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Abstract

Sampling from Gibbs distributions

by

Eric Joseph Vigoda

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Alistair Sinclair, Chair

This thesis considers computational questions concerning statistical mechanical models of

idealized physical systems. The equilibrium state of the physical system is described by

a probability distribution over the allowed con�gurations, known as a Gibbs distribution.

By sampling at random from the Gibbs distribution one can study essentially all the

thermodynamic properties of the system.

The standard approach to sampling from the Gibbs distribution is the \Markov

Chain Monte Carlo" method. At the heart of this method is a Markov chain whose sta-

tionary distribution is the Gibbs distribution and which quickly converges to stationarity.

For a wide class of physical systems, there is a class of very simple Markov chains known

as the \Glauber dynamics," whose moves correspond to local perturbations of the current

con�guration. These chains are of interest because they are simple, natural and widely

used in practice.

We study the properties of the Glauber dynamics in two models of particular

combinatorial interest: the Potts model, whose con�gurations are the set of proper color-

ings of a graph; and the hard core model, whose con�gurations are the set of independent

sets of a graph. For a range of parameter values we prove that the Glauber dynamics in

these models quickly converges to the Gibbs distribution, while in another range of val-

ues the time to reach the stationary distribution grows exponentially with the volume of

the system. Our results also address the conjectured connection between the convergence

rate of the Glauber dynamics and phase transitions in the macroscopic properties of the

system.
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Chapter 1

Synopsis

1.1 Introduction

This thesis considers models from statistical mechanics used to study the macro-

scopic behavior of idealized physical systems in equilibrium. Typically such models are

de�ned on the d-dimensional integer lattice Zd where random variables are associated

with lattice points and interact based on their proximity in the lattice. Once the forces

governing the microscopic interactions are de�ned, it is possible in principle to study

the thermodynamic properties of the system, though the necessary computations are far

from trivial. This thesis is concerned with the complexity of these computations, and its

relationship to the thermodynamic properties of the system.

A key property of (and justi�cation for) these idealized models is that they exhibit

phase transitions, similar to those that occur in nature when a small change in some

parameter controlling the microscopic interactions of the system, such as temperature or

pressure, causes a drastic change (in fact a discontinuity) in the macroscopic properties of

the system. As an example, consider the e�ect on the density of increasing the temperature

in a sample of water. The boiling point is a critical temperature at which the density

suddenly decreases in a dramatic fashion; this is called a phase transition.

The laws of thermodynamics stipulate that a physical system in equilibrium is

described by the Gibbs distribution, a probability distribution over possible con�gurations

of the system. This thesis studies the problem of sampling at random from Gibbs dis-

tributions, a problem to which almost all thermodynamic computations can be reduced.

For a discussion on the justi�cation of the Gibbs distribution see Israel [Isr79] and for a
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historical perspective see Grandy [Gra87].

We shall focus on a class of models known as spin systems, which capture many

of the most important examples in statistical mechanics. For a graph G = (V;E), the

space of con�gurations is 
 = SV , where each vertex i 2 V has an associated spin �i

chosen from the discrete spin space S. Each con�guration � 2 
 has an energy de�ned by

the Hamiltonian H(�). For a system in equilibrium at temperature T , the probability of

being in con�guration � is proportional to

w(�) = exp(��H(�));

where � = 1
kT and k is the Boltzmann constant. The Gibbs distribution (sometimes

referred to as the Boltzmann distribution) is then

�(�) = w(�)=Z;

where the normalizing factor, traditionally referred to as the partition function, is the

quantity

Z =
X
�2


w(�):

If we could compute the partition function, we could isolate phase transitions

by looking for discontinuities in its (�rst or higher order) derivatives with respect to

di�erent parameters of the system, and also calculate thermodynamic parameters of the

macroscopic system such as free energy, entropy, and heat capacity (see, e.g., [Wal89, p.

55]). Unfortunately, the partition function is a sum over jSjn con�gurations, a number

which grows exponentially with n = jV j, the volume of the system. Thus, even for a

system of moderate size, computing Z by enumerating all con�gurations is computationally

infeasible. However, it is usually possible to estimate Z within arbitrary precision by

generating a su�cient number of samples from the Gibbs distribution. This is an instance

of a general reduction from enumeration problems to random sampling, �rst formalized

by Jerrum, Valiant, and Vazirani [JVV86]. Thus, by devising an e�cient scheme for

sampling from the Gibbs distribution, we can compute the partition function and other

thermodynamic quantities of interest, and hence isolate phase transitions.

The most widely studied and perhaps simplest statistical mechanical model is

the Ising model of a ferromagnetic solid. Each vertex has either an \up" or \down" spin,
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i.e., S = f�1g, corresponding to the magnetic moment of an atom situated at the vertex.

The Hamiltonian of a con�guration � = f�(i)gi2V is

H(�) = �
X

fi;jg2E

�(i)�(j): (1.1)

ThusH assigns lower energy to con�gurations in which many neighboring spins are aligned.

While the de�nition of the Ising model holds for arbitrary graphs, most work in

the statistical physics community focuses on the lattice Zd. For the purpose of introducing

the notion of phase transitions we specialize to the latticeZd and its associated �nite graph

QL. Let QL = (V;E) denote the graph corresponding to a �nite d-dimensional cube with

side length 2L + 1 in Zd, i.e., V = f�L; : : : ; 0; : : : ; Lgd and the set of edges E connects

vertices that di�er by 1 in exactly one coordinate. The Ising model on QL has two states

with all spins aligned, and these have minimum energy. As a consequence, when � is

very large (i.e., at very high temperatures), the Gibbs distribution is concentrated almost

entirely on con�gurations in which most of the spins are aligned. Conversely, for small �

(i.e., low temperatures), the spins are nearly independent and a typical con�guration has

roughly half the spins in each direction; this set of con�gurations has maximum entropy.

In particular, let N(�) = j
P

i2V �(i)j=jV j where jV j = (2L+1)d is the volume of QL. For

the Ising model, it turns out that there exists a critical point �c such that, when � < �c,

E[N(�)] ! 0 as jV j ! 1, while when � > �c, E[N(�)] > � as jV j ! 1 where � is a

positive constant independent of jV j. We now give a rigorous de�nition of the critical

point �c and the two regimes � > �c and � < �c which are referred to as ordered and

disordered phases.

Let the boundary @QL of the cube QL denote those vertices with at least one

component equal to �L. Fix the spin of every vertex on the boundary to a common

value k 2 f�1g. De�ne the distribution �k to be the Gibbs distribution conditional on

@QL having spin k. We are interested in whether the marginal distribution of the spin

�(O) at the origin O is independent of the boundary con�guration in the limit L ! 1.

Speci�cally, we say the model is in the ordered phase if

�+1(�(O) = +1) 6= ��1(�(O) = +1) as L!1;

otherwise, the model is said to be in the disordered phase. It turns out that the Ising model

is monotone in � which implies that there exists a critical point �c such that for � < �c
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the system is in the disordered phase, while for � > �c it is in the ordered phase. Note

that, a priori, there may not exist a unique critical point for the transition between the

ordered and disordered phases; in fact, there may not even exist one such critical point.

We now describe, for a general graph G = (V;E), the twomodels which this thesis

focuses on. The q-state Potts model [Pot52, Wel93, Wu82] is a natural generalization of

the Ising model discussed above. The spin space, which we think of as a set of colors, is

S = f1; : : : ; qg. For a con�guration �, the Hamiltonian for the ferromagnetic case is

H(�) =
X

fi;jg2E

(1� ��i=�j );

where � is the Kronecker delta function which takes value 1 when the speci�ed condition

is satis�ed and 0 otherwise. Note that when q = 2 this Hamiltonian is equal to (1.1) up

to a multiplicative factor and an additive constant. For the anti-ferromagnetic case, the

Hamiltonian is

H(�) =
X

fi;jg2E

��i=�j :

In contrast to the ferromagnetic case, the tendency here is for adjacent spins to be di�erent

(but no distinction is made between di�erent pairs of values).

The Gibbs distributions for the Potts model is

�potts(�) = w(�)=Z (1.2)

where w(�) = exp(��H(�)). In the in�nite-temperature limit (� # 0) the Gibbs dis-

tribution for the Potts model (in both the ferromagnetic and anti-ferromagnetic cases)

corresponds to picking a random color (spin) independently for each vertex. On the other

hand, in the zero-temperature limit (� " 1), the ferromagnetic Potts model has only q

di�erent colorings with positive weight { namely, those that assign the same color to every

vertex { while the anti-ferromagnetic model is uniformly distributed over proper colorings

(those in which all pairs of neighboring vertices have di�erent colors). Much of this thesis

focuses on this case of proper colorings since it is perhaps the richest combinatorially.

The hard core (lattice gas) model is a simple spatial representation of a gas as

a graph G = (V;E) [Dob74]. The vertices are the possible sites for particles, which are

assumed to have non-negligible size. To prevent particles from overlapping, adjacent sites

cannot simultaneously be occupied. Thus, valid con�gurations � are independent sets
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in G, i.e., � � V such that no two vertices in � are connected by an edge of E. The

Hamiltonian is derived from suitable limits of the Ising model (see Dobrushin, Kolafa and

Shlosman [DKS85]), leading to the following simple form for the Gibbs distribution:

�IS(�) = �j�j=ZIS : (1.3)

The parameter � is known as the fugacity of the system. The ordered/disordered phases

of the Potts and hard core models on Zd are precisely de�ned in Chapter 2.

1.2 Markov chain Monte Carlo

The Markov Chain Monte Carlo (MCMC)method is a simple and frequently used

approach for sampling from the Gibbs distribution of a statistical mechanical system. The

idea is as follows. We design a Markov chain whose state space is 
 and whose stationary

distribution is the desired Gibbs distribution. Starting at an arbitrary state, we simulate

the Markov chain on 
 until it is su�ciently close to its stationary distribution. We then

output the �nal state which is a sample from (close to) the desired distribution. The

required length of the simulation, in order to get close to the stationary distribution, is

traditionally referred to as the mixing time � ; it is formally de�ned in chapter 2. In

general, the mixing time may be as large as (or even larger than) the number of states of

the chain, which as we have observed is exponentially large in the volume n. We consider

the MCMC approach e�cient if the mixing time is bounded by a �xed polynomial in n,

and call such a Markov chain rapidly mixing. On the negative side, when proving that

a certain Markov chain is not e�cient, we typically show the mixing time is exponential

in n� (for some �xed � > 0), and refer to this as torpidly mixing. Note that the mixing

properties depend crucially on the structure of the Markov chain, not just on the model

itself.

The simplest class of Markov chains for sampling from the Gibbs distribution of

a spin system are usually referred to as Glauber dynamics [Gla63, Mar97]. This is the class

of single spin-
ip dynamics whose transitions consist of choosing a vertex i 2 V uniformly

at random and changing the con�guration only at i. Throughout the thesis, we will use

the term \Glauber dynamics" to refer to the following speci�c heat-bath dynamics, but

techniques for bounding the mixing time of this dynamics typically apply to other popular

chains in the class of Glauber dynamics, such as the Metropolis algorithm [MRR+53].
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From a con�guration �, the transitions � 7! �0 of the (heat-bath) Glauber dynamics are

as follows:

G1 Choose a vertex i uniformly at random.

G2 Let �0(j) = �(j) for all j 6= i.

G3 Choose �0(i) from the Gibbs distribution conditional on the �xed assignment for all

vertices other than j, i.e., from �( � j�0(j) for all j 6= i).

As an example of Glauber dynamics, consider the zero-temperature limit of the

anti-ferromagnetic Potts model, whose con�gurations are proper colorings. The �nal step

[G3] corresponds to choosing a color uniformly from the set of colors which do not appear

in the neighborhood of i. Meanwhile, for the hard core model the �nal step [G3] is the

following. If no neighbors of i are in the set �0, then the vertex i is included in �0 with

probability �
1+� , otherwise i remains out of �

0.

1.3 Results

A major motivation for the work in this thesis is a \folklore" belief that there is

an intimate connection between the Glauber dynamics being rapidly/torpidly mixing and

the model lying in the disordered/ordered phase. To understand the intuition for such

a connection, consider the ferromagnetic Ising model. Recall that in the ordered phase

we expect a typical sample from the Gibbs distribution to have most of the spins aligned.

Furthermore, in this phase it is very unlikely that a con�guration will have about half of the

spins pointing in each direction; but the likelihood of such con�gurations directly a�ects

the mixing time of the Glauber dynamics. To see this, suppose we start the dynamics

in the con�guration with all spins pointing up and then simulate the Markov chain. In

order to get close to the stationary distribution, the chain must have a reasonable chance of

reaching the set of con�gurations with most spins pointing down, which also has signi�cant

weight in the Gibbs distribution. En route it must pass through some con�guration with

exactly half the spins pointing up, since only one spin is being changed at each step. The

probability of reaching a con�guration with exactly half the spins pointing up is intimately

related to the probability of the set of such con�gurations in the Gibbs distribution. We

formalize this intuition for the ferromagnetic Potts model in chapter 5.1.
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To be more precise, we conjecture that being in the disordered/ordered phase for

the Potts model on Zd is equivalent to rapid/torpid mixing of the Glauber dynamics on

the torus TL;d { this is the d-dimensional cube with vertex set f0; : : : ; L� 1gd and edges

connecting vertices that di�er by 1 modulo L in exactly one coordinate. Though this

conjecture is far from resolved, we are able to prove torpid mixing in the entire ordered

phase for su�ciently large q. For general spin systems, there are some known connections

between certain properties that are stronger than rapid mixing on the one hand and than

being in the disordered phase on the other. In particular, an O(n logn) mixing time of the

Glauber dynamics is closely related to a stronger condition than being in the disordered

phase; informally, this condition states that not only does the in
uence of the boundary

on the origin die out in the limit L!1, but it decays exponentially fast. This connection

is detailed in chapter 2, after introducing the necessary de�nitions.

In addition to addressing the above conjecture, we also prove rapid mixing (over

a signi�cantly wider range of parameter values than previously known) of the Glauber

dynamics for both the Potts and hard core models. As a corollary, we obtain improved

bounds on the critical points of both models.

The �rst set of results addresses the zero-temperature anti-ferromagnetic q-state

Potts model (proper q-colorings). Roman Kotecky (cited in [Geo88, pages 148-149,457])

showed that on Zd, the system is in the disordered phase when q > 4d. His result also

applies to other lattices when the number of colors is greater than twice the degree of the

lattice (note that Zd has degree 2d). For the Glauber dynamics, on the other hand, Mark

Jerrum [Jer95] proved rapid mixing when q � 2�, where � is the maximum degree of the

graph. In both settings, this 2� barrier was broken only in speci�c instances by computer

assisted proofs which analyzed a huge number of cases. These works are discussed in more

detail in chapter 3.

In this thesis, we give a simple direct proof that breaks the 2� barrier for arbi-

trary graphs. We consider a Markov chain which we call the \
ip dynamics" (which is not

in fact strictly a Glauber dynamics) and is formally de�ned in chapter 3. The transitions

of our chain consist of `
ipping' two-colored clusters. In particular, from a coloring �,

choose a vertex v and color c uniformly at random. Then consider the maximal cluster of

vertices which contain v and are colored with c or �(v). With an appropriate probabil-

ity, `
ip' this cluster by interchanging colors c and �(v) on it. Our main results are the

following.
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Theorem 1 When q > 11
6 �, where � is the maximum degree of the graph,

(a) the 
ip dynamics is rapidly mixing with mixing time O(nq logn); and

(b) the Glauber dynamics is rapidly mixing with mixing time O(n2q log n log q).

This is the �rst proof to break the 2� barrier that is not computer assisted, and also the

�rst for arbitrary graphs.

Corollary 2 The zero-temperature anti-ferromagnetic q-state Potts model on Zd is in the

disordered phase when q > 11
3 d.

The corollary follows easily from the rapid mixing result by the general connection

between an O(n logn) mixing time and exponentially fast decay of the in
uence of the

boundary mentioned above. An analogous result also applies to other lattices of interest,

such as the hexagonal and triangular lattices.

Our second set of rapid mixing results concerns the hard core model. We can

prove the following optimal bounds on the mixing time of the Glauber dynamics.

Theorem 3 The Glauber dynamics on the hard core model is rapidly mixing with mixing

time O(n logn�) when � < 2
��2 , where � is the maximum degree of the graph. For

� = 2
��2 the mixing time is O(n3�2).

Corollary 4 The hard core model on Zd is in the disordered phase when � < 2
2d�2 .

