
Temporal Logics, Automata, and Classical Theories for

De�ning Real-Time Languages�

T.A. Henzinger1, J.-F. Raskin1;2, and P.-Y. Schobbens3

1Electrical Engineering and Computer Sciences,
University of California, Berkeley, USA

2Computer Science Department,
Universit�e Libre de Bruxelles, Belgium

3Computer Science Institute,
Universit�e de Namur, Belgium

November 10, 1999

Abstract

A speci�cation formalism for reactive systems de�nes a class of !-languages. We call a speci�cation
formalism fully decidable if it is constructively closed under boolean operations and has a decidable
satis�ability (nonemptiness) problem. There are two important, robust classes of !-languages that are
de�nable by fully decidable formalisms. The !-regular languages are de�nable by �nite automata, or
equivalently, by the Sequential Calculus. The counter-free !-regular languages are de�nable by
temporal logic, or equivalently, by the �rst-order fragment of the Sequential Calculus. The gap between
both classes can be closed by �nite counting (using automata connectives), or equivalently, by projection
(existential second-order quanti�cation over letters).

A speci�cation formalism for real-time systems de�nes a class of timed !-languages, whose letters
have real-numbered time stamps. Two popular ways of specifying timing constraints rely on the use of
clocks, and on the use of time bounds for temporal operators. However, temporal logics with clocks or
time bounds have undecidable satis�ability problems, and �nite automata with clocks (so-called timed au-

tomata) are not closed under complement. Therefore, two fully decidable restrictions of these formalisms
have been proposed. In the �rst case, clocks are restricted to event clocks, which measure distances
to immediately preceding or succeeding events only. In the second case, time bounds are restricted to
nonsingular intervals, which cannot specify the exact punctuality of events. We show that the resulting
classes of timed !-languages are robust, and we explain their relationship.

First, we show that temporal logic with event clocks de�nes the same class of timed !-languages
as temporal logic with nonsingular time bounds, and we identify a �rst-order monadic theory that also
de�nes this class. Second, we show that if the ability of �nite counting is added to these formalisms,
we obtain the class of timed !-languages that are de�nable by �nite automata with event clocks, or
equivalently, by a restricted second-order extension of the monadic theory. Third, we show that if
projection is added, we obtain the class of timed !-languages that are de�nable by timed automata,
or equivalently, by the full second-order extension of the monadic theory. These results identify three
robust classes of timed !-languages, of which the third, while popular, is not de�nable by a fully decidable
formalism. By contrast, the �rst two classes are de�nable by fully decidable formalisms from temporal
logic, from automata theory, and from monadic logic. Since the gap between these two classes can be

�NSF CAREER award CCR-9501708,DARPA (NASA) grant NAG2-1214, DARPA (Wright-Patterson AFB),grant F33615-
C-98-3614, ARO MURI grant DAAH-04-96-1-0341, by the Belgian National Fund for Scienti�c Research (FNRS), by the
European Commission under WGs Aspire and Fireworks, and by Belgacom.

1

closed by �nite counting, we dub them the timed !-regular languages and the timed counter-free !-regular

languages, respectively.

Contents

1 Introduction 3

2 Real-Time Models 5

3 The Counter-Free Regular Real-Time !-Languages 9
3.1 Introduction . 9
3.2 Qualitative Formalisms . 9

3.2.1 The Temporal Logic of the Reals: LTR . 9
3.2.2 The First-Order Monadic Logic over the Reals: MLR1 9
3.2.3 Expressive Equivalence: LTR = MLR1 . 10

3.3 Two Real-Time Temporal Logics . 10
3.3.1 The Metric Interval Temporal Logic: MetricIntervalTL 10
3.3.2 The Logic of Event Clocks: EventClockTL . 11

3.4 A First-Order Classical Theory: MinMaxML1 . 12
3.5 Expressiveness Results . 14

3.5.1 EventClockTL = MinMaxML1 . 14
3.5.2 EventClockTL = MetricIntervalTL . 16
3.5.3 Minimal Expressively Complete Fragments . 20

4 The Regular Real-Time !-Languages 21
4.1 Introduction . 21
4.2 Propositional Event-Clock Automata . 22
4.3 Recursive Event-Clock Automata: REventClockTA . 24
4.4 Closure Properties of Recursive Event-Clock Automata . 28

4.4.1 Closure under Positive Boolean Operations . 32
4.4.2 Closure under Negation . 34
4.4.3 Closure under Partial Projection . 46

4.5 Emptiness and Universality for Recursive Event-Clock Automata 46
4.6 Expressiveness: EventClockTL � REventClockTA . 52

5 Adding Counting and Beyond 56
5.1 Introduction . 56
5.2 Adding the Ability to Count . 57

5.2.1 Adding Automata Operators . 57
5.2.2 Adding Second-Order Quanti�cation . 58
5.2.3 Expressiveness Results . 59

5.3 Projected Regular Real-Time Languages . 62
5.3.1 Projected Event-Clock Temporal Logic . 62
5.3.2 Projected (Propositional) Event-Clock Automata . 62
5.3.3 Projected Recursive Event-Clock Automaton . 63
5.3.4 Timed Automata . 63
5.3.5 Expressiveness Results . 65

5.4 Undecidable Extensions . 68

6 Conclusion 69

2

1 Introduction

A run of a reactive system produces an in�nite sequence of events. A property of a reactive system, then,
is an !-language containing the in�nite event sequences that satisfy the property. There is a very pleasant
expressive equivalence between modal logics, classical logics, and �nite automata for de�ning !-languages
[B�uc62, Kam68, GPSS80, Wol82]. Let LTL stand for the propositional linear temporal logic with next and
until operators, and let Q-TL and E-TL stand for the extensions of LTL with propositional quanti�ers and
grammar (or automata) connectives, respectively. LetML1 andML2 stand for the �rst-order and second-order
monadic theories of the natural numbers with successor and comparison (also called S1S or the Sequential
Calculus). Let BA stand for B�uchi automata. Then we obtain the following two levels of expressiveness:

Languages Temporal logics Monadic theories Finite automata

1 counter-free !-regular LTL ML1

2 !-regular Q-TL = E-TL ML2 BA

For example, the LTL formula 2(p ! �q), which speci�es that every p event is followed by a q event, is
equivalent to the ML1 formula (8i)(p(i) ! (9j � i)q(j)) and to a B�uchi automaton with two states. The
di�erence between the �rst and second levels of expressiveness is the ability of automata to count. A counting
requirement, for example, may assert that all even events are p events, which can be speci�ed by the Q-TL
formula (9q)(q ^ 2(q $:q) ^ 2(q ! p)).

We say that a formalism is positively decidable if it is constructively closed under positive boolean oper-
ations, and satis�ability (emptiness) is decidable. A formalism is fully decidable if it is positively decidable
and also constructively closed under negation (complement). All of the formalisms in the above table are
fully decidable. The temporal logics and B�uchi automata are less succinct formalisms than the monadic
theories, because only the former satis�ability problems are elementarily decidable.

A run of a real-time system produces an in�nite sequence of time-stamped events. A property of a real-
time system, then, is a set of in�nite time-stamped event sequences. We call such sets timed !-languages. If all
time stamps are natural numbers, then there is again a very pleasant expressive equivalence between modal
logics, classical logics, and �nite automata [AH93]. Speci�cally, there are two natural ways of extending
temporal logics with timing constraints. The Metric Temporal Logic MetricTL (also called MTL [AH93])
adds time bounds to temporal operators; for example, the MetricTL formula 2(p ! �=5 q) speci�es that
every p event is followed by a q event such that the di�erence between the two time stamps is exactly 5.
The Clock Temporal Logic ClockTL (also called TPTL [AH94]) adds clock variables to LTL; for example,
the time-bounded response requirement from above can be speci�ed by the ClockTL formula 2(p ! (x :=
0)�(q ^ x = 5)), where x is a variable representing a clock that is started by the quanti�er (x := 0).
Interestingly, over natural-numbered time, both ways of expressing timing constraints are equally expressive.
Moreover, by adding the ability to count, we obtain again a canonical second level of expressiveness. Let
TimeFunctionMLR stand for the monadic theory of the natural numbers extended with a unary function
symbol that maps event numbers to time stamps, and let TA (Timed Automata) be �nite automata with
clock variables. In the following table, the formalisms are annotated with the superscript N to emphasize
the fact that all time stamps are natural numbers:

Languages Temporal logics Monadic theories Finite automata

N-timed

1 counter-free MetricTL
N= ClockTL

N
TimeFunctionMLR

N

1

!-regular

2 N-timed Q-MetricTL
N= Q-ClockTLN= TimeFunctionMLR

N

2 TA
N

!-regular E-MetricTLN= E-ClockTLN

Once again, all these formalisms are fully decidable, and the temporal logics and �nite automata with timing
constraints are elementarily decidable.

If time stamps are real instead of natural numbers, then the situation seems much less satisfactory.
Several positively and fully decidable formalisms have been proposed, but no expressive equivalence results
were known for fully decidable formalisms [AH92]. The previously known results are listed in the following
table, where the omission of superscripts indicates that time stamps are real numbers:

3

Temporal logics Monadic theories Finite automata

Fully decidable

MetricIntervalTL [AFH96]
EventClockTL [RS97]

REventClockTA [AFH94]

Positively decidable

LTL
+ + TA [Wil94] Ld

$ [Wil94] TA [AD94]

Fully undecidable

MetricTL [AH93]

ClockTL [AH94]
TimeFunctionMLR1 [AH93]

TimeFunctionMLR2

On one hand, the class of Timed Automata is unsatisfactory, because over real-numbered time it is only
positively decidable: R-timed automata are not closed under complement, and the corresponding temporal
and monadic logics (and regular expressions [?]) have no negation operator. On the other hand, the classes of
Metric and Clock Temporal Logics (as well as monadic logic with a time function), which include negation,
are unsatisfactory, because over real-numbered time their satis�ability problems are undecidable. Hence
several restrictions of these classes have been studied.

1. The �rst restriction concerns the style of specifying timing constraints using time-bounded temporal
operators. The Metric-Interval Logic MetricIntervalTL (also called MITL [AFH96]) is obtained from
MetricTL by restricting the time bounds on temporal operators to nonsingular intervals. For example,
the MetricIntervalTL formula 2(p ! �[4;6] q) speci�es that every p event is followed by a q event
such that the di�erence between the two time stamps is at least 4 and at most 6. The restriction to
nonsingularity prevents the speci�cation of the exact real-numbered time di�erence 5 between events.

2. The second restriction concerns the style of specifying timing constraints using clock variables. The
Event-Clock Logic EventClockTL (also called SCL [RS97]) and Event-Clock Automata REventClockTA

are obtained from ClockTL and TA, respectively, by restricting the use of clocks to refer to the times
of previous and next occurrences of events only. For example, if yq is a clock that always refers to
the time di�erence between now and the next q event, then the EventClockTL formula 2(p! yq = 5)
speci�es that every p event is followed by a q event such that the di�erence between time stamps of the
p event and the �rst subsequent q event is exactly 5. A clock such as yq , which is permanently linked
to the next q event, does not need to be started explicitly, and is called an event clock. The restriction
to event clocks prevents the speci�cation of time di�erences between a p event and any subsequent
(rather than the �rst subsequent) q event.

Both restrictions lead to pleasing formalisms that are fully (elementarily) decidable and have been shown
su�cient in practical applications. However, nothing was known about the relative expressive powers of
these two independent approaches, and so the question which sets of timed !-languages deserve the labels
\R-timed counter-free !-regular" and \R-timed !-regular" remained open.

In this paper, we show that MetricIntervalTL and EventClockTL are equally expressive, and by adding
the ability to count, as expressive as REventClockTA. This result is quite surprising, because (1) over
real-numbered time, unrestricted MetricTL is known to be strictly less expressive than unrestricted
ClockTL [AH93], and (2) the nonsingularity restriction (which prohibits exact time di�erences but allows the
comparison of unrelated events) is very di�erent in
avor from the event-clock restriction (which allows ex-
act time di�erences but prohibits the comparison of unrelated events). Moreover, the expressive equivalence
of Metric-Interval and Event-Clock logics reveals a robust picture of canonical speci�cation formalisms for
real-numbered time that parallels the untimed case and the case of natural-numbered time. We complete
this picture by characterizing both the counter-free and the counting levels of expressiveness also by fully
decidable monadic theories, called MinMaxML1 and MinMaxML2. These are �rst-order and second-order
monadic theories of the real numbers with integer addition, comparison, and (besides universal and exis-
tential quanti�cation) two �rst-order quanti�ers that determine the �rst time and the last time at which a
formula is true. Our results, which are summarized in the following table, suggest that we have identi�ed
two classes of !-languages with real-numbered time stamps that may justly be called \R-timed counter-free
!-regular" and \R-timed !-regular":

4

Languages Temporal logics Monadic theories Finite automata

Fully decidable

R-timed

1 counter-free MetricIntervalTL = EventClockTL MinMaxML1

!-regular

2 R-timed Q-MetricIntervalTL = Q-EventClockTL = MinMaxML2 REventClockTA

!-regular E-MetricIntervalTL = E-EventClockTL

Finally, we explain the gap between the R-timed !-regular languages and the languages de�nable by pos-
itively decidable formalisms such as timed automata. We show that the richer class of languages is obtained
by closing the R-timed !-regular languages under projection. (It is unfortunate, but well-known [AFH94]
that we cannot nontrivially have both full decidability and closure under projection in the case of real-
numbered time.) The complete picture, then, results from adding the following line to the previous table
(projection, or outermost existential quanti�cation, is indicated by P-):

Positively decidable

3 projection-closed P-EventClockTL P-MinMaxML2 = Ld
$

P-REventClockTA = TA

R-timed !-regular

The rest of this paper is organized as follows. The real-time models that we are considering in this
papers are presented in section 2. Two real-time logics and a classical theories are introduced in section 3.
Their relative expressive power is studied in details: those logics are shown to be expressively equivalent and
they identify the \counter-free regular realt-ime languages". Section 4 contains the de�nition and a study of
the properties of the recursive event clock automata. It is shown that the class of languages recognized by
recursive event-clock automata strictly subsumes the class of \counter-free regular realt-ime languages" and
we call this class the \(full) regular real-time languages". Section 5 studies the relation that exists between
the logical and automata theoretic formalisms. Furthermore, we show how to bridge the gap that exists
between \counter-free regular realt-ime languages" and \(full) regular real-time languages". Finally some
conclusions are drawn in a last section.

2 Real-Time Models

In this paper, we consider real-time behaviors that are modeled by a function � that assign to each point of
the real line a state description. Thus the function � at each t 2 R+ indicates the state �(t) in which the
system is at that time t. We make two assumptions about the function �:

Finite Variability (also called Non Zenoness) The function � has the �nite variability property: during
each �nite interval of time I , the value of � only changes a �nite number of time. This assumption
avoids the so-called zeno paradox: the system does an in�nite number of actions into a �nite amount
of time.

Finite State Systems The number of di�erent discrete states, i.e. the size of the set of possible states
that the system can reach is �nite.

The �nite state assumption allows us to use a �nite set of propositions to describe those states. The
codomain of the function � is then the powerset of P , noted 2P . The �nite variability assumption allows us
to represent the function � using two in�nite sequences: one in�nite sequence of subsets of P to represent
the discrete part of the behavior of the system, and an in�nite sequence of intervals of time indicating for
each state when the system was in that state. We call those pairs of sequences, timed state sequences and
de�ne them formally in the sequel. Later, we use also the notion of �nite variable formula, it simply means
that the truth value of the formula change only a �nite number of times in every bounded interval of time.

De�nition 2.1 (Intervals of Time) An interval (of time) I � R+ is a convex nonempty subset of the
nonnegative reals. And interval I is bounded (above) by b 2 R+ if for all t 2 I , t � b. Due to our de�nition,
every interval is bounded below by 0. By completeness of the real numbers, every bounded interval has a
least upper bound, that we call its right bound. If the interval is unbounded, we conventionally de�ne its least

5

upper bound as 1. Symmetrically, each interval has a greatest lower bound, that we also call its left bound.
In each case, the bound can be either included in I , this is noted by a square bracket, or excluded from I ,
this is noted by a round parenthesis. We have thus the six following possibilities:

1. closed �nite: [l; r] with l; r 2 R+ and l � r. Specially, when l = r, the interval is called singular;

2. left open, right closed: (l; r] with l; r 2 R+ and l < r;

3. left closed, right open: [l; r) with l; r 2 R+ and l < r;

4. open: (l; r) with l; r 2 R+ and l < r;

5. left closed, in�nite: [l;1) with l 2 R+ ;

6. left open, in�nite: (l;1) with l 2 R+ .

Two intervals I and J are adjacent if the right bound of I is equal to the left bound of J , and either
I is right-open and J is left-closed or I is right-closed and J is left-open. Thus two adjacent intervals are
disjoint. 2

Notation 2.2 (Intervals) The left bound of interval I is noted l(I), the right end bound of interval I is
noted r(I). Given t 2 R+ , we freely use notation such as t + I for the interval ft0 j exists t00 2 I with
t0 = t+ t00g, and t > I for the constraint \t > t0 for all t0 2 I ." 2

De�nition 2.3 (Interval Sequence) An interval sequence I = I0; I1; : : : is a �nite or in�nite sequence
of bounded intervals so that for all i � 0, the intervals Ii and Ii+1 are adjacent. We say that the interval
sequence I covers the interval

S
i�0 Ii. If I covers [0;1), then I partitions the nonnegative real line so that

every bounded subset of R+ is contained within a �nite union of elements from the partition. 2

We are now in position to de�ne our notion of continuous models called timed state sequence and noted
TSS.

De�nition 2.4 (Timed State Sequence) The set of states is called �. A timed state sequence � = (�; I)
over � is a pair that consists of an trace � = �0�1 : : : �n : : : over � and an in�nite interval sequence
I = I0I1 : : : In : : : that covers [0;1). 2

Equivalently, the timed state sequence � can be viewed as a function from R+ to �, indicating for each
time t 2 R+ a state �(t).

We now introduce two di�erent type of real-time languages: the anchored and
oating real-time languages.
The notion of anchored languages is the classical one, the notion
oating languages is not classical and is
needed for technical reasons in the sequel of this paper.

De�nition 2.5 (Pointwise Real-Time !-Languages) A pointwise anchored real-time !-language is a
set of timed traces. A pointwise
oating real-time !-language is a set of pairs (�; i) where � is a timed trace
and i � 0 is a position. 2

In the sequel we consider that � = 2P and we need notion related to the addition and suppression of
propositions in the set on which a timed state sequences is de�ned. It is why we introduce the notion the
notion of P 0-extension and P 0-projection of a TSS.

De�nition 2.6 (P 0-Extension of a TSS) Given a TSS � = (�; I) de�ned on the set of propositions P , a

set of propositions P 0, such that P \ P 0 = ;, �0 = (�0; I
0
) is a P 0-extension of � if �0 is de�ned on the set

of propositions P [P 0 and for all position i � 0: (i) �0i \ P = �i, that is, state description �
0
i and �i agree

on the set of propositions P , and (ii) I 0i = Ii, the real-time information attached to the state descriptions is
similar in the two TSS. We note � " P 0 the set of P 0-extension of �.

6

De�nition 2.7 (P 0-Projection of a TSS) Given a TSS � = (�; I) de�ned on the set of propositions P , a
set of propositions P 0 � P , �0 is the P 0-projection of �, if �0 is de�ned on the set of propositions P 0 and for
every positions i � 0: (i) �0i = �i \ P 0 that is �0i and �i agree on the value of propositions in P 0, and (ii)
I 0i = Ii, the real-time information attached to the state descriptions is similar in the two TSS. In the sequel,
we note � # P 0 the P 0-projection of �.

As we consider continuous models, it will turn out, in section 4.4.2, that the notion of limit closure is
useful:

De�nition 2.8 (Limit Closure - Literal) Given a set of propositions P , we de�ne its limit closure, noted
Limit(P), as the following set fp;�!p ; �p j p 2 P [f>gg, �!p is called the future limit of p and �p is called the
past limit of p. In what follows, we call the elements of Limit(P) literals. In what follows, we use L, L1, L2,
..., to denote limit closure sets. 2

Later, we will generalize the use of limit. We will apply the limit not only to propositions but also to
atomic clock constraints.

De�nition 2.9 (Satisfaction Relation) We write (�; t) j= �, where � is a proposition, an literal, an
atomic clock constraint or more generally a formula, read \� is satis�ed at time t of the TSS �". We de�ne
the semantics for propositions p 2 P and for the special symbol > (true):

� (�; t) j= p i� p 2 �(t);

� (�; t) j= > for all time t 2 R+ .

