ¢y bping hfl uration we saw in Figure 16, it makes sense that
row fetching can be done. The more banks a meﬂg- . .
. ._half the number of accesses can occur without revis-
ory system has the more independent accesses |t.%%n h me bank for the 16MB memor for th
handle without producing a memory bank conflic g Ih€ same banxor the emory as forthe

The more subbanks a bank has the more pipelir}e%MB memory with a very similar no subbank con-

accesses it can handle without producing a subba'rcrlxurat'on'
conflict. In addition, notice that the 32MB, 16 bank, no

subbank curve practically coincides with the 16MB,
8 bank, 4 subbank curve in Figure 18, although
the 16MB curve ends up yeilding a slightly higher

Figure 18 and Figure 19 answer the question of w4 LOP/s rate for the 8192-point FFT than does the
happens to the MFLOP/s & MOP/s performance 8EMB curve. Both of these curves peak at the 1024-
both the floating-point, 32-bit, and the fixed_poinf;oint data point and then take a dive. Again, this
16-bit, N-point FFT,vhalf algorithm when we vary is because 1024 points can be accessed from these
the memory configuration. In both figuresla, Memory configurations without revisiting the same
scale was used for the FFT sizes on the x-axis ap@k or subbank.

the vhalf implementations used to generate the dataThe final two 32MB curves, one with 16 banks and
in both of these figures contains the indexed loadsdtubbanks, the other with 8 banks and 8 subbanks
the roots of unity in the vhalf stages and the bit relso coincide. Furthermore both of these curves yeild
versing indexed stores after the last vhalf stage. Faenuch higher MFLOP/s rate for the 8192-point FFT
different memory configurations were used as fadince these memory configurations ameliorate the
lows: 1) 32MB, 16 Banks, No Subbanks, 2) 32MBmnemory conflict problems experienced when there
16 Banks, 4 Subbanks, 3) 32MB, 8 Banks, 8 Sulre fewer banks or no subbanks.

6.2.2 Varying the Memory Configuration
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Figure 18:Comparison of the performance in MFLOP/s of Figure 19: Comparison of the performance in MOP/s of
the vhalf floating-point, 32-bit N-point FFT implementation the vhalf fixed-point, 16-bit N-point FFT implementation for
for N = 128, 256, 512, 1024, and 8192 with the following five N = 256, 512, 1024, and 8192 with the following five memory
memory configurations: 1) 32MB, 16 Banks, No Subbanks, configurations: 1) 32MB, 16 Banks, No Subbanks, 2) 32MB,
2) 32MB, 16 Banks, 4 Subbanks, 3) 32MB, 8 Banks, 8 Sub-16 Banks, 4 Subbanks, 3) 32MB, 8 Banks, 8 Subbanks, 4)
banks, 4) 16MB, 8 Banks, No Subbanks, 5) 16MB, 8 Banks, 16MB, 8 Banks, No Subbanks, 5) 16MB, 8 Banks, 4 Sub-
4 Subbanks. Alog, scale is used for the FFT sizes on the banks. Alog, scale is used for the FFT sizes on the x-axis.
X-axis.

6.2.3 The Impact of Memory Size and Configu-
ration

The conclusion we can draw from Figure 18 and Fig-

ure 19 is quite clear. Performance will drop signifi-
Fixed-point Memory Configurations The fixed- cantly for larger FFT sizes due to memory bank con-
point curves in Figure 19 behave in a very similaficts. This deleterious effect can be ameliorated best
fashion as their floating-point counterparts in FigJy adding subbanks. Increasing the memory size
ure 18 except for the 16MB, 8 bank, 4 subbankithout utilizing subbank configurations might tem-
configuration curve. Assuming this configuratioporarily help since it increases the number of inde-
and 16-bit data points, 4096 points can be accesgRhdent banks, but for a more robust solution against

WIthOUt I’eViSitil’lg the same Subbank. Therefore ﬂﬂﬁemory conflict thrashing’ the more subbanks per
MOP/s rate for the 8192-point FFT falls only slightlyyank the better.

