Theoretical and Empirical Comparisons of
Approximate String Matching Algorithms !

William I. Chang *? Jordan Lampe 3

Abstract

We study in depth a model of non-exact pattern matching based on edzt
distance, which is the minimum number of substitutions, insertions, and
deletions needed to transform one string of symbols to another. More pre-
cisely, the k differences approzimate string matching problem specifies a text
string of length n, a pattern string of length m, the number k of differences
(substitutions, insertions, deletions) allowed in a match, and asks for all loca-
tions in the text where a match occurs. We have carefully implemented and
analyzed various O(kn) algorithms based on dynamic programming (DP),
paying particular attention to dependence on b the alphabet size. An empir-
ical observation on the average values of the DP tabulation makes apparent
each algorithm’s dependence on b. A new algorithm is presented that com-
putes much fewer entries of the DP table. In practice, its speedup over the
previous fastest algorithm is 2.5X for binary alphabet; 4X for four-letter al-
phabet; 10X for twenty-letter alphabet. We give a probabilistic analysis of
the DP table in order to prove that the expected running time of our algo-
rithm (as well as an earlier “cut-off” algorithm due to Ukkonen) is O(kn)
for random text. Furthermore, we give a heuristic argument that our algo-
rithm is O(kn/(vd — 1)) on the average, when alphabet size is taken into
consideration.

keywords: approximate string matching, edit distance
abbreviated title: Theoretical and Empirical Comparisons

1This research was conducted at the University of California, Berkeley, and was sup-
ported in part by Department of Energy grant DE-FG03-90ER60999. An earlier version
of this paper appeared as part of [3].

2Cold Spring Harbor Laboratory, Hershey Bldg., P.O. Box 100, Cold Spring Harbor,
NY 11724. Electronic mail: wchang@cshl.org

3Dept. of Computer Science and Engineering FR-35, University of Washington, Seattle,
WA 98195. .

1 Introduction and Summary of Results

Beginning in the 1980s, genetics and DNA sequence analysis rescarch pro-
vided the impetus for advances in non-exact string matching. The k dif-
ferences approzimate siring matching problem specifies, in addition to text
string 7" and pattern string #, the parameter & of differences {insertions,
deletions, substitutions) allowed in a match. The problem is to find all lo-
cations in the text where a match ends. (So the output is of linear size.
This problem formulation is due to Sellers [31], and is equivaient to finding
where matches begin, by reversing the strings.) In this paper, the text is
assumed to be given on-line and to be scanned sequentially; the space re-
quirement should (preferably) be linear in the length of the pattern. Whiie
this is a simple model of non-exact matching, we note that it has a rich
history ([31, 34, 20, 21, 9, 10, 4, 17, 3] chronologically) and interesting com-
binatorics, and is a natural starting point before more complex, parametric
cost functions are to be considered (e.g. Gusfield, et al. [12, 13]).

Notation. Text T'[1,...,n] and pattern P{1,...,m] over fixed, finite alpha-
bet of size b. The edit distance (also called Levenshtein distance [23]) ed(u, v)
of two strings u, v is the minimum number of substitutions, insertions, dele-
tions needed to transform ome string into the other.

Seller’s dynamic programming (DP) algorithm [31] (mn.dp) computes
(column by column) an m + 1 by n + 1 table whose entry D(7,1) is the min-
imum number of edit operations (substitutions, insertions, deletions) nec-
essary to transform the length j prefiz of the pattern into some text frag-
ment ending at the i-th letter. (Boundary conditions are D(j,0) = j and
D(0,7) = 0. There is a match ending at text position ¢ if and ouly if entry
D(m,1) is at most k.) There is a simple recursive formula giving each entry
in terms of the three adjacent entries above and to the left:

D(],z):min { 1+D(J_1!7’)5 1+D(Jaz_l)1 IJ=+D(J_1:E"—1)}

where I;; = 0 if P[j] = T[i]; I;; = 1 if P[§] # T[:]. The three expressions in
the min correspond respectively to deleting P[] from the pattern; inserting
T[z] into the pattern; and substituting T[] for P{j].

