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Abstract

The major limitation on the performance of
shared memory multiprocessors running parallel pro-
grams is the memory traÆc due to sharing, i.e.,
the coherence or consistency induced memory traÆc.
Much of this traÆc occurs due to false sharing (when
two or more processors use disjoint portions of the
same cache block) and dead sharing (the transfer of
unreferenced words in a block when the block moves
between caches). Dead and false sharing can be min-
imized or eliminated by the use of a small block size,
but at the cost of substantially increased miss ratios
due to true sharing and regular cache misses. Because
shared memory multiprocessors are likely to be used
most often for the multiprogramming of single thread
programs and not for parallel programs, optimizing
solely for the latter case is a poor idea.

In this paper, we present a new cache protocol,
Minerva, which allows the e�ective cache block size
to vary dynamically. Minerva works using sector
caches (also known as block/subblock caches). Cache
consistency attributes (from the MESI set of states)
are associated with each 4-byte word in the cache,
and consistency is maintained on a word basis. Each
block (sector) in each cache can itself have one of
the attributes of: invalid, exclusive or shared. Each
block also has a current subblock (subsector) size, of
2k words and a con�dence value for that size. The
subblock size is reevaluated every time there is an
external access (read or invalidate) to the block, and
is changed when the con�dence level reaches zero.
When a fetch miss occurs within a block, a subblock
equal to the current subblock size is fetched. Note

yFunding for this research has been provided by the State
of California under the MICRO program, and by Cirrus Cor-
poration, Cisco Corporation, Fujitsu Microelectronics, IBM,
Intel Corporation, Microsoft Corporation, Quantum Corpora-
tion, Sun Microsystems, and Toshiba Corporation.

that the fetch may involve a gather operation, with
various words coming from di�erent sources; some of
the words may already be present.

Despite the apparent complexity of the protocol,
it can be implemented with fairly simple combina-
tional logic. The nature of Minerva makes it easy
and convenient to also implement optimizations such
as bus read-sharing, read-broadcast (snar�ng), and
write-validate. For non-parallel workloads,Minerva

converges to the Illinois protocol on 64-byte blocks, so
performance for conventional workloads is also high.

Depending on the assumed cache sizes, block
sizes, and bus timings, we �nd thatMinerva reduces
execution times by 19-40%, averaged over 12 test par-
allel programs. Our evaluation considers the utility
of various other optimizations, compares the use of
Minerva with restructuring the code, and considers
the extra state bits required.

1 Introduction

Symmetric multiprocessor (SMP) systems with a
small number of processors are becoming increasingly
popular. The aggregate performance of such systems
is typically limited by the bandwidth of the intercon-
necting bus. The bus traÆc is increased in the case
of parallel workloads by two problems, false sharing
and dead sharing. False sharing occurs when con-
sistency (coherency) operations are required, even
though they would not be needed if the block size
were one word. Dead sharing is a result of block gran-
ularity cache coherence enforcement, in that most
of the data transferred between caches is not ref-
erenced before being invalidated by another cache.
Dead sharing is, of course, a simple extension of what
occurs in the uniprocessor case, when there are un-
referenced words within blocks.

Our examination of multiprocessor workloads in
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[RS99a] showed that a large fraction of the false shar-
ing occurs due to references to a few badly behaved
blocks. We found that (in the 64-byte block case):
(1) only a single word was referenced in a block be-
tween the time the block was fetched and the time
it was invalidated for 40 percent of the blocks; and
(2) around 60 percent of the invalidated blocks that
are dirty have only a single dirty (modi�ed) word.
Of the blocks that had more than 2 words written,
the next largest number of words written was 16 (the
maximum number per block).

To address this problem, we present our new co-
herence protocol Minerva, which employs dynam-
ically sized subblocks to reduce the e�ects of false
and dead sharing. Minerva is evaluated by com-
paring it to schemes with �xed block or subblock
invalidation and fetch sizes using traces of 12 par-
allel programs. In addition, we also examine read-
broadcasting (snar�ng) and bus read-sharing (shar-
ing the results of pending read transactions between
multiple caches).

Minerva works using sector caches (also known
as block/subblock caches). Cache consistency at-
tributes (from the MESI set of states) are associated
with each 4-byte word in the cache, and consistency
is maintained on a word basis. Each block (sector)
in each cache can itself have one of the attributes
of: invalid, exclusive or shared. Each block also has
a current subblock (subsector) size of 2k words and
a con�dence value for that size. The subblock size
is reevaluated every time there is an external access
(read or invalidate) to the block, and is changed when
the con�dence level reaches zero. When a fetch miss
occurs within a block, a subblock equal to the current
subblock size is fetched. Note that the fetch may in-
volve a gather operation, with various words coming
from di�erent sources; some of the words may already
be present.

Despite the apparent complexity of the proto-
col, it can be implemented with fairly simple com-
binational logic. The nature of Minerva makes it
easy and convenient to also implement optimizations
such as bus read-sharing, read-broadcast (snar�ng),
and write-validate. For non-parallel workloads,Min-

erva just converges to the Illinois protocol on 64-byte
blocks, so performance for conventional workloads is
also high.

The remainder of this paper is organized as fol-
lows: Section 2 provides some background on cache
memories and the issues involved in cache coherency
for multiprocessor systems, and describes previously
published subblock coherence schemes. Section 3 de-
scribes our workloads and our simulation methodol-
ogy. We review some simple protocol independent

performance enhancements in Section 4. Section 5
introduces our new protocol Minerva. The results
and comparisons of the simulations are provided in
Section 6. We present our conclusions in Section 7.

2 Background

2.1 Previous Coherence Protocols

Much research on cache coherence protocols for
SMP systems has focussed on determining the best
protocol in systems with �xed block sizes [EK88,
Arc88, Lil93, NS94, GS96]. It has been found that
invalidation-based protocols, such as Illinois [PP84],
typically outperform update-based protocols, but
protocols that can dynamically switch between up-
date and invalidate can do slightly better [GS96].
None of the �xed-block size protocols, however, have
properly addressed the false-sharing issue.

Some research attacking the false sharing prob-
lem has focussed on associating several coher-
ence/transfer units (subblocks) with each address
tag. This type of design, also known as a sector

cache, has been studied extensively for uniprocessor
systems [Lip68, HS84, Prz90, Sez94, RS99c, RS99d].
Several designs have been proposed for multiproces-
sor systems using a �xed size subblock [Goo87, AB94,
CD93], showing good performance improvement over
systems using block-size coherence granularity. Vari-
able size block coherence was investigated in [DL92],
showing better performance than �xed size blocks for
most workloads, but no implementation details were
provided. One dynamically adjustable subblock pro-
tocol allowed a block to be divided into two (possi-
bly unequal) pieces for coherence purposes, yielding
a slight improvement in performance [KB95].

2.2 Sharing Issues

False sharing occurs when di�erent processors ref-
erence di�erent words within a block; i.e., the block
is shared, but the words are not. This was iden-
ti�ed as a problem in [EK89a]. It has been in-
vestigated in a number of papers such as [BS93].
[TLH94, DSS95] found that false sharing is generally
not the major source of cache misses for the work-
loads they studied. Attempts to restructure data to
avoid false sharing were found to have some success
in [EJ91, TLH90, JE95, RS99a].

Our analysis of sharing patterns in [RS99a] us-
ing an invalidation-based protocol with an in�nite
cache showed that false sharing is the largest source
of misses for some of the parallel programs studied; in
those cases sharing became a larger source of misses
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than true sharing and cold start misses once the block
size became suÆciently large (16 bytes and greater).
We found also that approximately 80 percent of bus
traÆc consists of data that is unused before being in-
validated, but is required to be transferred because
of block granularity coherence. This e�ect, which we
call dead sharing, is mostly closely associated with
false sharing, although it can be caused by true shar-
ing (e.g., one shared word and 15 inactive words in a
block).

3 Methodology

Our work is based on TDS (trace-driven simu-
lation). Initially our research used execution-driven
simulation (EDS), which is slightly more accurate
[GH93]. However we found that results could be
generated much more quickly using modern PCs and
workstations (using compressed traces generated by
our EDS tool Cerberus [RS99b]) than on the obso-
lete DEC5000 workstations on which our EDS sys-
tem depends. To keep our simulations as accurate as
possible, synchronization objects (barriers and locks)
are simulated at run-time. Examination of some of
the key data points simulated by both EDS and TDS
showed extremely similar results.

3.1 Workload Characteristics

We examined a variety of parallel programs (12)
to provide the results for this paper (Table 1). Ten
of the programs come from the SPLASH 1 and 2
suites from Stanford University, which have been
available to the research community as a de facto

benchmark for comparing parallel program execu-
tion. These programs have all been used in a num-
ber of papers analyzing parallel code performance,
and are described and characterized in more detail
in [SWG92, WOT+95, RS99a]. The other two pro-
grams (topopt and pverify) were created by the
CAD group at U.C. Berkeley, and used for measure-
ments at Berkeley and the University of Washington
[EK89a], [EK89b], [EJ91], [AB95].

It is important to note that we are examining a
speci�c type of workload with our simulations: those
which are able to use the processors in a system to
cooperate in solving a single problem. In particular,
these programs use shared data structures, and indi-
vidual processors are often doing the same operation
to nearby data, or di�erent operations to the same
data. Some of our results (e.g., related to bus read-
sharing and snar�ng) are clearly speci�c to this type
of workload. In practice, SMP systems are likely to
spend most of their time running an assortment of

single threaded programs concurrently. We do not
test this particular type of application; however, our
new protocol Minerva would behave exactly like a
standard MESI cache protocol in such a case and
fetch full blocks. Therefore, it would cause no perfor-
mance degradation relative to a standard protocol.