2

The rules for more general formulas will be given later, we now give the semantics for the limit literals:

De�nition 2.10 (Future and Past Limits Semantics) The truth value of the future limit of p 2 P [
f>g along a TSS � is de�ned by the following clause:

(�; t) j= �!p i� for all time t1 > t there exists a time t2, such that t < t2 < t1 and (�; t2) j= p;

The truth value of the past limit of p 2 P [f>g along a TSS � is de�ned by the following clause:

(�; t) j= �p i� for all time t1 < t there exists a time t2 � 0, such that t1 < t2 < t and (�; t2) j= p.

Note that
�!
> is always equivalent to >. In time 0,

 �
> is equivalent to ? and equivalent to > elsewhere. 2

Intuitively, the future (resp. past) limit of p at time t allows us to access the truth value of p just after
(resp. before) time t.

We now de�ne a serie a useful properties of TSS:

De�nition 2.11 (� Fine TSS) Given a set of �nite variable formulas 	, we say that a TSS � =
(�0; I0)(�1; I1) : : : is 	 � Fine i� for all positions i � 0, for all formula 2 	, for any time t1; t2 2 Ii,
we have that (�; t1) j= i� (�; t2) j= , that is, the truth value of the formula does not change inside the
intervals of �. 2

De�nition 2.12 (Alternating-TSS) We say that a TSS � = (s0; I0)(s1; I1) : : : is alternating i�

1. I0 is the singular interval [0; 0];

2. for all even positions i, Ii is a singular interval, and

3. for all odd positions i, Ii is a open interval.

2

7

De�nition 2.13 (Hintikka Property) Given a set of formulas 	, a timed state sequence � has the Hin-
tikka property for 	, i�

1. � is de�ned on a set of propositions that contains the set P of propositions appearing in the formulas
of 	 and the following set of hintikka propositions P	 = fp j 2 	g, that is, a hintikka proposition
for each formula of the set 	,

2. for every time t 2 R+ , (�; t) j= p i� (�; t) j= , that is, a hintikka proposition is true along a Hintikka
sequence at time t if and only if its associated formula is true at time t.

2

When manipulating a Hintikka TSS � = (�; I), we sometimes write � 2 �i instead of p� 2 �i in order to
simplify the notations.

De�nition 2.14 (Equivalent TSS) Two TSS �1, �2 are equivalent i� �1(t) = �2(t) for all time t 2 R+ ,
that is, if the two TSS de�ne the same function from the positive real numbers to state descriptions. 2

So two TSS are equivalent if they only di�er by the way they split the real line is into intervals.

De�nition 2.15 (Re�nement of TSS) A TSS �1 = (�1; I
1
) is a re�nement of a TSS �2 = (�2; I

2
), noted

�1 � �2 i� there exists a surjective function f : N ! N such that:

� for all positions j � 0, �2j = �1
f(j);

� for all positions i � 0, I1i =
S
fI2j j f(j) = ig

In what follows, we also say that �2 is coarser than �1. 2

Note that TSS �1 is a re�nement of the TSS �2 then �1 and �2 are equivalent.

Lemma 2.16 (Re�nability of TSS) For every TSS � and every set of formula 	 with the �nite variability
property, there exists a TSS �0 such that (i) �0 � �, that is, �0 is a re�nement of � and (ii) �0 is 	� Fine.

Note also that:

Lemma 2.17 (Re�nement and Fine-TSS) For every set of formulas 	, every re�nement �0 of a 	�Fine
TSS � is 	� Fine.

And thus this re�nement can be alternating:

Lemma 2.18 For every TSS �, there exists a re�nement �0 of �, i.e. �0 � � that is alternating.

In the sequel we use sets of literals to label locations of automata. We will need the notion of singular
and open set of literals. Intuitively, a singular literal describes an instantaneous, unstable situation and thus
cannot hold during an open interval of time. Here are their de�nitions:

De�nition 2.19 (Singular-Open Set of Literals) A set of literals � � L is said singular i� one of the
two following properties of � is veri�ed

� there exist literals a;�!a 2 L such that a 2 � and �!a 62 �, or, a 62 � and �!a 2 �;

� there exist literals a; �a 2 L such that a 2 � i� �a 62 �, or, a 62 � i� �a 2 �. An set of literals � � L
is said open i� it is not singular.

2

Lemma 2.20 Let I be a non singular interval. If � is singular, then for all �, there exists t 2 I such that
(�; t) 6j= �. 2

8

3 The Counter-Free Regular Real-Time !-Languages

3.1 Introduction

In this section, we introduce two real-time logics and a classical theory for de�ning real-time properties. We
study their expressive power in details and show that they all identify the same class of real-time languages
that we call the counter-free regular real-time languages. Before, we recall the de�nition of two qualitative
time formalisms and review a theorem about their relative expressive power introduced by Kamp.

3.2 Qualitative Formalisms

3.2.1 The Temporal Logic of the Reals: LTR

We review in this section a temporal logic that is evaluated over continuous models. That temporal logic
is called the temporal logic of the reals, noted LTR, and has been proposed by Pnueli et al in [BKP86]. We
recall its syntax and semantics.

De�nition 3.1 (LTR-Syntax) The formulas of LTR are built from propositional symbols, boolean connec-
tives, and the temporal \until" and \since" operators:

� ::= p j �1 ^ �2 j :� j �1U�2 j �1SI�2

where p is a proposition, �, �1 and �2 are well-formed LTR formulas. 2

De�nition 3.2 (LTR-Semantics) The LTR formula � holds at time t 2 R+ of the timed state sequence �,
denoted (�; t) j= �, according to the following de�nition:

(�; t) j= p i� p 2 �(t);
(�; t) j= �1 ^ �2 i� (�; t) j= �1 and (�; t) j= �2;
(�; t) j= :� i� not (�; t) j= �;
(�; t) j= �1U�2 i� exists a real t0 > t with (�; t0) j= �2, and for all reals t00 2 (t; t0), we have

(�; t00) j= �1 _ �2;
(�; t) j= �1S�2 i� exists a real t0 2 [0; t) with (�; t0) j= �2, and for all reals t00 2 (t0; t), we have

(�; t00) j= �1 _ �2.

2

De�nition 3.3 (LTR-Languages) The anchored language de�ned by an LTR formula � is the set of TSS
� 2 TSS(2P�), such that (�; 0) j= �, this set is noted AncLang(�). The
oating language de�ned by an LTR

formula � is the set of pairs (�; t) with � 2 TSS(2P�) and t 2 R+ such that (�; t) j= �, this set is noted
FloatLang(�). 2

3.2.2 The First-Order Monadic Logic over the Reals: MLR1

We now review the de�nition of the �rst-order monadic logic of the reals. We recall its syntax and semantics.

De�nition 3.4 (MLR1-Syntax) The formulas of the �rst- order monadic logic over the reals MLR1 are
generated by the following grammar:

� ::= p(x) j x1 = x2 j x1 < x2 j :� j �1 _ �2 j 9x ��

where x; x1; x2 2 X are position variables (�rst-order variable), p 2 P is an unary predicate and �;�1;�2

are well-formed MLR1 formulas. We say that a formula � of MLR1 is closed if it does not contain any free
position variable. 2

De�nition 3.5 (Valuation) A valuation for the set of �rst-order variables X is a mapping � : X ! R+

assigning a nonnegative real number value to each variable x 2 X . We note �[y 7! t] the mapping that
extend the mapping � for the variable y and maps y on the value t 2 R+ . 2

9

De�nition 3.6 (MLR1-Semantics) The semantics of an MLR1 formula � is evaluated in pair (�; �) where
� is a TSS and � is a valuation for the free variables appearing in � according to the following rules:

(�; �) j= q(x) i� q 2 �(�(x));
(�; �) j= x1 = x2 i� �(x1) = �(x2);
(�; �) j= x1 < x2 i� �(x1) < �(x2);
(�; �) j= :� i� (�; �) 6j= �;
(�; �) j= �1 _ �2 i� (�; �) j= �1 or (�; �) j= �2;
(�; �) j= 9x � � i� there exists a value t 2 R+ such that (�; �[x 7! t]) j= �.

2

De�nition 3.7 (MLR1-language) The anchored language de�ned by a closed MLR1 formula � is the set
of TSS � 2 TSS(2P�), such that � j= �, this set is noted AncLang(�). The
oating language de�ned by an
MLR1 formula �(x), with one free variable x is the set of pairs (�; t) with � 2 TSS(2P�) and t 2 R+ such
that (�; [x 7! t]) j= �, this set is noted FloatLang(�). 2

3.2.3 Expressive Equivalence: LTR = MLR1

Kamp has proved, see [Kam68], that the expressiveness equivalence result between temporal logic and the
�rst-order monadic logic is also valid in the case of continuous interpretations:

Theorem 3.8 (LTR = MLR1) The logics LTR and MLR1 are equally expressive: given an LTR formula �,
there always exists a closed formula � of MLR1 such that AncLang(�) = AncLang(�), and conversely: given an
MLR1 formula �, there always exists a formula � of LTR such that AncLang(�) = AncLang(�). Furthermore,
given an LTR formula �, there always exists a formula �(x) with one free variable x of MLR1 such that
FloatLang(�) = FloatLang(�(x)), and conversely: given an MLR1 formula �(x) with one free variable x,
there always exists a formula � of LTR such that FloatLang(�) = FloatLang(�). 2

3.3 Two Real-Time Temporal Logics

3.3.1 The Metric Interval Temporal Logic: MetricIntervalTL

Here, we recall the de�nition of the logic MetricIntervalTL [AFH91, AFH96]. This logic is a syntactical
restriction of the undecidable real-time logic MetricTL [AH90]. The logic MetricIntervalTL prohibits the
speci�cation of punctuality constraints by allowing only subscripts in real-time operators that are non-
singular intervals. This restriction makes the formalism decidable.

De�nition 3.9 (MetricIntervalTL-Syntax) The formulas of MetricIntervalTL [AFH96] are built from propo-
sitional symbols, boolean connectives, and time-bounded \until" and \since" operators:

� ::= p j �1 ^ �2 j :� j �1 bUI �2 j �1 bSI �2
where p is a proposition and I is a nonsingular interval whose �nite endpoints are nonnegative integers. 2

Note that we use hats in the syntax of the temporal operators above in order to deferentiate them from the
operator of LTR that have a slightly di�erent semantics in the qualitative case. We also de�ne an interesting
subset of MetricIntervalTL, called MetricIntervalTL0;1:

De�nition 3.10 (MetricIntervalTL0;1-Syntax) The formulas of the fragment MetricIntervalTL0;1 are de-
�ned as forMetricIntervalTL, except that the interval I must either have the left endpoint 0, or be unbounded;
in these cases I can be replaced by an expression of the form � c, for a nonnegative integer constant c and
�2 f<;�;�; >g. 2

De�nition 3.11 (MetricIntervalTL Continuous Semantics) TheMetricIntervalTL formula � holds at time
t 2 R+ of the timed state sequence �, denoted (�; t) j= �, according to the following de�nition

10

(�; t) j= p i� p 2 �(t)
(�; t) j= �1 ^ �2 i� (�; t) j= �1 and (�; t) j= �2
(�; t) j= :� i� not (�; t) j= �

(�; t) j= �1 bUI �2 i� exists a real t0 2 (t+ I) with (�; t0) j= �2, and for all reals t00 2 (t; t0), we have
(�; t00) j= �1

(�; t) j= �1 bSI �2 i� exists a real t0 2 (t� I) with (�; t0) j= �2, and for all reals t00 2 (t0; t), we have
(�; t00) j= �1

2

We now introduce some useful abbreviations:

De�nition 3.12 (MetricIntervalTL-Abbreviations) For the future:

� b�I� = > bUI�, \eventually in the future within interval I";

� b2I = :b�I:�, \always in the future within interval I".

Symetrically, for the past:

� b��I� = > bSI�, \eventually in the past within interval I";

� b�I = :b��I:�, \always in the past within interval I".

De�nition 3.13 (MetricIntervalTLContinuous Languages) The MetricIntervalTL formula � de�nes the
anchored language that contains all timed state sequences � with (�; 0) j= �. As usual, we note this language
AncLang(�). The MetricIntervalTL formula � de�nes the
oating language that contains all pairs (�; t) with
(�; t) j= �. As usual, we note this language FloatLang(�). 2

Example 3.14 The MetricIntervalTL formula b2(0;1)(p ! b�[1;2] q) asserts when evaluated in time t, that
every p-state, in the interval t+ (0; 1), is followed by a q-state at a time di�erence of at least 1 and at most
2 time units. 2

The complexity of the satis�ability and validity problems for MetricIntervalTL and its fragments
MetricIntervalTL0;1 are given in the next theorem.

Theorem 3.15 [AFH96] The satis�ability and validity problems for MetricIntervalTL are ExpSpace-

Complete. The satis�ability and validity problems for MetricIntervalTL0;1 are PSpace-Complete. 2

Interestingly, the complexity of the satis�ability and validity problems for MetricIntervalTL0;1 are easier
that for the full logic.

3.3.2 The Logic of Event Clocks: EventClockTL

The formulas of EventClockTL are built from propositional symbols, boolean connectives, the temporal
\until" and \since" operators, and two real-time operators: at any time t, the history operator �I � asserts
that � was true last time in the interval t � I , and the prophecy operator �I � asserts that � will be true
next time in the interval t+ I .

De�nition 3.16 (Continuous-EventClockTL-Syntax) The formulas of (continuous) EventClockTL for
timed state sequences are generated by the following grammar:

� ::= p j �1 _ �2 j :� j �1U�2 j �1S�2 j �I � j �I �

where p is a proposition and I is an interval whose �nite endpoints are nonnegative integers. 2

We can now de�ne how to evaluate the truth value of an EventClockTL formula along timed state se-
quences.

11

De�nition 3.17 (Continuous-EventClockTL-Semantics) Let � be an (continuous) EventClockTL formula
and let � be a timed state sequence whose propositional symbols contain all propositions that occur in �.
The formula � holds at time t 2 R+ of � , denoted (�; t) j= �, according to the following de�nition:

(�; t) j= p i� p 2 �(t)
(�; t) j= �1 _ �2 i� (�; t) j= �1 or (�; t) j= �2
(�; t) j= :� i� not (�; t) j= �

(�; t) j= �1U�2 i� exists a real t0 > t with (�; t0) j= �2, and for all reals t00 2 (t; t0), we have
(�; t00) j= �1 _ �2

(�; t) j= �1S�2 i� exists a real t0 < t with (�; t0) j= �2, and for all reals t00 2 (t0; t), we have
(�; t00) j= �1 _ �2

(�; t) j= �I � i� exists a real t0 < t with t0 2 (t � I) and (�; t0) j= �, and for all reals t00 < t with
t00 > (t� I), not (�; t00) j= �

(�; t) j= �I � i� exists a real t0 > t with t0 2 (t + I) and (�; t0) j= �, and for all reals t00 > t with
t00 < (t+ I), not (�; t00) j= �

2

Note that the temporal and real-time operators are de�ned in a strict manner; that is, they do not
constrain the current state. Non strict operators are easily de�ned from their strict counterparts.

Example 3.18 2(p ! ��5q): a p position is always followed by a q position within 5 time units. Such a
formula speci�es a maximal distance between a request p and its response q. Such a property is called a
bounded time response. Here, it assumes that only one request can be outstanding. p ^ 2(p ! �=1p): this
formula asserts that p is true every integer time unit. Such a formula allows the speci�er to de�ne periodicity
of events. Here p can model the tick of an ideal clock, that ticks every time unit. 2((�=3q) ! p). This
formula asserts that if the last q position is exactly distant of 3 time units then p must be true now. It is a
typical time-out requirement.
2

We now give a de�nition of the real-time languages that a EventClockTL formula is de�ning.

De�nition 3.19 (Continuous-EventClockTL-Languages) The (continuous) EventClockTL formula � de-
�nes the anchored language AncLang(�) = f� j (�; 0) j= �g, that is the set of timed state sequences that
satisfy � at their initial position. The (continuous) EventClockTL formula � de�nes the
oating language
FloatLang(�) = f(�; t) j (�; t) j= �g, that is the set of pairs (timed state sequence, time) where � is veri�ed.
2

3.4 A First-Order Classical Theory: MinMaxML1

In the sequel, we use p, q, and r for (�nite variable) monadic predicates over the nonnegative reals, and t,
t1, and t2 for �rst-order variables over R+ .

De�nition 3.20 (MinMaxML1-Syntax) The formulas of the First-Order Real-Time Sequential Calculus ,
noted MinMaxML1, are generated by the following grammar:

� ::= p(t) j t1 � t2 j
(Min t1)(t1 > t2 ^	(t1)) � (t2 + c) j
(Max t1)(t1 < t2 ^	(t1)) � (t2 � c) j
�1 ^ �2 j :� j (9t)�

where 	(t1) is a MinMaxML1 formula that contains no free occurrences of �rst-order variables other than t1,
where c is a nonnegative integer constant, and �2 f<;�;=;�; >g. 2

12

The truth value of a MinMaxML1 formula � is evaluated over a pair (�; �) that consists of a timed state
sequence � whose propositional symbols contain all monadic predicates of �, and a valuation � that maps
each free �rst-order variable of � to a nonnegative real. By �[t7!v] we denote the valuation that agrees with �
on all variables except t, which is mapped to the value v. We �rst de�ne for each MinMaxML1 term & a value
Val�;�(&), which is either a nonstandard real or unde�ned. Intuitively, the term (Min t1)(t1 > t2 ^ 	(t1))
denotes the smallest value greater than t2 that satis�es the formula 	. If there is no value greater than t2
that satis�es 	, then the term (Min t1)(t1 > t2 ^ 	(t1)) denotes the unde�ned value ?. If 	 is satis�ed
throughout a left-open interval with left endpoint v > t2, then the term (Min t1)(t1 > t2 ^ 	(t1)) denotes
the nonstandard real number v+. Similarly, the term (Max t1)(t1 < t2 ^ 	(t1)) denotes the greatest value
smaller than t2 that satis�es 	.

1 Formally:

De�nition 3.21 (MinMaxML1-Term Values) The value of a term & in the TSS � and valuation �, denoted
Val�;�(&), is de�ned by the following rules:

Val�;�(t) = �(t)
Val�;�(t+ c) = �(t) + c

Val�;�(t� c) =

�
�(t)� c if �(t) � c
? otherwise

Val�;�((Min t1)(t1 > t2 ^	(t1)) =8>>>><
>>>>:

v if (�; �[t1 7!v]) j= (t1 > t2 ^	(t1));
and for all v0 < v, not (�; �[t1 7!v0]) j= (t1 > t2 ^	(t1))

v+ if for all v0 > v, exists v00 < v0 with (�; �[t1 7!v00]) j= (t1 > t2 ^	(t1));
and for all v0 � v, not (�; �[t1 7!v0]) j= (t1 > t2 ^	(t1))

? if for all v � 0, not (�; �[t1 7!v]) j= (t1 > t2 ^	(t1))
Val�;�((Max t1)(t1 < t2 ^	(t1)) =8>>>><

>>>>:

v if (�; �[t1 7!v]) j= (t1 < t2 ^	(t1));
and for all v0 > v, not (�; �[t1 7!v0]) j= (t1 < t2 ^	(t1))

v� if for all v0 < v, exists v00 > v0 with (�; �[t1 7!v00]) j= (t1 < t2 ^	(t1));
and for all v0 � v, not (�; �[t1 7!v0]) j= (t1 < t2 ^	(t1))

? if for all v � 0, not (�; �[t1 7!v]) j= (t1 < t2 ^	(t1))

2

Now we can de�ne the satisfaction relation for MinMaxML1 formulas:

De�nition 3.22 (MinMaxML1-semantics) The following rules de�ne when a formula is satis�ed by a TSS
� and a valuation �:

(�; �) j= p(t) i� p 2 �(�(t))
(�; �) j= t1 � t2 i� Val�;�(t1) � Val�;�(t2), with �2 f<;�;=;�; >g
(�; �) j= �1 _ �2 i� (�; �) j= �1 or (�; �) j= �2

(�; �) j= :� i� not (�; �) j= �
(�; �) j= (9t)� i� exists v � 0 with (�; �[t7!v])�

2

A MinMaxML1 formula is closed i� it contains no free occurrences of �rst-order variables. Every closed
MinMaxML1 formula de�nes an anchored real-time language:

De�nition 3.23 (MinMaxML1-Anchored Language) Every closed MinMaxML1 formula � de�nes an an-
chored real-time !-language, namely, the set of real-time state sequences � such that (�; ;) j= �.

And every MinMaxML1 formula with one free variable de�nes a
oating real-time language:

1Note that although the terms take their value in non standard real numbers plus unde�ned, quanti�ers only range over the
real numbers.