The proofs of Theorems 1 and 3 rely on coupling arguments, which are based

on the simultaneous evolution of two copies of the Markov chain. A coupling is a joint

distribution on the transitions of the copies with the added condition that if they reach

the same state then they follow the same transitions. The goal is to minimize the coupling

time, which is the expected time till they reach the same state (maximized over all pairs

of initial states). The coupling time implies a bound on the (variation) distance between

their respective distributions and consequently, a bound on the mixing time. Typically,

we measure the progress of our coupling with respect to a simple metric on the product

state space. The proof of Theorem 3 is novel in that it relies on a non-standard metric

which enables us to directly analyze the Glauber dynamics and get optimal bounds on its

mixing time.
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The results of Theorem 3 for the hard core model are close to optimal since Dyer,

Frieze, and Jerrum [DFJ99] have recently proved that the Glauber dynamics is torpidly

mixing on a random bipartite graph with maximum degree � when � = 1;� � 6, and in

general for � > (��1)��1

(��2)�
� e

��2 .

The �nal set of results relate directly to our conjecture about the connection

between torpid mixing of the Glauber dynamics on the torus TL;d and being in the ordered

phase for Zd. In particular, we prove for the ferromagnetic Potts model with su�ciently

large q that throughout the ordered phase the Glauber dynamics is torpidly mixing on TL;d.

We also give a related and perhaps surprising result about the widely-used Swendsen-Wang

algorithm [SW87].

In addition to the conjectured torpid mixing in the ordered phase, the Glauber

dynamics is also believed to exhibit a \critical slowing down". In particular, in the dis-

ordered phase it is expected that the mixing time increases dramatically (though still

only polynomially) as � approaches the critical point. The Swendsen Wang algorithm is

speci�cally designed to overcome this slowing down, and in fact is believed to have small

mixing time in the entire disordered and ordered phases, by recoloring many two-colored

clusters in a single transition. The basis of the algorithm is an equivalent representation

of the Potts model in the Fortuin-Kasteleyn random cluster model [FK72]. We describe

the Swendsen-Wang algorithm in detail in chapter 5.1, and prove that it is in fact torpidly

mixing at the critical point �c for su�ciently large q.

Theorem 5 For the ferromagnetic Potts model on TL;d with d � 2, and su�ciently large

q, there exist positive constants k1; k2 (which depend on d) such that for the critical point

�c = �c(q; d):

(a) The mixing time �GD of the Glauber dynamics for � � �c satis�es

�GD � ek1L=(logL)
2
:

(b) The mixing time �SW of the Swendsen-Wang algorithm at � = �c satis�es

�SW � ek2L=(logL)
2
:

Using analogous techniques, we also prove that for the hard core model, the

Glauber dynamics is torpidly mixing for large enough values of �.
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Theorem 6 For the hard core model on TL;d with d � 2, and � su�ciently large, there

exists a positive constant k3 (which depends on d) such that the mixing time �GD of the

Glauber dynamics satis�es

�GD � ek3L
d�1=(logL)2 :

In addition to the results described above, we believe that the techniques utilized

in this thesis may be useful for obtaining rigorous bounds on the mixing time of other

MCMC sampling schemes, isolating phase transitions in other models, and ultimately

resolving the conjectured connection between the mixing time of the Glauber dynamics

and phase transitions.

The remainder of the thesis is organized as follows. The next chapter provides a

more comprehensive treatment of the background material sketched above. In chapter 3,

we present our rapid mixing results on the zero-temperature limit of the anti-ferromagnetic

Potts model (proper colorings). The rapid mixing results for the hard core model are

proved in chapter 4. Finally, in chapter 5.1, we prove the torpid mixing results for the

Glauber dynamics and Swendsen Wang algorithm.
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Chapter 2

Background

2.1 Markov chains

Consider a stochastic process (�t)1t=0 on a �nite state space 
. Let P denote a

non-negative matrix of size j
j � j
j which satis�es the constraintX
j2


Pij = 1 for all i 2 
:

The process is called a Markov chain if for all times t and i; j 2 


Pr[�t+1 = jj�t = i; �t�1; : : : ; �0] = Pr[�1 = jj�0 = i] = Pij :

As a consequence of the time-independence of P , the s-step transition matrix is P s, i.e.,

P sij = Pr[�t+s = jj�t = i]. A distribution � is called a stationary distribution if it satis�es

�P = �. A necessary and su�cient condition for a chain to have a unique stationary

distribution is that the chain is

1. irreducible: for all i; j 2 
 there exists a time t such that P tij > 0; and

2. aperiodic: for all i 2 
; gcdft : P tii > 0g = 1.

We call a Markov chain having both of these properties `ergodic'.

Theorem 7 (see, e.g., [Fel68]) An ergodic Markov chain with transition probability ma-

trix P on a �nite state space 
 has a unique limiting stationary distribution �, i.e.,

lim
t!1

P tij = �j for all i; j 2 
:
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While the theorem guarantees the existence of the stationary distribution �, we

will need to actually determine �. The chains used in MCMC simulations generally have

a special property that makes this easy. Speci�cally, for an ergodic Markov chain, if a

distribution � satis�es the detailed balance equations

�iPij = �jPji for all i; j 2 
;

then � is the (unique) stationary distribution. Such a chain is called (time-)reversible.

Notice in particular that if P is symmetric (Pij = Pji for all i; j) then it is reversible with

stationary distribution uniform over 
.

2.2 Mixing time

Our goal is to bound the time until a Markov chain is su�ciently close to its

stationary distribution. As a measure of the distance between two distributions �; � de�ned

on a �nite set 
, we will use the (total) variation distance,

dTV (�; �) =
1

2

X
j2


j�(j)� �(j)j = max
A�


j�(A)� �(A)j:

In our setting, the variation distance after t steps for a chain starting from state

i is

di(t) = dTV (P
t
i�; �) =

1

2

X
j2


jP tij � �j j:

We are interested in bounding the distance regardless of the starting state, so we de�ne

d(t) = max
i2


di(t);

and

�(�) = minft : d(t) � �g:

It is in fact su�cient to consider the following simpler quantity, which we de�ne as the

mixing time:

� = �(1=2e):



13

The reason is that a bound on � implies the following bound on �(�) for all � [Ald83]:

�(�) � (1� log �)�:

Thus we are justi�ed in thinking of � as the time to required to get \close to" �.

The Markov chains we consider are de�ned on a set 
 of combinatorial structures

over some graph G = (V;E), such as the set of independent sets or proper colorings of G.

While the size of 
 is typically exponential in the number of vertices, n = jV j, in order to

obtain e�cient sampling algorithms we want to design Markov chains with a mixing time

that is signi�cantly smaller than j
j. Therefore, we call a Markov chain rapidly mixing if

� is bounded by a polynomial in n; conversely, a torpidly mixing chain has mixing time at

least exp(cn�) for constants c; � > 0. Note that the de�nition of the mixing time � is the

maximum over all initial states. Thus it is conceivable that a Markov chain can be torpidly

mixing (according to our de�nition), but there exists a particular initial state from which

the time to get close to the stationary distribution is still rapid, i.e., polynomial.

We will use two techniques for analyzing the mixing time of a Markov chain:

1. coupling to show rapid mixing; and

2. conductance to show torpid mixing.

The next two sections give an overview of these techniques.

2.3 Coupling

A coupling of a Markov chain on state space 
 is a stochastic process (�t; �t) on


� 
 such that:

1. separately, �t and �t are copies of the original Markov chain; and

2. if �t = �t, then �t+1 = �t+1.

A trivial example of a coupling is if the copies are independent. In general, �t and �t need

not be independent.

In order to bound the mixing time, we will try to de�ne a coupling so as to

minimize the time until both copies of the Markov chain reach the same state,

Tij = minft : �t = �tj�0 = i; �0 = jg:
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For simplicity, we will instead bound the (expected) coupling time, de�ned as follows:

T = max
i;j2


E[Tij]:

The coupling time implies a bound on the mixing time:

Theorem 8 ([Ald83]) For an ergodic Markov chain,

� � 2eT:

The proof is straightforward and relies on the following easily proven fact which

is known as the coupling lemma. For �0 = i; �0 = j, a coupling (�t; �t) can be used to

bound the variation distance,

dTV (�t; �t) � Pr[�t 6= �t] = Pr[Ti;j > t]:

To prove the theorem, it is then su�cient to show that Pr[Tij > t] � T=t, which follows

easily from Markov's inequality.

We are now left with the di�erent (though perhaps equally di�cult) problem

of bounding the coupling time T . In order to measure the distance between the two

copies of the chain, we introduce a metric � on the product state space 
 � 
 so that

� = �(�t; �t) = 0 () �t = �t. Thus, the expected time until � = 0 is equivalent to the

coupling time. As a concrete example, for spin systems a natural metric is the Hamming

distance, i.e., �(�; �) = jfvj�(v) 6= �(v)gj. The idea is to de�ne a coupling that makes �

decrease (in expectation) after every transition. The following toy example illustrates the

approach.

Consider the in�nite-temperature ferromagnetic q-state Potts model on an arbi-

trary graph G = (V;E). Thus the model has state space 
 = f1; : : : ; qgV and the Gibbs

measure is uniformly distributed over 
. For this example, a transition of the Glauber

dynamics consists of choosing a color c and vertex v uniformly at random and recoloring

v to color c.

We de�ne a natural coupling (�t; �t): at each step, both chains choose the same

color c and vertex v and move accordingly. It is easy to verify that in fact this is a valid

coupling. Notice that after a transition (at time t) that changes vertex v to color c we

certainly have �t+1(v) = �t+1(v) = c and in fact, �t0(v) = �t0(v) for all times t
0 > t. Thus,
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if �(�t; �t) = d, then

�(�t+1; �t+1) =

8<: d� 1 with probability d=n;

d with probability 1� d=n:

Since the expected number of steps before � decreases is n=d, we have that E[Tij] �P
0�i<n n=(n� i) � n lnn as n!1. This implies that the mixing time is O(n lnn).

An important tool for helping to design couplings in complex examples is Bubley

and Dyer's path coupling [BD97]. Using path coupling, it is su�cient to de�ne and analyze

a coupling for a suitable subset of 
 � 
. Both the design and analysis of the coupling

automatically extend to the whole of 
� 
.

We present the theorem and the necessary de�nitions for the speci�c case of spin

systems, i.e., 
 � f1; : : : ; kgV . We consider a pair of states �; � 2 
 neighbors if they

di�er only at a single vertex. This is denoted by � � �. We call � = (�0; : : : ; �k) a simple

path if all �i are distinct and �0 � �1 � � � � � �k. De�ne �(�; �) as the set of simple paths

between � and �.

Theorem 9 (Bubley and Dyer [BD97]) Let � be an integer-valued metric de�ned on


 � 
 which takes values in f0; : : : ; Dg such that, for all �; � 2 
, there exists a path

� 2 �(�; �) with

�(�; �) =
X
i

�(�i; �i+1):

Suppose there exists a constant � < 1 and a coupling (�t; �t) of the Markov chain such

that, for all �t � �t,

E[�(�t+1; �t+1)] � ��(�t; �t): (2.1)

Then the mixing time is bounded by

� �
log(2eD)

1� �
:

Moreover, if (2.1) holds with � = 1 and in addition there exists an � > 0 such that, for

all t and arbitrary �t; �t 2 
,

Pr[�(�t+1; �t+1) 6= �(�t; �t)] � �;

then the mixing time is bounded by

� = O

�
D2

�

�
:
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To see the usefulness of this theorem, reconsider the earlier example of the in�nite

temperature ferromagnetic q-state Potts model in the setting of the path coupling theorem.

Since � is de�ned as the Hamming distance, it is easy to verify that the conditions of the

theorem are satis�ed and it is su�cient to consider a pair of states �t � �t that di�er at

just one vertex (and thus �(�t; �t) = 1). We use the same coupling (�t; �t) as before, where

each chain chooses the same vertex v and color c for every transition. After one transition

it is clear that � decreases by 1 with probability 1=n, and otherwise remains unchanged.

This implies that condition (2.1) holds with � = 1 � 1=n. Since in this example D = n,

we conclude that � � n log(2en).

For completeness, and since it is a relatively recent development, we give a proof

of the path coupling theorem in the case when � < 1.

Proof of Theorem 9: We claim that it is su�cient to exhibit a coupling such that for all

�t; �t 2 
 (not necessarily neighbors), E[�(�t+1; �t+1)] � ��(�t; �t): For suppose we have

such a coupling and consider two arbitrary initial states �0; �0. By successively applying

the coupling, the expected distance after t steps is E[�(�t; �t)] � �(�0; �0)�t � D�t. Since

� is non-negative and integer-valued,

Pr[�t 6= �t] = Pr[�(�t; �t) � 1] � E[�(�t; �t)] � D�t:

This probability is at most 1
2e after t =

log(2eD)
log(��1) <

log(2eD)
1�� steps.

In order to construct a coupling satisfying the above condition, consider the path

�t = (�0t ; �
1
t ; : : : ; �

k
t ) between �t and �t such that �(�t; �t) =

P
i�(�

i
t; �

i+1
t ). Using this

path and the coupling between neighbors (�it; �
i+1
t ), we can de�ne a coupling between �t

and �t as follows. Given any transition for �t = �0t , the coupling between neighbors (�
0
t ; �

1
t )

de�nes a move for �1t . The move for �
1
t along with the coupling (�1t ; �

2
t ) de�nes a move for

�2t and hence a coupling (�0t ; �
2
t ). We continue along the path in this manner until we have

the move for �kt = �t. This de�nes a coupling for (�t; �t) and in fact for all the states on

the path �t. After the coupled move, we have a new path �t+1 between the states �t+1 and

�t+1. Furthermore, we know that E[�(�it+1; �
i+1
t+1)] � ��(�it; �

i+1
t ) for each i. By linearity

of expectation we have the following:

E[�(�t+1; �t+1)] � E[
X
i

�(�it+1; �
i+1
t+1)] =

X
i

E[�(�it+1; �
i+1
t+1)]

� �
X
i

�(�it; �
i+1
t ) = ��(�t; �t):
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This completes the proof for the case when � < 1.

2.4 Conductance

The notion of conductance was introduced by Jerrum and Sinclair [JS89] to the

study of the mixing time of reversible Markov chains (see Sinclair [Sin93] for a more

complete introduction). Conductance characterizes the mixing time, and thus can be used

to obtain both lower and upper bounds. This thesis uses conductance solely to bound

the mixing time below in order to show that particular chains are torpidly mixing. For

examples that use conductance to prove rapid mixing see, e.g., [JS89, DFK91].

For a proper subset S � 
, let S = 
 n S. We denote the 
ow out of S by

Q(S; S) =
X

i2S;j2S

�(i)Pij:

The conductance �S of a subset S is the quantity

�S =
Q(S; S)

�(S)�(S)
:

This quantity is a symmetrized version of the quantity Q(S;S)
�(S) , which can be viewed as the

conditional probability that the Markov chain in the stationary distribution leaves the set

S in one step given that it currently resides in S. The conductance of the Markov chain is

� = min
S 6=;;


�S :

We use the following well-known theorem [AM85, Sin93, AF].

Theorem 10

� �
1

�
:

2.5 Phase transitions

For the remainder of the chapter we specialize to the graph Zd and its subgraph

QL = (V;E), which is a d-dimensional cube with side length 2L + 1. Recall that the

boundary @QL consists of those vertices in QL with at least one component equal to �L.

For a Hamiltonian H , recall that the weight of a con�guration � is

w(�) = exp(��H(�)):
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Also, the Gibbs distribution (at inverse temperature �) is

�(�) = w(�)=Z:

Let 
 denote the set of con�gurations on Zd with positive weight. In particular,

for the Potts model, 
 = f� 2 f1; : : : ; qgZ
d
: w(�) > 0g; for the hard core model, the set


 denotes the set of independent sets ofZd. We let �� = �L� denote the Gibbs distribution

conditional on the �xed con�guration � on the boundary @QL, and let �� (�(O)) denote

the corresponding marginal distribution on the spin at the origin O. We say the system

is in the disordered phase, if for all �; � 0 2 
,

lim
L!1

��(�(O)) = lim
L!1

�� 0(�(O)):

Otherwise, we say the system is in the ordered phase.

It is interesting to note that while the ferromagnetic Potts model, like the Ising

model, is monotone in �, neither the anti-ferromagnetic Potts model or the hard core model

are known to be monotone. In particular, these models may exhibit multiple critical values

for the transition between the disordered and ordered phases.

To illustrate the phenomenon of a phase transition, recall from the Synopsis the

de�nition of the ferromagnetic q-state Potts model. For very small �, the spins of the

vertices are nearly independent. In fact, the in
uence of the boundary quickly dies out

and we expect that the system is in the disordered phase for su�ciently small �. While for

very large �, few con�gurations have non-negligible weight; those with almost all vertices

having the same color. Thus, forcing all vertices on the boundary to have a particular

color will tend to force the origin to have the same color, and we expect that the system

is in the ordered phase.