Table 1 shows the reference characteristics of our
workload using 16 processors and 4-byte blocks (to
determine the number of truly shared words), as
measured with a perfect single cycle memory sys-
tem (when simulating with realistic cycle times, the
number of references can also change slightly, due
to changes in synchronization behavior, which is dy-
namically simulated at runtime and can be a�ected
by changes in the number of misses and other stalls).
The fraction of shared accesses (a shared access being
a reference to a block that is accessed (at some time)
by multiple processors) has quite a large variation; it
ranges from 0.15 in fmm to 0.90 in topopt with an
average value of 0.43. Due to memory space limita-
tions in our trace generation machines, 16 processors
was the maximum number we could simulate. The
runs represent full execution of a problem and cap-
ture the entire behavior of the program. We picked
16 processors for our experiments to maximize the
e�ects of parallel execution and sharing.

3.2 Bus Design and Timings

Cache Cache

Main Memory

Proc 0 Proc 1

Cache

Proc N

Shared Bus

Figure 1: Bus-based shared memory design.

Our simulation testbed consists of 16 RISC pro-
cessors communicating with an interleaved shared
memory over a split-transaction 32-bit wide common
bus (Figure 1). Each processor has its own cache,
which snoops the bus for coherency information. The
caches are dual-ported, to support snoopy cache (bus
watch) operations without con
icting with the pro-
cessors' accesses to their own caches. We simulate
bus transactions cycle-by-cycle to provide the highest
level of accuracy and to properly model contention.
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Program Characteristics

References Data Space Fraction of Data References
Programs (Millions) Shared Private Shared Private

Inst Data (KBytes) Reads Writes Locks Reads Writes

barnes 114.23 42.31 33.02 34.64 0.16 0.00 0.00 0.46 0.38

cholesky 90.67 34.32 970.02 783.38 0.50 0.07 0.01 0.29 0.13

fmm 288.30 166.82 380.41 460.14 0.14 0.01 0.00 0.35 0.51

locus 805.62 164.45 1405.70 1151.79 0.56 0.02 0.00 0.26 0.16

mp3d 174.88 60.82 701.91 181.53 0.32 0.22 0.00 0.30 0.16

ocean 234.09 92.37 140.16 984.45 0.26 0.03 0.01 0.56 0.13

pthor 275.86 97.76 1233.09 1026.75 0.38 0.05 0.04 0.35 0.18

pverify 181.32 55.24 23.08 149.67 0.47 0.02 0.01 0.32 0.19

raytrace 471.08 196.94 667.30 2144.09 0.32 0.00 0.00 0.43 0.25

topopt 655.75 141.60 19.22 38.76 0.81 0.09 0.00 0.08 0.02

volrend 351.62 79.92 395.61 2340.98 0.48 0.01 0.00 0.29 0.23

water 366.23 127.67 44.51 102.37 0.18 0.02 0.00 0.58 0.23

Total Average

Overall 4009.6 1260.2 6014 9399 0.38 0.04 0.01 0.35 0.21

Table 1: Reference characteristics of programs for 16-processor simulation.

Our bus design incorporates the major features of
modern high-performance busses. Table 2 shows the
timing of the various bus operations. Times shown
are in bus cycles, which are 4 processor cycles in du-
ration. The timings we use are typical of a contem-
porary system with 400MHz processors, a 100 MHz
shared bus, and 60ns SDRAM (6 bus cycle latency for
the �rst word(s) with data available every bus cycle
after that). The following paragraphs contain some
of the operational details of our simulated bus.

Transaction Number of Bus Cycles

Bus Arbitration 0/2/4 Cycles

Initiate Read 1 Cycle

Cache-to-Cache Read 1 Cycle per Bus-Width

Memory Latency 6 Cycles

Transfer Time 1 Cycle per Bus-Width

Write-back 1 Cycle per Dirty Bus-Width

Invalidation 1 Cycle

Lock operation Read + 1 Cycle

Table 2: Duration of bus transactions. All transac-
tions except memory response are preceded by bus
arbitration.

To perform a read transaction on the bus, the pro-
cessor must �rst arbitrate for the bus, except when it
was the last agent to use the bus (bus parking). If the
bus is busy when a bus request is made, the arbitra-
tion is pipelined and the bus requires only two cycles
to grant bus ownership once the current bus transac-
tion has ended. Four bus cycles are required to gain

ownership when the bus is empty and the processor
does not currently have ownership.

If one or more of the other caches has the re-
quested data (which can be as large as a block or as
small as a word), the data is immediately transferred
between the caches, gathering the data from multi-
ple caches if necessary (possibly with other caches
passively receiving the data if snar�ng or bus read-
sharing is enabled). When cache-to-cache transac-
tions occur, the request to main memory is automat-
ically aborted. If the particular word that caused the
cache miss is not available in any cache, the main
memory responds to the request after a delay of six
bus cycles. The �nal phase of data transfer requires
1 bus cycle for each bus-width of data transferred. In
the case of a read-modify-write instruction (LOCK),
the bus is held for an additional bus cycle to indicate
whether the lock was successful and the transferred
subblock should be invalidated in other caches. Some
additional bus transactions speci�c to Minerva are
described in Section 5.

Table 3 shows some of the characteristics of con-
temporary SMP systems using a common bus to in-
terconnect multiple processors. As an example, the
time to initiate a read operation is the bus arbitra-
tion time plus the Read time. The latency to get
data from memory is presumably 60 ns (none of these
sources specify the exact memory latency) plus the
number of bus cycles required to transfer the data to
the processor. As far as we were able to establish,
these systems all use timings similar to those of our
simulated bus. Not as much information as we would
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Timings for Commercial Busses (Number of Bus Cycles)

Name Cluster Runway AlphaServer PowerPC 60x Pentium Pro Bus
Vendor SGI HP DEC Motorola Intel

Max Procs. 4 4 4 > 2 4
Block Size 64/128 bytes 32 bytes 32 bytes 32/64 bytes 32 bytes

Bus Arbitration 0/2/4 Cycles 2 Cycles 0{? Cycles 1{2 Cycles 0/2/4 Cycles
Invalidation 1 Cycle 1 Cycle ? 2 Cycles 7 Cycles
Read Request 1 Cycle 1 Cycle ? 2 Cycles 2 Cycles
Write Request 1 Cycle 1 Cycle 2 Cycles 2 Cycles 2 Cycles

Memory Latencyy 12 Cycles 8 Cycles 25 Cycles 6 Cycles 6 Cycles

Transfer Timez 16 Cycles 4 Cycles 2 Cycles 8 Cycles 4 Cycles
Width 64 bits 64 bits 128 bits 32/64 bits 64-bits

Transfer Size(s) 1{8 Bytes, Block 16{32 bytes Block Only 1{8 bytes, Block 1{8, 16, 32 bytes
Bus Freq. 50{200MHz 120MHz 416MHz 66{100 MHz 100MHz

Ref. [MIP96] [BCF96] [Hay94] [Mot97] [Int96, Alp99]

Table 3: Characteristics of commercial multiprocessor busses. Total time for a read transaction to occur is
the sum of bus arbitration, read request, memory latency, and transfer time.

like appears in Table 3, as we were unable to deter-
mine some of the details in the references we found.
These data points show that our model of bus behav-
ior is within the values in existing shared bus systems,
except that ours pushes the number of processors on
the bus to 16 and uses a narrower bus (4-bytes) than
most of the systems. In Section 6.4 we will evaluate
the e�ect of changing the bus timings and bus width
on the results.

3.3 Cache Structures

The simulated caches are incorporated on-chip
with the processor, with single (processor) cycle ac-
cess times. Two-level caches were not simulated in
the system because the workload would not signi�-
cantly exercise the second level of cache; a single level
is suÆcient for these programs. Instruction caches
were ignored, since for these programs instruction
references always hit in the cache, and because simu-
lating the instruction cache would have signi�cantly
increased the time to evaluate each data point. The
instruction misses would have increased the length of
program execution only a few thousand cycles out
of the 100s of millions to billions of cycles simu-
lated, leading to imperceptible changes in the statis-
tics we measured. Instead of simulating the instruc-
tion cache, we assume each instruction takes 1 pro-
cessor cycle. The simulations used fully-associative
caches to eliminate con
ict misses caused by data-
mapping artifacts in the data space, so the misses re-
ported only contain cold-start, capacity and (mostly)
coherence misses.

yAssumes 60ns DRAM response time.
zEstimated using maximum performance settings (widest,

fastest) of bus parameters.

For the standard or base case, our experiments
used the Illinois [PP84] write-invalidate-based proto-
col with �xed block size in a normal (non-sectored)
cache. The Illinois protocol also forms the basis of
the state changes of Minerva at the word level. We
chose the Illinois protocol for two reasons: (1) it is an
invalidation-based protocol, which generates less bus
traÆc than update-based protocols [Lil93] and gener-
ally outperforms update-based protocols [GS96]; and
(2) write-invalidate protocols like the Illinois proto-
col are the most popular class of protocols that are
actually implemented in real systems [Ste90, HP96],
which makes them a more attractive target for per-
formance improvement.

In addition to our dynamic subblock size invali-
dation protocolMinerva, �xed size subblock (sector
cache) and full block protocols were simulated. The
�xed size subblocks that were simulated ranged from
4 bytes up to the (64-byte) block size. The results we
present show 64-byte blocks using the Illinois proto-
col (full block invalidation), 8- and 16-byte subblocks
and the Minerva adaptive protocol. The cache sizes
we tested were 4 to 128 Kbytes; for detailed examples
we present the results for the 64 Kbyte caches.

