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Abstract. The reachability problem for a wide class of in�nite-state systems is decidable
when the initial and the �nal set of con�gurations are given as upwards closed sets. Tra-
ditional symbolic model checking methods su�er from the state explosion problem when
applied to this class of veri�cation problems.
We provide new data structures and algorithms for an eÆcient manipulation of upwards
closed sets. These operations can be incorporated into model checking procedures for integer
systems with in�nite-states space. We report on experiments for veri�cation problems of
Vector Addition Systems.

1 Introduction

Symbolic model checking [BCB+90] has been successfully applied to veri�cation of �nite-state
systems. This approach is based on the eÆcient representation of sets of states via binary decision
diagrams (BDDs) [Bry86]. In the last years, many e�orts have been made to extend the results
and methods developed for �nite-state systems to systems with in�nite-state space.

Many interesting theoretical results have been obtained for systems with variables ranging over
integer values (e.g. [A�CJT96,AJ99,BF99,BM99,BW94,BW98,CJ98,EFM99,FS99]). This class of
systems comprises well-known examples like Vector Addition Systems [Min67], Petri Nets [KM69],
Integral Relational Automata [�Cer94], and more recent examples like Broadcast Protocols [EN98]
and Lossy Petri Nets [BM99].

The reachability problem for all these systems is decidable when the initial set of con�gurations
is upwards closed [A�CJT96,Fin90,FS99]. Properties like mutual exclusion and coverability can be
expressed via upwards closed sets (see e.g. [AJKP98,DEP99]). As for the �nite state case, the
success of symbolic model checking for this class of problems seems to depend on the representation
chosen for implicitly represent sets of states.

Upwards closed sets can be expressed via a sub-class of integer arithmetic constraints (see
e.g. [AJ99,DEP99]). In [DEP99], the authors tested `traditional' symbolic model checking meth-
ods for arithmetic constraints (e.g., Presburger arithmetics [Bul98] and polyhedra [HHW97]) on
veri�cation problems that can be expressed via upwards closed sets. All methods su�er from the
state explosion problem1. Though the examples in [DEP99] would be considered of negligible size in
�nite-state model checking (e.g. 6 transitions and 10 variables, cf. [BCB+90]), some of the reported
execution times were given in days.

1 One would say `symbolic state explosion problem', in fact, the above cited methods operate on implicit
representations of sets of states.



Based on these observations, it seems natural to look for formulation of BDD-like data structures
to represent the `generalization' of boolean formulas we are interested in. Since upwards closed sets
are univocally determined by their minimal elements, the data structure we are looking for should
provide for compact representations of possibly huge collections of tuples.

In this paper we propose a new symbolic representation for upwards closed sets based on the
sharing trees of Zampuni�eris and Le Charlier [ZL94]. A sharing tree is a directed acyclic graph
used to represent a set of tuples so as to obtain the maximal sharing of pre�xes and suÆxes of
its elements. In our approach, we lift the denotation of a sharing tree from its set of elements
(as in [ZL94]) to the upwards closed sets `generated' by its elements. The view of formulas as
sharing trees allowed us to study abstractions based on simulation relations usually considered for
transition systems (see, e.g., [HHK95]).
Technically, our contributions are as follows.

{ We introduce a logic (the logic U) that provides connectives to represent union, intersection,
and translations of upwards closed sets, i.e., it can be used to express the predecessor operators,
e.g., of Vector Addition Systems.

{ We show that sharing trees can be used to obtain compact representations of U -formulas:
there exist U-formulas that can be represented using sharing trees logarithmic in the size of
the formulas.

{ We show how to compute operations for U -formulas on the corresponding symbolic represen-
tations. In general, the operations can be implemented eÆciently (time linear in the size of the
sharing tree).

{ The subsumption test for arbitrary U-formulas turns out to be co-NP hard. We de�ne a notion
of simulations between nodes of sharing trees and use it to give polynomial-time suÆcient
conditions for the subsumption test. We show that the simulations can also be used to remove
redundancies (from a sharing tree) in eÆcient way.

In other words, we set up the stage for a symbolic model checking algorithm for safety properties
expressed as upward closed sets. As an application of our method, we give a symbolic model
checking algorithm for Vector Addition Systems based on transformations of sharing trees. We
report on some experimental results we obtained with a prototype implementation based on the
sharing tree library of [Zam97].

Plan of the Paper. In Section 2, we de�ne the logic U . In Section 3, we introduce the symbolic
representation of U-formulas via sharing trees. In Section 4, we de�ne simulations for nodes of
sharing trees and discuss their application in the operations for U-formulas. In Section 5, we
de�ne a symbolic model checking procedure for Vector Addition Systems. In Section 7, we address
conclusions and future works.

2 The Logic of Upwards Closed Sets

In this section we introduce the logic U that we use to de�ne collections of upwards closed sets.
Let V = fx1; : : : ; xkg be a �nite set of variables and Z!. The set of U-formulas is de�ned by the
following grammar.

� ::= xi � c j � ^ � j � _ � j 9xi+c: �;

where c 2 Z! and Z! = Z [ f�1;+1g. U-formulas are interpreted over Z!
k. We use t to denote

the valuation ht1; : : : ; tki, where ti 2 Z! is the valuation for variable xi. We consider the following
order over tuples: t 4 t

′ i� ti � t0i for i : 1; : : : ; k (�1 � c � +1 for c 2 Z!). When restricting to
positive values, 4 is a well-quasi ordering (see e.g. [A�CJT96,FS99]). Given a tuple t, we de�ne t

"

as the upwards closed set generated by t, namely, t" = ft′ j t 4 t
′g.