below the "ideal size” MOP/s rate for this configu-
ration. This is because for the 8192-point FFT, tQ)e
memory bank conflicts only affect the one and only
butterfly group in the very first stage of the FFT cal-
culation where the top and bottom points for eveAdthough additional banks and subbanks will con-
basic calculation are exactly 4096 points apart. Hosiderably ameliorate the memory bank conflicts, we
ever, after this first stage, the gap between the top arahnot assume that this is all that is necessary to in-
bottom points continuously halves, so for the secontkase the hardware utilization. As we saw in Fig-
stage the gap is only 2048. Thus after its first stagees 16 and 17, eliminating all the indexed accesses
the 8192-point FFT with the 16MB, 8 bank, 4 suldrom both the fixed-point and floating-poinhalfim-
bank memory configuration does not have to absgrlementations achieved a higher utilization of the
such an ill-fated memory conflict pattern again.  hardware, but this utilization was still much lower

3 Analysis of Bottlenecks and Poor Hard-
ware Utilization
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than peak for both. For the floating-point implememremory bank conflicts. Eliminating as many of the
tation, after replacing all the indexed accesses wittemory effects as possible from the traces we are in-
unit-stride accesses, the highest overall MFLORBecting will allow us to ascertain what else is effect-
rate attained regardless of the memory configuratimg the performance and utilization apart from the
was 72%. Not surprisingly, this is the same utilizanemory system.

tion that was achieved by each of the interim vhalf We will start at the beginning of the algorithm and
stages under the same conditions. For the fixed-pdmgpect each section of the algorithm as well as the
utilization the story is the same, but the utilization igsansitions between the sections in the traces. Recall
a much lower 49%. that the first section of both implementations starts

Recall that in the interim vhalf stages, inpudith the stages whose VL is greater than or equal
points are not loaded and result points are not stotedMVL and uses thendive algorithm to vectorize
since the elements are transposed within the véltese stages. The next section of both implementa-
tor registers eliminating the need to access memaigns starts when VL = MVL/2 and uses the vhalf
each stage. Therefore for both the fixed-point anaethod to vectorize the remaining stages. Vhalf
floating-point implementations, we expect the vhadiigorithm divides all the points into groups contain-
interim stage MOP/s & MFLOP/s rates to be closag 2*MVL points and then processes each group
to the highest possible. A 72% utilization for théhrough all the vhalf stages, thus completing all the
floating-point implementation and a 49% utilizationemaining FFT stage calculations for that group be-
for the fixed-point implementation for these vhalf infore starting with the next group. When all the
terim stages indicates that something is happenigi@ups have been processed by the vhalf section, the
with these implementations that is preventing evéi#T implementation is done.
these stages from attaining closer to peak MOP/s &

MFI'_OP/s rates. It is the goa_l of this subsection ©31 The Nive Stages of the Vhalf Algorithm
clarify what exactly is happening.

To do so we must ascertain whether or not thie the first section of the algorithm, during theive
arithmetic functional units are being kept fully busyalgorithm stages, for both the fixed-point and the
Furthermore, if the functional units are not beintjoating-point implementations, the potential bottle-
kept fully utilized we must ascertain where in the inmeck is the memory functional unit. It is being
plementation this is the case and why they are notilized 100% since for each group of MVL ele-
On the other hand, if the functional units are beingents there are four unit-stride loads and four unit-
kept fully utilized we must then ascertain why thetride stores. In the floating-point implementation
MOP/s & MFLOP/s rates are not higher. To do thihe floating-point functional unit is idle for only 8
assessment, we inspect carefully selected pipelityeles per 2*MVL elements which is a decent use
traces from our simulator for the fixed-point andf resources and which indicates that it is not stalled
floating-pointvhalfimplementations. Specifically, towaiting for the memory unit to feed operands to it.
generate the fixed-point and floating-point traces weRecall that even in theaive algorithm we saw
use the version of these implementations that replacé.8 GFLOP/s rate for those stages whose VL was
the indexed loads and stores with unit-stride loadgseater or equal to MVL. Since the peak is 2.0
and stores. We use these versions of the implem&LOP/s, the utilization for these stages is 90% for
tations to generate the traces because, with all thetbe floating-point implementation. In this case, re-
fects of the indexed accesses removed, these versiamsrces and demand for them are decently balanced.
have the best performance and utilization of the V&ince the floating-point functional unit is idle for
RAM hardware that we have been able to achieve @oly 8 cycles per 2 * MVL points despite the mem-
far. Why do they not do better? ory unit being fully utilized, the memory unit is not