Remark. The classical dynamic programming algorithm for computing the
edit distance of two strings u, v differs from the above only in the bound-

2

ary condition D(0,2) = 2. Speedups to O(ed(u,v) - length of shorter string)
are due to Ukkonen [33] and Myers [26]. A different model of approximate
matching based on longest common subsequence (each [;; = 2; equivalent to
not allowing substitutions) has received a great deal of attention from Myers

[27] and Manber, Wu [25].

[t can be seen from the recurrence that (*) adjacent entries along rows
and columns differ by at most one; and (*x*) forward diagonals (\,) are non-
decreasing and adjacent entries differ by at most one. More recent methods
by Ukkonen, et al. [34, 36, 17]; Landau, Vishkin [20, 21] (survey and re-
finements by [9]); and Galil, Park [10] take advantage of these geometric
properties in order to compute O(kn) instead of mn entries.

The simplest of these, Ukkonen’s “cut-off” algorithm (kn.uk) [34] never
computes the bottom portion of a column if those entries can be inferred to be
greater than k. Despite statement in [34] that “It should be quite obvious,”
no rigorous analysis was done that shows kn.uk has O(kn) expected running
time [35]. We give the first proof of this fact in section 2. The locations of the
first k41 transitions (z to £ + 1) along each forward diagonal are sufficient
to characterize the solution, by the (non-decreasing) diagonal monotonicity
property (**). Landau, Vishkin (kn.lv) {20, 21] computes each transition
in constant time. Several practical improvements (see [6]) have made kn.lv
the best among O(kn) worst case algorithms. It turns out, however, that
by replacing the O(1) time diagonal transition subroutine with a brute-force
method, the resulting algorithm (kn.dt) has O(kn) ezpected running time
and is faster in practice [27]. See section 3 for a succinct description.

We have done careful theoretical and empirical comparisons of these
methods; apart from questions of overhead, they do not have the same de-
pendence on b the alphabet size. We discovered a speedup of the dynamic
programming method whose running time depends on the row averages of
table D (the higher the averages, the faster our algorithm). Our method
works by partitioning each column into runs of consecutive integers (e.g. 012
23 234), and is many times faster than previous algorithms based on dynamic
programming. Its expected running time is O(kn) because it is always faster
than kn.uk. In addition, it has given us special insights into the statistics of
sequence matching. With these insights we are able to formulate empirical
running times of various algorithms as functions of n, m, k, and’b (see Table
1). Variations of column partitioning are given in section 4.

Recall that the minimum number of substitutions. msertions, and dele-
tions needed to transform one string into another is called edit distance. [
is a surprising fact that relatively little is known about the average case be-
havior of edit distance. Farly qualitative results of Chvatal, Sankoff [T} and
Deken [8] on longest common subsequence (LCS) can be carried over to edit
distance: the expected edit distance between two uniformly random strings
of size m (as m — oc) is Cym for some constant (' that depends only on
alphabet size. But exact bounds are not easily converted, and there has been
no “formula” given in the literature for ;. (Sankoff, Mainville [29] conjec-
tured limy—o, CI+/b = 2 where Yy are the corresponding constants for length
of LCS.) Since any match where the text differs from the pattern by much
fewer than Cj-fraction differences can be considered “significant,” a basic
understanding of these constants is of paramount importance. The primary
difficulties are (1) the proof of convergence by the Subadditive Ergodic Theo-
rem is non-constructive; and (2) the algorithmic formulation of edit distance
(like approximate matching) is highly recursive, and leads to exponentially
many states in the natural Markov model.