In this thesis, we will work with the above de�nition of phase transition for

spin systems. For completeness, we should brie
y mention some other notions of phase

transitions that are in wide use. In the following, we refer to the Gibbs distribution on a

�nite graph as the �nite-volume Gibbs measure to di�erentiate it from an in�nite-volume

Gibbs measure de�ned on 
 = SZ
d
.

(i) In�nite-volume Gibbs measures: Informally, this is the set of measures � on 
 whose

conditional distribution on all �nite volumes � �Zd with all boundary con�gurations

is the �nite-volume Gibbs measure. The development of such measures began with
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the work of Dobrushin [Dob68] and Lanford and Ruelle [LR67], and they are often

called DLR-states. In this setting, the disordered phase refers to the region with a

unique in�nite-volume Gibbs measure. See Georgii [Geo88] for a more comprehensive

development.

(ii) Limiting Gibbs measures: This is a constructive way of de�ning measures on 
.

Roughly speaking, we �x a � 2 
 and consider the �nite-volume Gibbs measure on

QL with boundary con�gurations de�ned by � . By taking the limit as L!1 we get

a measure on 
. The existence of a unique, as opposed to multiple, limiting Gibbs

measure corresponds to the system lying in the disordered phase. This approach

is intimately related to in�nite-volume Gibbs measures (DLR states); see Georgii,

Haggstrom, and Maes [GHM99] and Liggett [Lig85, Chapter 4, section 1] for details.

(iii) In�nite-volume Glauber dynamics: We can de�ne a continuous time analog of the

Glauber dynamics on the in�nite-volume system. The notion of the system lying in

the disordered phase refers to ergodicity of the in�nite-volume Glauber dynamics,

which corresponds to the existence of a unique limiting invariant distribution. For

details on this approach, see Liggett [Lig85].

All of the above notions (and the notion we use) are equivalent for attractive

systems, such as the hard core model on bipartite graphs and the Ising model. Roughly

speaking, a model is called `attractive' if there exists a partial order of its state space 
 and

a coupling of the Glauber dynamics that preserves the ordering. For a rigorous de�nition,

see Liggett [Lig85, Theorem 2.4, Chapter 2]. For some equivalences and implications

between the di�erent notions, see Liggett [Lig85, Cor. 2.8 (Chpt. 2), Cor. 2.3 (Chpt. 3),

Thm. 2.16 (Chpt. 4)].

2.6 Phase transitions and rapid mixing

A stronger property than being in the disordered phase is that of strong spatial

mixing. This is a key idea in establishing a connection with rapid mixing of the Glauber

dynamics. We need several preliminary de�nitions before formally de�ning the property.

We de�ne the distance between a pair of points x; y 2Zd as

jx� yj = max
i2f1;::: ;dg

jxi � yij:
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Similarly, the distance between � �Zd and y 2Zd is

d(�; y) = min
x2�

jx� yj:

For a connected subset � � Zd (not-necessarily a box QL), the boundary @� is

de�ned analogously as @� = fv 2 � : w 62 �; (v; w) 2 E(Zd)g, where E(Zd) denotes the

set of edges of the lattice Zd. Let � and � (y) denote a pair of boundary con�gurations that

di�er only at y 2 @�. We are interested in how this change at y a�ects the distribution of

spins on a connected set � � � as a function of the distance from � to �. Let �� (�(�))

denote the marginal distribution of �� on the set �. We say that the system has the

strong spatial mixing property if there exist constants c;m such that, for all � � Zd, the

following condition holds, for all � � � and y 2 @�,

max
�;� (y)

dTV (�
� (�(�)); ��

(y)
(�(�)))� ce�md(�;y):

Frigessi, Martinelli, and Stander [FMS97] prove that the strong spatial mixing

property implies that the Glauber dynamics has mixing time O(n logn) for any connected

subset � �Zd. Their result builds upon work of Stroock and Zegarlinski [SZ92] and holds

for all of the models we have introduced. In [SZ92] there are related conditions for the

reverse implication, but these involve a di�erent measure of distance from stationarity.

For completeness, we include the following proof, based on ideas in the work of

Martinelli and Olivieri [MO94], that a O(n logn) mixing time of the Glauber dynamics

implies that the system is in the disordered phase. A sketch of the argument was explained

to the author by J. van den Berg. For simplicity, we specialize to the case of the zero

temperature anti-ferromagnetic Potts model whose con�gurations correspond to proper

colorings. It will be clear that the proof extends to other models of interest, such as the

hard core, Ising, and Potts models, and also generalizes to other lattices of interest, such

as the hexagonal and triangular lattices.

Lemma 11 For the zero-temperature anti-ferromagnetic Potts model on Zd with q � 2d+

1, an O(n logn) mixing time of the Glauber dynamics, for all QL, implies that the system

is in the disordered phase.

Proof: For QL = (V;E), �x a pair of colorings �; � 0 of the boundary @QL. The idea is

to compare �� and �� 0 by considering a pair of Markov chains (�t); (�t) with the Glauber
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dynamics having the respective �xed boundary colorings �; � 0 and thus stationary distribu-

tions �� and �� 0 . We run these chains until they are close to their stationary distributions;

meanwhile, the chains are coupled to maintain (if possible) the same color at the origin.

Observe that under the stated condition q � 2d+ 1 there exists a pair of colorings �0; �0,

with respective boundary colorings �; � 0, such that �0(x) = �0(x) for all x 62 @QL; these

are the initial states of the chains.

Let �� (O); �� 0(O) denote the marginal distributions of the spin at the origin O

in stationarity, and let

pt = Pr[�t(O) = �t(O)]:

We run the chains for T steps, a time su�cient for both to get within variation distance

1=L of the stationary distribution. We can then bound the variation distance between

�� (O) and �� 0(O) as follows:

dTV f�� (O); �� 0(O)g

� dTV f��(O); �T(O)g+ pT + dTV f�T(O); �� 0(O)g

� 1=L+ pT + 1=L;

where the second line follows from the triangle inequality. Therefore, in order to show

that the system is in the disordered phase, it is su�cient to show that pT # 0 as L!1.

Before de�ning the coupling that we use, recall the de�nition of the Glauber

dynamics for proper colorings. From a coloring �, the transitions � 7! �0 are the following:

[G1] Choose a vertex v uniformly at random.

[G2] Let �0(w) = �(w) for all w 6= v.

[G3] Let S� denote the set of colors that appear in the neighborhood of v. Choose �0(v)

uniformly at random from the set C n S�.

The coupling (�t; �t) is the following: in step [G1] both chains choose the same

vertex v; while in step [G3], if S�t = S�t then both chains choose the same color for v,

otherwise they choose colors independently.

Let v � w denote a pair of adjacent vertices in QL. At time t, consider the vertex

v chosen in step [G1] and suppose that �t�1(v) = �t�1(v) but �t(v) 6= �t(v). In order for



22

this to occur, there must exist a vertex w � v such that �t�1(w) 6= �t�1(w). Since initially

the only vertices that di�er are on the boundary, there must exist a \path of disagreement"

from the boundary to v. More formally, let P denote a path (w0 � w1 � � � � � wi = O)

such that w0 2 @QL and similarly, let A denote a set of times (t1 < � � � < ti). We say the

event E(P;A) occurs if for all 0 < j � i,

�tj�1(wj) = �tj�1(wj) and �tj (wj) 6= �tj(wj):

Notice that

pt � Pr[E(P;A) occurs for some P;A] �
X
P;A

Pr[E(P;A) occurs ]:

In order for a speci�c event E(P;A) to occur, at each time tj vertex wj must

be chosen by the Glauber dynamics in step [G1]. The probability of this occurring is at

most (1=2L)d, and thus Pr[E(P;A)] � (1=2L)id. Let E(P ) denote the event that E(P;A)

occurs for some set of times A. Since the number of such sets A is at most
�
T
i

�
, we get

the following bound:

Pr(E(P )) �

�
T

i

��
1

2L

�id
�

�
Te

i(2L)d

�i
:

Finally, let E denote the event that E(P ) occurs for some path P . The number

of such paths of length i is bounded by the number of walks (with neighbors de�ned by

�) of length i that start at the origin, which is exactly (2d� 1)i. The minimum length of

a path from the origin to the boundary is L, and thus

Pr(E) �
X
i�L

�
Te(2d� 1)

i(2L)d

�i
:

From our assumption about the mixing time of the Glauber dynamics we have

T = O((2L)d logLd logL) which implies the following bound:

Pr(E) �
X
i�L

�
ed(2d� 1) log2 L

i

�i
:

Since this sum tends to 0 as L!1, the proof is complete.
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Chapter 3

Sampling Colorings

3.1 Introduction

Recall that a proper q-coloring of a graph G = (V;E) is a labeling � of the

vertices with colors from the set C = f1; : : : ; qg where neighboring vertices have di�erent

colors. Mark Jerrum [Jer95] proved that the Glauber dynamics, de�ned in the Synopsis,

is rapidly mixing when the number of colors is at least twice the maximum degree � of

the input graph.

This 2� barrier also arose in related work in the statistical physics community

showing that the zero-temperature anti-ferromagnetic q-state Potts model is in the disor-

dered phase. In particular, Roman Kotecky (cited in [Geo88, pages 148-149,457]) showed

that the system is in the disordered phase when the number of colors is greater than twice

the degree of the lattice (i.e., k > 2� = 4d for Zd).

In both settings, this 2� barrier was broken in speci�c instances by computer-

assisted proofs which analyzed a huge number of cases. Jesus Salas and Alan Sokal broke

the barrier for several two-dimensional lattices [SS97]. They proved that the system is

in the disordered phase for seven-colorings of the square lattice, four-colorings of the

hexagonal lattice, and six-colorings of the Kagome lattice. Their proof for the square

lattice, for instance, requires the computer analysis of 78 cases.

Bubley, Dyer, and Greenhill [BDG98] proved rapid mixing of the Glauber dynam-

ics with �ve colors when � is at most three and seven colors on triangle-free four-regular

graphs. Their proof relies on the computer solution of several hundred linear programs

for the � � 3 case, and over 40,000 programs for triangle-free 4-regular graphs.
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In this chapter, we prove theorem 1 which breaks the 2� barrier for arbitrary

graphs. This result appeared in [Vig99b].

Theorem 1 When q > 11
6 �, where � is the maximum degree of the graph,

(a) the 
ip dynamics is rapidly mixing with mixing time O(nq logn); and

(b) the Glauber dynamics is rapidly mixing with mixing time O(n2q log n log q).

The fact that the zero-temperature anti-ferromagnetic Potts model is in the dis-

ordered phase follows directly from the theorem since lemma 11 easily extends to the 
ip

dynamics.

Corollary 2 The zero-temperature anti-ferromagnetic q-state Potts model on Zd is in the

disordered phase when q > 11
3 d.

This beats the previously known bound of k > 4d for general d. Moreover, the

result can easily be extended to other lattices that are commonly of interest, such as the

hexagonal and Kagome lattice (see [SS97] for illustrations of these lattices).

3.2 Markov Chain

The state space 
 of the Markov chain for the 
ip dynamics is the set of all

proper k-colorings. We need some notation before specifying the transitions of the chain.

For a coloring �, we will refer to a path v = x0; x1; : : : ; xl = w as an alternating

path between vertices v and w using colors c and �(v) if, for all i, (xi; xi+1) 2 E and

�(xi) 2 fc; �(v)g; �(xi) 6= �(xi+1). We let S�(v; c) denote the following cluster of vertices.

S�(v; c) =

8<:wj there exists an alternating path between

v and w using colors c and �(v)

9=;
Also, let S�(v; �(v)) = ;. For every vertex x in the cluster S�(v; c), notice that S�(x; c) =

S�(v; c) if �(x) = �(v) and otherwise S�(x; �(v)) = S�(v; c).

For a coloring � 2 
, the transitions � 7! �0 are de�ned as:

� Choose a vertex v and color c uniformly at random from the sets V , C respectively.



25

� Let � = jS�(v; c)j.

With probability p�
� , `
ip' cluster S�(v; c) by interchanging colors c and �(v) on the

cluster.

The reason for dividing the 
ip probability by � is that, as observed above, there

are exactly � ways to pick the cluster (one for each of its elements). Thus, a cluster is

actually 
ipped with weight p�. The parameters p� will be de�ned later.

Observe that for every vertex v, the 
ip of cluster S�(v; �(v)) does not change

�. Thus, the Markov chain is clearly aperiodic since P (�; �) > 0 for all � 2 
.

As for irreducibility, it is su�cient to assume 
ips of clusters of size one have

positive weight, i.e., p1 > 0 and k � �+ 2. To go between an arbitrary pair of colorings

simply consider an ordering of the vertices and attempt to recolor the vertices in that order.

When recoloring a vertex, if some neighbors have the desired color then �rst recolor those

neighbors to an arbitrary color which does not appear in its neighborhood (this requires

that k � � + 2). We are guaranteed that after we give a vertex its desired color, it will

not interfere with the recoloring of later vertices in the ordering.

To see that the chain is symmetric and thus the stationary distribution � is

uniform, let �0 denote the coloring after a 
ip of cluster S�(v; c). Then it should be clear

that a 
ip of cluster S�0(v; �(v)) recovers �.

To complete the description of the chain, we specify the parameters p�. They

are p1 = 1; p2 =
13
42 and for � > 2,

p� = max(0;
13

42
�
1

7
[1 +

1

2
+ � � �+

1

� � 2
])

Speci�cally, p3 =
1
6 ; p4 =

2
21 ; p5 =

1
21 ; p6 =

1
84 ,and p� = 0 for � � 7.

The key properties (which will emerge in the analysis) that determined the set-

tings for these parameters are

� 2(i� 1)pi + p2i+1 �
2
3 , and

� (j�1)(pj�pj+1)+i(pi�pi+1) �
5
6 . This is true because (j�1)(pj�pj+1) �

1
7 ; i(pi�

pi+1) � p1 � p2 =
29
42 .

Other useful properties of these parameters that we utilize are that ipi � p1 = 1, (i�1)pi �

2p3 =
1
3 , (i� c)pi <

1
4 for c � 2.
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3.3 Analysis

Recall the setting of the path coupling theorem. To use the theorem we need

to de�ne a metric � on 
 � 
 such that there exists a path between an arbitrary pair

of states �; � where the length of the path is exactly �(�; �). We let � be the Hamming

distance which is the number of vertices that are colored di�erently in the two states. For

neighboring states �; � , observe that �(�; �) = 1. Consider a coloring � where �(v) =

1; �(w) = 2 for adjacent vertices v and w. Let � denote the coloring which is identical to

� except �(v) = 2; �(w) = 1. Thus, �(�; �) = 2 but the shortest path in 
 between these

states is of length three.

In order to apply the path coupling theorem, we rede�ne the state space of the

Markov chain. Let the set 
 = CV , i.e., the set of all (not necessarily proper) k-colorings.

Now there exists a path of length �(�; �) between an arbitrary pair of states � and �.

The de�nition of the clusters S�(v; c) and the transitions of the chain are identical for this

enlarged state space.

Observe that if we start the chain at a proper coloring, we only visit proper

colorings. Also, if we start at an improper coloring we eventually reach a proper coloring.

(To see this simply reconsider the earlier argument for irreducibility.) Therefore, the only

states with positive weight in the stationary distribution are proper colorings and the chain

is still uniform over these states. Also, a bound on the mixing time of the chain on this

enlarged state space will give the same bound on the mixing time of the chain restricted

to just proper colorings.

To now use the path coupling theorem to get a bound on the mixing time we

must �rst de�ne a coupling for neighboring states �; � . Then we need to show that the

expected change in � = �(�; �) under this coupling is negative. For the remainder of the

analysis let � and � denote a pair of neighboring states such that they only di�er at vertex

v.

Recall that for every cluster S�(x; c) there is exactly one equivalent cluster in-

dexed by each vertex y 2 S�(v; c). Also, this cluster is 
ipped with total weight p� where

� = jS�(x; c)j. Thus, when analyzing E[��] we just have to consider this cluster being


ipped with weight p� as opposed to considering the cluster being 
ipped with weight

p�=� for each vertex y in the cluster.

Notice that in order for a cluster S(x; c) to be di�erent in the two colorings
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�; � it must involve v, either v 2 S�(x; c) and/or v 2 S� (x; c). Recall that if v 2

S�(x; c) then there is an equivalent way to index the cluster with vertex v. Suppose

v 62 S�(x; c); v 2 S� (x; c). We then know that the cluster S(x; c) is composed by col-

ors �(v) and c0. Furthermore, there exists a neighbor w of v such that: w has color c0,

S�(w; �(v)) = S�(x; c) = S�(v; c
0), and S�(w; �(v)) = S�(x; c). We can conclude that the

set D of clusters that might be di�erent in the two chains are

� S�(w; �(v)); S�(w; �(v)) for any neighbor w of v,

� S�(v; c); S�(v; c) for any color c.