4 Simple Performance Im-

provements

Before examining hardware and protocol means
for the improvement of shared bus performance,
we review two known methods of improving perfor-
mance. These concentrate on taking advantage of
the universal visibility of all transactions across the
bus to better exploit the data stream. Figure 2 (with
de�nitions in Table 4) shows the improvement these
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Figure 2: Breakdown of bus time (64K byte caches)
for simple optimizations: (A) no optimizations, (B)
bus read-sharing, (C) snar�ng, and (D) both opti-
mizations.

changes can make to the execution time of the various
pieces of the workload, broken down into the various
ways the processors spend their time. All the times
are normalized with respect to execution time with
no optimization (label A), showing the improvements
for bus read-sharing (B), snar�ng (C), and both op-
timizations together (D).

The �rst method, which we call Bus Read-

Sharing, reduces the number of read transactions on
the bus by allowing multiple stalled processors to
share the results of a read operation. Each processor
is capable of \seeing" the addresses of the transac-
tions taking place across the bus. Occasionally a pro-
cessor is stalled waiting its turn for the bus and sees
another processor requesting the same data in which
it is interested. Instead of initiating a read for the
same location when it gets a chance at the bus, it pas-
sively waits for the data it wants to come over the bus.
In such a manner, some transactions can be avoided.
Some programs show little bene�t from this optimiza-
tion (cholesky, fmm, mp3d, raytrace, volrend,
and water). The other programs show a signi�cant
amount of improvement (on the order of 12 to 51 per-
cent), particularly those with large amounts of false
sharing (cases B and D in Figure 2 for barnes, locus,
ocean, pthor, pverify, and topopt).

The second simple improvement is read broadcast,
also known as snar�ng (case C, and together with bus
read-sharing in D). Snar�ng uses read transactions

passing over the bus to �ll empty (invalid) parts of
blocks in the cache. Such an invalid block or sub-
block can occur in two ways. First, an invalidation
may result in a slot in the cache containing an address
tag, but with the \invalid" bit set to on. Second, a
subblock (subsector) may be missing (invalid) in a
sector cache for a variety of reasons. Since a snoopy
cache is required to check its contents for most trans-
actions that cross the bus, it is not much of an ex-
tension to identify addresses on the bus that match
address tags for invalid blocks or subblocks, and grab
the information broadcast on the bus. This is an al-
most free type of prefetching which requires no addi-
tional bus transactions, just a little more work from
the cache. This form of performance enhancement
has been included in Futurebus+ [Can90] and stud-
ied in [Dah95, AB95]. Snar�ng serves as a balancing
counterpart to invalidations, by allowing a read ini-
tiated by one processor to �ll all invalid copies of a
block across multiple processors, as invalidations in-
validate all copies (but one) of a particular block.
Both optimizations have bene�cial e�ects; on aver-
age bus read-sharing reduces execution time by 4.4
percent, snar�ng by 11.9 percent; together they re-
duce execution time by 14.5 for the 64K cache with
64-byte blocks. Naturally, this assumes that these
operations do not have any negative impact upon the
processor. Certainly bus read-sharing has no nega-
tive impact (the processor was waiting for the data
anyway), but snar�ng may interfere with processor
operations if the cache does not have enough ports to
serve both the bus and processor side interfaces (we
assume it does). The source of the reductions comes,
as would be expected, from reducing the amount of
time the processor stalls for the various read oper-
ations (read, read-exclusive and read-modify-write).
The Illinois protocol (to be explained in Section 5)
with these two enhancements form the starting basis
(normal case) for comparisons with the more hard-
ware intensive protocols presented in Section 6.

One concern might be that snar�ng might not
work very well when invalid blocks are overwritten
quickly, as might be the case when the cache size is
small with respect to the working set. However, ex-
amination of snar�ng for a smaller cache shows it to
be still a useful optimization, as it reduces execution
time by 6.5 percent for 16K caches (Figure 13 in Ap-
pendix B), and the two optimization together reduce
execution time by 9.2 percent.
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De�nitions of Terms

Uniprocessor Mode Initialization time at the beginning of the program.
Multiprocessor Mode Duration of program from the �rst time multiple processor threads are created.
Uniprocessor Execution Time spent performing calculations in uniprocessor mode.
Uniprocessor Read Stalls Read miss processing time in uniprocessor mode
Multiprocessor Execution Time spent performing calculations in multiprocessor mode.

Sync Stall Time spent waiting at barriers and locks.
Read Miss Stall Read miss processing time in multiprocessor mode.

Stall time to invalidate blocks in other caches due to a write reference to a shared block
Invalidation Miss Stall

(assumes sequential consistency).
Write Bu�er Stall Stall time waiting for the evicted cache block bu�er to empty.
Uniprocessor Read Fraction of time bus processes read misses in uniprocessor mode.
Uniprocessor Idle Fraction of time bus is unused in uniprocessor mode.
Multiprocessor Idle Fraction of time bus is unused in multiprocessor mode.
Multiprocessor Read Fraction of time bus processes read misses in multiprocessor Mode.
Multiprocessor Inv. Fraction of time bus processes invalidation operations in multiprocessor Mode.

Fraction of time bus processes dirty block evictions to main memory
Multiprocessor Write

in multiprocessor mode.
Cache to Cache Bus read request ful�lled by another cache.

Multiple bus read requests (to the same address) ful�lled by a single read
Read Shares

transaction.
Uniprocessor Misses Bus read request processed by main memory during uniprocessor Mode
Multiprocessor Misses Bus read request processed by main memory during multiprocessor mode

Table 4: De�nitions of terms in Figures 2, 7, 8, 10, 12, and in the text.

5 Minerva Protocol Descrip-

tion

Minerva is an invalidation-based protocol that
maintains coherence state for each word in a block,
which allows it to perform variable size fetch and in-
validation transactions and correctly track the state
of each word. The size of the transactions are based
on each cache's estimate of the most appropriate sub-
block size for that block. Each word can indepen-
dently be present or absent in the cache, as in sector
caches for uniprocessors [RS99c].

A speci�cation of the Minerva protocol requires
several state diagrams; we describe Minerva here:

1. Consistency is maintained on a word basis in
Minerva. Figure 3 shows the word state tran-
sitions, which are the same as the block tran-
sitions for the Illinois protocol [PP84]. Each
word (or subblock for �xed size subblock pro-
tocols we evaluated) within a block has one of
the MESI states associated with it (modi�ed

(m), exclusive (e), shared (s), or invalid

(i)), depending on whether the data is di�erent
than the main memory value, only in one cache
but consistent with memory, potentially shared
among several caches, or not a valid word, re-
spectively.

2. A block state is associated with each block as a
whole, to track if copies of the block or portions
of the block exist in other caches (Figure 4). If

Remote
Invalidate

Local Read
Non-Shared

Local Read,
Shared Remote

Invalidate

Remote
Invalidate

Local
Read

Local
Read Ref.

Local

Shared

ExclusiveInvalid

Modified

Local Write Local Write

Remote Read

Local Write

Figure 3: State transitions for coherence units using
the Illinois protocol. These states are used in all the
protocols evaluated.

the block is in the exclusive state, the block
(i.e., words from the block) is only in one cache.
This allows write-validate operation, by which
words can be written without �rst requiring the
block be fetched from main memory [Jou93]. If
the block is in the shared state, then write-
validate is disabled.
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Figure 4: State transitions for blocks in the adaptive
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bus transactions to the block triggered remotely cause
the protocol to reevaluate the subblock size based
upon the number of words written locally.

3. Associated with each block in each cache is the
current subblock size and a con�dence level.
The current subblock size consists of 2k words,
aligned on a 2k word boundary. When a cache
observes an external event (other than write-
backs) associated with a block it contains, it
evaluates the minimum subblock that encom-
passes all the most recently written words (i.e.,
words for which the \W-bit" (word write bit)
is on | see below) for that block (transitions
in Figure 4 with the

L
symbol). The con�-

dence level is incremented (up to a saturation
level, 3 for our experiments) if the newly calcu-
lated subblock is the same size as the old sub-
block size. Otherwise, the con�dence level is
decremented. Once the con�dence level is 0,
the new subblock size replaces the old subblock
size. The con�dence level aids in settling the
subblock size on the most commonly measured
value. Associated with each word in the block
is a \W" (write) bit. The W-bit is set when
the word is written. It is cleared whenever the
subblock size is evaluated.

4. When a miss occurs on a reference to a given
cache, the size of the subblock fetched is equal
to the current subblock size for that block in
that cache, except in one case. When a miss oc-
curs to a block that is not present in any cache,

the entire block is fetched; this is the only case
in which the subblock size is ignored, because
it speeds up fetching of non-shared data. The
initial subblock size is 4 words (16 bytes), which
was determined to be the best size by simula-
tion.

5. When an invalidate signal is sent, it speci�es
precisely the words a�ected.

Note that di�erent caches may have di�erent sub-
block sizes for the same block at the same time. This
means that the data for fetch misses may come from
multiple bus agents, which is not an issue for �xed-
size subblock protocols. When a fetch miss occurs,
the processor issuing the fetch provides the address
of the missing word and a bit vector of the particular
subblock pieces it wants over the bus. If a requested
(target) word is available from another cache, that
word and as much of the subblock as is available is
immediately supplied by the other cache. Since word
state is maintained by the caches, unavailable words
are just marked invalid. If the target missing word is
not in any of the other caches, the main memory re-
sponds somewhat later with the missing data. Since
the caches and the memory \know" which words are
available from the caches, the memory supplies only
the words unavailable in any of the caches. Caches
supply the particular words they have in a cooper-
ative manner, so the entire request is ful�lled with
the latest values. It is possible that multiple agents
containing the same word will drive the bus at the
same time; however, only shared data can be avail-
able in multiple caches, so the values driven must be
identical.

