
An Network Measurement Architecture for Adaptive Applications

by

Mark Richard Stemm

B.S. (Carnegie Mellon University) 1994
M.S. (University of California, Berkeley) 1996

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Randy H. Katz, Chair
Professor Steven R. McCanne
Professor Eric Brewer
Professor George Shanthikumar

1999

The dissertation of Mark Richard Stemm is approved:

Chair Date

Date

Date

Date

University of California at Berkeley

1999

An Network Measurement Architecture for Adaptive Applications

Copyright 1999
by

Mark Richard Stemm

1

Abstract

An Network Measurement Architecture for Adaptive Applications

by

Mark Richard Stemm

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Randy H. Katz, Chair

In today's Internet, the characteristics of the network path between a pair of
Internet hosts can span several orders of magnitude. Some hosts may communicate over
high bandwidth, low latency, uncongested paths, while others communicate over much lower
quality paths. Applications can cope with these di�erences by adapting to network changes:
for example, choosing alternate representations of objects or streams or downloading objects
from alternate locations. For applications to adapt most e�ectively, however, they must
discover the condition of the network path before communicating with distant hosts in
order to make appropriate adaptation decisions. Unfortunately, the ability to determine the
quality of network paths is missing in today's suite of Internet services, and applications
have no way to make informed adaptation decisions.

To address this limitation, we have developed a network measurement architec-
ture called SPAND (Shared PAssive Network Performance Discovery) that enables a new
class of adaptive networked applications. In SPAND, applications make passive application-
speci�c measurements of the network and store the results of the measurements in a per-
domain centralized repository of network performance information. Other applications re-
trieve this information from the repository{thereby leveraging the shared experiences of all
hosts in a domain{and use it to predict future performance. Through SPAND, applications
make more informed decisions about adaptation choices as they communicate with distant
Internet hosts.

In this thesis, we describe the design, implementation, and evaluation of the S-
PAND architecture. We describe and justify the design choices we make in SPAND and
show the strengths and limitations of the architecture when compared to alternate de-
sign choices. We describe how SPAND is
exible and extensible: applications de�ne their
own types of performance measurements and averaging algorithms by providing an Ac-
tive Messages-like interface between SPAND clients and SPAND's repository of network
performance information. We show how measurement noise, the variation associated with
the measurement of a particular network performance statistic, a�ects the granularity of
application-level adaptation decisions. We also categorize and quantify measurement noise
into three components: network noise (variations in the state of the network over small times
scales), sharing noise (variations between the observed performance of nearby clients), and
temporal noise (variations in performance over longer time scales).

2

To illustrate these concepts, we then present two realizations of the architecture
that measure network performance for di�erent types of data transport: a generic bulk
transfer data transport that measures TCP-speci�c performance and a HTTP-speci�c data
transport that more closely measures the way in which web clients use multiple parallel TCP
connections to complete web page transfers. Measurements of the bulk-transfer realization
of SPAND show that SPAND works well at providing relevant, accurate responses to clients:
in the steady state, SPAND can respond to 95% of performance queries with predictions,
and 70% of the time, these predictions are within a factor of two of actual performance (a
discrepancy equal to the network noise inherent in the state of the network).

To validate the SPAND architecture, we built and evaluated two speci�c adap-
tive networked applications: SpandConneg, a suite of applications that use HTTP Con-
tent Negotiation to reduce client and server-side network bottlenecks, and LookingGlass, a
WWW mirror selection tool. By using SpandConneg, web clients can �x download times
by matching content �delity to network conditions, and web servers can handle large num-
bers of clients by reducing document quality under periods of heavy load. LookingGlass
presents a complete solution to the problem of replicating web content at multiple web sites,
addressing the problems of transparently notifying web clients of mirrored content, provid-
ing a mechanism to disseminate mirror information in a distributed way between mirror
locations, and providing algorithms for choosing mirror locations that take actual network
performance into account.

Measurements of these applications show that SPAND dramatically improves the
performance of adaptive networked applications. SpandConneg works well at both the client
and server side of the network. Web clients that use SPAND to trade o� document quality
for download time can reduce the frequency of excessive user-visible (i.e. more than 30
seconds) download times from 35% to less than 10%, and reduce the median download time
from 16 to 6 seconds. Web servers that use SPAND to handle an unexpected burst of clients
can increase their throughput by as much as 450%. LookingGlass performs well despite the
challenges in meeting the dual goals of collecting passive network performance measurements
while maintaining good client repose times. LookingGlass's application-level measurements
and server selection algorithms lead to faster (i.e., factor of 40) web page downloads than
alternate techniques such as relying on geographic location or routing metrics to make server
selection decisions. More than 90% of the time, our technique allows clients to download
mirrored web objects within 40% of the fastest possible download time.

Dissertation Committee Chair

iii

To Mom and Dad,

Mike and DC,

You made this possible.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 The Problem: Enabling Adaptive Applications 1
1.1.1 The Explosive Growth of the Internet 1
1.1.2 Heterogeneity in the Internet . 2
1.1.3 Coping with Heterogeneity through Adaptation 2

1.2 Current Solutions and their Limitations . 4
1.3 Thesis Contributions . 5

1.3.1 SPAND, a Network Performance Measurement Service 5
1.3.2 SpandConneg, a Content Negotiation Application 8
1.3.3 LookingGlass, a Server Selection Service 10

1.4 Dissertation Outline . 13

2 Related Work 15

2.1 Wide-area Network Measurement Tools . 15
2.1.1 Latency and Packet Loss Probability 15
2.1.2 Peak Bandwidth along a path . 16
2.1.3 Available Bandwidth along a path 16
2.1.4 Application-level Response Time . 17
2.1.5 Internet Measurement Architectures 17

2.2 Adaptive Applications . 17
2.2.1 Server Selection Applications . 18
2.2.2 Content Negotiation Applications . 19

2.3 Comparison of Related Work to SPAND . 20
2.3.1 What Metric is Measured? . 20
2.3.2 How is the Metric Measured? . 23
2.3.3 How Much TraÆc is Introduced? . 24
2.3.4 Where is the Service Implemented? 24
2.3.5 Does the Approach use Flow or Congestion Control? 25

2.4 Summary . 25

v

3 Methodology 27

3.1 Introduction . 27
3.2 Network Model and Terminology . 28

3.2.1 Techniques for Grouping Together Distant Hosts 29
3.2.2 Application Classes . 29

3.3 Design Choices in SPAND . 30
3.4 Advantages of Shared, Passive, Application Speci�c Measurements 32

3.4.1 Advantages of Shared Measurements 33
3.4.2 Advantages of Passive Measurements 35
3.4.3 Advantages of Application-Speci�c Measurements 36

3.5 Challenges of Shared, Passive Measurements 41
3.5.1 Measurement Noise and How it A�ects Application-level Decisions . 41
3.5.2 Case Study: One Client-Server Pair 42
3.5.3 Using Trace Analysis to Measure Noise 44

3.6 Applications Best Suited for SPAND . 48
3.6.1 Application-level Adaptation vs. Network Diagnosis 49

3.7 Summary . 50

4 The SPAND Architecture 52

4.1 Components of SPAND . 52
4.1.1 Client Applications . 52
4.1.2 Packet Capture Host . 53
4.1.3 Performance Server . 53

4.2 Messages Between SPAND Components . 54
4.2.1 Basic Message Types . 55
4.2.2 Environment for Active Message Handlers 55
4.2.3 Extensible SPAND vs. Active SPAND 55
4.2.4 Averaging Algorithms to Obtain Typical Performance 56

4.3 Realizations of the SPAND Architecture . 56
4.3.1 Bulk Transfer Application . 56
4.3.2 HTTP Statistics . 59

4.4 SPAND Applications Using TCP/HTTP Metrics 61
4.5 Application-independent Performance Results 62
4.6 Taking Advantage of Daily Cycles to Improve Performance 65

4.6.1 Methodology . 66
4.6.2 Results . 67

4.7 Summary . 67

5 SPAND and HTTP Content Negotiation 69

5.1 Background and Motivation . 69
5.2 Motivating the Problem . 71

5.2.1 Long Response Times at Web Clients 71
5.2.2 Bottlenecks at Web Servers . 72

5.3 How Content Negotiation Works . 74
5.4 IETF Transparent Content Negotiation . 74

vi

5.4.1 Content Negotiation in Apache . 76
5.4.2 Generating Alternate Representations 77

5.5 Using Content Negotiation and SPAND at clients 77
5.5.1 Algorithm . 77
5.5.2 Experimental Methodology . 78
5.5.3 Results . 79

5.6 Using Content Negotiation and SPAND at Servers 81
5.6.1 Algorithm . 81
5.6.2 Experimental Methodology . 82
5.6.3 Results . 83

5.7 Conclusion . 87

6 SPAND and LookingGlass: A Mirror Selection Tool 90

6.1 Background and Motivation . 90
6.2 Existing Solutions to Mirror Selection . 91

6.2.1 Existing Mechanisms for Mirror Advertisement 91
6.2.2 Existing Metrics for Mirror Ranking 91
6.2.3 Existing Algorithms for Mirror Selection 91

6.3 Our Solution: LookingGlass . 92
6.3.1 Mechanisms for Mirror Advertisement 92
6.3.2 Metrics for Mirror Ranking . 94
6.3.3 Algorithm for Mirror Selection . 94
6.3.4 Putting it All Together: Example Object Download 96

6.4 Experimental Methodology . 97
6.4.1 Operating in the Presence of Isolated Infrequent Measurements . . . 98

6.5 Results . 99
6.5.1 Using Median vs. Mean for Ranking Metric 100
6.5.2 Choice of Weighting Function . 100
6.5.3 Choice of Aggressiveness Factor . 101
6.5.4 Choice of Mirror Selection Policy . 102

6.6 Conclusion . 104

7 Conclusions and Directions for Future Work 105

7.1 Conclusion . 105
7.2 General Principles . 108
7.3 Directions for Future Work . 109
7.4 Software availability . 109

Bibliography 111

vii

List of Figures

1.1 Examples of Application Level Adaptation. 3
1.2 Components of SPAND. 7
1.3 Maximum number of clients supported with Surge workload and varying

amounts of Content Negotiation. 10
1.4 Maximum web server throughput with Surge workload and varying amounts

of Content Negotiation. 11
1.5 Example download using LookingGlass. 12
1.6 Likelihood of being within 20% of optimal for various server selection policies. 13
1.7 Likelihood of being within factor of 2 of optimal for various server selection

policies. 14

3.1 Network Model behind SPAND. Local Hosts in well connected domain com-
municate with distant hosts through an Internetwork, the properties of which
are unknown. 28

3.2 The bene�t of sharing. Figure shows the likelihood of up-to-date information
as a function of the time between network state changes. 34

3.3 The e�ect of probe traÆc on scalability. Figure shows requests/second that
mirrors can serve as a function of the number of mirror sites. 36

3.4 ICMP vs. RealMedia Loss Statistics for audioraarc004.audionet.com 38
3.5 Graphical comparison of network and application level loss ratios. 40
3.6 Graphical comparison of network and application level failure ratios. 41
3.7 Scatter plot of throughput from IBM to UC Berkeley over a 5 hour period. 43
3.8 CDF of throughput from IBM to UC Berkeley: initial 30 minutes. 44
3.9 CDF of throughput from IBM to UC Berkeley: Afternoon 30 minute period. 45
3.10 Quantifying network noise. Figure shows likelihood of being more F away

from median performance for a given client-server pair. 46
3.11 Quantifying sharing noise. Figure shows likelihood of being more than F

away from median performance for a given (group of clients,server) pair. . . 47
3.12 Quantifying temporal noise. Figure shows likelihood of being more than

a factor of 2 away from median performance for a given (group of clients,
server) pair for increasing time scales. 48

4.1 Components of SPAND. 53
4.2 SPAND Message Format . 54

viii

4.3 Graphical example of time-to-completion metric. 58
4.4 How SRTT is measured at the packet capture host. 60
4.5 Cumulative number of reports generated and hosts reported about as a func-

tion of time. 63
4.6 Histogram of number of performance reports received per host. The X axis

is on a log scale. 64
4.7 Probability that a performance request can be serviced as a function of the

number of performance reports. 65
4.8 CDF of ratio of expected throughput (as generated by the performance serv-

er) to actual throughput (as reported by the client). The X axis is on a log
scale. 66

4.9 Distribution of number of performance reports for a given distant host when
daily cycles are and are not taken into account. The X axis is on a log scale. 68

5.1 CDF of measured transmission times for pages retrieved by clients at IBM
Research from servers in the Internet . 72

5.2 CDF of measured bandwidth for for transfers between clients at IBM Re-
search and servers in the Internet . 73

5.3 TraÆc generated by di�erent servers under the SpecWeb benchmark. 74
5.4 Sample transaction using transparent content negotiation 75
5.5 Format of a multiple choices response . 75
5.6 Apache mechanisms for retrieving negotiated documents 76
5.7 CDF of measured transmission times for pages that had performance esti-

mates but did not require retrieval of an alternate version. 80
5.8 CDF of transmission times for pages that had performance estimates and

required an alternate version. Retrieval times for the original page and the
alternate version are shown. 81

5.9 Topology for server side experiments . 82
5.10 Unconstrained Apache throughput with and without MultiViews 84
5.11 Bandwidth leaving Apache as a function of number of clients without content

negotiation . 85
5.12 Bandwidth leaving Apache as a function of number of clients with content

negotiation . 86
5.13 Apache throughput with and without content negotiation 87
5.14 Bandwidth leaving Apache when 90% of the bytes come from negotiable

documents. 88
5.15 Apache throughput for varying fractions of negotiable bytes 89

6.1 Distributed algorithm for disseminating mirror information 93
6.2 Example download using LookingGlass. 97
6.3 E�ect of using the mean vs. median to report typical client performance. . 100
6.4 E�ect of choice of weighting function in ranking mirror locations. 101
6.5 E�ect of aggressiveness factor on client performance. 102
6.6 E�ect of choice of ranking metric on performance 103

ix

List of Tables

2.1 Summary of Network Probing Tools and SPAND 21
2.2 Summary of Adaptive Applications and SPAND 22

3.1 Comparison of Application-level and Network-level loss statistics 39

4.1 Accuracy of Performance Responses . 64

6.1 Mirror Locations used for Experiments . 98

x

Acknowledgements

The thing I've been told about a Ph.D. thesis is that the only parts of the thesis
that 98% of people read are the Abstract, Introduction chapter, and Acknowledgments, and
from my own thesis reading experience, this statement is pretty much true (grin). Knowing
this, one would think that I would not forget anyone, but nevertheless, I'm sure I accidentally
left some of the 98% of you out. For anyone who I neglected to thank individually below, I
sincerely apologize and thank you for your contributions. I've tried to order the following
paragraphs chronologically and not in any order of importance, so don't take it personally
if you're mentioned near the end (grin again!).

It's impossible to completely describe how important my family was in a single
paragraph, so I won't even try. Needless to say, they were the most important in
uence
in my life, development, and choice of career path. My parents and siblings were a never-
ending source of support and encouragement at every phase of my education. They always
told me that anything was possible and nothing was impossible. From when they bought
me my �rst Coleco Adam to when they dropped me o� at Donner Hall at Carnegie Mellon,
I knew that they would always be there for me if I needed them. Mom, Dad, Mike, and
D.C., thanks for everything.

My Computer Science career by no means began in 1994 when I entered graduate
school. My deepest thanks to Emil Biga who �rst showed me that Computer Science is more
than playing games on an Apple IIGS and Mathematics is the science of abstraction and
not just solving formulas. It took me almost 10 years to realize why he taught Mathematics
the way he did, and now that I do, I realize that he's way ahead of his time.

My Senior Research project and interactions with Tom Mitchell during my Senior
year at Carnegie Mellon were the driving force behind my decision to enter graduate school.
When I asked him about the advantages of UC Berkeley over other graduate schools or a
job at IBM, he told me that the advantage of graduate school, and especially UC Berkeley,
was that I would learn more from my fellow graduate students than from any job or class,
and he was right.

I also had the privilege of working with the Digital Mapping Laboratory for almost
three years while at Carnegie Mellon. In addition to being my primary source of income
for rent and ramen noodles, I learned a tremendous amount about the research process and
what it was like to work as part of a large research project. Although it seems like most of
the foosball madness happened after I left, I look back at my time there as three years well
spent.

A good advisor makes or breaks one's graduate school experience, and Randy Katz
has been the best advisor that I could have hoped for. He gave me guidance when I was
a young graduate student and gave me freedom as I progressed through the learning and
research process. My weekly meetings with him were never wasted, whether we were talking
about my research, career choices, or neighborhoods to live in San Francisco. He did an
amazing job at running the Daedalus project during the three core years of my stay at UC
Berkeley, and was an excellent instructor for the classes I took from him. Most amazingly,
he did all of this while being Chair of the EECS Department, with all of the additional
work that entailed. No matter how close it was to the conference deadline before we gave
him a draft of a submission, he always read it carefully and gave constructive criticism. At

xi

one of the Daedalus retreats, we de�ned a \Randy" as a unit of productivity analogous to
c as a unit of velocity. It was possible to get close to being as productive as Randy, but
impossible to reach it exactly. Thanks, Randy, you made graduate school worth it.

Srini Seshan should probably be considered my second advisor. He was a co-author
of practically every paper I wrote at Berkeley as well as the source of the idea behind this
thesis. From my �rst days in 443 Soda when I had no idea of how to write PCMCIA device
drivers to this spring when we were working on the �nal conference paper for SPAND,
he was always someone I could turn to to brainstorm, discuss results, help out with trace
collection, or help write software. Without Srini, this thesis wouldn't exist.

I spent the last three summers at IBM Research not only with Srini, but with a
great group of other researchers. Arvind Krishna, Dilip Kandlur, Pravin Bhagwat, David
Maltz, Rick Han, Richard LeMaire, and Erich Nahum were the source of many great brain-
storming sessions and lunchtime conversations about the computer industry and computer
science research. It made IBM not just a good place to work, but a great place to work.

I also worked closely with Hari Balakrishnan and Venkat Padmanabhan for many
of the papers I wrote at Berkeley. I learned as much (or maybe more) about computer
networking from my many discussions with them than I did in my graduate classes. They
represented the high standard to meet when it came to being a computer science researcher,
and I hope I came close to it.

My past and present oÆcemates in 443 Soda{Todd Hodes, Elan Amir, Srini Se-
shan, Hari Balakrishnan, Venkat Padmanabhan, Steve Czerwinski, and Ben Zhao{were
always a good source of stimulating (and sometimes heated) conversation about the com-
puter industry, politics, TCP dynamics, the latest Sigcomm papers, or anything else we
could think of to distract us from work. After looking back at those heated afternoon
conversations, it's a surprise I got anything done at all!

One of the best things about the Ph.D. thesis process at Berkeley is that candidates
receive feedback at the beginning of the thesis proposal phase through a qualifying exam
instead of after the thesis is complete through a thesis defense. Eric Brewer, Steve McCanne,
and George Shanthikumar provided a lot of useful feedback on the thesis proposal that
helped de�ne the thesis, identify the interesting problems to be solved, and the way to solve
them.

I spent my three core graduate school years and wrote my Master's Thesis as a part
of the Daedalus and GloMop projects. The members of these projects were (in alphabetical
order): Elan Amir, Hari Balakrishnan, Eric Brewer, Yatin Chawathe, Armando Fox, Steve
Gribble, Tom Henderson, Todd Hodes, Daniel Jiang, Randy Katz, Giao Nguyen, Venkat
Padmanabhan, Srinivasan Seshan, Brian Shiratsuki, Keith Sklower, Helen Wang, and Tao
Ye. Being a part of this stellar team of researchers was one of the most rewarding parts of
being a graduate student.

The biannual Daedalus/GloMop retreats at Lake Tahoe were a wonderful way to
de�ne our research and present our work to the external research community. The list of
participants is too long to mention here, so I'll give a global thanks to everyone who came
to our retreats. You gave useful feedback on our work and provided useful perspectives
from the external research and industrial communities.

Classes and writing papers are part of the graduate school process, but by no

xii

means the only part. We have to get computer equipment for our experiments, keep the
equipment running, register for classes, and handle the other bureaucratic hassles that are
a part of being a graduate student. Fortunately, I hardly ever had to worry about these
things, because Kathyrn Crabtree, Bob Miller, Terry Lessard-Smith, Kieth Sklower, and
Brian Shiratsuki did an amazing job of hiding the details from me and allowing me to focus
on my work. Thanks to all of you, you allowed me to graduate at least one year earlier than
I otherwise would have.

Although I did work a lot at Berkeley, I had a lot of fun too, mostly due to a
great group of fellow graduate student friends and housemates. Thanks to Eric Vigoda,
Sean Hallgren, Paul Gauthier, Todd Hodes, Daishi Harada, and everyone else at the Santa
Barbara House for all of the great \home oÆce" discussions and generally making our house
a great place to live in. In addition, thanks to all of the members of Alexis{Ketan Meyer-
Patel, Micah Adler, John Byers, Je� Forbes, David Palmer, David Blackston, John Hauser,
David Bacher, Mike Dahlin, Eric Vigoda, Todd Hodes, Randy Keller, Ashu Rege, Tim
Callahan, Daishi Harada, Susan Lee, Paul Gauthier, Matt Welsh, David Simpson, Rich
Fromm, Andrew Swan, Noah Treuhaft, and Ngeci Bowman{for lots of memorable nights at
Jupiter, Barclay's, The Mallard, and other watering holes in the East Bay. I'll never look
at a Winnebago in quite the same way again.

And last, but by no means least, thanks to my girlfriend Becca for putting up
with me during the last six months of thesis writing. She was understanding, patient, and
supportive when I was too busy to spend time with her, and my best friend and companion
at all times, (although the hide-a-bed is a little squeaky). Becca, thanks for being there,
and I hope we're together for a lot longer.

And of course, somebody paid for me while I was here. My research was primarily
supported by DARPA under contract DAAB07-95-C-D154 and an IBM Fellowship. It was
also supported by grants or equipment from Hughes Aircraft, Metricom, Intel, IBM, and
the California MICRO program.

Elan Amir told me when he was writing his thesis that the Acknowledgments were
the most fun to write, and now that I've done it, I agree with him. It's the only opportunity
in my years at Berkeley to thank all of the people who helped make my thesis happen and
my life here more fun, and I'm glad I had the chance to write it all down in one place.
Thank you all.

Mark Stemm
June 1999

1

Chapter 1

Introduction

1.1 The Problem: Enabling Adaptive Applications

1.1.1 The Explosive Growth of the Internet

The Internet is exploding as a communications medium. In the �ve years since
the introduction of the World Wide Web in 1994, the number of Internet hosts has grown
from 2 million to over 40 million and the number of Internet users has grown from 3 million
to 165 million [56] [82] [59]. The Internet has grown faster in these �ve years than the radio
and television markets in their �rst �ve years of widespread use [82]. The radio market
took 38 years to reach 50 million listeners. The television market took 13 years to reach 50
million users. Once introduced to the widespread public, the Internet reached 50 million
users in four years.

With this unprecedented rapid growth, it is worthwhile to examine the reasons why
the Internet has grown faster and been adopted earlier by users than other communication
technologies. Although it might seem at �rst glance to be just luck, this is not the case.
There are deliberate design principles behind the Internet protocol architecture that have
helped contribute to its rapid growth. The two most important of these are that the Internet
architecture is simple, and that the Internet architecture is decentralized.

The Simplicity of the Internet Architecture

One important reason behind the success of the Internet is not in the services it
provides but those it does not provide. The Internet architecture was designed to be simple.
It provides only host addressing and packet routing services. It leaves other services such as
naming,
ow control, congestion control, and resource allocation up to the endpoints of the
network. The minimum requirements that a host must ful�ll to be connected to the Internet
are extremely simple, which in turn allows for tremendous
exibility in how hosts can be
connected to each other through the Internet [15]. A supercomputer with a 45 MBit/sec
Internet connection can communicate with a Personal Digital Assistant (PDA) connected
to the Internet via a 6 KBit/sec link.

2

The Decentralized Internet Architecture

A second important reason behind the success of the Internet is its decentralized
network architecture. The original goal behind this principle was survivability. The Internet
was decentralized to avoid single points of failure. Independent regions of the network can
operate autonomously. This has an unanticipated but important secondary bene�t. A
decentralized network architecture enables rapid expansion of the network infrastructure.
Entire autonomous networks can be built up independently from the Internet for later
interconnection with it.

1.1.2 Heterogeneity in the Internet

Although these design principles have contributed to the rapid growth of the Inter-
net, each of them introduces signi�cant challenges. These come in the form of heterogeneity
that Internet Hosts must overcome to e�ectively communicate with each other. This het-
erogeneity comes in two forms: network heterogeneity and provider heterogeneity.

Because the Internet architecture provides little more than packet routing facilities,
its protocols specify the means by which Internet hosts are connected but not the quality
of that connectivity. There is no automatic mechanism to determine the characteristics
of a remote host's Internet connection. For example, it is diÆcult for the Supercomputer
connected over the 45 MBit/sec link described above to determine that it is communicating
with the PDA over a 6 KBit/sec link. This illustrates an example of network heterogeneity.

In addition, the decentralized network architecture behind the Internet implies
that a packet may traverse a number of di�erent networks, each operated by di�erent
Internet Service Providers (ISP's). The rapid growth of the Internet means that each of
these Internet Service Providers is scrambling to build up their network infrastructure to
keep up with demand. The combination of these two factors means that a packet traversing
the Internet is likely to traverse networks run by di�erent Service Providers with di�erent
levels of maturity and robustness. We call this provider heterogeneity.

The prevalence of network and provider heterogeneity makes it very diÆcult for
applications to determine the network characteristics of the path between two Internet hosts.
The quality of connectivity from one network path to another may span several orders of
magnitude. For example, the available bandwidth along a network path could range from
kilobits to megabits per second, and the latency could range from microseconds to seconds.
A network path could be relatively uncongested with almost no packet loss, or it could be
very congested with almost complete packet loss. As a result, networked applications may
experience order of magnitude changes in Internet performance as they communicate from
one host to another.

1.1.3 Coping with Heterogeneity through Adaptation

Heterogeneity is fundamental to the Internet's architecture, and is likely to in-
crease, not decrease, over time with the introduction of new networked devices such as
Personal Digital Assistants (PDAs), set-top \Internet Terminals", or embedded networked
devices and new network technologies such as wide-area wireless access or consumer broad-
band access. In addition, decentralized control is inherent in the Internet, and there will

3

?vs.

Click here or here to download

Content Negotiation Mirror Selection

User Feedback

Figure 1.1: Examples of Application Level Adaptation.

be di�erent Internet Service Providers with networks of di�ering quality for the foreseeable
future.

One way for applications to cope with changes in network performance that arise
with network and provider heterogeneity is to adapt by measuring the state of the network
and changing their behavior in response to measurements. The idea of adaptation in re-
sponse to network changes is not new. In fact, adaptation at the network layer has been a
part of the Internet Protocols from their inception. TCP, the transport protocol used by
Internet hosts, adapts the amount of data it sends into the network in response to packet
losses and measurements of round trip time. Clients using RTCP [69] to participate in a
multicast session change the rate at which they send Receiver Reports in response to the
number of participants in the session.

In addition to adaptation at the lower layers of the network stack, there are also
adaptation techniques that can be applied at the application layer to cope with changes in
network performance. Examples of these techniques are illustrated in (Figure 1.1):

� Client applications presented with a choice of servers that replicate the same service
can choose the one that o�ers the highest-quality client ! server network path. A
speci�c example of this is Harvest [13] [14] [22], a WWW caching system where a
cache selects one of a number of \peer" caches from which to retrieve a web object.
Another example is mirrored web and FTP sites such as the Internet Movie Database
www.imdb.com or C{Net's www.download.com, which provide multiple locations to
retrieve the same �les but do not provide a way to intelligently choose between them.

4

� Applications that are presented with data types that span a range of content �delities
can choose a particular representation to balance quality against end-to-end download
time. For example, WWW clients can use a transcoding proxy (e.g. Transend [28]) to
change the quality of web objects to match available bandwidth. A client receiving a
multimedia stream can use a real-time transcoding service (e.g. Video Gateway [3],[2])
to change the data rate of a multimedia stream depending on network characteristics.

� Applications can expose the state of the network to the user, providing feedback that
indicates the expected performance to a distant site. For example, web browsers could
insert an informative icon next to a hyperlink indicating the expected transfer time
for the object referred to by the hyperlink. Clients using search engines could post-
process the query results and re-score the documents based on the expected time to
download a page.

However, these examples of adaptation do not completely solve the problems of
network and provider heterogeneity. They provide only bare mechanisms for adaptation and
do not specify the policy that uses the mechanism to improve application-level performance.
The policy could in general be based on several factors, but the most obvious (and e�ective)
policy uses current network performance information, for example, by using estimates of
network performance to determine the appropriate amount of data transcoding.

As a result, these policies need a way to measure the network performance between
local applications and distant hosts. Unfortunately, this ability is missing from today's
suite of Internet services. Applications need a way to measure the state of the network path
between themselves and a particular distant Internet host to drive their adaptation decisions.
Solving this problem and proving its e�ectiveness for building adaptive applications is the
goal of our thesis.

1.2 Current Solutions and their Limitations

Previous attempts at creating network measurement services to drive application
adaptation policies have focused primarily on isolated, active, network-level measurements
of network statistics. By isolated measurements, we mean that applications individually
make measurements of the state of the network and do not share them with other hosts. By
active measurements, we mean that applications introduce probe traÆc into the network to
measure it. By network-level measurements, we mean that applications measure network-
level statistics such as hop count, latency, available bandwidth, etc. as approximations to
actual application-level performance such as perceived web page download time.

However, the design choices used in past approaches have limitations. Isolated
measurements from a single host prevent a client from using the past information of nearby
clients to predict future performance. Recent studies [5] [65] have shown that network
performance from a client to a server is often stable for many minutes and very similar
to the performance observed by other nearby clients, so there are potential bene�ts of
sharing information between hosts. In Chapter 3, we show examples where using shared
rather than isolated information increases the likelihood that previously collected network
characteristics are \valid" by as much as 500%.