The moves that attempt to 
ip a cluster in D turn out to be the only moves that

the analysis needs to consider. In particular, suppose the coupling between moves in �

and � is simply the identity, i.e., each chain attempts the same move. The 
ip of a cluster

S 62 D does not change � since S is the same in both chains before and after the move.

Our coupling is in fact the identity for moves that 
ip clusters not in D. Before stating

the coupling for all moves, we partition the set D as follows. Notice that the clusters in

D are composed of colors �(v) or �(v) and at most one other color c. We partition D into

sets Dc based on the other color c as follows, let

�c = fwj�(w) = c; w is a neighbor of vg;

Dc = S�(v; c)[ S� (v; c)[ f[w2�cfS�(w; �(v))[ S�(w; �(v)gg:

The only sets Dc that might have non-empty intersection are D�(v) and D�(v)

which both consist of clusters composed of colors �(v) and �(v). We ignore this issue for

now, and address this special case (*) in the analysis. Note that the sets D�(v); D�(v) are

simply a byproduct of rede�ning the state space to all (not necessarily proper) colorings.

Before de�ning the coupling, observe that we can think of it as a function f from

a move in � to a move in � , i.e., we choose a move in � and f de�nes the coupled move in

� . From a move in � that 
ips a cluster S, the coupling f is

� For S 62 D, f(S) = S, i.e., moves that 
ip clusters not in the set D have the identity

coupling.

� For S 2 Dc, f(S) 2 Dc. Moves in the set Dc for � are coupled with moves in the

same set for � .
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The speci�c coupling for 
ips of clusters in the set Dc will be de�ned later in the

analysis. Since 
ips of clusters in Dc are coupled together for the chains, we can denote

the e�ect of these moves by

E[�Dc] = E[��j� and � 
ip clusters in Dc]:

Recall that for clusters S 62 D, moves that 
ip these clusters do not change �. We then

have that

nkE[��] =
X
c

E[�Dc�]

The key component of the analysis is the following lemma. Let �c = j�cj.

Lemma 12 For each color c 2 C,

(a) If �c = 0, then E[�Dc�] � �1.

(b) If �c > 0, then E[�Dc�] �
11
6 �c � 1.

Based on this lemma, we get our main result.

Proof of Theorem 1(a):

Let � = �(v) denote the degree of vertex v. Observe that the number of colors

c with �c = 0, i.e., that do not appear in the neighborhood of v, is exactly k � � +P
c0:�c0>0

(�c0 � 1). Together with the lemma this implies that

nkE[��] � �k +
11

6
�:

Recall from the path coupling theorem that we need to bound � such thatE[�(�t+1; �t+1)] �

��(�t; �t) for all �t � �t. Letting � = �t; � = �t, we have a bound on E[��(�t; �t)]. Since

E[�(�t+1; �t+1)] = �(�t; �t) + E[��(�t; �t)] and �(�t; �t) = 1, thus, � � 1 �
k� 11

6 �

nk .

Applying the path coupling theorem stated earlier we get the following bound when
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k > 11
6 �,

� �
nk

k � 11
6 �

log(2en):

Proof of Lemma 12:

(a) Observe thatDc = fS�(v; c)[S�(v; c)g and furthermore, S�(v; c) = S�(v; c) =

fvg. Since each chain has only one cluster in Dc, the coupling for the move that 
ips the

cluster in Dc is obviously just the identity. This move might only change v and after the

move we know that �(v) = �(v) = c. Thus, E[�Dc�] = �1.

(b) Let w1; : : : ; w�c denote the set �c of neighbors of v with color c. All of the

clusters in the set Dc are composed of colors c and �(v) or c and �(v). In fact, the clusters

in the set Dc have the following relationship:

For c 6= �(v),

S�(v; c) = f[iS�(wi; �(v))g [ fvg

For c 6= �(v),

S�(v; c) = f[jS�(wj ; �(v))g [ fvg

Note that in the case when c = �(v), we have S�(v; c) = S� (wi; �(v)) = ;.

Similarly c = �(v) implies that S�(v; c) = S�(wj; �(v)) = ;. As mentioned earlier it may

also occur that D�(v) \ D�(v) 6= ;. We ignore this special case (*) until the end of the

proof.

For a color c, all of the clusters in the set Dc might not be distinct. It may

occur that S�(wi; �(v)) = S�(wi0; �(v)) or similarly for S�(wj; �(v)). We do the follow-

ing to insure that we consider the 
ip of each cluster exactly once. If S�(wi1 ; �(v)) =

S�(wi2 ; �(v)) = � � � = S�(wil; �(v)), rede�ne S�(wil0 ; �(v)) = ; for all 1 < l0 � l. Similarly

for S�(wj; �(v)).

To de�ne our coupling, we need to distinguish the largest of the clusters S�(wi; �(v))

and also of the clusters S�(wj; �(v)). Let ai = jS�(wi; �(v))j; A = jS�(v; c)j � 1 +
P

i ai.

In fact, A = 1 +
P

i ai for c 62 f�(v); tau(v)g. Similarly, let bj = jS�(wj; �(v))j; B =

jS�(v; c)j � 1 +
P

j bj . Also, let amax = maxi ai and imax is the corresponding index for

amax (similarly for bmax and jmax). For colors c 6= �(v), note that amax > 0, while for
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c 6= �(v), bmax > 0. In the case when c = �(v) we have A = amax = 0 and for c = �(v),

B = bmax = 0.

We can now state the coupling for moves inMc. The idea is to couple the big 
ips,

S�(v; c) and S� (v; c), with the largest of the other 
ips, S�(wimax; �(v)); S�(wjmax; �(v)).

Then for each wi, couple together (as much as possible) the remaining weights of the 
ips

S�(wi; �(v)); S�(wi; �(v)). More precisely, the coupling is the following:

I with weight pA, 
ip S�(v; c) and S� (wimax; �(v)).

II with weight pB, 
ip S�(v; c) and S�(wjmax; �(v)).

III For each wl,

Let ql (q
0
l) denote the remaining weight of the 
ip of S�(wl; �(v)) (S�(wl; �(v)) re-

spectively). Speci�cally, let

ql =

8<: pal � pA if l = imax

pal otherwise

q0l =

8<: pbl � pB if l = jmax

pbl otherwise

IIIa with weight min(ql; q0l),


ip S�(wl; �(v)); S�(wl; �(v))

IIIb with weight ql �min(ql; q0l),


ip S� (wl; �(v))

IIIc with weight q0l �min(ql; q
0
l),


ip S�(wl; �(v))

Let us analyze the e�ect of each of these coupled moves. After coupled move (I),

the colorings are still identical on the cluster which before the move was S�(wimax; �(v)).

Thus, their Hamming distance has increased by at most A� amax� 1. Similarly, coupled

move (II) increases the Hamming distance by at most B � bmax� 1.



31

For coupled move (IIIa), since both 
ips e�ect wl this move increases the Ham-

ming distance by exactly al+bl�1. Whereas, moves (IIIb) and (IIIc) increase the distance

by al and bl respectively. Let us use a function f(wl) to denote the e�ect of moves (IIIa),

(IIIb), and (IIIc).

f(wl) = alql + blq
0
l �min(ql; q

0
l)

We now have that

E[�Dc�] � (A� amax � 1)pA + (B � bmax � 1)pB

+
X
l

f(wl) (3.1)

We divide the remainder of the analysis into three di�erent cases depending on

the value of �c.

� Suppose that �c = 1.

The situation is fairly simple: A � a1+1; B � b1+1; q1 = pa1�pA; q
0
1 = pb1�pB.

Without loss of generality, assume that q1 � q01. From (3.1), we get the following bound

E[�Dc�] � a1(pa1 � pA) + (b1 � 1)(pb1 � pB)

� a1(pa1 � pa1+1) + (b1 � 1)(pb1 � pb1+1)

The second key property of the parameters p� gives us the intended bound

E[�Dc�] �
5

6
:

� Suppose �c = 2.

The following claim dramatically simpli�es the situation.

Claim 13 When �c = 2, E[�Dc�] is maximized for a1 = a2 = a � 3 and b1 = b2 = b = 1.

We can now calculate f(w1); f(w2); and E[�Dc�].

f(w1) = (a� 1)pa + bpb = (a� 1)pa + 1

f(w2) = (a� 1)(pa � pA) + b(pb � pB)

E[�Dc�] � (A� 2a)pA + (B � 2b� 1)pB + 2(a� 1)pa + 2bpb

= 2(a� 1)pa + p2a+1 + 2
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From the �rst key property of the parameters pl, we have our intended bound on

E[�Dc�],

E[�Dc�] �
2

3
+ 2 =

11

6
�c � 1:

� Suppose that �c > 2.

Consider the following de�nition

g(wl) = alpal + blpbl �min(pal; pbl)

Notice that g(wl) = f(wl) for l 6= imax; l 6= jmax. Let us look at f(wimax); f(wjmax).

Suppose l = imax = jmax.

f(wl) = amax(pamax � pA) + bmax(pbmax � pB)�min(pamax � pA; pbmax � pB)

� amax(pamax � pA) + bmax(pbmax � pB)�min(pamax; pbmax) + pA + pB

= g(wl) + pA(�amax + 1) + pB(�bmax+ 1)

Similarly when imax 6= jmax, we get that

f(wimax) + f(wjmax) � g(wimax) + g(wjmax) + pA(�amax + 1) + pB(�bmax+ 1):

Thus, we can bound the sum of f(wl) in terms of the sum of g(wl),X
l

f(wl) �
X
l

g(wl) + pA(�amax + 1) + pB(�bmax + 1):

Plugging in this bound on the sum of f(wl) into (3.1) we get the following bound

E[�Dc�] � (A� 2amax)pA + (B � 2bmax)pB +
X
l

g(wl): (3.2)

We observed earlier that for our settings of pi, (i � c)pi <
1
4 for c � 2 (or of

course when i = 0). Thus, (A� 2amax)pA; (B � 2bmax)pB <
1
4 . We can also easily bound

g(wl). Assume al � bl and thus pal � pbl . We then have

g(wl) = alpal + (bl � 1)pbl � p1 + 2p3 =
4

3
:

Combining these bounds with (3.2) we can complete the case �c > 2,

E[�Dc�] �
1

2
+
4

3
�c

�
11

6
�c � 1 for �c > 2:
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This completes the proof except for the special case (*) when D�(v) \D�(v) 6= ;.

Let x1; : : : ; x��(v) and y1; : : : ; y��(v) denote the respective sets ��(v) and ��(v). In particular

it might occur that

S�(xi; �(v)) = S�(v; �(v)); S�(yj ; �(v)) = S�(v; �(v)):

In order for this to happen there must exist an alternating path between xi and yj using

colors �(v) and �(v). In such a case, we let S�(v; �(v)) = S� (yj ; �(v)) = ;. Notice that

the set D�(v) is still unchanged and in fact, it is the same as previously analyzed (with

A = ai = amax = 0) except that we now have B =
P

j bj < 1 +
P

j bj . The previous

proof still holds in this case. For the set D�(v), assume j = 1 and we now have that

A = a1 = 0; B = bmax = 0; while for j > 1 we have aj � 0 (note that as before, if

S�(yj ; �(v)) = S�(yj0 ; �(v)), then we set S�(yj0 ; �(v)) = ;.) We can complete the proof as

follows

E[�D�(v)
�] �

X
2�j���(v)

ajpaj � (�c � 1)p1 <
11

6
�c � 1:

Proof of Claim 13:

Without loss of generality, assume that pamax � pA � pbmax � pB and a1 = amax.

Considering f(w1),

f(w1) =

8<: (a1 � 1)(pa1 � pA) + b1(pb1 � pB) if b1 = bmax

(a1 � 1)(pa1 � pA) + b1pb1 otherwise

Similarly, the other important quantities are

f(w2) =

8<: a2pa2 + b2(pb2 � pB)�min(pa2 ; pb2 � pB) if b2 = bmax

a2pa2 + b2pb2 �min(pa2 ; pb2) otherwise

E[�Dc�] = (A� a1 � 1)pA + (B � bmax � 1)pB + f(w1) + f(w2)

Suppose that b1 = x; b2 = y and we swap these values, i.e., let b1 = y and b2 = x.

Then E[�Dc] might change only from the min(; ) in f(w2). Thus, E[�Dc�] is maximized

when b2 = max(x; y); b1 = min(x; y). We assume from now on that b2 � b1 which implies
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the following simpli�ed situation:

f(w1) = (a1 � 1)(pa1 � pA) + b1pb1 ;

f(w2) = a2pa2 + b2(pb2 � pB)�min(pa2 ; pb2 � pB);

E[�Dc�] = (A� 2a1)pA + (B � 2b2 � 1)pB + (a1 � 1)pa1 + a2pa2

+b1pb1 + b2pb2 �min(pa2 ; pb2 � pB):

We can complete the proof by considering the two cases for min(pa2 ; pb2 � pB).

� pa2 � pb2 � pB: We then have

E[�Dc�] = (a1 � 1)pa1 + (a2 � 1)pa2 + (A� 2a1)pA

+b1pb1 + b2pb2 + (B � 2b2 � 1)pB:

Observe that (a1 � 1)pa1 is maximized for a1 = 3, while (A� 2a1)pA > 0$ a1 = a2 < 3.

Thus, the terms involving a1 and a2 are maximized for a1 = a2 � 3. Similarly, the

terms b1pb1 ; b2pb2 are maximized for b1 = b2 = 1, while (B � 2b2 � 1) < 0 if b1 6= b2 and

(B � 2b2 � 1) = 0 if b1 = b2. Thus, the maximum of E[�Dc] is when b1 = b2 = 1 and

a1 = a2 � 3 which completes the proof of the claim in this case.

Before considering the next case, note that when a1 = a2 = 3; b1 = b2 = 1,

E[�Dc�(3; 1; 3; 1)] = 2p1 + 4p3:

� pa2 > pb2 � pB: In this case,

E[�Dc�] = (a1 � 1)pa1 + a2pa2 + (A� 2a1)pA

+b1pb1 + (b2 � 1)pb2 + (B � 2b2)pB:

The equation is symmetric in the pair (a1; a2) and (b2; b1). Considering the terms involving

a1; a2 we complete the proof as follows:

(a1 � 1)pa1 + a2pa2 + (A� 2a1)pA �

8<: 2p3 + p1 if a1 6= a2

0p1 + p1 + p3 if a1 = a2

�
1

2
E[�Dc�(3; 1; 3; 1)]:
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Remark

The proof showed that E[��] � 0 when k = 11
6 �. To show rapid mixing in this

case, we need to bound � = Pr[�� 6= 0]. The di�culty arises when a pair of states �; �

are far apart in terms of �, say �(�; �) = n. Each vertex v may have 2�(v) colors in its

neighborhood and thus no moves that decrease �. By some recoloring of at most 1
6�(v)

neighbors of vertex v, we can guarantee v has some color available. Thus, � �
�
1
nk

��(v)
6 +1

which implies the chain is rapidly mixing when the maximum degree � is a constant and

k = 11
6 �.

3.4 Comparison with Glauber dynamics

In this section, we prove theorem 1(b) by bounding the mixing time �GD of the

Glauber dynamics in terms of the mixing time �flip of the 
ip dynamics. The proof relies

on the comparison theorem of Diaconis and Salo�-Coste [DSC93] (see Randall and Tetali

[RT98] for other examples that use this theorem).