Furthermore, the traces are generated using thbottleneck.
1024-point FFT size for the floating-point version In the same first section the trace for the fixed-
and the 2048-point FFT size for the fixed-point vepoint implementation exhibits more idle cycles for
sion because these two cases experience the fewtegtvo arithmetic functional units, FU1 and FU2, in
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thesenaive algorithm stages than the floating-poirgee the memory unit once again being the bottleneck
did for its one floating-point functional unit. Speciffor both traces during this first vhalf stage. How-
ically FU1 is idle for 30 cycles and FUZ2 is idle forever, since all the interim vhalf stages, which are all
10 non-overlapping cycles. Since there are twice the vhalf stages but the first and the last, have only
many arithmetic functional units and since the potetwo unit-stride loads, which are supposed to access
tial bottleneck is the memory unit, this makes contilke roots of unity, we do not expect the memory unit
plete sense. to be the bottleneck for these interim stages in our
In thesenaive stages of the fixed-point imple-traces. Recall that these interim vhalf stages access
mentation, the memory unit is limiting the amourthe correct roots of unity by doing indexed loads, but
of work coming in, and there are twice as many résr analysis purposes, our traces are from versions
sources to do the work once it comes in. Thus tHisat have replaced the indexed loads with the incor-
implementation gets about 57% utilization and openect but non-stalling, more efficient unit-stride loads.
ates around 3.7 GOP/s, where the peak is 6.4 GOP/s[hus during transition from theaive section to
This under-utilization for the fixed-point implementhe vhalf section and in the first vhalf stage, the al-
tation is easy to understand. The execution can oglgrithm must store the output values from the last
go as fast as one memory unit, but the peak perfogive stage and then set up for the vhalf stages by
mance, and therefore the utilization, is based updaing overhead loads in addition to the loads that ac-
having two functional units going 100% of the timecess the next set of input FFT points. It is these addi-
Unless a fixed-point or integer application is vergjonal loads that upset the balance that achieved the
compute intensive, meaning it has a computation 96% untilization for thenaive stages in the floating-
I/O ratio larger than 2:1, which the FFT, whose rgoint trace and that exacerbate the fixed-point situa-
tio is approximately 1:1, does not have, high utilizaion even further.
tion is difficult to achieve for this resource configu-
ration and is what we are experiencing for t@alf g 3 3 The Floating-point Vhalf Interim Stages
fixed-point implementation. Thus for this fixed-point
case the memory unit is definitely a bottleneck in tHeuring the vhalf interim stages, the floating-point
naive stages of the algorithm. implementation keeps its one floating-point func-
tional unit almost 100% busy. However, many of the
vector instructions being executed are not part of the
8 being counted for the basic operation. As illus-
trated in Figure 7, twoymerges and fourvhal-
During the time that the algorithm is transitioningup/dn instructions per 2*MVL points per vhalf
from thenaive section to the vhalf section, in bottstage are necessary to accomplish the in-register el-
traces the memory unit is 100% busy and there amment transposes. VIRAM carries out the execution
idle cycles in the arithmetic functional units. Speciff these overhead instructions on both of the arith-
ically, for the floating-point trace the floating-pointnetic integer functional units, often in parallel.
functional unit has 26 idle cycles and for the fixed- However, since only one of these two functional
point trace, FU1 is idle 51 cycles while FU2 is idl@inits can execute floating-point operations, it is of-
for 54 cycles, only some of which overlap. At thisen the case that the floating-point operations making
point the memory unit is the scarce resource for batp the basic computation are blocked by overhead
traces, but the situation is exacerbated for the fixadstructions executing on that one FP-capable func-
point implementation because the one memory utidgnal unit. Thus, although this one FP-capable func-
must keep twice the number of functional units busiyonal unit is utilized almost 100%of the time, the
Thus in this transition section of the algorithm, th&FLOP/s rate that is achieved during each of these
memory unit is the bottleneck in both traces. interim vhalf stages for the floating-point implemen-
Specifically, in the vhalf section, at the beginnintation is 1.2 which translates to a 60% utilization.
of the execution of the first vhalf stage, six unit- At this point in the floating-point implementation,
stride loads are done in both traces. Therefore yust as we predicted, the bottleneck is not the mem-