Satis�ability of a formula wrt. a valuation t is de�ned as follows:

{ t j= xi � c i� ti � c;



{ t j= �1 ^ �2 i� t j= �1 and t j= �2;
{ t j= �1 _ �2 i� t j= �1 or t j= �2;
{ t j= 9xi+c: � where t

′ j= � and t
′ is obtained from t replacing ti with ti + c.

The formula 9x+c:�[x] corresponds to the formula with explicit equality 9x0 :x0 = x + c ^ �[x0=x].
We will use it to represent transformations of U-formulas.

The denotation of a formula �, namely [[�]], is de�ned as the set of all evaluations t such that
t j= �. A formula �1 is subsumed by a formula �2, written �1 j= �2, if [[�1]] � [[�2]]. Two formulas
are equivalent if their denotations coincide.

The class of U-formulas denotes all upwards closed set over Z!
k, i.e., all sets I � Z!

k such that
if t 2 I then t

" � I .
All formulas can be reduced to disjunctive formulas, i.e., to formulas having the following form:W

i2I(x1 � ci;1 ^ : : : ^ xk � ci;k)
2.

Notation 1 In the rest of the paper we use �;	; etc. to denote arbitrary U-formulas, and �;  ;
etc. to denote disjunctive formulas.

The set of generators of a disjunctive formula ' are de�ned as

gen(') = f hc1; : : : ; cki j (x1 � c1 ^ : : : ^ xk � ck) is a disjunct in ' g:

Thus, disjunctive formulas are in one-to-one correspondence with their set of generators. The mini-
mal elements (wrt. 4) of gen(') are denoted by min('). Note that [[']] =

S
t2min(') t

". We say that

a disjunctive formula is in normal form whenever gen(') = min('). As an example, consider the
formula ' = (x � 1^y � 2)_(x � 3^y � 1)_(x � 2^y � 0). Then, gen(') = fh1; 2i; h3; 1i; h2; 0ig,
and min(') = fh1; 2i; h2; 0ig, i.e., ' is not in normal form. A graphical representation of the up-
wards closed set generated by ' is given in Fig. 1.
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Fig. 1. Generators and minimal points.

2.1 Operations on formulas in disjunctive form

Disjunction and Conjunction. Formulas in disjunctive form are closed under _.
Furthermore, given the disjunctive formulas ' and  , the disjunctive formula for '^ is de�ned as
follows:

W
t2gen(');t′2gen( )(x1 � max(t1; t

0
1) ^ : : : ^ xk � max(tk; t

0
k)), i.e., gen(' ^  ) = fs j 9t 2

gen('); t′ 2 gen( ) and si = max(ti; t
0
i)g. Note that the resulting formula may not be in normal

form.

Quanti�cation. The formula 9xi+c:' is equivalent to the formula '0 obtained from ' by replacing
each atom xi � d with xi � d� c, i.e., gen(9xi+c:') = ft′ j t0i + c = ti; t

0
j = tj j 6= i; t 2 gen(')g.

2 Adding formulas xi � �1 when necessary.



Satis�ability. Given a valuation t, we �rst note that t j= ' i� there exists t
′ 2 gen(') such that

t
′ 4 t. Thus, checking t j= ' can be done in time linear in the size of '.

Subsumption. Let ' and  be in disjunctive form. We can check ' j=  in time quadratic in the
size of the formulas. In fact, ' j=  holds i� for all t 2 gen(') there exists t

′ 2 gen( ) such that
t
′ 4 t.
It is important to remark that the subsumption test is much harder for arbitrary U -formulas,

as stated in the following theorem.

Theorem 1. Given two arbitrary U-formulas � and 	, checking that � j= 	 is co-NP hard in the
size of the formulas.

Proof. We use a reduction from the validity problem (see e.g. [Joh90]) for propositional formulas
in disjunctive normal form. Given a propositional formula F = D1 _ : : : _Dn where each disjunct
Di is a conjunction of literals over the set of propositional variables p1; : : : ; pm, is F true for all
valuations?

The reduction works as follows. Given a propositional formula F , we build a U-formula �val(F )
(polynomial in the size of F ) that represents all valuations that make F true. Then, we reduce
validity for F to the subsumption problem �val(true) j= �val(F ).

Without loss of generality, we assume that all variables occur in each disjunct of F either as
p, :p or any(p). The latter means that p can take any value (note: it is equivalent to say that
p does not occur in the disjunct). The formula true is equivalent to any(p1) ^ : : : ^ any(pm). To
encode the valuation for pi, we use two variables from V , namely vi and wi. We use the formula
�1 = (vi � 1^wi � 0) when pi evaluates to true; �2 = (vi � 0^wi � 1) when pi evaluates to false.
Note that neither �1 j= �2 nor �2 j= �1. We use the disjunction (vi � 1^wi � 0)_(vi � 0^wi � 1)
when pi can be evaluated either to true or false. The previous encoding allows us to keep the size
of �val(F ) polynomial in the size of F .

