
Dynamic Memory Model based Optimization of Scalar and

Vector Quantizer Encoder

Gene Cheung and Steven McCanne

Report No. UCB/CSD-99-1085

February 28, 2000

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Work supported by Grant
FD97-34515-McCanne(ANI-9734515)

Abstract

The rapid progress of computers and today's heterogeneous computing environment means
computation-intensive signal processing algorithms must be optimized for performance in a
machine dependent fashion. In this paper, we present design and analysis of an automated algo-
rithm optimizer for scalar and vector quantizer encoders. Using a dynamic memory model, the
optimal computation-memory tradeo� is exploited to minimize the encoding time. Experiments
show our proposed optimized algorithm has marked improvements over existing techniques.

1 Introduction

If the computer evolution has matured to a stage where computers are ubiquitous and homogeneous,

and improvements are asymptotic, then implementation of a signal processing algorithm needs only

be painstakingly hand-coded once for optimal performance. Unfortunately, computers continue

to progress at an exponential rate, and computing environments are extremely diverse. Clearly,

hand-coding an algorithm for every possible platform is impractical. On the other hand, simply

compiling a �xed algorithm written in a high level language for each machine is sub-optimal, since

machine dependent information such as memory hierarchy is unexploited at the algorithmic level.

A fundamental question surfaces: how to re-target an algorithm onto di�erent machine platforms

optimally and automatically?

In light of this problem, recent research [1], [2] has looked at the distortion-computation tradeo�s

of particular algorithms, thus providing formal analyses of algorithm tuning for machines with

di�erent computational budgets. Our work [3, 4, 5] di�ers from previous work in that instead of

minimizing the number of computational units for a given distortion, we search for the optimal

computation-memory tradeo� to minimize running time: divide the processing so that the optimal

subset is implemented as simple data memory retrievals of pre-computed values (pre-compute), and

the other is implemented as on-the-
y computations (compute). pre-compute requires only a single

data memory lookup but may lead to memory blow-up; compute can be slow but avoids the memory

implosion problem. The tension between compute and pre-compute is an interesting one, and if it

1

2

c(cmp) = QP

M

M 2

1

T

T

1

21S

S

Lagrange samples

S

T

T

S1

1

2

T(S)

H’(S)

a) Dynamic Memory Model b) T (S) and H
0(S)

Figure 1: Machine Model and Optimization Framework

is correctly exploited for a given machine, can lead to enhanced performance over techniques that

completely ignore one or the other. In this paper, we will demonstrate this is indeed the case for

scalar and vector quantizer encoding algorithms.

The importance of quantization is paramount, as just about every compression algorithm in-

cludes quantization of some form. But while scalar quantizer is widely used, vector quantizer is

less accepted, partly due to its inherent high encoding complexity. In this paper, we show that

by exploiting the computation-memory tradeo� for a particular machine, we can improve encoding

performance of both quantizers. In section 2, we �rst review the machine model and its associated

optimization framework in [4]. In section 3 and 4, we discuss how the framework is instantiated

for scalar and vector quantizer encoders respectively. We present results in section 5. Finally, we

conclude in section 6.

2 Dynamic Memory Model and Optimization Framework

2.1 Dynamic Memory Model

Modern processors use hierarchical memories to enhance performance, where small, fast memories

are located near the CPU and larger, slower memories are situated further away. Consequently,

2

the execution speed of a machine instruction that accesses memory depends on the level of memory

referenced. The machine model in Figure 1a re
ects this characteristic. If the processor P accesses

a datum residing in level 1 memory M1 (level 2 memory M2), it incurs memory access time T1

(T2). If the instruction does not involve memory access, then the execution time depends on the

complexity of the instruction itself; we denote the cost of a logical comparison (cmp) as Q. We

assume for now the sizes of M1 (M2) is S1 (1)1.