5

Active measurements require the introduction of extraneous traÆc into the net-
work. Clearly, an approach that determines the same information with a minimum of
unnecessary traÆc is more desirable. We show in Section 3.4.2 that this unnecessary traÆc
can quickly grow to become a non-negligible part of the traÆc reaching busy web servers,
reducing their eÆciency and sometimes their scalability.

A limitation of network-level measurements is that although metrics such as hop
count, latency, or peak bandwidth may correlate with application-level performance, they
are not guaranteed to always re
ect exactly the metric in which local hosts are interested.
For example, a host may be many network hops away but still perform better in terms
of actual web page download time than a host that is one or two hops away. A distant
multimedia server may have excellent network connectivity, but if the server is down or
overloaded, an application will still observe poor performance in the form of high packet
loss rates or inability to view media clips.

Our solution to the network measurement problem addresses these limitations, as
we describe in the next section.

1.3 Thesis Contributions

The primary goal of this dissertation is to solve the problem of eÆcient network
measurement for use in creating adaptive networked applications. We do this by developing
a network measurement service and then validating the service by creating applications that
use the service and measuring their performance. In particular, the speci�c contributions
we make in this thesis are the following:

� SPAND, a network performance measurement service that can be utilized by Internet
hosts in a local domain.

� SpandConneg, a HTTP content negotiation application that uses SPAND to drive
the choice of data representation at web servers and web clients.

� LookingGlass, a web mirror selection application that uses SPAND to drive the
choice of web server to contact.

We describe each of these contributions in more detail below.

1.3.1 SPAND, a Network Performance Measurement Service

The �rst contribution in this thesis is a network measurement service called S-
PAND (Shared PAssive Network Performance Discovery). SPAND acts as a shared per-
domain repository of network performance information that can be used by all hosts in a
domain. Individual clients in a domain make end-to-end, application speci�c measurements
of network performance. These clients then place the results of these measurements in
the SPAND repository. Later, other clients can make queries of the network performance
information in the repository to estimate the current network performance between the

6

local domain and a particular distant host. This allows a group of hosts to work collec-
tively to obtain timely and accurate network performance information without introducing
unnecessary network traÆc.

The SPAND design re
ects several important design decisions that contrast with
those of previous systems:

� In SPAND, measurements are shared. Hosts explicitly share measurements by placing
them in a centralized per-domain repository.

By using shared measurements, hosts enjoy increased likelihood of having up-
to-date performance information about a distant host, because it takes advantage of the
collective knowledge collected by all hosts in a domain. This can be especially useful when
applications are relatively short-lived and do not keep the information they measure on sta-
ble storage. SPAND provides a centralized persistent repository of performance information
that can be updated and accessed by network clients with similar network connectivity.

� In SPAND, measurements are passive. Instead of introducing traÆc into the network
in the form of probe packets or simulated connections, we rely only on the traÆc that
applications generate as they communicate with other Internet hosts.

The advantage of passive measurements over active probing is that the system
automatically tunes itself. Hosts in a distant domain that interact often with local hosts
generate more traÆc, and as a result, receive more network measurements. Distant hosts
that are unpopular receive less samples. In contrast, active probing requires potentially
complex mechanisms to direct probes towards those hosts that are visited most frequently.
Passive measurements by de�nition do not introduce probe traÆc into the network and as
a result, do not su�er from the limitations of active probing described above.

� In SPAND, measurements are application speci�c. Instead of measuring network-level
statistics such as routing metrics, latencies, or link bandwidths in our system, we rely
whenever possible on application-level measurements such as response time or web
page download time to drive adaptation decisions.

The limitations of network-level measurements as estimates of actual application-
level performance were qualitatively described earlier. In Section 3.4.3, we present one
quantitative example of the di�erence between network-level and application-level measure-
ments. We measure packet loss rates using ping, a network-level measurement tool, and
RealMedia, a streaming media application, and show that there are signi�cant di�erences
between the loss statistics reported by each method.

Although our design choices have signi�cant advantages over alternate design
choices, the use of shared, passive measurements also presents challenges. One such chal-
lenge is coping with measurement noise, the di�erence between predicted and actual perfor-
mance. In this thesis, we show how measurement noise a�ects the granularity of application
level decisions. We separate measurement noise into three categories: network noise, the
variation that is inherent in the network, sharing noise, the variation that results from
inappropriately sharing performance information between hosts, and temporal noise, the

7

Client

Packet
Capture Host

Client

 Data
 Perf. Reports

 Perf Query/
Response

Internet

Performance
Server

Figure 1.2: Components of SPAND.

variation that results from using past out-of-date information to predict current perfor-
mance. In Section 3.5.1, we present measurements of performance for actual clients and
show that of these three components of measurement noise, network noise is by far the
largest contributor. Network noise can increase the variation of measurements by as much
as a factor of two. Sharing noise and temporal noise only slightly increase (less than 10%)
the variation over the amount introduced by network noise.

In Chapter 3, we describe in more detail the advantages and challenges of using
shared, passive measurements of network performance.

Components of SPAND

Figure 1.2 shows in more detail the components of SPAND. SPAND is comprised of
Client Applications, Performance Servers, and Packet Capture Hosts. Client Applications
communicate with distant network hosts and passively measure their performance as they
perform this communication. When the communication session terminates, the application
constructs a Performance Report that summarize the observed performance to distant hosts.
It then sends the performance report to a per-domain Performance Server. Like Domain
Name System (DNS) servers, the location of a performance server is con�gured statically at
the client. Applications that use the same performance report format can take advantage of
the shared experiences of all Clients that communicate with the same performance server.

It may be diÆcult to immediately upgrade all clients to generate their own perfor-
mance reports, so as an aid in deployment, we also use a specialized client called a Packet
Capture Host. A Packet Capture Host snoops on local network traÆc and makes measure-
ments on behalf of clients that do not make measurements on their own. It uses heuristics
to reconstruct application-level transactions from the sequence of packets.

8

After creating performance reports, Client Applications and Packet Capture Hosts
send them to a Performance Server which maintains a centralized database of reports. The
performance server acts as the repository for network performance information and the
per-domain authority to contact to answer questions about network performance. Client
Applications send Performance Requests to the performance server requesting the observed
performance to a distant host. The performance server responds with an application-speci�c
Performance Response that indicates the typical performance seen by clients.

Although the format of performance requests and performance responses could be
arbitrary, many applications use the network in approximately the same way. To standardize
this, we have developed two types of performance report/response combinations that closely
map the way in which many applications use the network. The �rst class of performance
reports describes performance for a Generic Bulk Transfer Application that uses TCP. This
is a network-level measurement, in that it does not capture application-level dynamics and
only measures performance at the transport level. These performance reports measure
TCP-speci�c statistics such as available bandwidth and round trip time. In addition to
these statistics, we also de�ne a new TCP-speci�c metric called Time To Completion that
captures the e�ects of TCP's window growth algorithms on end-to-end response time. Our
measurement of this metric is completely nonparametric; it does not use an analytical model
to describe TCP dynamics. Instead, our measurement of Time To Completion only uses
the actual performance of past connections to make measurements.

The second class of performance reports measures network performance for HTTP
transfers. This metric is an application-speci�c metric in that it captures application-level
dynamics that are not available to a network-level statistic. In particular, it captures the
way a HTTP transfer uses a single TCP connection for multiple HTTP transfers as well as
the way multiple HTTP objects comprise a single web page.

To test the performance of our network measurement service, we present application-
independent (i.e., TCP-speci�c) experiments designed to measure how well SPAND does
at accurately measuring network performance for a collection of local clients. These ex-
periments measure the likelihood that a given performance request can be serviced by our
system and the di�erence between SPAND's prediction of network performance and the
actual performance observed by clients. These experiments show that SPAND does well
on both accounts: SPAND's performance server quickly accumulates enough performance
reports to service more than 95% of the performance requests presented by clients, and the
performance responses to these requests are usually within a factor of 2 of actual perfor-
mance.

A more complete description of the SPAND architecture and application-independent
results are given in Chapter 4.

Once we created the network measurement service, we validate it by creating
applications that use the network measurement service and examining how e�ectively the
applications can use SPAND to improve their adaptation decisions.

1.3.2 SpandConneg, a Content Negotiation Application

The second contribution of our thesis is SpandConneg, a suite of web applications
that use a mechanism in HTTP for Transparent Content Negotiation along with SPAND's

9

network performance measurements to improve application level performance. SpandCon-
neg uses this mechanism in two ways:

� To reduce excessively long download times at web clients, and

� to allow web servers to handle an unexpected burst of requests from a large number
of clients.

We describe this process in more detail below.
HTTP's Transparent Content Negotiation mechanism allows web clients and web

servers to choose among variants of the same web object. In general, these variants can be
di�erent data types, sizes, languages, or of di�ering quality. For example, a text �le may be
available in several languages, an image may be available in several sizes, or a paper may
be available as a postscript document or an HTML page. Transparent Content Negotiation
is a mechanism that allows a client and server to select the most appropriate variant for a
particular client, based on the characteristics, capabilities, and current network and load
conditions at the client or server.

SpandConneg utilizes content negotiation both at the client side of the network
and the server side of the network. In SpandConneg, we store multiple representations of
image objects at web servers and allow web clients to choose one of the representations
based on current network conditions. At the client side of the network, web clients can
use this mechanism to trade between web object quality and a reduced response time. For
example, web clients with low latency and high bandwidth connectivity to a web server can
request full-color, high resolution versions of image objects. A web client with lower quality
connectivity can request black and white, low resolution versions of objects. This allows
web clients to trade web object �delity for reduced object download time.

We also allow web servers to prune proactively the choice of alternate representa-
tions for individual web objects. For example, a web server can choose to hide some of the
alternate representations from web clients when performing content negotiation in response
to client load. For example, a lowly loaded server may serve out full-size versions of web ob-
jects. If the server is suddenly swamped with a large number of clients, it can hide full-size
variants of image objects and force web clients to choose between smaller representations.
As a result, the web server serves out smaller web objects and reduces the load on the
connection between the web server and the rest of the Internet. By carefully manipulating
the choice of possible negotiable variants in response to network load and making a large
fraction of the web server traÆc come from negotiable content, a web server can gracefully
handle a larger number of web clients than it would without content negotiation.

E�ectiveness of SpandConneg

To evaluate the e�ectiveness of client side negotiation, we used a policy that at-
tempts to limit all web page downloads to less than ten seconds. Ten seconds is a heuristic,
chosen as a reasonable upper bound on the amount of time that web users are willing to
wait for web pages to download. Before a web client downloaded a page, it would consult
SPAND to determine the estimated download time for the page. If the estimate indicat-
ed that the page would take more than ten seconds to download, then the appropriately

10

0

50

100

150

200

250

No Negotiation 60% Negotiable
Content

90% Negotiable
Content

M
ax

im
um

 N
um

be
r

of
 C

lie
nt

s

Figure 1.3: Maximum number of clients supported with Surge workload and varying
amounts of Content Negotiation.

reduced-size version of the page was downloaded instead. Using this process, 60% of the
time, SpandConneg was able to reduce download times to less than ten seconds. If no
content negotiation were used, the likelihood of a download time of less than ten seconds
drops to 35%. Our system also reduces the likelihood of extremely long download times.
When clients perform content negotiation, only 10% of the time are clients forced to wait
more than 30 seconds to download a web page. On the other hand, when clients do not use
content negotiation, they must wait more than 30 seconds more than 35% of the time. A
more complete analysis of the client side implementation is presented in Section 5.5.3.

To evaluate the e�ectiveness of server side negotiation, we stressed a widely used
and available web server, Apache, with arti�cially generated client load from Surge [6], a
web request generator. We limited the link between the clients and server to 1.5 MBits/sec
and examined how many clients the web server could support with and without content
negotiation. We also measured the peak server throughput (measured in web operations per
second) with and without the use of content negotiation. More details on the experimental
setup are in Section 5.6.2.

Figures 1.3 and 1.4 show quantitatively the potential bene�ts of this process.
We see that careful use of content negotiation allows a web server to increase their client
population and throughput (measured in objects served per second) by as much as 450%.

1.3.3 LookingGlass, a Server Selection Service

The third contribution of our thesis is LookingGlass, a web mirror selection tool
that takes advantage of SPAND's network performance measurements. LookingGlass is
designed to solve the problem of eÆcient dissemination of mirrored web content. This
problem can be broken down into three subproblems:

11

0
5

10
15
20
25
30
35
40
45
50

No Negotiation 60% Negotiable
Content

90% Negotiable
Content

T
hr

ou
gh

pu
t (

ob
js

/s
ec

)

Figure 1.4: Maximum web server throughput with Surge workload and varying amounts of
Content Negotiation.

� Mechanisms for Mirror Advertisement: There must be a way for web servers to ad-
vertise to web clients where the mirrored content is located.

� Metrics for Mirror Ranking: A web client must decide how to rank the mirror locations
in terms of their quality of connectivity to local clients.

� Mirror Selection Algorithm: Given a ranking, there must be an algorithm for web
clients to select the most appropriate mirror from which to download the object.

Existing solutions to these problems are solved in manual, ad-hoc ways. Mirrors are
usually advertised from a maintained list of hyperlinks on a HTML page. The administrator
of the site must update this list as mirror sites are added and deleted. The user then ranks
the mirror locations based on minimal information such as guesses about geographic location
or hints on the HTML Page. The user then manually selects one of the links on the web
page. This may lead to hotspots or other ineÆcient load balancing between the mirror
locations.

LookingGlass more e�ectively solves the above subproblems in dissemination of
mirrored content. It reuses the HTTP Transparent Content Negotiation framework to
transparently inform web client Browsers of possible mirror locations for web objects. The
user is now no longer involved in selecting a mirror. In addition, LookingGlass uses a
UUCP-like algorithm to eÆciently disseminate mirror information between web mirrors.
The primary site administrator no longer has to manually create a web page that lists the
mirror locations. To rank the mirror locations, web client Browsers use SPAND's network
performance information to rank the mirror locations. This eliminates dependence on crude
hints and instead ranks the sites on the actual past performance of clients. Web clients use
randomization when choosing a mirror to eÆciently spread request load across the mirror
locations and to keep SPAND's passive performance measurements up-to-date.

12

 Data
 Perf. Reports

 Perf Query/
Response

 Mirror Info

LookingGlass
Client

Distant
Mirrors

Performance
Server

1

2

4

3

1

Figure 1.5: Example download using LookingGlass.

Figure 1.5 shows an example web object download using LookingGlass. At the
server side, the collection of mirrors exchange lists of mirror locations for each web object.
At the client side, the process begins when the web client starts to fetch a web object from
one of the mirror locations. The web mirror responds with a list of alternate mirror locations
for the requested objects. Using the list of alternate locations, the client-side LookingGlass
component queries the SPAND network measurement service to obtain estimates of the
download time for each of the mirror locations. Using these estimates, the client-side
component randomly selects a mirror based on SPAND's performance estimates. After
the transfer has completed, the client-side component sends performance reports to the
performance server that indicate the response time for the primary location and (if used)
the backup location.

This description does not include all of the details in the entire selection process.
A more complete description is in Section 6.3.4.

To evaluate the e�ectiveness of LookingGlass, we presented a web client with sev-
eral di�erent locations for mirrored web content and examined which mirror location the
client selected. We then measured the download time for the selected mirror location. As
a basis for comparison, we also measured the download time for all of the other mirror
locations and used the shortest time as a baseline \optimal" choice. We compared Look-
ingGlass's policy of using actual performance information to drive mirror selection against
several alternate policies for mirror selection:

� Using geographic location to approximate good performance. In this approach, the
client chooses a mirror that is closest geographically.

13

� Choosing the mirror that is was the least number of network hops away from the
client.

� Randomly selecting a di�erent mirror for each round.

� Always choosing the primary mirror of the content.

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

Hop
Count

Random Original Geog.
Worst

Geog.
Best

Looking
Glass

Li
ke

lih
oo

d
w

ith
in

 2
0%

 o
f o

pt
im

al

Figure 1.6: Likelihood of being within 20% of optimal for various server selection policies.

Figures 1.6 and 1.7 show the results of this comparison. They show the fraction of
time the download time for a particular mirror was within 20% and within a factor of 2 of
the download time for the optimal mirror, respectively. We see that LookingGlass does as
well as or better than every other policy we considered. In addition, it does a near-optimal
job at �nding the best mirror. The download time is almost always close to the optimal
download time. A more complete description of the analysis of LookingGlass is in Chapter
6.

Together, these three contributions{SPAND, SpandConneg, and LookingGlass{
present a complete solution to enabling adaptive applications through a generalized network
measurement service.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we describe
related work in network measurement tools and adaptive applications in more detail. We
also point out the di�erences between the design choices made by this previous work and the
design choices made in SPAND. In Chapter 3, we discuss in more detail the design choices
made in our system. We also quantitatively show the potential bene�ts of using Shared,
Passive, Application Speci�c network measurements over Isolated, Active, Network Speci�c
measurements. We also describe and quantify the challenges that arise from using Shared

14

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

Hop
Count

Random Original Geog.
Worst

Geog.
Best

Looking
GlassLi

ke
lih

oo
d

w
ith

in
 fa

ct
or

 o
f 2

 o
f o

pt
im

al

Figure 1.7: Likelihood of being within factor of 2 of optimal for various server selection
policies.

Passive measurements by quantifying the amount of measurement noise they introduce into
our performance statistics.

In Chapter 4, we present the core SPAND architecture. We describe the com-
ponents of SPAND and how they communicate. We also describe the types of network
measurements we make in SPAND and the implementation details of making these mea-
surements. We also present application-independent results that show how well SPAND
does at presenting clients with a relevant, accurate view of network performance. We �nd
that SPAND responds to 95% of performance queries with meaningful responses, and that
SPAND's performance responses are usually within a factor of two of actual observed per-
formance (a discrepancy due to inherent network noise).

In Chapter 5, we describe SpandConneg, the Content Negotiation application of
SPAND. We show how SpandConneg utilizes the SPAND measurement service and HTTP's
Content Negotiation mechanism. We also quantify the potential bene�ts of using content
negotiation to improve client-side as well as server-side HTTP performance. We �nd that
web clients that use SPAND can reduce the frequency of excessive download times from
35% to 10%, and web servers that use SPAND can increase their throughput by a factor of
four.

In Chapter 6, we present LookingGlass, the Mirror Selection application of S-
PAND. We describe how LookingGlass uses SPAND to drive its adaptation decisions and
quantify the bene�ts of using network performance information to make intelligent mirror
selection choices. More than 90% of the time, our technique allows clients to download
mirrored web objects within 40% of the fastest possible download time. Finally, in Chapter
7, we conclude and present possible directions for future work in enhancing the performance
of SPAND as well as ideas for new applications of SPAND.

15

Chapter 2

Related Work

The two major contributions of our work are a wide-area network measurement
service and a collection of adaptive networked applications that use this service to drive
their adaptation policies. Each of these contributions builds upon the lessons learned by
existing systems that have similar goals. In this chapter, we describe related work in the
areas of wide-area network performance measurement and adaptive networked applications.
In Section 2.1, we discuss existing tools and architectures for network performance measure-
ment. Then in Section 2.2, we describe the network measurement mechanisms and policies
used by adaptive networked applications. Finally, in Section 2.3, we conclude by comparing
the techniques used in previous work with the techniques used in our architecture.

2.1 Wide-area Network Measurement Tools

Previous work in wide-area network measurement has almost exclusively focused
on active probing, where tools measure the state of the network by injecting probe packets
into the network. The objective of these probes is to measure the latency, packet loss
probability, bandwidth, or other characteristics along the network path from one host to
another. There are too many tools to mention here, and the list of tools is constantly
growing. A more comprehensive and up-to-date listing of network measurement tools can
be found at the CAIDA web site [17]. In the following sections, we present representative
examples of these tools, grouping them by the statistics they measure and describing how
they measure them.

2.1.1 Latency and Packet Loss Probability

Many network measurement tools send periodic round-trip echo probes to a distant
host who then responds back to the recipient. These probes are usually in the form of ICMP
Echo packets, and are called NetDyn probes in [11] [10], Netnow probes in [55], and Fping
[29] probes in Imeter [70].

These tools typically report the round trip time (how long it takes for the probes
to travel to the distant host and back) and the packet loss probability (what fraction of
the probes are dropped along the network path to and from the distant host) statistics for

16

the network path from the local host to the distant host. If a signi�cant fraction of the
probes are dropped or the round trip time for the probes is excessive, this indicates that
the network path between the two hosts is congested.

MINC [16] expands on this technique by using multicast traÆc to a group of
recipients rather than unicast traÆc to a single host. The sender sends probe traÆc into the
network and examines the packet loss and delay statistics at each recipient. In conjunction
with knowledge of the topology of the multicast tree from the source to the recipients, this
allows the sender to determine latency and packet loss characteristics of speci�c internal
links in the network.

2.1.2 Peak Bandwidth along a path

Other network measurement tools send groups of back-to-back packets into the
network and examine the spacing between the packets when they return to the sender.
These are called bprobes in [19] and bing probes in [9]. Bprobes are used in VitalSign's
NetMedic [78] product.

As pointed out in earlier work on TCP dynamics [40], the back-to-back packets are
separated at the bottleneck link either by the link itself or by competing traÆc at the link.
This spacing is preserved on higher-bandwidth links. Out of many measurements, one pair
of packets is likely to traverse the bottleneck link without competing traÆc and the spacing
is due only to the characteristics of the link. By making many probes and measuring the
minimum spacing between the packets when they return, a sender can estimate the raw
bandwidth of the bottleneck link.

Packet Bunch Mode (PBM) [65] extends this technique by analyzing various sized
groups of packets inserted into the network back-to-back. This allows PBM to handle multi-
channel links (i.e., ISDN connections, multi-link Point-to-Point Protocol (PPP) links, etc.)
as well as improve the accuracy of the resulting measurements. Pathchar [41] combines this
technique with the hop-by-hop features of traceroute [74] to measure the link bandwidth
and latency of each hop along the path from one host to another.

2.1.3 Available Bandwidth along a path

Although the minimum spacing between packet pairs can be used to estimate the
raw bottleneck link bandwidth, assumptions about the queuing behavior in the network
are necessary before using the average spacing between packets to estimate the available
bandwidth at the bottleneck link. If routers in the network implement fair queuing, the
packets will be evenly separated at the bottleneck link by traÆc from other
ows and the
packet spacing can be used to estimate a particular
ow's "fair share" of the bottleneck link's
bandwidth [44] [43]. Unfortunately, few routers today implement per-
ow fair queuing, so
this assumption is often wrong in practice.

Other tools measure the available bandwidth along the path between two hosts
by sending simulated connections into the network. Cprobe [19] sends a short sequence of
ICMP echo packets from one host to another as a simulated connection (with minimal
ow
control and no congestion control). By assuming that "almost-fair" queuing occurs over the
short sequence of packets, cprobe provides an estimate for the available bandwidth along

17

the path from one host to another. Combined with information from bprobes, cprobes can
estimate the amount of competing traÆc along the bottleneck link. TReno [47] also uses
ICMP echo packets as a simulated connection, but uses
ow control and congestion control
algorithms equivalent to that used by TCP.

Other approaches measure available bandwidth by making end-to-end measure-
ments between applications. Lawrence Berkeley Lab's Network Probe Daemon (NPD) [65]
provides a mechanism to remotely invoke traceroute or bulk transfer probes from one net-
work host to another. This tool has been used in work on measurement of routing [63] and
TCP [64] dynamics.

2.1.4 Application-level Response Time

Other tools measure application-level metrics such as response time rather than
network-level metrics. Keynote [45] and Servicemetrics [71] are commercial web server
measurement services that periodically fetch pages from a prede�ned list of web servers.
Subscribers, usually the web server administrators, pay for access to the results of the
fetches. Timeit [76] is a free software tool that also measures application-level web response
times.

2.1.5 Internet Measurement Architectures

Other e�orts build upon the tools described above to provide a more generalized
measurement architecture. Paxson et al [66] propose a generalized measurement infras-
tructure that builds upon per-domain Network Probe Daemons. The goal of the Host
Proximity Service (HOPS)/Internet Distance Maps (IDMAPS) [30] [31] [73] is to provide a
global \distance map" between Internet domains. The de�nition of \distance" is designed
to be general, but current instantiations of them rely on routing metrics or round trip
time. Per-domain Tracers initiate probes to distant Tracers to measure domain-to-domain
distances. Tracers then exchange this information with distant Tracers to build a global
distance map.

Work at UCSD uses a similar architecture [80]. The Network Weather Service
uses periodic probes between a number of distributed servers to determine the available
bandwidth to and CPU load on each server. It is somewhat extensible in that a client can
use one of a number of di�erent averaging algorithms to calculate an \average" throughput
or CPU load statistic.

In the next section, we describe how adaptive applications use these and other
network measurement techniques to drive their adaptation decisions.

2.2 Adaptive Applications

Many networked applications are adaptive, making application-level decisions based
on current network and endpoint conditions. These applications usually fall into one of the
following categories: Server Selection Applications that choose a endpoint to communicate
with based on current conditions, and Content Negotiation Applications that choose a data
representation to use based on current conditions. Within these classi�cations, however, the

18

actual performance metrics they use to drive their adaptation decisions vary widely from
application to application.

In this section, we discuss several example Server Selection and Content Negotia-
tion applications and describe the mechanisms they use for adaptation and the performance
metrics they use to drive their adaptation decisions.

2.2.1 Server Selection Applications

In Server Selection Applications, a client is presented with a list of servers that
replicate the same content or provide the same service. The client must then choose one of
the servers based on whatever network or endpoint information that it has available to it.
The mechanisms by which the client is presented with the list of servers and chooses one
of them varies from application to application, as well as the policy that the client uses to
choose one of the mirrors.

Server Selection at Web Servers

Many web server installations consist of a cluster of individual machines and per-
form some amount of load balancing between them. This is a transparent form of Server
Selection, in that the client is unaware or uninvolved in the selection process.

One simple way to perform load balancing between individual machines is to map
the Domain Name System (DNS) name of the web server to multiple IP addresses. The
DNS server for the web server domain performs load balancing by returning one of the IP
addresses in response to a DNS query. Usually, this is done in a round-robin fashion [1]
[42], but more sophisticated techniques take server load into account [53] [67].

Although this technique is usually used to perform load balancing between server
machines that are in close proximity to each other, it is occasionally used to perform server-
side load balancing for distributed web servers. For example, DNS Round Robin was used to
distribute load between web servers in Japan and the United States for the 1998 Olympics
web site [21]. Although the web servers were not geographically close to each other, it
is not a true example of wide-area server selection because this system did not take the
wide-area performance along the path from clients to servers into account. In this case,
the servers in Japan and the United States were connected by a private high-speed network
that e�ectively eliminated wide area considerations.

Server Selection at Web Clients

Other systems perform server selection at the client side of the network instead of
at the server side. This approach has the advantage of o�oading the network measurement
and load balancing processes from an already busy sever complex to the client side of the
network. The disadvantage of a client-side approach is that it is no longer transparent:
applications at the client side of the network, either web clients or per-domain web proxies,
must make network measurements and load balancing decisions. The major di�erence
between the systems described below are the mechanisms used to choose between mirrors
and the measurement techniques used to determine the \best" server to contact.

19

Carter et al. at Boston University [18] use cprobes and bprobes to classify the
connectivity of a group of candidate mirror sites. They also contrast the use of bprobes and
cprobes against alternate metrics for mirror selection such as hop count, showing that hop
count is a poor predictor of actual performance. IPV6's Anycast [35] [62] service provides
a mechanism that directs a client's packets to any one of a number of hosts that represent
the same IP addresses. This service uses routing metrics as the criteria for server selection.
Cisco's DistributedDirector [23] product relies on measurements from Director Response
Protocol (DRP) servers to perform eÆcient wide area server selection. The DRP servers
collect Border Gateway Protocol (BGP) and Interior Gateway Protocol (IGP) routing ta-
ble metrics between distributed servers and clients. When a client connects to a server,
DistributedDirector contacts the DRP server for each replica site to retrieve the informa-
tion about the distance between the replica site and the client. Work at the university of
Colorado [33] focuses on ways to use topology and hop-count probes to locate and select
the closest server using hop count and latency metrics. The primary focus of this work was
measuring the number of hosts contacted before a replica of a given service was found.

Harvest [13] [14] [22] uses round-trip latency to identify the best peer cache from
which to retrieve a web page. Requests are initiated to each peer cache, and the �rst to
begin responding with a positive answer is selected and the other connections are closed.
Other proposals [34] rely on geographic location for selecting the best cache location when
push-caching web documents.

Work at Georgia Tech [24] details an implementation of application-level anycast-
ing [8] in the context of wide-area replicated server selection. This approach uses per-
domain application-level probing clients that make periodic probes to replicated servers in
conjunction with server pushes of load information. Clients can consult the probing client
to determine the current connectivity to distant hosts.

2.2.2 Content Negotiation Applications

In Content Negotiation Applications, applications have a choice of data repre-
sentation to use when communicating with distant hosts. The goal of these applications
is usually to keep response time or performance �xed at the expense of content �delity.
Particular applications di�er in the mechanisms they use to present these di�erent data
representations and the policies they use to choose one representation over another.

HTTP's Transparent Content Negotiation mechanism [38] provides a way for web
servers to present multiple representations of web objects and a way for web clients to
choose between them. However, this provides only a mechanism and leaves the policy of
which representation to choose completely unspeci�ed. Odyssey [58] [57] focuses on a �le-
system oriented mechanism for content negotiation, providing multiple data representations
at the �le system level and an API that allows applications to specify adaptation policies.
Adaptation is based on isolated passive measurements of per-path bandwidth and latency.

In Transend [28] [26], web clients can use a transcoding proxy [28]) to change the
quality of web objects to match available bandwidth. A �xed number of representations are
available for transcodable web objects such as images, and clients manually choose one of the
representations to receive from the web proxy (an example of a static policy). In this appli-
cation, there is no feedback loop from the client to the proxy to drive dynamic adaptation.