13

De�nition 3.24 (MinMaxML1-Floating Language) Every MinMaxML1 formula � with one free �rst-
order variable t1 de�nes a
oating real-time !-language, namely, the set of pairs (�; t) such that (�; [t1 7!
t]) j= �.

Example 3.25 (MinMaxML1 formula)

(8t1)(p(t1)! (9t2)(t2 > t1 ^ q(t2) ^ (Min t3)(t3 > t2 ^ r(t3)) = t2 + 5))

asserts that every p-state is followed by a q-state that is followed by an r-state after, but no sooner than, 5
time units.

We will show in the next section that the formalism that we have de�ned in this section is decidable.

3.5 Expressiveness Results

Remember that in section 3.2.3, we have recalled a result proved by Kamp that states the expressive equiva-
lence between the temporal logic of the reals, LTR, and the �rst-order monadic logic over the reals, MLR1, see
theorem 3.8. We will use this result in the sequel to establish the same theorem about the relative expressive
power of MinMaxML1 and EventClockTL.

3.5.1 EventClockTL = MinMaxML1

We �rst prove that EventClockTL is at least as expressive as MinMaxML1. To prove that result, we use
theorem 3.8 and reason on the level of MinMaxML1 formulas. The level of a MinMaxML1 formula is de�ned
as follows:

De�nition 3.26 (level of MinMaxML1 Formulas) The level of a MinMaxML1 formula �, noted level(�), is
de�ned as follows:

� level(q(t)) = 0, where q is a monadic predicate;

� level(t1 � t2) = 0, where t1; t2 are �rst order variables;

� level(�1 _ �2) = Maximum(level(�1); level(�2));

� level(:�) = level(�);

� level(9t � �(t)) = level(�(t));

� level(Maxt2 � t2 < t1 ^�(t2) � t1 � c) = 1 + level(�(t2));

� level(Mint2 � t2 > t1 ^ �(t2) � t1 + c) = 1 + level(�(t2));

So the level of a MinMaxML1 formula is the number of imbrications of Min�Max quanti�ers in the formula.
2

We now prove the following lemma:

Lemma 3.27 (MinMaxML1 � EventClockTL) For every formula �(t1) of MinMaxML1 with one free variable
t1, there exists a congruent formula �T of EventClockTL, that is for every TSS � and every time t 2 R+ :
(�; [t1 7! t]) j= 	(t1) i� (�; t) j= 	T .

Proof. We reason by induction on the level of formula.

� Base case. Let �(t1) be such that level(�(t1)) = 0. In that case, the formula �(t1) does not contains
any Min�Max quanti�er and thus �(t1) is a ML1 formula. By theorem 3.8, there exists an congruent
LTR formula �T . As LTR is a subset of EventClockTL, �T is an EventClockTL formula.

14

� Induction case. Let �(t1) be such that level(�(t1)) = i. By induction hypothesis, we are able to
construct for every levelj , with j < i, formula 	 of MinMaxML1, a congruent EventClockTL formula
	T . We now show that we can also do it for leveli formulas. By de�nition of the level of a MinMaxML1
formula, we know that for every subformula of the form:

{ Maxt2 � [t2 < t1 ^	(t2)] � t1 � c

{ Mint2 � [t2 > t1 ^	(t2)] � t1 + c

	(t2) is at most of leveli�1 and by induction hypothesis, can be expressed in EventClockTL by a
congruent formula 	T . Also, by de�nition of the semantics of Min�Max and ��c;��c, we have the
following:

C.1 (�; t) j= ��c	T i� (�; [t1 7! t]) j= Mint2 � t2 > t1 ^	(t2) � t1 + c

C.2 (�; t) j= ��c	T i� (�; [t1 7! t]) j= Maxt2 � t2 < t1 ^	(t2) � t1 � c

It remains us to show that the entire formula MinMaxML1 formula �(t) can be expressed in
EventClockTL. We do this by �rst transforming �(t) as follows: every formula of the form Mint2 � t2 >
t1 ^ 	(t2) � t1 + c, Maxt2 � t2 < t1 ^ 	(t2) � t1 � c is replaced by a fresh monadic predicate p	, we

note this formula g�(t) and P	 the set of fresh monadic predicates that we have used to obtain g�(t).
We know that g�(t) is a ML1 formula over the monadic predicates of P [P	. By theorem 3.8, we can

compute a congruent formula e�T of LTR. To obtain the desired EventClockTL formula, it remains us
to replace every fresh propositions of p	 in e�T by 	T (as given by the clauses C1 and C2 above) to
obtain the desired formula �T .

2

We now show that the reverse also holds.

Lemma 3.28 (EventClockTL � MinMaxML1) For every formula � of EventClockTL, there exists a congruent
formula �T with one free variable t1 of MinMaxML1, that is for every TSS � and every time t 2 R+ :
(�; [t1 7! t]) j= �T (t1) i� (�; t) j= �.

Proof. We do a classical reasoning on the structure of formulas.

� Base case. � is the proposition p. Then �T is simply p(t1).

� Induction case. By induction hypothesis, we can construct for each subformula �1, �2 of EventClockTL,
the congruent formulas �T1 and �T2 of MinMaxML1. We show that for each construct of EventClockTL
that are applied to �1 and �2, we are able to construct the desired formula of MinMaxML1:

{ for � = :�1, we take �T = :�T1 (t1);

{ for � = �1 _ �2, we take �T = �T1 (t1) _ �
T
2 (t1);

{ for � = �1U�2, we take 9t2 > t1 � (�
T
2 (t2) ^ 8t3 � t1 < t3 < t2 � �

T
1 (t3) _ �

T
2 (t3))

{ for � = �1S�2, we take 9t2 � 0 � t2 < t1 � (�T2 (t2) ^ 8t3 � t2 < t3 < t1 � �T1 (t3) _ �
T
2 (t3))

{ for � = ��c�1, we take Mint2 [t1 < t2 ^ �T1 (t2)] � t1 + c;

{ for � = ��c�1, we take Maxt2 [t2 < t1 ^ �T1 (t2)] � t1 � c.

2

15

The two previous lemma allow us to derive the following theorem that states the equivalent expressive
power of the logics EventClockTL and MinMaxML1:

Theorem 3.29 The
oating and anchored real-time !-regular languages de�nable by the logic EventClockTL
and MinMaxML1 are identical.

The lemma 3.27 allows us to derive the following decidability results for MinMaxML1:

Theorem 3.30 (MinMaxML1-Decidability) The satis�ability and validity problems of the logic
MinMaxML1 are decidable and in NonElem.

3.5.2 EventClockTL = MetricIntervalTL

We now turn to the relation that exists between the logic EventClockTL and the logic MetricIntervalTL.
We �rst de�ne the fragment EventClockTL0;1 of EventClockTL. We will use it in the following proofs.

De�nition 3.31 (EventClockTL0;1) The formulas of the fragment EventClockTL0;1 of EventClockTL are
the formulas that only use real-time operators �I , �I where: either l(I) = 0 or r(I) =1. 2

The semantics of EventClockTL0;1 formulas is as for full EventClockTL. The following lemma expresses
that EventClockTL0;1 is expressively complete:

Lemma 3.32 (EventClockTL = EventClockTL0;1) For every formula of � 2 EventClockTL we can construct
a congruent formula �T of the fragment EventClockTL0;1, that is for every TSS �, for every time t 2 R+ ,
(�; t) j= � i� (�; t) j= �T .

Proof. We reason by induction on the structure of formulas:

� Base case. Let � = p. Then � 2 EventClockTL0;1.

� Induction case. The boolean cases and temporal cases are trivial. Let us consider the formula �I ,
with l(I) 6= 0 and r(I) 6= 1. By induction hypothesis, we have T 2 EventClockTL0;1. We note I1
the interval ft > 0 j 9t0 2 I and t � t0g, and I2 the interval ft > 0 j 8t0 2 I , t < t0g. By de�nition of
�, we know that those two intervals are non-empty, as l(I) > 0 and r(I) < 1 and their bounds are
integer numbers, and further that l(I1) = l(I2) = 0. It is easy to see that the formula �I1

T ^�I2
T is

congruent to � and in EventClockTL0;1. The case for the operator � is similar and left to the reader.

2

We now prove that the fragment MetricIntervalTL0;1 is at least as expressive as the logic EventClockTL.

Lemma 3.33 (EventClockTL � MetricIntervalTL0;1) For every formula � of EventClockTL, there exists a
congruent formula �T of MetricIntervalTL0;1, that is for every TSS � and every time t 2 R+ : (�; t) j= �T

i� (�; t) j= �.

Proof. By lemma 3.32, we know that EventClockTL0;1 is equally expressive to EventClockTL. Thus it is
su�cient to show that EventClockTL0;1 � MetricIntervalTL0;1. We reason by induction on the structure of
formulas. In the sequel, � belongs to EventClockTL0;1 and �T denotes the congruent MetricIntervalTL0;1
formula.

� Base case. The formula � is the proposition p then �T = p;

� Induction cases: by induction hypothesis, �1 and �2 are translated by �
T
1 and �T2 . Here are the di�erent

cases:

16

{ for � = �1 _ �2, we take �T = �T1 _ �
T
2 ;

{ for � = :�1, we take �T = :�T1 ;

{ for � = �1U�2, we take �T = (�T1 _ �
T
2)
bU(0;1)�

T
2 ;

{ for � = �1S�2, we take �T = (�T1 _ �
T
2) bS(0;1)�

T
2 ;

{ � = �J�1 with l(J) = 0. Note that the operator� is irre
exive so we can make the hypothesis that
0 62 J . We distinguish the case where the �rst �1-interval in the future is left closed from the case
where it is left open. The two situations can be distinguished by the following MetricIntervalTL0;1

formula: :�T1 bU(0;1)�
T
1 .

� In the case that the former formula is veri�ed then the following �1-interval is left closed and
we can check that �J�1 is veri�ed by checking the following MetricIntervalTL0;1 formula:

:�T1 bUJ�T1 .
� In the second case, the �rst �1-interval is left open and then we check that �T1 _

:�T1 bU(0;l(J)) �T1 where �T1 denotes ? bU(0;1)�
T
1 and means that �T1 is true just after the

present time. Let us note that l(J) is excluded as we check the event �T1 and not the event
�T1 .

This gives the following translation rule:

�J�1 = ^ >bU(0;1)�
T
1

^ :�T1 bU(0;1)�
T
1 ! :�

T
1
bUJ�T1

^ :(:�T1 bU(0;1)�
T
1)! �T1 _ :�

T
1
bU(0;r(J)) �T1

{ � = �J�1 with l(J) 6= 0. And thus r(J) =1 as � 2 EventClockTL0;1. Here also, we distinguish
the case where the �rst �1-interval in the future is left closed from the case where it is left open.
We obtain the following translation rule:

�J�1 = ^ > bU(0;1)�
T
1

^ :�T1 bU(0;1)�
T
1 ! :�

T
1
bUJ�T1

^ :(:�T1 bU(0;1)�
T
1)! :�

T
1
bU[l(J);1)(:�

T
1 ^ �T1)

{ � = �J�1 with l(j) = 0. By a similar reasoning we obtain:

�J�1 = ^ > bS(0;1)�
T
1

^ :�T1 bS(0;1)�
T
1 ! :�

T
1
bSJ�T1

^ :(:�T1 bS(0;1)�
T
1)! ��T1 _ :�

T
1
bS(0;r(J)) � �T1

{ � = �J�1 with l(j) 6= 0. And thus r(J) =1 as � 2 EventClockTL0;1.

By a similar reasoning we obtain:

�J�1 = ^ > bS(0;1)�
T
1

^ :�T1 bS(0;1)�
T
1 ! :�

T
1
bSJ�T1

^ :(:�T1 bS(0;1)�
T
1)! :�

T
1
bS[l(J);1)(:�

T
1 ^��

T
1)

2

We now prove that the reverse property also holds:

Lemma 3.34 (MetricIntervalTL0;1 � EventClockTL) For every formula � of MetricIntervalTL0;1, there ex-
ists a congruent formula �T of EventClockTL, that is for every TSS � and every time t 2 R+ : (�; t) j= �T (t)
i� (�; t) j= �.

Proof. We reason by induction on the structure of formulas. The interesting formulas are the bUI and bSI
ones. In the sequel of the proof, we use the following usual abbreviations:

� b�I� = > bUI� ;

17

� b2I = :b�I:�.
With the abbreviations given in de�nition 3.12, we can rewrite any bUI -formulas as:
� if l(I) = 0 then �1 bUI�2 = �1 bU(0;1)�2 ^ b�I�2 ;
� if I = (c;1) then �1 bU(c;1)�2 = b2(0;c](�1 ^ �1 bU(0;1)�2);

� if I = [c;1) then �1 bU[c;1)�2 = ^ b2(0;c)�1

^ b2(0;c]((�1 bU(0;1)�2) _ �2)

;

Let us also note that :

� b�(c;1)� = b2(0;c]
b�(0;1)� ;

� b�[c;1)� = b2(0;c](� _ b�(0;1)�) ;

So the only formula that we have to be able to treat are �1 bU(0;1)�2, b�J�1 and b2J�1 with l(J) = 0, and
these are translated into EventClockTL as follows:

� �1 bU(0;1)�2 = �T1 U(�
T
2 ^��

T
1), where ��

T
1 is the abbreviation for ?S�T1 , see de�nition ??;

� b�J�1 = �J�T1 ;

� b2J�1 = :�J :�T1 .
The past temporal and real-time operators are treated symmetrically. This concludes our proof for
MetricIntervalTL0;1 � EventClockTL. 2

A direct consequence of the two previous lemmas is the following theorem:

Theorem 3.35 (EventClockTL = EventClockTL0;1 = MetricIntervalTL0;1) The logics EventClockTL,
EventClockTL0;1 and MetricIntervalTL0;1 are equally expressive.

We now turn to the comparison of the expressive power of EventClockTL with regard to the expressive
power of (full) MetricIntervalTL. A corollary of lemma 3.33 is that MetricIntervalTL is at least as expressive
as EventClockTL. It could be thought that MetricIntervalTL has a strictly more expressive power than
EventClockTL, but the following lemma and its proof, surprisingly, establishes that every MetricIntervalTL-
formula is expressible in EventClockTL:

Lemma 3.36 (MetricIntervalTL � EventClockTL) For every formula � of MetricIntervalTL, there exists a
congruent formula �T of EventClockTL, that is for every TSS � and every time t 2 R+ : (�; t) j= �T i�
(�; t) j= �.

Proof. As we have proved in lemma 3.34 that MetricIntervalTL0;1 � EventClockTL, we are allowed to show
that MetricIntervalTL � (EventClockTL [MetricIntervalTL0;1) and we have only to consider formulas that
are not in MetricIntervalTL0;1. The interesting formulas of this fragment are of the form:

1. �1 bUI�2;
2. �1 bSI�2.

with l(I) 6= 0, r(I) 6= 1 and I non-singular. In the following, we only consider the future formulas, past
formulas are treated symmetrically. We �rst make a rewriting of those formulas to facilitate the rest of the
proof:

� �1 bUI�2 with l(I) 62 I can be rewritten as the following conjunction:

18

1.^ b2(0;l(I)](�1 ^ �1 bU(0;1)�2)

2.^ b�I�2
� �1 bUI�2 with l(I) 2 I can be rewritten as the following conjunction:

1.^ b2I\(0;l(I))�1
2.^ b2(0;l(I)]((�1 bU(0;1)�2) _ �2)

3.^ b�I�2
And as each b2I� formula can be rewritten as :b�I:� formula, we have only to consider b�I� formulas.

Let us now show that every formula b�I� can be expressed in EventClockTL [MetricIntervalTL0;1. We
�rst rewrite those formulas as a disjunction of formulas where l(I) = a and r(I) = a + 1. In fact, we have
the following equivalence:

b�(a;b]� =
Wi=b�1
i=a

b�(i;i+1]�

This equivalence can be extended for all sorts of non-singular intervals (open-closed). We show in the sequel

that each formula of the form b�I�, with l(I) = c and r(I) = c+ 1, can be expressed by an EventClockTL [
MetricIntervalTL0;1 formula and thus, by lemma 3.34 by an EventClockTL formula. The proof is by induction
on the size of the constant c that appear in the constraining interval.

� Base case. When c = 0, the formula is inMetricIntervalTL0;1 and thus the base case is trivially veri�ed.

� Induction case. We now treat the case for an arbitrary c 2 N. By induction hypothesis every formula
of the form b�I�, with l(I) � c � 1 and r(I) � c can be translated into EventClockTL. We treat the

case b�(c;c+1)� in details, the other cases, i.e. [c; c+ 1]; [c; c+ 1); (c; c+ 1] are treated in the same way.
Here is the translation:

b�(c;c+1)� = a._ b�[c�1;c) �=1 �

b._ b�(c�1;c) �=1 �

c._ b2(c�1;c]
b�(0;1)�

We �rst prove that the implication from left to right is valid. There are two mutually exclusive
situations to discriminate:

(1) In the �rst case, either the distance between the last �-interval in t + (c � 1; c] and the �rst
�-interval in t + (c; c + 1) is greater or equal to 1 or there is no �-interval in t + [c � 1; c). We
further distinguish two subcases:

(1a) the �rst �1 interval is left closed;

(1b) the �rst �1 interval is left open;

(2) In the second case, the distance between the last �-interval in t+(c� 1; c] and the �rst �-interval
in t+ (c; c+ 1) is strictly less then 1.

In case 1: by the hypothesis that the distance between the �rst �-interval in t+(c; c+1), noted F�, and
the last �-interval in t+(c�1; c], noted L� is greater than 1, we infer that there exists t1 2 t+(c�1; c]
such that (�; t1) j= �=1� if the interval I� is left-closed (1a) and that (�; t1) j= �=1 � if I� is left

open (1b). Using the induction hypothesis, we express this property with the b�(c�1;c) operator in the

�rst case and with the b�[c�1;c) operator in the second case.

In case 2: the distance between the last �-interval in t + (c � 1; c] noted L� and the �rst �-interval

in t + (c; c + 1), noted F� is strictly less than one. For all time t 2 (c � 1; r(L�)), b�(0;1)� is veri�ed

19

thanks to �-positions in L� and for all time t 2 [r(L�); c], b�(0;1)� is veri�ed thanks to �-positions in
F� (as the distance is less than 1).

The other direction is immediate. We must show that the three parts of the disjunction implies the
MetricIntervalTL formula b�(c;c+1)�:

1. b�[c�1;c) �=1 �. Clearly this formula asserts that there is a time t1 2 t+ [c; c+1) such that at a
distance of 1 time unit � is veri�ed, let us note this position t2 = t1 + c. So there is a left-open
�-interval at a distance of 1 + [c � 1; c) from t and thus as this �-interval is left-open, we have

that b�(c;c+1)� is veri�ed in time t.

2. b�(c�1;c)�=1 �. By the same reasoning but for a left-closed interval, we establish that b�(c;c+1)� is
veri�ed in time t;

3. b2(c�1;c]
b�(0;1)�. This formula directly implies that b�(0;1)� is veri�ed in time t + c. So there is a

time t1 2 t + c+ (0; 1) where � is veri�ed as t1 2 t + (c; c + 1) we have that b�(c;c+1)� is veri�ed
at time t.

The equivalence between the two formula is proved. As the formula b2(c�1;c]� is equivalent to the

formula :b�(c�1;c]:� and that the constant appearing in the left-end bound of the constraining interval is
strictly less than c, by induction hypothesis, the formula :b�(c�1;c]:� can be expressed in EventClockTL.

2

The last lemma together with the lemma 3.33 gives:

Theorem 3.37 (EventClockTL = MetricIntervalTL) The logics EventClockTL and MetricIntervalTL are
equally expressive.

Corollary 3.38 (All Equally Expressive) The logics EventClockTL, EventClockTL0;1,
MetricIntervalTL0;1, MetricIntervalTL and MinMaxML1 are equally expressive.

That is, all the logics de�ne the same class of real-time !-languages. We call this class the counter-free
!-regular real-time languages.

De�nition 3.39 (Class of !-Regular Real-Time Languages) The sets of timed state sequences de�n-
able by the logics EventClockTL, EventClockTL0;1, MetricIntervalTL0;1, MetricIntervalTL and MinMaxML1
form the class of counter-free !-regular real-time languages.

3.5.3 Minimal Expressively Complete Fragments

In this section, we identify minimal fragments that are fully expressive. We show that in each of the previously
de�ned logics, we can restrict the use of constants to be only 0 or 1.