6.3.2 The Transition from the Nave Stages to
the Vhalf Stages
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ory unit starving the arithmetic functional unit. Inof the time. It should be noted, however, that the
stead, the floating-point arithmetic functional unit Bxed-point GOP/s rate of 2.1 is almost twice the 1.2
100% utilized but much of the work that it is doindloating-point GFLOP/s rate. Consequently, having
is overhead work that does not contribute to a fastée two arithmetic functional units working in paral-
GFLOP/s rate. This is the price that must be palel despite the fact that they are not kept fully utilized
to use the in-register transpose operations to ameli@finitely has a positive impact on performance.
rate the ill effects of the shorter vector lengths expe-

rienced in thenaive algorithm.

6.3.4 The Fixed-point Vhalf Interim Stages 6.3.5 The Last Vhalf Stage and the Transition

— . L Back to the First
The situation during the vhalf interim stages for the

fixed-point trace is slightly different than that of the

floating-point trace just discussed because the opdrg! POth implementations, the last vhalf stage does a
tions making up the basic computation can exec@@re of the four vector registers, for the top and bot-
on either of the arithmetic functional units in th&°M reals and the top and bottom imaginaries, before
fixed-point implementation. The fixed-point trac€!VINg control back to the first vhalf stage in order
shows for each interim stage FU1 is idle only 2 c§9 reiterate the sequence of vhalf stages for the next
cles while FU2 is idle 17 cycles. Since the total wor@"0UP 0f 2 * MVL points. Recall that the stores in

is being divided up between the two arithmetic fund2iS stage should really be the bit reversing indexed
tional units fairly evenly and since both functiona#t0'es- But for the purposes of this analysis, we are
units are being kept relatively busy, it would seeht"9 the traces which are generated after replacing
that most of the work is getting done in parallel arfipese indexed stores with unit stride stores so that we
the GOP/s rate should be close to peak. Yet for th&@h Separate what is going on as a result of the mem-

stages the GOPIs rate is only 2.1 and the utilizati@fy SyStém from what is going on as a result of the
is a disappointing 33%. vector processor architecture.

There are two reasons that the GOP/s rate is onlyFor both implementations, the stores in the last
a third of peak for each interim vhalf stage for thehalf stage keep the memory unit fully utilized.
fixed-point implementation. The first is the same &¥hen control returns to the first vhalf stage six more
in the floating-point implementation above; overheddads are issued, so once again the memory unit is
work is being done which does not contribute tothe bottleneck for the first vhalf stage. No vhalf
faster MOP/s rate. However, for the fixed-point infirst stage basic operations can be executed until the
plementaion, the situation is exacerbated by the ademory unit is free to read in the new values for the
ditional vector instructions, such as the vector shiftsext group of points, which can only happen after
that must be used as part of the fixed-point bashe results from the last vhalf stage for the previous
computation in order to track the assumed binagyoup of points have been stored. In the floating-
point. These additional vector instructions are usedint trace, the floating-point functional unit is idle
each time the basic computation is performed, bafter returning back to the vhalf first stage for 14 cy-
they are not counted as one of the 10 fixed-point ogles. In the fixed-point trace both FU1 and FU2 are
erations that compose the basic computation for thach idle 26 cycles waiting for the memory unit to
fixed-point calcuation when computing the peak raseipply the next basic operations’s operands. Once
since they are considered overhead instructions &wain, the performance effects of the memory unit
doing the fixed-point arithmetic. bottleneck for the fixed-point trace are worse than