We have made the following empirical observation: columns of the dy-
namic programming table /) for approximate matching consist of runs of con-
secutive integers, of average length very close to v/b. This observation leads
to Conjecture 1, row m of table D has average value (1—=1/vo+o(1/vb)}-m
as m — oo; and Conjecture 2, ¢, = 1 — 1/v/b+ o{1/v/3). A probabilistic
analysis of partitions of columns, subject to several simplifying assumptions,
has yielded heuristic arguments (but no proof) in favor of our conjectures
(see section 5). In addition, we state Conjecture 3, the expected minimum
value of row m (i.e. best match) is (1 — 1/vb+o(1/v8)) - (m — O(log, n)) as
m,n — co,n < §™. This conjecture implies linear expected time, polynomial
space {in length of pattern), constant-fraction differences approximate string
matching (see companion paper Chang, Lawler [6]). _

We have carefully optimized the simpler algorithms based on dynamic
programming: mn.dp (Sellers [31]}; kn.uk (Ukkonen [34]); kn.dt (see Galil,
Park [10]); mn.clp and kn.clp (described below). Generally, our code for these
is faster than others we have seen. Several more complicated algorithms have
also been implemented but are unoptimized: kn.gp (verbatim from Galil,
Park [10]); kn.dv (Landau, Vishkin [21]); let.cl and set.c] (Chang, Lawler
{6]). Speedup by a small factor can be expected from careful optimization. As
presently implemented the lincar ezpected time let.cl and sublinear expected

4

time set.cl [6] are not competitive with kn.clp, primarily because the hash
coded suffix tree [24] is not the fastest implementation possible. An algorithm
similar to let.cl (discovered independently, but without analysis of threshold)
was implemented by Jokinen, Tarhio, and Ukkonen [17], and was the fastest
for small k& among algorithms they tested. In addition, [17] includes extensive
tables of running times for mn.dp; kn.uk; kn.gp; and a new algorithm [32].

Our programs are allowed only O(m) space, except kn.gp which is O(m?).
Text is read on-line. While text buffering on-the-fly is slightly slower com-
pared to reading the entire input into real or virtual memory, we feel it is
more realistic not to make a copy of the input, for the types of applications
we envision: at least n in the millions; m in the hundreds; and k in the tens.
Our results are summarized in Table 1.

2 Cut-Off Algorithm and Its Average Case
Analysis

Recall that dynamic programming table D has two important geometric
properties:

(*) Adjacent entries along horizontal and vertical directions differ by 0 or 1
(**) Forward diagonals are non-decreasing and adjacent entries differ by 0
or 1.

Ukkonen Cut-Off Algorithm (kn.uk). Let /; = max j s.t. D(j,2) < &
(Io = k). Given l;_;, compute D(j,1) for j up to l;i_; +1, and set [; to largest
§ < i1 + 1 such that D(j,7) < k. Correctness follows immediately from
property (*x).

Despite statement in [34] that “It should be quite obvious,” it was not
previously proved that kn.uk has O(kn) expected running time. We will
prove this fact. Assume the text is uniformly random over a size b alphabet.
Given two strings u, v, let lcs(u,v) denote the length of the longest common
subsequence between u, v.

Proposition 1. D(j,) > (1/2) -ed(P[1,...,5],Tfi—j +1,...,1].
Proof. Consider the edit distance y between the length j strings P[1,...,]

and T[t — j + 1,...,7]. The value D(j,7) = z must come from matching
P[1,...,;] against a text fragment ending at ¢ whose length differs from j

5

by at least y — x (edit distance satisfies the triangle inequality). Then y — =
15 a lower bound on just by consideration of length. So x > 4/2. Q.E.D.

Proposition 2. There exist constants ¢ < 1, 3 < 1 and o 5.5, Pr[two random,
length ; strings have a common subsequence of length ¢j] < (1/7) - e,
Proof. For convenience assume c¢j is an integer. By Stirling’s formula
HiegMi—ei)t = (1+o(1))-(/27e{l —)7 (1—c) 191 Let p =Pr(length
¢j common subsequence]. Then p < 3 5% where the summation is over all
size ¢j bipartite matchings of positions. Hence

N\ 2
J et L+o(1) 1 lmove2i e
< . Vo e ¢ 1_ » ¢ -?.b CJ.
p= (c;) b 2re(l —c) j ({1 = e)™)

This last expression decreases exponentially in j if 8 = (c*(1—¢)1)24~ <
L. This condition is satisfied for all & > 2 by the choice ¢ = 7/8. As b — oo,
it suffices to choose ¢ > ¢/+/b. Choose o > (2me(1 — €))7, sufficiently large
to overcome the error term in Stirling’s formula. Q.E.D.