Formally, the formula �val(F ) is de�ned by induction on F as follows: �val(D1_D2) = �val(D1)_
�val(D2), �val(C1^C2) = �val(C1) ^�val(C2), �val(pi) = (vi � 1^wi � 0), �val(:pi) = (vi � 0^wi �
1), �val(any(pi)) = (v1 � 0 ^ w1 � 1) _ (v1 � 1 ^ w1 � 0).
Based on this construction, it is easy to check that F is valid if and only if �val(true) j= �val(F ).

ut

Reduction in normal form. Given a disjunctive formula ' we can reduce it in normal form by
eliminating all `redundant' generators from gen('), i.e., all t 2 gen(') such that there exists
t
′ 2 gen('), t 6= t0, t′ 4 t. This reduction can be done in time quadratic in the size of '.
All previous operations depend on the set of `generators' of disjunctive formulas. In the following

section we introduce a special data structure, called sharing tree [ZL94], for handling large set of
generators. We show how to use this data structure to represent and manipulate symbolically
formulas of the logic U .

3 Sharing Trees

In this paper we specialize the original de�nition of [ZL94] as follows. We call a k-sharing tree a
rooted directed acyclic graph (N; V; root; end; val; succ) where N = frootg [ N1 : : : [Nk [ fendg
is the �nite set of nodes, (Ni is the set of nodes of layer i and, by convention, N0 = frootg and
Nk+1 = fendg), val : N ; Z! [ f>;?g is a labeling function for the nodes, and succ : N ; 2N

de�nes the successors of a node. Furthermore,

1. val(n) = > if and only if n = root;
2. val(n) = ? if and only if n = end;
3. succ(end)=;;
4. for i : 0; : : : ; k, forall n 2 Ni, succ(n) � Ni+1 and succ(n) 6= ;;



Operation Speci�cation Complexity

union elem(union(S ;T )) = elem(S ) [ elem(T ) O(max(edges(S); edges(T )) +Red)
intersect : elem(intersect(S ;T )) = elem(S) \ elem(T ) O(min(edges(S); edges(T )) +Red)
membership member(t; S) i� t 2 elem(S) O(size(t))
containment contained(S ;T ) i� elem(S) � elem(T ) O(edges(S))
emptyness is empty(S) i� elem(S) = ; O(const)

Fig. 2. Operations on the sharing trees S and T : edges(S)=No.edges of S.

5. forall n 2 N , forall n1; n2 2 succ(n), if n1 6= n2 then val(n1) 6= val(n2).
6. for i : 0; : : : ; k, forall n1; n2 2 Ni s.t. n1 6= n2, if val(n1) = val(n2) then succ(n1) 6= succ(n2).

In other words, a k-sharing tree is an acyclic graph with root and terminal node such that: all
nodes of layer i have successors in the layer i+1 (cond. 4); a node cannot have two successors with
the same label (cond. 5); �nally, two nodes with the same label in the same layer do not have the
same set of successors (cond. 6).

We say that S is a pre-sharing tree if it respects conditions (1)-(4) but possibly not (5) and (6).
In teh rest ofthe paper we use rootS , NS , succS etc. to refer to the root, set of nodes, successor

relation etc. of the sharing-tree S.
A path of a k-sharing tree is a sequence of nodes hn1; : : : ; nmi such that ni+1 2 succ(ni)

i : 1; : : : ;m-1. Paths will represent tuple of size k of integer numbers. Formally, we use elem(S) to
denote the set of elements represented by the k-sharing tree S:

elem(S) = f hval(n1); : : : ; val(nk)i j h>; n1; : : : ; nk;?i is a path of S g:

Condition 5 and 6 ensures the maximal sharing of pre�xes and suÆxes among the tuples represented
by the sharing tree. We de�ne the `size' of a sharing tree as the number of its nodes and edges.
Note that the number of tuples in elem(S) can be exponentially larger than the size of S.

As shown in [ZL94], given a set of tuples F of size k, there exists a unique (modulo isomorphisms
of graphs) sharing tree such that elem(S) = F . In the same paper the authors give algorithms
for the basic set-operations on the set of elements represented by the sharing trees. Table 2 gives
the speci�cation and the complexity in terms of the size of sharing trees, for the operation we will
consider in the rest of the paper: union, intersection, emptyness, containment, and equality test.
The cost for intersection and union depend also from the cost (quadratic in the number of nodes)
of re-arranging condition 6 (denote by Red in Table 2) using the algorithm shown in [ZL94].

Finally, given a node n of the i-th layer of a k-sharing tree S, the sub-(sharing)tree Sn rooted
at n is the k � i + 1-sharing tree obtained as follows. We �rst isolate the graph rooted at n and
consisting of all nodes reachable from n (this subgraph has k � i+ 1 layers and a terminal node).
Then, we add a layer with the single node root and we set succ(root) = fng.

From the previous de�nition, elem(Sn) consists of all tuples hval(n);mi+1; : : : ;mki obtained
from tuples hm1; : : : ; val(n);mi+1; : : : ;mki of elem(S).

3.1 Symbolic representation of U-formulas

We �rst show how to represent U-formulas in disjunctive form, and then show how to de�ne dis-
junction, conjunction, subsumption and reduction in normal form over the resulting data structure.