The second reason that the GOP/s rate is oty the floating-point trace because not one but two
a third of peak for each interim vhalf stage in th&unctional units are idle and they are idle for a longer
fixed-point trace is that there is not enough woreriod of time. After this first vhalf stage has com-
to keep two arithmetic functional units fully occupleted, the vhalf interim stages are repeated, fol-
pied, so not all the resources are being utilized #wed by the vhalf last stage once again.
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6.3.6 Summary of the Analysis and therefore there isdoubleimpact on the GOP/s
rate. This behavior now explains the poor GFLOP/s
From the above analysis of both the fixed-point angte observed for the first and last vhalf stages for the
floating-point traces it is now clear when the fungtpating-point implementation in Figure 8 as well as
tional units are being kept fully busy and when theye poor GOP/s rate observed for these same stages
are not. In addition, when the arithmetic functiongjy the fixed-point implementation in Figure 10.
units are not being fully utilized it is clear where in 1he third behavior occurs for both traces during
the algorithm this is happening and why this is thge yhalf interim stages. In each of these stages for
case. When the arithmetic functional units are beipgy, of the traces the functional units are doing over-
fully utilized we see why the MOP/s & MFLOP/Sya54 work that does not contribute to the improve-
rates, and therefore the utilization percentage, are Rint of the GELOP/s or GOP/s rate. In the floating-
higher.  Specifically, we observe three different bgyint trace the floating-point functional unitis almost
haviors throughout the course of tealfalgorithm. 1y utilized and the integer functional unit is be-
The first behavior only occurs for the floating-pointg ysed in parallel for part of the time during these
implementation. The second and the third occur f@fages. In the fixed-point trace, since there are two
both the floating-point and the fixed-point implemensqyivalent functional units, because of data depen-
tations. dencies neither is fully utilized despite the fact that
The first behavior occurs in theeive section of there is additional overhead work to do for the fixed-
the algorithm only for the floating-point implemenpoim basic computation.
tation, which has one floating point functional unit \ye now have an explanation of why the best uti-
and one integer functional unit. For all tmaive |ization we can achieve even when we take out all the
stages in the trace, the one floating-point functiongljexed accesses is 72% for the floating-point im-
unit is kept busy while the memory unitis also 100%ementation and 49% for the fixed-point implemen-
fully utilized. In this case the memory unit is Nofation, To achieve better utilization for both imple-
the bottleneck because the amount of work requliffentations, at the very least the one memory func-
ing both resources is well balanced. The memagyna| unit needs to be decoupled from the arithmetic
unit, while operating at its fullest capacity of 100%nctional unit pipeline. To attain an even better uti-
utilization, supplies exactly the right amount of dai@ ation for both implementations the memory bot-
to the floating-point functional unit to keep it busyjenecks would have to be eliminated. Two mem-
and not under-utilized. But this balance is precagy functional units might ameliorate the bottleneck,
OuS, sInce as soon as more memory accesses argitunless both memory units were decoupled from
quired, as they are when the algorithm transitions §is arithmetic functional unit pipeline, the stalls to
the vhalf section, functional unit utilization signifiyhe functional unit pipeline caused by each mem-
cantly drops because the memory unit has becogg unit would no doubt exacerbate rather than ame-
the bottleneck. This is the dip we saw for the fir§lrate the situation. In addition, having two mem-
vhalf stage in Figure 8 for the floating-point implepyy functional units would undoubtedly cause addi-
mentation. tional memory bank conflicts since there would be
The second behavior occurs in the fixed-poiat higher probability of accesses being made to the
trace during thenaive section of the algorithm, andsame bank. Therefore adding another memory func-
in both traces when the algorthm transitions froffonal unit makes it all the more imperative to also
thenaive section to the vhalf section and then frorRave a healthy number of subbanks configured into
the last vhalf stage back to the first vhalf stage. fMie memory system to ameliorate some of these in-
each of these places in the traces, the memory usijitable memory bank conflid®
is the bottleneck, and the arithmetic functional units
are idle for a significant amount of time. The im- Zalthough the results are not reported in this paper, several

experiments were run assuming two memory units per lane. The

pact of such a bottleneck for the fixed-point Implerésults corroborated the claim made here; two memory units