Suppose the size of data structures of an algorithm in memory, S, is � S1. Then the access

time of a desired datum, T (S), is T1, since all data structures can be loaded into M1. If S > S1,

then the exact location of the desired datum is hard to tract; depending on the processor's caching

policy and data access patterns, it can be in M1 or M2. In this case, we estimate the access time

as (see Figure 1b):

T (S) =

8>><
>>:

T1 if S � S1

(S1
S
)T1 + (S�S1

S
)T2 otherwise

(1)

The basic idea is the following: assuming all pieces of data are equally probable, with probability

S1
S

(S�S1
S

) we will �nd a datum in M1 (M2) with access time T1 (T2).

2.2 Optimization Framework

Using the dynamic memory model, we evaluate the execution cost of an algorithm l as follow. We

�rst �nd the size of the algorithm's data structures, R(l). This translates to a memory access cost

T (R(l)) using (1). Knowing the access cost, we can evaluate the execution cost of l, HT (R(l))(l).

Let L denote the set of algorithms in the search space. The optimization problem is:

min
l2L

�
HT (R(l))(l)

	
(2)

Solving (2) is di�cult in general (see [4] for VLC decoding example). The reason is twofold: i)

while the cost of a memory access is not known till the entire algorithm is constructed, the optimal

1We can easily generalized the memory model to any number of memory levels of any size.

3

construction of an algorithm depends on the cost of memory access | a classic chicken-and-egg

problem; ii) dependency on non-linear function T(S) means the optimization problem is non-linear.

Instead of solving (2) directly, we �rst dissect it into easier pieces.

Suppose we know a priori that the total data structure size of the optimal algorithm l� in

memory is S�. To �nd l�, we only need to search the subset of algorithms with total size S�. Let

HT (S)(l) denote the cost of l when the access cost is �xed at T (S). (2) is then the same as:

H 0(S�) = min
l2L

�
HT (S�)(l)

	
s.t. R(l) = S� (3)

Solving H 0(S�) seems easier, since the mutual dependency and the non-linearity have both been

removed. The problem is we do not know S� a priori, and so we need to search through all S values

for S�:

min
l2L

�
HT (R(l))(l)

	
= min

8S
fH 0(S)g (4)

See Figure 1b for an illustration. We are now faced with two new di�culties: i) solving (3) for all

S is expensive, ii) (3) itself is still hard since it is a constrained problem. The idea is not to solve

(3), but solve its corresponding Lagrangian:

min
l2L

�
HT (S)(l) + �R(l)

	
(5)

It is proven in [4] that by �nding a suitable multiplier �, if the optimal solution to (5), lo, is

such that R(lo) = S, then lo is also optimal to (3). We accomplish that by applying the following

iteration: we adjust � so that R(lo) is as close to S as possible while keeping R(lo) � S. If

R(lo) = S, then HT (S)(l
o) is a valid point on H 0(S). If not, we let S = R(lo), repeat the above

procedure until R(lo) = S.

Notice that after applying the iteration, only a subset of possible S values has the corresponding

Lagrangian solutions satisfying R(lo) = S. But in so doing, we are lowering the complexity by only

sampling a small number of points on H 0(S). We call this phenomenon Lagrangian sampling (see

Figure 1b). By sampling, however, we may not be able to �nd the optimal H 0(S�), and we rely on

a sampling error theorem in [4] to bound our solution error.

4

x

p(x)

01 1100 10

τ τ τ2 31
τ ?

Is x < 2τ ? 11
10
01
00

=11
=11

=10

0 2 - 1Mτ2τ1 τ3

1101 1000

logic

lookup table

=00 =01

Is x < 1τ ?

=10 =11

Is x < 3

a) Non-uniform SQ b) Hybrid Encoding Algo.