20

A similar system was developed at Columbia University [83]. In this system, clients could
insert customized content �lters into proxies on the other side of a low-bandwidth links.
Example �lters did lossless (gzip) as well as lossy (multimedia frame dropping) compression
of data on a per-connection basis.

A client receiving a multimedia stream can use a real-time transcoding service
such as a Video Gateway [3][2] to change the data rate of a multimedia stream depending
on network characteristics. Again, the representation is manually chosen by the client, and
there is no feedback loop between the client and the transcoding service.

RealMedia [68] player applications have a limited form of content negotiation func-
tionality. A multimedia clip at a RealMedia server can be available at one of a number of
bitrates. While downloading and playing a streaming media clip, the RealMedia player mea-
sures the current packet loss rate. If this loss rate is high due to limitations of the player,
network path, or RealMedia server, it instructs the RealMedia server to switch mid-stream
to a lower bitrate representation.

In the next section, we compare these past e�orts in network measurement tools
and adaptive networked applications with our work.

2.3 Comparison of Related Work to SPAND

Tables 2.1 and 2.2 summarize the previous work in the areas of network measure-
ment tools and adaptive networked applications. In this section, we compare this related
work with our system along several axes that we feel are important design decisions to make
when designing network probing systems.

2.3.1 What Metric is Measured?

One factor to consider is the actual metric that is measured. Some approaches mea-
sure packet loss statistics, round trip time, peak bandwidth, routing metrics, or geographic
location and use them as approximations to application-level response time. In contrast to
these approaches, SPAND allows applications to directly measure application-level statistics
such as response time and use these measurements to drive adaptation decisions.

This di�erence is important because these network-level statistics are often poor
estimates of application-level completion time. Latency and packet loss measurements are
usually used only to determine if the path to a given host is extremely congested. Peak
bandwidth measurements only give an upper bound on the performance that a client will
see. Past work has shown that hop count and geographic location are poorly correlated with
available bandwidth [18] [51]. In addition, in Chapter 6, we present results for LookingGlass,
a server selection tool that uses SPAND's measurements to choose one of a number of servers
that replicate the same content. We �nd that metrics such as hop count and geographic
location are poor predictors of good performance as compared to application-level response
time.

By measuring application-level response time, we avoid these problems and ensure
that applications measure (and receive information about) the characteristics they are most
interested in.

21

System What metric How metric Additional Where Flow/
is measured is measured traÆc deployed congestion

introduced control?

NetDyn/ Per-path latency, Arti�cially Signi�cant Each No
NetNow/ packet loss prob. generated (�10K) client
Fping probes
MINC Per-link latency, Arti�cially Signi�cant Group of No

packet loss prob. generated (�10K) clients
Bprobe Peak bottleneck Arti�cially Little Each Only 2

bandwidth generated (�1K) client packets
Bing,Packet Peak bottleneck Arti�cially Signi�cant Each No
Bunch Mode bandwidth generated (�10K) client
Pathchar Hop-by-hop peak Arti�cially Signi�cant Each No

bandwidth, latency generated (>10K) client
Packet Pair Available Arti�cially Little Each Only 2

bottleneck generated (�1K) client packets
bandwidth

Cprobe Available Arti�cially Signi�cant Each No
bottleneck generated (�10K) client
bandwidth

Treno Available Arti�cially Signi�cant Each Yes
bottleneck generated (�10K) client
bandwidth

Network Available Arti�cially Signi�cant Client and Yes
Probe bandwidth, generated (>10K) server
Daemon hop-by-hop from domain(s)

route taken application
Keynote, Application- Non-live from Signi�cant Internal Yes,
Servicemetrics level application (>10K) Network uses

response time TCP
Timeit Application- Non-live from Signi�cant Each Yes,

level application (>10K) Client uses
response time TCP

HOPS/ Global per-path Arti�cially Signi�cant Client and No
IDMAPS latency and generated (�10K) server

packet loss prob from domain(s)
application

Network Application-level Non-live from Signi�cant Client and Yes,
Weather response time, application (�10K) server uses
Service server load domain(s) TCP

SPAND Application-level Live from Little (perf Each client Whatever
stats e.g. response application reports and and client-side application
time queries) domain does

Table 2.1: Summary of Network Probing Tools and SPAND

22

System What metric How metric Additional Where
is used for is measured traÆc deployed
adaptation introduced

Round None Static None Server
Robin DNS (static) domain
Load Server Live from Little (Load Server
Balancing load application queries and domain
DNS responses)
IPV6 Routing Live from Little (routing Internal
Anycast metric application data and queries) Network
Cisco Routing Live from Little (routing Client domain
Distributed metric application queries and and internal
Director responses) network
Univ of Routing Live from Signi�cant, Each client
Colorado Metrics application (if clients measure) and internal

little network
(if anycasting used)

Harvest End-to-end Live from Little Internal
latency application (�1K) network

Harvard Geographic Static None Server side,
location (static) internal

network
Georgia Tech Application- Non-live from Signi�cant Each client

level application (>10K) and client-side
response time domain

HTTP Unspeci�ed Unspeci�ed Unspeci�ed Client and
Content server
Negotiation side
Odyssey Per-path Live from None Each client

bandwidth, latency application (all at client)
TranSend/ None Static None Client-side
Columbia/ (static) domain
Video Gateway
RealMedia Packet Live from None Each

loss application (all at client) client
prob

SPAND Application-level Live from Each Client
stats e.g. response Application reports and and Client-side
time queries) domain

Table 2.2: Summary of Adaptive Applications and SPAND

23

2.3.2 How is the Metric Measured?

Another important consideration to consider is how the system makes its mea-
surements of the network. Even if a system measures an application-level metric, it may do
so in a way that is di�erent than the way in which an application would measure the same
metric. For each system described above, we placed it in one of the following categories that
describe how close the system's measurement of a metric is to an actual application's mea-
surement of the same metric. Moving down the list, each category becomes progressively
closer to live measurement by actual applications.

� Static: The approach relies on static information that is not dynamically measured
at all.

� Arti�cially Generated: The technique uses arti�cially generated traÆc that may be
treated di�erently by the routers or endpoints in the network (for example, ICMP
packets).

� Arti�cially Generated from Application: Application-to-application traÆc is used to
measure performance, but the application is not one that is actually used by clients
(for example, TCP sink or chargen ports).

� Non-live from application: These systems use a "typical" workload from actual appli-
cations. This workload must be determined in advance.

� Live from application: Actual application level performance statistics as they are
experienced by clients are used to measure performance.

By examining the summary of previous work, we see that most of it uses arti�cially
generated traÆc for network measurements. In particular, many network measurement tools
use ICMP traÆc to measure packet loss and round trip time statistics. The advantage of
this approach is that it eases deployment: most hosts respond to ICMP Echo requests, so
by using ICMP traÆc, no changes are required to distant hosts. However, ICMP traÆc is
sometimes treated di�erently by routers in the network than application-level traÆc. We
show a detailed example of this in Section 3.4.3, where ICMP traÆc is blocked by a �rewall
in the network, leading to incorrect loss rate measurements.

A few systems use arti�cially generated traÆc from an application. This does not
su�er from the above limitations, but the disadvantage of this approach is that it does not
measure application-level bottlenecks that may limit actual application-level performance.
For example, the connectivity to a distant domain may be good, but if a web server is down
or overloaded, an application will still see poor performance.

Some systems use arti�cial workloads to drive application-level \robots". This
captures application-level bottlenecks, but works well only if the workload closely tracks
real applications' usage of the network. For example, if clients visit sites that are not
included in the arti�cial workload, those clients will not have any network measurement
information to use in making adaptation decisions.

Some systems use live measurements of hop count or server load metrics to drive
adaptation decisions. Although using live measurements is the best possible way to measure

24

these metrics, hop count metrics correlate poorly with application-level response time, and
server load does not take wide-area performance into account at all.

Of all the systems described above, only Odyssey, Harvest, RealMedia, and SPAND
use live application measurements of meaningful statistics to drive adaptation decisions.

2.3.3 How Much TraÆc is Introduced?

Another factor to consider is the amount of additional traÆc that must be intro-
duced to make and report network measurements. This is important because the additional
traÆc introduced to perform measurements is not directly used by any application, and
would signi�cantly decrease the goodput of the network if all hosts independently probed
the network before each connection.

From looking at the summary of previous work, we see that many tools introduce
signi�cant amounts of probe traÆc into the network. For example, pathchar sends at least
tens of kilobytes of probe traÆc per hop, and a cprobe sends 6 kilobytes of traÆc per
probe. This amount of probe traÆc is a signi�cant fraction (approximately 20%) of the
mean transfer size for many web connections ([4] [5] [32]) as well as a large portion of the
mean transfer size for many web sessions. If clients individually used these tools to probe
the network, they would quickly overwhelm web servers with probe traÆc. We present a
more quantitative example of this in Section 3.4.2, showing that active probing can limit
the scalability of a distributed web server system.

In contrast, SPAND introduces a minimal amount (approximately 100 bytes per
connection) of additional traÆc into the network in the form of small performance reports
and queries. In addition, all of this traÆc is con�ned to the local domain and none of it
traverses the wide-area network.

2.3.4 Where is the Service Implemented?

Another design choice to consider is where the system must be deployed. A mea-
surement service that is deployed only at the endpoints of the network is easier to maintain
and deploy than one that requires support from the internal network infrastructure. In
addition, a system that is deployed only at the client side of the network is easier to deploy
than a system that relies on client and server side components. From the summary, we see
that many systems depend on server side or internal network support. Some approaches
such as the Network Probe Daemon depend on the deployment of probing hosts at both
endpoints of the network. Others systems such as Cisco's DistributedDirector depend on
the ability to listen to internal routing metrics, which can present signi�cant administrative
challenges in a heterogeneous network where backbone networks are administered by dif-
ferent entities than endpoint networks. Systems such as Keynote and Servicemetrics are in
practice deployed in the internal network to make accurate measurements only of the path
from the internal network to a particular web server.

SPAND, however, does not depend on any support outside the local client's do-
main. To deploy our system, a domain must simply install a performance server (and
optionally a packet capture host) and con�gure applications to use these services. This

25

makes it easy to gradually deploy this service in a heterogeneous, distributively managed
network like the Internet.

2.3.5 Does the Approach use Flow or Congestion Control?

Another consideration is whether or not the network probing algorithm uses
ow
and congestion control while making measurements. This is important for two reasons:

� Approaches that do not use such mechanisms are less likely to accurately re
ect actual
application performance, because many reliable transport protocols today (i.e., TCP)
do implement
ow and congestion control.

� If many Internet hosts use tools without
ow or congestion control, routers and end-
points may quickly become swamped with probe traÆc, leading to persistent conges-
tion.

Most network probing algorithms do not exploit
ow or congestion control. Rela-
tively harmless examples include the NetDyn/NetNow/Fping tools. These send small ICMP
packets at a rate of once per second regardless of congestion. This is intentional: usually
these tools measure packet loss as an indicator of congestion. A more harmful example is
cprobe, which deliberately sends kilobytes of data into the network at a rate faster than
the bottleneck link of the network. If every client used cprobe to probe the network before
initiating a transfer, the likelihood of congestion would be signi�cantly increased.

In contrast, SPAND makes passive measurements, relying on application to appli-
cation traÆc for network measurements. As a result, any lack of
ow or congestion control
is due to applications and not our system.

2.4 Summary

In this chapter, we have presented a summary of past e�orts in network measure-
ment tools and adaptive networked applications. Previous work in individual network mea-
surement tools has measured network-level characteristics such as packet loss rate, round
trip time, and peak and available bandwidth, both on a per-path and per-hop basis. Other
tools make application-level measurements that capture the performance of the entire end-
to-end, client-to-server system. Other e�orts have focused on using these tools to deploy
global network measurement infrastructures.

Previous work in adaptive applications has focused primarily on developing the
mechanisms for adaptation, with less attention to the policies that drive these mechanisms.
These mechanisms can be divided into server selection mechanisms, where applications
choose between a number of hosts that replicate the same content or service, and content
negotiation mechanisms, where applications choose a data representation to use based on
current network conditions.

We also compared the design choices made by these past e�orts with the design
choices made in our system. From this comparison, we found that the signi�cant shortcom-
ings of many existing network performance discovery and adaptive applications are:

26

� Isolated Measurement: Using measurements from a single host to characterize the
state of the network.

� Active Measurement: The introduction of traÆc into the network in order to measure
it.

� Lack of Application-level Measurement: The use of metrics such as hop count, laten-
cy, and geographic location as imprecise estimates of actual end-to-end application
performance.

We discuss these shortcomings further in the next chapter by examining in detail
the design choices made by SPAND (Shared, Passive, Application-speci�c measurements)
as well as the advantages and disadvantages of these design choices over alternate design
choices.

27

Chapter 3

Methodology

3.1 Introduction

In this chapter, we discuss the network model and assumptions that underlie our
work, and how this leads to the three major design choices that we make in SPAND: shared,
passive, application-speci�c measurements. In Section 3.4, we discuss both qualitatively and
quantitatively the advantages of these choices over alternate design choices. To show the
advantage of shared measurements, we analyze access patterns of web clients from a client-
side packet trace and �nd that sharing performance measurements can signi�cantly increase
(from less than 50% to over 80%) the likelihood of having relevant performance information.
To demonstrate the advantage of passive measurements, we present an example where the
use of active measurements decreases the throughput of a mirrored web server complex
by as much as 100%. To illustrate the advantage of application-level measurements, we
contrast simultaneous network and application level measurements of packet loss statistics
and present an example where network level tools consistently overestimate the likelihood
of packet loss due to a lack of knowledge about application level behavior.

We then discuss the challenges that arise from the use of shared, passive, applica-
tion speci�c measurements. These manifest themselves by adding measurement noise which
limits the granularity of application adaptation choices. We divide measurement noise in-
to three components: network noise, the variation that is inherent in the network, sharing
noise, additional inaccuracy that results from inappropriately sharing performance informa-
tion between hosts, and temporal noise, the result of using past out-of-date information to
predict current performance. In Section 3.5.1, we present experiments designed to quantify
the contribution of each component to measurement noise. We �nd that network noise is by
far the largest contributor to measurement noise and limits the granularity of adaptation
decisions to coarse grained (order of magnitude) decisions.

Finally, we conclude the chapter by discussing which classes of applications bene�t
most from using SPAND and which which will not.

28

Connectivity
 ???

Wide-Area Internetwork

Local
Host

Distant
Host

Good
Connectivity

Good
Connectivity

Good
Connectivity

Good
Connectivity

Good
Connectivity

Figure 3.1: Network Model behind SPAND. Local Hosts in well connected domain commu-
nicate with distant hosts through an Internetwork, the properties of which are unknown.

3.2 Network Model and Terminology

In this section, we present the network model that is behind our work and the
terminology that will be used throughout the rest of the thesis.

Our network model is summarized in Figure 3.1. The network is abstracted into
domains of relatively high-bandwidth, low-latency, uncongested connectivity, each connect-
ed by a wide-area internetwork. The properties of the network path between these domains
are unknown, but are usually an order of magnitude lower quality (i.e., lower bandwidth,
higher packet loss rate) than intra-domain paths. In addition, the quality of a wide-area
path can vary widely from path to path. A domain is the basic unit of performance sharing
in SPAND. All hosts in a domain cooperate to share information about the state of wide
area paths between domains.

Although the above description de�nes what a domain is, it does not specify exactly
what collection of Internet hosts comprise a domain. For a group of hosts to be in the same
domain, the following requirements must be met:

� The hosts in the domain should have the same connectivity to other distant Internet
hosts. This could be because they share the same bottleneck link to the rest of the
Internet (for example, their wide-area connection to the Internet).

� Hosts should be under control of the same administrative entity. The reason for this
is that the collection of hosts share performance information by placing it in a per-
domain repository, as described further in Chapter 4. With the hosts under control of
the same administrative entity, this eases the process of administering the repository.

Given these two requirements, we can more formally state that a domain is com-
prised of the largest collection of hosts that meet these two criteria. For example, at UC
Berkeley there is a domain consisting of all hosts under the administrative control of UC

29

Berkeley that connect to the Internet via local area networks (LANs). Note that this do-
main explicitly excludes Berkeley hosts that connect to the Internet via dial-up modem
connections, because the two groups of hosts do not share the same bottleneck link.

3.2.1 Techniques for Grouping Together Distant Hosts

Hosts in a local domain are explicitly grouped together by placing their network
performance information in the same repository. This is described in more detail in Section
4.1. However, there is no mechanism by which local hosts can determine the domain to
which a particular distant host belongs. We considered using several heuristics to group
together distant hosts:

� Relying on measurements of network topology such as traceroute probes to determine
the topology of distant domains.

� Relying on the structure of addresses to group distant hosts. For example, assume
that two hosts with IP addresses di�ering only in the last octet are on the same subnet
and as a result have similar connectivity.

� Performing Domain Name System (DNS) lookups from IP addresses to domain names
and using domains to group together distant hosts.

Each of these heuristics has limitations. The �rst approach requires building a
topology map of the entire Internet from the viewpoint of the local domain, and clearly
introduces a signi�cant load on the network. The second reduces this problem to some
degree by relying on the structure of IP addresses instead of traceroute probes. However,
both approaches only determine topology (i.e., hosts A and B are k network hops away from
each other) but do not determine similar connectivity (i.e., hosts A and B share the same
bottleneck link). The third approach assumes that hosts in the same DNS domain will have
similar connectivity. This is often not the case. For example, using this technique, modem
hosts and LAN hosts in UC Berkeley would be grouped together into a single domain, even
though they have very di�erent connectivity.

Because of these limitations, we chose to consider distant hosts independently
and not perform any grouping of distant hosts into distant domains. This conservative
technique limits the degree of performance information sharing to local hosts in a domain,
but is guaranteed to avoid mistakenly grouping together hosts with di�ering connectivity.

In summary, under this network model, the goal of SPAND is to measure the
application-level network performance along the path from hosts in a local domain and a
particular host in a distant domain and make that performance information available to
applications in the local domain.

3.2.2 Application Classes

The network model described above speci�es how the organization of the network
de�nes the set of clients that share performance information, but not how application-
level behavior further limits the set of applications that can e�ectively share performance

30

information. This is important to consider because not all applications use the network in
the same way, and as such, there is a need to separate applications into classes of equivalent
functionality.

As an example of this, consider the various abstractions that a TCP connection
provides (
ow control, congestion control, and reliability) and the ways in which di�erent
applications utilize these features of TCP connections. Some applications (such as web
browsers and FTP programs) use TCP connections for bulk transfers and depend on the
reliability,
ow control, and congestion control abstractions that TCP connections provide.
Applications such as telnet primarily use TCP connections for reliability and not for
ow
or congestion control. Other applications such as RealAudio in TCP mode use TCP con-
nections for di�erent reasons such as the ability to traverse �rewalls.

The network performance metrics reported by di�erent applications may vary
widely depending on the application. For example, available bandwidth metrics from telnet
applications are not likely to be meaningful to bulk transfer applications. Streaming media
applications typically send data at a �xed rate, so they have little need of an available
bandwidth metric, other to determine that the rate they plan to use can be supported by
the network.

With this in mind, we de�ne an Application Class to be all applications that use
the network in a similar way with respect to the performance they observe, and as a result,
can meaningfully share network performance information. Just as network location groups
a client into a sharing domain, the choice of application groups a client into a particular
application class that best describes their desired performance. In Chapter 4.3, we present
several sample application classes.

With this in mind, we can restate the goal of SPAND as: for applications in
same application class, to measure the application-level network performance along the
path from clients in a local domain and a particular host in a distant domain and make
that performance information available to applications in the local domain.

In the next section, we show how the network model and terminology described
above leads to the design choices we make in SPAND.

3.3 Design Choices in SPAND

Our architecture incorporates several important design choices that o�er signi�cant
advantages over alternate approaches:

� Our measurements are shared. Hosts cooperate by placing their individual measure-
ments of network performance in a centralized per-domain repository.

The decision to use shared measurements follows directly from the network model.
If two hosts in a local domain have high-quality connectivity to each other and lower-
quality connectivity to some distant host, they can share performance information because
it is likely that they share the same bottleneck link with respect to the distant host.

An alternate design choice rather than a shared measurement approach is for
each host to independently measure and store the characteristics of the network. Many of
the network measurement systems described later in this section use this approach. The

31

advantage of shared measurements is that they increase the likelihood that a host will
have up-to-date performance information about a distant host, because it can leverage
the collective knowledge of all hosts in an domain. This can be especially useful when
applications are relatively short-lived and do not keep the information they measure on
stable storage. In SPAND, we provide a centralized persistent repository of performance
information that can be used by all hosts in an domain.

� Our measurements are passive. Instead of introducing traÆc into the network in
the form of probe packets or simulated connections, we rely only on the traÆc that
applications generate as they communicate with other Internet hosts.

We decided to use passive measurements instead of active probing because this
allows us automatically to measure performance for popular distant hosts. Distant hosts
that interact often with local hosts will generate more traÆc, and as a result, receive more
network measurements. Those that are unpopular will receive less samples. If we were to
use active probing instead, we would have to determine how often to probe distant hosts
and make sure that we were probing hosts that were actually being visited.

Another advantage of using passive measurements over active probing is that by
making passive measurements, clients do not introduce arti�cial probe traÆc into the net-
work. This probe traÆc can sometimes total tens of kilobytes, as in the case of Cprobes
[18], Packet Bunch Mode [65], or Pathchar [41]. This traÆc is not directly used by any
application and would signi�cantly decrease the goodput of the network if all hosts inde-
pendently probed the network before each connection. We present an example of this in
Section 3.4.2.

� Our measurements are application speci�c. Instead of measuring network-level statis-
tics such as routing metrics, latencies, or link bandwidths in our system, we rely
whenever possible on application-level measurements (i.e., response time, web page
download time) to drive application decisions. Each application independently de�nes
its own measurement of network performance and tags its information with the type
of application that measured it.

Many existing systems rely on imperfect metrics to make application-level deci-
sions. Systems such as IP Anycast [62], Cisco's DistributedDirector [23], and work at the
University of Colorado [33] rely on routing metrics for server selection. Harvest [13] [14]
depends on round trip time to choose the best peer WWW cache. Work at Harvard [34]
relies on geographic location to disseminate web documents. Other frameworks are more
general but current instantiations of them rely on routing metrics [31] or round trip time
[73]. Some approaches, such as Packet Pair [44] [43], measure available bandwidth but make
assumptions about the queuing discipline in the network.

Although these metrics may correlate with application-level performance, they are
not guaranteed to always re
ect exactly the metric in which local hosts are interested. For
example, a host may be many network hops away but still perform better than a host that is
one or two hops away. A distant RealMedia server may have excellent network connectivity,
but if the RealMedia server is down or overloaded, an application will still observe poor
performance.

32

Even in cases where \robots" initiate application-level transfers such as work from
Georgia Tech [8] [24] or UCSD [80], care must be taken to assure that application-level
transfers accurately re
ect the usage patterns of actual clients. The transfers they initiate
may be too long or too short, they may download a di�erent set of web pages than actual
applications, or the spacing between transfers may not re
ect an actual user's \think time".

By making passive application-level measurements, we track actual communication
patterns and as a result automatically make measurements for the hosts that are accessed
most often and that most closely matches actual application level performance.

� Our system is extensible. Our architecture makes it very easy to integrate new appli-
cations and ways to measure the network into SPAND.

Because our system utilizes application-speci�c measurements whenever possible,
we cannot predict in advance all possible applications that may wish to use SPAND to
measure and store network performance information. Rather than providing only a limited
set of network performance metrics such as bandwidth, latency, packet loss probability, etc,
we also present a more database-style API to applications where application classes can
specify their own network performance report formats. This does not mean, however, that
we should not measure and store basic performance metrics such as bandwidth and round
trip time. Applications that do not want to measure their own performance can rely on
these basic metrics to make application-level decisions.

Many of the systems described in Chapter 2 use some, but not all, of the same
design principles as in SPAND. For example, many systems share network performance
information by designating a single host to make active probes on behalf of a number of
clients. Others passively listen to routing table exchanges to determine routing metric
(network-level) information. However, of the systems described above, only SPAND uses
all of the design principles that are important in an architecture for supporting adaptive
applications.

In the next two sections, we present more quantitatively the advantages of us-
ing shared, passive, application-speci�c measurements over isolated, active, network-level
measurements and the challenges that arise from using shared, passive, application-speci�c
measurements.

3.4 Advantages of Shared, Passive, Application Speci�c Mea-
surements

In this section, we discuss in more detail the advantages of shared, passive, appli-
cation speci�c measurement over isolated, active, network-level measurements. We do this
by comparing each design choice with its alternative in turn and showing quantitative re-
sults that highlight the bene�ts of using shared, passive, application speci�c measurements
over isolated, active, network-level measurements.

33

3.4.1 Advantages of Shared Measurements

As described in Section 3.1, if two hosts are in the same domain, they share
the same bottleneck link with respect to a distant host. As a result, the network-level
measurement characteristics to this host are likely to be similar [5]. Using shared rather than
isolated measurements allows clients to increase the likelihood of having up-to-date network
performance information because they can combine their independent measurements of
performance together into a larger, more comprehensive collection of information about a
distant host.

To quantify the e�ectiveness of sharing measurements across a domain, we exam-
ined Internet usage patterns by analyzing client-side web traces and extracted the time at
which individual web clients contacted individual web servers. From these, we compared
the \freshness" of network performance information for a particular web server under two
scenarios:

� When clients rely only on their own measurements for information about a distant
host, and

� when clients rely on the collective measurements of the group of clients for information
about a distant host.

More formally, for a single web server, we represent the list of contact times from a
single client (or a shared collection of clients) as a sequence (t1, t2, ..., tn). If the di�erence
between ti+1 and ti is small (less than ten seconds), we merge the events into a single web
browsing \session." Clearly, the �rst arrival is never up-to-date due to a lack of any past
information. In addition, we assume that the time between signi�cant network changes is
a �xed value D. Under this assumption, if ti+1 � ti > D, then the client does not have up-
to-date information on performance characteristics. If ti+1 � ti < D, then the information
is up-to-date. As mentioned previously [5] [65], a conservative value for D is on the order
of tens of minutes.

To quantify the bene�ts of sharing, we chose di�erent values for D and used the
above model to count the number of times network performance information was up-to-
date and was out-of-date under each scenario (sharing vs. isolated) and then compared the
results.

Figure 3.2 shows the results of this analysis for a particular client-side trace con-
sisting of 404780 connections from approximately 600 modem users over an 80 hour time
period [77]. This packet trace was collected by placing a machine on the local area network
between the modem users and the rest of the Internet. After the trace was collected, it was
post-processed to determine the distant host that was accessed and the time at which the
distant host was accessed.

In the �gure, the x-axis represents the time D (in seconds) between network
changes, and the y-axis represents the fraction of time that network performance infor-
mation was up-to-date, using the techniques described in the previous section to calculate
up-to-date and out-of-date arrivals. There are two curves in the �gure: the upper curve
represents the fraction of time that network performance information was out-of-date if no
sharing between clients is performed, and the lower curve represents the number of probes

34

Time between network changes D

Li
ke

lih
oo

d
of

 o
ut

 of
 d

at
e

in
fo

Without Sharing

With
Sharing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

Figure 3.2: The bene�t of sharing. Figure shows the likelihood of up-to-date information
as a function of the time between network state changes.

that are necessary if clients share information between them. The upper curve begins at
D = 10 seconds because of the "sessionizing" of individual connections described previous-
ly. We see that the likelihood of out-of-date information is consistently lower when clients
share network information as compared to relying only on individual information.

In addition, for lengthier time scales, we see that the likelihood of out-of-date
information plateaus in the case of individual measurements, while the likelihood of out-of-
date information continues to decrease in the case of shared measurements. This is because
individual clients may visit a particular web site once over a course of several minutes and
not visit it again for hours or longer. When clients do not share information, the results of
these measurements are lost because that client will not visit that web server again within
the time scale D. When clients share information, however, a client that visits a server that
was recently visited by a di�erent nearby client can take advantage of previous information.

In addition to comparing the relative bene�ts of sharing performance information,
we can also choose appropriate values for D and quantify the likelihood of up-to-date
performance information in typical scenarios. When we do this, we see that even a relatively
small collection of hosts can obtain timely network information when sharing information.
If we assume that network conditions change approximately every 15 minutes (D=900),
indicated by other studies [65] [5] as an acceptable rate of change for network performance,
then the passive measurements collected from this relatively small collection of 600 hosts will
be accurate approximately 78% of the time. For larger collections of hosts (such as domain-

35

wide passive measurements) and slightly less conservative values of D, the availability of
timely information will be even greater.

In summary, sharing network performance measurements between a group of sim-
ilarly connected clients can signi�cantly increase the likelihood of up-to-date measurements
for groups of clients. For conservative values for the rate of change of the network, this
likelihood can be as much as 78% of the time.

3.4.2 Advantages of Passive Measurements

The obvious advantage of passive measurements over active probing is that probes
introduce network traÆc that is not directly used by any application. This decreases net-
work goodput. The degree to which this will be a problem depends on how often client
applications probe the network and the ratio of probe traÆc to application-level traÆc.
Regardless of this ratio, however, there are situations where probe traÆc can be become
\concentrated" at certain hosts in the network, thereby reducing their application-level
throughput. We present an example of this concentration e�ect here.

For example, consider the scenario of web mirror sites that replicate the same
content. In an active probing system, a client must �rst contact each of the mirror sites to
determine which mirror is the \best." This slows down servers with probe-only traÆc and
limits their scalability. The following thought experiment shows why. Consider a web server
with a variable number of mirror sites. Assume that each mirror site is connected to the
Internet via a 45 MBit/second T3 link and that the mean transfer size is 100 KBytes and
the mean probe size is 6 KBytes. These are optimistic estimates; most web transfers are
shorter than 100 KBytes and many of the network probing algorithms discussed in Chapter
2 introduce more than 6 KBytes.