mentation is exacerbated by the fact that there @fighout decoupling them from the arithmetic functional unit
two functional units that become idle instead of ongipeline and with no subbanks in the memory configuration ex-
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7 VIRAM vs. DSP Performance both memory configurations is identical, and there-
fore there is only one line drawn for both memory
In this section we will compare VIRAM'’s perfor-configurations.
mance results with both fixed-point and floating- As Figures 20 and 21 indicate, VIRAM is com-
point DSP performance. petitive with the high-end, specialized DSPs for both
Both Figure 20 and Figure 21 show the runnirigie fixed-point and floating-pointhalf implementa-
times in microseconds for various size FFTs for twions. For example, for the 32 MB floating-point
implementations of the optimizedhalfalgorithm. In FFT, it outperforms the TigerSHARC by a factor of
both figures dog, scale is used for the FFT sizes o#.73, the ADSP-21160 by a factor of 2.3, and the
the x-axis. The single difference in the implemerFMS320C6701 by an impressive factor of 3.1. VI-
tations is the memory configuration. The first menRAM is also within a factor of 2.5 of the perfor-
ory configuration is 16MB, 8 banks, and no subbanksance of two other high-end DSPs: the Wildstar
(labeled “16MB”). The second memory configurauns at 1.6 times the performance of VIRAM, and
tion is 32MB, 16 banks, and no subbanks (labeléde Pathfinder-2 is 2.5 times faster.
“32MB”). Recall that many of the experiments inthis As seen in Figure 21 for the fixed-point FFT,
paper were performed before the final design deMiRAM slightly betters the performance of the
sions were made about the VIRAM chip. For thedgathfinder-1 by a factor of 1.06, but it outper-
experiments a 32MB, 16 bank, no subbank configiogrms the Carmel by a factor of 1.78, and the
ration was assumed. At a later date it was decidéiS320C6201 by an impressive factor of 4.3 for the
that the VIRAM prototype would have a 16MB, 8L.024-point FFTs. For the 256-point FFTs VIRAM
bank, no subbank configuration. For this reason weguals the performance of the TigarSHARC, and it
have included performance times for both memopyutperforms the Pathfinder-1 by a factor of 1.125,
configurations. the Carmel by a factor of 1.25, the PowerPC 604e
Thevhalfimplementation in both these figures utiy an incredible factor of 12.1, and the Pentium | by
lizes thenewvhalfup andvhalfdn instructions, an even more impressive factor of 21! As a matter of
the auto-increment feature, software pipelining, afi@gct, we could not find published numbers for any
code scheduling; the final output points are bit r&PU/DSP that outperformed VIRAM'’s fixed-point
verse rearranged. In Figure 20 thiealf results are time.
for single precision, floating-poin82-bit), complex, ~We believe that VIRAM's performance could
radix-2 FFTs. In Figure 21 thehalf results are for match or exceed the floating-point performance of
fixed-point (6-bit), complex, radix-2 FFTs. the Wildstar and the Pathfinder-2 and that it could
Also included in Figures 20 and 21 are single da@itperform the rest, in both fixed-point and floating-
points representing the FET running times for vapoint by an even bigger margin if the VIRAM ar-
ious competitive CPU/DSPs for a single FFT siZehitecture were implemented commercially; the chip
(full data on the CPU/DSP results is presented #at we have simulated here is an academic proof
Figure 22). Because the DSP results were obtairffdconcept implementation, and as such does not
from the DSP manufacturers and are intended dgmonstrate the full potential of the architecture.
showcase the performance of the DSPs, we assume
that they represent the performance on highly-tun(éd .
DSP-specific FFT algorithms. Conclusions

In Figure 20 we start to see the effects of fewer thi h h that. despite bei
banks in the 1024-point FFT since the time on V h Tis paper we have shown that, despite being

RAM for the 16MB memory implementation is 520r|marlly de&gqed fgr the_broad consumer market
of portable multimedia devices, the general-purpose

microseconds while it is 40 mi f . .
32 MB | . .m|crosecond.s or ﬂ\(?ector IRAM processor is capable of performing
implementation. In Figure 21 the times foEFTs that range in size from 256 points to 2048

acerbated the situation. For this reason we abandoned the idda@ts at performance levels comparable to or ex-
putting two memory functional units into the VIRAM prototype ceeding those of high-end floating-point and fixed-
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Figure 20:Performance in microseconds for thevhalf 32-bit, single precision, floating-point, N-point FFT implementation
for N = 128, 256, 512, and 1024 for two memory configurations: 1) 16MB, 8 banks, and no subbanks (labeled “16MB"), and
2) 32MB, 16 banks, and no subbanks (labeled “32MB”). Aog, scale is used for the FFT sizes on the x-axis.