The protocol is aided by letting blocks that have
no remaining valid subblocks stay in the cache until
removed by the natural LRU block eviction process,
to keep behavioral information (subblock size, con-
�dence level, etc.) intact. For frequently accessed
shared blocks in our workloads, there is a reasonably
good possibility that the block will be fetched back
into the cache again and the learned behavioral in-
formation will still be available. Experiments with
smaller (16K) caches (Appendix B) show that some
invalid blocks remain in the cache long enough to be
reused by blocks with the same address tag (thus hav-
ing access to behavioral data); however, under more
strenuous workloads the invalid blocks may not sur-
vive long enough to be useful. Note that this type of
behavior is a peculiarity of the particular workload
we study | parallel shared memory programs. Such
programs frequently have di�erent processors operat-
ing on the same data over short time intervals. Other
workloads would likely show very di�erent behavior.
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Figure 5: Information required for each block for (a) normal Illinois, (b) Illinois subblock coherence, and (c)
the adaptive protocol. For case (c), the W-bit tracks recent writes to the words.

5.1 Implementation Details

Figure 5 provides a schematic of the information
required to maintain coherence using (a) block gran-
ularity; (b) subblock granularity; and (c) the extra
requirements for the Minerva protocol. The Illinois
protocol (Figure 5a) requires the least number of bits,
needing only the address tag (required by all proto-
cols) and 2 bits to track the block state. For the pure
subblock protocols (Figure 5b), 2 state bits are re-
quired for each subblock. For the adaptive protocol,
a fair amount of additional information is required
to provide the ability to dynamically change the sub-
block size (Figure 5c). In addition to the 2 bits to
track the state for each word, the state of the block
as a whole is tracked (whether it is exclusive, invalid,
or shared), dlog2(1 + log2

block size

4 )e bits are used to
track the subblock size (e.g., 3 bits for 64-byte blocks
with �ve possible subblock sizes: 4, 8, 16, 32, and 64
bytes), and 2 bits as the con�dence level (maximum
value 3).

Associated with each word in each cache block (in
our adaptive protocol) is a W (write) bit (Figure 5c)
that tracks the words that have been written since the
last external event to the block was observed over the
bus (as de�ned in Figure 4). The intent is to provide
the most accurate idea of what the adaptive subblock
size should be. The W-bit is set whenever a write
occurs to that word, and cleared after the subblock
size has been evaluated.

A signi�cant advantage the 64-byte block Illinois
protocol has over the others presented here is the cost
of implementation, in terms of tag bits and consis-
tency and replacement logic. For a 64K 4-way set-
associative data cache with 64-byte blocks and 32-bit
addresses, full-block Illinois requires 21.5 bits for each
block (18 address tag, 2 state bits, and 6 LRU (least
recently used) bits per set). 64-byte block Minerva

requires 74.5 bits (18 address tag bits, 34 state bits,
16 W-bits, 5 adaptive bits and 6 LRU bits for each

set). This increases the number of bits associated
with the data cache by 9.9 percent or about 6.78K
bytes over the Illinois implementation. Since modern
caches are likely to use longer addresses as well as set-
associative cache organizations, the extra overhead
per cache block would actually be less than the 9.9
percent estimated here. Based on the performance
improvement the adaptive cache provides by reduc-
ing execution time and data traÆc, it is well worth
the investment in the extra bits.

An important feature of our dynamic subblock
evaluation algorithm (and any useful cache coherence
protocol) is that it is easily implementable in hard-
ware. Figures 19 and 20 in Appendix C.1 show some
of the combinational logic required for evaluating sub-
block size and maintaining the proper con�dence lev-
els. Determining the subblock size requires two gate
levels of logic; a priority encoder then �nds the min-
imum subblock size that spans all the written bits.
The circuitry to compare the new subblock size with
the old subblock size and determine whether to in-
crement (or decrement) the con�dence level requires
another 4 gate levels of logic. Additionally some logic
is required to increment or decrement the con�dence
level and to select which subblock size. So the entire
logic to evaluate this algorithm is relatively small and
can easily be performed in parallel with other actions
occurring to the block (such as state changes, invali-
dation of data, etc.).

5.2 Example of Subblock Sizing

A demonstration of subblock sizing in Minerva

is shown in Figure 6. In this example, each processor
references a unique word within this block (a pat-
tern observed in topopt and pverify), which causes
a tremendous amount of false sharing activity for
full block coherence. Before time 1, processor B has
fetched the entire block (unshared blocks are fetched
in their entirety) and written its word. The block
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Figure 6: Adaptive handling of false sharing by Minerva.

state and most of the subblocks are in the exclusive
state, except for the one written word in the modi�ed
state. A read by processor A at time 1 reads a sub-
block's worth of data (4 words) and the block (as well
as some of the words) becomes shared between the
two processors. Processor A evaluates its subblock
size at times 4 and 6, and processor B evaluates its
subblock size at times 1 and 3, which in all cases are
the �rst external events observed by the cache after a
local write has occurred. The �rst evaluation for both
processors causes the subblock size to decrease from
4 words to 1 word; the second evaluation reinforces
the single word subblock size by increasing the con�-
dence level. Further read and write operations in this
pattern cause no bus activity, potentially eliminating
a signi�cant number of bus transactions.

6 Results

This section presents the results of our multipro-
cessor simulations. We evaluate 4 di�erent protocols
using 64-byte blocks with 64K byte data caches per
processor for each of the twelve programs. The four
protocols consist of: (1) full-block 64-byte Illinois
protocol (labeled F (for \�xed") in the �gures); (2) a
subblock protocol using eight-byte subblocks (E) (for
\eight"); (3) a sixteen-byte subblock protocol (S) (for
\sixteen"); and (4) our adaptive protocol Minerva,
using an initial subblock size of sixteen bytes (A)
(for \adaptive"). These labels are consistently used

for the �gures in the following sections. The sub-
block protocols fetch and invalidate data using �xed
subblock size operations. The subblock states and
state transitions are identical to the Illinois proto-
col (Figure 3). Each of the protocols evaluated in
this section incorporate the simple performance en-
hancements described in Section 4 | snar�ng and
bus read-sharing.

Our simulations model all the events which occur
between the processors and main memory (excluding
instruction fetches), and use the bus timings previ-
ously presented. We simulated 16 processors for each
workload, which is the maximum number that our
trace generator could provide for all workloads.

6.1 Execution Time

Figure 7 shows the breakdown of processor exe-
cution time for 64K byte (per processor) data caches.
The time is broken down into uniprocessor time:
uniprocessor execution (actually performing calcula-
tions) and uniprocessor stall (waiting for the main
memory to respond); and multiprocessor time: execu-
tion, read stall, write stall, and invalidation stall (all
de�ned in Table 4). Synchronization stall is also mea-
sured, which is the time the average processor spends
waiting to acquire locks and waiting at barriers. From
this �gure, we can see that neither the 8- nor the 16-
byte subblock are consistently the best �xed subblock
size, nor do they always outperform the normal (no
subblock) case. Minerva outperforms the full-block
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Illinois protocol in 11 out of 12 cases (slower by 1.4
percent for cholesky) and beats the �xed subblock
sizes for all of the programs. On average, Minerva

reduces execution time by 25.2 percent relative to the
64-byte full-block protocol for 64K byte caches (us-
ing arithmetic averages). It does this by reducing
the stall time for both invalidations and read fetches
by about half. Adding the other optimizations dis-
cussed in Section 4, the average improvement over
the original unoptimized 64-byte block Illinois coher-
ence protocol exceeds 33 percent. This is a tremen-
dous improvement that can take place without having
to recode any of the programs. Other changes such
as weaker consistency models (which may require re-
coding the programs) can also be done in addition
to these hardware changes, potentially providing a
greater performance boost.

Breakdown of Processor Time
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Figure 7: Execution time, normalized to full-block
coherence, 64-byte blocks, 64K cache.

Synchronization stall time is fairly prominent in
some of the programs. Much of this time is due to
stalling at barriers when the workload is not well dis-
tributed. For example, cholesky uses a set of bar-
riers to allow the master processor (processor 0) to
execute in single processor mode in the middle phase
of the calculation. This has the e�ect of wasting in
excess of 15 percent of total execution time, which for
that workload, exceeds the time that the processors
spend actually performing calculations in multipro-
cessor mode.

Note that we use arithmetic averages in Figure 7
and other similar �gures. As we will explain later in
Section 6.4, we believe the geometric average is bet-
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Figure 8: Bus utilization 64K cache with 64-byte
blocks.

ter for calculating the e�ect of various improvements
in the execution time, but the arithmetic average is
more suitable for these �gures. However, this tends to
underestimate the real performance improvement us-
ing theMinerva protocol, which reduces the average
execution time by more than 40 percent as computed
with a geometric average.