Let ' be a U-formula in disjunctive form over x1; : : : ; xk. We de�ne S' as the k-sharing tree
such that elem(S') = gen('). The denotation of a k-sharing tree S is then de�ned as [[S]] =S

t2elem(S) t
". Clearly, [[']] = [[S']]. We say that S' is irredundant if ' is in normal form, i.e.,

there exists no t 2 elem(S') such that t is subsumed by minus(S'; t). The following proposition
explains the advantages of using sharing trees for representing U-formulas.



Proposition 1. There exist a disjunctive formula in normal form ' such that the corresponding
sharing tree S' has size (no. of nodes and arcs) logarithmic in the size of '.

Proof. Consider the U-formulas �val(D) we used in the proof of Theorem 1 to represent all evalu-
ations that satisfy a disjunct D of a DNF propositional formula F . The transformation of �val(D)
to a disjunctive formula may give a formula ' exponential in the size of �val(D). However, the rep-
resentation of ' using a sharing tree S' is polynomial in the size of the original formula �val(D),
i.e., logarithmic in '. In other words, we can build S' `directly' from �val(D) (the formal proof is
by induction on the structure of the formula).

As an example, �val(true) =
Wm
i=1(vi � 1 ^ wi � 0) _ (vi � 0 ^ wi � 1). The corresponding

disjunctive formulas ' (obtained by distributing ^) is
W
c;d2f0;1g

Vm
i=1

�
vi � c ^ wi � d), i.e., one

conjunct for each possible valuation for the variables p1; : : : ; pm of F (exponential in m). Note that
' is in normal form. On the other hand, the sharing tree S' has size polynomial in �val(true), i.e.,
logarithmic in  , as shown in Fig. 3 (each layer has two nodes and at most four arcs).

root

01

0 1 0 1

01 1 0

0 1

end

1 0

10

any(p3)any(p2)any(p1)

w3v3w2v2w1v1 wnvn

any(pn)

Fig. 3. Sharing tree for �val(true).

3.2 Symbolic Operations for U-formulas

We show in this subsection how operations on disjunctive formulas ' and  can be done sym-
bolically on the sharing-trees representations S'; S . We use the term symbolically because the
algorithms that we propose work directly on the graphs S' and S and not by enumerating the
elements that they represent.

Disjunction. Let S' and S be the k-sharing trees representing the formulas (in disjunctive form)
' and  . We must construct a sharing tree such that elem(S'_ ) = gen(')[ gen( ), so we simply
have S'_ = union(S'; S ). It can be shown that the size of the sharing-tree S'_ is at most
quadratic in the size of S' and S , and can be computed in time quadratic in the size of those two
sharing-trees.

Conjunction. Given S' and S , we construct symbolically S'^ as follows:

{ we �rst construct a pre-sharing tree P with the following elements: (i) NP = frootg [ N1 [

: : :Nk [ fendg with each Ni = f(n;m) j n 2 N
S'
i ;m 2 N

S 
i g (i.e. a node in P correspond

to a pair consisting of a node of S' and a node of S at the same layer; (ii) valP ((n;m)) =
max(valS'(n); valS (m)), and (iii) for all (n;m) 2 N1 [ : : : Nn, we have succP ((n;m)) =
f(n0;m0) j n0 2 succS'(n);m0 2 succS (m)g, succP (root) = N1, and for all (n;m) 2 Nk we
have succP ((n;m)) = fendg.

{ we obtain the sharing-tree S'^ from P by inforcing in P the rules (5) and (6) of the de�nition
of sharing-trees, with the algorithms proposed in [ZL94].

It is easy to show that elem(S'^ ) = gen(' _  ).



Quanti�cation. Given the sharing tree S' we can compute S9x+c:' as follows: we take S9x+c:' as
S' with the exception of the valuation function which has the following de�nition: for every node

n 2 NS9x+c:' we have valS9x+c:'(n) = valS'(n)� c. This operations returns a well-formed sharing
tree and has complexity linear in the number of nodes of S'. Again this operation is linear in the
size of the sharing-tree and thus potentially logarithmic in the number of elements represented by
this sharing-tree. Also it is easy to check that elem(S9x+c:') = gen(9x+c:').

Satis�ability. Checking that t j= ' on the sharing tree S' has cost polynomial in the size of ',
i.e., following from Remark 1, possibly logarithmic in the size of '. In fact, the following theorem
holds.

Theorem 2. Let S be a k-sharing tree and t be a vector of length k. We can check if t is subsumed
by S in time linear in the number of edges of S.

Proof. We exhibit an algorithm linear in the size of the sharing tree. The algorithm is based on
a layer-by-layer comparison of the nodes of the sharing-tree and the components of the vector:
at a given layer, we mark all nodes that belong to a path (tuple) that is candidate to subsume
the vector. Speci�cally, we �rst mark rootS . Then, if a node m at the i-th layer of S is marked,
we mark all successors n of m such that ti+1 � val(n). At the end of the procedure, the vector
t is subsumed by S if and only if the node endS is marked (note: we assume that t0 = > and
tk+1 = ?). ut

Subsumption. The subsumption problem is harder: the best possible algorithm for subsumption is
exponential in the size of the trees, as shown by the following theorem.

Theorem 3. The subsumption problem for two (irredundant) k-sharing trees is co-NP complete
in the size of the sharing trees.