Theorem. The expected running time of algorithm kn.uk is O(kn).

Proof. It suffices to prove E[/;] = O(k) since I; bounds the work in column
t+1. Let I=2k/(1~c),s0l—2k =cland j —2k > ¢f for all ; > I. We have
Ellf <=1+ T;514- Pr[D(5,7) < kl. By Proposition 1, D(j,1) < k implies
ed(u,v) < 2k where u = P[1,...,j] and v = T{i — j + 1,...,4] are length j
strings. Since j—les(u,v) is clearly a lower bound on ed(u,v), this implies
les{u,v) > 7 — 2k > ¢j (7 > {). By Proposition 2, for j > I, PrlD(5,7) < k] <
Prles(u,v) > ¢j} < (1/7) - af? for some constant o and constant 4 < 1.
Hence E[l} <! -1+ 3,07 (1/7) -0’ =1 -1+ 0(1) = O(k). Q.E.D.

3 Diagonal Transition Algorithms

Diagonal monotonicity (++) implies the locations of the first &+ 1 transitions
along each diagonal are sufficient to characterize D for the solution to the k
differences problem [21]. A key ingredient is the “jump” J(j,%) = length of
the longest exact match P[j,...] = T[i,...]. The following algorithms differ
only in how jumps are computed.

Landau & Vishkin Algorithm (kn.lv). Call cell 3(j,4) an entry of diag-
onal ¢ —j. But instead of D, compute column by column a (k4 1) x (n + 1)

6

table L where L(z,y) = max j s.t. D(j,j +y —) <z (0 < z < k;
0 <y < n). That is, L(z,y) is the row number of the last z along diag-
onal y — z. Let us first look at D the original table. Since D(j,0) = j,
every cell of diagonal —j is at least j. We can define L(z,—1) = —oco be-
cause there is no j s.t. D(5,7 — 1 —z) < z. Likewise it is convenient to
define L(z,—2) = —oo. It is easy to see L(0,y) = J(1,1 + y). Entry L(z,y)
can be computed using jumps and the three cells above and to the left:
a=Lz-1,y-2),6=L(z-1,y—1),y = L(z—1,y), which are respectively
the row numbers of the last z —1’s in diagonals y—z—1,y—z,y—z+1. More
precisely, it can be inferred that D(a,a4+y—2z) <1+ D(a,a+y—z—-1) =z
(by an insertion into P of T'{a+y —]). Similarly, D(8+1,8+14+y—z) <=z
(by substitution) and D(y + 1,7+ 1 +y — z) < z (by deletion of P[y + 1]).
So along diagonal y — z, three cells at rows o, 8 + 1,7 + 1 are known to be
at most z. Let 7 = max(e,8 + 1,7 + 1). Then it is easy to see that for
7>5,D(' +y—z)=cif J(j+1,7+1+y—=z) > j'— j. To summarize,
Liz,y)=7+J(G+1,j+14+y—2).

Jumps are computed according to Chang, Lawler [6]. Two key ingredients
are matching statistics (a summary of all exact matches between the text and
pattern) and lowest common ancestor (LCA). In our implementation [2] of
the Schieber, Vishkin LCA algorithm [30], only simple machine instructions
are used (such as add, decrement, and complement, but not bit-shift). Log-
arithm in [30] is replaced by bit magic, using a table of reversals of binary
representation of numbers. Fewer than sixty machine instructions suffice to
compute an LCA. The worst case running time of O(kn) for kn.lv is modulo
hashing in O(m) space, or deterministic in O(bm) space. The O(m) space
hash coded implementation [24] is slower in practice.

Diagonal Transition Algorithm (kn.dt). Compute jumps by brute force.
This is algorithm MNZ2 in [10]; it is a variation of an edit distance algorithm
given in [33]. Expected running time can be shown to be O(kn), first stated
by Myers [27]. Briefly, the fact that a jump at (j,7) is needed or not is
determined solely by P and T'[1,...,7 — 1], so E[J(j,)|jump is needed] =
1/(b —1); an extra comparison is needed to find the mismatch that ends a
jump. Our optimized code for kn.dt is faster than kn.uk.