We present the comparison theorem in our speci�c setting where both chains

have the same state space 
, the set of proper colorings, and uniform stationary distribu-

tion. The theorem relates the underlying graphs associated with the transition matrices

Pflip; PGD of the 
ip and Glauber dynamics respectively. For a reversible Markov chain

with transition matrix P , the underlying graph is G = (
; E(P )) where

E(P ) = f(�; �) : P (�; �) > 0g:

Note that reversibility implies that G is undirected. For each move (�; �) 2

E(Pflip), we de�ne an associated path of moves in E(PGD). Instead of de�ning a canonical

path 
�� , we de�ne a set of fractional paths, called a 
ow (see Sinclair [Sin92] for an

analogous use of 
ows). Let 
 denote a path (�0; �1; : : : ; �k), where each (�i; �i+1) 2

E(PGD), with length j
j = k. For (�; �) 2 E(Pflip), let ��� denote the set of paths from

� to � ,

��� = f
 : �0 = �; �k = �g:

A 
ow is a set of functions f = f�� : ��� ! R
+ whereX


2���

f(
) = 1:
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The idea is to de�ne 
ows to minimize the (fractional) number of paths that

traverse any particular edge. In particular, for (�; �) 2 E(PGD), we aim to minimize

A�� =
1

PGD(�; �)

X

2��� :
(�;�)2


j
jf(
)Pflip(�; �):

In our setting, observe that PGD(�; �) �
1
nk , while Pflip(�; �) �

1
nk . In addition,

we will de�ne 
ows such that if f(
) > 0 then j
j < K1 for a positive constant K1. This

will follow from the fact that the 
ip dynamics only 
ips clusters of size at most 6. We

can simplify the quantity A�� as

A�� � K1

X

2��� :
(�;�)2


f(
): (3.3)

We are interested in the maximum over all edges,

A = max
(�;�)2E(PGD)

A��:

We use the following theorem of Diaconis and Salo�-Coste [DSC93] (see [RT98]

for the details of adapting the original theorem into the form we present below).

Theorem 14 ([DSC93])

�GD � O(A�flipj
j)

Proof of Theorem 1(b):

Since j
j � kn, in order to prove the theorem it is su�cient to de�ne a set of


ows such that A = O(1).

Recall that a move � 7! � of the 
ip dynamics interchanges colors c = c�� and

c0 = c0�� on a maximal two-colored cluster S = T [ T 0 = T�� [ T
0
�� , where �(v) = c for all

v 2 T and �(v) = c0 for all v0 2 T 0. A natural idea for a path 
�� consisting of moves in

the Glauber dynamics is as follows: recolor each v 2 T to an arbitrary color, then recolor

each v0 2 T 0 to color c, and �nally recolor each v 2 T to color c0. The problem with

such paths is that by choosing an arbitrary color in the �rst stage, we have unnecessarily

increased the `load' through particular edges. For instance, suppose that we always try to

choose color 'yellow' as the arbitrary color; meanwhile we never choose 'red', if possible.

An edge e of the Glauber dynamics that recolors a vertex to color yellow will have a large
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`load' (i.e., large Ae); while an edge e0 that recolors a vertex to color red might have no

paths that traverse it (i.e., Ae0 = 0).

We instead divide the 
ow evenly among all such paths. In particular, denote

the set of available colors for vertex v as

F�(v) = C n f�(v)[
[

w2�(v)

�(w)g:

Let  denote a set of colors for the set T where  (vi) 2 F�(vi) for each vi 2 T ;

the set of all such sets  is denoted by 	�� . Each  2 	 de�nes a canonical path 
 as

follows. (Fix an arbitrary ordering on the vertices V .)

Stage i: Consider each vi 2 T (in order), recolor vi to color  (vi).

Stage ii: For each vertex v0 2 T 0 (in order), recolor v0 to color c.

Stage iii: Finally, for each vertex vi 2 T (in order), recolor vi to color c
0.

For each  2 	�� , we de�ne the 
ow along the path 
 as

f(
 ) = 1=j	�� j:

Notice that the paths are of length jT j+jT 0j+jT j. By the setting of the parameters

for the 
ip dynamics, we know that jT j + jT 0j � 6 and thus all paths with positive 
ow

are of constant length.

In order to bound the 
ows f(), observe that jF�(v)j � k � �, where � is the

maximum degree of the graph. Since k � 11
6 �, we have j	�� j = 
(kjT j) and hence

f(
 ) = O(k�jT j): (3.4)

For an edge (�; �) 2 E(PGD), we can simplify the quantity A�� by using the

upper bound on f(
). We partition the paths that traverse the edge based on the size of

the associated set T . Let

Ri(�; �) = f
 : (�; �) 2 
 ;  2 	�� ; jT�� j = ig:

Combining (3.3) and (3.4) we get the following bound. There exists a positive constant

K2 such that

A�� � K2

X
i

jRi(�; �)j=k
i: (3.5)
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It remains to bound the number of paths that traverse an edge (�; �) 2 E(PGD)

(i.e., jRi(�; �)j). Notice that a speci�c path 
 is de�ned by the sets of vertices T; T 0, colors

c; c0, set of colors  , as well as the colors �(x) for all x 62 S (where S = T [ T 0). From

the coloring �, we know �(x) = �(x) for all x 62 S. We need to bound the number of sets

T; T 0;  and colors c; c0 whose corresponding path traverses the edge (�; �). It turns out

that many of these sets or colors are �xed. In particular, suppose the move � 7! � recolors

vertex v 2 V . For a path 
, consider the stage during which we traverse this edge (�; �):

Stage ii: In this case, notice that c = �(v); c0 = �(v). In addition, we know that v 2 T 0.

Recall that the cluster S = T [ T 0 is a maximal two-colored connected component

with jSj � 6. The number of such clusters which contains v is at most �5. Since all

the vertices of T 0 have color c or c0 in �, given a candidate set T the corresponding

set T 0 is �xed. There are at most O(�i) candidate sets T where jT j = i. For a

speci�c such set T , the associated colors  are �xed (as well as T 0). In particular,

for each wi 2 T ,  (wi) = �(wi). Therefore, assuming that the edge (�; �) is traversed

during stage (ii) of the path, then jRi(�; �)j= O(�i).

Stage i: Observe that c = �(v), v 2 T , and  (v) = �(v). There are at most k possible

choices for the color c0. Let T n fvg = T1 [ T2 where the vertices in T1 have already

been recolored according to  , while the vertices in T2 have not yet been recolored.

There are at most O(�jT1j) choices for the vertices in T1. For each wi 2 T1, we

know  (wi) = �(wi). Each of the vertices in the set T2 (and T
0) still have color c

(and c0, respectively) in �. Thus, for a speci�c set T1, we can determine the sets

T2 and T 0. For the set T2, there are O(kjT2j) choices for the associated colors  .

Combining the number of choices for the color c0 and sets T1;  , we have jRi(�; �)j =

O(k1+jT1j�jT2j) = O(ki).

Stage iii: The situation is symmetrical with stage (i).

In general, we have jRij = O(ki). Combining this with (3.5) implies A = O(1),

which completes the proof of the theorem.
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Chapter 4

Sampling Independent Sets

4.1 Introduction

In this chapter we present the rapid mixing results for the Glauber dynamics on

the hard core model. Recall that for a graph G = (V;E), the measure �IS is de�ned on its

set 
 of independent sets weighted by a fugacity � > 0. Speci�cally, for all independent

sets � 2 
,

�IS(�) =
�j�j

Z

where Z =
P

�2
 �
j�j is the partition function.

The Glauber dynamics for this model is the following. From an independent set

�, the transitions � 7! �0 are

� Choose a vertex v 2 V uniformly at random.

� Let

�0 =

8<: � [ fvg with probability �
1+�

� n fvg with probability 1
1+�

� If �0 is a valid independent set, move to state �0 otherwise remain at state �.

The main result of this chapter is the following theorem.

Theorem 3 The Glauber dynamics on the hard core model is rapidly mixing with mixing

time O(n logn�) when � < 2
��2 , where � is the maximum degree of the graph. For

� = 2
��2 , the mixing time is O(n3�2).
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The simpler proof for triangle-free graphs, shown in section 4.2, was joint work

with Michael Luby [LV99]. The case of arbitrary graphs is dealt with in section 4.3 and

appeared in [Vig99a]. In an earlier work [LV97], we considered a more complicated chain

whose transitions acted on edges of the graph. In that paper, we proved rapid mixing of

this `edge' chain for � � 1
��3 . Independently of our improvement of this result, Dyer and

Greenhill [DG97] found a modi�ed version of the edge chain which they proved is rapid

mixing when � � 2
��2 . Their result also implies rapid mixing of the Glauber dynamics

for the same range of �, but gives worse time bounds.

Using lemma 11, the theorem immediately implies the following corollary.

Corollary 4 The hard core model on Zd is in the disordered phase when � < 2
2d�2 .

ForZd, it is widely believed that there is a unique critical parameter �c such that

the system is in the disordered phase when � < �c and in the ordered phase when � > �c.

In two-dimensions, simulations suggest �c is about 3:79 [BET80], but rigorous bounds on

�c are much worse. Most lower bounds rely on showing the Dobrushin-Shlosman [DS85]

condition is satis�ed. Using this approach, the best lower bounds are computer assisted

and show �c > 1:185 [KRS89, RS87, DKS85]. A di�erent approach has recently been

used by van den Berg and Steif [BS94] who relate �c to the critical probability pc for site

percolation on Z2, proving that �c >
pc

1�pc
.

The results we present are for general graphs and imply bounds on �c for other

lattices of interest. Work in the statistical physics community has centered on Z2. For

this lattice their results are stronger than ours and imply fast convergence of the Glauber

dynamics for larger � than we prove.

4.2 Triangle-free graphs

We begin with the simpler proof of the theorem for triangle-free graphs.

4.2.1 Distance Function

For � 2 
; v 2 V such that v 62 �, let �v = � [ fvg and let �v denote the degree

of vertex v. The obvious idea for a distance function � between states �; �v 2 
 is �v,

the Hamming distance weighted by degree. Our distance function is a natural extension
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of this. Consider a vertex w which is a neighbor of v. We call w blocked if it has a

neighbor which is in both independent sets. Suppose the next move of the Markov chain

attempts to add w into the independent set. This might only work in one of the chains,

causing an increase in the Hamming distance . Notice that this bad situation occurs if

w is not blocked. Otherwise, this move is blocked from occurring in both chains. Our

distance function is simply the weighted Hamming distance minus a constant c < 1 times

the number of blocked neighbors of v.

Speci�cally, for c = ��
��+2 , our distance function � is as follows. We use �(v) to

denote the set of neighboring vertices of v. Denote the set of blocked neighbors of v by

B(�; v) = fw : w 2 �(v);�(w)\ � 6= �g:

The distance function for neighboring states �; �v is

�(�; �v) = �v � cjB(�; v)j:

Recall that �(�; �) denotes the set of simple paths between � and �. For arbitrary states

�; �, we de�ne the distance function as

�(�; �) = min
�2�(�;�)

X
i

�(�i; �i+1):

This distance function � clearly satis�es the following conditions for all �; � 2 


and thus is a metric:

� �(�; �) � �(�; �) + �(�; �) for � 2 
. This is true since �(�; �) is de�ned as a

minimum over all paths including those going through �.

� �(�; �) = �(�; �)

� �(�; �) � 0 which follows from c < 1 and thus �(�; �v) � �v(1 � c) > 0 for all

�; �v 2 
.

� �(�; �) = 0 () � = �.

4.2.2 Analysis

For � = �(�; �v), we now analyze E[��]. Our coupling is simply the identity,

i.e., each chain attempts the same move. Notice that the only moves which might a�ect

� either transition on v, a neighbor of v, or a neighbor of a neighbor of v. Let,
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E[�+x�] = E[��jMarkov chain attempts to add x into the independent set]

E[��x�] = E[��jMarkov chain attempts to remove x from the independent set]

E[�x�] =
�

1 + �
E[�+x�] +

1

1 + �
E[��x�]:

This gives,

E[��] =
1

n

24E[�v�] +
X

w2�(v)

E[�w�] +
X

x2�(�(v))

E[�x�]

35
Consider a move which

� transitions on v:

Since all neighbors of v are out of both independent sets, a move which transitions

on v works in both chains. Afterwards, both chains are in the same state. Thus,

E[�+v�] = E[��v�] = ��v + cjB(�; v)j;

E[�v�] = ��v + cjB(�; v)j:

� transitions on w, where w is a neighbor of v:

Since w is in neither independent set, E[��w�] = 0.

Consider the move which attempts to add w into the set. Suppose w is not blocked.

This move only works in the chain in state �. To determine the e�ect of this move

for such a w, observe the following:

E[�+w�] = �(�w; �v)� �(�; �v);

�(�w; �v) � �(�w; �) + �(�; �v);

�(�w; �) = �w � cjB(�; w)j:

Combining these give E[�+w�] � �w � cjB(�; w)j.

Note that,

E[�w�] �

8<: �
1+�(�w � cjB(�; w)j) if w 62 B(�; v)

0 otherwise.
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� transitions on x, where x is a neighbor of a neighbor of v:

Suppose x is in both independent sets and consider the move which removes x from

both sets. This move may unblock a vertex w. The set of such w are

�x = fw : w 2 B(�; v);�(w)\ � = fxgg:

We have,

E[��x�] =

8<: j�xjc if x 2 �

0 otherwise.

Consider the case when x is in neither independent set. Since the graph is triangle-

free, v is not in the neighborhood of x. Thus, the move which attempts to add x

into the independent set works in both or neither set. In particular, it works in both

chains if no neighbor of x is in either independent set, i.e., �(x) \ � = �. The only

possible e�ect of such a move is to make a vertex w blocked. The set of such w are

�x = fw : w 2 �(v)\ �(x); w 62 B(�; v)g:

Thus,

E[�+x�] =

8<: �j�xjc if �(x) \ � = �

0 otherwise.

Combining these,

E[�x�] =

8>><>>:
j�xj
1+�c if x 2 �

��j�xj
1+� c if x 62 �;�(x)\ � = �

0 otherwise.

We now collect terms of E[��] in a manner that divides the contribution from

x over its neighbors w. Note that for any such x, either E[�+x�] or E[��x�], but not

both are non-negative. We can amortize these over those w 2 �x or w 2 �x. Notice that

a blocked (unblocked) vertex w can only be in �x (�x, respectively).

For a blocked vertex w in the neighborhood of v, let

�0(w) = fx : x 2 �(w) n fvg; w 2 �xg;

E[��w�] = E[�w�] +
X

x2�0(w)

1

j�xj
E[�x�]:
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Similarly, for an unblocked vertex w in the neighborhood of v, let

�0(w) = fx : x 2 �(w) n fvg; w 2 �xg;

E[��w�] = E[�w�] +
X

x2�0(w)

1

j�xj
E[�x�]:

We now have that

E[��] =
1

n

24E[�v�] +
X

w2�(v)

E[��w�]

35 :
We can bound E[��w�] as follows.

� Suppose w is blocked.

We know that E[�w�] = 0. We also know that it can be in �x for at most one x.

Thus,

E[��w�] �
c

1 + �
:

� Suppose w is unblocked.

For each neighbor x of w (other than v), either x 2 B(�; w) and thus contributes to

E[�w�] or x 62 B(�; w) which implies �(x) \ � = � and it contributes to E[�x�].

From these observations we have,

E[��w�] =
�

1 + �
[�w � cjB(�; w)j] +

X
x2�(w)nB(�;w);x 6=v

�
�

1 + �
c

=
�

1 + �
[�w � cjB(�; w)j � c(�w � 1� jB(�; w)j)]

=
�

1 + �
[�w � c(�w � 1)]:

where the second equality is from noticing the summation is over a set of size exactly

�w � 1 � jB(�; w)j. From algebraic manipulations and our de�nition of c we have

that

(2 + �)c = �(�� c(�� 1) � �(�w � c(�w � 1)):

This implies that if w is unblocked then E[��w�] � 1
1+�(2 + �)c.
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Using our bounds on E[��w�] we have

n(1 + �)E[��] = (1 + �)

24E[�v�] +
X

w2�(v)

E[��w�]

35
� (1 + �)[��v + cjB(�; v)j] +

X
w2B(�;v)

c+
X

w2�(v)nB(�;v)

c(2 + �)]

= (1 + �)[��v] +
X

w2B(�;v)

c(2 + �) +
X

w2�(v)nB(�;v)

c(2 + �)

= �(1 + �)�v + �vc(2 + �)

=
�v

��+ 2
[�(�� 2)� 2]:

Therefore,

E[��] �
1

n(1 + �)

�v
��+ 2

[�(�� 2)� 2]:

Notice that E[��] < 0 when � < 2
��2 .

We now want to use this bound on E[��] with the path coupling theorem to

get a bound on the mixing time. Recall that the path coupling theorem uses a bound on

� = max�;�v ��;�v where

E[�(�0; �0v)] = ��;�v�(�; �v):

We want to determine ��;�v in terms of E[��(�; �v)] = E[��] as follows:

��;�v�(�; �v) = E[�(�0; �0v)]

(��;�v � 1)�(�; �v) = E[�(�0; �0v)]� �(�; �v) = E[��]

��;�v = 1 +
E[��]

�
:

Observe that by our de�nition of � we have � � �v . From this observation and

our bound on E[��] we get a bound on �:

� � 1 +
1

n(1 + �)

�(�� 2)� 2

(��+ 2)
:

The path coupling theorem needs a bound on � and for � to be integer valued on

f0; : : : ; Dg. At the moment, � can have fractional values since c is not an integer. Simply

consider �0 = �
c which is integer-valued. Since, �(�; �v) � �v � �, we have �(�; �) � n�
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for arbitrary �; � 2 
. Thus, D � n�
c . Plugging these bounds on � and D into the path

coupling theorem we get that when � < 2
��2 ,

� �
n(1 + �)(��+ 2)

2� �(�� 2)
log(

n�2e

c
)

Using the fact that � � 3; � � 2
��2 , we get � � 2;�� � 6; c � 1

3 . We can now

simplify the bound on the mixing time. For � = (1� �) 2
��2 , where � is positive,

�(�) �
48n

�
log(n�)

This completes the proof of the theorem for the case of triangle-free graphs.