Figure 2: Non-uniform SQ and Encoding Algorithm

3 Scalar Quantizer

The particular scalar quantizer (SQ) we are concerned with is a non-uniform SQ for a sequence

of already digitized M -bit �xed point inputs. The optimal design of non-uniform SQs is well-

studied [7]; the resulting N -bit quantizer is commonly called the Lloyd-Max Quantizer. In short,

the quantizer �nds the optimal 2N partitions for all input values | partition boundaries denoted

by � = f�1; : : : ; �2N�1g | given input probability p(x). An example is shown in Figure 2a. The

problem is to implement the M -to-N -bit non-uniform quantizer as e�ciently as possible.

Lets �rst consider two simple encoding algorithms. The �rst one minimizes encoding steps

by performing a single M -bit table lookup, where the resulting entry contains the corresponding

N -bit partition index. However, this requires 2M memory storage, and memory access can be slow

if M is large and 2M elements cannot �t into M1. An alternative algorithm minimizes memory

usage by asking a sequence of logic statements \Is x < �i?" until the correct partition has been

identi�ed. This corresponds to a binary decision tree of height h � N . If N is large, the sequence

of questions required is long and the algorithm is slow. A natural question is: what is the optimal

hybrid scheme, using a combination of lookup tables and logic, that minimizes the encoding time?

An example is shown in Figure 2b.

5

To correctly exploit the tradeo� between memory and computation, we will use the dynamic

memory model and framework. Essentially, we want to instantiate (5) for the SQ problem, given

threshold set � = f�1; : : : ; �2N�1g and input probability p(x).

3.1 Algorithm Development

Let f(a; b) be the minimum Lagrangian encoding cost | the value of (5) | given input x 2 [a; b).

The optimal operation for this input range can potentially be a logic or table lookup, resulting in

cost fl(a; b) or ft(a; b) respectively:

f(a; b) = min f fl(a; b); ft(a; b) g (6)

For logic, we can choose among all �i values that is in range (a; b) to check against input x. The

result of the check is a partition of original interval into [a; �i) and [�i; b). Let p(a; b) denote the

probability that x 2 [a; b), and Q denote the cost of a logic operation. We can write fl(a; b) as:

fl(a; b) = p(a; b)Q+ min
�i2(a;b)

[f(a; �i) + f(�i; b)] (7)

For table lookup, there is �rst an access cost of p(a; b)T (S). The table lookup operation is an index

operation into a table using left-most h-bit of index x � a. The number of bits needed to de�ne

range b�a, thus the maximum height of a lookup table, is dlog2(b�a)e. For each table height h, the

table operation divides the range [a; b) into smaller ranges of width m = 2dlog2(b�a)e�h each. The

number of these smaller ranges, n, is determined by the largest number the h most signi�cant bits

of b� a can take on. The associated penalty �R(l) in (5) is therefore �n. The following equations

formalize this analysis:

ft(a; b) = p(a; b)T (S) + min
1�h�dlog

2
(b�a)e

"
�n+

n�1X
i=1

f(a+m(i� 1); a+m(i)) + f(a+m(n� 1); b)

#

m = 2dlog2(b�a)e�h n =

�
b� a� 1

m

�
+ 1 (8)

The base case of the recursion is when there is no �i in range (a; b), meaning the input x can only

be in one partition:

f(a; b) = 0 if 6 9 �i 2 (a; b) (9)

6

ii)
2-a1τ -a

log(b-a) h=3

i)
τ

Figure 3: Tree Pruning Example

Recursive call to f(0; 2M) yields the optimal solution to (5), lo, given �.

3.2 Tree Pruning

Looking at (8), we notice that the algorithm have 2M recursive calls when height M lookup table

is tested for ft(0; 2
M). This means a call to (8) has running time O(2MM) | running time is

exponential. (Recall that the inputs of the algorithm are � and p(x), where j�j = 2N , N << M .)