Galil & Park Algorithm (kn.gp). See [10]. Strictly O(kn), but requires
O(m?) space for a table of lengths of exact matches P[j,...] = P[j’,..].

4 Column Partition Algorithms

Column Partition Algorithm {mn.clp). Each column of table) can be
partitioned into runs of consecutive integers: entry D(;,7) belongs to run ¢
of column ¢ iff j — D(7,2) = & (note j — D{j,) is non-decreasing in ;). For
6 > 0, we say run § of column i ends al j if j is smallest possible such thal
D(; + 1,t) belongs to run & > 6. A run may be of zero length {whenever
D(j +1,2) < D(3,1)), but (%) implies no two consecutive runs §, § + 1 may
both be of zero length. The goal is to compute where each run ends in
constant time; the algorithm would then perform O(m — D(m, 1)) work on
column 1, for a total of O((m — g)n) where g is the average of row m of D.

Proposition 3. If run é of column ¢ ends at j and is of zero length, then
run 4 of column 7 + 1 ends at 7 + 1.

Proof. The condition means D(j + 1,¢) < D(j,¢) and 6 = j — D(j,1) + 1;
(x*) implies D(j + 1,7+ 1) = D(j,7) but D(j + 2,1 + 1) < D(5,1). QED.

Proposition 4. If run § of column 7 ends at j and is of length [> 1, and
7" €7 —{+2,5 +1] is smallest possible such that P[j'] = T[i + 1], then run
6 of column ¢+ 1 ends at j* — 1. If no such ;' exists and run 6 + 1 of column
2 15 not of zero length, then run § of column 7 + 1 ends at j 4+ 1; otherwise it
ends at j.

Proof. We know D(j—1,¢} > D(j—I+1,1},s0 D(j—I+1,i+1) > D(j—1+1,7)
by {+*). Also, D(j+2,1+1) < D(; +1,i)+1 < D(j,7)+1. Run é of column
¢t + 1 must therefore end within the range {; — { + 1,7 + 1]. The proposition
then follows easily from the recurrence. Q.E.D.

Implementation. Pre-compute and tabulate the partial function loc(j, z) =
min j’ s.t. P[] = « and j° > ; (this requires O(dm) space). Keep track
of only the column partitions, not the actual entries of D. An alternative,
Ofm) space implementation, using linked lists loe, consisting of those j
s.t. P[j] = z, is O(mn) worst case but has the same running time in prac-
tice.

Remark. This can be viewed as a sparse matrix computation, cf. [11].

k Differences Column Partition Algorithm (kn.clp). In a manner
similar to kn.uk, ma.clp can be “cut off” at k. The expected running time
is O(kn) because it is always faster than kn.uk. Empirically, it is much

8

faster than previous algorithms based on dynamic programming (2.5X for
binary alphabet; 4X for four-letter alphabet; 10X for twenty-letter alphabet
compared to kn.dt).

Sparser & Differences Column Partition Algorithm (kn'.clp). Using
sophisticated data structures it is possible to reduce the work on column :
to O(loglogm) for each j s.t. P[j] = T[z] and O(1) for each run of length
zero. The locations of ends of runs are stored by their diagonal number
modulo m in a data structure that allows O(loglogm) insertion, deletion,
and nearest neighbor lookup. When P[j] = T'[¢] the run that needs to be
modified according to Proposition 4 (i.e. would have contained cell D(j,1)
had P[j] # T'[¢]) can be looked up in the table, as a nearest neighbor of : — j
mod m. Run ends that need to be modified because of runs of zero length can
be handled separately, by keeping a sublist of runs of zero length. Finally,
the remaining run ends stay on the same diagonal so are automatically taken
care of. The expected running time of this algorithm is O(b~1kn loglog m).
Unfortunately the overhead appears to be very high.

Remark. A similar result, for the longest common subsequence metric
(equivalent to not allowing substitutions), is described in Manber, Wu [25].