From a network perspective, an estimate of the number of requests per second
that the collection of mirrors can support is the aggregate bandwidth of their Internet links
divided by the sum of the average web transfer size and any associated probe traÆc for
the transfer. Under this model, the throughput of a web server complex with k mirrors is
k � (45 � 10242)� :125=(100 � 1024 + (k � 1) � 6 � 1024 in the case with network probes
and k � (45 � 10242)� :125=(100 � 1024), both measured in requests per second.

Figure 3.3 shows the number of requests per second that such a system can support
as a function of the number of mirror sites for two systems: one without probe traÆc and one
with probe traÆc. We see that from a network perspective, the system without probe traÆc
scales perfectly with the number of mirrors. For the system with probe traÆc, however, for
each web request that is handled by a single mirror, a network probe must be sent to all
of the other mirrors. On the server side, this means that for each web request a particular
mirror site handles, it must also handle a probe request from clients being serviced at every
other mirror location. As the number of mirrors increases, the ratio of probe to application-
level traÆc increases and the number of requests served per second becomes limited by the
additional probe traÆc.

36

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

With probe traffic

Without probe traffic

Number of mirror sites

R
eq

ue
st

s
ha

nd
le

d
pe

r
se

co
nd

Figure 3.3: The e�ect of probe traÆc on scalability. Figure shows requests/second that
mirrors can serve as a function of the number of mirror sites.

3.4.3 Advantages of Application-Speci�c Measurements

The disadvantage of using network-level measurements is that the statistics they
measure may not correlate well with application level measurements of the same statistic.
To quantify the degree to which network- and application-level measurements may di�er,
we compared packet loss and failure rate statistics reported by RealMedia 5.0 applications
with packet loss and failure rate statistics reported by ping, a network-level measurement
tool. This experiment was conducted for a RealMedia client in the San Francisco Bay Area
and a number of RealMedia servers spread throughout the Internet.

RealMedia and Ping Background

RealMedia is a streaming media application that uses a TCP connection to request
an audio or video clip. This clip is sent from the server to the client using either a TCP
connection or a stream of UDP packets. (The experiments below use the UDP-based trans-
port). The client application implements a limited degree of reliability by maintaining a
playout bu�er and requesting individual packets that are lost. The loss is considered recov-
ered if the retransmitted packet arrives before the gap travels through the playout bu�er.
RealMedia clients can be con�gured to report performance statistics to a RealMedia server
at the end of the clip. These statistics include the total number of packets in the stream,
the number of packets not received (lost) at the client as well as the number of packets

37

received too late or too early to be used by the client.
Ping is an application that sends a sequence of ICMP echo request packets to a

speci�ed distant host. The distant host responds to each echo request packet with an echo
response packet. Ping keeps track of which ICMP packets were lost between the local host
and distant host and measures the round trip time between sending the echo request packet
to the distant host and receiving the echo response packet from the distant host for all echo
response packets that are received.

Experimental Setup

For each server, we ran the RealMedia client and ping program in parallel to
measure the application- and network-level loss statistics along the path from the Bay Area
client to that server. Each server was probed approximately 48 times (every 30 minutes)
over a 24 hour interval. The duration of each probe was approximately 90 seconds.

To measure the application level performance, we used tcpdump [49], a network-
level packet capture tool, to capture the packets sent by the RealMedia client. From the
packet trace, we extracted the statistics that were reported by the RealMedia client to
the RealMedia server. If the clip was not downloaded at all, we considered it a failure.
Otherwise, we calculated the packet loss ratio as (Lost + Early + Late)=(Total), where
Lost is the number of packets lost, Early is the number of packets received too early to be
of use, Late is the number of packets received too late to be of use, and Total is the total
number of packets that should have been received. All of these totals are in the feedback
sent back to the RealMedia server.

To measure network-level packet loss statistics and failure rates, we used the ping
program to send ICMP echo request packets to the node that hosted the RealMedia server.
Ping reports the fraction of ICMP echo reply packets that are received. If the packet loss
rate was 100% or if ping could not look up the host name of the RealMedia server, we
considered that a failure.

Once we had collected the two sets of measurements for each distant server, we
compared the two sets of measurements both qualitatively and quantitatively. Di�erences
between the measured statistics of the two methods indicate a di�erence in the way that
each technique measures the state of the network.

To qualitatively compare the two sets of measurements, we graphed the cumulative
distribution function of the application-level loss ratios and network-level loss ratios for a
particular host on the same graph and compared the two.

Figure 3.4 shows the results for one of the server hosts (audioraarc004.audionet.com).
These results are representative of the type of results observed for all hosts. From Figure
3.4, we see that the loss probability measured using ICMP packets is consistently greater
than the loss probability measured by RealMedia applications. For example, the RealMedia
loss rate was less than 2% more than 95% of the time, whereas the ping loss rate was less
than 2% only 70% of the time. We describe why this occurs below.

In addition to this qualitative comparison, we also quantitatively compared the
packet loss statistics and failure probabilities for each method. To compare packet loss
statistics, we calculated the likelihood that the average network-level loss probability for a
given host is the same as the application-level loss probability for the same host. We assume

38

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

P
ro

ba
bi

li
ty

Loss Rate

RealMedia Losses
Ping Losses

Figure 3.4: ICMP vs. RealMedia Loss Statistics for audioraarc004.audionet.com

that X1:::Xn are samples of network-level loss statistics following a normal distribution
with mean �x and standard deviation �2, and Y1:::Yn are samples of application-level loss
statistics also following a normal distribution with mean �y and standard deviation �2. We

test the hypothesis: H0 : �x = �y using the test statistic t =
�X� �Y
s �X��Y

and calculate the p-value

for the statistic. The p-value indicates the likelihood that an observed di�erence this large
or greater would occur by chance if the two distributions have the same mean.

To compare the failure statistics, we use the same process but instead use X̂1:::X̂n

and Ŷ1:::Ŷn where X̂i = 1 if Xi = 1 and 0 otherwise.
Table 3.4.3 shows the results of this comparison for each host. It shows the em-

pirical mean and standard deviation of loss and failure probabilities and for each type of
measurement for each host as well as the p-value for the two hypotheses. Figures 3.5 and
3.6 also show a graphical comparison of the packet loss and failure statistics, respectively.
We see from the table that there is little doubt that the two methods measure di�erent loss
rates. If the hypothesis were true, the observed di�erences between the two methods would
occur by chance only from .1% to 8% of the time, excluding the host rto.rbn.com.

There are several reasons why the two types of measurements are di�erent. First
of all, the RealMedia application implements a limited degree of reliability, so packets that
are initially lost can be sometimes be retransmitted in time to be used by the application.
If a ICMP packet is lost, there is no recovery mechanism. In addition, ICMP traÆc is often
handled di�erently than application-level traÆc both by end hosts in the network as well
as interior routers in the network. Firewalls near end hosts often block ICMP traÆc from

39

Host Network-level Application-level p-value for hypothesis
Loss Ratio Loss Ratio Loss Ratio
(�X;S �X) (�Y ; S �Y) �X = �Y
Failure Ratio Failure Ratio Failure Ratio

(�̂X;S �̂X
) (�Y ; S �Y) �

X̂
= �

Ŷ

(In Percent) (In Percent) (In Percent)

audioraarc004. (3.42,6.10) (0.287,0.766) .093
audionet.com (4.26,20.40) (4.26,20.40) 100

www.necnews.com (3.58,11.57) (0.0269,0.101) 4.47
(4.26,20.40) (6.38,24.71) 65.0

g2-cw-wae03- (2.27,6.31) (0.11,0.23) 2.41
rbn.com (2.13,14.59) (4.26,20.40) 56.22

real.cnn.com N/A (0.0042,0.0165) N/A
(100,0) (8.51,28.21) 0

rto.rbn.com (3.36,13.10) (9.61,61.51) 51.25
(6.38,24.71) (12.77,33.73) 29.8

rv.foxnews.com (6.16,10.87) (2.71,6.21) 8.2
(8.51,28.21) (14.89,35.99) 34.1

www.itn.co.uk (2.72,7.71) (0.0087,0.058) 2.21
(6.38,24.71) (6.38,24.71) 100

www2. (1.72,2.38) (0.56,1.63) .939
cummingsvideo.com (4.26,20.40) (8.51,28.21) 40.41

Table 3.1: Comparison of Application-level and Network-level loss statistics

40

0

0.02

0.04

0.06

0.08

0.1

0.12

au
dio

ne
t

ne
cn

ew
s g2 rb

n

fo
xn

ew
s itn

cu
m

m
ing

s

P
ac

ke
t L

os
s

R
at

io

Network Loss Ratio

Application Loss Ratio

Figure 3.5: Graphical comparison of network and application level loss ratios.

entering an administrative domain, and routers sometimes block or delay transit ICMP
traÆc to prevent denial of service attacks such as Smurf [20] attacks. A Smurf attack is
an IP-level denial of service attack where a sender sends forged ICMP echo request packets
with the broadcast address of a distant subnet as the source address. Each forged ICMP
packet results in a
ood of traÆc at the distant subnet. We see this ICMP blocking e�ect
in the case of real.cnn.com, where ping always reported a loss ratio of 1.

It is less clear that the two methods measure di�erent failure probabilities. The
likelihood that the observed di�erences are due to chance instead of due to actual di�erences
in measurement range from 30% to 100%, mostly due to the relatively large standard
deviation in the failure statistics. The lack of a di�erence is not very surprising, however.
The ping experiments still had to perform a host name lookup to determine the IP address,
and if the distant site was unreachable, the lookup would fail and as a result the ping
experiment would also fail.

In summary, these experiments show that there can sometimes be signi�cant di�er-
ences between the network statistics measured by applications and the statistics measured
by network-level tools, and application-level measurements should be used whenever possi-
ble to drive application-level decisions.

In the next section, we describe the challenges that arise from the use of shared,
passive measurements.

41

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

au
dio

ne
t

ne
cn

ew
s g2 rb

n

fo
xn

ew
s itn

cu
m

m
ing

s

F
ai

lu
re

 R
at

io

Network Failure Ratio

Application Failure Ratio

Figure 3.6: Graphical comparison of network and application level failure ratios.

3.5 Challenges of Shared, Passive Measurements

In this section, we describe the problems of using shared, passive, measurements
instead of isolated, active measurements and show that these problems do not limit their
utility in measuring network performance.

Using shared, passive, application speci�c measurements provide signi�cant chal-
lenges. For example, by sharing information across hosts in a domain, SPAND assumes
that all hosts observe similar application performance. This assumption may not always be
true. Modem users usually observe much lower performance to distant hosts than local area
network users in the same domain. In addition, hosts may observe signi�cantly di�erent
application performance due to con�guration, operating system or application di�erences.
If these hosts are incorrectly clustered together, SPAND may provide misleading perfor-
mance estimates. In addition, since SPAND relies on passive measurements, it may have
no information or very old information about the performance of an application.

3.5.1 Measurement Noise and How it A�ects Application-level Decisions

The basic question that arises from these challenges is whether a shared, passive
system can provide accurate performance predictions. All of the statistics measured in
SPAND have a certain amount of noise associated with them. This can be divided into
several categories:

� Network noise is inherent in the state of the network. If a single client made back-to-
back measurements of the state of the network, it would see some degree of variability

42

in the statistics they measured.

� Sharing noise results from inappropriate sharing of network measurements between
hosts and applications. This noise could be due to clients who have di�erent connec-
tivity to a distant host, clients with di�erent network stack implementations, clients
running slightly di�erent versions of the same application, or other di�erences between
clients.

� Temporal noise comes from the use of out-of-date network measurements that no
longer re
ect the true state of the network. For example, a measurement made at
3:00 AM on a Saturday most likely does not re
ect the state of the network at 4:00
PM on a Wednesday.

The total amount of noise from network, sharing, and temporal sources a�ects
the standard deviation of the statistics we measure and, as a result, a�ects the granularity
of the application-level decisions that can be made. For example, consider a streaming
media application that attempts to choose between 2 sources at bitrates of 300 KBit/sec
and 100 KBit/sec. If our system reports an available bandwidth statistic of 150 � 50
KBits/sec, then the application can be con�dent that the network cannot support the
300 KBit/sec stream. The 100 KBit/sec stream is the more appropriate. However, if our
system reports an available bandwidth statistic of 150 � 200 KBits/sec, then the application
cannot con�dently state that choosing one representation over another will lead to better
application-level performance.

SPAND's use of shared, passive measurements assumes that sharing and temporal
noise are minor factors as compared to network noise. To verify these assumptions, we
performed some experiments designed to measure the degree to which network, sharing, and
temporal noise a�ects the variation of actual network performance measurements. These
experiments are not comprehensive, and the amount of noise for each category will depend
on the population of clients and the state of the network between those clients and the hosts
they visit. There will always be situations where one type of noise dominates. The attempt
here is to give a rough indication of how much noise is likely to come from network, sharing,
and temporal sources.

3.5.2 Case Study: One Client-Server Pair

In our �rst experiment, to understand more closely the dynamics of network char-
acteristics to a distant host, we performed a controlled set of network measurements between
a single web client at UC Berkeley and a single web server at IBM Watson in New York.
Although focusing on a single client and server is clearly not representative of the variety
of connectivity and access patterns that exist between Internet hosts, it allows us to focus
on the contribution of Network and Temporal noise to the variance in network characteris-
tics that could occur between a pair of well-connected Internet hosts separated by a large
number of Internet hops. In the next section, we present results from a larger number of
clients that are less in depth but are more representative of actual network performance.

In the �rst experiment, for a 5 hour daytime period (from 9AM PDT to 2:00
PM PDT), a web client at UC Berkeley periodically downloaded an image object from a

43

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20

GGGG

G

G
G

G
G

GG
G

G

G

G

G

G

G

G

G

G

G

G

GG

G

GG

GG

G

G

G

GG

G

G

G

G
GGG
GG
G
G
GG

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G
G
G
G

G

G
G

G

G
G

G
G
G

G

G

G

G

G

G
G

G

G

G
G

G

GG

G

G

G

G

G

G

G

G

G

G
G

G
G

GG
G

G

G

G

G

GGG
GGG
G

G

G

G

G

G
G
G

G

G
G
GG
G

G

G

G

G

G

G

G
G
G
GG

G

G

G

G

G

GG
G
G

G

G

G

G

G

G
GGG

GG

G

G

G

G

G

G

G
G

GG

G

GG

G

GG
G
G

G

G

G

G
G

G

G

G
GGG
G
G

G

G

G

G

G

G

G

G

G
G

G

G

G
G
G
GG

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

GG

GG

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

GG

G

G
G

G

G

G

G
G

G
G

G
G
G
G
GG

G
G

G

G

G

G

G
G
G

G
G
G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G
G

G
G

G

G

GG

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G
G

G

G

GGG

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

GG

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

GG

G

G
G
G

G

G

G

G
GGG

G
GG

G

G
G

G

GG

G

GG

G

G

G

G

GG

G

G
G

G

G

G

G

G
G
G
G
GG

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G
GG
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G
G

G

G

G

G
G
G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

GG

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G
GG

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G
G

G

G
G

G

G

G

G

G

G

G

G

G

G

GG

G

GG
G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G
G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G
G

G

G
G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G
G

G

G

G

GG
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G
G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GGGG

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G
G

G

G

G
G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

GG

G

G

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG
GGG

G

G

G

G

GG

G

G
G

G

GG

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G
G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

Elapsed Time (Thousands of Seconds)T
hr

ou
gh

pu
t (

ki
lo

bi
ts

/s
ec

)

Figure 3.7: Scatter plot of throughput from IBM to UC Berkeley over a 5 hour period.

web server running at IBM Watson. For each individual transfer, we recorded the time of
the transfer as well as the throughput (number of bytes divided by elapsed time) for the
transfer. We then examined the dynamics of the throughput measurements over the time
period.

Figure 3.7 shows the raw throughput measurements as a function of time over the
5 hour period. We see that in the �rst 30 minutes of the trace, one group of measurements is
clustered around 350 kilobits/sec (presumably the available bandwidth on the path between
UC Berkeley and IBM). A smaller group of measurements has lower throughputs, at 200
kilobits/sec and lower. This second group of connections presumably experiences one or
more packet losses, leading to a reduced throughput.

This clustering is more clearly shown in Figure 3.8, which plots the cumulative
distribution function (CDF) of throughputs during the �rst 30 minutes of the trace. One
large mode is centered around 300 KBits/sec, with a smaller, more dispersed mode around
200 KBits/sec.

As the day progresses, two things change. The available bandwidth decreases over
the day, and a larger fraction of transfers experience one or more packet losses, leading to
a greater variance in throughput.

This e�ect is shown in Figure 3.9, the cumulative distribution function of through-
puts for a 30 minute period in the afternoon. More samples are clustered around lower
throughput values and there is more variation in the available bandwidth. However, there
is still a noticeable separation between the two groups of throughput measurements. This

44

Throughput (kilobits/sec)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400 450

Figure 3.8: CDF of throughput from IBM to UC Berkeley: initial 30 minutes.

distribution of performance suggests that although the distribution of throughputs changes
as the day progresses, a system like SPAND could still provide meaningful performance
predictions. Even when aggregating all the di�erent performance measurements for the
entire 5 hour period, approximately 65% of the throughput samples are within a factor of
2 of the median throughput.

In summary, for this client-server pair, we see that network noise can lead to
variations of as much as a factor of 2 in measured performance. This limits the granularity of
application-level decisions to rather coarse grained (but in many cases, still useful) decisions.

3.5.3 Using Trace Analysis to Measure Noise

Although the above experiment allowed us to focus on the dynamics of a single
client and server, it is not necessarily representative of the typical performance for Internet
hosts. To give a rough indication of the amount of network noise that can occur for a
larger group of clients, we analyzed a packet trace collected at the gateway between the
UC Berkeley Electrical Engineering and Computer Science Department and the rest of
the Internet. When post-processing the trace, we only considered TCP connections that
transferred at least 1 kilobyte and only considered client-server pairs that had at least 30
connections between them. This resulted in a collection of approximately 700,000 TCP
connections with a TCP sender in the Internet and a local TCP receiver at UC Berkeley
starting on June 14, 1999 at 12 midnight and ending on June 14, 1999 at 4:00 PM.

45

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Throughput (kilobits/sec)

Figure 3.9: CDF of throughput from IBM to UC Berkeley: Afternoon 30 minute period.

We measured the duration of each TCP connection as well as the number of
bytes transferred in the connection and divided these two measurements to obtain a generic
\available bandwidth" network performance metric for each connection.

To measure the variation in performance, we measured the fraction of time t the
performance for a given (client, server) pair was more than a factor F away from the median
performance for that pair. If t is close to 1, many measurements are more than a factor of
F away from the median performance, indicating a great deal of variation. If t is close to 0,
most measurements are less than a factor of F away from median performance, indicating
relatively stable performance. This unitless quantity allows us to compare variation in
performance for client-server pairs that may potentially have di�erent available bandwidth
measurements.

To quantify network, sharing, and temporal noise, we performed the following
analyses with the trace. We �rst measured the amount of network noise in the trace by
examining the variation in performance for individual (Berkeley client, server) pairs over
a relatively small period of 30 minutes from 1:00 PM to 1:30 PM. We then assumed that
the clients would share performance information and again measured the variation in per-
formance, this time for (group of Berkeley clients, server) pairs over the 30 minute period.
The di�erence in variation between these two cases allows us to measure the sharing noise
introduced by sharing performance information between clients. We then repeated the
experiment again by considering longer and longer time scales starting at 12 AM and con-
tinuing until 4:00 PM. Examining the variation for longer time scales allows us to measure

46

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Fraction of time less/greater than median by factor

10 Percent
25 Percent
50 percent
factor of 2
factor of 4

Figure 3.10: Quantifying network noise. Figure shows likelihood of being more F away
from median performance for a given client-server pair.

the amount of temporal noise introduced by using potentially stale past performance infor-
mation to indicate current performance.

Contribution of Network Noise

Figure 3.10 shows the results of the �rst analysis by showing aggregate measure-
ments in variation for a variety of factors F . The x axis shows the fraction of time that the
actual performance for a given (client, server) pair was more than a factor F away from
the median performance observed for that pair of hosts, and the y axis shows cumulative
probability. There are 5 curves on the graph, one for factors of (from left to right): 4, 2, 1.5,
1.25, and 1.1, respectively. For example, from examining the rightmost curve (10%), we see
that most performance reports are more than 10% away from the median performance. In
contrast, for the leftmost curve, on average, only 10% of performance reports are more than
a factor of four away from the median performance. As expected, as the factor F increases,
the acceptable region around the median measurement also increases, and the CDF curve
shifts to the left.

We see from the �gure that the available bandwidth for individual connections is
almost always more than 10% away from the median bandwidth for a client-server pair,
between 80% and 90% of the time. Even for large factors of F such as 400%, a measurable
number of throughput samples are outside the acceptable region, as much as 40%.

This reinforces the results of Section 3.5.2, showing that network noise limits the

47

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Fraction of time less/greater than median by factor

Figure 3.11: Quantifying sharing noise. Figure shows likelihood of being more than F away
from median performance for a given (group of clients,server) pair.

granularity of application-level adaptations to relatively coarse-grained decisions that dif-
ferentiate between order of magnitude changes in performance.

Contribution of Sharing Noise

Figure 3.11 shows the results of the second analysis. In addition to the curves in
Figure 3.10, the �gure shows the degree of variation when local clients share performance
information and comparisons are made on (group of clients, server) pairs instead of (client,
server) pairs. The order of the curves from left to right is the same as in Figure 3.10.

We see that for each factor F , there is only a small increase in variation (a shift
in the curve to the right) from sharing performance information between clients. This
means that sharing noise is relatively unimportant when compared to network noise, and
the bene�ts of sharing (increased availability of network performance information) outweigh
the additional variation in performance.

Contribution of Temporal Noise

Figure 3.12 shows the results of the third analysis. We chose F = 2, allowed
clients to share performance information, and then examined increasing time windows from
30 minutes before 4:00 PM (3:30-4:00 PM) up to 16 hours before 4:00 PM (12:00 AM-4:00
PM). The �gure does not include curves for start times before 6:00 AM to aid in legibility.

48

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Fraction of time less/greater than median by factor

30 Minutes
1 Hour

2 Hours
3 Hours
4 Hours
5 Hours
6 Hours
7 Hours
8 Hours
9 Hours

10 Hours

Figure 3.12: Quantifying temporal noise. Figure shows likelihood of being more than a
factor of 2 away from median performance for a given (group of clients, server) pair for
increasing time scales.

We see that there is little di�erence between the 1 hour and 30 minute curves,
indicating that time windows of up to an hour have little e�ect on variation. For time
windows between 2 and 6 hours, there is a measurable increase in variation, indicating
that past measurements from hours ago are no longer completely representative of actual
performance. For time periods greater than 6 hours, however, there is little increase in
variation in performance, indicating that there is a limit in the e�ect of temporal noise on
overall variation.

From these measurements, we can see that measurements from as long as one
hour ago are likely not to a�ect the variation in performance imposed by the network. Over
longer time scales, however, temporal noise can have an e�ect (but not as much as the e�ect
of network noise) on the granularity of application-level decisions.

In the next section, we discuss the types of applications that can best take advan-
tage of SPAND.

3.6 Applications Best Suited for SPAND

Although a goal of our architecture is to be extensible and support a wide variety
of applications, it is important to discuss applications that would bene�t more from using
a framework other than SPAND. We �rst describe applications where SPAND works well.

49

SPAND works best for applications that meet the following criteria:

� Applications that do not initially have enough network performance information to
make a good adaptation decision.

� Applications that, once they make an adaptation decision, can not easily re-adapt
before the end of a communication.

� Short-lived applications that do not naturally have a way to disseminate performance
information among each other in a distributed fashion.

These criteria are somewhat abstract and are more easily illustrated using the
context of the following three example applications:

� WWW browsing, where clients perform adaptation by selecting alternate representa-
tions of WWW pages,

� Bulk transfer applications, where a client selects one of a number of mirror sites to
retrieve a single large object, and

� Streaming multimedia applications such as RLM [50], where clients select the number
of layers they wish to receive from a multicast source.

The WWW browsing application meets all of these. A client typically contacts one
of a large number of web servers and downloads a small number of its pages. This makes it
unlikely that the client will have enough information to select an appropriate representation
to download. There is limited bene�t in choosing an alternate representation for subsequent
pages if the original choice was inappropriate.

The bulk transfer application meets some, but not all, of these criteria. It is
diÆcult for a single client to determine which mirror will result in the best performance.
The only way to do this would be to download the content from all of them simultaneously.
It may or may not be easy to re-adapt once a decision has been made, however, depending
on whether or not mechanisms exist for retrieving sub-ranges of documents.

For both of the above applications, it is diÆcult to share performance information
in a distributed manner, as the client applications may be short-lived and cannot participate
in a distributed sharing algorithm.

In contrast, however, the streaming multimedia application meets few of these
criteria. Although a client may not have much information about the initial number of
layers to receive, it can easily re-evaluate this decision based on network conditions, adding
or dropping layers as necessary. Because sessions are relatively long-lived, it is easy for
members of the group to disseminate performance information in a distributed manner, by
using a separate multicast group to share the results of join experiments.

3.6.1 Application-level Adaptation vs. Network Diagnosis

Many previous e�orts have focused on the development of network measurement
tools to measure performance metrics such as packet loss rate, latency, and available band-
width. These tools can be used to measure the quality of Internet Service Providers (ISPs)

50

[55] [39] [70] [47] [66] [45], to identify and diagnose network problems [41] [78] [60] [25], and
debug and improve network protocols and implementations [11] [10] [65] [19]. This list is by
no means complete{a more comprehensive listing of these tools can be found at the CAIDA
web site [17].

Although SPAND and network diagnosis tools both require wide-area network per-
formance measurements, the goals of our system are orthogonal to theirs. SPAND's primary
focus is to support applications that must adapt to the state of the network, including any

aws, limitations, or problems that may arise, while the goal of network diagnosis systems
is to identify and correct these problems. Both types of network measurement tools are
necessary to have a complete solution to managing the problems that may arise in today's
distributely-managed heterogeneous Internet.

3.7 Summary

In this chapter, we have discussed the assumptions and methodology that lay the
foundation for our thesis. We discussed the network model behind our work: domains
of high quality connectivity connected by an internetwork with unknown properties. We
then described the three major design decisions in SPAND: the use of Shared, Passive,
Application Speci�c measurements.

We compared these design decisions with alternate design choices both qualita-
tively and quantitatively, showing that in many cases, shared, passive, application speci�c
measurements have signi�cant advantages over isolated, active, network-level measurements.
To quantify the bene�ts of shared measurements, we analyzed a large client-side packet
trace and showed that the use of shared measurements increases the likelihood of relevant
network performance information from 50% to 80%. To quantify the bene�ts of passive
measurements, we present one example where the use of passive measurements doubles
the throughput of a mirrored web server system. To quantify the bene�ts of application-
speci�c measurements, we measured one network performance statistic (packet loss rate)
both at the network and application level and showed that application-level behavior leads
to signi�cant di�erences{in some cases, as much as 400%{between application and network
measurements of the same statistic.

We also identi�ed the challenges that result from the use of shared, passive, appli-
cation speci�c measurements, in particular, the amount of noise they add to measurements
of network performance. Quantitative measurements of network, sharing, and temporal
noise show that network noise (the inherent variability in the network over short time s-
cales) is the most signi�cant contributor to variance in network measurements and limits
the granularity of application-level decisions to order of magnitude di�erences. In con-
trast, sharing and temporal noise make relatively small (i.e., less than 25%) contributions
to overall variance.

We also discussed the types of applications that are likely to bene�t most from
SPAND, showing that the best candidates for our system are applications that have limited
mechanisms for adaptation but lack agility, the ability to adapt quickly, and policies that
e�ectively use adaptation mechanisms to improve application-level performance.

In the next chapter, we build on these assumptions and design decisions and

51

present the core SPAND architecture and implementation. The architecture builds on
the concept of domains of connectivity and the design principle of shared measurements by
introducing the concept of a centralized per-domain Performance Server that acts as the
repository for network performance information. The architecture builds on the concept of
application-speci�c measurements by introducing an extensible messaging model between
SPAND Clients and the performance server. The architecture builds on the concept of
passive measurements by de�ning a Packet Capture Host who makes network performance
reports on behalf of unmodi�ed clients by reconstructing application-level behavior from
individual packets. We also present measurements of the core SPAND architecture that
quantify the bene�ts of our design decisions.

52

Chapter 4

The SPAND Architecture

In this chapter, we build upon the design choices described in Chapter 3 and
present the core SPAND Architecture. We describe the components of the architecture and
how they communicate with each other. We also describe how the architecture is extensible,
facilitating the development of new applications. We then describe how the architecture is
realized to measure performance for two types of data transport: a generic bulk transfer data
transport and a HTTP speci�c data transport that more closely matches the performance
observed by actual web clients.

Finally, we present application-independent performance results that evaluate how
well SPAND performs in returning accurate and relevant measurements of network perfor-
mance for a group of clients.

4.1 Components of SPAND

In Chapter 3, we presented the concept of sharing domains consisting of clients of
equivalent connectivity using applications of the same application class. In this section, we
examine in more detail the makeup of a domain and describe the components of SPAND,
how they work, and how they communicate with each other.

Figure 4.1 shows a diagram of the components of SPAND. SPAND is comprised
of Client Applications, Performance Servers, and Packet Capture Hosts.

4.1.1 Client Applications

Client applications measure the state of the network while communicating with
distant network hosts. When this communication is �nished, clients create Performance
Reports that summarize the observed performance to distant hosts and send these reports
to performance servers. These reports are application-speci�c, meaning that the statistics
they capture are those in which the application is most interested. For example, instead of
reporting available bandwidth or round trip time, a web client reports the amount of time
taken to retrieve a web object, even if that object spans multiple TCP connections (as in
the case of HTML pages with associated in-line images).

53

Client

Packet
Capture Host

Client

 Data
 Perf. Reports

 Perf Query/
Response

Internet

Performance
Server

Figure 4.1: Components of SPAND.