6.2 Bus Utilization

Figure 8 shows the absolute bus utilization for
each of the programs in conjunction with each proto-
col. Using the adaptive Minerva protocol, the bus
utilization actually decreases as the execution time
decreases, from 78.0 percent busy for the full-block
coherence to 69.9 percent busy. From the bus' per-
spective, much of the decline occurs by cutting the
fetched data traÆc (uniprocessor and multiproces-
sor read) by roughly half (for Minerva with 64K
caches). All the times for the operations presented
here include the times for setting up the transaction,
including arbitration, address transmission and re-
sponse time of caches (if appropriate). Invalidation
bus utilization is very small due to the lack of data
transmitted (invalidation operations only require 1
bus cycle plus arbitration). From Figure 7 we see
that processors have to spend 10 percent of total time
stalled waiting for an invalidation to occur (normal
protocol), or 5 percent for Minerva, which is due
almost exclusively to bus contention.
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Breakdown of Bus Transactions

Fetches (bytes) Invalidations (bytes)
Protocol

4 8 16 32 64 total 4 8 16 32 64 total

64-byte Illinois 0 0 0 0 1.0 1.0 0 0 0 0 1.0 1.0

8-byte Subblocks 0 2.85 0 0 0 2.85 0 2.09 0 0 0 2.09

16-byte Subblocks 0 0 1.82 0 0 1.82 0 0 1.46 0 0 1.46

Minerva 0.21 0.03 0.81 0.06 0.16 1.27 0.39 0.08 0.60 0.08 0.11 1.28

Table 5: Total number of fetch and invalidation transactions relative to 64-byte Illinois with snar�ng and
bus read sharing enabled, broken down by operation size.

6.3 Other Metrics

Table 5 shows the number of fetch and invalida-
tion transactions for each of the protocols, relative to
the number of each transaction type for the 64-byte
Illinois protocol, which are broken down by size. Note
that we make a distinction between (fetch) misses and
fetches. A fetch miss (as opposed to an invalidation
miss) occurs when the requested data in not found
in the cache. A fetch miss can be serviced by our
bus read-sharing optimization, so not all fetch misses
cause actual fetches to occur.

To illustrate the breakdown of the various trans-
action types, the 8-byte subblock protocol has 2.85
times as many fetches initiated compared to 64-byte
Illinois, all of which are 8 bytes in size. Only the
Minerva protocol has multiple transaction sizes, due
to its adaptive subblock sizing. Of the subblock pro-
tocols,Minerva shows a far smaller increase in trans-
actions relative to the �xed block (no subblock) case:
27 and 28 percent for fetches and invalidations, re-
spectively. The �xed-size subblock protocols show
a much larger increase in those operations, 185 and
109 percent for 8-byte subblock and 82 and 46 per-
cent for 16-byte subblocks. The total number of bytes
fetched and invalidated decreases with subblock size,
as does data traÆc for uniprocessor sector cache sys-
tems [RS99c], but since each transaction has over-
head, it is necessary to balance the number and size
of the transactions to reduce bus usage, as Minerva

does. Additional statistics about the various proto-
cols, such as the fetch miss ratios, can be found in
Appendix A.

6.4 Sensitivity Analysis

To project this design to future architectures, it is
necessary to determine how sensitive these results are
to di�erent timing parameters. For example, future
designs will use more advanced DRAMs that have
higher bandwidth, wider busses, and faster proces-
sors. Table 6 shows the e�ects of changing various
memory system parameters. Unlike the �gures and

tables in in the previous sections (which use arith-
metic averages because of the desire to show such
features as the breakdown of execution time and bus
utilization), Table 6 shows the geometric mean of the
speedups achieved using various system parameters.

The results here show that the simple optimiza-
tions lead to a reduction of execution time (compared
to unoptimized 64-byte block Illinois) of 6.5 to 16.0
percent, and the simple optimizations combined with
the Minerva protocol lead to a reduction of execu-
tion time of 19.4 to 41.2 percent, depending on the
con�guration parameters. Generally the wider the
bus, the less the Minerva protocol will outperform
the Illinois protocol, but it is still a very signi�cant
performance improvement.

6.5 E�ects of Software Restructuring

In [RS99a], we investigated the impact of certain
data structure improvements on execution time. We
found that changes in the data layout based on infor-
mation obtained by pro�ling the worst behaving 10
(64-byte) blocks in four of our programs could lead to
an average reduction of 51 percent of the false sharing
misses and 20 percent of the total cache fetch misses
(for an in�nite cache), resulting in a 15 percent reduc-
tion in the execution time for both 16K and 64K byte
caches (using 64-byte blocks). As a further evalua-
tion of the Minerva protocol, we examine the e�ect
of the protocol on code that has been restructured to
eliminate many of the false sharing problems.

Table 7 shows the reduction of execution time for
the four workloads, each restructured to reduce false
sharing as in [RS99a], when the simple optimizations
from Section 4 are applied and with the Minerva

protocol. Original refers to the unoptimized source
code; restructured refers to the modi�ed code. For
these four workloads, Minerva reduces execution
time by 55.9 percent for the original code and 44.8
percent for the optimized code.

When both the original code and the optimized
code are run under Minerva, the resulting execu-
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Comments

64K 32 100 1 400 60 16.0% 41.2% Standard Con�guration

16K 32 100 1 400 60 11.5% 38.3% Small Cache

8K 32 100 1 400 60 6.5% 19.4% Tiny Cache

64K 64 100 1 400 60 13.8% 29.6% Wider Bus

16K 64 100 1 400 60 10.7% 27.0% Smaller Cache and Wider Bus

64K 64 200 1 1000 50 14.5% 31.5% 1GHz Processor With Fast Memory

64K 64 300 2 1200 50 13.0% 28.6% 1.2GHz Processor With RAMBUS

Table 6: Execution time reduction vs. unoptimized Illinois with variation of simulation parameters.

Execution Time Reduction
with Restructured Code

Program Simple Opts Minerva

O
ri
g
in
a
l

Barnes 27.4% 36.6%
Pthor 19.7% 53.0%
Topopt 51.4% 85.1%
Water 2.2% 15.4%
Average 27.4% 55.9%

R
es
tr
u
ct
u
re
d Barnes 25.4% 31.8%

Pthor 19.0% 49.6%
Topopt 50.3% 71.0%
Water 1.9% 7.16%
Average 26.4% 44.8%

Table 7: Execution time reduction of Minerva on
restructured code. Geometric averages are used for
the averages.

tion times are very similar. The optimized code is
2.9 percent faster than the unoptimized code, com-
pared to the 15 percent reduction in execution time
for optimized code when using the Illinois protocol
[RS99a]. From these results it is possible to conclude
that Minerva provides most of the performance im-
provement of code restructuring, but without the ef-
fort of actually restructuring the code.

6.6 Performance and Cost

Figure 9 shows the performance of various cache
con�gurations, showing the number of bits (data, tag
and other overhead) for 4 to 128 Kbyte caches, 64-
byte blocks, and 4- to 64-byte subblocks. 4-byte sub-
blocks generally have the worst performance for a

given block size. 16- and 32-byte subblocks perform
the best of the �xed subblock sizes. 8-byte and 64-
byte subblocks have similar performance. The adap-
tive caches (indicated with the ? symbols), i.e., those
using Minerva, show the best performance overall.
For the larger cache sizes (32K-128KB), the improve-
ment in running time relative to the best of the other
designs is 10.8% to 12.2%. The performance improve-
ment using the Minerva protocol over the normal
Illinois protocol is suÆcient to outperform caches two
to four times as large (for 16K caches and beyond).
Even though the Minerva protocol requires more
bits to manage a given amount of data space, the per-
formance improvement more than justi�es the cost.

6.7 Observations

Despite the signi�cant improvement that the
Minerva protocol provides, it is obvious that much
more needs to be done in software to improve some of
these programs. An examination of Figure 7 shows
that only a tiny fraction of execution time in the
parallel phase of some programs is used performing
calculations (labelled multiprocessor execution).
Such programs are cholesky, mp3d, pthor, pver-
ify, and topopt. There is little point in trying to
speed up the execution time by adding more proces-
sors to solve these problems, as the read and inval-
idation stall times heavily dominate the calculation
time. There are other programs in which the ini-
tialization time in uniprocessor mode dominates the
multiprocessor calculation time, also leading to poor
speed-ups with more processors. Programs that fall
into this category are cholesky, locus, raytrace,
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and volrend. This leads us to two general princi-
ples that should be considered when writing parallel
programs: (1) uniprocessor initialization time should
be minimized; methods must be explored to initial-
ize the data space in parallel; and (2) data objects
should be constrained as much as possible to single
processors to reduce communications overhead. In
addition, processors should be given tasks that are
as independent as possible; barriers should rarely be
used (unlike cholesky and fmm). Using these prin-
ciples, programs should be designed to behave like
water, where multiprocessor execution (calculation)
time still heavily dominates the total run time, even
with 16 processors on the job.

7 Conclusion

In this paper we have presented and evaluated
our new cache coherency protocol Minerva. Min-

erva is a MESI-based protocol that allows the trans-
fer block size to vary dynamically for each block in
each cache, according to the reference pattern. Our
new protocol in combination with other simpler and
more general optimizations results in up to a 40 per-
cent average reduction of execution time on a realistic
shared memory machine. There is also a reduction of
bus utilization, and only a small increase in the total
number of fetch and invalidation transactions, much
less than for �xed size subblock protocols.

Minerva achieves its success by reducing the in-
validation size when it is wasteful to invalidate whole
cache blocks. Smaller invalidation and fetch sizes aid
in reducing the dead sharing traÆc caused predom-
inantly by false sharing behavior. By reducing bus
traÆc, processors spend much less time stalled wait-
ing for bus transactions to complete and proportion-
ally more time performing calculations.

An important feature of this protocol is that it can
be simply and eÆciently implemented in hardware,
using a few levels of combinational logic to calculate
the smallest subblock size every time certain external
events a�ecting that cache block are observed on the
bus. It also takes advantage of its ability to track
word level coherence to implement write-validate, al-
lowing writes to invalid words in order to reduce data
fetches.