However, we can reduce the complexity with the following observation. When performing an h-bit

table lookup operation for a given range [a; b) using index x� a, among the n branches the input

may fall into, we only need to further check which partition x falls into for the branches that

correspond to �i � a 2 (0; b � a). See Figure 3 for an example. Notice that unless x falls into one

of these � -branches, we know instantly without any more operations which partition input x falls

into. Therefore, the only recursive calls needed in (8) are these � -branches. The following equation

expresses this idea:

ft(a; b) = p(a; b)T (S) +

min
1�h�dlog

2
(b�a)e

2
4�n+ X

�i2(a;b)

1(i 6= n)f(a+m(i� 1); a+m(i)) + 1(i = n)f(a+m(n� 1); b)

3
5

m = 2dlog2(b�a)e�h n =

�
b� a� 1

m

�
+ 1

i =

�
�i � a

m

�
+ 1 (10)

where 1(p) is the indication function | evaluates to 1 if predicate p is true, 0 otherwise. The

complexity of computing (10) is now O(2NM).

7

3.3 Dynamic Programming

It can be easily shown that when solving f(0; 2M) using (7) and (10), there are overlapping sub-

problems. We can eliminate the overhead of solving the same sub-problem more than once by

storing each sub-problem's answer in a dynamic programming table. Each time we encounter a

sub-problem f(a; b), we �rst check the table entry corresponding to argument (a; b) to see if it has

been solved before. If so, we simply return the value. If not, we solve it using (7) and (10) and store

the value in that entry location for possible future lookups. Since the completion of the dynamic

programming table means the largest sub-problem | the original problem f(0; 2M) | has been

solved, the complexity of the algorithm will be the size of the dynamic programming table times

the complexity of computing each table entry. The complexity of computing each entry using (7)

and (10) is: O(2N) +O(2NM) = O(2NM). We now investigate the minimally su�cient size of the

dynamic programming table.

We �rst note that creating a table of size 2M � 2M is clearly impractical | it would mean

algorithm requires exponential memory size. To restrict table size, we �rst look closely at how

arguments (a; b) take on di�erent values as (7) and (10) are called recursively. Looking at the two

equations, we can summarize the evolution of these values using the following context-free grammar

rules:

a ! a+ (i� 1) � 2h b ! a+ j � 2h
a ! �i b ! �j

(11)

From the above rules, it is clear that a can be written as:

a = �i + (i1 � 1) � 2h1 + (i2 � 1) � 2h2 + : : :+ (ip � 1) � 2hp (12)

= �i + (i� 1) � 2hi (13)

where hi = min[h1; h2; : : : ; hp]. Note that i must take on values so that there is a � value in range

(�i+(i�1)�2hi ; �i+ i�2hi); the number of these i values is O(2N). For each possible �i in (13), hi

8

can take on O(M) possible values, and there are at most 2N possible �i values. Hence the possible

number of values for a is O(22NM). A similar analysis will show the possible values for b is also

O(22NM). Assuming we can retrieve an entry corresponding to f(a; b) in constant time, we can

conclude the complexity of the algorithm is: O(22NM � 22NM � 2NM) = O(25NM3).

3.4 Singular Value Search

3.4.1 General Theory of Singular Values

In the previous two sections, we discussed in details how to solve the SQ instantiation of (5) of the

optimization framework. The algorithm is described by (7) and (10) | the algorithm solves (5) for

a given multiplier value �. Recall that if the optimal Lagrangian solution lo is such that R(lo) 6= S,

we need to adjust the multiplier value and solves (5) again and again, until R(lo) is as close to S

as possible while keeping R(lo) � S.

Consider the example in Figure 4. The Lagrangian cost of every algorithm in search space L

is represented as a linear function of multiplier �, H(l) + �R(l), in the top graph. The bottom

graph plots the slope of the optimal Lagrangian cost function given �, or simply R(lo). Notice as

� increases, the optimal algorithm changes from l1 to l2 to l3, and the corresponding R(lo) changes

from �1 to �2 to 0. Note also that algorithm l4 is never the optimal algorithm for any multiplier

value.