4.1.2 Packet Capture Host

Our system works best when a large population of client applications are modi�ed
to generate performance reports, because it allows these clients to bene�t from the shared
experiences of a large pool of users. However, it may be diÆcult to immediately upgrade
all client applications to versions that generate performance reports. To quickly capture
performance from a large number of end clients, a Packet Capture Host can be deployed that
uses a tool such as BPF [49] to observe all packet transferred to and from these clients. The
packet capture host determines the network performance from the packet trace and sends
reports to the performance server on behalf of the clients. This allows a large number of
performance reports to be collected while end clients are slowly upgraded. The weakness of
this approach is that a number of heuristics must be employed to recreate application-level
information that is available at the end client but not at the packet capture host. Sections
4.3.1 and 4.3.2 describe these heuristics in more detail.

4.1.3 Performance Server

After creating performance reports, Client Applications and Packet Capture Hosts
send them to Performance Servers, who store them in a centralized repository. Client ap-
plications also send Performance Requests to a performance server to ask for the observed
performance to a distant host. The performance server responds with a Performance Re-
sponse that indicates the typical performance seen by clients. Again, the format of all of
these messages is completely application-speci�c.

The actual functions used to add performance reports to the repository and re-
spond to performance requests are provided by the Application and named in the messages
sent to the performance server. This is described in more detail in Section 4.2.

The performance server also handles the lower-level details of managing client

54

0 16 31
Handler String

 Length
Handler String

Active

Data Length

String (cont.)

Data

.

.

.

.

.

Figure 4.2: SPAND Message Format

sockets, managing synchronized access to the repository, spawning and reaping threads,
and logging.

4.2 Messages Between SPAND Components

All messages between the components of our system use a format similar to Active
Messages [79]. A SPAND message contains a Handler String, an active
ag, a data length,
and a message-speci�c payload, as shown in Figure 4.2.

If the active
ag is 1, the Handler String indicates the name of the function that
should be used to process the message. If the active
ag is 0, then the Handler String
indicates the type of the message. Performance reports and performance requests from
Applications and packet capture hosts are typically active messages, whereas performance
responses from the performance server are typically not active.

To incorporate a new application into SPAND, an application writer implements
active message handlers and integrates them into the performance server. The performance
server is currently written in Java, so this process simply means placing the Java class �les
at a location where the Java Virtual Machine's class loader can �nd them. This code may
or not be \mobile": we discuss the implications of this in Section 4.2.3.

The use of active messages provides a uniform interface between applications and
the performance server. Applications send active messages to the performance server to add
performance reports to the repository and to perform performance lookups. Application
writers do not have to handle the details of concurrent access to the repository or lower-level
socket communications. The performance server simply receives messages and invokes their
handlers without knowing what the handler does. This allows for maximum extensibility
and ease of use in adding new application types to SPAND.

55

We chose to write the performance server in Java because of Java's ability to
dynamically loading Java class �les from a string, its language-level thread abstractions,
and its inherent garbage collection facilities. However, the performance server could be
written in any language: the use of Java simply made this process easier.

4.2.1 Basic Message Types

Although applications can create arbitrary handlers for SPAND messages, most
applications will provide at least the following basic handlers:

� AddPerf: Add the following performance report to the repository. The data portion
of the message contains the Report.

� GetPerf: Process the following performance request. The data portion of the message
contains the performance request.

� GetSumm: Return a summary of the repository for this application type. Usually,
this includes the number of reports collected for each key (e.g. address, URL, etc.) in
the repository.

� GetRaw: Return the raw performance reports for the speci�ed key (e.g. address, URL,
etc.). The data portion of the message contains the key.

By implementing these handlers, applications can provide basic report addition
and processing functionality.

4.2.2 Environment for Active Message Handlers

All active message handlers run in an uniform execution environment. The generic
format of a message handler is the following:

Msg execute(Msg m, Hashtable reportDB);

A handler takes two arguments: the original message sent to the performance
server and the repository of performance reports.

The report repository is organized as a hash table of repositories. The key in
the top-level hash table is the application type as a string, and the value is an application-
speci�c repository. When a handler is executed, the handler accesses the application-speci�c
repository, unmarshals the message and processes the data portion of the message.

When a handler is done executing, it returns a Msg object. The performance
server invokes the object's marshal method to serialize the object and sends it back to the
application who sent the message.

4.2.3 Extensible SPAND vs. Active SPAND

Although SPAND is extensible, it is not a goal of our system that arbitrary clients
be able to upload active message handlers in real time, like the model of Active Messages
[75]. Although nothing in our architecture prevents the dynamic uploading of code, we
do not address the resource sharing, safety, and security issues that are necessary for a
complete implementation of mobile code.

56

4.2.4 Averaging Algorithms to Obtain Typical Performance

GetPerf message handlers take as input the repository of reports for a particular
distant host and must determine the \typical" performance seen by clients to that host.
This process incorporates two parts:

� Identifying the relevant performance reports to use when calculating typical perfor-
mance.

� Choosing the averaging algorithm to perform on the relevant performance reports to
obtain typical performance.

Because our system is extensible, applications are free to make their own choices in
averaging algorithms. In this section, we describe the choices we made in devising averaging
algorithms.

To identify the relevant set of performance reports, we use the results learned
in Section 3.5.3. When a performance request is received at time t, we considered all
performance reports in the past from t for a duration D. A typical value used for D is 3
hours. If the number of reports in the time period (t�D; t) is more than a threshold value
H, we considered the H most recent performance reports when generating a performance
response. If the number of performance reports collected in the time period is less than H,
we use all Reports falling in the time period when generating a performance response. A
typical value for H is 20. 20 was empirically chosen as the smallest number of performance
reports that led to an accurate performance response. This algorithm allows us to use
the most recent performance reports for frequently contacted distant hosts and provides a
cut-o� for less frequently visited hosts, reducing the e�ect of temporal noise.

Once we identi�ed the relevant set of performance reports, we used the value of
the median performance report to represent typical performance. For example, for TCP
performance, we calculate an \available bandwidth" metric for each performance report by
dividing the number of bytes transferred in the report by the duration of the performance
report. We then take the median of these measurements and use it to report typical per-
formance. Using the median has the advantage that it is not a�ected by outlier values and
does not make assumptions about the underlying distribution of the statistic measured.

4.3 Realizations of the SPAND Architecture

In this section, we describe realizations of the SPAND architecture for two speci�c
application classes. The �rst realization measures performance for a generic bulk transfer
application that uses TCP as the data transport. The second realization measures perfor-
mance for a HTTP-speci�c data transport. The emphasis in this section is not on which
metrics we chose for each type of data transport, but on how we measured these metrics in
our system.

4.3.1 Bulk Transfer Application

The goal of the bulk transfer realization is to measure performance for an applica-
tion that uses a single TCP connection to send data from one host to another. We assume

57

that the transmission of data is limited only by the speed of the network and not the speed
of the sender or receiver of data. Our realization measures the following characteristics of
the data transfer: the available bandwidth for the connection, the round trip time for the
connection, and the time to completion for a speci�c transfer size of B bytes.

Although this realization does not measure true end-to-end application level per-
formance, our goal is that the statistics it measures be useful to a wide variety of applications
that use TCP connections for bulk data transport.

Available Bandwidth

The available bandwidth metric is designed to estimate the long-term bandwidth
that a one-way transfer using a single TCP connection will receive, similar to the Bulk
Transfer Capacity metric de�ned by the IETF IPPM Working Group [46]. We measure
available bandwidth as the total length of a transfer divided by the total time of the transfer,
including the initial SYN exchange but not including the FIN exchange.

Our metric di�ers from the one proposed by the IPPM Working Group in that it
is not tied speci�cally to any particular reference implementation. Because we use passive
measurements, the measurements may come from a number of di�erent TCP implemen-
tations. Di�erences between implementations will re
ect themselves as sharing noise. In
Section 3.5.3, we showed that the contribution of sharing noise to overall variation is rather
small.

Round Trip Time

The round trip time metric is designed to measure the round trip time between
hosts in a local domain and a speci�c host in a distant domain. The metric we measure is
smoothed RTT (SRTT), using an algorithm similar to the one used by TCP [81]. Individual
round trip time samples are measured by measuring the time from when a TCP packet is
sent out to when the acknowledgment for that packet is received. The individual samples
are then exponentially smoothed to obtain a SRTT metric.

Time to Completion

The two statistics mentioned above are useful for applications that do not know
the connection transfer size in advance. For applications that do know a connection's
transfer size in advance, we provide a third metric, time to completion. We de�ne time
to completion as the time T needed to transfer B bytes using a single TCP connection,
including connection set-up time. This metric may produce a di�erent result than simply
dividing the number of bytes B by the available bandwidth metric above, especially in
the case of connections with short transfer sizes where round-trip times have a signi�cant
impact on performance.

We measure the time to completion by �nding the median time at which past
transfers have completed sending B bytes. This process is shown in Figure 4.3. We start by
combining sequence number plots for a large number of connections, resulting in a single
scatter plot of sequence number vs. time. To aid in legibility, Figure 4.3 only shows those

58

Sequence # Plot 1 Sequence # Plot n

...

Sequence # Plot 2

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (msec)

S
e

q
u

e
n

ce
 #

 (
b

yt
e B=32 KBytes:

Points Considered:
(B- δ, Β+δ)

Figure 4.3: Graphical example of time-to-completion metric.

points where a the number of bytes transferred had just surpassed a power of 2 (512, 1024,
2048, ...). On this scatter plot, we consider all points slightly above and below target
number of bytes B, (B � Æ;B + Æ). Æ is dynamically chosen as the smallest Æ for which at
least 20 points fall between (B�Æ;B+Æ). 20 was empirically chosen as the smallest number
of samples that led to an accurate median measurement. If Æ is greater than 5 kilobytes,
then we give up, reporting the statistic as not measurable. If Æ is smaller than 5 kilobytes,
then we take the median time value for all points within the region as the result T.

From looking at the graph, we see that the metric does a good job of following
the \center of mass" for this set of connections. We also see that in the 64 KByte case, our
algorithm gives up (i.e. reports no metric) because there are not enough data samples to
make a good estimate.

It is important to mention that this metric is non-parametric: we do not develop
an analytic model for the way a TCP connection should behave (such as the ones presented
in [61] or [48]), and use formulas to predict the time to completion. We rely on the observed
dynamics of actual TCP connections to determine the time to completion. By relying on
actual dynamics, we do not worry about whether or not the models accurately describe

59

how TCP connections behave. For example, the model presented in [61] does not model
the slow-start or fast recovery phases of TCP, and the paper's comparison of predicted and
actual performance (where performance is de�ned as number of packets sent during a con-
nection) assumes transfer lengths of 100 seconds or one hour, both signi�cantly longer than
typical transfer lengths for WWW Applications. Even with these assumptions, predicted
performance di�ers from actual performance by a minimum of 10% to a maximum of 200%,
with a median of approximately 50%. By using a non-parametric model, we do not su�er
from the di�erences in performance predicted by a model and actual performance observed
by clients.

Packet Capture Host Policies

Because the packet capture host is not located at end clients, it does not have
perfect information about the way in which applications use TCP connections. This can
lead to inaccurate measurements of network characteristics such as bandwidth. For example,
if a web browser uses persistent or keep-alive connections to make many HTTP requests
over a single TCP connection, then simply measuring the observed bandwidth over the TCP
connection will include the gaps between HTTP requests in the total time of the connection,
leading to a reduction in reported bandwidth. To account for this e�ect, we modi�ed the
packet capture host to use heuristics to detect these idle periods in connections. When the
packet capture host detects an idle period, it makes two reports: one for the part of the
connection before the idle period, and another for the part of the connection after the idle
period.

In addition, we added heuristics at the packet capture host to make accurate round
trip time measurements. Because the packet capture host is located on the path between a
local host and a distant host, it cannot exactly measure the round trip time as seen by the
local host. Instead, it makes separate round trip time measurements for the path from the
local host to the packet capture host (using the HTTP response) and for the path from the
packet capture host to the distant host (using the HTTP request). This process is shown
in Figure 4.4.

In the case of local web clients downloading content from distant web servers, the
packet capture host uses the web request data to make RTT measurements from the packet
capture host to the distant host, and the web response data to make RTT measurements
from the packet capture host to the local host. The measurements for each component of
the path are individually smoothed and then added together to result in a single SRTT
measurement.

4.3.2 HTTP Statistics

The goal of the HTTP realization is to measure performance for applications that
use HTTP (on top of TCP) for data transport. These applications di�er from applications
that simply use TCP for bulk data transport in the following ways:

� Web browsers use HTTP to download web pages that usually consist of an HTML
document with the addition of in-line images. These objects are usually retrieved using

60

Local
Client

Packet
Capture

Host

Distant
Host

HTTP Request

HTTP Response

 TCP Data

 TCP Acks

SRTTtot =SRTTlocal + SRTTdistant

Local
SRTT

Distant
SRTT

Figure 4.4: How SRTT is measured at the packet capture host.

multiple TCP connections. As a result, metrics that only report the performance of
individual TCP connections are not as useful to applications as metrics that report
full-page download times.

� Many web pages are produced as the output of server-side execution of Common
Gateway Interface (CGI) programs. This process incorporates server-side execution
time that is not e�ectively reported in a TCP bandwidth or round trip time metrics.

Web Object Download Time

To overcome these limitations, we measure and report web object download time
as the primary metric for HTTP applications. We de�ne the web object download time as
starting when the application does a Domain Name System lookup for the host mentioned
in an URL and ending when the application receives the last byte of content for the web
object. For HTML objects, this also includes the time to download in-line images that are
a part of the web page. This also includes any server execution time as the result of CGI
programs.

Packet Capture Host Policies

Because the packet capture host is not implemented at web clients, it cannot
exactly measure the web object time as de�ned above. It must reconstruct this metric by
examining the HTTP headers and responses in TCP connections. This can be diÆcult:
a single TCP connection may be used for a single HTTP transaction (for HTTP/1.0) or
multiple HTTP transactions (for HTTP/1.1). In addition, multiple HTTP transactions
may comprise a web object, as in the case of HTML pages with in-line images.

61

The packet capture host handles the �rst two problems by recreating the ordered
byte stream from individual TCP packets and explicitly parsing the HTTP headers in the
byte stream. It examines the Content-Length: �eld in HTTP Responses and measures the
web object download time as starting at the start of the SYN exchange of the connection
and ending when the last byte of an object has been transferred over that connection. For
subsequent HTTP requests using the same connection, we start the download time using
the �rst byte of the HTTP request instead of the beginning of the SYN exchange. Note
that this means if web clients use request pipelining to initiate a batch of HTTP requests
at once, the reported response time for subsequent (second, third, etc.) objects in a batch
request will have longer-than-expected download times, as later responses must wait for
earlier ones to be sent to the client.

In the case of HTML pages with in-line images, the packet capture host does
not have perfect information about exactly which web objects comprise a single web Page.
There is nothing in the HTTP protocol that explicitly links together HTML pages and in-
line objects that are included in them. One alternative is to explicitly parse the HTML pages
to �nd references to in-line images. However, this would signi�cantly increase the amount
of computation at the packet capture host and decrease the number of HTTP streams it
could handle. We wanted to �nd a balance between accurately reporting statistics for full
HTML pages and handling a large number of clients.

Fortunately, there is implicit information that can often be used as a heuristic
to connect HTML Pages and in-line images. Many web clients include a Referer �eld in
HTTP requests that indicate the object from which the current request was referred. The
inclusion of this �eld is not mandatory, and some web clients such as JDK/1.1 and Pointcast
do not include this header. However, the majority of HTTP requests are made by browsers
that provide this �eld, so it is a useful heuristic that the packet capture host can use to link
up HTML pages and in-line objects.

Another challenge from using the Referer �eld is that the �eld is a backward
reference{the in-line objects point backward to the HTML pages. As a result, it is diÆcult
to know when all the in-line objects for a HTML page have been transferred. The packet
capture host handles this by using a two-pass approach. The �rst pass links together HTML
pages and in-line objects using the Referer �eld, and the second pass makes performance
reports using the information gained from the �rst pass. We wait long enough between the
two passes to assure that most web pages have been completely transferred by the time the
second pass starts.

4.4 SPAND Applications Using TCP/HTTP Metrics

Using these realizations of the SPAND architecture, we developed several adaptive
applications that use network measurements to improve application-level performance. Two
of these applications, SpandConneg and LookingGlass, are described in detail in Chapters
5 and 6.

We have developed some additional applications using MuÆn [52], an extensible
HTTP proxy that allows the addition of customized �lters for �ltering HTTP request,
response, and content streams. In particular, we added a content �lter to MuÆn that

62

inserts informative icons in HTML documents that indicate the expected download time
for hyper-linked objects (e.g. red icons for slow downloads, green icons for fast downloads).
The �lter uses SPAND to decide which icon to place beside the hyperlink. We have also
written several diagnostic tools that allow users to browse the contents of the performance
server's repository and examine the distribution of the metrics measured by SPAND.

4.5 Application-independent Performance Results

In this section, we present performance results that show how well SPAND per-
forms at providing accurate performance responses to clients. We do this in an application-
independent way by using the TCP realization, which captures transport-level measure-
ments. In Chapters 5 and 6, we show more application dependent results, showing how well
SPAND works in the context of two speci�c applications.

There are several important metrics by which we can measure the accuracy of the
SPAND system:

1. How long does it take before the system can service the bulk of performance requests?

2. In the steady-state, what percentage of performance requests does the system service?

3. How accurate are the performance predictions?

To test the performance of our system, we deployed a packet capture host at the
connection between IBM Research and its Internet service provider. Hosts within IBM
communicate with the Internet through the use of a SOCKSv4 �rewall [72]. This �rewall
forces all internal hosts to use TCP and to initiate transfers (i.e. servers can not be inside the
�rewall). The packet capture host monitored all traÆc between the SOCKS �rewall at IBM
Research and servers outside IBM's internal domain. The measurements we present here
are from a 3 hour long weekday period. During this period, 62,781 performance reports
were generated by the packet capture host for 3,008 external hosts. At the end of this
period, the performance server maintained a repository of approximately 60 megabytes of
performance reports.

Figure 4.5 shows the cumulative number of reports generated and hosts reported
about as a function of time. We see that about 10 reports are generated per second, which
results in a network overhead of approximately 5 kilobits per second. We also see that
while initially a large number of reports are about a relatively small number of hosts (the
upward curve and leveling o� of the curve), as time progresses, a signi�cant number of new
hosts are reported about as time progresses. This indicates that the "working set" of hosts
includes a set of hosts who are reported about a small number of times.

This �nding is reinforced in Figure 4.6, which shows a histogram of the number of
reports received for each host over the trace. We see that a large majority of hosts receive
only a few reports, while a small fraction of hosts receive most of the reports. The mean
number of reports received per host was 23.67 and the median number of reports received
per host was 7.

To test the accuracy of the system, we had to generate a sequence of performance
reports and performance requests to test the system. Since there are no applications running

63

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

��������
��
���
����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������

�
���

��
��
��
��
��
��
���
���
������
���
��

����
����
�����
�����
�����
�����
�����
�����
����������
�����

��
��

���
���
���
����
����
����
����
����
����
����
����
����
����
����
����
����
����
���������
�����
�����
�����
��

�����
�����
������
������
������
������

��
��
��
��
���
���
������
���
���

���
���
����
����
����
����
����
����
����
����
����
����
����
����
�����
�����
����������
�����
��

�����
�����
�����
�����
�����
�����

�
�

�����
�����

��
��
��
��
��
��
����
��
�����
���
��

���
���
����
����
����
����
����
����
����
����
����
����
����
����
�����
�����
����������
�����
�������

��
��

�����
�����

��
��
��
��
��
��
��
��
���
���
����
����
�������
����
��������
����
��

���
���
���
���
���
���
���
���
����
����
����
����
����
����
���������
�����
���

�����
�����

��
��
��
��
��
��
��
��
���
���
������
���
������
���
��

��
��
���
���
���
���
���
���
���
���
���
���
���
���
����
����
��������
����
��������
����
��

��
��
��
��
��
��
���
���
���
���
���
���
���
���
����
����
����
����
��

0

5

10

15

20

25

30

35

Elapsed Time (Thousands of
Seconds)

H
undreds of H

osts

T
ho

us
an

ds
 o

f R
ep

or
ts

Hosts

Reports

Figure 4.5: Cumulative number of reports generated and hosts reported about as a function
of time.

at IBM that currently use the SPAND system, we assumed that each client host would make
a single performance request to the performance server for a distant host before connecting
to that host, and a single performance report to the performance server after completing
a connection. In actual practice, applications using SPAND would probably request the
performance for many hosts and then make a connection to only one of them.

The performance of the SPAND system on this workload is summarized in Figures
4.7 and 4.8. When a performance server is �rst started, it has no information about prior
network performance and cannot respond to many of the requests made to it. As the
server begins to receive performance reports, it is able to respond to a greater percentage of
requests. Determining the exact \warmup" time before the performance server can service
most requests is important. Figure 4.7 shows the probability that a performance request
can be serviced by the performance server as a function of the number of reports since the
"cold start" time. We say that a request can be serviced if there is at least one previously
collected performance report for that host in the performance server's repository. As we
can see from the graph, the performance server is able to service 70% of the requests within
the �rst 300 reports (less than 1 minute), and the performance server reaches a steady-state
service rate of 95% at around 10,000 reports (approximately 20 minutes). This indicates
that when a performance server is �rst brought up, there is enough locality in client access
patterns that it can quickly service the bulk of the performance requests sent to it.

To measure the accuracy of performance responses, for each connection we com-

64

0
2
4
6
8

10
12
14
16
18
20

1 10 102 103 104

Host Number

F
re

qu
en

cy
 (H

un
dr

ed
s

of

R
ep

or
ts

)

Figure 4.6: Histogram of number of performance reports received per host. The X axis is
on a log scale.

puted the ratio of the throughput returned by the performance server for that connection's
host with the throughput actually reported by the packet capture host for that connection.
Figure 4.8 plots the cumulative distribution function of these ratios. The X axis is plotted
on a log scale to equally show ratios that are less than and greater than one. There are two
curves on the graph. One shows the CDF of ratios where the performance server does not
use any of the heuristics described in Section 4.3.1 to eliminate idle periods in connections,
and the other shows the CDF of ratios where the performance server does employ these
heuristics.

Table 4.5 shows the probability that a performance response is within a factor of
2 and 4 of the actual observed throughput. We see that performance responses are often
close to the actual observed throughput. Obviously, di�erent applications will have di�erent

System % within a factor of 2 % within a factor of 4

Base System 59.08% 84.05%

Base System + 68.84% 90.18%
App Heuristics

Table 4.1: Accuracy of Performance Responses

65

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Performance Reports (Thousands)

P
ro

b.
 P

er
f R

eq
ue

st
 C

an
 b

e
S

er
vi

ce
d

Figure 4.7: Probability that a performance request can be serviced as a function of the
number of performance reports.

requirements as to the error that they can tolerate. Factors of 2 and 4 are shown only as
representative data points. We see that SPAND does a good job of predicting performance,
and as shown in Section 3.5.3, inherent network noise is the largest contributor to the gap
between predicted and actual performance.

4.6 Taking Advantage of Daily Cycles to Improve Perfor-
mance

From examining the above experiments, we see that one of the limitations of our
system is that a large number of infrequently visited distant hosts only have a small number
of performance reports collected for them. In some cases, this prevents us from generating
accurate responses to performance queries for these hosts. Although these hosts only make
a small contribution to the total number of performance requests, we wanted to investigate
changes to improve the number of performance reports available for these infrequently
accessed hosts.

With this in mind, we experimented with improvements to our system to increase
the number of performance reports available for infrequently accessed distant hosts by tak-
ing advantage of daily cycles in network usage. For example, network measurements made
at 9:00 AM are not likely to re
ect performance at 3:00 PM on the same day, but measure-

66

��
���
���
���
���
���
���
����
����
����
����
�����
�����
�����
�����
������
������
��������

��
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
�����
�����
����������
�����
����������
�����
���

�����
�����

��
��

������
������

��
��

������
������

��
��
��
��
��
��
����
��
��
������
������

��
��

������
������

��
��
��
��
��
��
���
�����
�����
�����
�����
�����
�����
�����
�����
����������
�����
��

���
���
����
����
����
����
����
����
��
������
������

��
��
�������������������������������������
���
���
����
����
����
����
����
����
���
�����
�����

�
�

�����
�����

��
��

���������������������������
���
���
���
���
���
���
���
���
��
�����
�����
�����
�����
�����
�����
�����
�����
��

���
���
���
���
���
���
���
���
������
���
��
�����
�����
�����
�����
�����
�����

�
�

���
����
����
����
����
����
����
����
����
��������
����
���

���
���
���
���
���
���
����
����
����
����
����
����
���

���
���
���
���
����
����
����
����
����
����
��������
����
��������
����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��

������
������

��
��

��������
��
����
��
���

���
���
���
���
���
���
����
����
����
����
����
����
����
����
�����
�����
����������
�����
�����������
������

���
�������������������������
�������������������������

��
��
��
��

0

0.2

0.4

0.6

0.8

1

1/64 1/4 1 4 16 64

Without App

With App
 Heuristics

Heuristics

Ratio of Expected to Actual Throughput

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

1/16

Figure 4.8: CDF of ratio of expected throughput (as generated by the performance server)
to actual throughput (as reported by the client). The X axis is on a log scale.

ments made at 3:00 PM the previous day are. By using past measurements of performance
from previous days in addition to current measurements, we can increase the number of
performance reports available for these hosts and increase the accuracy of performance re-
sponses. Unfortunately, we found that the bene�ts of these improvements are not worth the
costs, as we describe below.

4.6.1 Methodology

Before we modi�ed our system to take advantage of daily cycles, we performed
some experiments designed to quantify the potential bene�ts of using past performance
reports. We must trade o� the bene�ts of using past performance from days ago in terms
of increasing the number of relevant performance reports for uncommonly accessed distant
hosts with the costs of increased repository size (the collection of performance reports now
spans days or weeks instead of hours) and possible additional temporal noise (de�ned in
Section 3.5.1). If we �nd that using information from days ago only modestly increases the
number of performance reports for uncommonly accessed distant hosts, the bene�ts are not
worth the costs.

To show the potential e�ectiveness of using daily cycles to improve the number of
relevant performance reports, we examined a long-running client side network trace. This
trace consisted of a longer portion of the trace described in Section 3.4.1, in particular,

67

approximately 9.2 million HTTP requests from 8000 unique clients over an 18 day period.
To examine the e�ectiveness of our algorithm, we calculated the number of performance
reports generated for each distant host under two scenarios: a baseline case where we do
not take advantage of daily cycles in �nding the set of relevant performance reports, and a
second case where we take advantage of daily cycles in �nding the set of relevant performance
reports.

To measure the performance for baseline case, we considered only the weekday
days of the trace (12 days) and divided the 12 day trace into 3 hour sections. For each 3
hour section, we calculated the number of performance reports reported for each distant
host during that 3 hour period. For each distant host, we averaged together the number
of performance reports across all of the 3 hour sections to obtain an average number of
performance reports available for each distant host over small time scales.

To measure the performance for the second case, we again divided the 12 day trace
into 3 hour sections, but uni�ed the 12 day trace into a single day by combining similar
3 hour sections together into a single unit. For example, we combined together the 12:00
Noon-3:00 PM time period for each of the 12 days together and treated them as if they
had all occurred on the same day. We then averaged together the number of performance
reports across all of the 3 hour sections as before to obtain an average number of relevant
performance reports over multi-day time scales.

4.6.2 Results

Figure 4.9 shows the results of this analysis. We see that taking advantage of
past information over multi-day time scales improves the number of performance reports
available for distant hosts, but only modestly. When only current-day information is used,
82% of distant hosts have less than 20 performance reports available for them. When
multi-day information is used, this drops to 65%. This small improvement must be balanced
against then costs of maintaining a much larger repository and an increase in temporal noise.
Because this improvement is rather modest and the costs are signi�cant, We concluded that
taking advantage of Daily Cycles to improve the number of performance reports available
for infrequently accessed distant hosts is not worth the costs.

4.7 Summary

In this chapter, we presented the core SPAND architecture. We described the com-
ponents of the architecture (Client Applications, Performance Servers, and Packet Capture
Hosts), and described how these components communicate (via active messages). We then
described how the architecture is realized to measure performance for a generic bulk trans-
fer transport and a HTTP speci�c transport, focusing on the challenges of making these
measurements from a packet capture host. We then presented application-independent mea-
surements of SPAND designed to show how well SPAND performs at providing meaningful
network performance information to a group of clients. We saw that SPAND can quickly
service over 95% of the Performance Queries presented to it, and that SPAND's Perfor-
mance Responses are usually within a factor of two of actual observed performance. The

68

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Number of Performance Reports

With Daily Cycles
Without Daily Cycles

Figure 4.9: Distribution of number of performance reports for a given distant host when
daily cycles are and are not taken into account. The X axis is on a log scale.

discrepancy can be attributed to the amount of network noise, the inherent variability in
the state of the network.

In the next Chapter, we present our �rst application of SPAND, SpandConneg.
SpandConneg utilizes SPAND to intelligently trade o� document quality for improved ap-
plication level performance.

69

Chapter 5

SPAND and HTTP Content

Negotiation

In this chapter, we present a solution to the problem of intelligently choosing
between alternate representations of Web Objects in response to network and server condi-
tions. SpandConneg is a suite of applications that uses HTTP Content Negotiation to adapt
to network bottlenecks both at web clients and web servers. SpandConneg uses SPAND's
network measurement service to drive its adaptation policies. We begin by introducing the
problem that SpandConneg solves and motivating why our solution solves this problem.

5.1 Background and Motivation

The Hypertext Transport Protocol (HTTP) is the application-to-application trans-
port protocol for World Wide Web (WWW) applications. The response times that clients
experience while using HTTP are related to the available bandwidth along the network path
from a client to a particular server, the number of other clients that are also contacting the
same server, and the size of the pages being transferred. Designers of a web site usually
make assumptions about the number and type of clients that will visit them and design
their site appropriately. For example, if the typical client is expected to have high available
bandwidth, the site may consist of large, full color images or streaming multimedia. If
the typical client is expected to have low available bandwidth, then the site may consist
of smaller low color depth images without streaming multimedia. In addition, web site
designers allocate bandwidth to the Internet in proportion to the number of clients that are
expected to visit the site.