160

SRR 4 —e— 16MB and 32MB Vhalf
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Figure 21:Performance in microseconds for thevhalf 16-bit, fixed-point, N-point FFT implementation for N = 256, 512,
and 1024 for two memory configurations: 1) 16MB, 8 banks, and no subbanks (labeled “16MB”), and 2) 32MB, 16 banks,
and no subbanks (labeled “32MB”). Alog, scale is used for the FFT sizes on the x-axis.
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| Floating-point DSPs \

Processor MHz | FFT Size | usec | Reference Notes
Pathfinder-2 133 1024| 16.8 [Inc] Estimated final MHz
Wildstar N/A 1024| 25 [AMS] FPGA, 1 proc. elmt, no streaming, 32-bit
VIRAM 200 1024 | 36 this paper| Vector
TigerSHARC 150 1024 | 69 [Deva] | 32-bit, 4-way VLIW
ADSP-21160 100 1024| 92 [Devb] | 32-bit, Radix 4, SIMD, wi/bit rev.
TMS320C6701| 167 1024 | 124.3 [Ins] Radix 2, w/bit rev, 8-way VLIW
Pathfinder-2 133 256 4.1 [Inc] Estimated final MHz
VIRAM 200 256 9.5| this paper| Vector
| Fixed-point DSPs \
Processor MHz | FFT Size | usec | Reference Notes
Pathfinder-1 80 1024 | 27.9| [Inc99] | 32-bit, Block FP, used on Scorpio Board
Carmel 250 1024 | 47.4 [INF] 32-bit, Bit rev?, Custom LIW
TMS320C6201) 200 1024 | 113.1 [Ins] Radix 2 w/bit rev
VIRAM 200 1024 | 26.8| this paper| W/Index Load
TigerSHARC 150 256 7.3| [Deva] | Radix?2
TigerSHARC 250 256 44| [Deval | Radix2
Pathfinder-1 80 256 8.1| [Inc99] | Block FP
Carmel 250 256 9 [INF] Bit rev?
PowerPC 604E, 200 256 | 87 [Dub98] | AltiVec SIMD, 3-way superscal.
Pentium | 200 256 | 151 [Dub98] | MMX SIMD
VIRAM 200 256 7.2 | this paper| W/Index Load

Figure 22: Floating-point and Fixed-point running times for 1024-point and 256-point complex FFTs on VIRAM and
various DSPs and processors.

point DSPs and DSP-like architectures. VIRAMb improve significantly over the results presented
outperforms all of the fixed-point DSPs and all bdtere. As mentioned earlier, our simulation results
two of the special-purpose floating-point FFT DSPare based on the current proof-of-concept VIRAM

Specifically, on 1024-point FFTs, VIRAM achieveimplementation, which has made compromises that
1.3 GFLOP/s in floating-point mode, and 1.9 GOPisade off potential performance for ease of imple-

in fixed-point mode. At the same time VIRAM hagnentation in an academic setting.

not compromised accuracy to achieve such perfor- _ . _
mance given that its fixed-point results are at least aBY extending the ability of the memory functional

accurate as those generated by the current fixed-p&iit to decouple itself from the arithmetic functional
DSPs. unit pipeline, by increasing the number of subbanks
in the memory system in order to minimize mem-

VIRAM achieves this performance through a Corrb'ry bank conflicts, by adding an additional memory

bination of a highly-tuned algorithm designed specif,, tional unit to take advantage of such a robust
ically for the VIRAM’s model of vector processlng,memory configuration, and by speeding up the in-

a set of simple _yet poweriul ISA_ gxtensions that Uexed memory accesses, a VIRAM commercial ver-
derly that algorithm, and the efﬁgent parallehsm- Ogion could not only improve its already outstanding
a vecf[or processor embedded in a h'gh'bandw'dﬂérformance for the small sized FFTs in the 128- to
on-chip DRAM memory. 2048-point range, but it could also significantly im-

Furthermore, we believe that the performance pfove its performance on the 8192-point and larger
the VIRAM architecture on the FFT has the potentigized FFTs as well.
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Such enhancements would further increase the uti-
lization of the VIRAM hardware especially for the
narrower data widths where the VIRAM architecturgtes
is currently being under utilized despite its high per-
formance relative to the DSPs.