5 Heuristic Analysis of Column Partitions

We showed in section 2 that E[D(j,¢)] = ©(j); the bound we obtained is
not tight, and does not fully characterize the running times of “cut-off” al-
gorithms kn.uk and kn.clp. In this section we give a sketch of a heuristic
argument that E[D(j,%)] ~ (1 — 1/v/d) - j, which agrees very well with simu-
lation results.

The first simplification we make is to throw away the strings and consider
instead an abstract dynamic programming model given by the same recur-
rence and boundary conditions as D(j,z) but with random variables I; = 1
w.p. 1 —1/b; 0 w.p. 1/b:

D'(,i)=min { 1+ D'(j - 1,4), 1+ D'(,-1), I;+ D'(— 1,: = 1) }
and D'(3,0) = 7; D’(0,7) = 0. Furthermore, we let m,n — oco. -

Let us call a run of length ! an l-run. Let ¢ = probability that a run is
of zero length (all runs equally likely to be chosen). Assume ¢ = O(1/b).

9

Next, focus on a column. Let z denote a cell chosen uniformly at random.
Let S; = Prz belongs to an run] (I > 1) so Y45 S = 1. A given, longer
run is more likely to be hit than a given, shorter one: S; = { - #l-runs/area.
Then 5/ =Pr{z is the end of an {-run], aud is also the odds that a run of
positive-length is of length {. Furthermore, the average length of a positive-
length run is given by 1/ 3,5, Si/l (call this A). (We also have: Pr[z is the
end of a run] = ¥;u, Si/l; Prlz is the k-th cell of a run] = s 51/l Ellength
of run containing z} = 315, S - 1.} B

The assumption that run-lengths of positive-length runs are geometrically
distributed by length (this fits simulation data) is equivalent to the assump-
tion that for a random cell z the events (1) it is the k-th cell of a run; (2) it
1s the end of a run, are independent. If we make this simplifying assumption,
then it follows by a calculation that Sy = (1/A%)-{-(1—1/A)"1. Also E[length
of run containing] = 2\ — 1.

Next, calculate E[z —~ y] where y is the cell adjacent and to the left of
z. This expectation approaches 0 as n — oc. A case analysis of the column
partitioning process yields the following after some calculation: (1) Pr[z—y =
1] = Prfy is first cell of a run, and there is no “match” for the entire run
above y] = (14 0(1)) - {(A™' +b71); (2) Priz —y = —1] = Pr[y is not first cell
of a run, and there is some “match” above y in the run] = (14 o(1)) - (A/8).
Hence A & /b (highest order term in b), and also average run length ~ /b
{highest order term in b).

Open Problems. Show ¢ = O(1/b). Remove the independence assumption.
Conjecture 1. E[D(5,7)] = (1 — 1/v/b 4 o(1/v/8)) -] as j — oo.

Conjecture 2. Eledit distance between two strings of length] = (1—1/v54- |
o(1/V8)) - 1as | — co.

Conjecture 3. E[min D(m,),1 <i < n] = (1—-1/vb+ o(1/VD) - (m —
O(logyn)) as m,n — oo, n < ™.

A cknowledgment

We would like to thank Gene Lawler for guidance and support. David Aldous,
K. Balasubramanian, Maxime Crochemore, Dan Gusfield, Dick Karp, Gad
Landau, Dalit Naor, Frank Olken, Kunsoo Park, EskoUkkonen, and Sun Wu
provided helpful comments and encouragement.

10

Table 1. Summary of Theoretical and Empirical Running Times (based
on runs with n = 100,000; m = 100; £ = 10,20,30,...,Cym; b = 2,3,4,8,16,32,64
on a VAX 8600 using the Unix program gprof; empirical running times for random
text are formulated as functions of n,m, k,b and given in microseconds)

Alg'm Worst case Empirical (k < Cym) Notes Attribution

mn.dp O(mn) 3.5mn Sellers [31]
kn.uk O(mn) 4.1vVb/ (Vb — 1) - kn a Ukkonen [34]
kn.dt O(mn) 4.2b/(b—1) - kn b “diagonal transition” [10, 27]
kn.gp O(kn) 50kn ¢ Galil, Park [10]
kn.lv O(kn) 40kn d Landau, Vishkin [21]
mn.clp O((m — p)n) 1.4/vb - mn e Chang, Lampe
kn.clp O((m—p)n) 1.4/(vb—1)-kn e Chang, Lampe
let.cl 80n f Chang, Lawler [6]
set.cl 160(k log, m)(n/m) g Chang, Lawler [6]
Notes.