Unfortunately, these assumptions about a client's available bandwidth and the
total client request load are often wrong. If the available bandwidth to a client is lower
than the estimate determined by the web site creators, then the client will have to wait
an excessive amount of time to download a particular web object. Unfortunately, due to
the heterogeneity of today's Internet, there is no such thing as a \typical" client, and some
clients visiting a web site will have longer download times than those predicted by the site
designers. In addition, when a web server site is swamped with an unexpected burst of
requests from a large number of clients, the available bandwidth to each client is limited.

70

The response times of clients increases as the connection from the server to the Internet
becomes a bottleneck. WWW clients and servers need a mechanism to adapt WWW content
to match dynamic changes in available bandwidth.

To overcome this problem of bandwidth heterogeneity, the IETF HTTP Working
Group and the World Wide Web Consortium have de�ned mechanisms in HTTP for Trans-
parent Content Negotiation. This allows a client and server to negotiate features of a web
object including, most importantly, the content �delity (and as a result, the object size).
For example, clients with higher available bandwidth can request large full-color versions
of images, and clients with lower available bandwidth can request smaller black and white
versions of images.

The idea of changing object �delity to match network characteristics is not unique
to HTTP. Related work has experimented with di�erent ways to achieve the same goal by
maintaining or generating multiple representations of web content [58] [28] [27], sometimes
in ad-hoc manual ways. One interesting example is what happens at some popular web
server sites when they are swamped with an unexpected number of clients. For example,
the administrators of the CNN web site www.cnn.com turn o� advertisements (their primary
source of income) during periods of heavy client traÆc in an attempt to reduce server load.
Using HTTP Content Negotiation, clients and servers can modify content �delity to obtain
acceptable response times. Clients may initiate a change in content �delity to obtain a �xed
response time at the cost of content quality. Servers may initiate change in content �delity
to reduce the total bandwidth leaving a server complex as the number of client requests per
second increases.

In this chapter, we examine the e�ectiveness of HTTP content negotiation at
reducing the actual response times of WWW clients and handling variable request loads on
WWW servers. In particular, we answer the following speci�c questions:

� Is the �rst bottleneck of a web server complex likely to be its computing resources or
its network connection to the Internet?

� How often do mismatches between expected and actual available bandwidth lead to
excessively long (i.e. more than 30 seconds) transfer times for web clients today?

� Client-side initiated negotiation requires some estimate of available bandwidth and
other network characteristics to work. How often is this estimate accurate, and do
clients obtain acceptable response times using these estimates?

� What is the overhead of using content negotiation in a real web server implementation?

� For server-side negotiation, can outgoing bandwidth stay relatively constant as client
load is added? What is the increase in web server throughput by using content
negotiation?

To examine the e�ectiveness of client-initiated content negotiation, we perform
trace analysis of actual client traÆc and use this trace as a workload to drive our imple-
mentation. To examine the e�ectiveness of server-initiated content negotiation, we imple-
ment HTTP Content Negotiation in Apache, a commonly used web server, and stress the
implementation by generating requests from Surge, a web client request generator.

71

The rest of this chapter is organized as follows. In Section 5.2, we discuss the
problems of long client-side response times and server-side bandwidth shortages. Section 5.3
provides details about the IETF Content Negotiation mechanism and our implementation of
it. Section 5.5 analyzes the e�ectiveness of client-initiated content negotiation at reducing
web page download times. Section 5.6 describes the bene�ts of server-initiated content
negotiation in handling additional request load, and �nally, in Section 5.7, we summarize.

5.2 Motivating the Problem

In this section, we quantify the e�ects of long variable response times at web clients
and bandwidth bottlenecks at web servers. We do this by measuring typical client response
times and characterizing the behavior of servers under heavy load.

5.2.1 Long Response Times at Web Clients

To understand the response times observed by web clients, we used a network level
packet trace to capture the behavior and dynamics of web clients at IBM research. The IBM
research clients consisted of mainly workstations and PCs connected via ethernet or token
ring local area networks to the external network. All clients were at most a few network
hops from IBM's connection to its Internet service provider. From the packet trace, we
extracted individual web page transfers and recorded the response time, how long it took
for the clients to download web pages from web servers in the Internet. The response time
for a page was measured by determining the di�erence in time from when the web page
was requested to when the last web object embedded in the page was transferred. Because
the response time is a function of the size of the web page, we also recorded the available
bandwidth (the size of the page divided by the time taken to transfer the page) for each
web page transfer.

Figure 5.1 plots the CDF of response times for these page transfers. We see that
most of the transfers completed in a reasonable amount of time. 90% of the transfers
completed in less than 5 seconds. However, some clients were forced to wait excessively
long before receiving web pages. 5% of the time, clients waited more than 20 seconds before
receiving a complete web page.

Figure 5.2 shows the CDF of the average bandwidth of these transfers. Again, we
see that most transfers had acceptable performance. Approximately 80% of the transfers
had an e�ective bandwidth of more than 200 KBits/sec. However, some transfers had
much lower e�ective bandwidths. Approximately 45% of the time, transfers had e�ective
bandwidths of less than 50 KBits/sec.

These measurements show us that web clients occasionally experience excessively
long response times. Since the IBM community was very homogeneous and well connected,
this wide variation can be attributed to the performance of the distant web server and the
available bandwidth along the wide-area network path to the server and not the character-
istics of the local connectivity to individual clients.

It is also important to remember that given the location and makeup of the client
population, these are very conservative results. This was a relatively homogeneous pop-

72

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
Time (seconds)

P
e

rc
e

nt
ag

e

Figure 5.1: CDF of measured transmission times for pages retrieved by clients at IBM
Research from servers in the Internet

ulation of web clients connected to the Internet via high-bandwidth local area networks,
and IBM is a corporation that can pay for high quality Internet connectivity. Other client
populations may not be as lucky, and for these groups of clients, the above problems will
only be aggravated.

5.2.2 Bottlenecks at Web Servers

Every system has a bottleneck component whose performance limits the overall
performance of the system. For web servers, the bottleneck could be one of three compo-
nents: The CPU running the web server software, the disk holding the web content, or the
network connection between the web server and the web client. In this section, we present
results that show that the network connection is likely to be the �rst bottleneck of the
overall web server.

To show this, we performed several calculations designed to quantify how much
traÆc web servers can generate in the absence of bottleneck constraints. If this amount of
traÆc is greater than the typical connectivity of web server sites to the Internet, then we
can be sure that the �rst bottleneck that a web server is likely to face is their connection
to the Internet.

We did this by examining recently published reports for the SpecWeb96 bench-
mark (available at http://www.spec.org/osg/web96/results) for web servers o�ered by
a variety of companies. SpecWeb96 is a web server benchmark that reports the maximum
number of web operations (web objects served) per second by an individual web server.
Each company obtained these results by connecting a single web server to a collection of
web clients via a high speed network connection such as an ATM network. The clients

73

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Bandwidth (Mbit/sec)

P
er

ce
n

ta
ge

Figure 5.2: CDF of measured bandwidth for for transfers between clients at IBM Research
and servers in the Internet

then requested objects from the server according to the guidelines in the benchmark. The
company measured the number of web requests handled by the web server and reported
this throughput as the benchmark result.

For the fastest results reported by each company, we multiplied the benchmark
throughput of operations/second by the average size of a document in the benchmark (ap-
proximately 16 kilobytes). This calculation allows us to reconstruct the load on the link
between the web clients and web server, resulting in an average bandwidth requirement for
the server.

The results of this calculation are shown in Figure 5.3. We see that the band-
width varies from 10 to 100 Megabytes per second, which is equivalent to the capacity of
approximately two to 20 T3 lines. This means that a single web server machine could sat-
urate from two to 20 T3 lines by serving out documents that are comparable to the ones in
the SpecWeb benchmark. By using multiple machines and relatively simple load balancing
techniques, this traÆc could be easily increased by a factor of 10 or more.

As few web server sites are connected to the Internet with 20 T3 lines, this is a
clear indication that for a well-designed web server, the bandwidth from the server complex
to the rest of the Internet is likely to become the �rst bottleneck of the system.

From these measurements we see that bandwidth at the server and in the network
is the likely cause of variations in response times observed by clients. This indicates that
by controlling the size of transferred pages, and as a result the quality, we can control the
response times observed by the clients and the load on the server's network connections.
In the next section, we describe how HTTP Content Negotiation can be used to alleviate
these problems.

74

0 20 40 60 80

100

120

Bull S.A.Compaq

Data GeneralDigitalFujitsu
HP

IBM
NCR

SGI
Sun

Bandwidth (Megabytes/sec)

F
igu

re
5.3:

T
raÆ

c
gen

erated
b
y
d
i�
eren

t
servers

u
n
d
er

th
e
S
p
ecW

eb
b
en
ch
m
ark

.

5
.3

H
o
w
C
o
n
te
n
t
N
e
g
o
tia

tio
n
W
o
rk
s

T
h
is
section

d
escrib

es
th
e
d
etails

of
th
e
IE
T
F
T
ran

sp
aren

t
C
on
ten

t
N
egotiation

P
roto

col
an
d
ou
r
im

p
lem

en
tation

of
th
e
p
roto

col.
A
m
ore

com
p
lete

d
escrip

tion
is
p
rov

id
ed

in
[37

].

5
.4

IE
T
F
T
ra
n
sp
a
re
n
t
C
o
n
te
n
t
N
e
g
o
tia

tio
n

S
om

etim
es

w
eb

ob
jects

are
availab

le
in

altern
ate

rep
resen

tation
s.

F
or

ex
am

p
le,

a
tex

t
�
le
m
ay

b
e
availab

le
in

several
lan

gu
ages,

an
im

age
m
ay

b
e
availab

le
in

several
sizes,

or
a
p
ap
er
m
ay

b
e
availab

le
as

a
p
ostscrip

t
d
o
cu
m
en
t
or

an
H
T
M
L
p
age.

T
ran

sp
aren

t
C
on
ten

t
N
egotiation

is
a
m
ech

an
ism

th
at

allow
s
a
clien

t
an
d
server

to
select

th
e
m
ost

ap
p
rop

riate
varian

t
for

a
p
articu

lar
clien

t.
T
h
e
w
ord

"T
ran

sp
aren

t"
is
u
sed

b
ecau

se
b
oth

th
e
clien

t
an
d

server
are

aw
are

of
th
e
availab

le
altern

ate
rep

resen
tation

s.
H
T
T
P
also

su
p
p
orts

N
on
tran

s-
p
aren

t
C
on
ten

t
N
egotiation

,
w
h
ere

on
ly
th
e
server

is
aw

are
of
th
e
availab

le
rep

resen
tation

s.
T
y
p
ically,

clien
ts

an
d
servers

can
n
egotiate

on
th
e
follow

in
g
featu

res
of

an
ob

ject:

�
M
im

e
T
y
p
e

�
L
an
gu
age

�
C
h
aracter

S
et

�
E
n
co
d
in
g

�
L
en
gth

75

Negotiation can also be done on other arbitrarily de�ned feature tags (for example,
screen size, color depth, etc.). Separate work is being done on a "Feature Tag Registry"
[36] that allows developers to de�ne Feature Tags in a uni�ed framework similar to that
used for MIME types [12].

Web Client Web Server

GET img.gif HTTP/
1.1

HTTP 300 Multiple

Choices

GET img.1.gif
HTTP/1.1

HTTP 200 OK

Figure 5.4: Sample transaction using transparent content negotiation

Figure 5.4 shows a typical transaction using Transparent Content Negotiation. A
web server responds to a request for a web object with a \HTTP 300 Multiple Choices"
response that lists the variants and their features. Figure 5.5 shows the format of a Multiple
Choices response.

HTTP 300 Multiple Choices:
Date: Tue, 11 Jun 1996 20:02:21 GMT
 TCN: list
 Alternates:
{“img.1.gif” 1.0 {type image/gif} {length 4000}},
{“img.2.gif” 0.75 {type image/gif} {length 3000}},
{“img.3.gif” 0.5 {type image/gif} {length 2000}}

Figure 5.5: Format of a multiple choices response

The web client uses this response to select one of the variants and downloads that
variant from the web server. There are also mechanisms that allow a client to execute
a prede�ned variant selection algorithm on the web server (for example, to automatically
choose the smallest acceptable object), to avoid the extra round trip associated with sending
the Multiple Choices response.

76

In SpandConneg, we only consider negotiating between static discrete represen-
tations of image objects with di�erent sizes. This allows a client to trade o� image size,
quality, and color depth for downloading speed and a server to trade o� image quality for
greater throughput under periods of high load.

5.4.1 Content Negotiation in Apache

In this section, we describe how content negotiation is implemented in Apache
and how we modi�ed it for our purposes. The version of Apache we used only implements
Nontransparent Content Negotiation. For our purposes, this was acceptable, because we
used the Apache implementation to measure server-side negotiation where the client does
not take part in the variant selection process.

Apache has two mechanisms to enable negotiation of web content: Type Maps and
MultiViews Searches. A Type Map is a �le that explicitly lists the variants to be negotiated
and their characteristics (e.g., size, quality, language, mime type). When a web client
requests a Type Map, the web server uses the Type Map to �nd the characteristics of the
variants and selects the variant that is most appropriate for that particular client. Using
MultiViews, a web server does an implicit �lename pattern search and chooses among the
results. For example, if a web client requests a �le \img.gif" and no such �le exists on the
server, the server looks for �les with names \img.*" and internally constructs a Type Map
using those �les. If the web server happens to �nd a Type Map �le while doing this wildcard
search, then that Type Map is used instead. Figure 5.6 shows examples of negotiation using
Type Maps and MultiViews Searches.

Web
Client

File
System

Web
Server

Web
Client

File
System

Web
Server

GET img.gif.var
HTTP/1.1 fopen(“i mg.var”)

mmap(“i mg.gif”)

GET img.gif HTTP/
1.1

mmap(“i mg.1.gif”);

mmap(img.1.gif)

stat(“ img.*”)

img.1.gif,img.2.gif,

img.3.gif

img.1.gif

img.1.gif

img.2.gif

img.3.gif

img.1.gif

HTTP 200 OK
HTTP 200 OK

Type Maps MultiViews Search

Figure 5.6: Apache mechanisms for retrieving negotiated documents

We used Apache's MultiViews mechanism for content negotiation. We chose to use
this rather than Type Maps because it allows us to avoid changing HTML documents. For

77

example, if we used Type Maps, we would have to modify HTML documents to change all
hyperlinks to images and embedded image references to point to the Type Map instead of
the original images. To make a object negotiable, we changed the name of the stored object
to a di�erent one. When a client requested that negotiable object, it forced a MultiViews
search. To speed up the MultiViews process, we modi�ed the web server to explicitly look
for a Type Map �le before doing the �lename pattern search. This avoided a linear search
through the �les in a directory.

5.4.2 Generating Alternate Representations

An important part of a content negotiation implementation is a program that gen-
erates the alternate representations among which the client and server choose. To address
this, we wrote a web content crawler that scans the �les on a web server and generates alter-
nate representations. As previously mentioned, we only consider negotiation of image �les.
To generate alternate representations for GIF and JPEG image �les, we used transcoding
programs written by the GloMop group at UC Berkeley for their TranSend WWW proxy
[28]. We converted all image �les to JPEGs, and then changed the JPEG quality parameter
to produce a particular alternate representation.

Our web content crawler generated 6 alternate representations for each image �le,
each of a di�erent size. Each alternate was 70% of the size of the next larger alternate,
leading to possible alternates that are 70%, 49%, 34.3%, 24%, 16.8%, and 11.8% of the
size of the original image. We chose a multiplicative decrease in size rather than a linear
decrease in size to keep the relative size between representations the same. For example,
if we had chosen representations that were 20%, 40%, 60%, and 80% of the size of the
original image, the relative size of the �rst alternate to the full size image is 80%, whereas
the relative size of the smallest two alternates is 50%.

5.5 Using Content Negotiation and SPAND at clients

As shown in Section 5.2.1, the transfer time for retrieving web pages from di�erent
servers varies greatly. This is undesirable since users would like consistent response times for
viewing similar information. This variation is primarily a result of di�erences in available
bandwidth to the server site, speed of the server and size of the requested pages. Since there
is no easy way to modify available bandwidth or the speed of the server, we must resort to
modifying the size of web pages to provide unchanging response times. In this section, we
explore the e�ectiveness of our algorithms to provide this consistent performance.

5.5.1 Algorithm

The basic technique for providing constant response times consists of the following
steps. The client obtains a list of equivalent alternate versions of the page. The client then
retrieves a performance estimate for the server. Based on this performance prediction and
the size of the variants, the client estimates the transfer time for the di�erent versions of
the web page and chooses the one that most closely matches the user's requested response
time.

78

For the client to estimate the transfer time for a web page, it needs to know the
combined size of the base HTML page and its embedded objects. To do this, we add a
feature tag called \full-page length" to the base HTML page. Alternate versions of the
HTML document have di�erent quality embedded images and di�erent total page sizes.
The client obtains a full list of the variants and total sizes via the Transparent Content
Negotiation mechanism.

5.5.2 Experimental Methodology

To test the e�ectiveness of our client-side implementation, we used a combination
of trace analysis and implementation for our experiments. We began by collecting a client-
side network level packet trace. This trace was played back as a workload into our client side
content negotiation implementation to determine the representation that our system would
choose based on current network conditions. The trace was then used again to determine
how well that choice would actually have worked at reducing client-side download times.
We describe this process in more detail below.

A machine at the connection between IBM Research and the its Internet service
provider collected the packet trace. This machine used tcpdump to record all packets sent
from or to the HTTP port (port 80). The trace was collected over a 4 hour period on a
Sunday. It contained a total of 8618 web page retrievals and 23719 web object transfers.
From the packet trace, we used techniques described in Section 4.3.2 to determine the web
object transfers in the individual trace, which web object transfers comprised a single web
page transfer, and the duration of each web page transfer.

Once we post-processed the traces to determine what web pages were transferred
by the collection of clients and how long it took them to transfer the pages, we used
this sequence of transfers as a workload for our content negotiation implementation. The
constraint placed on our implementation was to retrieve the highest quality page possible
subject to a maximum download time constraint of 10 seconds. In particular, for each web
page transfer in the trace, our client performed the following steps:

� Contact the distant web server to get the list of alternate web page representations
and their sizes.

� Contact the SPAND performance server to get an estimate of how long it would take
for the client to download each of these representations.

� Choose the largest representation whose transfer would complete in less than 10 sec-
onds. Note that this could be the original representation, meaning that no negotiation
was necessary.

To obtain an estimate for how long it would take for the client to download a
particular representation, we used SPAND's web object Download Time Metric, asking for
the performance for the original web page as well as the alternate representations for that
page. If no information was available for a particular web object, we fell back to using the
TCP Time To Completion Metric. In particular, if a particular representation were B bytes

79

in size, we queried the performance server, asking it how long it would take to retrieve B
bytes from the host named in the URL.

Once a representation of a page was chosen, we examined the traces to determine
how long it would have actually taken to transfer that representation of the page. For each
web object, the size of the object was adjusted by the appropriate factor to determine the
actual transfer size of the object. The tcpdump trace was then examined to determine how
long it would take for that representation of the object to be transferred. For example,
assume that a particular inline image has a full size of 100 KBytes, but our client actually
chose a representation that was only 70 KBytes in size. We examined the packet trace to
see when 70% of the original full-page transfer completed, and used the elapsed time for
70% of the transfer as an estimate of how long it would take the smaller representation
to complete. We estimated the total transfer time to be from the beginning of the HTML
Object fetch to the end of the fetch of the last scaled down web object for that page.

5.5.3 Results

We evaluated the client-side system by answering two questions:

� How often does our system correctly identify that no content negotiation is necessary?

� When our system does determine that content negotiation is necessary, how well does
our system perform at reducing client-side download times to acceptable levels?

We answer these questions below.

Identifying When Negotiation is not Necessary

The collected trace contained a total of 8618 page transfers over the four hour peri-
od. Of these, performance estimates were available for 3854. If the trace had been collected
for a longer period, a larger percentage of the transfers would have had estimates. Of these
transfers, the SPAND predictions for 3424 of the transfers indicated that their transfers
would complete in less than 10 seconds, and as a result, no negotiation was necessary. To
see if our predictions were correct, we examined the actual time taken to download the web
page and examined what fraction of them took less than ten seconds to download.

The actual time to transmit these pages is shown in Figure 5.7. The X axis shows
the download time for the web page in seconds, and the Y axis shows cumulative probability.
We see that over 95% of these requests completed in well under the target time of 10 sec.
meaning that our system often determines correctly that no negotiation was necessary.

Reducing Client Side Download Times

The remaining 430 transfers were expected to take more than 10 seconds and
smaller versions of the pages were requested. Of these transfers, we wanted to see how
often the transfers of reduced-size web pages completed in less than 10 seconds.

Figure 5.8 shows the results of this analysis. The X axis shows the page download
time in seconds, and the Y axis shows cumulative probability. There are two curves on

80

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Time (seconds)

P
er

ce
nt

ag
e

Figure 5.7: CDF of measured transmission times for pages that had performance estimates
but did not require retrieval of an alternate version.

the graph. The upper curve shows the CDF of transmission times when clients download
reduced size versions of the pages. The lower curve shows the actual time taken to download
full-size representations of the pages, showing the performance that clients would have if
they did not use content negotiation at all.

We can see that using content negotiation reduces the time it takes to download
pages. The median time taken for the full page transfers was about 16 sec, whereas the
median negotiated page transfer only took 6 sec. More importantly, it shrinks the tail of the
distribution and reduces the likelihood that clients will experience extremely long download
times. When clients perform content negotiation, we see that only 10% of the time, clients
wait more than 30 seconds to download a web page. On the other hand, when clients do
not use content negotiation, they must wait more than 30 seconds more than 35% of the
time.

However, our system only does an acceptable job at meeting the constraint of
reducing download times to less than ten seconds. Using content negotiation, approximately
60% of the downloads completed in under 10 seconds. This shows the e�ect of network noise
which we described in Section 3.5.1. Even though we made network measurements from
a group of similarly connected clients over a short period of time, these estimates were
often a factor of 2 away from actual network performance, due to inherent variation in
characteristics such as round trip time and available bandwidth that change from minute to
minute. Although SPAND does a fairly good job at predicting performance, the performance
responses given by SPAND still have error associated with them and are sometimes wrong,
leading to errors in the estimated size reduction required to download a page within the
target time. This means that network-aware applications that wish to make hard guarantees
about application-level performance will have to be conservative in interpreting the network

81

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

Reduced Size Pages
�� ����������

��

������
������
������
������
������
������

������
������
������
������

���������
���������
���������

��������������
��������������
��������������

�������������������
�������������������
�������������������

��
��

������

Full Size Pages

Time (seconds)

P
er

ce
nt

ag
e

Figure 5.8: CDF of transmission times for pages that had performance estimates and re-
quired an alternate version. Retrieval times for the original page and the alternate version
are shown.

measurement statistics they receive from SPAND, for example, by subtracting one or more
standard deviations from network metrics such as available bandwidth before using them
to drive application level decisions.

In any case, we see that network-aware content negotiation can be e�ectively used
to reduce long download times at web clients by making informed tradeo�s between content
�delity and response time.

5.6 Using Content Negotiation and SPAND at Servers

In this section, we quantify the bene�ts of server-initiated content negotiation in
managing bandwidth requirements of busy web servers. This allows a web server to handle
additional load in cases where the connection between the web server and the Internet is
the bottleneck link.

5.6.1 Algorithm

Our implementation consists of two parts: adding mechanisms to the web server to
change the size and quality of web objects served (and therefore the bandwidth leaving the
server), and a separate policy program that watches and manages the bandwidth leaving
the server.

To provide a mechanism for changing the quality of web objects, we added a
con�gurable Maximum Size option to the variant selection algorithm. The Maximum Size
is a fraction between 0 and 1 which indicates the largest allowable variant that is selected by

82

Apache. For example, if the Maximum Size fraction is 0.5, only variants that are less than
one-half the size of the original object are considered when performing content negotiation.
By modifying the Maximum Size fraction, we can proactively control the size of the objects
being delivered by the web server, and therefore the total bandwidth leaving the server
machine.

The policy program is a separate application that watches the total bandwidth
leaving the web server and reduces the quality of objects served by the web server if the
total bandwidth becomes too great. Using tcpdump, we examine packet headers to measure
the total number of bytes transmitted between the web server and the external network.
The policy program reads this statistic every �fteen seconds to obtain an estimate of the
bandwidth of the outgoing link from the web server. This statistic is then exponentially
smoothed resulting in an average bandwidth sbw. The goal of the policy program was
to keep sbw between a high water mark that was 90% of the limit bandwidth and a low
water mark that was 50% of the limit bandwidth. If sbw rose above the high water mark,
the web server was (gracefully 1) restarted by the policy program with a lower Maximum
Size fraction. If sbw fell below the low water mark, the web server was restarted with a
higher Maximum Size fraction. Whenever the web server was restarted, a minimum of two
minutes passed before changing the Maximum Size fraction again, to allow enough time for
the changes to take e�ect.

5.6.2 Experimental Methodology

Web
Client

Router Web
Server

1.5 Mbit/sec 10 Mbit/sec

Figure 5.9: Topology for server side experiments

Our experimental setup consisted of a web client machine connected to a web server
machine through a router (Figure 5.9). The web client and server machines were 200 Mhz
Pentium Pro PCs running Linux 2.0.30, and the router was a 133 Mhz PC running BSD/OS
3.0. The bandwidth of the link between the client and router was limited to 1.5 MBits/sec,
using a network emulator driver written by Venkata Padmanabhan. The web client was
running Surge, a HTTP request generator written at Boston University [6]. Surge is an
arti�cial HTTP workload generator that uses empirical measurements of client behavior to
accurately recreate typical HTTP requests. The web server was running Apache 1.3b5. The
web server document pool consisted of 200 objects with sizes from 198 bytes to 700 KBytes
with a distribution in sizes described in [7]. Characteristics of the request pattern (in
particular, document popularity, temporal locality of requests, embedded document count

1Apache has a mechanism that allows the web server to be gracefully restarted by spawning new worker

processes while allowing existing work processes to die after handling any pending requests.

83

of HTML pages, and length of a client's active and inactive periods) all follow representative
distributions reported in a background paper on Surge [7]. We made approximately 75% of
the documents negotiable by creating Type Map �les for them and alternate representations
of the documents. With this partition of negotiable and non-negotiable documents and
the access pattern requested by Surge, 60% of the bytes transferred were from negotiable
documents and 68% of the documents transferred were negotiable documents, both agreeing
with characteristics from client-side traces [32].

To stress the web server, we started with an initial �xed client population request-
ing objects from the web server. Every 800 seconds, additional clients were added to the
client population by restarting the Surge process on the client machine. This continued un-
til a maximum number of simultaneous clients were requesting objects from the web server.
We measured the traÆc on the link between the client and router and the throughput of
the server as a function of time under four scenarios:

� An unmodi�ed Apache server with an unconstrained network link.

� An Apache server modi�ed for content negotiation with an unconstrained network
link.

� An unmodi�ed Apache server with a network link constrained to 1.5 MBits/sec.

� An Apache server modi�ed for content negotiation with a network link constrained to
1.5 MBits/sec.

Comparing the �rst two scenarios allows us to quantify the overhead of our content
negotiation implementation. Comparing the second two scenarios allows us to quantify the
bene�ts of content negotiation in increasing throughput as a large number of clients access
the web server through a bottleneck link which is at or close to 100% utilization. For the
�rst two scenarios, we started with an initial client population of 5 clients and added 25
clients every 800 seconds until we reached a maximum of 530 clients. For the second two
scenarios, we started with an initial client population of 5 clients and added 10 clients every
800 seconds until we reached a maximum of 95 clients.

5.6.3 Results

Overhead of Content Negotiation

Figure 5.10 shows the overhead of the content negotiation process. The curve
shows smoothed throughput (measured in web operations per second) as a function of time
for the duration of the experiment. As a convenience, the X axis of each �gure also shows
when the number of clients was increased to a larger number. The Y axis is the smoothed
throughput of the web server measured in connections per second. The periodic dips in the
graph are due to the time it takes to restart the Surge process with a greater number of
clients.

There are two curves on the graph. One is for an unmodi�ed Apache server, and
the other is for Apache server modi�ed to use MultiViews to serve web objects. We see
that in the early part of the trace (which corresponds to a small number of clients accessing

84

Time (sec*10^3)

Number of Clients

T
h

ro
u

g
h

pu
t

(c
o

nn
s/

se
c)

0

50

100

150

200

250

5 55 105 155 205 255 305 355 405 455 505

0 2 4 6 8 10 12 14 16 18

Without MultiViews
With MultiViews

� ��������

������������������������������
�
�
�
�
��
��
��
��
��
��
��
��
�����������������������������

�����
�����
���

��
��
�����
�����

�������
�������
�������

���
���
������
������

���������������������
����
����
����
����
��

�����
�����������

����
����
����������������������

������
������

������������������������������
����
���

�����
�����

����������������������������
�����
��������
��������
��������
��������
��������
��������

������
������
������

��
������

������
�����
�����
�����

�����������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�������
�������

���
������
������
������

�������
�����������������
���������

������
�
�

Figure 5.10: Unconstrained Apache throughput with and without MultiViews

the server), there is virtually no di�erence between the two curves, indicating that there is
little overhead in using MultiViews to serve objects. As more clients are added, however,
the MultiViews version of Apache performs signi�cantly worse than the version without
MultiViews, and actually performs worse than MultiViews Apache under lower load.

From examining the Apache log �les, we found that this degraded performance is
due to a limit on the number of open �les in the system. The MultiViews version of Apache
must open additional �les (in particular, the Type Map �les), and under heavy load, there
are not enough �le descriptors available to process all client requests, leading to a large
number of aborted transactions. We feel that this problem is largely due to the way in
which Apache handles MultiViews searches and could be overcome if more e�ort were put
into optimizing the MultiViews process, for example, by caching the contents of Type Map
�les in memory instead of accessing them from the �le system. If this were done, then there
would be little or no overhead incurred by using Content Negotiation on a server.