De�nition 3.40 (MetricIntervalTL0;1-Fragment) MetricIntervalTL0;1 is the fragment of MetricIntervalTL

that consists of all formulas � such that for each interval I appearing in �, we have l(I) = 0 and r(I) = 1. 2

Similarly,

De�nition 3.41 (EventClockTL0;1-Fragment) EventClockTL0;1 is the fragment of EventClockTL that con-
sists of all formulas � such that for each interval I appearing in �, we have l(I) = 0 and r(I) = 1. 2

We have the following lemma:

Lemma 3.42 (MetricIntervalTL0;1 � MetricIntervalTL0;1) For every formula � of MetricIntervalTL0;1,
there exists a congruent formula �T of MetricIntervalTL0;1, that is for every TSS � and every time t 2 R+ :
(�; t) j= �T i� (�; t) j= �.

20

Proof. In the proof of lemma 3.34, we have shown that every MetricIntervalTL0;1 formula can be rewritten

using only the following real-time formulas: �1 bU(0;1)�2 and b�J�1 with l(J) = 0. So all we need to consider
is formulas of the form �<c�1, ��c�1. We treat the case �<c�1, the other cases are treated similarly and
left to the reader. We reason by induction on the size of the constant c and make the hypothesis that we
can e�ectively construct the formula �T1 .

� Base case: c = 1. Then �<1�
T
1 is already in MetricIntervalTL0;1.

� Induction case: c > 1 and by induction hypothesis we can handle formulas �<d�
T
1 , with 0 � d < c.

For �<c�1, we take: �<1(�c�1�1)
T , which by induction hypothesis, is in MetricIntervalTL0;1.

2

As a consequence of this lemma and corollary 3.38, we have the following corollary:

Corollary 3.43 The logics MetricIntervalTL and MetricIntervalTL0;1 are equally expressive.

Lemma 3.44 (EventClockTL � EventClockTL0;1) For every formula � of EventClockTL, there exists a con-
gruent formula �T of EventClockTL0;1, that is for every TSS � and every time t 2 R+ : (�; t) j= �T i�
(�; t) j= �.

Proof. In lemma 3.32, we have shown that EventClockTL � EventClockTL0;1. Thus, we must show that
��c�1 with �2 f<;�;�; >g can be translated into EventClockTL0;1. We treat ��c�1 and ��c�1, the other
cases are similar and left to the reader.

� � = ��c�1. We reason by induction on the size of c.

{ c = 1. In that case ��1�1 is an EventClockTL0;1 formula.

{ c > 1. By induction hypothesis, we can treat every formula of EventClockTL0;1 with a constant
d < c. Then we take ��c�1 = ��1(��c�1�1)

T .

� � = ��c�1. Note that we can rewrite this formula as follows: :(�<c�1) ^ ��1. By the previous case,
we know that we can transform �<c�1 into an EventClockTL0;1 formula.

2

A direct consequent of the previous lemma and corollary 3.38, we have the following corollary:

Corollary 3.45 The logics MetricIntervalTL, MetricIntervalTL0;1, MetricIntervalTL0;1, EventClockTL,
EventClockTL0;1 and MinMaxML1 are equally expressive.

4 The Regular Real-Time !-Languages

4.1 Introduction

In this section, we will study automata that are closely related to the logic of event clocks. This class of
automata, called the recursive event-clock automata is study in details: we study its closure properties,
decidability results as well as expressiveness results. It will turn out that the class of language accepted by
the recursive event-clock automata is exactly the languages accepted by the logics of the previous section
when ability to count is added. For this reason, we call the languages accepted by the recursive event-
clock automata the \(full) regular real-time languages". This class of languages is closed under all boolean
operations.

21

4.2 Propositional Event-Clock Automata

An event-clock automaton is a special case of a timed automaton [AD94], where the starting of clocks is
determined by the input instead of by the transition relation. We �rst recall the original de�nition with
event clocks associated to proposition [AFH94].

The value of propositional event clocks in the continuous semantics will be non standard reals, which are
de�ned as follows:

De�nition 4.1 (Non-Standard Reals) The set of non-standard (positive) reals, noted R+
ns
, is the set

fv; v+ j v 2 R+g, ordered by <ns as follows: v1 <ns v
+
2 i� v1 � v2 where � is the usual order on real-

numbers. 2

We are now equipped to de�ne the value of propositional event clocks along timed state sequences.

De�nition 4.2 (Value of Event Clocks-Continuous Semantics) The value of an propositional event
clock z 2 C along a TSS �, at time t, noted Val�(z; t) is de�ned by the following clauses:

Val�(xp; t) =

8>>>><
>>>>:

v if p 2 �(t� v); v > 0;
and for all v0, 0 < v0 < v, not p 2 �(t� v0)

v+ if for all v0 > v, exists v00, v < v00 < v0 with p 2 �(t� v00);
and for all v0, 0 < v0 � v, not p 2 �(t� v0)

? if for all v, 0 < v � t, not p 2 �(t� v)

Val�(yp; t) =

8>>>><
>>>>:

v if p 2 �(t+ v); v > 0,
and for all v0, 0 < v0 < v, not p 2 �(t+ v0)

v+ if for all v0 > v, exists v00, v < v00 < v0 with p 2 �(t+ v00);
and for all v0, 0 < v0 � v, not p 2 (t+ v0)

? if for all v > 0, not p 2 �(t+ v)

2

De�nition 4.3 (Atomic Event Clock Constraints) Given a set of (propositional) event clocks C , the
set of atomic clock constraints is fz � c j z 2 C and c 2 Ng. 2

Let us now show how the truth value of atomic event clock constraints is evaluated along a TSS:

De�nition 4.4 (Clock Constraints Semantics) A atomic event clock constraints z � c is true at time
t 2 R+ of the TSS �, noted (�; t) j= z � c, i� Val�(z; t) � c. 2

De�nition 4.5 (Propositional Event-Clock Automata) A propositional event-clock automaton, in the
continuous semantics, is a tuple A = (Q;Q0; �;P ;A; �;QF) where:

Q is a �nite set of locations,
Q0 � Q is the set of starting locations,
� � Q�Q is the transition relation,
P is a �nite set of propositional symbols,
A is a �nite set of atomic real-time constraints over propositional clocks,
�: Q! 2Limit(P[A) is a function that labels each location with a set of literals;
QF � Q is a set of accepting locations.

2

Let us note that we label here the locations with set of literals. We could have decided to label locations
with boolean combinations of literals instead. We just adopt this convention because it will slightly simplify
some proofs later but the expressive power would have been the same if we had chosen to label with boolean
combinations of literals instead. We now de�ne formally the notion of accepted timed run of a EventClockTA
on a TSS �. Let � be a timed state sequence whose propositional symbols contain all propositions in P .

22

De�nition 4.6 (Accepted Timed Run) The propositional event-clock automaton A accepts �, denoted
AcceptA(�), i� there exist an accepted in�nite timed run � = (q; I) such that the following conditions are
met.

Covering The run � consists of an in�nite sequence q of locations from Q, and an in�nite interval sequence
I that covers [0;1).

Starting The run starts in a starting location, i.e. q0 2 Q0.

Consecution The run respects the transition relation; that is, (qi; qi+1) 2 � for all i � 0.

Constraints The timed state sequence respects the constraints that are induced by the run �; that is,
�(t) j= �(�(t)) for all real times t 2 [0;1).

Accepting The run is B�uchi accepting, that is, there exist in�nitely many i � 0 such that qi 2 QF .

2

Each EventClockTA de�nes a real-time !-regular language:

De�nition 4.7 (Continuous Anchored Real-Time Language) The continuous anchored real-time
language de�ned by an propositional event-clock automaton A, noted AncLang(A) is the set of TSS on
which it has an accepted run, that is AncLang(A) = f� j AcceptA(�)g.

Theorem 4.8 (Closure Properties) The formalism of propositional event-clock automaton is (construc-
tively) closed, in the continuous semantics, under all boolean operations. 2

By slightly adapting the region construction presented in section ??, we can also construct, for each
EventClockTAA, a BA RA that accepts the untimed A:

Theorem 4.9 (Region Automaton) For every (continuous) propositional event clock A, we can construct
a B�uchi automaton B with AncLang(B) = f� j (�; I) 2 AncLang(A)g. Further the number of locations in
B is linear in the number of locations used in A, singly exponential in the number of clocks used in A and
singly exponential in the size of the maximal constant used in A. 2

The last theorem and the closure properties of continuous propositional event clock automata allow us
to derive:

Theorem 4.10 (Emptiness and Universality of EventClockTA) The emptiness and universality prob-
lems for (propositional) event clock automata in continuous semantics are decidable and PSpace-Complete.
2

Unfortunately, the propositional version of event-clock automata does not subsume the logic Event-

ClockTL.

Theorem 4.11 (EventClockTL 6� EventClockTA, EventClockTA 6� EventClockTL) The expressive power of
continuous EventClockTL and continuous EventClockTA are incomparable.

Proof. The non inclusion of the EventClockTA-languages in the EventClockTL-languages is as for the point-
wise case: the logic EventClockTL is not able to express counting properties. For the non inclusion of

the EventClockTL-languages in the EventClockTA-languages, we consider the two TSS �1 = (�; I
1
) and

�2 = (�; I
2
) de�ned on the singleton fpg:

� the two TSS share the same qualitative information which is as follows: � = fgfgfpgfgfpgfpgfpg : : : ,
that is p is false in the two �rst observations, becomes true in the third observation, becomes false
again in the fourth observation and then true for ever from the �fth observation.

� let us now consider the two following sequences of intervals:

23

1. I
1
= [0; 0](0:5; 0:5)[0:5; 0:5](0:5; 1)[1; 1](1; 1:5)[1:5; 1:5] : : : , that is every interval I1i with i even is

singular and equal to [(i� 1)� 0:5; (i� 1)� 0:5];

2. I
2
= [0; 0](0:4; 0:4)[0:4; 0:4](0:4; 0:8)[0:8; 0:8](0:8; 1:2)[1:2; 1:2] : : : , that is every interval I2i with i

even is singular and equal to [(i� 1)� 0:4; (i� 1)� 0:4];

It is easy to show that for every clock constraint z � c that we can build from the propositional
prophecy clocks xp and yp, that we have the following property: for every positions i � 0, for every
t11; t

1
2 2 I

1
1 , for every t

2
1; t

2
2 2 I

1
1 , we have that: (�

1; t11) j= z � c i� (�1; t12) j= z � c i� (�2; t21) j= z � c

i� (�2; t22) j= z � c. As the two timed state sequences are alternating, we have the same property for
every atom build from propositions and atomic clock constraints. And thus every EventClockTA either
accepts or rejects the two TSS. On the order hand, the EventClockTL formula � = �=12p is true in
time t = 0 of the �rst TSS but false in t = 0 of the second. As a consequence, no EventClockTA can
express the property expressed by the EventClockTL formula �.

2

This result motivates the following extension. We extend the use of event clocks: propositional event
clocks are clocks that can only be associated to propositional symbols, here we show that we can associate
event clocks with automata recursively. The formalism that we obtain is called the recursive event-clock
automata. Those recursive automata keep all nice properties of their propositional version: closure under
all boolean operations and both emptiness and universality problems are decidable. Further, we will show
that contrary to propositional event-clock automata, recursive event-clock automata are able to express all
EventClockTL-expressible properties.

4.3 Recursive Event-Clock Automata: REventClockTA

We now generalize the use of clocks to de�ne our recursive event-clock automata, noted REventClockTA. An
automaton A accepts (or rejects) a given pair (�; t) that consists of a timed state sequence � and a time
t 2 R+ . The automaton is started at time t and views the \past" of the input sequence � by executing a
backward transition relation, and the \future" by executing to a forward transition relation. If A accepts
the pair (�; t), we say that A accepts � at time t. This allows us to associate a history clock and a prophecy
clock with each automaton. The history clock xA always shows the amount of time that has expired since
the last time at which A accepted �, and the prophecy clock yA always shows the amount of time that will
expire until the next time at which A will accept �. This de�nition of event-clock automata is recursive.
The base automata, whose transition relations are not constrained by clocks, are called
oating automata,
FloatA for short. Formally,

De�nition 4.12 (FloatA) A
oating automaton is a tuple A = (Q;Q0; �f ; �b;P ; �;QFf ; QFb) such that

Q is a �nite set of locations,
Q0 � Q is the set of starting locations,
�f � Q�Q is the forward transition relation,
�b � Q�Q is the backward transition relation,
P is a �nite set of propositional symbols,
�: Q ! 2Limit(P) is a function that labels each location with a set of literals over the set of

propositions P ;
QFf � Q is a set of forward accepting locations, and
QFb � Q is a set of backward accepting locations.

2

Note that we have chosen to label locations with the set of literals that are true when the control reside in
the location. We have done this choice because it will slightly simplify some proofs later. But for speci�cation
convenience, we could have chosen, with no e�ect on the property of our recursive event-clock automata,

24

to label locations with boolean formulas built from those literals. We will use those boolean formulas when
illustrating the use of recursive event-clock automata for specifying real-time properties. Examples will be
more readable with this convention.

We now de�ne the notion of accepted timed run for
oating automata on a pair (�; t).

De�nition 4.13 (FloatA-Accepted Run) Let � be a timed state sequence whose propositional symbols
contain all propositions in P . The
oating automaton A accepts � at time t 2 R+ , denoted AcceptA(�; t),

i� there exist an in�nite forward timed run �f = (qf ; I
f
) and a �nite backward timed run �b = (qb; I

b
) such

that the following conditions are met. We note �(t) the location in which the run resides at time t 2 R+ .

Covering The forward run �f consists of an in�nite sequence qf of locations from Q, and an in�nite interval
sequence I that covers [t;1). The backward run �b consists of a �nite sequence qb of locations and a

�nite interval sequence I
b
, of the same length as qb, which covers [0; t].

Starting The forward and backward runs start in the same starting location; that is, �f (t) = �b(t) and
�f (t) 2 Q0.

Consecution The forward and backward runs respect the corresponding transition relations; that is,
(qfi ; q

f
i+1) 2 �f or qfi = q

f
i+1 (stuttering) for all i � 0, and (qbi ; q

b
i�1) 2 �

b or qbi = qbi�1 (stuttering) for

all 0 < i < jqbj.

Constraints The timed state sequence respects the constraints that are induced by the forward and back-
ward runs; that is, (�; t0) j= �(�f (t0)) for all real times t0 2 [t;1), and (�; t0) j= �(�b(t0)) for all real
times t0 2 [0; t].

Accepting The forward run is B�uchi accepting and the backward run ends in an backward accepting
location; that is, there exist in�nitely many i � 0 such that qfi 2 QFf , and q

b
0 2 QFb .

2

Example 4.14 (A Floating Automaton) The simple
oating automaton A of �gure 2 has the following
elements:

� location q1 is the starting location of A;

� its forward transition relation (plain arrows) allows the control to evolve from location q1 to location
q2 and to loop in location q2;

� its backward transition relation (dashed arrows) allows the control to reach location q0 from location
q1 and afterwards to loop in location q0;

� location q0 is backward accepting (double circle dashed) and location q2 is forward accepting (double
circle);

� its labels are as follows: in location q1, the literal �!p must hold, it means that p must be true just after
the time at which the automaton is started (but not necessary at the time the automaton is started);
when the control resides in location q2, the proposition p must be true; when the control is in location
q1, no constraint are imposed (the location is labeled with the literal >).

Following the rules given in de�nition 4.13, it is not di�cult to see the
oating automaton A accepts exactly
the pairs (�; t) such that p is always true just after t, that is the pairs where the EventClockTL formula 2p
evaluates positively, i.e. (�; t) j= 2p.

We are now in position to de�ne the notion of recursive automaton of level i:

25

q1 q2

> �!p p

q0

Figure 1: Floating Automaton A.

De�nition 4.15 (REventClockTA) A recursive event-clock automaton of level i 2 N is a tuple A =
(Q;Q0; �f ; �b;P ;A; �;QFf ; QFb) that has the same components as a
oating automaton plus a set of atomic
clock constraints A over the set of leveli clocks, noted �i, that can be used by the labeling function �:
Q! 2Limit(P[A) that labels each location with a set of literals over propositions and leveli clock constraints.
The set �i of level-i clock constraints contains all atomic formulas of the form xB � c and yB � c, where B
is a recursive event-clock automaton of level less than i whose propositions are contained in P , where c is
a nonnegative integer constant, and where �2 f<;�;=;�; >g. The clock xB is called the history clock of
automaton B, and the clock yB , the prophecy clock of automaton B. 2

In particular, the set of level0 clock constraints is empty, and thus the level0 event-clock automata are the

oating automata. The level1 clock constraints are the clock constraints built using event clocks associated
with
oating automata...

De�nition 4.16 (Subautomata) If A contains a constraint on xB or yB , we say that B is a subautoma-
ton of A. We use the notation SUB(A) to denote the set of subautomata used in A or recursively, in a
subautomaton of A.

The de�nition of when the recursive event-clock automaton A of level i accepts a timed state sequence
� at time t is as for
oating automata, only that we need to de�ne the satisfaction relation (�; t) j= (z � c)
for every time t 2 R+ and every leveli clock constraint (z � c) 2 �i. The rules for evaluating the truth value
of a clock constraint are as in the propositional case. We only need to de�ne the value of recursive event
clocks. This is done as follows.

De�nition 4.17 (Recursive Event-Clock Value) The value of a recursive event-clock zB 2 C with
level(zA) = 1 along a TSS �, at time t, noted Val�(zA; t) is de�ned by the following clauses:

Val�(xB ; t) =

8>>>><
>>>>:

v if AcceptB(�; t� v); v > 0;
and for all v0, 0 < v0 < v, not AcceptB(�; t� v

0)
v+ if for all v0 > v, exists v00, v < v00 < v0 with AcceptB(�; t� v

00);
and for all v0, 0 < v0 � v, not AcceptB(�; t� v

0)
? if for all v, 0 < v � t, not AcceptB(�; t� v)

Val�(yB ; t) =

8>>>><
>>>>:

v if AcceptB(�; t+ v); v > 0,
and for all v0, 0 < v0 < v, not AcceptB(�; t+ v0)

v+ if for all v0 > v, exists v00, v < v00 < v0 with AcceptB(�; t+ v00);
and for all v0, 0 < v0 � v, not AcceptB(�; t+ v0)

? if for all v > 0, not AcceptB(�; t+ v)

where AcceptB(�; t) is as in de�nition 4.13. The recursive case is treated as follows. By induction hypothesis,
AcceptB(�; t) is de�ned for every automaton B of levelj , with 0 � j < i, the value of recursive clock of level
i is simply:

Val�(xB ; t) =

8>>>><
>>>>:

v if AcceptB(�; t� v); v > 0;
and for all v0, 0 < v0 < v, not AcceptB(�; t� v

0)
v+ if for all v0 > v, exists v00, v < v00 < v0 with AcceptB(�; t� v

00);
and for all v0, 0 < v0 � v, not AcceptB(�; t� v

0)
? if for all v, 0 < v � t, not AcceptB(�; t� v)

26

Val�(yB ; t) =

8>>>><
>>>>:

v if AcceptB(�; t+ v); v > 0,
and for all v0, 0 < v0 < v, not AcceptB(�; t+ v0)

v+ if for all v0 > v, exists v00, v < v00 < v0 with AcceptB(�; t+ v00);
and for all v0, 0 < v0 � v, not AcceptB(�; t+ v0)

? if for all v > 0, not AcceptB(�; t+ v)

2

>

q2 q0 q1

>yA = 3

Figure 2: Recursive Event-Clock Automaton B.

Example 4.18 (A Recursive Event-Clock Automaton) Let us consider MEventClockTA of �gure 2.
As q0 is the starting location of B, if B accepts (�; t) then the �rst following time that A is accepting � after
time t is at time t+ 3. So the automaton B expresses exactly the semantics of the formula �=32p.

For our recursive event-clock automata, we de�ne two notions of timed languages: the anchored language
and the
oating language. The anchored real-time language is the traditional notion when the
oating real-
time language capture the notion of
oating acceptance. The two types of real-time languages are de�ned
formally as follows:

De�nition 4.19 (REventClockTA-Languages) A recursive event-clock automaton A de�nes the
oating
timed language f(�; t) j AcceptA(�; t)g, that is, the
oating language of A is the set of pairs (�; t) that it
accepts; we note FloatLang(A) the
oating real-time language de�ned by A. Furthermore, A de�nes the
anchored language f� j AcceptA(�; 0)g that is the set of TSS that A accepts at time 0; we note AncLang(A)
the anchored language de�ned by A. 2

The expressive power of recursive event-clock automata will be measured in term of its ability to de�ne
anchored real-time languages but the
oating real-time languages are important in the proofs.