Our experiments with restructured code show
that Minerva is able to largely overcome false shar-
ing caused unintentionally by programmers. This
frees the programmer from worrying about data lay-
out and aids in fully realizing the simplicity of pro-
gramming using the shared memory model.
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A Analysis of Performance Re-

lated Metrics

This appendix contains statistics for 64 Kbyte
caches with 64-byte blocks. These statistics demon-
strate the manner in which Minerva works to im-
prove performance as measured over a variety of met-
rics.

A.1 Cache Misses/Fetch Operations

Figure 10 show the number of fetches (normal-
ized to the full-block coherence fetches) for the vari-
ous protocols. The number of fetches is a proxy for
the number of fetch misses; however, they are not
exactly the same, since the bus read-sharing opti-
mization (from Section 4) reduces the total number
of fetches by allowing several caches to be satis�ed
with a single transaction. A miss occurs when the
requested data is not found in the cache, but it may
be satis�ed without a fetch being issued if the desired
data is observed on the bus.

All of the subblock protocols have more fetches
than the full-block protocol, but Minerva causes
fewer fetches than the other subblock protocols in
general (32 percent for 64K caches). It is also the
only protocol that has a variety of fetch sizes; the
others all use a �xed fetch size. Having more misses
(thus more fetches) is not necessarily bad. Because
the data transferred on a miss is reduced for the sub-
block protocols, there is smaller delay for the infor-
mation to be transferred. Thus an increase in the
number of fetches may not yield an increase in the ex-
ecution time. In addition, less data on the bus means
that the delay waiting to start the fetch transaction
will be reduced due to lower overall contention for
the bus, leading to a signi�cant reduction in delay
for the whole read operation to complete. Because
the processor-spatial locality of the problem shared
blocks is very low [RS99a], the prefetching e�ect of
large blocks is a waste of data and time. It is evident
from Figure 7 that the read stall time is reduced by
using the smaller fetch sizes. As demonstrated in Sec-
tion 6.2, the amount of data and associated address

transmission information is also greatly reduced by
using subblocks.
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Figure 11: Workload of miss ratios for 64-byte block,
64K cache.

Figure 11 shows the actual miss ratios for the var-
ious programs. The misses are broken down to show
how they were satis�ed: uniprocessor misses (from
main memory), multiprocessor misses (from main
memory), by read-sharing an existing memory trans-
action (which could be coming from another cache
or main memory), or cache-to-cache, which means
the miss was satis�ed by information found in an-
other processor's cache. Of the various types of miss
sources, only 3 (uniprocessor, main memory, or cache-
to-cache) cause an actual fetch operation to occur.
The vast majority of misses were satis�ed by other
caches (for the full-block protocol, 81 percent for 64K
caches on average), indicating that we can visualize
the aggregate system caches together as a distributed
second level cache, but a less eÆcient \parallel" cache
(as opposed to the serial \in-line" hierarchy in most
two-level organizations). The aggregate caches in our
simulations e�ectively form a 1M byte (64K cache)
second level cache. For the 64K cache (Figure 11),
the misses that actually fetch data from memory can
be considered cold-start misses, as the aggregate ca-
pacity is suÆcient to hold all the referenced loca-
tions. For the adaptive and the normal Illinois proto-
col (64K cache), the misses that must be fetched from
memory are approximately 10 percent of total misses
in the average case. This demonstrates the general
importance of reducing coherence induced misses as
opposed to the less prominent cold-start misses in
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Figure 10: Fetch operations, normalized to full-block coherence, 64-byte block, 64K cache.

parallel workloads.

A.2 Invalidations

Unlike fetches, invalidations require the same
number of bus cycles to perform, regardless of the
size of the (sub)block invalidated. Reducing the size
of the invalidation may cause a large increase in the
number of these operations without providing any
particular bene�t if the workload has data structures
well suited for large granularity invalidations. For
some of the programs, the number of invalidations is
greatly increased by subblock coherence. Cholesky,
locus and mp3d are stand-outs in having greater
than a three times increase in the number of inval-
idations when using 8-byte subblocks. This is the
result of good processor-spatial behavior, which may
be the result of data objects migrating between pro-
cessors. From Figure 12, it can be seen that the �xed-
block protocol has the fewest invalidations on aver-
age (although performs the worst for raytrace and
pverify). TheMinerva protocol generally has fewer
invalidations than the �xed subblock protocols, and
approximately 25 percent more invalidations than the
�xed-block case. However, many of the invalidations
are very small (33 to 39 percent are 4-byte invalida-
tions), meaning that much of the data is left undis-

turbed when an invalidation occurs. Since processor-
spatial locality is generally very small, this is a useful
improvement, particularly with workloads that su�er
from great amounts of false and dead sharing.

B Results for 16 Kbyte Caches

This Appendix shows results for 16 Kbyte caches
with 64-byte blocks. This information is similar
enough to the results presented in the main section
so that is does not warrant inclusion there, but it is
interesting enough to include as an appendix.

Figure 13 shows the e�ect of the bus read-sharing
and snar�ng improvements. Both optimizations have
bene�cial e�ects. On average bus read-sharing re-
duces execution time by 3.7 percent and snar�ng by
6.5 percent. Together they reduce execution time by
9.2 percent for the 16K byte cache, with correspond-
ing values of 4.6 percent, 11.9 percent, and 14.4 per-
cent for the 64K cache.

In Figure 14, processors have to spend 10 percent
of total time stalled waiting for an invalidation to
occur (normal protocol), or 5 percent for Minerva,
which is due almost exclusively to bus contention.
Using the arithmetic average, Minerva reduces av-
erage execution time by about 23 percent over the
Illinois protocol with the simple bus optimizations.
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Figure 12: Invalidation signals issued by size, normalized to full-block coherence, 64-byte blocks, 64K cache.

Figure 15 shows the absolute bus utilization. The ab-
solute bus idle time for the adaptive coherence does
not change much compared between the various pro-
tocols on average; Minerva has only slightly more
bus idle time.

Figure 16 displays the number and size of fetches
for full-block, subblock and the Minerva protocols
for 16K caches. All of the subblock protocols have
more fetches than the \normal" protocol, but the
Minerva protocol has fewer fetches than the other
subblock protocols in general (40 percent increase in
fetches for 16K caches, 32 percent for 64K caches).
Note that the full-block and 16-byte fetches dominate
the other size subblock fetches for the adaptive cache.
There are other fetch sizes, ranging from 4 bytes to
32 bytes (as can be seen for such programs as pthor),
but on average these other fetch sizes are almost in-
visible for 16K caches (7.2 percent are 4-byte fetches,
1.7 percent 8-byte fetches, and 1.0 percent 32-byte
fetches). It is evident from Figure 14 that the read
stall time is reduced by using the smaller fetch sizes.

The vast majority of misses were satis�ed by other
caches (for the \normal" protocol, 72 percent for 16K
caches (Figure 17), 81 percent for 64K caches (Fig-
ure 11) on average with 64-byte blocks), indicating
that we can visualize the aggregate system caches to-
gether as a distributed second level cache, but a less

eÆcient \parallel" cache (as opposed to the serial \in-
line" hierarchy in most two-level organizations).

Figure 18 shows the number and size of the in-
validation signals for each of the workloads for 16K
caches. The number of invalidations for the subblock
protocols relative to the Illinois protocol is roughly
the same as for the 64K caches (Figure 12).

C Surplus Tables and Figures

This section contains tables representing the tab-
ulated versions of the �gures in the main sections plus
additional �gures that present related information.

C.1 Combinational Logic

To demonstrate that the computations to calcu-
late the subblock size can be performed relatively
easily, we implemented some of the circuitry using
standard TTL style circuits. The circuits here use
32-byte blocks as an example; circuitry for larger
blocks could be created in much the same fashion.
Figure 19 calculates the subblock size based on the
8 input W-bit lines (one for each recently modi�ed
word in the block). If at least one word has been writ-
ten in the upper and the lower 4 words of the block,
then the subblock size is determined to be 8-words,
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Figure 16: Fetch operations, normalized to full-block coherence, 64-byte block, 16K cache.

or full block size. Each of the 4-word portions of the
block is divided and examined to see if the subblock
spans the 4-word portion. Circuitry is included to
only allow the appropriate output signal ([1-8]-word)
for biggest subblock that spans all of the written to
be set to 1. The Any word signal is 1 if any of the
words have been written, indicating that a subblock
size evaluation must be performed.

Figure 20 shows how the signals from Figure 19
are used to generate a 2-bit subblock size code, which
is compared to the existing subblock size. If the new
subblock size is the same as the old, the con�dence
level increment signal is activated, unless the counter
has reached its maximum value. If the subblock sizes
are di�erent, the decrement signal is activated. If
the con�dence level is 0, then the replace signal is
activated, which indicates that the newly computed
subblock size replaces the old subblock size.