Proof. We �rst show that the problem is in co-NP.We can solve the complement of the subsumption
problem, namely [[S1]] 6� [[S2]], by guessing a tuple of length k and testing that it is subsumed by
S1 but not by S2. Following from Prop. 2, we can check whether a tuple is subsumed or not by a
sharing tree in time linear in the size of the tree.

To prove hardness, we use a reduction from validity. More precisely, given a propositional
formula in DNF F = D1 _ : : : _Dn we de�ne the sharing tree Sval(F ) that encode all evaluations
that satisfy F and then reduce validity to the subsumption test between Sval(true) and Sval(F ).
Following the proof of Theorem 1, we �rst build the two U-formulas �val(true) and �val(F ) that
encode the evaluations for true and F , respectively. Following from Prop. 1, we know that the
sharing tree Tval(true) (with root rt and terminal node et) that encode �val(true), and the sharing
tree Si (with root ri and terminal node ei) that encode �val(Di) have size polynomial in F . (Note: in
Prop. 1, the sharing tree Sval(F ) is obtained from the expansion of �val(F ) to a disjunctive formula.)
To de�ne an `irredundant' sharing tree Sval(F ) that encode all evaluations for F , we merge all Si's
into a single sharing tree with root r and terminal node e such that succ(r) = fr1; : : : ; rng,
succ(e1) = feg; : : : ; succ(en) = feg. To ensure that Sval(F ) is irredundant, we �rst note that Si is
irredundant by construction. It remains to make all paths in Si and Sj for i 6= j non comparable.
For this, we set val(ri) = i and val(ei) = 2n+ 1� i (i.e., from `left-to-right': increasing values for
the ri's; decreasing values for the ei's). Clearly, the construction is polynomial in the size of F .

Similarly, we Sval(true) is the sharing tree obtained from Tval(true) as the sharing tree with root
r0 and terminal node e0 such that succ(r0) = frtg and succ(e0t) = fetg. Finally, since the values of
the nodes r0 and e0 should not in
uence the comparison of the paths of Sval(true) and Sval(F ), we
set val(r0) = val(e0) = 2n+ 1 (a value strictly greater than the max label in Sval(F )). We give an
example of the reduction in Fig. 4. ut

Following from the previous result, the cost of checking subsumption may be exponential in the
number of edges of the input sharing trees. this result comes from the fact that U-formulas in
disjunctive form can be represented compactly by sharing-tress.
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Fig. 4. Validity of F = p2 _ (p1 ^ :p2) is reduced to S0

val(true) j= Sval(F ).

Reduction in normal form. Let S' be the sharing tree associated to a disjunctive formula '. We
now characterize the following problem: what is the complexity of computing the sharing-tree for
the normal form of ' ? That is the sharing-tree S such that elem(S) = min('). The following
theorem shows that it is as hard as checking subsumption.

Theorem 4. Given a k-sharing tree S, computing the irredundant k-sharing tree S0 such that
[[S]] = [[S0]] is co-NP hard.

Proof. Following [Joh90], we exhibit a polynomial-time Turing reduction from validity (co-NP
complete). As in the proof of theorem 3, given a formula F we build the irredundant sharing tree
Sval(F ) and Sval(true) (with size polynomial in F ). We build an Oracle Turing Machine (OTM) for
testing validity of F as follows. Let us assume that we have an oracle that yields the sharing tree R
obtained from S after removing all redundant tuples. Following the idea of the proof of Theorem
3, we �rst de�ne the sharing tree S obtained merging Sval(true) and Sval(F )) in time polynomial in
the size of Sval(true) and Sval(F ). Then, we invoke the oracle with S as input. By construction of
S, the oracle returns the sharing tree R obtained from S by removing all tuples of Sval(true) in S
subsumed by tuples in SF . Finally, we compute T = intersect(Sval(true); R) without adjusting the
conditions 5-6 (i.e. we obtain a pre-sharing tree) in time polynomial in the minimum between the
size of Sval(true) and R (see Table 2). As shown in [ZL94], this step is possible and avoids the cost
Red of Table 2. Finally, we check emptiness of the pre-sharing tree T in constant time (see Table
2). Clearly, T is empty if and only if F is valid. Thus, for every input formula F , the resulting
OTM runs in polynomial time in the size of F and returns `yes' if and only if F is valid. ut

Let S1 and S2 be two k-sharing trees. Note that, if elem(S1) � elem(S2) then [[S1]] � [[S2]]. Besides
giving a suÆcient condition for checking subsumption, the previous fact suggests a possible strategy
to reduce the cost of the `complete' test. We �rst compute T = minus(S1; S2) (polynomial in the
size of S1; S2) and then test T j= S2 on the (possibly) smaller sharing tree T .

In the next section we give more interesting polynomial-time suÆcient conditions for the sub-
sumption test, based on a notion of simulation bewteen nodes of k-sharing trees. We will see that
this notion of simulation is also useful to reduce sharing-trees and "approximate" the reduction in
normal form.

4 Simulations for nodes of a k-sharing tree

In the previous section we have proved that the subsumption problem for two U formulas repre-
sented as sharing-trees and the computations of generators of the normal form of a U-formula



represented as a sharing-tree, are co-NP hard. In this section we will introduce `approximations'
of the subsumption relation that can be tested more eÆciently. More precisely, given two nodes n
and m of a sharing tree S we are looking for a relation yF such that: nyFm `implies' [[Sn]] � [[Sm]].