Notice at special multiplier value, �1, �2 in Figure 4, there are two algorithms that are simulta-

neously optimal; for example, at �1, algorithm l1 and l2 are both optimal. These multiplier values

are termed singular values in [6]. It turns out by solving (5) only at singular multiplier values, we

can discover all solutions to (5) for all multiplier values. Moreover, at the particular multiplier value

where the slopes of the two optimal solutions span the constraint S, we can conclude that these two

are the solutions with R(l) closest to S from above and below, among all Lagrangian solutions. In

9

S

λ

λ

θ
θ

θ

θ

1

1

1ζ
ζ
ζ3

2
2

2

1
2

3

4

R

f(a,b)

λ

λ

λ

λ1

1

2

2

Figure 4: Cost as Function of Multiplier Value

the example, at �2, l2 and l3 are simultaneously optimal, and given they are the closest Lagrangian

solutions from above and below, l2 is the solution we terminate with in the singular value search

iteration.

3.4.2 SQ Instantiation

We now turn our attention to the problem of �nding the neighboring singular value for the SQ

problem. We assume we have already obtained the optimal Lagrangian solution to (5) given � = �o

by solving f(a; b). Let �(a; b) (�(a; b)) be the y-intercept (slope) of the optimal Lagrangian solution

given input x 2 [a; b), i.e. f(a; b) = �(a; b) + �o�(a; b). These values can be stored in dynamic

programming tables as f(a; b) is being solved, thus incurring no addition computational cost. We

now de�ne a related function g(a; b) that returns the larger neighboring singular multiplier value

given input x 2 [a; b) | the minimum value at which the current optimal algorithm will become

co-optimal with a new algorithm as � increases. We call it the augmented multiplier, denoted by

�+. The new algorithm may use a logic or a table for range [a; b), so we will check both cases

10

and �nd the minimum of the two. Let gl(a; b) (gt(a; b)) be a function that returns �+ given input

x 2 [a; b) and given the new algorithm's optimal operator for range [a; b) is logic (table). We can

write g(a; b) as:

g(a; b) = min f gl(a; b); gt(a; b) g (14)

For gl(a; b), we assume the new optimal algorithm l0 has logic as the optimal operator for range

[a; b). Suppose we further assume the optimal solutions of the corresponding children for � = �o

remains the same as � increases. Then Langragian cost of l0 is:

H(l0) + �R(l0) = [p(a; b)Q+ �(a; �i) + �(�i; b)] + � [�(a; �i) + �(�i; b)] (15)

If l0 is indeed the next optimal algorithm at augmented value �+, its cost function will have to

intersect l at �-value > �o. We will �nd this intersection point by a call to X(a;b)[�; �], which returns

the intersection �-value between optimal Lagrangian solution of f(a; b) and line with slope � and

intercept �. If the intersection �-value is � �o, then it returns 1.

Previously we assume the optimal solutions for � = �o of the corresponding children remains

the same as � increases. We will need to check this is indeed the case; we check by recursively

calling g(a; �i) and g(�i; b) and �nding the minimum of these two. If the returned minimum is

smaller than the previously calculated intersection point, then we will use this minimum as gl(a; b)

instead. gl(a; b) can now be written as follow:

gl(a; b) = min

8>>>>>>>><
>>>>>>>>:

min
�i2(a;b)

f min [g(a; �i); g(�i; b)] g

min
�i2(a;b)

X(a;b)

2
6664
p(a; b)Q+ �(a; �i) + �(�i; b)

�(a; �i) + �(�i; b)

3
7775

(16)

Note the similarity between (16) and (7). In fact, following the same complexity analysis, they

have the same order of complexity.

We now derive gt(a; b), and as one would expect, it is similar to ft(a; b). Here we assume the

new algorithm's optimal operation for range [a; b) is a table of some height h. Again, we �rst

11

assume the optimal solutions at �o of the corresponding children remains optimal as � increases.