C.2 Tabulated Data

This section shows the tabulated versions (Ta-
bles 8{14) of all the �gures in the main section and
the 64K cache �gures in Appendix A. Figures 21 and
22 show the performance achieved for a given num-
ber of bits for systems with 16- and 32-byte blocks,
respectively. These are companion �gures to Figure 9

in the main section and are also found in tabulated
form in Table 8.
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Figure 18: Invalidation signals issued by size, normalized to full-block coherence, 64-byte blocks, 16K cache.
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Figure 13: Breakdown of execution time (16K byte
cache) for simple optimizations: (A) no optimiza-
tions, (B) bus read-sharing, (C) snar�ng, and (D)
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Figure 19: Combinational logic to evaluate subblock size from input W-bits, 32-byte block.
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Figure 15: Bus utilization normalized to full-block
coherence, 16K cache with 64-byte blocks.
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Figure 20: Combinational logic to compare subblock sizes, using outputs from Figure 19.
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Figure 22: Relative execution time for a given number
of bits, 32-byte blocks (1.0=4 Kbyte cache, 64-byte
block, 64-byte subblock).
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Relative Execution Time and Implementation Bits (in Kbytes)

Cache Block Subblock Size (Bytes)
Size Size 4 8 16 32 64 Minerva

1.228 0.908 0.765 0.715
16

4.984 4.859 4.797 5.297
1.285 0.957 0.804 0.791 0.695

4K 32
4.617 4.492 4.430 4.398 4.836
1.397 1.040 0.877 0.856 1.000 0.784

64
4.434 4.309 4.246 4.215 4.199 4.613

0.809 0.587 0.495 0.458
16

9.906 9.656 9.531 10.531
0.862 0.628 0.533 0.521 0.467

8K 32
9.203 8.953 8.828 8.766 9.641
0.962 0.704 0.602 0.597 0.707 0.543

64
8.852 8.602 8.477 8.414 8.383 9.211

0.530 0.402 0.354 0.325
16

19.688 19.188 18.938 20.938
0.574 0.430 0.378 0.374 0.329

16K 32
18.344 17.844 17.594 17.469 19.219
0.658 0.487 0.423 0.420 0.485 0.375

64
17.672 17.172 16.922 16.797 16.734 18.391

0.463 0.355 0.315 0.287
16

39.125 38.125 37.625 41.625
0.476 0.365 0.325 0.323 0.283

32K 32
36.562 35.562 35.062 34.812 38.312
0.487 0.373 0.332 0.331 0.373 0.286

64
35.281 34.281 33.781 33.531 33.406 36.719

0.438 0.337 0.301 0.275
16

77.750 75.750 74.750 82.750
0.441 0.340 0.303 0.299 0.264

64K 32
72.875 70.875 69.875 69.375 76.375
0.451 0.348 0.311 0.308 0.347 0.266

64
70.438 68.438 67.438 66.938 66.688 73.312

0.363 0.284 0.257 0.237
16

154.500 150.500 148.500 164.500
0.366 0.287 0.260 0.261 0.231

128K 32
145.250 141.250 139.250 138.250 152.250
0.369 0.289 0.261 0.263 0.299 0.231

64
140.625 136.625 134.625 133.625 133.125 146.375

Table 8: Relative execution time (1.0=4 Kbyte cache, 64-byte block, 64-byte subblock) and number of bits
required for implementation (in Kbytes), tabulated information from Figures 9, 21, 22.
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Breakdown of Relative Processor Execution Time (64K Per-Processor Cache, 64-Byte Blocks)
Programs

Protocol Description
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uniexec 0.061 0.400 0.051 0.353 0.091 0.001 0.473 0.092 0.003 0.001 0.276 0.164 0.164
uniread 0.004 0.118 0.017 0.022 0.009 0.001 0.100 0.058 0.001 0.000 0.112 0.002 0.037
multiexec 0.422 0.072 0.500 0.258 0.036 0.096 0.150 0.030 0.033 0.044 0.383 0.558 0.215

No Opt multisync 0.176 0.177 0.350 0.142 0.011 0.202 0.221 0.154 0.043 0.169 0.103 0.083 0.153
multiread 0.303 0.133 0.073 0.157 0.395 0.498 0.052 0.497 0.686 0.674 0.121 0.140 0.311
invstall 0.034 0.079 0.006 0.051 0.330 0.162 0.004 0.153 0.232 0.111 0.003 0.053 0.102

writebu�er 0.000 0.020 0.003 0.017 0.128 0.040 0.000 0.016 0.003 0.000 0.001 0.000 0.019

uniexec 0.061 0.400 0.051 0.353 0.091 0.001 0.473 0.092 0.003 0.001 0.276 0.164 0.164
uniread 0.004 0.118 0.017 0.022 0.009 0.001 0.100 0.058 0.001 0.000 0.112 0.002 0.037
multiexec 0.422 0.072 0.500 0.258 0.036 0.096 0.150 0.030 0.033 0.044 0.383 0.558 0.215

Read Sharing multisync 0.156 0.176 0.350 0.139 0.011 0.195 0.222 0.146 0.043 0.152 0.104 0.084 0.148
multiread 0.259 0.132 0.068 0.126 0.391 0.442 0.052 0.428 0.657 0.512 0.120 0.139 0.277
invstall 0.032 0.079 0.006 0.043 0.328 0.151 0.004 0.139 0.224 0.094 0.003 0.053 0.096

writebu�er 0.000 0.020 0.003 0.014 0.127 0.040 0.000 0.015 0.003 0.000 0.001 0.000 0.019

uniexec 0.061 0.400 0.051 0.353 0.091 0.001 0.473 0.092 0.003 0.001 0.276 0.164 0.164
uniread 0.004 0.118 0.017 0.022 0.009 0.001 0.100 0.058 0.001 0.000 0.112 0.002 0.037
multiexec 0.422 0.072 0.500 0.258 0.036 0.096 0.150 0.030 0.033 0.044 0.383 0.558 0.215

Snar�ng multisync 0.136 0.178 0.349 0.129 0.011 0.117 0.197 0.140 0.036 0.114 0.102 0.083 0.133
multiread 0.103 0.130 0.068 0.096 0.393 0.348 0.048 0.380 0.485 0.347 0.119 0.121 0.220
invstall 0.033 0.079 0.006 0.038 0.329 0.139 0.004 0.147 0.215 0.087 0.003 0.051 0.094

writebu�er 0.000 0.020 0.003 0.012 0.128 0.041 0.000 0.015 0.003 0.000 0.001 0.000 0.019

uniexec 0.061 0.400 0.051 0.353 0.091 0.001 0.473 0.092 0.003 0.001 0.276 0.164 0.164
uniread 0.004 0.118 0.017 0.022 0.009 0.001 0.100 0.058 0.001 0.000 0.112 0.002 0.037
multiexec 0.422 0.072 0.500 0.258 0.036 0.096 0.150 0.030 0.033 0.044 0.383 0.558 0.215

Both Opts multisync 0.121 0.181 0.349 0.127 0.011 0.112 0.198 0.134 0.036 0.106 0.103 0.083 0.130
multiread 0.087 0.128 0.064 0.082 0.389 0.304 0.048 0.340 0.467 0.263 0.117 0.120 0.201
invstall 0.030 0.078 0.006 0.033 0.327 0.128 0.004 0.135 0.209 0.072 0.003 0.051 0.090

writebu�er 0.000 0.020 0.003 0.011 0.127 0.040 0.000 0.015 0.003 0.000 0.001 0.000 0.018

Table 9: Breakdown of bus time for simple optimizations (same data as in Figure 2).

Relative Number (by Size) of Fetches (64K Per-Processor Cache, 64-Byte Blocks)
Programs

Protocol Size (bytes)
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Illinois 64 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8-Byte Subblock 8 1.771 6.003 4.092 4.801 4.195 2.032 2.774 1.645 1.032 0.836 2.557 2.485 2.852

16-Byte Subblock 16 1.305 3.150 2.363 2.662 2.468 1.634 1.775 1.302 1.035 0.967 1.755 1.493 1.826

64 0.070 0.304 0.123 0.252 0.381 0.051 0.269 0.191 0.008 0.004 0.237 0.055 0.162
32 0.034 0.006 0.013 0.011 0.254 0.001 0.000 0.024 0.000 0.006 0.000 0.376 0.060

Minerva 16 0.658 1.484 1.420 1.543 0.556 1.060 0.583 0.394 0.730 0.089 0.820 0.372 0.809
8 0.037 0.081 0.025 0.013 0.172 0.022 0.002 0.002 0.000 0.004 0.001 0.016 0.031
4 0.615 0.092 0.044 0.084 0.199 0.131 0.164 0.504 0.093 0.305 0.028 0.238 0.208

Table 10: Number and size of data fetches, relative to the number of fetches for standard 64-byte block
Illinois protocol, 64K caches (same data as in Figure 10).
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Breakdown of Relative Processor Execution Time (64K Per-Processor Cache, 64-Byte Blocks)
Programs

Protocol Description
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uniexec 0.084 0.401 0.051 0.398 0.092 0.001 0.486 0.114 0.003 0.002 0.277 0.167 0.173
uniread 0.005 0.119 0.017 0.025 0.009 0.001 0.103 0.072 0.002 0.000 0.113 0.002 0.039
multiexec 0.582 0.073 0.505 0.291 0.036 0.141 0.154 0.038 0.044 0.091 0.385 0.570 0.242

Illinois multisync 0.167 0.181 0.353 0.143 0.011 0.164 0.203 0.166 0.048 0.219 0.103 0.085 0.154
multiread 0.120 0.129 0.064 0.092 0.393 0.445 0.049 0.424 0.621 0.541 0.118 0.123 0.260
invstall 0.042 0.078 0.006 0.038 0.331 0.188 0.004 0.168 0.278 0.148 0.003 0.052 0.111

writebu�er 0.000 0.020 0.003 0.012 0.129 0.059 0.000 0.018 0.003 0.000 0.001 0.000 0.020

uniexec 0.084 0.401 0.051 0.398 0.092 0.001 0.486 0.114 0.003 0.002 0.277 0.167 0.173
uniread 0.014 0.340 0.034 0.051 0.020 0.002 0.247 0.072 0.004 0.001 0.311 0.006 0.092
multiexec 0.582 0.073 0.505 0.291 0.036 0.141 0.154 0.038 0.044 0.091 0.385 0.570 0.242