a. We showed in section 2 that kn.uk is O(kn) on the average.

b. Myers [27] was first to state it is O(kn) on the average (proof is simple).

c. (Unoptimized.) Requires O(m?) space.

d. (Unoptimized.) This is Landau, Vishkin {21] using McCreight suffiz tree [24];
Chang, Lawler matching statistics [6]; and Schieber, Vishkin lowest common an-
cestor [30] with logarithm replaced by bit magic [2]. The worst case running time
of O(kn) is modulo hashing in O(m) space, or deterministic in O(bm) space.

e. Running time depends on d.p. table row averages; y = average of last row. To
guarantee the worst case running time of O((m — p)n), O(bm) space is needed. An
alternative, O(m) space implementation has the same running time in practice.
Expected running time of kn.clp is O(kn) because it is always faster than kn.uk.

f. (Unoptimized.) Linear expected time when error tolerance k is less than the
threshold k* = m/(log, m + ¢;) — ¢z (for suitable constants c;). In practice, for m
in the hundreds the error thresholds k* in terms of percentage of m are 35 (b = 64);
25 (b = 16); 15 (b = 4); and 7 (b = 2) percent. Worst case performance is same as
dynamic programming based subroutine.

g. (Unoptimized.) Sublinear expected time when k < £*/2 — 3 (in the sense that

not all letters of the text are examined). The expected running time is o(n) when
k, treated as some fraction of m and not as a constant, is o(m/ logy m).

4
t

11

References

{1]

(7]

R. Arratia and M.S. Waterman, Critical Phenomena in Sequence Matching,
The Annals of Probability 13:4(1985), pp. 1236-1249.

W.I. Chang, Fast Impiementation of the Schieber-Vishkin Lowest Common
Ancestor Algorithm, computer program, 1990.

W.I. Chang, Approrimate Pattern Matching and Biological Applications,
Ph.D. thesis, U.C. Berkeley, August 1991.

W.1. Chang and E.L. Lawler, Approximate String Matching in Sublinear Ex-
pected Time, Proc. 3/st Annual IEEE Symposium on Foundations of Com-
puter Science, St. Louis, MO, October 1990, pp. 116-124.

W.I. Chang and E.L. Lawler, Approximate String Matching and Biological
Sequence Analysis (poster), abstract in Human Genome II Official Program
and Abstracts, San Diego, CA, Oct. 22-24, 1990, p. 24.

W.I. Chang and W.L. Lawler, Sublinear Expected Time Approximate String
Matching and Biological Applications, submitted.

V. Chvdtal and D. Sankoff, Longest Common Subsequences of Two Random
Sequences, Technical Report STAN-CS-75-477, Stanford University, Com-
puter Science Department, 1975.

J. Deken, Some Limit Results for Longest Common Subsequences, Discrete
Mathematics 26(1979), pp. 17-31. J. Applied Prob. 12(1975), pp. 306-315.

2. Galil and R. Giancarlo, Data Structures and Algorithms for Approximate
String Matching, Journal of Complezity 4(1988), pp. 33-72.

Z. Galil and K. Park, An Improved Algorithm for Approximate String Match-
ing, SIAM J. Comput. 19:6(1990), pp. 989-999.

Z. Galil and K. Park, Dynamic Programming with Convexity, Concavity, and
Sparsity, manuscript, October 1990.

D. Gusfield, K. Balasubramanian, J. Bronder, D. Mayfield, D. Naor, PARAL:
A Method and Computer Package for Optimal String Alignment using Vari-
able Weights, in preparation.

D. Gusfield, K. Balasubramanian and D. Naor, Parametric Optimization of
Sequence Alignment, submitted.

12

[14] P.A.V. Hall and G.R. Dowling, Approximate String Matching, Computing
Surveys 12:4(1980), pp. 381-402.