De�nition 1 (Forward Simulation). Let n, respectively m, be a node of the i-th layer of a
k-sharing tree S, respectively of k-sharing tree T . We say that n is simulated by m, written nyFm,
if valS(n) � valT (m) and for all s 2 succS(n) there exists t 2 succT (m) such that syF t.

Note that, if S = T then the simulation relation is re
exive and transitive.
Let father(n) be the set of fathers of a node n at layer i (fathers(n) � Ni�1). We de�ne the

backward simulation as follows:

De�nition 2 (Backward simulation). Let n, respectively m, be a node of the i-the layer of
two k-sharing tree S, respectively of k-sharing tree T . We say that n is backwards simulated by m,
written nyBm, if valS(n) � valT (m) and for all s 2 fathersS(n) there exists t 2 fathersT (m)
such that syB t.

Theorem 5 ([HHK95]). The forward and backward simulation relations between the nodes of
the sharing tree S and the nodes of the sharing tree T can be computed in O(m � n) where m is
the sum of the number of nodes in S and in T , and n is the sum of the number of edges in S and
in T .

In the rest of this section we will focus on properties and algorithms for the forward simulation.
The results and algorithms can be reformulated for the backward simulations by replacing the
successor relation with the father relation.

4.1 Properties of the simulation

The following propositions relate subsumption and the simulation yF .

Lemma 1. Given the sharing trees S and T , let Sn and Tm be the sub-sharing trees rooted at
nodes n and m, respectively. If nyFm then [[Sn]] � [[Sm]].

Proof. We will show that for every node of Sn in layer k� l, for 0 � l � k the property is veri�ed.
We reason by induction on the value of l.

Base case: l = 0. Let us consider n 2 NS
k�l andm 2 NT

k�l such that n
yFm. By de�nition of shar-

ing trees, we have that succS(n) = fendg, succT (m) = fendg, elem(Send) = ;, and elem(Tend) = ;.
Thus, elem(Sn) = hvalS(n)i and elem(Tm) = hvalT (m)i, and, by de�nition of yF , we have that
valS(n) � valT (m).

Induction step: l > 0. By induction hypothesis, for all nodes n0 2 NS
k�i and m0 2 NT

k�i,

with O � i < l, we know that if n0yFm0 then [[Sn0 ]] � [[Sm0 ]]. Let us now consider n 2 NS
k�l and

m 2 NT
k�l with n

yFm. By de�nition of yF , we know that for s 2 succS(n) there exists t 2 succT (m)

such that syF t. We also know that valS(n) � valT (m). So elem(Sn) = fhvalS(n)i � elem(Sn0) j
n0 2 succS(n)g and elem(Tm) = fhvalT (m)i � elem(Tm0) j n0 2 succT (m)g, and thus we have
[[Sn]] � [[Tm]]. ut

The converse does not hold (in accord with the co-NP hardness result for subsumption). As a
counterexample, take the two trees in Fig. 5. The curly arrows represent the simulation relation
between nodes of S and T . Note that none of the nodes of layer 2 in T simulates the single
node of S at the same layer. However, the denotation of S are contained in that of T . In fact,
h1; 1; 2; 0i 4 h1; 2; 2; 1i and h1; 0; 0; 2i 4 h1; 2; 1; 2i. The following theorem follows from lemma 1.

Theorem 6. Let rootS and rootT be the root nodes of S and T , respectively. If rootS
yF rootT

then [[S]] � [[T ]]. Symmetrically, for the backward simulation relation, let endS and endT be the
bottom nodes of S and T , respectively. if endS

yBendT then [[S]] � [[T ]].

The last theorem gives us suÆcient conditions for testing subsumption.
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Fig. 5. The forward simulation is incomplete wrt. subsumption.

4.2 Use of simulations to remove redundancies

As for the subsumption test, the simulations we introduced in Section 4 can be used to `approxi-
mate' the exact normalization procedure. For this purpose, we introduce a rule that allows us to
exploit the information given from (one of) the simulation relation(s) in order to `locally' remove
edges of a sharing tree.

De�nition 3 (Edge Removal). Given a sharing S tree with node N and successors succ, let
assume that for n 2 N there exist s; t 2 succ(n) (s 6= t) such that syF t. Then, we de�ne
remove(S; n) as the pre-sharing tree with successor relation succ0 obtained from S by setting
succ0(n) = succ(n) n fsg.

The following property states the `correctness' of the rule 3.

Proposition 2. (1) S and remove(S; n) have the same denotations, i.e., [[S]] � [[remove(S; n)]];3

(2) the simulation relation yF for S and remove(S; n) coincides.