8-Byte Subblock multisync 0.110 0.361 0.367 0.157 0.009 0.088 0.080 0.088 0.021 0.166 0.095 0.078 0.135
multiread 0.077 0.276 0.109 0.224 0.738 0.429 0.039 0.247 0.209 0.098 0.044 0.097 0.216
invstall 0.025 0.160 0.009 0.083 0.385 0.059 0.001 0.071 0.049 0.039 0.001 0.073 0.080

writebu�er 0.000 0.011 0.001 0.010 0.052 0.027 0.000 0.009 0.005 0.000 0.000 0.000 0.010

uniexec 0.084 0.401 0.051 0.398 0.092 0.001 0.486 0.114 0.003 0.002 0.277 0.167 0.173
uniread 0.009 0.212 0.023 0.034 0.014 0.002 0.174 0.064 0.002 0.000 0.198 0.004 0.061
multiexec 0.582 0.073 0.505 0.291 0.036 0.141 0.154 0.038 0.044 0.091 0.385 0.570 0.242

16-Byte Subblock multisync 0.119 0.255 0.351 0.138 0.007 0.106 0.073 0.091 0.024 0.163 0.088 0.074 0.124
multiread 0.067 0.177 0.072 0.120 0.539 0.399 0.031 0.244 0.276 0.180 0.044 0.054 0.184
invstall 0.020 0.104 0.005 0.043 0.303 0.092 0.001 0.083 0.089 0.068 0.001 0.033 0.070

writebu�er 0.000 0.012 0.001 0.008 0.067 0.034 0.000 0.010 0.003 0.000 0.000 0.000 0.011

uniexec 0.084 0.401 0.051 0.398 0.092 0.001 0.486 0.114 0.003 0.002 0.277 0.167 0.173
uniread 0.001 0.065 0.010 0.004 0.002 0.000 0.060 0.063 0.001 0.000 0.007 0.001 0.018
multiexec 0.582 0.073 0.505 0.291 0.036 0.141 0.154 0.038 0.044 0.091 0.385 0.570 0.242

Minerva multisync 0.113 0.203 0.337 0.134 0.015 0.088 0.071 0.082 0.023 0.162 0.081 0.072 0.115
multiread 0.071 0.148 0.030 0.084 0.355 0.294 0.028 0.203 0.209 0.037 0.052 0.034 0.129
invstall 0.023 0.114 0.004 0.033 0.310 0.061 0.002 0.074 0.049 0.016 0.001 0.021 0.059

writebu�er 0.000 0.012 0.001 0.007 0.068 0.042 0.000 0.011 0.004 0.000 0.000 0.000 0.012

Table 11: Execution time, normalized to Illinois protocol execution time (same data as in Figure 7).

Absolute Bus Utilization (64K Per-Processor Cache, 64-Byte Blocks)
Programs

Protocol Description
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uniidle 0.004 0.110 0.016 0.024 0.009 0.001 0.093 0.058 0.001 0.000 0.112 0.002 0.036
multiidle 0.560 0.118 0.601 0.166 0.000 0.056 0.113 0.015 0.002 0.115 0.163 0.304 0.184Illinois
unibusy 0.085 0.410 0.052 0.399 0.092 0.001 0.496 0.128 0.004 0.002 0.278 0.168 0.176
multibusy 0.351 0.363 0.331 0.411 0.899 0.942 0.298 0.799 0.993 0.883 0.447 0.526 0.603

uniidle 0.007 0.111 0.018 0.024 0.009 0.001 0.129 0.056 0.006 0.001 0.160 0.003 0.044
multiidle 0.665 0.122 0.561 0.115 0.000 0.062 0.102 0.036 0.008 0.350 0.238 0.308 0.2148-Byte Subblock
unibusy 0.103 0.345 0.062 0.345 0.076 0.003 0.598 0.235 0.015 0.005 0.368 0.172 0.194
multibusy 0.225 0.422 0.360 0.515 0.915 0.933 0.171 0.673 0.971 0.644 0.234 0.517 0.548

uniidle 0.005 0.112 0.016 0.024 0.009 0.001 0.121 0.059 0.003 0.000 0.142 0.002 0.041
multiidle 0.673 0.123 0.624 0.141 0.000 0.066 0.110 0.030 0.004 0.246 0.249 0.396 0.22216-Byte Subblock
unibusy 0.100 0.385 0.058 0.395 0.091 0.002 0.597 0.218 0.010 0.003 0.337 0.187 0.199
multibusy 0.222 0.380 0.302 0.440 0.900 0.931 0.172 0.692 0.983 0.750 0.273 0.414 0.538

uniidle 0.001 0.076 0.011 0.012 0.005 0.000 0.081 0.087 0.002 0.000 0.073 0.001 0.029
multiidle 0.675 0.116 0.679 0.169 0.000 0.104 0.124 0.031 0.007 0.617 0.275 0.467 0.272Minerva
unibusy 0.096 0.383 0.054 0.411 0.102 0.002 0.602 0.217 0.010 0.005 0.281 0.194 0.196
multibusy 0.227 0.425 0.256 0.407 0.893 0.894 0.193 0.666 0.981 0.377 0.372 0.339 0.502

Table 12: Absolute bus utilization (same data as in Figure 8).
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Miss Ratios Broken Down by Type and Source (64K Per-Processor Cache, 64-Byte Blocks)
Programs

Protocol Description
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cache2cache 0.0011 0.0043 0.0006 0.0031 0.0257 0.0090 0.0019 0.0184 0.0473 0.0329 0.0026 0.0018 0.0124
readshares 0.0002 0.0000 0.0000 0.0003 0.0004 0.0010 0.0000 0.0024 0.0017 0.0098 0.0000 0.0000 0.0013Illinois
unimiss 0.0000 0.0014 0.0000 0.0002 0.0003 0.0000 0.0006 0.0016 0.0001 0.0000 0.0005 0.0000 0.0004
multimiss 0.0000 0.0015 0.0002 0.0009 0.0088 0.0011 0.0005 0.0001 0.0000 0.0000 0.0010 0.0000 0.0012

cache2cache 0.0018 0.0173 0.0019 0.0136 0.0809 0.0122 0.0033 0.0282 0.0488 0.0275 0.0031 0.0045 0.0203
readshares 0.0001 0.0000 0.0001 0.0003 0.0013 0.0008 0.0000 0.0039 0.0011 0.0082 0.0000 0.0000 0.00138-Byte Subblock
unimiss 0.0001 0.0090 0.0001 0.0010 0.0018 0.0001 0.0042 0.0048 0.0003 0.0000 0.0043 0.0000 0.0022
multimiss 0.0001 0.0099 0.0011 0.0055 0.0673 0.0082 0.0020 0.0114 0.0027 0.0000 0.0033 0.0001 0.0093

cache2cache 0.0014 0.0105 0.0011 0.0076 0.0494 0.0123 0.0025 0.0247 0.0502 0.0318 0.0031 0.0027 0.0164
readshares 0.0001 0.0000 0.0000 0.0002 0.0007 0.0008 0.0000 0.0033 0.0009 0.0092 0.0000 0.0000 0.001316-Byte Subblock
unimiss 0.0000 0.0050 0.0001 0.0005 0.0009 0.0000 0.0024 0.0036 0.0002 0.0000 0.0021 0.0000 0.0013
multimiss 0.0000 0.0054 0.0006 0.0030 0.0375 0.0041 0.0012 0.0061 0.0009 0.0000 0.0021 0.0001 0.0051

cache2cache 0.0016 0.0113 0.0011 0.0070 0.0464 0.0127 0.0025 0.0265 0.0400 0.0134 0.0035 0.0020 0.0140
readshares 0.0001 0.0000 0.0000 0.0001 0.0007 0.0007 0.0000 0.0042 0.0008 0.0067 0.0000 0.0000 0.0011Minerva
unimiss 0.0000 0.0013 0.0000 0.0002 0.0003 0.0000 0.0007 0.0021 0.0001 0.0000 0.0005 0.0000 0.0004
multimiss 0.0000 0.0016 0.0002 0.0011 0.0089 0.0009 0.0006 0.0009 0.0010 0.0000 0.0011 0.0000 0.0014

Table 13: Miss ratio data, broken down into unimiss (main memory access during uniprocessor mode), mul-
timiss (main memory access during multiprocessor mode), cache2cache (miss serviced by another processor's
cache), and readshare (miss serviced by using data from another processor's fetch transaction) (same data
as in Figure 11).

Relative Number (by Size) of Invalidations (64K Per-Processor Cache, 64-Byte Blocks)
Programs

Protocol Size (bytes)
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Illinois 64 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8-Byte Subblock 8 1.559 4.970 2.934 3.836 3.143 1.340 0.874 1.198 0.494 0.910 1.445 2.426 2.094

16-Byte Subblock 16 1.218 2.688 1.695 2.212 1.929 1.363 0.860 1.074 0.705 1.084 1.246 1.466 1.462

64 0.165 0.008 0.110 0.176 0.165 0.683 0.006 0.036 0.001 0.017 0.009 0.059 0.119
32 0.073 0.009 0.094 0.029 0.368 0.024 0.001 0.038 0.000 0.012 0.004 0.311 0.080

Minerva 16 0.251 2.374 1.100 1.371 0.769 0.019 0.047 0.224 0.198 0.010 0.419 0.477 0.605
8 0.076 0.316 0.178 0.031 0.222 0.062 0.021 0.003 0.001 0.009 0.022 0.040 0.082
4 0.935 0.196 0.228 0.231 0.283 0.073 0.794 0.794 0.202 0.357 0.444 0.241 0.398

Table 14: Number and size of invalidations, relative to the number of invalidations for standard 64-byte
block Illinois protocol, 64K caches (same data as in Figure 12).
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