(15] D. Harel and R.E. Tarjan, Fast Algorithms for Finding Nearest Common
Ancestors, SIAM J. Comput. 13(1984), pp. 338-355.

[16] N.IL Johnson and S. Kotz, Distributions in Statistics: Discrete Distributions,
Houghton Mifflin Company (1969).

[17] P. Jokinen, J. Tarhio, and E. Ukkonen, A Comparison of Approximate String
Matching Algorithms, manuscript, October 1990.

(18] S. Karlin, F. Ost, and B.E. Blaisdell, Patterns in DNA and Amino Acid
Sequences and Their Statistical Significance, in M.S. Waterman, ed., Mathe-
matical Methods for DNA Sequences, CRC Press (1989), pp. 133-157.

[19] R.M. Karp, Probabilistic Analysis of Algorithms, lecture notes, U.C. Berkeley
(Spring 1988; Fall 1989).

[20] G.M. Landau and U. Vishkin, Fast String Matching with k Differences, J.
Comp. Sys. Sci. 37(1988), pp. 63-78.

[21] G.M. Landau and U. Vishkin, Fast Parallel and Serial Approximate String
Matching, J. Algorithms 10(1989), pp. 157-169.

[22] G.M. Landau, U. Vishkin, and R. Nussinov, Locating alignments with k dif-
ferences for nucleotide and amino acid sequences, CABIOS 4:1(1988), pp.
19-24.

[23] V. Levenshtein, Binary Codes Capable of Correcting Deletions, Insertions and
Reversals, Soviet Phys. Dokl 6(1966), pp- 126-136.

[24] E.M. McCreight, A Space-Economical Suffix Tree Construction Algonthm J.
ACM 23:2 (1976), pp. 262-272.

[25] U. Manber and S. Wu, Approximate String Matching with Arbitrary Costs
for Text and Hypertext, manuscript, February 1990.

[26] E.W. Myers, An O(ND) Difference Algorithm and Its Variations, Algorithmica
1(1986), pp. 252-266.

[27] E.W. Myers, Incremental Alignment Algorithms a.nd Thexr “Applications,
SIAM J. Comput., accepted for publication.

13

[28] D. Sankoff and J.B. Kruskal, eds., -Time Warps, String Edits, and Macro-
- molecules: The Theory and Practice of Sequence Comparison, Addison-
Wesley (1983).

[29] D. Sankoff and S. Mainville, Common Subsequences and Monotone Subse-
quences, in D. Sankoff and J.B. Kruskal, eds., Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparison, Addison-
Wesley (1983), pp. 363-365.

[30] B. Schieber and U. Vishkin, On Finding Lowest Common Ancestors: Simpli-
fication and Parallelization, SIAM J. Comput. 17:6(1988), pp. 1253-1262.

[31] P.H. Sellers, The Theory and Computation of Evolutionary Distances: Pat-
tern Recognition, J. Algorithms 1{1980), pp. 359-373.

[32] J. Tarhio and E. Ukkonen, Approximate Boyer-Moore String Matching, Re-
port A-1990-3, Dept. of Computer Science, University of Helsinki, March
1990.

[33] E. Ukkonen, Algorithms for Approximate String Matching, Inf Conir.
64(1985), pp. 100~118.

[34] E. Ukkonen, Finding Approximate Patterns in Strings, J. Algorithms 6(1985),
pp. 132-137.

[35] E. Ukkonen, personal communications.

[36] E. Ukkonen and D. Wood, Approximate String Matching with Suffix Au-
tomata, Report A-1990-4, Dept. of Computer Science, University of Helsinki,
April 1990.

[37] M.S. Waterman, Sequence Alignments, in M.S. Waterman, ed., Mathematical
Methods for DNA Sequences, CRC Press (1989), pp. 53-92.

[38] M.S. Waterman, L. Gordon, and R. Arratia, Phase transitions in sequence
matches and nucleic acid structure, Proc. Natl. Acad. Sci. USA 84(1987), pp.
1239-1243.