For table of height h, the new algorithm will now have y-intercept and slope as follow:

y-intercept = p(a; b)T (S) +
X

�i2(a;b)

2
6664
1(i 6= n)�(a+ (i� 1)m;a+ im)+

1(i = n)�(a+ (n� 1)m; b)

3
7775 (17)

slope = n+
X

�i2(a;b)

2
6664
1(i 6= n)�(a+ (i� 1)m;a + im)+

1(i = n)�(a+ (n� 1)m; b)

3
7775 (18)

where i, n, m are similarly de�ned in (10). Similar to gl(a; b), we will need to check our assumption

of continued optimality of corresponding children are valid. We will again do so using recursive

calls. gt(a; b) can now be written as:

gt(a; b) = min

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

min
1�h�dlog2(b�a)e

�i2(a;b)

8>>><
>>>:

2(i 6= n)g(a+ (i� 1)m;a+ im)

2(i = n)g(a+ (n� 1)m; b)

min
1�h�dlog2(b�a)e

�i2(a;b)

X(a;b)

2
6666666666664

p(a; b)T (S) +
X

�i2(a;b)

1(i 6= n)�(a+ (i� 1)m;a + im)+

1(i = n)�(a+ (n� 1)p; b)

n+
X

�i2(a;b)

1(i 6= n)�(a+ (i� 1)m;a + im)+

1(i = n)�(a+ (n� 1)m; b)

3
7777777777775
(19)

where 2(c) means the function is called only if clause c is true.

Using the same complexity analysis as the one for f(a; b), it is easy to see that the g(a; b) has

the same time complexity O(25NM3). To �nd optimal solution lo to (5) with R(lo) closest to S

4 Vector Quantizer

VQ encoding is the process of �nding the codevector yj among codevector set Y = fy1; : : : ;yNg,

that minimizes distortion metric d(x;yj) given input vector x:

yj = arg min
yi2Y

d(x;yi) (20)

12

codevector
input vector

central line

search area

3
4

6

5

2

1

τ

III

1 2

τ 3

I
II III

τ

= IV

IV

01
00

Is m < m ?x 2

Is m < m ?x 101
11

= III
= III

= IV

a) Equal-avg VQ Encoding b) Hybrid Encoding Algo.

Figure 5: Equal-average VQ and Hybrid Algorithm

where x, yj 's are vectors in k-dimension space. This nearest neighbor search requires searching

through all codevectors in the worst case, if the codebook Y is unstructured.

4.1 Heuristic Approach

Recently, heuristics such as equal-average hyperplane partition (EAHP) [8] have been shown to

lower complexity in the average case for image data. The key observation of EAHP is that there

is strong correlations among input vector's individual components for image data. As a result, the

majority of the input vectors are distributed along the central line l = fxjx1 = : : : = xkg. If we sort

the codevectors according to their means, we can successively eliminate potential nearest neighbors

by using this bound2:

d(x;y) �
p
kjmx �myj (21)

For example in Figure 5a, we �rst test codevector y5 and compute d(x;y5). We can then eliminate

any vector yi whose mean myi
is such that

p
kjmx �myi

j � d(x;y5). Geometrically, we eliminate

all codevectors that lie outside the gray strip that encloses the circle in Figure 5a. In this example,

we eliminate y1, y2, y3 and y6.

It is important to start EAHP with a codevector that has mean close to the input vector. To

2Bound is valid only if the distortion metric is l2 norm.

13

this end, EAHP uses a binary decision tree to �rst �nd the codevector with the closest mean to

the input vector. To speed up this initial search, we use the algorithm discussed in section 3 to

classify the input mean mx into the correct partition. We will show in the results section that

the speedup of the initial search for closest vector mean does have noticeable improvement to the

overall encoding process.