4.3 Arbitrary Graphs

In this section, we prove the theorem for arbitrary graphs. Throughout this sec-

tion, we consider an arbitrary pair of independent sets �; � and will omit obvious references

to them as parameters to functions. We begin with some notation. Let D denote the set

of disagree vertices, i.e., D is the symmetric di�erence between � and �. The set of agree

vertices is A = V nD. We use Dv = �(v)\D to denote the disagree neighbors of a vertex

v and dv is the cardinality of Dv. Similarly, Av = �(v)\ A.

Let c = ��
��+2 . We now de�ne a distance function between �; � 2 
:

�v =

8<: �v if v 2 D

0 otherwise

9=;

�v =

8>><>>:
�cdv if there exists a neighbor w of v such that w 2 �; w 2 �

�c(dv � 1) if there is no such w and dv > 1

0 otherwise

9>>=>>;
� =

X
v

[�v + �v]:

We use the following theorem, the proof of which is the same as theorem 9.
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Theorem 15 Let � be an integer-valued metric de�ned on 
 � 
 which takes values in

f0; : : : ; Dg. Suppose there exists a positive � such that for all �; � 2 
 there exists a

coupling (�t; �t) of the Markov chain with

E[�(�t+1; �t+1)] � ��(�t; �t):

If � < 1 the mixing time is bounded by

� �
log(2eD)

1� �
:

If � = 1 and there exists a positive � such that, for all t and arbitrary �t; �t 2 
,

Pr[�(�t+1; �t+1) 6= �(�t; �t)] � �;

then the mixing time is bounded by

� = O

�
D2

�

�
:

We now analyze the expected change in � from the next transition of the Markov

chain. As before, our coupling is simply the identity, i.e., each chain attempts the same

move at every step. For simplicity, we rescale everything by a factor n(1 + �).

n(1 + �)E[��] = n(1 + �)
X
v

E[��v] + E[��v]

We �rst try to manipulate the terms in the expected change in � to ease the

analysis. Observe that for a vertex v 2 A if each of its neighbors w are in A then we are

guaranteed that after the next move, v 2 A and thus �v is still 0. We can then amortize

the expected change in �w over its disagree neighbors as follows,X
v

E[��v] =
X
v2D

 
E[��v] +

X
w2Av

1

dw
E[��w]

!
: (4.1)

To simplify our accounting, we divide E[��v] as follows. Let,

E[�w�v] = E[��vjMarkov chain transitions on w]

We then have the following from the de�nition of �v.

X
v

E[��v] =
X
v;w

E[�w�v]

=
X
v

X
w2�(v)

E[�w�v]
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For an agree vertex w, we can now try to amortize the expected change in �w

over its disagree neighbors,

X
v

E[��v] =
X
v2D

24 X
w2�(v)

E[�w�v ] +
X
w2Av

E[�v�w]

35+X
v2A

X
w2Av

E[�v�w]: (4.2)

Observe that the following is also true,X
v2A

X
w2Av

E[�v�w]

=
X
v2D

X
w2Av

X
x2Aw

1

dw
E[�w�x] +

X
w2A:dw=0

X
x2Aw

E[�w�x]

=
X
v2D

X
w2Av

X
x2Aw

1

dw
E[�w�x] +

X
w2A

X
x2Aw:dx=0

E[�x�w]: (4.3)

Notice that if a vertex x 2 A and dx = 0 then after the move we are still

guaranteed that x 2 A (both � and � have the same con�gurations on the neighborhood

of x). Consider w 2 A; x 2 Aw such that dw = 0. Currently �w = 0 and it can only

increase after one transition if dw increases. We can conclude that E[�x�w] = 0 and

furthermore thatX
w2A

X
x2Aw:dx=0

E[�x�w] =
X
v2D

X
w2A

X
x2Aw:dx=0

1

dw
E[�x�w]: (4.4)

Combining (4.2),(4.3), and (4.4) implies

X
v

E[��v] =
X
v2D

24 X
w2�(v)

E[�w�v] +
X
w2Av

 
E[�v�w] +

X
x2Aw

1

dw
E[�w�x]

+
X

x2Aw;dx=0

1

dw
E[�x�w]

1A35 : (4.5)

Using (4.1) and (4.5), we can divide the expected change in � over the disagree vertices

as follows.

E[��] =
X
v2D

24E[��v] + X
w2�(v)

�v(w)

35
where �v(w) is the following:

�v(w) =

8>><>>:
E[�w�v] if w 2 D

1
dw
E[��w] +E[�w�v] +E[�v�w]

+ 1
dw

�P
x2Aw

E[�w�x] +
P

x2Aw;dx=0
E[�x�w]

�
if w 2 A
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The analysis will show that for each disagree vertex v, E[��v]+
P

w2�(v) �v(w) � 0 when

� � 2
��2 .

For the remainder of the proof, consider a disagree vertex v and without loss

of generality we assume that v 2 �; v 62 �. Recall that �v = �v. Notice that the move

which attempts to remove v from both independent sets de�nitely causes v to agree and

has weight 1. We also know that the move which attempts to add v to both sets works in

both sets if dv = 0. This move occurs with weight �. Thus,

E[��v] =

8<: �(1 + �)�v if dv = 0

��v otherwise
(4.6)

Let w denote a neighbor of v 2 D, we analyze �v(w) based on the following cases:

� w 2 D:

We know that w 62 �; w 2 � and need to consider E[�w�v]. Notice that the move

that attempts to add w into both independent sets does not change � or �; while

the move that attempts to remove w works in both sets. Since no neighbor of v is in

both independent sets, the move that removes w only changes �v if dv > 1. In this

case, we then have that

�v(w) =

8<: c if dv > 1

0 otherwise
(4.7)

� w 2 A and w has a neighbor z such that z 2 �:

In this scenario we have w 62 �; w 62 �. Also, there are no moves that change the

con�guration at w (since v 2 �; z 2 �). Thus for all neighbors x of w,

E[��w] = E[�w�v] = E[�w�x] = 0

Now let us consider E[�v�w]. Notice that if dv = 0 then v agrees after the moves

which attempt to add or remove v from both independent sets. Whereas if dv > 0

then v only agrees after the move which attempts to remove it from both sets. In

the worst case, these moves cause �w to increase by c,

E[�v�w] �

8<: c(1 + �) if dv = 0

c otherwise.
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We still need to consider E[�x�w] where x is an agree neighbor of w and all the

neighbors of x agree. Attempting to add x to both independent sets can only decrease

�w. Also, attempting to remove x from both sets can only have an e�ect if x is already

in both sets. In fact, if there is one such x that is in both sets, then removing it

from both sets might increase �w by c,X
x2Av;dx=0

E[�x�w] � c:

Since �v(w) is maximized for dw = 1, we have that

�v(w) �

8<: c(2 + �) if dv = 0

2c otherwise.

� w 2 A, and no neighbors of w are in �:

We know that �w = 0; w 62 �; w 62 �, but attempting to add w into the independent

set only works in �. Thus, this move increases �w by �w. Similarly, if dv > 0 this

move will decrease �v by c.

E[��w] = ��w

E[�w�v] =

8<: �c� if dv > 0

0 otherwise

Now consider E[�v�w]. If dw > 1 then the move which attempts to remove v from

both independent sets will increase �w by c. Whereas attempting to add v to both

sets does not e�ect �w.

E[�v�w] =

8<: c if dw > 1

0 otherwise

Consider a vertex x 2 Aw. Furthermore suppose that x either has dx > 0 or it has

a neighbor which is in both independent sets. Then the move which attempts to

add w to both independent sets and causes w to disagree will decrease �x by c. In

the other case where each neighbor of x is out of both independent sets, then the

move that adds x to both sets decreases �w by c and occurs with weight �. Thus,
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for all agree neighbors x of w, either: (i) E[�w�x] = �c� or (ii) E[�x�w] = �c�

and dx = 0. X
x2Av

E[�w�x] +
X

x2Av;dx=0

E[�x�w] = �c�(�w � dw)

For this case we have that

�v(w) =

8>>>>><>>>>>:
��w � c�(�w � 1) if dw = 1; dv = 0

��w � c�(�w � 1)� c� if dw = 1; dv > 0

1
dw
(��w � c�(�w � dw)) + c if dw > 1; dv = 0

1
dw
(��w � c�(�w � dw)) + c� c� if dw > 1; dv > 0

Recall our setting of c = ��
��+2 .

We leave it to the reader to verify that once again the worst case is when dw = 1.

�v(w) �

8<: ��w � c�(�w � 1) if dv = 0

��w � c�(�w � 1)� c� otherwise

Notice that for our setting of c, the following are true:

(2 + �)c � ��w � c�(�w � 1)

2c � ��w � c�(�w � 1)� c�

We then have that for w 2 A,

�v(w) �

8<: (2 + �)c if dv = 0

2c otherwise
(4.8)

Using (4.6), (4.7), and (4.8), we have the following:

E[��v] +
X

w2�(v)

�v(w) �

8>><>>:
�(1 + �)�v + (2 + �)c�v if dv = 0

��v + 2c(�v � 1) if dv = 1

��v + 2c(�v � dv) + dvc otherwise

Using the facts that for dv > 1,

�(1 + �)�v + (2 + �)c�v = ��v + 2c(�v � 1) � ��v + 2c(�v � dv) + dvc
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�v
��+ 2

[�(�� 2)� 2] � �(1 + �)�v + (2 + �)c�v

Therefore,

E[��] �
1

n(1 + �)

P
v2D �v

��+ 2
[�(�� 2)� 2]

Notice that E[��] < 0 when � < 2
��2 . Using theorem 15, the remainder of the

proof proceeds as in the triangle-free case.

Remark

When � = 2
��2 we have that � = 1. To prove rapid mixing we need to bound

� = Pr[�� 6= 0]. For any disagree vertex v, consider the move that attempts to remove

v from both sets. This move reduces �v by �v ; meanwhile, it might increase �w for each

w 2 �(v). Since c < 1, we know that this move changes � by at least �v(1 � c) > 0.

Therefore, � � 1
n(1+�) and from theorem 15 we conclude that when � = 2

��2 ,

� = O

�
n3�2(1 + �)

c2

�
= O(n3�2):
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Chapter 5

Torpid Mixing

5.1 Introduction

In this chapter, we prove the torpid mixing results on the Glauber dynamics

and the Swendsen-Wang algorithm quoted in the Synopsis . The work described in this

chapter is joint work with Borgs, Chayes, Frieze, Kim, Tetali, and Vu [BCF+99]. The

Swendsen-Wang algorithm for the ferromagnetic Potts model is described in detail in the

next section.

Gore and Jerrum [GJ97] proved that the Swendsen-Wang algorithm is torpidly

mixing on the complete graph Kn at the critical point �c when q � 3. Their arguments

were extended to random graphs by Cooper and Frieze [CF99]. For the most interesting

case of lattice graphs, however, only much weaker lower bounds on the mixing time were

known: speci�cally, Li and Sokal [LS89] proved that the mixing time is at least linear in the

number of vertices for �nite boxes QL in Zd. We prove the following theorem concerning

the torus TL;d, which is de�ned in the Synopsis.

Theorem 5 For the ferromagnetic Potts model on TL;d with d � 2 and su�ciently large

q, there exist positive constants k1; k2 (which depend on d) such that if �c = �c(q; d) is the

critical point:

(a) The mixing time �GD of the Glauber dynamics for � � �c satis�es

�GD � ek1L=(logL)
2
:
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(b) The mixing time �SW of the Swendsen-Wang algorithm at � = �c satis�es

�SW � ek2L=(logL)
2
:

We also prove the following related theorem for the Glauber dynamics on the hard

core model. Prior to our work, Dyer, Frieze, and Jerrum [DFJ99] proved the existence of

a graph for which the Glauber dynamics is torpidly mixing for su�ciently large �.

Theorem 6 For the hard core model on TL;d with d � 2 and � su�ciently large, there

exists a positive constant k3 (which depends on d) such that the mixing time �GD of the

Glauber dynamics satis�es

�GD � ek3L
d�1=(logL)2 :

5.2 The Swendsen-Wang Algorithm

Consider a graph G = (V;E) and the corresponding state space 
 = f1; : : : ; qgV

for the ferromagnetic q-state Potts model. The Swendsen-Wang (SW) algorithm uses

the equivalence of the ferromagnetic Potts model and the random-cluster (FK) model of

Fortuin and Kasteleyn [FK72]. The FK-model is a probability distribution de�ned on

subsets of edges, i.e., 
 = 2E. It corresponds to independent bond percolation where each

edge is present independently with probability p, but weighted by the number of clusters

in the resulting subgraph. More precisely, in the FK model with parameters p and q, the

probability of a subgraph S � E is

�FK(S) =
pjSj(1� p)jEnSjqC(S)

ZFK
(5.1)

where C(S) denotes the number of connected components in the graph (V; S) and ZFK is

the appropriate normalizing factor (partition fuction).

Setting p = 1 � exp(��) and keeping the same q in both models, we get the

equivalence Zpotts = ZFK . Edwards and Sokal [ES88] showed an interesting way to view

the Swendsen-Wang algorithm by de�ning a joint distribution �FKSW (�; S) on colorings

and subgraphs. We will see this joint distribution as one of the intermediate steps in the

following proof that Zpotts = ZFK . Let � denote the Kronecker delta function, which takes

value 1 if the speci�ed condition is true and 0 otherwise. Moreover, let i � j denote a pair
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of adjacent vertices and A� denote the set of monochromatic edges in the coloring �, i.e.,

A� = fi � jj�(i) = �(j)g. Then, from the de�nition of the Potts model 1.2 we have

Zpotts =
X
�2


exp(��
X
i�j

��(i)6=�(j))

=
X
�2


Y
i�j:

�(i)6=�(j)

(1� p)

=
X
�2


Y
i�j:

�(i)6=�(j)

(1� p)

" X
S�A�

pjSj(1� p)jA�nSj

#

=
X
�2


X
S�A�

pjSj(1� p)jEnSj (5.2)

=
X
S�E

pjSj(1� p)jEnSjjf� 2 
 : S � A�gj

=
X
S�E

pjSj(1� p)jEnSjqC(S)

= ZFK

The basis of the Swendsen-Wang algorithm is line (5.2) above. De�ne

ZFKSW =
X
�2


X
S�A�

pjSj(1� p)jEnSj: (5.3)

This suggests a joint distribution on colorings and subgraphs:

�FKSW (�; S) =
pjSj(1� p)jEnSj�S�A�

ZFKSW
:

The Markov chain for the Swendsen-Wang algorithm alternately generates a sam-

ple S from the distribution �FKSW conditional on the current coloring �, and then gen-

erates a sample �0 from �FKSW conditional on S. More precisely, from a coloring �, the

transitions � 7! �0 are:

� Create a subgraph S � A� in the following manner: Independently for each fi; jg 2

A�, include fi; jg in the set S with probability p = 1� e�� .

� Independently for each component C of the subgraph S, choose a color c uniformly

at random from S = f1; : : : ; qg and recolor every vertex in C with color c. This

de�nes the new coloring �0.

As the reader may easily verify, this Markov chain is ergodic and reversible with stationary

distribution �FKSW .
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5.3 Minimal Cutsets

In this section, we de�ne minimal cutsets and present some technical lemmas

about such sets. For a connected graph G = (V;E), we let GW denote the graph induced

on W � V . Moreover, we say that C � W is a component of W if C is the vertex set of

a component of GW . As usual, we de�ne a subset 
 � E to be a cutset if (V;E n 
) is

disconnected. We de�ne 
 to be a minimal cutset if all cutsets contained in 
 are identical

to 
. If 
 is minimal, (V;E n 
) has exactly two connected components. For W � V , we

let W denote the complement of W , i.e., W = V nW . We denote the set of edges between

two disjoint sets of vertices W and W 0 by (W : W 0). Finally, we use C(W ) to denote the

set of connected components of W .

We consider the cutset @W = (W : W ) and decompose it as @W = [C2C(W )@C.