In what follows, we use two notions of equivalence for automata:

De�nition 4.20 (Equivalent and Congruent Automata) Two recursive event-clock automata are
equivalent if they de�ne the same anchored language and they are congruent if they de�ne the same
oating
language. 2

Let us note that the notion of congruence is stronger than the notion of equivalence, that is: two congruent
automata are equivalent but two equivalent automata are not necessarily congruent.

In the proofs of the following section, we will need the following notion. As for timed state sequences,
we de�ne a notion of re�nement for forward and backward timed runs:

De�nition 4.21 (Run Re�nement) A forward (resp. backward) timed run �2 = (q2; I
2
) is a re�nement

of a forward (resp. backward) timed run �1 = (q1; I
1
) i� there exists a surjective function f : N ! N such

that:

� for all positions j with 0 � j < j�2j, q2j = q1f(j);

� for all positions 0 � i < j�1j, I1i =
S
fI2j j f(j) = ig

where j�j denotes the length of �, which is a �nite natural number in the case of a backward timed run and
1 in the case of a forward timed run. 2

27

In what follows, we need the following lemma, which is a direct consequence of the possibility to take
stuttering steps in timed runs:

Lemma 4.22 (Run Re�nable) If �f1 and �b1 are accepted forward and backward timed runs of A on the
TSS � at time t 2 R+ then all forward and backward timed runs �f2 , �b2 such that �f2 re�nes �f1 and �b2

re�nes �b1 , are timed accepted runs of A on the TSS � at time t 2 R+ . 2

4.4 Closure Properties of Recursive Event-Clock Automata

We now analyze the properties of our recursive event-clock automata. In order to enhance the readability
of the proofs, we �rst de�ne a variant of the de�nition of recursive event-clock automata given above. We
call this variant \monitored recursive event-clock automata", noted MEventClockTA. In those automata,
the forward and backward transition relations are replaced by a unique transition relation and the notion of

oating acceptance is handled with a set of locations that we callmonitored. We de�ne formally the monitored
event-clock automata and prove that their expressive power in term of anchored as well as
oating languages,
is equal to the expressive power of recursive event-clock automata. Again, we �rst de�ne the base case.

De�nition 4.23 (Monitored Floating Automata) A monitored
oating automaton is a tuple A =
(Q;Q0; QM ; �;P ; �;QF) where:

Q is a �nite set of locations,
Q0 � Q is the set of starting locations,
QM � Q is the set of monitored locations,
� � Q�Q is the transition relation,
P is a �nite set of propositional symbols,
�: Q! 2Limit(P) is a function that labels each location with a set of literals over propositions;
QF � Q is a set of accepting locations (B�uchi condition).

2

We now de�ne when an monitored
oating automaton accepts a timed state sequence � at time t.

De�nition 4.24 (Monitored Timed Run) A monitored
oating automaton A =
(Q;Q0; QM ; �;P ; �;QF) accepts the the timed state sequence � at time t, noted AcceptA(�; t) i�
there exists a timed run � = (q0; I0); (q1; I1); : : : ; (qn; In); : : : such that:

Covering The run � cover the entire real time line, i.e. [iIi = [0;1);

Starting The run � starts in a starting location of A, that is q0 2 Q0;

Monitoring The run � is in a monitored location at time t, i.e. �(t) 2 QM ;

Consecution The run � respects the transition relation of A, i.e. for all i such that 1 � i, we have
(qi; qi+1) 2 � or qi = qi+1;

Constraints The TSS � respects the constraints induced by the timed run; that is for all time t 2 [0;1)
we have that (�; t) j= �(�(t));

Accepting The run � has in�nitely many positions in the set of accepting locations, that is there exists
in�nitely many i � 0 such that qi 2 QF (B�uchi acceptance condition).

We call such run � an t-monitored and accepted run of A on �, noted AcceptA(�; t). 2

We call the monitored
oating automata, level0 monitored recursive event-clock automata. A recursive
monitored event-clock automaton of leveli has the ability to use clock associated recursively to automata of
levelj , with 0 � j < i. Formally,

28

De�nition 4.25 (Monitored Recursive Automata) A monitored recursive event-clock automaton of
level i is a tuple A = (Q;Q0; QM ; �;P ;A; �;QF) such that

Q is a �nite set of locations,
Q0 � Q is the set of starting locations,
QM � Q is the set of monitored locations,
� � Q�Q is the transition relation,
P is a �nite set of propositional symbols,
A is a �nite set of atomic clock constraints over clocks of at most level i,
�: Q! 2Limit(P[A) is a function that labels each location with a set of literals over propositions

and level-i clock constraints;
QF � Q is a set of accepting locations (B�uchi condition).

2

The de�nition of when a recursive monitored automata accepts a TSS � at a given time t 2 R+ is as
expected. We now show that the variant that we have de�ned is exactly as expressive as the recursive
event-clock automata for de�ning
oating languages (and thus also anchored languages):

Lemma 4.26 (REventClockTA � MEventClockTA) For every recursive event-clock automata A, we can con-
struct a monitored recursive event-clock automata B that accepts exactly the same
oating language.

Proof. Our proof is constructive. We de�ne a function T : REventClockTA ! MEventClockTA that
given a recursive event-clock automaton A returns a monitored event-clock automaton B that accepts
the same
oating language. In the following, we apply T to a recursive event-clock automaton A =
(QA; QA0 ; �

A
f ; �

A
b ;P

A; �A; QAFf ; Q
A
Fb
), it returns a monitored event-clock automaton B.

� Base case. Let us �rst treat the basic case where A is a
oating automaton. Then B =
(QB ; QB0 ; Q

B
M ; �

B ;PB; �B ; QBF) is a monitored
oating automaton with the following elements:

{ Locations. The set of locations QB = QA�fb; f; bfg, i.e. we take three copies of each locations of
A and tag the �rst with b, the second with f and the third with bf . The locations tagged with b
will be used to mimic the backwards runs, the locations tagged with f will be used to mimic the
forward runs and, �nally, the locations tagged with bf will be used to make the interface between
forward and backward runs.

{ Starting locations. The set QB0 = f(q; b); (q; bf)jq 2 QAFbg, of starting locations of the monitored
automaton B are the �nal locations for the backward runs of the automaton A tagged with either
b or bf .

{ Monitored locations. The set of monitored locations QM = f(q; bf) j q 2 QA0 g, that is the set of
monitored locations are locations that are the interface between backward and forward runs;

{ Transition relation. The transition relation �B of B is the union of the four following sets:

1. f[(q1; b); (q2; b)] j (q2; q1) 2 �Ab g, i.e. two locations tagged with b are linked by the transition
relation in B if they are linked by the backward transition relation in A; we reverse the
direction of the transition as we are working with a forward transition relation in B;

2. f[(q1; f); (q2; f)] j (q1; q2) 2 �Af g, i.e. two locations tagged with f are linked by the transition
relation in B if they are linked by the forward transition relation in A;

3. f[(q1; bf); (q2; f)] j (q1; q2) 2 �Af or q1 = q2g, i.e. if the control of B is in a location tagged
with bf , it can only evolve to locations tagged with f using the forward transition relation of
A or evolve to the same location but tagged with f ;

4. f[(q1; b); (q2; bf)] j (q2; q1) 2 �Ab or q1 = q2g, i.e. if the control of B is in a location tagged
with b, it can only evolve to locations tagged with bf by using the inverse of the backward
transition relation of A or it can evolve to the same location but tagged with bf ;

{ Propositions. The set of propositions used by B is the same set of propositions used by A, i.e.
PB = PA;

29

{ Labeling function. The labeling of location (q;�) in B is the same as the labeling of q in A, that
is for all (q;�) 2 QB, �B((q;�)) = �A(q);

{ Acceptance condition. The acceptance condition of B is de�ned by the following set of accepting
locations: f(q; f) j q 2 QAFf g, that is the same acceptance condition that the one for forward run
in A.

Now let us prove that the
oating language de�ned by the monitored
oating automaton B is equal
to the
oating language de�ned by the
oating automaton A.

{ First, let us prove that if (�; t) 2 FloatLang(A) then (�; t) 2 FloatLang(B).

If (�; t) 2 FloatLang(A) then we know that there exists an accepted backward run �b =

(qb0; I
b
0)(q

b
1; I

b
1) : : : (q

b
n; I

b
n) and an accepted forward run �f = (qf0 ; I

f
0)(q

f
1 ; I

f
1) : : : (q

f
n; I

f
n) : : : , fur-

thermore we know that the backward run ends at time t while the forward run begins at time t
and that qbn = q

f
0 . Without loss of generality, see lemma 4.22, we can make the hypothesis that

Ibn and Ifn are equal to [t; t]. Now, we de�ne the run � as the concatenation of the three following
sequences:

� �1 = ((qb0; b); Ib;0)((q
b
1; b); I

b
1) : : : ((q

b
n�1; b); I

b
n�1). Intuitively, �1 is the translation of the back-

ward run in the b-tagged locations of B;

� �2 = ((qf0 ; bf); [t; t]). �2 is just the location that makes the link between the part corresponding
to the backward run at time t;

� �3 = ((qf1 ; f); I
f
1)((q

f
2 ; f); I

f
1) : : : ((q

f
n; f); I

f
n) : : : . Intuitively, �3 is the translation of the for-

ward run in the f -tagged locations of B.

We now have to prove that the run � = �1 � �2 � �3 is e�ectively an t-monitored accepted run for
� on B. For that, we check that � has the property of such a run:

� Monitoring. By construction of �, we have �(t) = (qf0 ; bf). As q
f
0 is the �rst location of the

forward run �f , we know that qf0 2 Q
A
0 which implies, by de�nition of QBM that (qf0 ; bf) 2 Q

B
M

and thus � is monitored at time t;

� Consecution. We show that the consecution rule is veri�ed for the 3 constituting part �1; �2; �3
of �:

� within �1: let us consider the locations (qbi ; b); (q
b
i+1; b). By the consecution condition for

A, we know that either (qbi+1; q
b
i) 2 �

A
b or qbi+1 = qbi . The second case is trivial. In the

�rst case, by construction of B, we obtain by point 1 of the de�nition of the transition
relation of B that [(qbi ; b); (q

b
i+1; b)] 2 �

B and thus the consecution condition is veri�ed for
�1;

� between �1 and �2: we must show that [(qbn�1; b); (q
f
0 ; bf)] 2 �

B . We know that either

qbn = q
f
0 (in the case of a stuttering step) or (qf0 ; q

b
n) 2 �

A
B . In the two cases, we know that

[(qbn�1; b); (q
f
0 ; bf)] 2 �

B by point 4 of the de�nition of �B .

� We leave the two last cases, i.e. between �2 and �3 and within �3, for the reader, there
are treated in the same way as the two �rst cases.

� Constraints. By the de�nition of �B and the construction of our run, it is easy to show that
the constraints induced by � at each time t are exactly the same as the constraints induced
by the backward and forward runs �b and �f . Thus the constraint condition is satis�ed along
� as the constraint is satis�ed for the backward and the forward runs.

� Accepting. We know that the forward run �f = (qf0 ; I
f
0); (q

f
1 ; I

f
1); : : : respects the accepting

condition imposed by A, that is there exists in�nitely many positions i � 0 such that qfi 2 Q
A
F .

By construction � contains for each of those qfi a position (qfi ; f), which belongs to QBF by
construction. And thus � is accepting.

{ Second, let us prove that if (�; t) 2 FloatLang(B) then (�; t) 2 FloatLang(A). We know that
there exists a t-monitored accepting run for � on B. If we inspect the transition structure of
automaton B, it is not di�cult to see that the following property holds: a t monitored and

30

accepted run must �rst traverse location tagged with b, reaches at time t a location tagged
with bf and after this time t stays within locations tagged with f . We note such a run � =
((q0; b); I0)((q1; b); I1) : : : ((qn�1; b); In�1)((qn; bf); In)((qn+1; f); In+1) : : : , with t 2 In. Without
lose of generality, we can impose that In = [t; t], since our automata are closed under stuttering
re�nement. Now, let us show how to construct a backward run �b and a forward run �f from this
run �:

� we take �b = ((q0; b); I0)((q1; b); I1) : : : ((qn; b); In);

� and �f = ((qn; bf); In)((qn+1; f); In+1)((qn+2; f); In+2) : : :

It is routine to show that the constructed runs respect the conditions that allows us to conclude
that (�; t) 2 FloatLang(A).

� Inductive case. By induction hypothesis, we know that for every REventClockTA C of levelj , with
0 � j < i, we can construct a MEventClockTA D that accepts exactly the same
oating language. In
the sequel, we use the notation T (C) to represent that congruent automaton. Let us show that we
can construct an congruent MEventClockTA B for every REventClockTA A of leveli. The construction
is similar to the one for the base case, except that we must handle properly real-time constraints and
the labeling function. We detail those points:

{ Atomic real-time constraints. The set of atomic real-time constraints used in B is as follows:
fzT (C) � c j zC � c 2 A

Ag.

{ Labeling function. The labeling function of B is as for A except that each atomic real-time
constraint zC � c is replaced by zT (C) � c.

The proof for the equivalence of
oating languages is similar to the one for the base case.

2

We also have the reverse lemma:

Lemma 4.27 (MEventClockTA � REventClockTA) For every monitored recursive event-clock automata A,
we can construct a recursive event-clock automata B that accepts exactly the same
oating language.

Proof. This direction is simpler. We only treat the base case. The induction case is left to the reader. Let
us consider a monitored
oating automaton A = (QA; QA0 ; Q

A
M ; �

A;PA; �A; QAF), we construct a congruent

oating automaton B = (QB ; QB0 ; �

B
f ; �

B
b ;P

B ; �B ; QBFf ; Q
B
Fb
) as follows:

� Locations. The set of locations QB is the same as in A, i.e. QB = QA;

� Starting locations. The set of starting location in B are the monitored locations of A, i.e. Q0 = QM ;

� Forward and backward transition relations. The forward transition relation of B is the transition
relation of A, and the backward transition relation of B is the inverse of the transition relation of A,
that is �Bf = f(q1; q2) j (q1; q2) 2 �

Ag and �Ab = f(q2; q1) j (q1; q2) 2 �
Ag;

� Propositions. The set of propositions used by B is similar to the set of propositions used by A, i.e.
PB = PA;

� Labeling function. The labeling function of B is as for A, that is for all locations q 2 QB , �B(q) = �A(q);

� Forward and backward accepting locations. The forward accepting locations of B are the accepting
locations of A, that is QBFf = QAF , and the backward accepting locations of B are the initial locations

of A, i.e. QBFb = QA0 .

It is routine to prove that the constructed automaton B accepts the same
oating language as A. 2

31

This two last lemmas allow us to derive the theorem:

Theorem 4.28 (REventClockTA = MEventClockTA) The class of recursive event-clock automata and mon-
itored recursive event-clock automata are equally expressive.

Now, we will concentrate on properties of monitored recursive event-clock automata. We will simply
derive the appropriate corollaries for recursive event-clock automata.

4.4.1 Closure under Positive Boolean Operations

Let us now prove two �rst result about the closure property of monitored recursive event-clock automata:
they are closed under positive boolean operations, i.e. closed under union and intersection.

Theorem 4.29 (MEventClockTA-Union) Given two monitored recursive event-clock automata A and B

de�ned on the same set of propositions, there always exists a third monitored recursive event-clock automa-
ton C that accepts exactly the union of the timed
oating languages of A and B, i.e. FloatLang(C) =
FloatLang(A) [FloatLang(B).

Proof. The proof is constructive. Let A and B be MEventClockTA, we construct the MEventClockTAC that
accepts the union of the
oating languages of A and B as follows:

� Locations. The set of locations of C are the tuples (q;�) such that

1. either q 2 QA, � 2 Limit(PC [AC) and for all � 2 Limit(PA [AA): � 2 � i� � 2 �A(q), which
will ensure the coherence of the labeling of (q;�) with the labeling of q in A,

2. or q 2 QB , � 2 Limit(PC [AC) and for all � 2 Limit(PB [AB): � 2 � i� � 2 �B(q), which will
ensure the coherence of the labeling of (q;�) with the labeling of q in B.

� Starting locations. The subset of starting locations of C is the following set QC0 = f(q;�) 2 QC j q 2
QA0 or q 2 QB0 g.

� Monitored locations. The subset of monitored locations of C is the following set: QCM = f(q;�) 2 QC j
q 2 QAM or q 2 QBMg;

� Transition relation. The transition relation of C is the following subset of QC � QC : �C =
f[(q1;�1); (q2;�2)] j (q1; q2) 2 �A or (q1; q2) 2 �Bg;

� Propositions and atomic clock constraints. The propositions in C are as in A, the atomic clock
constraints used in C is the union of the atomic clock constraints used in A and B, that is
PC = PA = PB ,AC = AA [AB ;

� Labeling function. The label of the location (q;�) is simply the set of literals �: �C((q;�)) = �, for
every (q;�) 2 QC .

� Accepting locations. The accepting condition for C is the union of the accepting condition for A and
B, that is QCF = f(q;�) j q 2 QAF or q 2 QBF g;

It is direct to show that the constructed automaton accepts the desired
oating language. 2

32

By the equivalence between monitored and non monitored recursive event clock automata, see theo-
rem 4.28, we have the following corollary:

Corollary 4.30 (REventClockTA-union) Given two recursive event-clock automata A and B de�ned on the
same set of propositions, there always exists a third recursive event-clock automaton C that accepts exactly
the union of the
oating real-time languages of A and B, i.e. FloatLang(C) = FloatLang(A) [FloatLang(B).

We now turn to the closure of MEventClockTA to intersection. The following theorem states that MEvent-

ClockTA are closed under intersection:

Theorem 4.31 (MEventClockTA-Intersection) Given two monitored recursive event-clock automata A

and B de�ned on the same set of propositions, there always exists a third monitored recursive event-
clock automaton C that accepts exactly the intersection of the
oating real-time languages of A and B,
i.e. FloatLang(C) = FloatLang(A) \ FloatLang(B).

Proof. Let A and B, we construct C that accepts the intersection of the timed
oating languages of A and
B as follows:

� Locations. The set of locations of C are the tuples (qa; qb) such that qa 2 QA, qb 2 QB and for all
literals � 2 Limit(PA [AA) \ Limit(PB [AB), � 2 �A(qa) i� � 2 �B(qb). So the set of locations of C
is the set of pairs of locations of A and B that have compatible labels.

� Starting locations. The set of starting locations of C is the following set QC0 = f(qa; qb) 2 QC j qa 2
QA0 and qb 2 QB0 g;

� Monitored locations. The set of monitored locations of C is the following subset of QC : QCM =
f(qa; qb) 2 QC j qa 2 QAM and qb 2 QBMg;

� Transition relation. The transition relation of C is the following subset of QC � QC : �C =
f[(qa1 ; q

b
1); (q

a
2 ; q

b
2)] j (q

a
1 ; q

a
2) 2 �

A _ (qa1 = qa2) and (qb1; q
b
2) 2 �

B _ (qb1 = qb2)g;

� Propositions and Atomic real-time constraints. The set of propositions used in C is the set of propo-
sitions used in A and B, the set of atomic real-time constraints is the union of the sets used in A and
B, that is PC = PA = PB ,AC = AA [AB ;

� Labeling function The atom that labels a location (qa; qb) of C is the union (giving the conjunction of
constraints) of the label of qa in A and the label of qb in B (remember that by de�nition (qa; qb) have
compatible labels), that is �C((qa; qb)) = �A(qa) [�B(qb), for every (qa; qb) 2 QC ;

� Accepting locations. For the accepting condition, we de�ne a generalized B�uchi condition: QCF =
fFA; FBg, with FA = f(qa; qb) j qa 2 QAF g and FB = f(qa; qb) j qb 2 QBF g. This generalized B�uchi
acceptance condition can be converted into a B�uchi acceptance condition using the usual technique.
This costs only a doubling of the number of locations.

It is direct to show that the constructed automaton accepts the desired
oating language. 2

Again, by theorem 4.28, we obtain the following corollary:

Corollary 4.32 (REventClockTA-Intersection) Given two recursive event-clock automaton A and B de-
�ned on the same set of propositions, there always exists a third recursive event-clock automaton C

that accepts exactly the intersection of the
oating timed languages of A and B, i.e. FloatLang(C) =
FloatLang(A) \ FloatLang(B).

33

4.4.2 Closure under Negation

Let us now turn to the problem of complementing monitored recursive event-clock automata. The problem is
more complicated. By inspecting the de�nition of run for our MEventClockTA, we can see that the problem
of
oating acceptance can be decomposed into two usual forward acceptances. In fact, a MEventClockTA

accepts (�; t) if it has a �nite run on the pre�x (�; [0; t]) that ends in a monitored location qm and a run on
the su�x (�; [t::1)) that is accepting and starts in qm.