5 Implementation and Results

5.1 Implementation Issues

We conjecture that in practice there are more overlapping subproblems when solving f(a; b) that

escape our analysis in section 3.3. So in our implementation, instead of constructing a size 22NM

* 22NM dynamic programming table for f(a; b), g(a; b), �(a; b) and �(a; b), we implemented a 2-

dimensional red-black tree[9] of objects, each of which stores all four previously mentioned values

corresponding to argument (a; b). To see if f(a; b) has been previously solved, we �rst use a to

search the red-black tree in one dimension. If a is found at a node in dimension one, we use b to

search the subtree rooted at this node in dimension two | all of the objects in this subtree has

a as �rst argument. Red-black properties can be preserved in both dimensions if insertions and

tree-rotations are done carefully. The resulting implementation means the retrieval of an object

corresponding to argument (a; b) is O(log a) +O(log b) = O(M).

5.2 Results

To test our algorithm for SQ, we use parameters in Figure 6a and generated T (S) (bottom) and

H 0(S) for 15-to-4 bit scalar quantizer, with input distribution Gaussian 2 (top) in Figure 6b.

The threshold set � is generated using Lloyd's algorithm (See Appendix A). The implementation

platform is a pentium II 266 MHz processor, with L1 cache 16kbyte (50-50 split of the 32kbyte

14

Parameters Values
S1 16k
T1 2 cycles
S2 1
T2 4 cycles
Q 3 cycles
p(x) Gaussian 1: N(8000; 4002)

Gaussian 2: N(8000; 16002)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

memory usage

co
st

Memory Usage vs. Cost for T(S) and H‘(S)

H‘(S)
T(S)

a) Parameters b) exp. T (S) and H 0(S)

Figure 6: Experiment for SQ

p(x) M N algorithm speed
Gaussian 1 15 2 logic-only 3.947 mil/s
Gaussian 1 15 2 hybrid 4.651 mil/s
Gaussian 1 15 4 logic-only 2.469 mil/s
Gaussian 1 15 4 hybrid 4.545 mil/s
Gaussian 2 15 2 logic-only 3.738 mil/s
Gaussian 2 15 2 hybrid 4.790 mil/s
Gaussian 2 15 4 logic-only 2.484 mil/s
Gaussian 2 15 4 hybrid 4.597 mil/s

codebook size algorithm encoding time
8 logic-only .280s/lena
8 hybrid .255s/lena
16 logic-only .465s/lena
16 hybrid .440s/lena
32 logic-only .465s/lena
32 hybrid .440s/lena
64 logic-only .935s/lena
64 hybrid .895s/lena

a) SQ Encoder Comparison b) VQ Encoder Comparison

Figure 7: Comparison of SQ, VQ Encoders

data-instruction cache). To compare our hybrid table lookup-logic SQ encoder to a binary decision

tree SQ encoder, we generated 20 million inputs according to the input distribution and encode

them 10 times to �nd an average speed for each case. For input distribution Gaussian 1 15-to-2 bit

(15-to-4 bit) SQ encoders, excluding I/O access time, we see a 17:84% speed improvement (84:08%)

over logic-only encoder. For input distribution Gaussian 2 15-to-2 bit (15-to-4 bit) SQ encoders,

we see a 28:14% improvement (85:06%) over logic-only encoder. Notice that as N increases, the

improvement of hybrid encoders over logic-only encoders increases. This is expected, since the

height of the binary decision tree for logic-only encoders is larger when as N increases.

For VQ, using 512*512 gray scale images of Lena, Baboon and Tiffany as training data, we

15

construct codebooks of size 8, 16, 32 and 64 for dimension 4 using the generalized Lloyd algorithm

[7]. We then compare the encoding speed of EAHP using binary decision tree and EAHP using

our algorithm when encoding the Lena image. Excluding I/O access time, we see improvement

of 9:83%, 5:67%, 6:65% and 4:47% respectively for the four codebook sizes. First, notice that

the improvement for VQ is not as drastic as SQ. This is expected, since we are speeding up only

the initial search for closest codevector mean, and the VQ encoding algorithm needs to perform

other tasks like computing distortion between input vector and potential candidate vectors. Second,

notice that as the size of the codebook increases, the percentage improvement decreases. The reason

is that EAHP is increasingly ine�ective in ruling out candidate codevectors as the codebook size

grows. The bulk of the computation then becomes the computations of distortion between input

vector and candidate vectors, and the speed improvement of initial search for closest codevector

mean is diminished in the overall picture.