We will further decompose @C into minimal cutsets, see Lemma 16 below. In order to

state the lemma, we introduce the sets

�C = f(C : D)jD 2 C(C)g = f(D : D)jD 2 C(C)g

and

�(W ) =
[

C2C(W )

�C :

Lemma 16 Consider W � V .

(a) Let C;C0 be di�erent connected components of W . There exist unique D 2 C(C) and

D0 2 C(C0) such that D � D0 or equivalently D0 � D.

(b) For C 2 C(W ), @C has a unique decomposition into minimal cutsets as @C = [
2�C
.

(c) If 
, 
 0 2 �(W ) are distinct then they are disjoint.

(d) Let C and C0 be two (not necessarily distinct) connected components of W � V . If X

or X is a component of C and Y or Y is a component of C0 then

X \ Y = ;; X \ Y = ;; X \ Y = ;; or X \ Y = ;:

Proof:

(a) We will �rst prove uniqueness. Since C \ C0 = ;, C0 � C and C � C0.

Furthermore, C is connected. Hence, there exists a unique D0 2 C(C0) such that C � D0.

For all D 2 C(C), C � D. Therefore, if there exists a D0 2 C(C0) with D � D0, D0 must

be the unique component containing C. The uniqueness of D is proved similarly. Next,
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we prove existence. Let D0 be as above, so that D0 � C. Since C [D00 is connected for all

D00 2 C(C0), the set D0 = C0 [
S
fD00 2 C(C0) : D00 6= D0g is connected. As a consequence,

D0 � C must lie in one of the connected components D of C.

(b) Obviously, @C = [
2�C is a decomposition of @C into minimal cutsets of G.

To prove uniqueness, assume that 
 � @C is a minimal cutset of G. Then there exists

a D 2 C(C) such that (D : D) � 
. Otherwise, C [ D is connected in G n 
 for every

D 2 C(C), which would imply that G n 
 is connected. Since 
 is minimal, (D : D) � 


implies (D : D) = 
.

(c) For cutsets 
 and 
0 corresponding to the same component C, disjointness

follows from the explicit form given in (b). Assume that 
 \ 
0 6= ; for two di�erent

connected components C and C0. This would imply that @C \ @C0 6= ;, which in turn

implies that C and C0 are connected in G, and hence in GW . But this contradicts the

assumption that C and C0 are di�erent connected components of GW .

(d) Without loss of generality X 2 C(C) and Y 2 C(C0). We consider several

cases:

� If X = Y then X \ Y = ;.

� If C = C0 and X 6= Y , then X and Y are di�erent connected components of C which

implies that X \ Y = ;.

� If C 6= C0 then we use part (a) of this lemma. We condition on whether X and/or

Y are the unique D 2 C(C) and D0 2 C(C
0
) such that D � D0.

{ X 6= D; Y 6= D0 : Since Y � D0 and part (a) implies that X � D � D0, so we

have that X \ Y = ;.

{ X 6= D; Y = D0: We saw in the previous case X � D0 and thus X \ Y = ;.

The case when X = D; Y 6= D0 is symmetric.

{ X = D; Y = D0: Since X � Y by part (a), X \ Y = ;.

Let 
 = (D : D) be a minimal cutset of G, in particular D and D are connected.

We then de�ne Int 
 as the smaller (in terms of cardinality) of D and D. If D and D have

the same size, we can de�ne Int 
 as either D or D. For de�niteness, we de�ne Int 
 as

the one containing a �xed point xo 2 V . For a cutset 
 we de�ne Ext
 = V n Int 
, and
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for a collection � of minimal cutsets, we de�ne the interior of � and the common exterior

of � as

Int� =
[

2�

Int� and Ext� =
\

2�

Ext
:

Note that Int �[ Ext� = V for all sets � of minimal cutsets. The following is a technical

lemma about the interior of cutsets.

Lemma 17 Let W � V .

(a) Let 
; 
 0 2 �(W ). If Int 
 \ Int 
0 6= ; , then either Int 
 � Int 
0 or Int 
0 � Int 
.

(b) Either W or W is a subset of Int�(W ).

Proof:

(a) Let X = Int 
 and Y = Int 
0, and assume without loss of generality that

X \ Y 6= ;. Applying the previous lemma, we have three cases:

(i) X \ Y = ;, which is equivalent to X � Y ,

(ii) X \ Y = ;, which is equivalent to Y � X , and

(iii) X \ Y = ; which is equivalent to X � Y . Notice that jXj � jV j=2 which

implies that jY j � jV j=2 and jY j � jV j=2. This contradicts the fact that jY j = jInt
0j �

jY j unless equality holds, i.e. unless jY j = jY j = jX j = jXj = jV j=2. Together with

X � Y , this implies X = Y in contradiction to our assumption X \ Y 6= ;.

(b) We consider two cases. Suppose that for every C 2 C(W ) there is a cutset


 2 �(W ) with C � Int
. Then, clearly

W =
[

C2C(W )

C �
[


2�(W )

Int
:

Suppose instead that there is C 2 C(W ) such that C 6� Int 
 for all 
. Then since C

is a subset of D for every component D of C, the interior of the corresponding cutset


D = (D : D) must be D. Thus C = [D2C(C)Int 
D . In particular, since C is a component

of W ,

W � C �
[


2�(W )

Int 
:

Next we specialize to the torus TL;d = (VL;d; EL;d). Consider a set W � VL;d and

a �xed minimal cutset 
 corresponding toW . For e 2 
 we de�ne a dual (d�1)-dimensional
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cube e� which is (i) orthogonal to e and (ii) bisects e, when TL;d is considered as immersed

in the continuum torus (R=Z)d. (In dimension d = 3, the two-dimensional dual cells are

referred to as plaquettes). We de�ne a graph �� = (
�; E�) where 
� = fe� : e 2 
g and

(e�1; e
�
2) 2 E

� i� e�1 \ e
�
2 is a cube of dimension d� 2. The connected components of �� are

called the co-components of 
. These co-components are connected hypersurfaces of dual

(d� 1)-dimensional cells.

In the following, we will call cutsets with one co-component topologically trivial,

and cutsets with more than one co-component topologically non-trivial. Small connected

components which can be embedded in Zd give rise to cutsets with only a single co-

component, which are therefore topologically trivial. Topologically non-trivial cutsets

arise from certain connected components which are large enough to \feel" the non-trivial

topology of the torus. For example, the component C = fx 2 VL;d j 1 � x1 � L=2g gives

rise to a cutset whose two co-connected components are two parallel interfaces, each of

which has size Ld�1. The following lemma will be useful in order to bound the number of

cutsets.

Lemma 18 (a) Given a �xed edge e 2 EL;d there are at most �k; � = minf3; d64=dg,

distinct co-components 
 of size k with e 2 
.

(b) If a cutset is non-trivial, each of its co-components contains at least Ld�1 edges.

Proof:

(a) This follows from the observation that the proofs in [Rue69] and [LM98] may

be applied without changes to the torus.

(b) We need some notation. Consider a set of edges X and its dual X�. De�ne

the boundary @X� of X� as the set of (d� 2)-dimensional hypercubes which belong to an

odd number of (d� 1)-dimensional cells in X�. If @X� = ;, de�ne the Z2 winding vector

of X� as the vector N(X�) = (N1; : : : ; Nd), where Ni is the number of times X
� intersects

an elementary loop in the ith lattice direction mod 2.

Let X be a cutset, X = (W : W ), where W � V . Let W � (R=Z)d be the

union of all closed unit cubes with center w 2 W . Then X� is the boundary of the set W ,

and hence @X� = ;. Obviously, each elementary loop must leave and enter the set W the

same number of times, implying that the winding vector of X� is 0.

On the other hand, it is not di�cult to prove that each set of edges X with

@X� = ; and N(X�) = 0 is a cutset for some set of points W � V , X = (W : W ). Indeed,
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the assumptions @X� = ; and N(X�) = 0 imply that every closed loop in TL;d intersects

X� an even number of times. Considering an arbitrary vertex w0 2 V and the set of all

\walks" of the form (w0; w1; : : : ; wk), fwi; wi+1g 2 EL;d, we then de�ne W as the set of

points which can be reached from w0 by a walk which intersects X� an odd number of

times.

Consider now a non-trivial minimal cutset 
 and one of its co-components ~
.

Since 
 is a cutset, @
� = ;. This property is inherited by all its co-components, implying

that @~
� = ;. Obviously, N(~
�) is di�erent from zero, since otherwise ~
 would be a cutset

itself, in contradiction to the assumption that 
 is minimal. Let j be a direction for which

Nj(~
�) 6= 0. Then ~
� intersects any fundamental loop in the j-direction an odd number

of times, giving that ~
� contains at least Ld�1 dual (d� 1)-dimensional cells.

5.4 The hard core model

In this section, we give a proof of Theorem 6. We start with some notation. For

a bipartite graph G = (V;E) we arbitrarily call the vertices in one part of the partition

even, and those in the other part odd. We write Veven for the set of even vertices in V ,

and Vodd for the set of odd vertices in V . We denote the collection of independent sets of

G by 
. For an independent set I 2 
, de�ne Wodd(I) as the set of vertices in or adjacent

to a vertex in the set I \ Vodd with an analogous de�nition for Weven(I). We de�ne the

set �odd(I) as the set of minimal cutsets corresponding to Wodd(I), �odd(I) = �(Wodd(I)),

and similarly for the set �even(I). Finally, for a cutset 
, we de�ne V (
) =
S
fx;yg2
fx; yg.

We present the following technical lemma for cutsets in this setting of independent sets.

Lemma 19 (a) If 
 2 �odd(I), then V (
)\ I = ;.

(b) For 
 2 �odd(I), the vertices in the set V (
)\ Int 
 are either all even or all odd.

(c) For 
 2 �odd(I), there exists an independent set I
 such that �odd(I
) = f
g.

(d) Either I \ Vodd or I \ Veven is a subset of Int �odd(I).

Proof:

(a) We have to prove that fx; yg \ I = ; whenever fx; yg 2 
 � @Wodd(I).

First notice that for an odd vertex v, v 2 Wodd(I) , v 2 I , whereas if v is even then

v 2 Wodd(I) , v has a neighbor w 2 I . Suppose that x 2 I; y 62 I . If x is odd then
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x; y 2 Wodd(I). If x is even, then x; y 62 Wodd(I). In either case, we have the contradiction

that fx; yg 62 @Wodd(I).

(b) If 
 2 �odd(I), then 
 = (D : D) = (C : D) for some component C of

Wodd(I) and some component D of C. As a consequence, either (V (
)\ Int 
) � Wodd(I),

or (V (
) \ Int
) � Wodd(I). If an odd vertex v is in the set Wodd(I) then v 2 I and

w 2 Wodd(I) for all neighbors w of v. Thus an odd vertex v 2 Wodd(I) cannot be

incident to an edge in @Wodd(I). As a consequence, the vertices of V (
) \ Int
 are even

if (V (
)\ Int 
) � Wodd(I) and odd otherwise.

(c) If the vertices of the set V (
)\ Int 
 are even then let I
 = (Vodd \ Int
) [

(Veven \ Int 
). Otherwise, exchange the sets Vodd and Veven in the de�nition of I
 .

(d) Lemma 17 implies that either

Wodd(I) � Int�odd(I) or Wodd(I) � Int �odd(I):

Since I \ Vodd � Wodd(I) and I \ Veven � Wodd(I), the result follows.

From now on, we specialize to the graph TL;d. For a vertex v = (v1; : : : ; vd) 2

V and a \direction" � 2 f�1; : : : ;�dg, we de�ne the shift ��(v) as the vertex with

coordinates vi for i 6= j�j and vi + sign(�) (mod L) for i = j�j, where sign(�) = �=j�j.

For a cutset 
 2 �odd(I), we de�ne 
� = f(v; w)j(v;w) 2 
; v 2 Int
; w = ��(v)g. The

following technical lemma is used in the proof of lemma 21.

Lemma 20 For any cutset 
 2 �odd(I) and any direction �, j
�j = j
j=2d.

Proof: We �rst prove the lemma for d = 2. Let 
� be the set of edges dual to the edges in


. The set 
� is a union of cycles, and each edge in the +1 or �1 direction in any of these

loops is followed by an edge in the +2 or �2 direction by Lemma 19 (b). We therefore

have that j
ij + j
�ij is independent of the direction i. Since 
 is a cutset, j
ij must be

equal to j
�ij, which implies the claim. For d > 2, we consider the intersection of Int 


with a two-dimensional plane S(fkig) = fx 2 T j xi = ki; i =2 f1; 2gg. Since also the points

in (V (
) \ Int 
) \ S(fkig) are all even or all odd, the above arguments can be applied

to the intersection of 
 and S(fkig), implying that j
1j = j
�1j = j
2j = j
�2j since it is

true for the intersection of these sets with any of the hyperplanes S(fkig). Applying this

argument for an arbitrary pair of directions, we get the lemma.

The next lemma is a generalization of a lemma �rst proved by Dobrushin in

[Dob74].
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Lemma 21 Let � be a set of minimal cutsets, and let 
� = fI : � � �odd(I)g. Then

�
�

�

�
� ��

P

2�(j
j=2d)

Proof: We �rst note that it is enough to prove there exists an injective map �� : 
� ! 


such that

�(I) = ��
P

i j
ij=2d�(��(I)):

Indeed, given such a map, we have

�(
�) = ��
P

i j
ij=2d�(��(
�)) � ��
P

i j
ij=2d:

In order to construct such a map ��, we introduce the partial order 
 � 
0 ,

Int 
 � Int 
0. We then observe that, by induction, it is enough to prove that for any �

and any 
 2 � such that 
 is minimal in � with respect to the partial order, we have an

injective map �
 : 
� ! 
�nf
g such that �(I) = ��j
j=2d�(�
(I)).

We will now construct such a map. Consider I 2 
�. Let � = ��. The proof

holds for any choice of �. De�ning

�
(I) = (I \ Int 
)[ �(I \ Int 
)[ (Int
 n �(Int
));

we will have to show that �
 is an injection, that I 0 = �
(I) is an independent set with

�(I 0) = �(I)�j
j=2d and that I 0 2 
�nf
g.

The �rst statement is obvious from the fact that the three sets I1 = I \ Int
,

I2 = �(I \ Int
) and I3 = Int 
 n �(Int
) are pairwise disjoint (use Lemma 19 (a) to see

that I1 and I2 are disjoint).

I1; I2 are obviously independent and the independence of I3 follows from I3 �

V (
) and Lemma 19(b). To then prove that I 0 is an independent set, we use that, again

by Lemma 19 (a), the sets I1 [ I2 and I1 [ I3 are independent sets. It remains to show

that I2 [ I3 is also an independent set. Consider v 2 Int 
 n �(Int
) and w 2 �(I \ Int 
).

Then v =2 �(Int
) and hence ���(v) =2 Int
. On the other hand, ���(w) 2 I \ Int
.

Therefore, ���(v) and ���(w) cannot be adjacent by Lemma 19 (a), which implies that

v and w cannot be adjacent.

To prove �(I 0) = �(I)�j
j=2d, we notice that j(I \ Int 
) [ �(I \ Int 
)j = jI j.

Thus �
 has increased the size of the independent set by exactly jInt
 n �(Int
)j which is

j
��j = j
j=2d by Lemma 20.
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To see that I 0 2 
�nf
g note that Wodd(I
0) = Wodd(I) n Int 
. There are two

possibilities for 
0 2 � n f
g: Int 
 \ Int 
0 = ; implying that dist(Int 
; Int
0) � 2 and

I \ Int
0 = I 0 \ Int 
0. Otherwise, Int
 � Int 
0 implying dist(Int
;Ext
0) � 2 and

I \ Ext
0 = I 0 \ Ext
0.

Lemma 22 Let 
(k1; : : : ; kt) be the set of independent sets I 2 
 which contain a set

of odd trivial cutsets of sizes k1; : : : ; kt. Then for a = min1�i�t ki, b = max1�i�t ki and

k =
Pt

i=1 ki, we have

�(
(k1; : : : ; kt)) � (e(b� a+ 1)Ld=t)t(���1=(2d))k:

Let 
nt be the set of I 2 
 such that �odd(I) contains at least one non-trivial cutset. Then

�(
nt) �

�
Ld

(���1=2d)L
d�1

1� ���1=2d

�2

exp

�
Ld

(���1=2d)L
d�1

1� ���1=2d

�
:

Proof: To generate f
1; :::; 
tg with j
ij = ki, we �rst choose edges ei in a certain �xed

direction, e.g. direction 1, and then cutsets 
i 3 ei. (Every cut set contains an edge in

direction 1 { see Lemma 20). In this way, each f
1; :::; 
tg is counted
Qb
j=a tj ! times, where

tj is the number of ki with ki = j. The previous lemma and Lemma 18 (a) yield

�(
(k1; : : : ; kt)) �
LdtQb
j=a(tj !)