Bene�ts of Server Side Content Negotiation

Figure 5.11 shows the smoothed link bandwidth sbw on the connection between
Apache and the router as a function of time in the case without any content negotiation. As
a convenience, the X axis of the �gure also shows when the number of clients was increased
to a larger number. Also included in Figure 5.11 are the 90% and 50% values of the limit
bandwidth (1.5 MBits/sec).

We see from the �gure that the constrained link becomes the bottleneck of the
system after the client population grows to approximately 35 clients. The smoothed band-
width curve quickly grows to the limit bandwidth and stays there. After this point, traÆc is
dropped at the gateway to the constrained link and clients are either turned away or queued

85

Smoothed Bandwidth
� ������������

highwater
lowwater

Time (sec*10^3)

Number of Clients

B
an

d
w

id
th

 (
b

yt
es

*1
0

^4
/s

e
c)

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9

5 15 25 35 45 55 65 75 85 95

������

�������������
�������������
�������������
�������������

����������
����������
����������
����������
����������
����������
����������

�����������
�����������
�����������
�����������
�����������

������������
������������
������������

�������������
�������������

��������������
��������������

����������������
����������������

�����������������������
�����������������������

�������������������
�������������������

������������
������������
������������
������������
������������
������������
������������
������������
��������������������

Figure 5.11: Bandwidth leaving Apache as a function of number of clients without content
negotiation

up at the web server. We can more directly see this e�ect in Figure 5.12, which shows the
web server throughput as a function of time. The throughput is limited to approximately
10 connections per second at a population of approximately 45 clients.

Figure 5.13 shows the smoothed link bandwidth sbw on the connection between
Apache and the router as a function of time (and number of clients) in the case with
content negotiation. Also included are the high and low limit bandwidth and the changes
in the Maximum Size fraction as a function of time. The bandwidth still approaches the
maximum link bandwidth, but because the server can reduce the size of objects being
served, it approaches the maximum more slowly. This leads to a greater peak throughput
of approximately 17 connections/second with a client population of 75 clients, as shown in
Figure 5.13.

Although using content negotiation does increase the peak throughput of the sys-
tem, the increase is rather modest (a 50% increase). This is mostly because only 60% of the
bytes come from negotiable documents. The bandwidth requirement of the non-negotiable
documents is una�ected by content negotiation and becomes a larger fraction of the total
bytes transferred as negotiated documents become smaller.

The choice of 60% was from analyzing a client-side web trace and as a result
captures the average characteristics of a large number of web servers as compared to the
speci�c characteristics of a particular web server. Some web servers may serve out a higher
or lower fraction of negotiable bytes than 60%. For example, a sampling of the pages at
the New York Times web site on March 28, 1998 indicates that approximately 90% of its
bytes are negotiable. In this case, the bene�ts of server-side content negotiation will be
more signi�cant in handling additional client load.

To quantify this, we repeated our experiment choosing a di�erent set `of non-

86

0
2
4
6
8

10
12
14
16
18
20

5 15 25 35 45 55 65 75 85 95

0 1 2 3 4 5 6 7 8 9 10

Smoothed Bandwidth
�� ��������������

��

���������
���������
���������
���������
���������

������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������

�����������
�����������
�����������
�����������

������������
������������
������������

����������������
����������������
����������������

�����������������
�����������������
�����������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������������

highwater
lowwaterMaximum Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec*10^3)

Number of Clients

B
an

d
w

id
th

 (
b

yt
es

*1
0

^4
/s

e
c)

M
axim

um
 S

ize F
ra

ctio
n

Figure 5.12: Bandwidth leaving Apache as a function of number of clients with content
negotiation

negotiable objects such that 90% of the bytes served by Apache were negotiable. To further
stress our implementation, we added twice as many clients every 800 seconds as in the 60%
case.

The results of this experiment are shown in Figure 5.14. The x axis shows elapsed
time and the number of clients accessing the web server, and the y axis shows the web
server's throughput in connections per second. The lower x axis shows the number of clients
for the Non-negotiable and 60% negotiable con�gurations, and the upper x axis shows the
number of clients for the 90% negotiable case. We see that the bandwidth stays below the
peak bandwidth for a larger number of clients, and this leads to a greater throughput for
the web server. It takes a client population almost four times as large to saturate the link
as in the case without content negotiation.

Figure 5.15 shows the throughput for the version of Apache without content ne-
gotiation, the version where 60% of the bytes are negotiable, and the version where 90% of
the bytes are negotiable. The 90% version of Apache has a peak throughput four times the
peak throughput of Apache without content negotiation.

From these results, we can conclude that there is potential to dramatically increase
the throughput of a web server and the number of clients that the server can using support
by using content negotiation. The actual bene�ts are very dependent on the fraction of
bytes that are negotiable. Servers that have a high degree of negotiable content such as
images will see the most bene�t, while servers that have a smaller degree of negotiable
content will see more limited bene�ts.

87

2
4
6
8

10
12
14
16
18
20

5 15 25 35 45 55 65 75 85 95

0 1 2 3 4 5 6 7 8 9

With Content Negotiation
��� ������������

��
�������������
�������������

���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������

������������
������������
������������
������������

���������������
���������������
���������������

���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������

������������
������������
������������

���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������

���������
���������
�������������

Without Content Negotiation

Time (sec*10^3)

Number of Clients

T
h

ro
u

gh
p

ut
 (

co
n

n
s/

se
c)

Figure 5.13: Apache throughput with and without content negotiation

5.7 Conclusion

In this chapter, we have examined the e�ectiveness of using HTTP Content Negoti-
ation to improve the response time observed by web users. We presented an implementation
of an adaptive web client that reduces web page download times at the expense of lower
content �delity, using SPAND's network measurements to drive adaptation decisions. In
addition, web servers can use content negotiation to reduce bandwidth requirements under
periods of heavy request load. We presented a simple mechanism and policy that reacts to
increases in client population by decreasing the quality of served web objects. This allows
servers to handle greater number of clients and have increased throughputs than servers
that do not perform negotiation.

We can now answer the questions posed in the beginning of this chapter:

� Is the �rst bottleneck of a web server complex likely to be its computing resources or
its network connection to the Internet?

By examining published benchmark results for the SpecWeb96 benchmark, we
saw that a well designed web server can easily saturate up to 20 45 MBit/sec T3 lines.
This implies that the �rst bottleneck of most web server complexes will be their network
connection to the Internet.

� How often do mismatches between expected and actual available bandwidth lead to
excessively long (i.e. more than 30 seconds) transfer times for web clients today?

By examining the actual behavior of web clients, we found that some clients often
have to wait excessively long for web pages to download. Even for a well-connected group
of clients like those at IBM, 5% of clients had to wait more than 30 seconds for web pages.

88

0
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

0 2 4 6 8 1 0 12

5 4 5 8 5 1 2 5 1 6 5 2 0 5

������

���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
����������

���������
���������
���������
���������
���������

�������
�������
�������

����������
����������
����������
����������

��������
��������
��������
��������

��������
��������

�����������
�������

���
�����
�����

����������
��������
��������

�������������������������
����������
����������

�������������������������
�������

����������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������������������������

Time (sec*10^3)

Number of Clients

B
a

nd
w

id
th

 (
b

yt
e

s*
1

0^
4

/s
ec M

axim
um

 S
ize F

ra
ctio

n

Smoothed Bandwidth
��� ����������������

highwater
lowwaterMaximum Size

0 .1
0 .2
0 .3

0 .4
0 .5
0 .6
0 .7

0 .8
0 .9

1

Figure 5.14: Bandwidth leaving Apache when 90% of the bytes come from negotiable
documents.

� Client-side initiated negotiation requires some estimate of available bandwidth and
other network characteristics to work. How often is this estimate accurate, and do
clients obtain acceptable response times using these estimates?

Web clients that use content negotiation can achieve a lower likelihood of excessive
download times as compared to clients that do not use content negotiation. 35% of the time,
clients that do not negotiate when they should must wait for 30 seconds or more to download
pages. Clients that do use content negotiation reduce the chances of this to 10%. Clients also
observe better average-case behavior. The median transfer time of a web page drops from 16
to 6 seconds using content negotiation. Our system only does an somewhat acceptable job
of keeping download time constant at the expense of content �delity, however, due in most
part to the amount of network noise in our network measurements. Using SpandConneg,
approximately 60% of downloads met the user-speci�ed goal of a download time less than ten
seconds. Applications that wish to obtain hard guarantees for application level performance
must be very conservative about network statistic measurements.

� What is the overhead of using content negotiation in a real web server implementation?

We implemented and measured Content Negotiation in Apache, a commonly used
web server. We found that in most cases, a web server serving negotiated content has
equivalent throughput to a web server serving non-negotiated content. Care must be taken,
however, to carefully manage operating system resources such as the number of open �le
descriptors, as limits on these resources can adversely a�ect performance.

� For server-side negotiation, can outgoing bandwidth stay relatively constant as client

89

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9

5

5

15

25

25

45

35

65

45

85

55

105

65

125

75

145

85

165

95

185

90% Negotiable
60% Negotiable

��� �����������

�
���������������
���������������

����������������
����������������

���������������
���������������

��������������
��������������

�������������
�������������
�������������

���������������
���������������
���������������

���������������
���������������

��������������
��������������

������������
������������

���������������
���������������

��������������
��������������

�������
�������������

Not Negotiable

Time (sec*10^3)

Number of Clients

T
h

ro
u

g
h

pu
t

(c
o

nn
s/

se
c)

Figure 5.15: Apache throughput for varying fractions of negotiable bytes

load is added? What is the increase in web server throughput by using content nego-
tiation?

The degree to which throughputs can be increased depends signi�cantly on the
fraction of served bytes that come from negotiable documents. For servers with a relatively
low fraction of negotiable documents, this increase is rather modest. For example, if 60%
of bytes come from negotiable documents, a 50% increase in throughput is obtained by
using Content Negotiation. However, servers with a relatively high fraction of negotiable
documents may see much more signi�cant increases in throughput. Servers with 90% of
bytes coming from negotiable documents can see increases of 400% or more by using content
negotiation.

In the next chapter, we describe LookingGlass, the second adaptive application
that we developed to take advantage of SPAND's network performance measurements.

90

Chapter 6

SPAND and LookingGlass: A

Mirror Selection Tool

In this chapter, we present a solution to the problem of selecting between multiple
mirror servers that replicate the same content. LookingGlass is a Mirror Selection Tool that
uses SPAND to drive its choices for Mirror Selection. We begin in Section 6.1 by presenting
background and motivating why a Mirror Selection tool is necessary. In Section 6.2, we
describe existing solutions to the problem of Mirror Selection and their limitations. In
Section 6.3, we describe LookingGlass and its advantages over existing solutions. In Section
6.4, we describe how we evaluate the performance of LookingGlass, and in Section 6.5, we
present results showing how well our system performs at choosing mirrors to contact when
a client is presented with content available at multiple locations.

6.1 Background and Motivation

The number of Internet users has grown at a phenomenal rate over the past few
years. As the number of online users increases, the load placed on the Web's busiest web
servers has also increased. One of the common methods to improve web performance has
been to replicate popular data items on multiple mirror sites. For example, the most popu-
lar download from www.download.com on Feb 1, 1999 (a chat program called ICQ) is avail-
able from 17 distinct sites in 13 countries. Similarly, the mirror page for www.redhat.com
(http://www.redhat.com/mirrors.html) lists 82 distinct sites in 28 countries. The com-
plete problem of mirroring web content at multiple locations can be broken down into three
sub-problems:

� Mechanisms for Mirror Advertisement: There must be a way for web servers to ad-
vertise to web clients where the mirrored content is located.

� Metrics for Mirror Ranking: A web client must decide how to rank the mirror locations
in terms of their quality of connectivity to local clients.

� Mirror Selection Algorithm: Given a ranking, there must be an algorithm for web
clients to select the most appropriate mirror from which to download the object.

91

We describe existing solutions to these subproblems below.

6.2 Existing Solutions to Mirror Selection

Currently, the above three subproblems are usually solved in manual and ad-
hoc ways. In this section, we describe existing solutions to these subproblems and their
limitations:

6.2.1 Existing Mechanisms for Mirror Advertisement

In one existing mechanism for mirror advertisement, the user is presented with
an HTML page that contains information about the mirror servers as well as links to the
mirrored data. The disadvantage of this solution is that the administrator of the primary
site must be noti�ed every time a mirror is added or deleted to update the HTML page.
If a mirror site is added without the knowledge of the primary site administrator, there
is usually no way for web clients to �nd out about its existence. Another disadvantage is
that there is no way for the primary mirror site to disseminate the mirror information to
secondary sites. If a secondary mirror administrator wants to display the full list of mirror
locations on its own site, it must manually copy the contents of the HTML page at the
primary site to its own location.

6.2.2 Existing Metrics for Mirror Ranking

The mirror ranking process is currently manually performed by the end user, using
imperfect heuristics such as geographic location or advice from the web site administrator
listed on the HTML page. For example, the web site www.download.com ranks mirror
locations on a one-star to four-star ranking based on its own evaluation of the reliability
and quality of connectivity to a particular site. Although these metrics can often be a
hint for good performance, the information provided usually does not enable the user to
select the server from which the data can be retrieved most quickly, because it does not
take current web server load, network conditions, or other actual performance along the
network path from the client to that particular mirror site into account. The burden is
on the primary site administrator to keep these hints up-to-date with actual performance
observed by clients.

6.2.3 Existing Algorithms for Mirror Selection

The mirror selection algorithm is also handled manually today. A user uses the
links on the HTML page to manually select one of the mirror sites. The disadvantage of
this approach is that it does not involve any amount of load balancing or randomization
to evenly spread request load across the collection of mirror locations. For example, if
each user manually selects the �rst location on a list of mirror sites, this would lead to a
\hotspot" where all users attempt to download the object from the same mirror location.
This would leave one mirror location overloaded and other mirror locations underutilized.

92

6.3 Our Solution: LookingGlass

LookingGlass is a HTTP server selection tool that addresses the above problems
in the mirroring of web content. It addresses the problem of mirror advertisements by au-
tomatically collecting information about the location of mirrored objects and distributing
this information to other mirror locations as well as web clients. It addresses the problem
of mirror ranking by using SPAND's application-level metrics such as response time as the
metric for mirror ranking. It addresses the problem of mirror selection by using random-
ization with weightings in proportion to the rankings returned by SPAND in its mirror
selection. LookingGlass uses SPAND as the repository for both mirror location and mirror
location performance information. In the following sections, we describe these mechanisms
and algorithms in more detail.

The web client component of LookingGlass is implemented as a MuÆn �lter [52]
that intercepts HTTP requests, identi�es mirrored objects, selects the most appropriate
mirror location for those objects and downloads objects from that mirror location. The web
server component of LookingGlass is a server side daemon that periodically communicates
with other mirrors to exchange mirror location information.

6.3.1 Mechanisms for Mirror Advertisement

There are two major
aws with the current method for advertising mirrored ob-
jects. First, the mirrors are manually advertised by creating a HTML page that lists the
mirror locations, which burdens the user with the responsibility of keeping the list up-to-
date. Second, the mirrors are advertised from a single location, usually from the primary
site. Our solution addresses both of these problems by providing a transparent way to
advertise mirrored objects and a distributed algorithm for disseminating this information.

We can make the process of advertising mirrors transparent by using an existing
mechanism in HTTP for variant selection. As described in the last chapter, HTTP's Trans-
parent Content Negotiation mechanism [37] is used to advertise alternate versions of web
objects by adding an additional response type (a \Multiple Choices" response) to HTTP
requests. This response lists the possible choices for the requested object and their charac-
teristics. An example of this is shown below, where the web page http://www.imdb.org is
mirrored at three locations in the United States, England, and Japan:

HTTP 300 Multiple Choices:

Date: Tue, 11 Jan 1996 20:02:21 GMT

TCN: List

Alternates:

{``http://us.imdb.org/index.html''

{type text/html} {length 2176}},

{``http://uk.imdb.org/index.html''

{type text/html} {length 2176}},

{``http://jp.imdb.org/index.html''

{type text/html} {length 2176}}

93

When a web client receives a multiple choices response, it chooses one of the alter-
nates and retrieves it from the speci�ed location. This mechanism allows for transparent
advertisements of mirrored web objects in a way that is completely transparent to the user.

One important advantage of this technique is that it enables mirroring on a very
�ne-grained (i.e. per web object) basis. This has signi�cant advantages over host-based
solutions such as mapping a single Domain Name System (DNS) name to multiple IP
addresses. The disadvantage of a DNS-based solution is that the entire web or FTP site
must be replicated at each mirror location using exactly the same pathnames. If someone
wants to mirror a single object using the host-based solution, they have no choice but to
mirror the entire web or FTP site.

Using HTTP Transparent Content Negotiation provides a transparent way for
mirror locations to notify web clients about the locations of mirrored objects. In this
approach, however, web clients must still contact the primary site to receive the list of
alternates, and the administrator of the primary site must still manually create the list
of alternate objects. To address this problem, we use a distributed algorithm similar to
USENET to disseminate mirror information, as shown in Figure 6.1.

1

43

2 6

5

(1,2,3,4) (3,4,5,6)

(1,2,3,4) (3,4,5,6)

(1,2,3,4,5,6)

(1,2,3,4,5,6)

1

43

2 6

5

(1,2,3,4,5,6) (1,2,3,4,5,6)

(1,2,3,4,5,6) (1,2,3,4,5,6)

(1,2,3,4,5,6)

(1,2,3,4,5,6)

1

43

2 6

5

(1,3) (4,5)

(2,3) (4,6)

(3,4,5,6)

(1,2,3,4)Mirror Server

Known Mirror
Locations

Round 1

Round 2 Round 3

Figure 6.1: Distributed algorithm for disseminating mirror information

94

The set of mirror sites cooperate in a distributed way to exchange mirror informa-
tion. For each locally maintained web object, the server keeps a permanent list of neighbor
mirror locations for the locally maintained object. The server also keeps a soft state list
of all mirrored locations for the object. This list is initially the same as the permanent
list. Periodically, the server contacts the neighbor locations and they exchange and merge
soft state lists of mirror locations. With each round of exchanges, each object's mirror
information spreads throughout the network of mirror servers. A client can then contact
any mirror to obtain the full list of mirror locations for a particular object.

Using this technique, a web client can attempt to fetch any mirrored web object and
receive the full list of mirror locations for that object. However, this involves an unnecessary
extra client-to-mirror interaction that we would like to avoid if possible. To solve this
problem, we cache the list of mirror locations for each object in the SPAND repository, and
the client-side component of LookingGlass consults this cache before contacting a distant
mirror to determine if alternate locations exist for a particular web object. This avoids
unnecessary communication with distant mirrors that may add to the total response time.

6.3.2 Metrics for Mirror Ranking

The primary metric we use for the ranking of mirrors is the typical document
download time as described in Section 4.3.2. In cases where a client experiences a failure
in retrieving a document from a mirror, we report a large constant value which is greater
than the worst possible download time.

To describe \typical" download time, we can either use the median or mean down-
load time. By using the median, our metric is not in
uenced by outlier values that result
from very slow download times or failures. By using the mean, our metric will be in
uenced
by these outlier values. In Section 6.5, we show how the choice of median versus mean in
determining typical behavior a�ects client performance.

6.3.3 Algorithm for Mirror Selection

Once a client has the list of mirror locations, it must select one of the locations
from which to download the web object. Regardless of the metric used to choose the best
mirror, our algorithm must have the following features:

� The algorithm should recommend well-connected mirror locations over poorly-connected
mirror locations.

� The algorithm should avoid recommending a single best mirror location to clients.
This could create a \hotspot" where all clients attempt to use a single mirror and
overload it.

� Because our system relies on passive measurements to make decisions about the choice
of mirror location, we must make sure that the network performance information for
lowly ranked mirror locations does not become out-of-date.

These goals can sometimes con
ict. For example, to keep timely performance
information for lowly ranked mirror locations, it will be necessary to occasionally direct

95

clients to these mirrors to refresh their performance information. This may degrade client
performance.

To achieve these goals, we use a combination of randomization and the o�ering of
multiple choices in our algorithm. For each mirror location, we use the average response
time xi to construct a weight for that mirror wi. The weights of all locations sum to one
(i.e., �jwj = 1), and the weight is a proportional to the inverse of the response time, i.e. a
mirror with a lower median response time should receive more weight than a mirror with
a higher median response time. We experimented with �ve di�erent weighting functions,
ordered below by the degree to which they weight lower response times:

� Uniform: wi = 1

� Inverse: wi = 1=x

� Inverse Squared: wi = 1=x2

� Exponential: wi = exi

� Exponential-Uniform Hybrid: wi = exi or wi = 1 with probability z.

� Hyperexponential: wi = ee
xi

In Section 6.5, we show how the choice of weighting function a�ects client perfor-
mance.

Once we calculate the normalized weights, we randomly select a mirror location
according to the weights and recommend that mirror to the client. This distributes load
across multiple mirrors and assures that lowly ranked mirrors are still visited occasionally.

However, sending clients to lowly-ranked mirrors may force them to take much
longer to retrieve objects than if they did not use our system at all and simply chose a
mirror at random. Because we rely on a large client population to maintain our repository
of performance measurements, we must provide an incentive for clients to use our system
even in cases where they visit lowly-ranked mirror locations. As a result, we provide clients
with a backup mirror location to use if the primary mirror's performance is much worse
than the best possible performance.

More speci�cally, our algorithm returns the following information:

� A primary location, chosen using the weighting function described above.

� A backup location, which is always the best known mirror location.

� An experiment time, which indicates the minimum time that the client must attempt
to retrieve content from the primary location.

� A target number of bytes, which indicates a performance level that should be consid-
ered acceptable for the primary location.

96

The target number of bytes is initially �xed at a fraction of the total document
size. The results in Section 6.5 use a fraction of 10%. To calculate the experiment time,
we calculate how long it would take for the best known mirror to transfer that fraction of
the document. When the client-side LookingGlass component receives this information, it
starts downloading the content from the primary location. If LookingGlass has not received
the target number of bytes from the primary location at the end of the experiment time,
it switches to the backup location to complete the transfer. The proxy always generates
a performance report for the primary mirror. In addition, the proxy also generates a
performance report for the backup mirror if it was forced to use it.

This algorithm has the attractive property that it bounds the amount of time
that a client will attempt to use a possibly lowly-ranked mirror before giving up on it
and switching to the backup mirror. Regardless of how poor the performance is for a
particular lowly-ranked mirror, a client will not wait for more than the experiment time
before switching to another mirror. This meets both goals of maintaining reasonable client
performance and keeping up-to-date network performance statistics.

To account for variations in network performance, our algorithm also divides the
target number of bytes by a constant called the aggressiveness factor before returning it to
the LookingGlass. This constant can be any value greater than 1. By changing the value
of the aggressiveness factor, we make clients less or more aggressive in giving up on a lowly
ranked mirror and switching to the backup location. Greater values of the aggressiveness
factor make clients less aggressive, because this decreases the target number of bytes. In
turn, this makes it more likely that the client will receive the target number of bytes during
the experiment time and will continue to use the primary mirror. In Section 6.5, we show
how the choice of this constant a�ects client performance.

6.3.4 Putting it All Together: Example Object Download

Figure 6.2 shows an example web object download using LookingGlass. At the
server side, the collection of mirrors exchange lists of mirror locations for each web object.
At the client side, the process begins when the web client starts to fetch a web object. This
HTTP request is intercepted at the web client by the LookingGlass client-side component.
Before completing the request, the LookingGlass �rst contacts the SPAND performance
server to determine if the desired object has any alternate locations. If no list exists at the
performance server, the client-side component contacts the original mirror location to see if
alternates exist for the desired web object. Using the list of alternate locations, the client-
side LookingGlass component sends performance queries to the performance server to obtain
estimates of the download time for each of the mirror locations. Using these estimates, the
client-side component uses the weighted randomized selection algorithm described above
to choose the primary location, backup location, experiment time, and target number of
bytes. The client-side component then contacts the primary location and downloads the
object. If after the experiment time has passed, the number of bytes received from the
primary location is lower than the target number of bytes, the LookingGlass client switches
to the backup location. Otherwise, it continues to download the object from the primary
location. After the transfer has completed, the client-side component sends performance
reports to the performance server that indicate the response time for the primary location

97

 Data
 Perf. Reports

 Perf Query/
Response

 Mirror Info

LookingGlass
Client

Distant
Mirrors

Performance
Server

1

2

4

3

1

Figure 6.2: Example download using LookingGlass.

and (if used) the backup location.

6.4 Experimental Methodology

To test the e�ectiveness of LookingGlass, we used a combination of trace analysis
and implementation for our experiments. To simulate application-level behavior, we used
application-level traces collected at Carnegie-Mellon University [54]. The traces were gen-
erated by using lynx, a text-based web client application, to download web objects from a
collection of web servers that mirrored the same content. The clients downloaded objects
in a series of rounds. In each round, a client retrieved the same object from each mirror
location and recorded the document download time for each mirror. After a round was
complete, the client slept for a random amount of time taken from an exponential distri-
bution with a mean of 30 minutes added to a constant 30 minutes. In total, the data trace
spanned 3 weeks.

The results we present here are from a UC Berkeley client that downloaded a 400
KByte image from the Mars Path�nder mission from a collection of 20 mirror locations.
The primary mirror location was at the Jet Propulsion Laboratory, and the alternate mirror
locations were as close as the Bay Area (e.g., Sun, HP, SGI) and as far away as Hawaii (The
Hawaii Institute of Geophysics and Planetology). Table 6.1 shows the complete list of mirror
sites.

To conduct our experiments, we use the traces to indicate what the client per-
formance would be if it used LookingGlass to select the most appropriate mirror. At the

98

mars.sgi.com www.sun.com/mars
entertainment.digital.com/mars/JPL mars.novell.com
mars.primehost.com mars.hp.com
mars.excite.com/mars mars1.demonet.com
mars.wisewire.com mars.ihighway.net
path�nder.keyway.net/path�nder mpfwww.arc.nasa.gov
mars.jpl.nasa.gov www.ncsa.uiuc.edu/mars
mars.sdsc.edu laguerre.psc.edu/Mars
www.ksc.nasa.gov/mars mars.nlanr.net
mars.catlin.edu mars.pgd.hawaii.edu

Table 6.1: Mirror Locations used for Experiments

beginning of each round, the client uses LookingGlass to determine the primary and back-
up mirror locations, the experiment time, and the target number of bytes. We use the
information from the trace to determine how long the client would actually have taken to
complete the transfer, including downloading the document from the primary mirror and,
if necessary, switching to the backup mirror if the client has not received the target number
of bytes by the end of the experiment time. The download times for the primary (and if the
client switched, the backup) mirror locations only are added to the collection of performance
information for the next round. To make sure that every mirror has some performance in-
formation for each mirror, we initially visit each mirror location exactly once before using
consulting the SPAND performance server and using the randomized selection algorithm.

For each round, we report the ratio of the actual time taken by the client and the
minimum observed download time for all mirrors in that round. Ideally, our system will
direct clients to well-connected mirror locations, resulting in download times that are close
to the minimum time for any mirror and as a result, ratios that are close to one. We then
examine the distribution of these ratio statistics to determine how well our algorithm does at
selecting well-connected mirrors. A distribution with a majority of its ratio measurements
near one implies a con�guration that chooses near-optimal mirror locations.

6.4.1 Operating in the Presence of Isolated Infrequent Measurements

There are two limitations with the trace we used that limit the accuracy of our
results. First of all, the trace we used had relatively infrequent data samples. A particular
mirror in the trace was only visited on average once per hour. In addition, our trace only
includes measurements made by a single host. There is no actual sharing of performance
information between a population hosts.

To overcome these two limitations, we modi�ed the SPAND performance server to
use all previous performance reports for a given web object when calculating a performance
response. This means that the results below are very conservative, because they incorpo-
rate a signi�cant amount of temporal noise in the form of daily and weekly variations in
performance and do not bene�t from the collective knowledge gained from a large client

99

population. In a real implementation, we would have more up-to-date information about
these mirror sites because we could bene�t from the shared access patterns of a larger client
population.

Despite this amount of temporal noise and lack of shared measurements, however,
we see in the next section that our system still does an excellent job at identifying near-
optimal mirrors from which to download web objects.

6.5 Results

In this section, we evaluate the performance of LookingGlass in returning good
mirror locations to clients. We begin by examining the sensitivity of LookingGlass's mirror
selection algorithm to several control parameters:

� The use of the mean vs. median to represent \typical" behavior for a particular mirror
location.

� The choice of weighting function (i.e., uniform, exponential, etc.) in ranking mirror
locations to determine the \best" mirror to contact.

� The scaling constant for the experiment time that controls the aggressiveness of clients
in giving up on mirror locations.

For each control parameter, we hold two parameters �xed and vary the third to
determine the best choice for that parameter. This allows us to determine the best possible
con�guration of LookingGlass. Then, using the best choices for these control parameters, we
compare the performance of LookingGlass against alternate algorithms for mirror ranking
and selection. In particular, we consider the following alternate metrics:

� Using geographic location to approximate good performance. In this approach, the
client chooses a mirror that is closest geographically.

� Choosing the mirror that is the least number of network hops away from the client.

� Randomly selecting a di�erent mirror for each round.

� Always choosing the primary mirror site for the content.

This allows us to compare the improvement that a client would observe as a result
of using LookingGlass instead of an alternate criteria for mirror selection.

For each experiment, we repeated the trace analysis described in Section 6.4 and
calculated the Cumulative Distribution Function (CDF) of ratios between optimal and
actual download time for a given round. By comparing the CDF curves for alternate
con�gurations or policies, we can determine which con�guration or policy performs better.

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10
Ratio (Actual Time)/(Min Time)

Typical=Mean
Typical=Median

Figure 6.3: E�ect of using the mean vs. median to report typical client performance.