6 Conclusion

In this paper, we seek algorithmic computational optimization of scalar and vector quantizer en-

coders by exploiting the memory hierarchy of the underlying processor. In particular, by instanti-

ating the dynamic memory model based optimization framework, we �nd the optimal computation-

memory tradeo�s to minimize encoding time of scalar and vector quantizer. In the results section,

we see improved performance in both the SQ and VQ case.

A Lloyd's Algorithm

Suppose we choose the distortion metric to be L2. So given the center of the partition i, Ci, the

distortion of this partition is
R �i+1
�i

p(x)(x�Ci)
2dx. The optimal center C�

i is the center value that

16

minimizes this integral:

C�
i = argmin

8Ci

Z �i+1

�i

p(x)(x� Ci)
2 dx (22)

Taking the �rst derivative with respect to Ci and equating it to 0, we can �nd the closed form

solution for C�
i :

d(:)

dCi

=

Z �i+1

�i

p(x)

�
d

dCi

(x�Ci)
2
�
dx (23)

=

Z �i+1

�i

p(x)(x� Ci)(�1) dx (24)

= Ci

Z �i+1

�i

p(x) dx�
Z �i+1

�i

p(x)x dx (25)

C�
i =

R �i+1
�i

p(x)x dxR �i+1
�i

p(x) dx
(26)

�i is the threshold value so that input value x just to the left of it will be quantized to partition

i�1 with quantized value Ci�1, and value just to the right of it will be quantized to partition i with

quantized value Ci. Optimal threshold ��i is the value that minimizes these e�ects of quantization:

��i = argmin
8�i

(Z �i

Ci�1

p(x)(x� Ci�1)
2 dx+

Z Ci

�i

p(x)(x� Ci)
2 dx

)
(27)

We can similarly solve for the closed form of ��i by taking the derivative and equating it to 0:

d(:)

d�i
= p(x)(x� Ci�1)

2
���
�=�i

� p(x)(x� Ci)
2
���
�=�i

(28)

(��i � Ci�1)
2 = (��i � Ci)

2 (29)

�i =
C2
i � C2

i�1

2(Ci � Ci�1)
(30)

References

[1] K.Lengwehasatit, A.Ortega, \Distortion/Decoding Time Tradeo�s in software DCT-based Image Cod-

ing," ICASSP 97, 1997.

[2] V. Goyal and M. Vetterli, \Computation-Distortion Characteristics of Block Transform Coding," ICIP

97, pp.2729-2732, 1997.

17

[3] G.Cheung, S.McCanne, C.Papadimitriou, \Software Synthesis of Variable-length Code Decoder using a

Mixture of Programmed Logic and Table Lookups," DCC 99, March, 1999.

[4] G.Cheung, S.McCanne, \Dynamic Memory Model based Framework for Optimization of IP Address

Lookup Algorithms," ICNP 99, November, 1999.

[5] G.Cheung, S.McCanne, \An Attribute Grammar Based Framework for Machine Dependent Computa-

tional Optimizations of Media Processing Algorithms," ICIP 99, October, 1999.

[6] Y.Shoham and A.Gersho, \E�cient Bit Allocation for an Arbitrary Set of Quantizers," IEEE Trans.

ASSP, vol.36, pp.1445-1453, September 1988.

[7] A.Gersho, R.Gray, Vector Quantization and Signal Compression, Kluwer, 1992.

[8] L.Guan, M.Kamel, \Equal-average Hyperplane Partition Method for Vector Quantization of Image

Data," Pattern Recognition Letter 13 (1992) 693-699.

[9] T.Cormen, C.Leiserson, R.Rivest, Introduction to Algorithms, MIT Press, 1990.

18