To formalize this intuition, we de�ne two new types of languages for MEventClockTA. First, pre�x ac-
ceptance allows us to de�ne the pre�x real-time language of a MEventClockTA A, noted PreLang(A). This
language, again, is a set of pairs (�; t) where � is a TSS and t 2 R+ . The intuition behind this language
is that if (�; t) 2 PreLang(A) then there exists a �nite run � of length t of A such that the run begins at
time 0 in a starting location, ends at time t in a monitored location and the constraints that are induced by
the run are veri�ed by the TSS �. Second, su�x acceptance allows us to de�ne the su�x real-time language
of a MEventClockTA, noted SufLang(A). This language is also a set of pairs (�; t) where � is a TSS and
t 2 R+ . Here, the intuition is that if (�; t) 2 SufLang(A) then there exists a in�nite run � of A on �, such
that the run begins at time t in a monitored location, goes through accepting locations in�nitely often and
the constraints that are induced by the run are veri�ed by the TSS �. The PreLang and SufLang will be
assembled in lemma 4.46. Let us now de�ne formally PreLang and SufLang:

De�nition 4.33 (Pre�x Language) Given a monitored recursive event-clock automaton A =
(Q;Q0; QM ; �;P ;A; �;QF), a pair (�; t) belongs to the PreLang(A) i� there exists a �nite timed run
� = (q0; I0); (q1; I1); : : : ; (qn; In) such that:

Covering The run � covers time up to t, i.e.
Si=n
i=0 Ii = [0; t];

Starting The run � starts in a starting location of A, that is q0 2 Q0;

Consecution The run � respects the transition relation of A, i.e. for all positions i such that 1 � i < n,
we have that (qi; qi+1) 2 � or qi = qi+1 (stuttering steps are allowed);

Constraints The TSS � respects the constraints induced by �, that is for all time t0 2 [0; t]: (�; t0) j= �(�(t0));

Further, the run � is accepting if it ends in a monitored location of A, i.e. qn 2 QM . 2

De�nition 4.34 (Su�x Language) Given a monitored recursive event-clock automaton A =
(Q;Q0; QM ; �;P ;A; �;QF), a pair (�; t) belongs to SufLang(A) i� there exists an in�nite timed run
� = (q0; I0); (q1; I1); : : : ; (qn; In); : : : such that:

Covering The run � covers time from t, i.e.
Si=!
i=0 Ii = [t;1);

Starting The run � starts in a monitored location of A, that is q0 2 QM ;

Consecution The run � respects the transition relation of A, i.e. for all positions i � 0 we have that
(qi; qi+1) 2 � or qi = qi+1 (stuttering steps are allowed);

Constraints The TSS � respects the constraints induced by �, that is for all time t0 2 [t;1) : (Tss; t0) j=
�(�(t0)).

The run � is accepting if it intersects in�nitely often with the set of accepting locations, i.e. there exists
in�nitely many positions i such that qi 2 QF . 2

Next we show that MEventClockTA are determinizable and keep, in their deterministic version, their
expressive power for de�ning pre�x languages. First, let us de�ne formally the notion of deterministic and
total monitored recursive event-clock automata.

De�nition 4.35 (Deterministic and Total MEventClockTA) A monitored recursive event-clock automa-
ton A = (Q;Q0; QM ; �;P ;A; �;QF) is deterministic i� the following conditions are satis�ed:

34

Unique initial locations All pairs of initial locations have di�erent (and thus mutually non satis�able
labels), that is, for all q1; q2 2 Q0, with q1 6= q2, �(q1) 6= �(q2).

Unique next location Given a location q1, all successor locations of q1 have di�erent labels, i.e. for all
q2; q3 such that (q1; q2) 2 � and (q1; q3) 2 � then if q2 6= q3 then �(q2) 6= �(q3). As labels are set of
literals that are true when the control resides in the location, as all successor locations of a location q1
have di�erent labels and thus mutually non satis�able labels, the possible successor location in a run
is unique;

Non repeating For every location q, the labels of its next locations are all di�erent from the one of q, i.e.
for every q 2 Q, for every q0 such that q0 6= q and (q; q0) 2 �, �(q) 6= �(q0).

Furthermore, we say that A is total i� the following condition is satis�ed:

Totality The two following points must be veri�ed:

1. For every � 2 2Limit(P[A), there exists an initial location q whose label is �, that is q 2 Q0 and
�(q) = �;

2. For every location q1 2 Q, for every � 2 2Limit(P[A) there exists a location q2 such that either
q1 = q2 or (q1; q2) 2 �, and �(q2) = �.

2

\Unique initial location" and \unique next location" conditions ensure that there exists at most one,
up to stuttering, pre�x run (maybe non accepting) for every pair (�; t) on a deterministic monitored event-
clock automaton. The condition \non repeating" imposes that two consecutive locations in a deterministic
automaton can not be labeled with the same literals. This is important and necessary because we are con-
sidering automata that evolves along (continuous) timed state sequences and if two consecutive locations are
labeled with the same (open) label, the automaton can change from one location to the next nondeterminis-
tically at any time of an open interval that agrees with the label, making the automaton non deterministic.
\Totality" imposes that every pair (�; t) has one pre�x (not necessarily accepting) run on the monitored
event-clock automaton.

The usual subset construction does not work when directly applied to MEventClockTA. If the usual subset
construction is applied without care, the automaton obtained could contain two consecutive locations with
the same label and, thus, would violate the \non repeating condition" and thus not be deterministic. Before
applying the subset construction, we apply to the automaton a transformation that is exposed in the following
lemma and its proof.

Lemma 4.36 (Non Repeating MEventClockTA) For every monitored recursive event-clock automata A,
there exists an equivalent monitored event-clock automata B that accepts the same anchored,
oating, pre�x
and su�x languages and that have the property that it does not have any two consecutive locations labeled
identically, that is, there does not exists q1; q2 2 QB with q1 6= q2 such that (q1; q2) 2 �B and �B(q1) = �B(q2).

Proof. First note that if two locations q1, q2 are labeled by singular sets of literals (see de�nition 2.19),
and linked by an edge, i.e. (q1; q2) 2 �A, then we can suppress this edge without changing the languages
(anchored and
oating) de�ned by the automaton A. In fact, this edge can not be used by any run. As
q1, q2 are labeled with a singular literals, the control can only stay there during a singular interval of time.
But two singular interval of time can not follow each other in a sequence of intervals. We can also suppress
edges between two locations that are labeled by two di�erent open sets of literals. Suppose that we have a
portion of a TSS where an open label is true. From the de�nition of open label, it is direct to prove that this
portion of the TSS must be an open interval of time. So let us consider that the open label � is true during
the open interval of time (a; b). If the control in time t 2 (a; b) is in a location with label � then the control
can take any amount of transitions to reach other locations labeled with � before leaving the interval (a; b).
This intuition is formalized by the following functions:

35

� SReachA : QA ! 2Q
A

, this function, when applied to a location q returns all the locations that can
be reached from q in the transition structure of A only by using locations labeled as q. Formally, the
function is de�ned as follows: q0 2 SReachA(q) i� there exists a sequence of locations q0; q1; : : : ; qn such
that

1. n � 0;

2. q0 = q;

3. qn = q0;

4. for all positions i, 0 � i < n, either qi = qi+1 or (qi; qi+1) 2 �A, and �A(qi) = �A(q);

� SReachMoniA : QA ! 2Q
A

, this function, when applied to a location q returns all the locations that can
be reached from q in the transition structure of A by using only locations labeled as q and by passing
at least by a monitored location. Formally, the function is de�ned as follows: q0 2 SReachMoniA(q) i�
there exists a sequence of locations q0; q1; : : : ; qn such that

1. n � 0;

2. q0 = q;

3. qn = q0;

4. for all positions i, 0 � i < n, either qi = qi+1 or (qi; qi+1) 2 �A, and �A(qi) = �A(q); and

5. there exists a position i, 0 � i < n such that qi 2 QAM ;

� SReachAccA : QA ! 2Q
A

, this function, when applied to a location q returns all the locations that can
be reached from q in the transition structure of A by using only locations labeled as q and by passing
at least by an accepting location. Formally, the function is de�ned as follows: q0 2 SReachAccA(q) i�
there exists a sequence of locations q0; q1; : : : ; qn such that

1. n � 0;

2. q0 = q;

3. qn = q0;

4. for all positions i, 0 � i < n, either qi = qi+1 or (qi; qi+1) 2 �A, and �A(qi) = �A(q); and

5. there exists a position i, 0 � i < n such that qi 2 QAF ;

We construct the MEventClockTA B = (QB ; QB0 ; Q
B
M ; �

B ;PB ;AB ; �B ; QBF) as follows:

� Locations. The locations of B will the set of 3-tuples (q; �; �) such that:

{ q 2 QA;

{ � 2 fM;Mg and if � = M then SReachMoniA(q) 6= ;, that is q can access a monitored location
by staying on locations that are labeled with the same open label;

{ � 2 fF; Fg and if � = F then SReachAccA(q) 6= ;, that is q can access an accepting location by
staying on locations that are labeled with the same open label.

� Initial locations. The set of initial locations QB0 is the set of locations (q; �; �) 2 QB with q 2 QA0 , that
is the tuples whose location q is an initial location of A;

� Monitored locations. The set of monitored locations QBM is the set of locations (q; �; �) 2 QB with
� =M , that is the tuples whose locations q can access, by staying on locations with the same label as
q, a monitored location.

� Transition relation. A pair [(q1; �1; �1); (q2; �2; �2)] belongs to the transition relation �B i� the four
following rules are veri�ed:

1. if �1 =M and �1 = F then q2 2 SReachA(q1) and �
A(q2) 6= �A(q1);

36

2. if �1 =M and �1 = F then q2 2 SReachMoniA(q1) and �
A(q2) 6= �A(q1);

3. if �1 =M and �1 = F then q2 2 SReachAccA(q1) and �
A(q2) 6= �A(q1);

4. if �1 =M and �1 = F then q2 2 SReachMoniA(q1) \ SReachAccA(q1) and �A(q2) 6= �A(q1);

� Propositions and atomic real-time constraints. The set of propositions and of atomic real-time con-
straints used in B is the same as the ones used in A, that is PB = PA and AA = AB ;

� Labeling function. The labeling function of B is derived from the labeling function of A as follows: for
all (q; �; �) 2 QB , �B((q; �; �)) = �A(q);

� Accepting locations. The set of accepting locations QBF is the subset of locations (q; �; �) 2 QB such
that � = F .

It is routine to establish that the
oating language of B is exactly the same as the
oating language of
A. 2

The next theorem states that every monitored event-clock automaton with the non-repeating property,
can be determinised.

Lemma 4.37 (MEventClockTA-Determinization) For every monitored event-clock automaton A with the
non repeating property, one can construct a deterministic and total monitored event-clock automaton C that
accepts the same pre�x language, i.e. PreLang(A) = PreLang(C).

Proof. Our proof is constructive. Let us consider A and construct the deterministic forward event-clock
automaton B as follows:

� Locations. The set of locations of B is the set of non-empty subsets of locations of A that share the
same label, that is: fq1; : : : ; qng 2 QB i�

1. for all i, 1 � i � n: qi 2 Q
A (subset of QA).

2. n � 1 (non-empty subset);

3. for all i; j such that 1 � i < j � n, we have that �A(qi) = �A(qj) (same label).

� Propositions and atomic real-time constraints. The set of propositions used in B is the same as the set
of propositions used in A, i.e. PB = PA, the set of atomic real-time constraints used in B is the same
as the set of real-time constraints used in A, i.e. AB = AA;

� Labeling function. The labeling function is de�ned as follows: �B(l) = �A(q) with q 2 l, for all l 2 QB .
Recall that the locations appearing in l are all labeled with the same label in A, we just take this label
for l.

� Starting locations. The set of starting locations of B is the subset of locations that contains only initial
locations of A, expressed by point 1 below, and that are maximal for their label, expressed by point 2,
that is l 2 QB0 i�

1. for all q 2 l, q 2 QA0 , and

2. there does not exists a location l0 with

(a) �B(l0) = �B(l),

(b) for all q 2 l0, q 2 QA0 and

(c) l � l0;

� Monitored locations. A location l 2 QB belongs to the set QBM of monitored locations i� there exists a
location of A in l that is monitored, i.e. l 2 QBM i� there exists q 2 l such that q 2 QAM .

� Transition relation. We have that (l1; l2) 2 �B � QB �QB i�

37

1. for all q2 2 l2, there exists q1 2 l1 such that (q1; q2) 2 �A;

2. for all q2 2 QA such that �A(q2) = �B(l2) and such that there exists q1 2 l1 with (q1; q2) 2 �A,
we have q2 2 l2;

In words, the point (1) says that locations in l2 are �
A-successors of locations in l1 and (2) says that

l2 is the maximal set of locations that share the label of l2 and are �A-successors of a location of l1.

� Accepting locations. As we are only interested in the pre�x language of B, we take arbitrarilyQBF = QB .

It is not di�cult to show that (�; t) 2 PreLang(B) i� (�; t) 2 PreLang(A). Now, let us see how we can
transform B into a deterministic automaton C that has the totality property. We construct C as follows:

� Locations. We take QC = QB[D, where D is a set of dummy locations. We take one dummy locations

for each possible label in B, that is D = fl j l 2 2Limit(PB[AB)g. The locations of D, will be used to
handle the pairs (�; t) that does not belong to the pre�x language of B.

� Starting locations. We take QC0 = QB0 [Dinit, where Dinit = fq 2 Dj@q
0 2 QB0 : �B(q0) = qg. So D0

contains locations that correspond to labels for which there does not exists an initial location in B;

� Monitored locations. QCM = QBM , the monitored locations are the monitored locations of B, no dummy
locations is monitored.

� Transition relation. The transition relation �C � QC�QC is the set of pairs that respects the following
conditions:

1. for all q1; q2 2 Q
B: (q1; q2) 2 �

C i� (q1; q2) 2 �
B ;

2. for all q1; q2 2 D with q1 6= q2: (q1; q2) 2 �C ;

3. for all q1 2 QB , q2 2 D: (q1; q2) 2 �C i� �B(q1) 6= q2 and there does not exist q3 2 QB such that
�(q3) = q2 and (q1; q3) 2 �B ;

4. for all q1 2 D, q2 2 QB : (q1; q2) 62 �C .

Condition 1 ensures that the transitions possible in B are possible in C and vice versa; Condition
2 guarantees that when in a location of D the transition does no more constraint the possible runs;
Condition 3 says that we can go from a location of B to a dummy location if and only if the transition
is not possible in B for a given label; Condition 4 ensures that when in a dummy location it is not
possible to return into the locations of B.

� Propositions and atomic constraints. PC = PB and AC = AB , the propositions and atomic clock
constraints used in C are similar to the ones used in B;

� Labeling function. �C is de�ned as follows:

{ for q 2 QB , �C(q) = �B(q);

{ for q 2 D, �C(q) = q.

Thus the labels of locations of B are conserved and the labels of dummy locations are simply the set
of literals that constitutes the locations.

� Accepting locations. As for B, we take arbitrarily QCF = QC .

Again, it is easy to show that the pre�x language of B is preserved by C. 2

Corollary 4.38 Let A, B and C as in the last lemma For every TSS � 2 TSS(PA), there exists one run �
(up to stuttering) 2 of C on �, and the following property is veri�ed: if �(t) 2 QB then there exists, for each
q 2 �(t), a pre�x run �q on � in A that covers [0; t] and ends-up in location q, that is �q(t) = q. 2

We will use this last corollary in the construct for the emptiness of monitored recursive event-clock
automata.

2Note that here we identify two runs if they only di�er by stuttering steps, we are only interested in the function � : R+ ! QC .

38

Complement of the Pre�x Language We are now able to prove that monitored event-clock automata
are closed under negation for their pre�x languages.

Lemma 4.39 (Pre�x Complement) For every monitored recursive event-clock automaton A, we can con-
struct another monitored recursive event-clock automaton B that accepts exactly the complement of the pre�x
language of A, i.e. PreLang(B) = PreLang(A).

Proof. As noted in corollary 4.38, a pair (�; t) has always one and only one pre�x run on C, the deterministic
and total version of A. In that case only the monitoring condition determines if a pair (�; t) belongs to the
pre�x language of C. Thus to complement the pre�x language of A, we just have to complement the
monitoring condition of C. So we construct B as follows. First compute C as in lemma 4.37. Second, we
take B as C except for the monitored locations where we take QBM = QC nQCM . The constructed automaton

B accepts PreLang(A), the desired language. 2

Complement of the Su�x Language Complement the su�x language of a MEventClockTA is more
di�cult. The di�culty has nothing to do with the fact that we are working with real-time automata because
we are considering a B�uchi acceptance condition. For such acceptance condition, it is well known that the
usual subset construction does not work []. Instead of \re-doing" all the proofs for the complementation of
B�uchi automata, we show how to reduce our problem of complementation to the problem of complementation
of usual B�uchi automata on !-sequences.

To relate a pair (�; t) to a !-sequence
 =
1
2 : : :
n : : : , we use a function, called � and de�ned as
follows:

De�nition 4.40 (Function �) Given a TSS �, a time t 2 R+ , the set of propositions P on which � = (�; I)
is de�ned and a set of atomic clock constraints A, �(�; t;P ;A) returns the in�nite sequence
 de�ned on the

set of proposition P 0 = fp� j � 2 Limit(P [A)g such that: if �0 = (�0; I
0
) is the coarsest Limit(P [A)� Fine

TSS that re�nes �, and t 2 I 0i :

j = fp� 2 P 0 j (�0; t0) j= �, for all t0 2 I 0i+jg

That is,
j contains all propositions associated with literals of Limit(P [A) that are true during the interval
I 0i+j of �

0. 2

Note that for every TSS �, there exists only one coarsest Limit(PA[AA)�Fine TSS and thus
 is unique
for every pair (�; t).

The idea of the reduction is depicted in �gure 4.4.2 and is decomposed in three steps:

(1) Given an MEventClockTA A, de�ned on the set of propositions P and atomic clock constraints A, we
construct a B�uchi automaton B that accepts a language that respects the following property:

for all � 2 TSS(P), for all time t 2 R+ ,
(�; t) 2 SufLang(A) i� �(�; t;P ;A) 2 AncLang(B)

(2) As the formalism of B�uchi automata is closed under negation [SVW85], see theorem ??, we can construct
C such that:

for all � 2 TSS(P), for all time t 2 R+ ,
(�; t) 2 SufLang(A) i� �(�; t;P ;A) 2 AncLang(B) i� �(�; t;P ;A) 62 AncLang(C)

(3) From C, it remains to construct a MEventClockTA D such that:

for all � 2 TSS(P), for all time t 2 R+ ,
(�; t) 2 SufLang(D) i� �(�; t;P ;A) 2 AncLang(C)

39

-

?

�

A B

CD

(1)

(2)

(3)

Figure 3: Complement of the su�x language

This automaton D accepts exactly the desired language, that is, SufLang(D) = SufLang(A).

The following two lemmas expressed that the transformation (1) and (3) are indeed possible:

Lemma 4.41 (From MEventClockTA to BA) Given an MEventClockTA A that uses the set of propositions
PA and atomic clock constraints AA, we can construct a B�uchi automaton B on the set of propositions
PB = fp� j � 2 Limit(PA [AA)g such that:

for all � 2 TSS(PA), for all time t 2 R+ ,
(�; t) 2 SufLang(A) i� �(�; t;PA;AA) 2 AncLang(B)

Proof.(sketch) By lemma 4.36, we can make the hypothesis that A has the non-repeating property. In that
case, the B�uchi automaton B can simply be obtain from A by:

� taking the same set of locations;

� adding to the transition relation all pairs (q; q), for all locations q, this is because, the notion of run in
MEventClockTA allows stuttering steps;

� the initial locations of B are the monitored locations of A;

� adapting the labels are as follows: p� 2 �B(q) i� � 2 �A(q), for all � 2 Limit(PA [AA) and for all
locations q;

It is not di�cult to prove that the constructed B�uchi automaton B accepts precisely the desired language.
2

Conversely, we have

Lemma 4.42 (From BA to MEventClockTA) Given a B�uchi automaton C on the set of propositions PC =
fp� j � 2 Limit(PD [AD)g, we can construct an MEventClockTA D that uses the set of propositions PD and
atomic clock constraints AD,such that:

for all � 2 TSS(PD), for all time t 2 R+ ,
(�; t) 2 SufLang(D) i� �(�; t;PD;AD) 2 AncLang(C)

Proof.(sketch) Again, the transformation is very simple. The MEventClockTA D is constructed from the BA
C by:

40

� taking the same set of locations and the same transition relation;

� taking the initial locations of C as the monitored locations of D;

� adapting the labels as follows: � 2 �D(q) i� p� 2 �C(q), for all � 2 Limit(PD [AD), for all locations
q;

It is not di�cult to prove that the constructed automaton accepts the right su�x language. 2

The construction that we have presented above allows us to derive the following lemma:

Lemma 4.43 (Su�x Complement) For every monitored recursive event-clock automaton A, we can con-
struct another monitored recursive event-clock automaton B that accepts exactly the complement of the su�x
language of A, i.e. SufLang(B) = SufLang(A). 2

It is important to note that the proposed construction only works because to every tuple (�; t;P ;A)
corresponds exactly one !-sequence
. This is because the value of each event-clock is determined by � at all
time t 2 R+ and consequently, the truth value of the atomic clock constraints of A is also determined by �
at all time t 2 R+ and not by a particular run of the automaton on �. Thus the proposed construction does
not work for timed automaton (and it is not a surprise, for timed automata are not closed under negation).
In a timed automaton, the value of a clock along a TSS � does not only depend on the TSS � but also on
the particular run that is chosen to read �. So to each tuple (�; t;P ;A) corresponds a set of !-sequence
,
one for each possible run.