6.5.1 Using Median vs. Mean for Ranking Metric

Figure 6.3 shows the results of using the median vs. the mean in reporting typical
client download times. We assume that the weighting function is an exponential-uniform
hybrid with a 5% probability of choosing a uniform distribution. We assume that the
aggressiveness constant is 5{if a client receives less than 20% of the target number of bytes
in the experiment time, it gives up and switches to the backup mirror.

The graph consists of two CDF curves, one for the system that uses the mean,
and one for the system that uses the median. The X axis shows the ratio between the
actual and minimum possible download time for a given round, and the Y axis represents
cumulative probability. We see that there is little di�erence between using the mean or
median in reporting typical performance. The median works slightly better because it it is
not in
uenced by outlier values. Based on this information, we chose to use the median for
subsequent experiments.

6.5.2 Choice of Weighting Function

Figure 6.4 shows the results of using di�erent weighting functions in ranking mirror
locations. We use the median to report typical performance, and we assume that the
aggressiveness factor is 5.

We see that the hyperexponential and uniform weighting functions lead to the
worst performance, as they place too much and too little weight, respectively, on the tails
of the distribution of hosts. The uniform weighting function does not take any performance
information into account, and clients often visit mirror locations that have bad performance.
The hyperexponential weighting function assigns too much weight to hosts that are initially

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10
Ratio (Actual Time)/(Min Time)

Uniform
1/x

1/x2

Exponential
Hybrid z=.05
Hybrid z=.5

Hyperexponential

Figure 6.4: E�ect of choice of weighting function in ranking mirror locations.

highly ranked. As a result, clients continually visit the same small set of mirrors and do
not discover other mirrors that may have better performance.

The 1=x weighting function performs better than the uniform and hyperexponen-
tial functions but worse than the exponential and 1=x2 functions. As expected, the hybrid
function ranges between the exponential and uniform functions depending on the value of
the mixing constant z.

Of all these functions, we see that the 1=x2, exponential, and exponential-uniform
hybrid weighting functions perform equally well at maximizing client performance. We
chose to use an exponential-uniform hybrid weighting function with z = :05 for the rest of
our experiments.

6.5.3 Choice of Aggressiveness Factor

Figure 6.5 shows the sensitivity of the aggressiveness factor on client performance.
As the factor decreases, clients become more aggressive, switching to the backup host even
for small di�erences in performance. As the factor increases, clients become more tolerant
of signi�cant di�erences between the current and backup mirror's performance. We use
the median to report typical performance, and we assume that the weighting function is a
exponential-uniform hybrid with a 5% probability of choosing a uniform distribution.

As expected, as clients become less aggressive, they continue to download content
from poorly-performing mirrors and their performance degrades. Based on this information,
we chose to use an aggressiveness factor of 1 for subsequent experiments

102

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10
Ratio (Actual Time)/(Min Time)

Agg=1x
Agg=5x

Agg=10x
Agg=10000x

Figure 6.5: E�ect of aggressiveness factor on client performance.

6.5.4 Choice of Mirror Selection Policy

Figure 6.6 summarizes the maximum bene�ts of using LookingGlass over alternate
ranking metrics that do not take network performance information into account. There are
several CDF curves, each representing a di�erent policy in choosing a mirror to contact.
When using LookingGlass, we use the median to report typical performance, assume that
the weighting function is a exponential-uniform hybrid with a 5% probability of choosing
a uniform distribution, and use an aggressiveness factor of 1. As described previously, we
compared LookingGlass to several alternate policies:

� Using geographic location to approximate good performance. In this approach, the
client chooses a mirror that is closest geographically.

� Choosing the mirror that is the least number of network hops away from the client.

� Randomly selecting a di�erent mirror for each round.

� Always choosing the primary mirror (The Jet Propulsion Lab) of the content.

Because there were several mirror locations in the same geographic area as the
client, we show the performance for the best performing and worst performing mirror loca-
tions that could easily be identi�ed (by domain name) as located in the Bay Area.

We see that the policy that uses hop count to select a mirror location performs
the worst of all policies considered. The median download time using this policy is a factor
of four away from the best possible download time. This is especially interesting because
several commercial wide-area server selection systems such as Cisco's DistributedDirector
product use hop count and other routing metrics as the selection policy.

103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10
Ratio (Actual Time)/(Min Time)

LookingGlass
Random

Geographic Best
Geographic Worst

Primary Mirror
Closest (Net Hops)

Figure 6.6: E�ect of choice of ranking metric on performance

A random policy actually results in a median download time that is slightly better
than the hop count policy (3.5 as compared to 4.0). However, using a random policy
results in much worse worst-case behavior, which can be seen by examining the tail of the
distribution. Approximately 20% of the time, using a random policy leads to more than a
factor of 10 degradation in download as compared to the best possible download time.

A policy that always chooses the primary location results in relatively consistent
but suboptimal performance. 80% of the time, the download time is approximately a factor
of 2 away from the best possible download time. However, this policy also exhibits bad
worst-case behavior. 15% of the time, choosing the primary mirror leads to performance
that is a factor of 6 or more away from the best possible performance.

A policy that depends on geographic hints may or may not lead to good perfor-
mance, depending on the \nearby" mirror that was chosen. We see that the best-performing
geographically close host, the mirror located at Hewlett Packard, has consistently superior
performance and a very low likelihood of poor performance. If a client chose to use this
mirror, they would see very good performance. However, if a host chose a di�erent \near-
by" mirror, they would observe see such good performance. The worst-performing nearby
mirror, the mirror located at Sun Microsystems, has two distinct modes, one at a factor of
1.5, and one at a factor of 4. The median download is a factor of four away from the best
possible download time. From this, we see that geographic hints are sometimes indicative
of good performance, but sometimes lead to suboptimal results.

We see that LookingGlass performs equal to or better than every other policy we
considered. In addition, LookingGlass performs very well in an absolute sense, as a large
fraction of the ratios are close to one. For 90% of the rounds, the download time using
LookingGlass is within 37.5% of the minimum possible download time for that round (i.e.

104

the ratio is 1.375 or less).
The main result is that by using network performance information, LookingGlass

allows clients to download mirrored web objects faster than using other policies for mirror
selection, and in near-optimal time.

6.6 Conclusion

In this Chapter, we have described LookingGlass, a Mirror Selection Tool that
uses SPAND to drive its policies for Mirror Selection. We divided the generic problem into
three sub-problems: Mechanisms for Mirror Advertisement, Metrics for Mirror Ranking,
and Mirror Selection Algorithms. We described the limitations of current techniques for
wide-area mirror selection, showing that in most cases, current systems solve these sub-
problems via manual techniques for mirror advertisement and relatively static policies for
mirror ranking and selection.

We then presented how LookingGlass solves the problems of mirror advertisemen-
t, ranking, and selection. To solve the problem of mirror advertisement, we re-use the
Transparent Content Negotiation framework described in Chapter 5 to inform web clients
of mirror locations. To solve the problem of mirror ranking, we use SPAND's application-
level performance metrics. To solve the problem of mirror selection, we use a randomized
selection scheme that meets the dual goals of selecting well-connected mirrors, balancing
client load across mirrors to avoid hotspots, and keeping SPAND's repository of network
performance information up-to-date.

We then presented trace analysis experiments that show the performance of Look-
ingGlass compared to alternate policies for mirror selection. We found that LookingGlass
performed better than every other policy we considered, and that 90% of the time, Look-
ingGlass chose a mirror location whose performance was within 37% of the optimal mirror
location.

In the next chapter, we summarize the thesis and present ideas for future work.

105

Chapter 7

Conclusions and Directions for

Future Work

In this chapter, we summarize the thesis, as well as general principles learned while
developing the thesis, and present ideas for future work.

7.1 Conclusion

In this thesis, we have presented a solution to the problem of enabling and devel-
oping adaptive networked applications. The Internet's decentralized nature and emphasis
on simplicity and eÆciency over features and complexity leads to inherent network het-
erogeneity, both in the access technologies used to connect hosts to the Internet and the
capabilities of Internet Service Providers that connect hosts to each other. For applications
to e�ectively communicate in this heterogeneous environment, they need to be adaptive,
measuring the state of the network and making application-level decisions based on those
changes. Examples are:

� Mirror Selection to choose the best of a number of servers that replicate the same
content.

� Content Negotiation to match object �delity to current network characteristics.

� Feedback to the user indicating the expected impact of user-level choices, allowing the
user to make informed choices in the absence of automatic adaptation.

However, these adaptation mechanisms are not a complete solution for building
adaptive applications. Applications also need a way to measure the characteristics of the
network path between hosts and to use this information to drive their adaptation mecha-
nisms. Providing mechanisms and policies to solve this problem has been the goal of our
thesis.

This thesis presents three main contributions toward solving this problem. The
�rst contribution is a Network Measurement Service called SPAND (Shared, PAssive,
Network performance Discovery). Using SPAND, applications can determine the network

106

performance to distant hosts and use these measurements to drive their adaptation de-
cisions. In SPAND, applications make passive measurements of network performance by
observing their own application-to-application communications. They create performance
reports that summarize this performance and send these reports to a per-domain centralized
repository of performance information called a Performance Server. The performance server
is responsible for maintaining the collection of reports. In addition, the performance serv-
er responds to requests for network performance information called Performance Queries.
The performance server determines the relevant performance reports to use in answering
the query and returns a Performance Response that indicates the expected performance to
a distant host.

SPAND incorporates three key design decisions that contrast with the design choic-
es made by previous network measurement e�orts. First, SPAND relies on Shared measure-
ments. Applications explicitly cooperate together to increase the accuracy and availability
of network performance information. Second, SPAND relies on Passive measurements. Our
system does not introduce unnecessary probe traÆc into the network that could slow down
the useful work of routers or servers. Instead, SPAND only uses application-to-application
traÆc to make measurements of network performance. Third, SPAND relies on Application
Speci�c measurements. Instead of using network-level measurements such as latency, hop
count, or network available or peak bandwidth as approximations to actual application level
performance, we measure exactly what applications are most interested in{application-level
performance.

In this thesis, we also introduced the concept of Measurement Noise, the di�erence
between predicted and actual performance, and showed how measurement noise a�ects the
granularity of application level decisions. We categorized measurement noise into network
noise, the variation that is inherent in the network, sharing noise, the variation that result-
s from sharing performance information between hosts, and temporal noise, the variation
that results from using past information to predict current performance. We presented mea-
surements of network performance for actual network clients and categorized measurement
noise into network, sharing, and temporal sources, showing that network noise is usually
the largest contributor to variation in performance.

We also presented application-independent results of SPAND that show that our
system works well at providing clients with relevant, accurate network performance infor-
mation. Our system can quickly provide meaningful performance responses to over 95% of
performance requests, and these performance responses are usually within a factor of 2 of
actual observed performance. This di�erence can be attributed to the network noise, or
inherent variation, in the state of the network.

The second contribution of our thesis is SpandConneg, a HTTP Content Negotia-
tion application that uses SPAND to drive its choice of data representation. SpandConneg
utilizes content negotiation at the both at the client side of the network and at the server
side of the network. At the client side of the network, SpandConneg allows clients to trade
o� web object quality for a consistent response time. Using SpandConneg, web clients spec-
ify the maximum time they are willing to wait to download a web page. Using SPAND's
network performance measurements, SpandConneg determines the highest quality repre-
sentation of the web object that can be downloaded from the web server and still meet the

107

user's time constraint. SpandConneg then downloads that variant of the web object from
the web server.

Measurements of the client-side implementation of SpandConneg show that it re-
duces the likelihood of excessive download times as compared to not performing content
negotiation at all. 35% of the time, clients that do not negotiate must wait for 30 sec-
onds or more to download pages. Clients that use content negotiation, on the other hand,
reduce the chances of this to 10%. In addition, SpandConneg improves the typical page
download time observed by clients. The median transfer time of a web page drops from 16
to 6 seconds using content negotiation. The presence of network noise in our performance
measurements limits the e�ectiveness of completely meeting the user-speci�ed goal of a
constant download time, however. Using SpandConneg, approximately 60% of downloads
met the user-speci�ed goal of a download time less than ten seconds. Users must be con-
servative about network performance if they wish to obtain hard guarantees for application
level performance.

At the server side of the network, SpandConneg is used to allow web servers to
handle an unexpected burst of web clients by reducing the �delity (and as a result, the size)
of documents sent to individual clients. This reduces the outgoing traÆc requirements of
the web server and allows it to handle a greater number of clients. Our implementation
includes simple mechanisms for generating multiple representations of web objects as well as
limiting the size of negotiated web objects. It also includes a policy program that observes
the outgoing traÆc from the web server and adjusts the quality of web objects as necessary.

Measurements of the server-side component of SpandConneg show that it e�ective-
ly allows web servers to increase the number of clients they can support. If 60% of outgoing
traÆc comes from negotiable documents, the web server throughput and maximum client
population increases by 50%. If 90% of outgoing traÆc comes from negotiable documents,
the increases are even more dramatic. The throughput and client population increases by
450% or more when using content negotiation.

The third contribution of our thesis is LookingGlass, a web mirror selection tool
that uses SPAND's network performance measurements to drive its choice of web server
to contact. LookingGlass solves the problem of dissemination of web objects from multi-
ple locations. LookingGlass incorporates a transparent mechanism to inform web clients
about the location of mirrored web objects as well as an automated process to disseminate
locations of mirrored objects between mirror locations. To rank mirror locations, Look-
ingGlass uses SPAND's network performance measurements of actual observed network
performance. LookingGlass also uses a randomized mirror selection algorithm that meets
the con
icting goals of evenly spreading client requests across the mirror locations, keeping
passively collected measurements of performance up to date, and bounding worse-case client
performance.

Measurements of LookingGlass show that it does a near-optimal job of selecting
fast mirrors to contact. When presented with a choice of mirror locations that replicate
the same object, 90% of the time, clients that use LookingGlass can download objects
within 37.5% of the best possible download time. In addition, LookingGlass's use of actual
network performance measurements allows it to do much better than other metrics such as
hop count, geographic location, or using the primary mirror site. Without LookingGlass,

108

90% of transfers are at a minimum 600% and at a maximum in�nite (failure) away from the
optimal download time, an improvement of >15-fold. In addition, the median LookingGlass
download time is within 10% of optimal, compared to 200%-400% for other approaches, an
improvement of 20-40 fold. This shows that despite the presence of temporal and network
noise, SPAND works well at selecting ideal mirrors.

7.2 General Principles

While developing SPAND and its applications, we synthesized several general prin-
ciples and lessons that can be used by other developers of network measurement systems
and adaptive applications:

� Passive measurements are are e�ective in measuring performance: One im-
portant lesson we learned was the value of making passive measurements of network
performance. In addition to placing less load on the network than active measure-
ments, passive measurements automatically measure the \right" network performance
statistic, because actual application-to-application traÆc is used to measure perfor-
mance. In addition, the use of passive measurements made the experimental evalu-
ation process easier because we could collect o�ine packet traces and use them as a
repeatable workload for our evaluations.

� Trace analysis is better than simulation for evaluating systems: This prin-
ciple is closely related to the use of passive measurements. While measuring the
performance of SpandConneg and LookingGlass, we deliberately chose to rely on a
combination of trace analysis and implementation whenever possible instead of using
network simulations. By using trace analysis, we did not have to generate arti�cial
workloads that accurately re
ected actual performance. In addition, by using trace
analysis, we could more realistically measure the implications of application level
adaptation. For example, in SpandConneg, we measured the download time for ne-
gotiated web objects by examining the packet trace to determine how long it took for
the network to complete a fractional portion of a web object transfer. Not all systems
can be evaluated in this way, but for those that can, the use of traces leads to a more
realistic evaluation process.

� You have to implement the system more than once to get it right: The de-
sign and implementation of the SPAND architecture went through several revisions.
The performance server was implemented twice in C++ and �nally re-implemented
in Java. The packet capture host was constantly reworked as we added support for
new application classes. Each redesign of the architecture bene�ted from the lessons
learned in the previous implementation. For example, the performance report format
was initially in
exible and not application speci�c. We constantly found ourselves
adding new �elds to the report format as we added new types of network measure-
ments. We �nally decided to throw out the initial implementation and replace it with
the more generic
exible messaging interface described in Section 4.2. By starting over
from scratch, but keeping in mind the lessons learned from previous implementations,
we resulted in a developing a more robust and better designed architecture.

109

7.3 Directions for Future Work

There are several possible directions for future work in improving the performance
of the SPAND network measurement service:

� SPAND's current performance server relies on relatively static policies when deter-
mining the relevant set of performance reports to use when calculating a performance
response. It assumes that the H most recent performance reports are the relevant
set of reports. Instead of relying on static policies, the performance server could in-
corporate feedback by comparing performance responses with the actual performance
experienced by applications. For example, it could change the cut-o� time for garbage
collecting old performance reports based on feedback from clients. This potentially
improves the accuracy of SPAND's responses by reducing the amount of temporal
noise in performance measurements.

� If SPAND's performance server does not have any performance reports for a given
host, it returns that no information is available. As an alternative, it could perform a
lightweight active probe such as Packet Pair [44] or Cprobe [19] to construct an approx-
imation for application-level performance. This signi�cantly increases the availability
of information for infrequently visited distant hosts. The challenge is performing these
active probes in a way that does not signi�cantly disturb application-level traÆc on
the path to the distant host.

In addition, there are examples of new adaptive applications that can utilize S-
PAND's network measurement service:

� Many search engines currently return documents ordered by their relevance to the
search query, with no consideration of the time it would take for clients to retrieve
them. For example, a highly relevant document that takes a long time to download
may actually be less useful than a less relevant document that could be retrieved more
quickly. As an application of SPAND, a web client could receive a list of documents
from a search engine and re-score the documents based on the expected time to retrieve
the documents before presenting them to the user.

� The current classes of performance reports and applications of SPAND have focused on
measuring and improving the performance of web object retrievals. Another datatype
that is increasingly used is streaming media clips such as RealMedia or Microsoft
NetShow streams. SPAND could also measure application-level performance for these.
Many of the same types of adaptation decisions, such as content negotiation and
server selection, could be performed. The challenge is in devising an application-level
performance metric that is useful for these data types.

7.4 Software availability

Parts of the software used in this dissertation is available in source-code form
in several locations. Implementations of the SPAND architecture and the SpandConneg

110

application are available as a part of the SPAND 2.0b2 toolkit distribution. This is available
from the SPAND web site at:

http://spand.cs.berkeley.edu/software/spand-2.0b2.tar.gz.

An additional copy of the SPAND distribution is also at a mirror of the SPAND
web site:

http://www.cs.berkeley.edu/ stemm/spand/software/spand-2.0b2.tar.gz.

Documentation for the software is automatically created as a part of building the
distribution. In addition, on-line documentation for the software toolkit is available at the
SPAND site and its mirror:

http://spand.cs.berkeley.edu/doc

http://www.cs.berkeley.edu/ stemm/spand/doc

111

Bibliography

[1] P. Albitz and C. Ciu. DNS and BIND in a Nutshell. O'Reilly & Associates, 1992.

[2] E. Amir, S. McCanne, and R. H. Katz. An Active Service Framework and its Ap-
plication to Real-time Multimedia Transcoding. In Proc. ACM Sigcomm, September
1998.

[3] E. Amir, S. McCanne, and H. Zhang. An Application Level Video Gateway. In Proc.
ACM Multimedia, November 1995.

[4] M Arlitt and C. L. Williamson. Web Server Workload Characterization: The Search
for Invariants. In Proc. ACM SIGMETRICS '96, May 1996.

[5] H. Balakrishnan, S. Seshan, M. Stemm, and R.H. Katz. Analyzing Stability in Wide-
Area Network Performance. In Proc. ACM SIGMETRICS '97, June 1997.

[6] P. Barford. surge { Scalable URL Reference Generator.
http://www.cs.bu.edu/students/grads/barford/Home.html, 1998.

[7] P. Barford and M. Crovella. Generating Representative Web Workloads for Network
and Server Performance Evaluation. In Proc. ACM Sigmetrics '98, 1998.

[8] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, and Z. Fei. Application layer
anycasting. In Proc Infocom '97, April 1997.

[9] Bing Home Page. http://spengler.econ.duke.edu/ ferizs/bing.html, 1996.

[10] J.C Bolot. Characterizing End-to-End Packet Delay and Loss in the Internet. Journal
of High Speed Networks, 2(3):305{323, 1993.

[11] J.C Bolot. End-to-End Packet Delay and Loss Behavior in the Internet. In Proc. ACM
SIGCOMM '93, San Francisco, CA, Sept 1993.

[12] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies, Sep
1993. RFC 1521.

[13] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F Schwartz. The
Harvest Information Discovery and Access System. Computer Networks and ISDN
Systems, 1995(28):119 { 125, 1995.

112

[14] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, M. F Schwartz, and D. Wessels.
Harvest: A scalable, customizable discovery and access system. Technical Report CU-
CS-732-94, Computer Science Department, University of Colorado, March 1995.

[15] R. T. Braden. Requirements for Internet Hosts { Communication Layers. Information
Sciences Institute, Marina del Rey, CA, October 1989. RFC-1122.

[16] S. R. Caceres, N. DuÆeld, J. Horowitz, D. Towsley, and T. Bu. Multicast-Based
Inference of Network-Internal Characteristics: Accuracy of Packet Loss Estimation. In
Proc. IEEE Infocom, March 1999.

[17] Caida Taxonomy of Network Probing Tools. http://www.caida.org/Tools/taxonomy.html,
1999.

[18] R. L. Carter and M. E. Crovella. Dynamic Server Selection using Bandwidth Probing in
Wide-Area Networks. Technical Report BU-CS-96-007, Computer Science Department,
Boston University, March 1996.

[19] R. L. Carter and M. E. Crovella. Measuring bottleneck-link speed in packet switched
networks. Technical Report BU-CS-96-006, Computer Science Department, Boston
University, March 1996.

[20] CERT. CERT Advisory CA-98.01, smurf IP Denial-of-Service Attacks.
http://www.cert.org/advisories/CA-98.01.smurf.html, 1998.

[21] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable and Highly Available System for
Serving Dynamic Data at Frequently Accessed Web Sites. In Proc. SC98, 1998.

[22] A. Chankhunthod, P. Danzig, C. Neerdaels, M.F. Schwartz, and K.J. Worrell. A
Hierarchical Internet Object Cache. In Proceedings 1996 USENIX Symposium, San
Diego, CA, Jan 1996.

[23] Cisco Distributed Director Web Page. http://www.cisco.com/warp/public/751/distdir/,
1997.

[24] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar. A novel server selection
technique for improving the response time of a replicated service. In Proc Infocom '98,
March 1998.

[25] Project Felix Home Page. ftp://ftp.bellcore.com/pub/mwg/felix/index.html, 1999.

[26] A. Fox. A Framework for Separating Server Scalability and Availability From Internet
Application Functionality. PhD thesis, University of California at Berkeley, 1998.

[27] A. Fox, S. Gribble, E. Brewer, , and E. Amir. Adapting to Network and Client Vari-
ability via On-Demand Dynamic Transcoding. In Proc. ASPLOS, 1996.

[28] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-based Scalable Network
Services. In Proc. 16th ACM Symposium on Operating Systems Principles, October
1997.

113

[29] Fping Program. ftp://networking.stanford.edu/pub/fping/, 1997.

[30] P. Francis. http://www.ingrid.org/hops/wp.html, 1997.

[31] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, and Y. Jin. An Archi-
tecture for a GLobal Internet Host Distance Estimation Service. In Proc Infocom '99,
1999.

[32] S. Gribble and E. Brewer. System Design Issues for Internet Middleware Services:
Deductions from a Large Client Trace. In Proc. 1997 Usenix Symposium on Internet
Technologies and Systems, December 1997.

[33] J. Guyton and M. Schwartz. Locating Nearby Copies of Replicated Internet Servers.
In Proc. SIGCOMM '95, September 1995.

[34] J. Gwertzman and M. Seltzer. The Case for Geographical Push-Caching. In Proc. Fifth
IEEE Workshop on Hot Topics in Operating Systems, May 1995.

[35] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC, Dec 1995.
RFC-1884.

[36] K. Holtman and T. Hardie. Content Feature Tag Registration Proce-
dure. http://genis.win.tue.nl/ koen/conneg/draft-ietf-http-feature-reg-03.txt, Novem-
ber 1997.

[37] K. Holtman and A. Mutz. Tranparent Content Negotiation in HTTP.
http://genis.win.tue.nl/ koen/conneg/draft-ietf-http-negotiation-06.html, January
1998.

[38] K. Holtman and A. Mutz. Transparent Content Negotiation in HTTP. RFC, Mar 1998.
RFC-2295.

[39] Internet Performance Measurement and Analysis Project Home Page.
http://www.merit.edu/ipma, 1999.

[40] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOMM 88, August
1988.

[41] V Jacobson. pathchar { A Tool to Infer Characteristics of Internet Paths. ft-
p://ee.lbl.gov/pathchar, 1997.

[42] E. Katz, M. Butler, and R. McGrath. A Scalable HTTP server: The NCSA prototype.
Computer Networks and ISDN systems, pages 240{249, November 1994.

[43] S. Keshav. Packet-Pair Flow Control. IEEE/ACM Transactions on Networking, Febru-
ary 1995.

[44] S. Keshav, A. Agrawala, and S. Singh. Design and Analysis of a Flow Control Algorithm
for a Network of Rate Allocating Servers. In Proc. Second International Workshop on
Protocols for High Speed Networks, 1990.

114

[45] Keynote Home Page. http://www.keynote.com, 1999.

[46] M. Mathis and M. Allman. Empirical Bulk Transfer Capacity.
http://www.ietf.org/internet-drafts/draft-ietf-ippm-btc-framework-00.txt, January
1999.

[47] M. Mathis and J. Mahdavi. Diagnosing Internet Congestion with a Transport Layer
Performance Tool . In Proc. INET '96, Montreal, Canada, June 1996.

[48] M. Mathis, J. Semke, J. Mahdavi, and Ott. T. The Macroscopic Behavior of the
TCP Congestion Avoidance Algorithm. Computer Communications Review, 27(3),
July 1997.

[49] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architecture for User-
Level Packet Capture. In Proc. Winter '93 USENIX Conference, San Diego, CA,
January 1993.

[50] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Multicast. In Proc
ACM SIGCOMM, August 1996.

[51] J. C. Mogul. Network Behavior of a Busy Web Server and its Clients. Technical Report
95/5, Digital Western Research Lab, October 1995.

[52] MuÆn Home Page. http://muÆn.doit.org, 1999. MuÆn Home Page.

[53] MultiNet Home Page. http://www.process.com/multinet, 1997.

[54] A. Myers, P. Dinda, and H. Zhang. Characteristics of Mirror Servers on the Internet.
In Proc. Infocom '99, March 1999.

[55] NetNow Probing Program. http://www.merit.edu/ipma/netnow/daemon/, 1999.

[56] Network Wizards Homepage. http://www.nw.com/, 1999. Network Wizard's WWW
page.

[57] B. Noble. Mobile Data Access. PhD thesis, Carnegie Mellon University, 1998.

[58] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker.
Agile Application-Aware Adaptation for Mobility. In Proc. 16th ACM Symposium on
Operating Systems Principles, Oct 1997.

[59] NUA Survey of Worldwide Internet Users. http://www.nua.ie/surveys/how many online/index.html,
1999. NUA Internet Survey.

[60] Project Octopus Home Page. http://www.cs.cornell.edu/ cn-
rg/topology aware/topology/Default.html, 1999.

[61] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. TCP Throughput: A Simple Model
and its Emperical Validation. In Proc. Sigcomm '98, August 1998.

115

[62] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. RFC, Nov 1993.
RFC-1546.

[63] V. Paxson. End-to-End Routing Behavior in the Internet. In Proc. ACM SIGCOMM
'96, August 1996.

[64] V. Paxson. End-to-End Internet Packet Dynamics. In Proc. ACM SIGCOMM '97,
September 1997.

[65] V. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis,
U. C. Berkeley, May 1997.

[66] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An Architecture for Large-Scale
Internet Measurement. IEEE Personal Communications, 36(8):48{54, August 1998.

[67] QuickWeb DNS Pro 2.0Home Page. http://www.menandmice.com/products/quickdnspro,
1997.

[68] Netscape Corp. http://www.realnetworks.com, 1999.

[69] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. RFC, Jan 1996. RFC-1889.

[70] J. Sedayao and K. Akita. LACHESIS: A Tool for Benchmarking Internet Service
Providers. In Proc. 9th System Administration Conference (LISA 95), September 1995.

[71] Servicemetrics Home Page. http://www.servicemetrics.com, 1999.

[72] Socks Home Page. http://www.socks.nec.com, 1997.

[73] Sonar home page. http://www.netlib.org/utk/projects/sonar, 1999.

[74] W. R. Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, Reading, MA, Nov
1994.

[75] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture.
Computer Communication Review, 26(2):5{18, April 1996.

[76] Timeit 2.1 Software Distribution. ftp://ftp.va.pubnix.com/pub/uunet/timeit-
2.1.tar.gz, 1999.

[77] UC Berkeley Annex WWW Traces. http://www.cs.berkeley.edu/ grib-
ble/traces/index.html, 1997.

[78] VitalSign's NetMedic Product. http://www.vitalsigns.com/products/nm/index.html,
1997.

[79] T. Von Eicken, D. Culler, S. C. Goldstein, and K. E. Schauer. Active Messages: a
Mechanism for Integrated Communication and Computation. In Proc. International
Symposium on Computer Architecture, 1992.

116

[80] R. Wolski. Dynamically forecasting network performance to support dynamic schedul-
ing using the network weather service. In Proc. 6th High-Performance Distributed
Computing Conference, August 1997.

[81] G.R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume 2. Addison-Wesley,
Reading, MA, Jan 1995.

[82] The Emerging Digital Economy. http://www.ecommerce.gov/emerging.htm, April
1998. Commerce Department Report on Future of Electronic Commerce.

[83] B. Zenel and D. Duchamp. A General Purpose Proxy Filter Mechanism Applied to the
Mobile Environment. In Proc. ACM Mobicom, October 1997.