Proof. (1) By de�nition of remove. (2) Let S0 = remove(S; n). We �rst note that: (*) succ(n)
cannot become empty after removing the edge of n that satisfy the condition above: if we remove
t from succ(n) then there exists t0 2 succ0(n) s.t. tyF t0. Now, per absurdum, let us assume that,
for n;m in N , n is simulated by m in Sn but not in S0. By de�nition, there exists s 2 succ(n) that
is simulated by t 2 succ(m), whereas, none of the nodes in succ0(m) simulates s, i.e., t has been
removed from succ(m) after the application of the rule. Following from observation (*), there exists
t0 2 succ0(m) such that tyF t0. By transitivity, it follows that syF t0 contradicting the hypothesis.
Vice versa, let us assume that for two nodes n;m in N n is not simulated by m at step in Sn but
it is in S0. This means that we have removed a successor s of n that was not simulated by any of
the successors of m. By de�nition, there exists s0 2 succ(n) s.t. syF s0. Following from (*), we can
choose s0 such that s0 2 succ0(n). Since we assume that nyFm in S0, it follows that s0yF t for some
t 2 succ0(m) and, by transitivity, syF t in Sn contradicting the hypothesis. Thus, the simulation is
invariant under application of remove. ut

A possible strategy to apply Def. 3 consists of the `on-the-
y' removal of edges during the com-
putation of the simulation relation. Speci�cally, during a bottom-up traversal of the sharing tree,
we �rst apply Rule 3 to every node of a layer, then compute the simulation relation for the node
of the later, and move to the next layer. The rule to remove edges is applied exhaustively at each
step. In fact, given s 2 succ(n), let us assume that there exists u; t 2 succ(n) such that uyF s, and
syF t. By transitivity, uyF t holds, as well, i.e., we can still remove u after having removed s.

Note that graph remove(S) may violate condition 6 of the de�nition of sharing trees. For
instance, removing the node with label 6 from the sharing tree in Fig. 6 makes the two nodes
with label 2 (belonging to vectors that are not in the subsumption relation) have the same set of
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Fig. 6. Violation of cond. 6 after removing two edges and one node.

successors. As already mentioned in the course of the paper, condition 6 can be restored using an
algorithm proposed [ZL94] linear in the number of edges and nodes.

Similar algorithms can be de�ned for the backward simulation.
It is important to note that, though an application of Rule 3 does not change the forward

simulation (Fact (2) of Prop. 2), it may change the backward simulation (and, vice versa, the
removal of edges according to the backward relation may change the forward simulation). An

3 1

64

0
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1

Fig. 7. Removing edge 3! 5 changes the forward simulation.

example is given in Fig. 7, where B anf F represent backward and forward simulation, respectively.
Since 3yB1, we can remove the arc 3! 5, doing so we will add h0; 3i to yF .

As a consequence, we get better and better results iterating the application of the algorithm
for removing edges for the backward-forward simulations.

A simpli�ed version of Rule 3 that requires only a local test for each node of a sharing tree is
given as follows.

De�nition 4 (Local Edge Removal). Given a sharing S tree with node N and successors
succ, let assume that for n 2 N there exist s; t 2 succ(n) (s 6= t) such that val(s) � val(t)
and succ(s) � succ(t). Then, we de�ne local remove(S; n) as the pre-sharing tree with successor
relation succ0 obtained from S by setting succ0(n) = succ(n) n fsg.

Though less e�ective than Rule 3, Rule 4 can be paired with it in order to the simplify the
computation of the simulation.

In the following section we show how to incorporate the previous ideas in a model checking
procedure for an example of integer system.

5 Invariant Checking For Vector Addition Systems

A vector addition system (a.k.a. Petri Nets) consists of n variables x1; : : : ; xn ranging over positive
integers, and m transition rules given as guarded command over the data variables. For each j,

3 Note that, [[G]] is well-de�ned even if G is not a sharing tree.



Transition i contains a guard xj � ci;j and an assignment x0j := xj+di;j ; if di;j < 0 then gi;j � di;j .
The prime variable x0 represents the new value of x after the execution of a rule. States are tuple
of natural numbers and executions are sequences of tuples t0t1 : : : ti : : : where ti+1 is obtained
from ti by applying (non-deterministically) one of the transition rules. Invariant properties like
mutual exclusion can be represented through upwards closed sets [A�CJT96,DEP99]. Checking
safety properties expressed as upward closed set for Petri Nets is decidable using the algorithm
of [A�CJT96]. The predecessor states operator pre associated to a vector addition system takes as
input a set of states (tuples) F and returns the set of predecessors of F . Let F be a set of initial
states (denoting unsafe states). To test the safety property `always :(F )' we compute symbolically
the closure of the relation pre, say pre�(F ), and then we check that the initial con�guration is not
part of the resulting set. The termination test is based on the subsumption relation, namely we
stop the computation whenever pren+1(F ) �

Sn
i=0 pre

i(F ).

U-Logic based Model Checking. Let 'U a U -formula representing a collection of upwards closed set
U . The predecessor relation for VAS can be represented as the following U -formula:

pre('U ) =
_

i=1;:::;m

('i ^ 9x1+ci;1 : : : : :9xk+ci;k :'U );

where 'i = x1 � ci;1 ^ : : : ^ xn � xi;n. In other words, by using the results in the previous
sections, starting from S'U we can compute the sharing tree S'pre(U) that represents pre(U). The
termination test is implemented by the subsumption test for sharing trees. The algorithms based
on the simulations that we described in this paper can be used for a weaker termination test and
for removing redundancies from the intermediate results.

5.1 Some Experimental Results

We have tested the (biggest) examples in [DEP99] using our prototype implementation. The results
are shown in Fig. 8: the 
ag LR denotes the use of the local reduction of 4; the �eld FSR denotes the
frequency in the use of the reduction based on the forward simulation 3; ET denotes the execution
time needed to reach a �xpoint. In the �rst experiment of each example, we do not remove the
redundancies from

S
i pre

i(�0), whereas in the second experiment we apply the reduction based on
the forward simulation (every 5 steps).