Complement of the Floating Language So far, we have shown how we can complement the pre�x
et su�x languages accepted by an MEventClockTA. Let us now turn to the problem of complementing the

oating language accepted by a MEventClockTA. First, let us consider the following lemma:

Lemma 4.44 (Decomposition Monitored Condition) The
oating language accepted by a MEvent-

ClockTA A = (QA; QA0 ; Q
A
M ; �

A;PA;AA; �A; QAF) with Q
A
M = fq1; q2; : : : ; qmg can be expressed by the union

of the
oating languages of a collection A1; A2; : : : ; Am of m MEventClockTA that have an unique monitored
location.

Proof. We take each Ai identical to A except for the monitored locations: for QAiM , we take the singleton
fqig. If (�; t) 2 FloatLang(A) then A has a qj -t-monitored and accepted run � on (�; t), for some j, 1 �
j � m. By construction of each Ai, � is also a monitored and accepted run of Aj on (�; t) implying that

(�; t) 2 FloatLang(Aj) and thus (�; t) 2
Si=m
i=1 FloatLang(Ai). Conversely if Aj has a monitored and accepted

run � on (�; t) then � is an qj-t-monitored and accepted run of A on (�; t) and thus (�; t) 2 FloatLang(A). 2

Note that if A has only one monitored location, we have the following interesting property:

Lemma 4.45 (Unique Monitored Location) Let A be an monitored recursive event-clock automaton
with only one monitored location, that is jQM j = 1 then FloatLang(A) = PreLang(A) \ SufLang(A).

Proof. Let us assume that QM = fqmg. We �rst prove that if (�; t) 2 (PreLang(A) \ SufLang(A)) then
(�; t) 2 FloatLang(A). As (�; t) 2 PreLang(A), we know that there exists a �nite pre�x run �p of A on �
that ends at time t in location qm, the unique monitored location of A. Similarly, as (�; t) 2 SufLang(A), we
know that there exists an in�nite su�x run �s of A on � that starts, at time t, in location qm, the unique
monitored location of A. The concatenation of �p and �s is a t-monitored and accepted run of A on (�; t)
and thus (�; t) 2 FloatLang(A). We now turn to the other direction. If (�; t) 2 FloatLang(A) then we know
that there exists a t-monitored and accepted run on � and thus �(t) = qm. We simply decompose � into
�[0;t] and �[t;1], where �[0;t] is the pre�x of � up to time t and �[t;1] is the su�x of � that starts at time t.
It is easy to show that �[0;t] is an accepted pre�x run of A on (�; t) and thus (�; t) 2 PreLang(A) and �[t;1]

is a su�x run of A on (�; t) and thus (�; t) 2 SufLang(A). 2

41

Thus for an MEventClockTA with only one location, the problem is nearly solved. In fact, last lemma
tells us that if A has only one monitored location, FloatLang(A) = PreLang(A) \ SufLang(A) and thus
FloatLang(A) = PreLang(A) [SufLang(A). We already know how to obtain PreLang(A) and SufLang(A). It
just remains us to show how given anMEventClockTA that accepts PreLang(A) how to construct a automaton
B such that FloatLang(B) = PreLang(A) and similarly for the automaton accepting SufLang(A).

Lemma 4.46 (Complement Unique Monitored Location) For every monitored event-clock automa-
ton Am = (QAm ; QAm0 ; QAmM ; �Am ;PAm ;AAm ; �Am ; QAmF) with a single monitored location qm, we can com-
pute a monitored event-clock automaton B that accepts the complement of the
oating language of Am.

Proof. From lemma 4.45, we know that FloatLang(A) = PreLang(A)\SufLang(A) and by lemma 4.39, we can
construct a MEventClockTA B such that PreLang(B) = PreLang(A) and by lemma 4.43 a MEventClockTA C

such that SufLang(C) = SufLang(A). As MEventClockTA are closed under intersection, see lemma 4.31, it re-
mains to construct from B a MEventClockTA E such that FloatLang(E) = PreLang(B) and a MEventClockTA

F such that FloatLang(F) = SufLang(B).

� Construction of E. All we need to do, is to transform B in such a way that when in a monitored
location at time t reading a TSS �, it is always possible to continue a run on the su�x [t;1] of � from
the monitored location. To achieve that speci�cation, we construct E from B as follows:

{ Locations. We take QE = QB [D, where D is the following set of \dummy" locations: D = fq j

q 2 2Limit(PB[AB)g. Thus D contains one element for each possible label. We will use the dummy
locations to make possible the prolongation of every pre�x of run that can reach a monitored
location of B.

{ Initial locations. We take QE0 = QB0 , that is, the set of initial locations of E are the initial locations
of B.

{ Monitored locations. We take QEM = QBM , that is, the set of monitored locations of E are the
monitored locations of B.

{ Transition relation. The transition relation �E � QE � QE is the union of the three following
sets:

1. f(q1; q2) j q1; q2 2 QB and (q1; q2) 2 �Bg. The moves possible in B are possible in E.

2. f(q1; q2) j q1 2 QBM ; q2 2 Dg. It is possible to move from a monitored location of B to all
dummy locations.

3. f(q1; q2) j q1; q2 2 Dg. Within the dummy locations, the transition relation is not constrain-
ing. Note that it is not possible from a dummy location to get back to a location of B.

{ Propositions and atomic clock constraints. The propositions and atomic clock constraints used in
E are the ones used in B: PE = PB , AE = AB .

{ Labelling function. The labeling function is de�ned as follows:

� if q 2 QB : �E(q) = �B(q);

� if q 2 D: �E(q) = q.

{ Accepting locations. The set of accepting locations of E is simply the set of dummy locations:
QEF = D.

E accepts as
oating language all pairs (�; t) such that � allows a run to reach a monitored location
of B at time t, that is (�; t) 2 PreLang(B).

� Construction of F . The construction also uses \dummy" locations and is very similar to the one for
E, we leave it to the reader.

2

42

We are now equipped to prove the closure to complementation of MEventClockTA:

Theorem 4.47 (MEventClockTA-Complement) For every monitored event-clock automaton A, we can
compute a monitored event-clock automaton B that accepts exactly the complement of the
oating language
of A, i.e. FloatLang(B) = FloatLang(A).

Proof. By lemma 4.44, the
oating language of A, where QAM = fq1; q2; : : : ; qng can be expressed as
the union of the
oating language of n single monitored location event-clock automata A1; A2; : : : ; An,

i.e. FloatLang(A) =
Si=n
i=1 FloatLang(Ai). Also, note that FloatLang(A) =

Si=n
i=1 FloatLang(Ai) and thus

FloatLang(A) =
Ti=n
i=1 FloatLang(Ai). By lemma 4.46, we can compute A1; A2; : : : An, and by lemma 4.31,

we can compute B =
Ni=n

i=1 Ai that accepts the desired language. 2

A direct corollary of the last theorem and the lemma about the equivalence between recursive event-clock
automata and monitored recursive event-clock automata:

Corollary 4.48 (REventClockTA-Complement) For every recursive event-clock automaton A, we can
compute another recursive automaton B that accepts exactly the complement of the
oating language of
A, i.e. the pairs (�; t) that are not accepted by A. 2

We now take a look at the complexity of this complementation procedure. This information will be used
later in this section when we will characterize the complexity of decision problems for (monitored) recursive
event-clock automata. We �rst de�ne a notion of size for the (monitored) recursive event-clock automata.

De�nition 4.49 (Size of a MEventClockTA) We �rst de�ne the notion of size for the base case, that is
when the considered automaton A is a (monitored)
oating automaton, we de�ne the recursive case after.

� Base case: the size of a (monitored)
oating automaton is characterized by:

1. its number of locations jQAj, noted NumLocs(A);

2. its number of possible labels j2Limit(PA)j, noted NumAtomsSets(A).

� Recursive case: the size of a (monitored) recursive event-clock automaton is characterized by:

1. its number of locations jQAj, noted NumLocs(A);

2. its number of possible labels j2Limit(PA)j, noted NumAtomsSets(A).

3. the number of clock used by A, that is jfzB j 9(zB � c) 2 AAgj, this is noted NumClocks(A);

4. the maximal constant that A use in its clock constraints, that is Max(fc j 9(zB � c) 2 AAgj, this
is noted MaxConst(A);

5. recursively, the size of its subautomata.

2

To ease the characterization of the size of the automaton obtained after applying the complementation
procedure presented above, we use the �gure 4.4.2. This �gures schematizes the di�erent step used in the
complementation procedure. The following lemma characterizes the size of the automaton obtained after
complementation:

Lemma 4.50 For every monitored event-clock automaton A, we can compute a monitored event-clock
automaton H that accepts exactly the complement of the
oating language of A, i.e. FloatLang(H) =
FloatLang(A). Further the size of H is de�ned in function of the size of A as follows:

� the number of locations of H is singly exponential in the number of locations of A, that is NumLocs(H) =
O(2NumLocs(A));

43

A

A1 Ai Am

C1B1

E1 F1

Ci

Fi

GmGi

H

Bi

Ei

Bm

Em

Cm

Fm

(1)

(3b)

(2a) (2b)

(3a)

(5)

(4)

G1

Figure 4: Complementation procedure for MEventClockTA.

44

� the number of possible labels of H is equal to the number of possible labels of A, that is
NumAtomsSets(H) = NumAtomsSets(A);

� the maximal constant used by H in clock constraints is the same as the maximal constant used by A,
that is MaxConst(H) = MaxConst(A);

� the sizes of the subautomata of H are the same that sizes of the subautomata of A;

Proof. We prove this lemma by inspecting the complexity of each transformations involved in the procedure
for complementing the
oating language of A, those transformations are depicted in �gure 4.4.2.

� Transformation (1). The transformation simply change the set of monitored locations. The size of
each Ai is equal to the size A;

� Transformation (2a). Each Bi is obtained from Ai by determinization. So we examine the deter-
minization procedure, see proof of lemma 4.37. We �rst note that the step needed to obtain the
non-repeating property can be neglected as its only e�ect is to multiply by 3 the number of locations,
the other elements of the automaton remain unchanged. The subsets construction uses pairs com-
posed of a set of locations of the non-repeating automaton as locations and labels of A. The labels
part has no in
uence as the labels are the ones used by A. So the number of locations of each Bi
is singly exponential in the number of locations of each Ai and thus singly exponential in the num-
ber of locations of A plus a dummy location is added for each label (to obtain a total automaton),
so NumLocs(Bi) = O(2NumLocs(A)) + NumAtomsSets(A), the other elements of the automaton remains
unchanged;

� Transformation (2b). Each Ci is obtained form Ai using the complementation procedure for B�uchi
automata which by theorem ?? leads to an exponential blow-up of the locations, that is NumLocs(Ci) =
O(2NumLocs(Ai)) The other elements have the same size as in A.

� Transformation (3a). The transformation is described in the proof of lemma 4.39. Each automata Ei
is obtained from Bi by adding a set of dummy locations. The number of such dummy locations is linear
in the size of the number of possible labels for Bi which is equal to the number of possible labels for
A. So the number of locations in each Ei is characterize as follows: NumLocs(Ei) = O(2NumLocs(A) +
NumAtomsSets(A)). The other elements of the size of Ei are as for A.

� Transformation (3b). This transformation is similar to the transformation (3a) and thus
NumLocs(Fi) = O(2

NumLocs(A) + NumAtomsSets(A)).

� Transformation (4). The transformation consists in taking the union of the automata Ei and Fi. By
theorem 4.29, as the two automaton Ei and Fi share the same set of possible labels, the number of
locations of Gi is just the sum of the number of locations of Ei and Fi. So we have that NumLocs(Gi) =
O(2NumLocs(A) + NumAtomsSets(A)) + O(2NumLocs(A) + NumAtomsSets(A)) and thus NumLocs(Gi) =
O(2NumLocs(A) + NumAtomsSets(A)). The other elements of the size of Gi are as for A.

� Transformation (5). The transformation consists in taking the intersection of the m automaton Gi
with 0 � i � m, where m is the number of monitored locations in A and thus m = O(NumLocs(A)).
By slightly generalizing the algorithm for intersection, which is de�ned for two MEventClockTA in
the proof of theorem 4.31, and as Gi are de�ned on the same set of possible labels, we obtain that
NumLocs(H) = O(m � (2NumLocs(A) + NumAtomsSets(A))) and thus NumLocs(H) = O(2NumLocs(A) +
O(NumLocs(A)) � NumAtomsSets(A)). The other elements of the size of H are as for A.

2

45

4.4.3 Closure under Partial Projection

Another important property of (monitored) recursive event-clock automaton is that they are partially closed
under projection. Before proving this result, we need to introduce a new notion.

De�nition 4.51 (FreeOfRTC) A proposition p is not real-time constrained into an monitored recursive event
clock automaton A if this proposition does not appear in the set of propositions used by the subautomata
of A. We note FreeOfRTC(A) the subset of propositions that are not real-time constrained by A. We de�ne
them formally as follows: FreeOfRTC(A) = fq 2 PA j for all B 2 SUB(A) : q 62 PBg. 2

We can now state and prove the following theorem:

Theorem 4.52 (Partial Projection Closure) For every monitored recursive event-clock automaton A

de�ned on the set of propositions P, for every subset of propositions P 0 � P such that PnP 0 � FreeOfRTC(A),
we can construct a recursive event-clock automaton B that accepts the language FloatLang(B) = f(� # P 0; t) j
(�; t) 2 FloatLang(A)g.

Proof. We takeB asA but change the labels as follows: for every locations q, �B(q) = �A(q)\Limit(PB[AB),
that is, as AB = AA, we simply suppress the literals related to projected propositions. It is direct to show
that B accepts the desired
oating language. 2

The constraint that imposes that projected propositions are only propositions that are not real-time con-
strained is essential. In fact, we will show later, that allowing projection of real-time constrained propositions
strictly extends the expressive power of our recursive event-clock automata and would destroy their closure
under negation. Again, we can derive the corresponding corollary for recursive event-clock automata.

4.5 Emptiness and Universality for Recursive Event-Clock Automata

We now show that the emptiness problem for a monitored recursive event clock automaton A, i.e. is the
anchored language de�ned by the MEventClockTA A is empty or not, is decidable and we characterize the
complexity of deciding this problem. We show that it is possible to reduce the emptiness problem for
monitored recursive event-clock automata to the emptiness problem of non recursive automata for which
a solution exists see [AFH94]. Again, the results for recursive event-clock automata are obtained as direct
corollaries of the lemma 4.28 that states the equivalence between recursive event-clock automata and their
monitored versions.

In the sequel, we show how to construct a propositional event-clock automaton that accepts TSS that
are closely related to the TSS accepted by the recursive event-clock automaton. To de�ne those TSS, we
need some more ingredients.

For a MEventClockTA A with set of propositions PA, we construct a (non-recursive) EventClockTA B on
the set of propositions

PB =PA

[fpC jC 2 SUB(A) or C = Ag

[fpzD�c j 9C 2 fAg [SUB(A) : (zD � c) 2 A
Cg

, i.e. we associate a new proposition to A and to each of its subautomata, moreover we associate a new
proposition with each atomic real-time constraint appearing in A or in one of its subautomata.

In the sequel, we note

� PAut the set fpC jC 2 SUB(A) or C = Ag

� and PConstr the set fpzD�c j 9C 2 fAg [SUB(A) : (zD � c) 2 A
Cg.

46

Further, the automaton B will use the following set of atomic clock constraints AB = fzpD � c j 9pzD�c 2
PConstrg. That is, we use a constraint zpD � c over the proposition associated to the automaton D if there
is a clock constraint zD � c over D in A or in one of its subautomata.

De�nition 4.53 (Hintikka Property) Given a TSS �, de�ned on PA, the PB nPA extension of �, notedb� de�ned on the set of propositions PB, has the timed Hintikka property for the MEventClockTA A if the
following conditions are veri�ed:

H1 pA 2 b�(0), and for all time t 2 R+ :

H2 pyD�c 2 b�(t) i� there exists a time t1 > t such that:

� either: pD 2 b�(t1) and for all time t2 2 (t; t1): pD 62 b�(t2), and t1 � t � c;
� or: for all time t2 > t1, there exists a time t3 2 (t1; t2) such that pD 2 b�(t3) and for all time
t4 2 (t; t1]: pD 62 b�(t3), and (t1 � t)+ � c.

H3 pxD�c 2 b�(t) i� there exists a time t1 2 [0; t) such that:

� either: pD 2 b�(t1) and for all time t2 2 (t1; t): pD 62 b�(t2), and t� t1 � c;
� or: for all time 0 � t2 < t1, there exists a time t3 2 (t2; t1) such that pD 2 b�(t3) and for all time
t4 2 [t1; t): pD 62 b�(t3), and (t� t1)+ � c.

H4 if pC 2 b�(t) then C has a t-monitored and accepted run on � 3;

H5 if pC 62 b�(t) then C has no t-monitored and accepted run on �.

Conditions H4 and H5 ensure that the proposition pC associated to the automaton C, is true along b� at
time t i� C has a t-monitored and accepted timed run on b�. As a consequence, H1 imposes that A acceptsb� at time 0 and thus b� # PA 2 AncLang(A), where b� # PA denotes the TSS obtained from b� by projecting
propositions that are not in PA. H2 and H3 relates propositions pzD�c to the semantics of the associated
constraint zD � c. In the sequel, we say that a TSS b� that has the Hintikka property for A, is a timed
Hintikka sequence for A, THS for short. 2

The following lemma states how THS of an MEventClockTA A can help us to solve the emptiness problem
of A:

Lemma 4.54 (Emptiness-Hintikka) The anchored language of a monitored event-clock automaton A is
non empty i� A has at least one timed Hintikka sequence.

Proof. It is direct to show that if b� is a Hintikka sequence for A then b� # PA 2 AncLang(A). In fact, ifb� has the Hintikka sequence for A then pA 2 b�(0) by condition H1 and then by H4, we know that A has
a 0-monitored and accepted run on � and thus � 2 AncLang(A). Now the extension b� of � 2 AncLang(A)
de�ned as follows:

b�(t) =�(t)
[fpC j pC 2 P

Aut and AcceptC(�; t)g

[fpzD�c j pzD�c 2 P
Constr and (�; t) j= zD � cg

has the timed Hintikka property for A and is the unique extension of � with this property. 2

3Note that as b� is an extension of �, AcceptC(�; t) i� AcceptC(b�; t).

47

In the sequel, we will show that the following lemma holds:

Lemma 4.55 (EventClockTA for Hintikka Sequences) For every monitored recursive event-clock au-
tomaton A, we can construct a propositional event-clock automaton B that accepts exactly the timed Hintikka
sequences of A, that is, AncLang(B) = f� j � is a THS of Ag.