We have seen that the VIRAM architecture’s “sys-
tem on a chip” approach is pushing the envelope [ofeva]
the memory hierarchy to newer levels. We found
in our archtectural analysis no evidence of the old
bottlenecks of memory latency and bandwidth co[peva]
straints. Instead we found the new boundaries and
limits in the realm of memory bank conflicts and
memory cycle times. VIRAM has changed not only
the order of magnitude of the bottlenecks but also the
whole philosophy of optimizing for them by expos-
ing the memory configuration as part of the memotievb]
heirarchy.

In particular we found that for larger sized FFTs,

the number of memory banks and subbanks play§ab98]

crucial role in the scalability of our algorithm'’s per-
formance to large FFT sizes.

Finally, we believe that VIRAM occupies an in-
teresting space in the emerging market of hybrid
CPU/DSPs such as the Infineon TriCore, the HfF98]
tachi SuperH-DSP, the Motorola/Lucent StarCore,
and the Motorola PowerPC G4 (7400). Like these

http://www.carmeldsp.com/
products/product_brief.html

J.W. Cooley and J.W. Tukey. An algorithm
for the machine computation of the complex
Fourier seriesMathematics of Computation
19:297-301, 1965.

Analog Devices. ADSP-TSO00ttp:/
products.analog.com/products/
info.asp?product=ADSP-TS001M

Analog Devices. ADSP-TS001
http://content.analog.com/
pressrelease/prdisplay/0,1622,

125,00.html http://products.
analog.com/products/info.asp?

product=ADSP-TS001M .

Analog Devices. pdf file:preliminary tech-
nical data report.http://www.analog.
com/pdf/ADSP_21160_p.pdf

Pradeep Dubey. Architectural and design
implications of mediaprocessing, May
1998. http://www.research.ibm.
com/people/p/pradeep/media_
tutorial/ppframe.htm%

M. Frigo and S.G. Johnson. FFTW: An adap-
tive software architecture for the FFT. In
ICASSP1998.

other chips, VIRAM includes both general-purpos&PC"97] R. Fromm, S. Perissakis, N. Cardwell,

CPU capability as well as significant DSP mus-
cle, as demonstrated by its high performance on the
FFT. In addition, VIRAM'’s vector plus embedded-
DRAM design may prove to have further advantages
in power, area, and performance over these more tra-

ditional processor designs. [inc]

References

[AMS] Inc. Annapolis Micro Systems. Annapolis mi_[ln099]
cro systems, inc. homepadettp://www.

annapmicro.com/PR9126.html

[Asa98] Krste Asanovic. Vector Microprocessors [Ins]
PhD thesis, University of California, Berke-
ley, 1998. UCB//CSD-98-1014.

[INF] Siemens (Infineon) Carmehttp://www.

elecdesign.com/magazine/1999/
nov2299/dsp/1122dspl.shtml
http://www.carmeldsp.com/
products/benchmarks.html

[Ins]

38

C. Kozyrakis, B. McGaughy, D. Patterson,
T. Anderson, and K. Yelick. The energy ef-
ficiency of iram architectures. lthe 24th An-
nual International Symposium on Computer
Architecture pages 327-337, Denver, CO,
June 1997.

Catalina Research Inc. Cri web site: Fft
tables.  http://www.cri-dsp.com/
CRIProducts/chips/pathfinder2.

htm.

Catalina Research Inc. Cri web site:
Press releases, April 1999. http:
[lwww.cri-dsp.com/CRIProducts/
chips/pathfinder.htm

Texas Instrument. Tms320c6000 plat-
form overview. http://www.ti.com/
sc/docs/products/dsp/c6000/

62bench.htm

Texas Instrument. Tms320c6000 plat-
form overview. http://www.ti.com/
sc/docs/products/dsp/c6000/

67bench.htm



[Koz99] Christoforos Kozyrakis. A media-enhanced
vector architecture for embedded memory
systems. Technical Report UCB//CSD-99-
1059, University of California, Berkeley, July
1999.

[PACt97] D. Patterson, T. Anderson, N. Cardwell,
R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A case for intelli-
gent dram: Iram.|IEEE Micro, 17(2):34-44,
April 1997.

39