(���1=(2d))k:

(Note that it is safe to use the bound from Lemma 18(a) to bound the number of trivial

cutsets, since for each trivial cutset, the dual is a single co-component.) Since
Pb

j=a tj = t,

bY
j=a

(tj !) �
bY

j=a

�
tj
e

�tj
�
� t

e(b� a+ 1)

�t
and hence the result follows.

To prove the second statement, we use the previous lemma and the fact that each

non-trivial cutset has at least two co-connected components to bound

�(
nt) �
1X
k=2

X


(k)
nt

��j

(k)
nt j=2d:

Here the sum
P



(k)
nt

goes over minimal cutsets with k co-components. Using Lemma 18,

and the fact that there are at most Lkd possibilities for the k starting edges for the k
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co-components of 

(k)
nt , we conclude that

�(
nt) �
1X
k=2

1

k!

� 1X
`=Ld�1

Ld(���2d)`
�k

�
1X
k=0

1

k!

� 1X
`=Ld�1

Ld(���2d)`
�k+2

;

which concludes the proof of the second statement.

Lemma 23 Let 0 < � < 1, and let


� = fI 2 
 : �odd(I) contains only trivial cutsets,

and
��Int �odd(I)�� � �Ldg:

If � is su�ciently large, say �1=(2d) � 200�=�, then

�(
�) � 2�c�L
d�1=(logL)2

for some constant c� depending on � and d.

Proof: For I 2 
�, the isoperimetric inequality of Bollob�as and Leader [BL91] implies

that j
j � jInt 
j(d�1)=d and henceX

2�odd(I)

j
jd=(d�1) �
X


2�odd(I)

jInt
j

� j
[


2�odd(I)

Int 
j

� �Ld:

If there is a cutset in �odd(I) of size at least Ld�1, then Lemma 22 directly gives the

desired bound. Assume all cutsets are of size at most Ld�1. Let �i(I) = f
 2 �odd(I) :

2i�1 � j
j < 2ig, i = 1; 2; :::; r= dlog2 L
d�1 + 1e. Then since

P1
i=1

1
i2
= �2=6, there exists

i such that X

2�i(I)

j
jd=(d�1) � c�
�
Ld=i2

where c�
�
= 6�=�2. Thus I is in 
(k1; :::; kt) for some t and k1; :::; kt with 2i�1 � kj � 2i

and
Pt

j=1 k
d=(d�1)
j � c�

�
Ld=i2. Let si = c�

�
Ld=(i22id=(d�1)). The fact that kj � 2i implies
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that t � si. This together with Lemma 22 gives

�(
�) �
rX
i=1

X
t�si

�(
(k1; :::; kt))

�
rX
i=1

X
t�si

(e2iLd=t)t(���1=(2d))
P
kj :

Since
P
kj � 2i�1t and there are at most 2it choices for k1; k2; : : : ; kt,

�(
�) �
rX
i=1

X
t�si

(e22iLd=t)t(���1=(2d))2
i�1t

�
rX
i=1

X
t�si

�
ei222i2id=(d�1)(c��)

�1(���1=(2d))2
i�1�t

�
rX
i=1

X
t�si

��
ei222i2id=(d�1)

�21�i
���1=(2d)=c��

�2i�1t
;

where we have used the fact that (c��)
�1 � 1 in the last step. Bounding

�
ei222i2id=(d�1)

�21�i
��

ei2(16)i
�21�i

� [e(16e)i]2
1�i

� 16e2 we see that for � large enough (e.g. for �1=2d �

32e2�=c��) , one gets

�(
�) �
rX
i=1

X
t�si

2�2
i�1t

� r21�c
�
�2

r�1Ld=(r22rd=(d�1))

� 2�c�L
d�1=(logL)2 :

We show next that if I is chosen from the probability distribution (1.3), then jI j

is unlikely to be small.

Lemma 24 Let 0 < � < 1. Then

�
�
jI j � (1� �)

Ld

2

�
� (2���=2)L

d
:

Proof: There are at most 2L
d
independent subsets in TL;d and so the weight of those of

size at most (1� �)Ld=2 is at most 2L
d
�(1��)L

d=2. On the other hand, the set of all even

points has weight �L
d=2. The lemma follows immediately.
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Lemma 25 For any � < 1, there is a constant c�
�
such that for � su�ciently large,

�(jjI \ Voddj � jI \ Vevenjj � �Ld=2)

� exp(�c��L
d�1=(logL)2):

Proof: Let � = (1 � �)=2. Lemma 22 and Lemma 24 imply that �(
nt) and �(jI j �

(1� �)Ld=2) are small enough. Moreover, Lemma 23 for � = (1��)=8 implies that �(
�)

is also small enough. If none of the three events whose probabilities we discuss above

occurs, then jI j > (1 � �)Ld=2 and jInt�odd(I)j < Ld(1 � �)=8. The latter and Lemma

19(d) imply that either jI\Voddj < Ld(1��)=8 or jI\Veven j < Ld(1��)=8. This together

with the former yields that either

jI \ Voddj � jI \ Vevenj = jI j � 2jI \ Vevenj

> (1� �)Ld=2� Ld(1� �)=4

or

jI \ Vevenj � jI \ Voddj = jI j � 2jI \ Voddj

> (1� �)Ld=2� Ld(1� �)=4:

Since (1� �)Ld=2� Ld(1� �)=4 = �Ld=2, this concludes the proof.

Proof of Theorem 6: We now partition 
 = 

(�)
odd [ 


(�)
even [ 


(�)
rest where



(�)
odd = fI 2 
 : jI \ Voddj � jI \ Vevenj > �Ld=2g


(�)
even = fI 2 
 : jI \ Vevenj � jI \ Voddj > �Ld=2g



(�)
rest = 
 n (


(�)
odd [ 
(�)

even)

By the last lemma �(

(�)
rest) � exp(�c��L

d�1=(logL)2), and by symmetry �(

(�)
odd) =

�(

(�)
even). Now consider the Glauber dynamics. Clearly, if I 2 


(�)
odd and I

0 is obtained by

a single transition then I 0 2 
(�)
odd [ 
(�)

rest. To complete our proof by estimating �S (see

Theorem 10 in Chapter 2) for S = 
odd, �rst notice that �(S)�(S) � 1=5: Furthermore,

Q(S; S) =
X

I2
odd
J2
rest

�(I)P (I; J)

=
X

I2
odd
J2
rest

�(J)P (J; I)

� �(
rest):

The theorem now follows.
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5.5 The Potts model

In this section we combine the methods and results of [BKMS91] and [BK90] with

those of the last section to prove Theorem 5. Recall the de�nition of the ferromagnetic

Potts model from chapter 1, as well as the de�nition of the critical point �c for Z
d.

As a �rst step towards proving Theorem 5, we de�ne the contours corresponding

to a con�guration A 2 
 = 2E . To this end, we embed the vertex set V of the torus T =

(V;E) into the set V = (R=(LZ))d. For a set X � V, we de�ne its diameter diam(X) =

infy2V supx2X dist(x; y), where dist(x; y) is the `1-distance between the two points x and

y in the torus V. For an edge e = fx; yg 2 E, let e be the set of points in V that lie on

the line between x and y. Given A, we call a closed k-dimensional unit hypercube c � V

with vertices in V occupied if all edges e with e � c are in A. We then de�ne the set

V(A) � V as the 1/3-neighborhood of the union of all occupied k-dimensional hypercubes,

k = 1; : : : ; d, i.e., V(A) = fx 2 V : 9c occupied, such thatdist(x; c) < 1=3g, and the set

V (A) as the intersection of V(A) with the vertex set V of the discrete torus T . Note that

V (A) =
S
fx;yg2A fx; yg. The set �(A) of contours corresponding to a con�guration A 2 


are then the connected components of the boundary of V(A).

Following [BKMS91], we decompose the set of con�gurations 
 into three sets


ord, 
dis and 
Big. To this end, we de�ne a contour 
 to be small if diam(
) � L=3.

The set 
Big is then just the set of con�gurations A 2 
 for which �(A) contains at least

one contour that is not small. Next, restricting ourselves to small contours 
, we de�ne

the set Ext 
 as the larger of the two connected components of V n 
, the set Ext
 as

the intersection of Ext 
 with V , and the set Int 
 as V n Ext
. For A 2 
 n 
Big, let

IntA =
S

2�(A) Int 
 and ExtA = V n IntA. The sets 
ord, 
dis and 
Big are then de�ned

as


Big = fA � E : 9
 2 �(A) such that

diam(
) > L=3g


ord = fA � E : diam(
) � L=3 8
 2 �(A)

and V (A) \ ExtA 6= ;g


dis = fA � E : diam(
) � L=3 8
 2 �(A)

and V (A) \ ExtA = ;g:

Lemma 26 Let A 2 
ord, and let AExtA = fb 2 E : b � ExtAg. Then

(a) ExtA = V (A)\ ExtA 6= ;, and
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(b) (ExtA;AExtA) is connected.

Proof:

(a) Proceeding as in the proof of Lemma 17 (b), we obtain that either V (A) �

IntA or V (A) � IntA. Since A 2 
ord, we conclude that the latter is the case, which is

equivalent to the statement that ExtA = V (A)\ ExtA.

(b) The proof of this statement, which is implicit in [BKMS91], is straightforward

but tedious. We leave it to the reader.

In the next lemma we summarize some of the results of [BKMS91] used in this

work. We begin with some notation. Let A 2 
 n 
Big, and let 
 2 �(A). We say that 


is an exterior contour in �(A) if 
 � Ext
0 for all 
0 2 �(A) n f
g, and denote by �ext(A)

the set of exterior contours in �(A). Also, we de�ne the size k
k of a contour 
 as the

number of times 
 intersects the set
S
e2E e. In order to motivate this de�nition, assume

for a moment that the de�nition of the set V(A) had involved an �-neighborhood, instead

of the 1/3-neighborhood used above. With such a de�nition, the (d� 1)-dimensional area

of a contour 
 would actually converge to k
k as �! 1=2.

Lemma 27 For all d � 2 there are constants c > 0 and q0 < 1 such that the following

statements hold for q � q0.

(a) �c = log q=d+O(q�c).

(b) For all � > 0,

�(
Big) � q�cL:

(c) If � = �c, then

�(
ord) =
q

q + 1
+ O(q�cL); and

�(
dis) =
1

q + 1
+ O(q�cL):

(d) If � � �c, then

�(
ord) �
q

q + 1
+O(q�cL):

(e) If � � �c and � is a set of contours, then

�
�
A 2 
 n 
big and � � �ext(A)

�
� q�c

P

2� k
k:
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Observing that for A 2 
 n 
Big, the set ExtA can be written as
S

2�ext

Ext
, which in

turn implies that IntA =
T

2�ext

Int 
, we can now continue as in Section 5.4 to prove an

analog of Lemma 23. De�ning



(�)
ord = fA 2 
ord : jfb 2 A : b � ExtAgj � (1� �)dLdg;



(�)
dis = fA 2 
dis : jIntAj � �Ldg;

and 

(�)
Big = 
 n (


(�)
ord [ 


(�)
dis ), we therefore get the following lemma.

Lemma 28 Let d � 2 and 0 < � < 1. Then there are constants c > 0 and c� > 0 such

that for q large enough the following statements hold.

(a) If � � �c, then

�(

(�)
Big) = O(q�cL) +O(q�c�L

d�1=(logL)2)

and

�(

(�)
ord) �

q

q + 1
+ O(q�cL) +O(q�c�L

d�1=(logL)2):

(b) If � = �c, then

�(

(�)
ord) =

q

q + 1
+ O(q�cL) +O(q�c�L

d�1=(logL)2):

Proof of Theorem 5(a): Let S = 

(�)
ord. The conductance �SW of the Swendsen-Wang

chain can then be estimated as follows:

�SW � �S =
1

�(S)
Pr(A0 =2 


(�)
ord j A 2 


(�)
ord): (5.4)

Here A is chosen according to the measure � de�ned in (5.1) and A0 is constructed from

A by one step of the Swendsen-Wang algorithm. We have

Pr(A0 =2 

(�)
ord j A 2 


(�)
ord) =

Pr(A0 2 

(�)
dis j A 2 


(�)
ord)

+Pr(A0 2 

(�)
Big j A 2 


(�)
ord):

Observing that A 2 

(�)
ord implies jAj � (1 � �)dLd while A0 2 


(�)
dis implies jA0j �

djV (A0)j � djIntA0j � d�Ld, we see that A0 can only be in 

(�)
dis if at least (1 � 2�)dLd

edges are deleted in Step (SW1) of Swendsen-Wang. But the number of edges deleted is
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dominated by the binomial B(dLd; 1� pc) and so

Pr(A0 2 

(�)
dis j A 2 


(�)
ord) �

�
dLd

(1� 2�)dLd

�
(1� pc)

(1�2�)dLd

�

�
e(1� pc)

1� 2�

�(1�2�)dLd

= e�
((log q)L
d);

where we have used Lemma 27(a) to bound 1� pc = e��c = e�
(log q) . Also

Pr(A0 2 

(�)
Big j A 2 


(�)
ord)

�
Pr(A0 2 


(�)
Big)

Pr(A 2 

(�)
ord)

= O(q�cL) +O(q�c�L
d�1=(logL)2);

by Lemma 28(a). Using Lemma 28(b) to bound �(S) = 1��(

(�)
ord) from below, we obtain

that

�SW = O(q�cL) +O(q�c�L
d�1=(logL)2):

Proof of Theorem 5(b):

Let b
 = [q]V be the set of colorings, and let Vk(�) = fx 2 V : �x = kg be the

set of vertices that have color k in the coloring � 2 b
. We then de�ne the sets

b
(�)
k = f� 2 b
 : jVkj � (1� �)jV jg; ; k 2 [q];

b
(�)
ord =

[
k2[q]

b
(�)
k ;

b
(�)
dis = f� 2 b
 : jVkj �

(1� �)2

q
jV j for all k 2 [q]g;

and b
(�)
Rest =

b
 n (b
(�)
ord [

b
(�)
dis ):

To estimate the probability of b
(�)
ord in the measure (1.2), we use the fact that

both the measure (1.2) (denoted b� in this section) and the measure (5.1) (denoted � in

this section) are marginals of the Edwards-Sokal measure (5.3). Thus

b�(b
(�)
ord) =

X
A2


�(b
(�)
ord j A)�(A); (5.5)
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where �(b
(�)
ord j A) is the conditional measure of b
(�)

ord, given A 2 
. Observing that

A 2 

(�)
ord implies that all vertices in ExtA have the same color by Lemma 26 and the

de�nition (5.3) of �, we have that

�(b
(�)
ord j A) = 1 if A 2 


(�)
ord: (5.6)

For A 2 

(�)
dis , on the other hand, all nA = jExtAj � (1� �)jV j vertices in ExtA

are colored independently of each other, so that

�
�
jVk(�) \ V j � (1� �)2V )

��� A�
� �

�
jVk(�) \ ExtAj � (1� �)nA)

��� A�
=

X
k�(1��)jnA

�
nA
k

��1
q

�k�
1�

1

q

�nA�k
� e�c

�Ld

for some constant c� depending on q and �. As a consequence,

�(b
(�)
dis j A) � 1� O(e�c

�Ld) if A 2 

(�)
dis : (5.7)

Combining (5.5) { (5.7) with Lemma 28 and the fact that b
(�)
dis \

b
(�)
ord = ; if � is

chosen small enough, we then get

b�(b
(�)
k ) =

1

q
b�(b
(�)

ord)

=
1

q
�(


(�)
ord) + O(e�c

�Ld) +O(q�cL)

+O(q�c�L
d�1=(logL)2);

b�(b
(�)
dis ) = �(


(�)
dis ) +O(e�c

�Ld) + O(q�cL)

+O(q�c�L
d�1=(logL)2);

b�(b
(�)
Rest) = O(e�c

�Ld) + O(q�cL)

+O(q�c�L
d�1=(logL)2):

We complete our proof by estimating �S (see Theorem 10) for S = b
(�)
1 . First

notice b�(S)b�(S) � (1�1=q)=2q: Since the heat bath algorithm can only change one vertex

at a time, it does not make transitions between the di�erent sets b
(�)
k , nor does it make
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transitions between b
(�)
1 and 


(�)
dis . Thus

Q(S; S) =
X

I2b
(�)1 ;J2

(�)
Rest

b�(I)P (I; J)
=

X
I2b
(�)1 ;J2


(�)
Rest

b�(J)P (J; I)
� b�(
(�)

Rest):

The theorem now follows.
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