Example (1) corresponds to the manufacturing system of [DEP99]. Sharing trees allows us
to dramatically speed up the computation (see [DEP99] for the execution times of other tools
methods). Simulation-based reduction (every 5 steps) allows us to reduce the set of states (checking
for redundancies) of a factor of ten (removing all redundancies yields 450 elements). The other
examples (2-3) give an idea of the ratio (Nodes/NV*NE) of the sharing trees obtained for NV=20
and NV=25, respectively. We did note manage to handle these examples with other methods in
acceptable time.

6 Related Work

In [A�CJT96,AJ99], the authors introduce a symbolic representation (constraint system) for col-
lections of upwards closed sets. Their representation corresponds to disjunctive U -formulas. As
mentioned in the introduction, the traditional symbolic methods for handling linear constraints
(e.g., Presburger or real solvers and polyhedra) su�er from the state-explosion problem when ap-
plied to this type of `constraints' (see [DEP99]). In [DEP99], a more eÆcient representation based
on sequences of pairs bitvector-constant is proposed for representing the state-space of broadcast
protocols, and, as special case, of VAS. In this paper we have shown how to obtain more compact
and eÆcient representations via sharing trees.



Example NV NR NS LR FSR NS ET NE Nodes Ratio

1 13 6 1 no 24 39s 7563 4420 4%
1 13 6 1 yes 5 24 68s 727 1772 12%
2 20 4 1 no 26 13s 1347 5545 20%
2 20 4 1 yes 5 26 44s 1172 5333 22%
3 25 4 2 no 31 120s 3682 15315 16%
3 25 4 2 yes 5 31 680s 2339 11647 19%

Fig. 8. Execution times on examples of VAS: NV=No. Variable; NR=No. Rules; NS=No. Initial States;
ET=Execution Time; LR=Use of loc.reduction; FSR=Freq. sim. reduction ( =not used); NS=No Steps;
NE=No. Elem.; Ratio=Nodes/(NV*NE).

In [Zam97,GGZ95], the authors apply sharing trees to represent the state-space of concurrent
systems: a state is a tuple of values and a set of states is represented as a sharing tree. Note the
di�erence with our approach. We represent a set of states via a tuple, and collections of sets of states
via a sharing tree. The complexity issues are di�erent when lifting the denotation to collections
of sets of states (see Section 3). In [Zam97], Zampuni�eris makes an accurate comparison between
sharing trees and binary decision diagrams (BDDs) [Bry86]. When the aim is to represent tuples of
(unbounded) integers (as in our case), the layered structure of sharing trees allows optimizations
that seem more diÆcult using BDDs (or extensions like multi-valued DDs [SKMB90] or multi-
terminal DDs [CFZ96]).

Our approach shares some similarities with recent work on interval decision diagrams (IDDs)
[ST98,ST99] and clock decision diagrams (CDDs) for timed automata [BLP+99], in that all ap-
proaches use acyclic graphs to represent disjunctions of interval constraints. However, the use of
simulations as abstractions for handling eÆciently large disjunctions has not been considered in the
other approaches. More experimentations are needed for a better comparison of all these methods.
Finally, the PEP tool [Gra97] provides a BDD-based model checking method for Petri Nets (with
a �xed-a-priori number of tokens) [Wim97]. The method works via a translation to SMV [McM93].
We are not aware of BDDs-based representations for the `constraints' we are interested in, i.e., for
veri�cation problems of Petri Nets with a possibly unbounded number of tokens.

7 Conclusions and Future Work

We have proposed a new symbolic representation for `constraints', we called U -formulas, that can
be used in veri�cation problems for in�nite-state integer systems (e.g., coverability of Petri Nets).
The representation is based on the sharing trees of Zampuni�eris and Le Charlier. For our purposes,
we lift the denotation of a sharing tree to sets of upwards closed `generated' by the tuples contained
in the sharing tree. We have studied the theoretical complexity of the operations for sharing trees
wrt. this denotation. Furthermore, we have given suÆcient conditions for testing subsumption (co-
NP hard for U -formulas) we discover thanks to the view of U-formulas as acyclic graphs. In fact,
the conditions are based on simulations relations for nodes of sharing trees.

Though the termination test for problems via upwards closed sets (� U-formulas � sharing
trees) is generally very costly4, testing for membership of the initial con�guration (when it can be
expressed with a conjunctive formula) can be done eÆciently (from Theorem 2 logarithmic in the
size of the formula). This gives us an eÆenct method to detect violations.

The implementation is currently being optimized, but the preliminary experimental results
seems promising. The type of optimizations we are interested in are: heuristics for �nding `good'
orderings of variables; symbolic representation of the transition system (e.g. PADs [ST99]); partial
order reductions (see e.g. [AJKP98] for an application to the coverability problem of Petri Nets).

4 Quadratic for disjunctive formulas, but disjunctive formulas su�ers from the state explosion; exponential
for sharing trees or arbitrary U -formulas.



Finally, it would be interesting to apply our techniques based on simulation relations to more
general type of constraints (i.e., to the corresponding symbolic representation like IDDs [ST98]).
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