Now we show that for each condition H1 to H5, we can construct a non recursive event-clock automaton
that checks the condition. The �nal propositional event-clock automaton will simply be the product of the
automata for each conditions, i.e. the automaton that accepts the intersection of the TSS accepted by each
automaton. The construction that we will present is inspirated from the construction, proposed by Wolper et
al to solve the satis�ability problem of the logic E-TL, see [WVS83, Wol83]. We now construct systematically
an non recursive event-clock automaton for each timed Hintikka condition:

Automaton for condition H1,H2 and H3. We construct the EventClockTA B1 =
(QB1 ; QB1

0 ; �B1 ;PB1 ; �B1 ;AB1 ; QB1

F), as follows:

� Propositions and atomic clock constraints PB1 = PB and AB1 = fzpD � c j pzD�c 2 P
Bg, a clock

is associated to each proposition associated to an automaton that appears in a clock constraint
in A or one of its subautomata, those clocks will be used to enforce the right timing of those
propositions;

� Locations. QB1 = fq 2 2Limit(PB[AB) j 8pzD�c 2 P
Constr : pzD�c 2 q i� zpD � c 2 qg. So B1

contains a location for each possible label that respects the property that the proposition pzD�c
is in the label i� the corresponding constraint is also present. Intuitively, when pzD�c is true
along b� at time t, it means that the constraint zD � c must be veri�ed in (�; t). As pD 2 b�
i� (�; t) 2 FloatLang(D) (by H4 and H5), we simply use the constraint zpD � c to enforce the
semantics of zD � c. For example, if yD = 1 is true in (b�; t), it means that the following time
t1 > t such that D accepts b� must be t1 = t+1. We know by H4 and H5 that for all time t 2 R+ ,
AcceptD(�; t) i� pD 2 b�, so we simply use the propositional clock ypD to enforce the semantics of
yD = 1: we check that ypD = 1 is veri�ed.

� Labeling function. �B1(q) = q, the labeling of location q is simply the literals that constitute the
location;

� Initial locations. QB1

0 = fq 2 QB1 jpA 2 qg, the initial condition impose that pA is true initially;

� Transition relation. �B1 = f(q1; q2)jq1; q2 2 QB1g, i.e. there is no restriction on the transition
relation;

� Acceptance condition. QB1

F = QB1 , the accepting condition is trivial and thus does not impose
any constraint on the accepted TSS.

The automaton B1 ensures that pA is true initially (by the de�nition of the initial locations and the
de�nition of the labeling function) as we have de�ned the initial location as the locations labeled by pA.
Further, each time that the proposition pxD�c (pyD�c, respectively) is true in a location, we decorate
this location with the real-time constraint xpD � c (ypD � c, respectively) which, by the semantics of
clocks of EventClockTA, imposes the right timing on the last (�rst following, respectively) occurrence of
pD and by H4 and H5, ensures the veri�cation of real-time constraints xD � c (resp.yD � c) associated
to the MEventClockTA D.

Automaton for condition H4 We construct an automaton B2;C for each C 2 A [SUB(A). Basically, to
enforce the property H4 for C, the automaton B2;C must, each time that it encounters a state in b�
where the proposition pC is true, check that: \there exists a t-monitored run of C on b�". That can be
done by checking the two following properties:

1. there exists a �nite run of C that cover b� for the interval [0; t] and ends in a monitored location,
say in qm;

48

2. and that we can extend this run from qm to cover the reminder of b�, i.e. the interval [t;1), still
respect the accepting condition of C.

The di�culty arises from the fact that we must check the existence of such runs each time that the
proposition pC is true, and the proposition pC is potentially true in an in�nite (and uncountable)
numbers of time t 2 R+ . But fortunately, runs that are in the same location of C at a given time
t 2 R+ can be merged. In fact, as the value of clocks does not depend on the history of the run but only
on the TSS the automaton is reading, two runs that reside in the same location have the same possible

futures. More precisely, if �
[0;t]
1 and �

[0;t]
2 are two pre�xes of runs on TSS b�, such that �[0;t]1 (t) = �

[0;t]
2 (t)

then if �
[0;t]
1 � �

(t;1)
3 is a accepted run of A on � then so is �

[0;t]
2 � �

(t;1)
3 . Note that this property is not

true for timed automata in general. In fact, in a timed automaton run the value of clocks at a given
time t depends on the history of the run up to that time t. So two pre�xes of runs that at time t end
up in the same location do not necessarily have the same futures, as their clock values can be di�erent.
This technique is again inspirated by the decision procedure for E-TL.

Let us now show in details how we can solve the problem. To simplify the presentation, we �rst de�ne
two transition structures.

De�nition 4.56 (Transition Structure) A transition structure is a four-tuple � = (S; S0; R; F)
where:

� S is a set of states;

� S0 � S is a set of initial states;

� R � S � S is the transition relation;

� and either F � S is a set of accepting states, or F � 2S is a set of sets of accepting states. We
will use set of accepting states when we will need to de�ne a B�uchi acceptance condition and we
will use set of sets of accepting states when we will need to de�ne a generalized B�uchi condition.

We will use transition structure as intermediate objects.

We construct one transition structure for the two properties above and de�ne how to take their product
in order to obtain the automaton B2 that checks condition H4.

� Transition structure �1. To check that there exists a run on the pre�x of b� up to time t with
pC 2 b�(t), we simply maintain a deterministic version of C, see de�nition 4.35 and lemma 4.37.
We note this deterministic version D and the structure �1 = (S1; S1

0 ; R
1; F 1) is de�ned from D

as follows:

{ S1 = QD, that is, the states of the transition structure �1 is the set of locations of the
deterministic version of C, and thus a state of �1 is a set of locations of C;

{ S1
0 = QD0 , the initial states of �

1 are the initial locations of D;

{ R = �D, the transition relation is as in D;

{ F = S1, each state is accepting and thus the accepting condition is trivial.

This deterministic structure tells us at each moment, when reading b�, in which locations of C
the control can reside. As a consequence, the automaton tells us in which locations all possible
runs can be. We will use this information in order to start runs for su�xes only from monitored
locations where the control can reside.

� Transition structure �2. To check the existence of runs on the su�xes of b� from time t, we
consider a transition structure �2 = (S2; S2

0 ; R
2; F 2), where:

{ the states of �2 are n-tuples of locations hl1; l2; : : : ; lni of C, thus n = jQC j. n-tuples are
su�cient because, at each moment, the control of the automaton C can be, at most, in n

di�erent locations and we do not need more because we are allowed to merge runs that are in
the same location. Each li belongs to Q

C [f?g, the special value ? is used for li when there
is no active ith run. We further impose the following properties to the tuples: hl1; : : : ; lni 2 S2

i� there exists a j, 1 � j � n+ 1, such that:

49

1. for all k, j � k � n: lk = ?;

2. for all k, 1 � k < j: lk 2 QC ;

3. for all k1; k2, 1 � k1 < k2 < j: lk1 6= lk2 ;

4. for all k1; k2, 1 � k1 < k2 < j: �C(lk1) = �C(lk2).

The conjunction of condition (1) and (2) ensures that \real" locations occupy the �rst places in
the tuple. Condition (3) imposes that all locations are di�erent in the tuple. This is necessary
as we have only n places and we must check potentially in�nitely many runs, therefore, we
must merge runs that reach the same location. Finally, in (4) we require that locations in the
tuples have the same label. In fact, at each time t of a TSS, only one label is true so, at each
time t, the control of C can only be in locations that share the same label. In the sequel, we
use the notation �C(hl1; l2; : : : ; lni) to refer to that label.

{ As initial states of �2, we take S2
0 = S2.

{ Let us now de�ne the transition relation of the structure �2: we have
(hl11 ; l

1
2; : : : ; l

1
ni; hl

2
1; l

2
2; : : : ; l

2
ni) 2 R2 i� for all k, 1 � k � n: if l1k 6= ? then there ex-

ists j, 1 � j � k and (l1k; l
2
j) 2 �

C . That is each (non dummy) location of the �rst tuple has

a �C-successor location in the second tuple, merging runs is allowed as j can be strictly less
than k.

{ Let us now expose how we can check that each run simulated in the structure �2 respects
the acceptance condition of C. To solve this problem we use a generalized B�uchi acceptance
condition: we de�ne n sets of accepting locations, a run will be accepting if it has, for each
n sets in�nitely many positions in the set. The sets are de�ned as follows:

Fi = fhl0; l1; : : : ; lnij either li = ? or li 2 QCF g

In the sequel, we note �2:Fi, the i
th set of accepting states of the transition structure �2.

Let us show that this choice for the accepting condition is correct. Consider a run that starts
in the ith coordinate of the tuples. Either this run is merged with another run j < i. In
that case li = ? until we start another run, or li = ? for ever, in the last case, the run is
accepted. Now, if the run continues for ever in a coordinate k � j, which must arrive sooner
or later, then we must check that the run goes in�nitely often through an accepting location
of C which is checked by the set �2:F:Fk .

We are now in position to de�ne the non recursive automaton B2;C =

(QB2;C ; Q
B2;C

0 ; �B2;C ;PB2;C ; �B2;C ;AB2;C ; Q
B2;C

F):

� Locations. QB2;C is the set of tuples h�; s1; s2i where:

{ � 2 2Limit(PB[AB), � is a label;

{ s1 2 S1, this part will be used to check the constraints over pre�xes as explained above;

{ s2 2 S2, this part will be used to check the constraints over su�xes as explained above;

that respect the following restrictions (with s2 = hl1; : : : ; lni):

1. (a) for all p 2 PC : p 2 � i� p 2 �C(s1) i� p 2 �
C(hl1; : : : ; lni);

(b) for all zD � c 2 AC : pzD�c 2 � i� (zD � c) 2 �C(s1) i� (zD � c) 2 �(hl1; : : : ; lni).

2. if pC 2 � and s2 = hl1; : : : ; lni then there exists j, 1 � j � n, such that lj 2 QCM ; that is, if pC
is true then it is necessary to check that there exists a run of C on the rest of the TSS that
starts in a monitored location, the structure �2 will check for the existence of such a run;

3. if s2 = hl1; l2; : : : ; lni then for all j such that 1 � j � n and lj 6= ?, we have lj 2 s1; this
constraint imposes that the locations active in runs are a subset of the locations where the
control of the automaton can reside (information given by the structure �1).

� Initial locations. Q
B2;C

0 = f(�; s1; s2)js1 2 S1
0g, recall that S

1
0 contains all the sets of locations

where the automaton C can start a run;

� Transition Relation. [(�1; s11; s
1
2); (�

2; s21; s
2
2)] 2 �

B2;C i� (s11; s
2
1) 2 R

1 and (s12; s
2
2) 2 R

2, thus there
is a transition in B2;C if the transition is possible in both �1 and �2;

50

� Propositions and atomic clock constraints. The propositions and the clocks constraints are as for
B: PB2;C = PB and AB2;C = AB .

� Labeling function. For all (�; s1; s2) 2 QB2 , �B2((�; s1; s2)) = �.

� Accepting condition. For the acceptance condition, we transpose into B2;C the constraints of �2.

So we use the following generalized B�uchi acceptance condition: Q
B2;C

F = fF1; F2; : : : ; Fng where
each Fi is de�ned by f(�; s1; hl0; : : : ; li; : : : ; lni) j li 2 QCF _ li = ?g.

Now, B2 is obtained by taking the product of each B2;C for C 2 fAg [SUB(A).

Automaton for condition H5 One way to solve this problem would be to consider for each automaton
C 2 fA [SUB(A)g, its complement C and check condition H4 for that automaton. As we have
proved that MEventClockTA are closed under complementation, this strategy works to complete our
construction for the emptiness problem of MEventClockTA. But this method does not match the opti-
mal complexity since after complementation, which costs an exponential, we should still construct the
deterministic structure (�1) and the tuple-structure (�2) which also costs one exponential. Applying
this simple idea would result in a doubly exponential blow-up in the number of locations of the con-
structed automaton giving an Ex-Pspace procedure. It is possible to solve the problem with only one
exponential, yielding a Pspace procedure, with the following idea (again, adapted from [SVW85]): for
each automaton C, we construct an automaton B3;C that enforces exactly the negation of H5 for each
C, that is \there exists a time t 2 R+ such that pC 62 b�(t) and C has a t-monitored and accepted run
on b�". After, we take the union of all those automata and complement this union, we obtain a single
automaton B3 that checks H5 for each automaton C 2 fA [SUB(A)g. The construction is singly
exponential (the one that occurs during the complementation). Let us now show how to construct
the automaton B3;C . The idea behind the construction is the following: we construct an automaton
which is essentially the product of C with a simple transition structure � that ensures, when we take
the product between C and �, that pC is eventually false and at the same time C is in a monitored
location. The structure � is de�ned as follows:

� States.The set of states S is the set of 3-tuples (i; �1; �2) such that i 2 f1; 2; 3g, �1 2 fM; �Mg,
�2 2 fpC ; �pCg, with the restriction that if i = 2 then �1 = M and �2 = �pC . The intuition
is that when the structure � is in a state tagged by 2 then C is in a monitored location and
the proposition pC is false. We will use the initial condition, transition relation and acceptance
condition to ensure that each run of � eventually passes through a state tagged with 2.

� Initial states are S0 = f(i; �1; �2) 2 Qji 2 f1; 2gg. Initially, the control can only be into part 1 or
part 2 of the structure.

� Transitions: ((i1; �11 ; �
1
2); (i

2; �21 ; �
2
2)) 2 R i� either i2 = i1 or i2 = i1 + 1. The control of the

automaton can only go from part 1 to part 2 and then to part 3. Consequently, when in part 1,
the control must cross part 2 to attain the accepting locations.

� Acceptance: F = f(i; �1; �2)ji 2 f2; 3gg, the accepting states are those tagged with 2 or 3.

We now construct B3;C from C and � = (S; S0; R; F) as follows:

� Locations. QB3;C is the set of 3-tuples (s; q; �) such that:

{ s 2 S;

{ q 2 QC ;

{ � 2 2Limit(PB[AB);

{ if s = (i; �1; �2) then �1 = M i� q2 2 QCM , that is the control is in a M -state of � i� the
control is in a monitored location in QC .

� Initial locations. The set of initial locations Q
B3;C

0 = f(s; q; �) j s 2 S0 and q 2 QC0 g, that is, we
check that the structure � and the automaton C respects their initial requirement;

� Transition relation. We have [(s1; q1; �1); (s2; q2; �2)] 2 �B3;C i�

1. (s1; s2) 2 R;

51

2. (q1; q2) 2 �B3;C or q1 = q2;

So, we check the transition relation of both � and C (stuttering steps are allowed in C).

� Propositions and atomic clock constraints. The propositions and atomic clock constraints are as
in automaton B: PB3;C = PB , AB3;C = AB ;

� Labeling function. The labeling function is de�ned as follows: �B3;C ((s; q; �)) = �.

� Accepting locations. The accepting condition is de�ned as follows: to be accepted, a run must
respect the conjunction of the accepting conditions for C and the transition structure �. Therefore,
we de�ne the following acceptance condition: QB3;C = fF1; F2g with F1 = f(s; q; �) j s 2 �:Fg
and F2 = f(s; q; �) j q 2 QCF g.

To obtain the automaton B2, we just complement the union of the set of automata fB3;C j C 2
A [SUB(A)g.

We �nally obtain the non recursive event-clock automaton B by taking the product of the automata
B1; B2; B3.

The following theorem follows from the previous construction.

Theorem 4.57 (REventClockTA-Emptiness) The emptiness problem for recursive event-clock automata is
PSpace-Complete.

To check the universality problem, we use the same construction with H1 replaced by:

H1' pA 62 b�(0)
and check that the language of the constructed propositional event-clock automaton is empty, so we have:

Theorem 4.58 (REventClockTA-Universality) The universality problem for recursive event-clock au-
tomata is PSpace-Complete.

4.6 Expressiveness: EventClockTL � REventClockTA

In section 3.3.2, we have shown that propositional (non recursive) event-clock automata are not su�ciently ex-
pressive to de�ne all EventClockTL-properties. In this section, we show that, on the contrary, REventClockTA
are su�ciently expressive to de�ne all EventClockTL-properties. We �rst introduce some new notions.

De�nition 4.59 (level of EventClockTL formulas) The level of an EventClockTL formula � is computed
by the following recursive function level:

� level(p) = 0;

� level(�1 _ �2) = Maximum(level(�1); level(�2));

� level(:�1) = level(�1);

� level(�1U�2) = Maximum(level(�1); level(�2));

� level(�1S�2) = Maximum(level(�1); level(�2));

� level(�I�1) = 1 + level(�1);

� level(�I�1) = 1 + level(�1);

That is the level of a formula � is the number of imbrications of real-time operators in �. 2

We say that \� is a leveli formula" if level(�) = i. In the following proofs, we will reason by induction on
the structure of leveli formulas, we de�ne the grammar corresponding to those formulas:

52

De�nition 4.60 (Grammar of leveli-formulas) The following grammar rule de�ne the level0 Event-

ClockTL formulas:

� ::= p j �1 _ �2 j :�1 j �1U�2 j �1S�2
where �1 and �2 are level0 formulas.

Note that level0 formulas are LTR formulas. Recursively, the following grammar rule de�ne the leveli Event-
ClockTL formulas:

� ::= p j �I�3 j �I�3 j �1 _ �2 j :�1 j �1U�2 j �1S�2
where �1 and �2 are levelj formulas where 0 � j � i and �3 is a levelk formula where 0 � k < i.

2

For example, �=1 �=1 p is a level2 formula.
We de�ne the following slightly non-classical notion of closure of a formula:

De�nition 4.61 (Closure Set) Let � be an EventClockTL formula, we de�ne the closure of �, with the
help of the recursive function Cl:

� Cl(p) = fpg;

� Cl(�1 _ �2) = Cl(�1) [Cl(�2) [f�1 _ �2g;

� Cl(:�1) = Cl(�1);

� Cl(�1U�2) = Cl(�1) [Cl(�2) [f�1U�2g;

� Cl(�1S�2) = Cl(�1) [Cl(�2) [f�1S�2g;

� Cl(�I�1) = f�I�1g;

� Cl(�I�1) = f�I�1g;

The closure of the formula �, denoted Cl(�), is the set Cl(�) closed by negation, that is Cl(�) = f ;: j 2
Cl(�)g. 2

In that non-classical notion of closure, the real-time subformulas �I�3 and �I�3 are considered as atomic
formulas. Let us now consider the following lemma:

Lemma 4.62 (EventClockTL� Fine TSS) For every set of propositions P, for every TSS �, if � is
Limit(P) � Fine and alternating, then � is also � � Fine for every level0-EventClockTL formula � whose
propositions are in P.

Proof. We prove this lemma by induction of the structure of level0-formulas.

� Base case. If � = p with p 2 P then the lemma is trivially veri�ed as p 2 Limit(P).

� Induction case. The induction hypothesis tell us that for �1 and �2 which are level0 formulas, we know
that � is �1 � Fine as well as �2 � Fine. Let us also observe that a singular interval can not be re�ned.
So we only have to show that level0 formulas have a constant truth value in all open intervals of �.
Now let us treat each construction of the grammar:

{ let = �1 _�2. Let us consider the open interval Ii. There are four possible cases: �1 and �2 are
constantly true during Ii, �1 is constantly true during Ii and �2 is constantly false, ... Let us treat
the �rst case as an example, the other cases are treated similarly. If �1 and �2 are constantly true
during Ii then by the semantics of the _-operator, �1 _ �2 is constantly true during Ii. Thus the
sequence of intervals does not need to be re�ned.

{ let = :�1. In that case, if �1 is constantly true during Ii then is constantly during this
interval, and conversely. Again, the sequence of intervals does not need to be re�ned.

53

{ let = �1U�2. To treat that case, let us make the hypothesis that (�; t) j= �1U�2 for some
t 2 Ii. We will show that this implies that for all time t1 2 Ii, (�; t1) j= �1U�2. We will treat the
negation after. By the semantics of the U-operator, we know that: there exists a time t0 > t such
that (�; t) j= �2 and for all time t00 2 (t; t0), (�; t00) j= �1 _ �2. Let us �rst make the hypothesis
that t0 belongs to the interval Ii. By induction hypothesis, we know that for all time t1 2 Ii,
(�; t1) j= �2. As Ii is open, it is easy to see that (�; t1) j= �1U�2 for all t1 2 Ii. Now let us
make the conserve hypothesis, the �rst time where �2 holds is not in Ii but after. By induction
hypothesis, this implies that for all time t1 2 Ii, (�; t1) 6j= �2. By semantics of the U-operator, we
know that �1 must be true just after t within Ii. By induction hypothesis �1 is then constantly
true within Ii and thus also �1U�2. Let us now turn to the case where there is a time t 2 Ii where
(�; t) 6j= �1U�2. We already prove that if there exists a time t0 2 Ii such that (�; t0) j= �1U�2,
there does not exists a time t00 2 Ii such (�; t00) 6j= �1U�2. Thus as (�; t) 6j= �1U�2 holds, we know
that there can not exists such a t0.

{ let = �1S�2. This case is treated in the same way that the U-case and is left to the reader.

2

This lemma will allow us, in the next proof, to tag locations of monitored event-clock automata with
formulas of the logic and still keep the property that the control can only resides in a location for a singular
interval of time only if the label of that location is singular.

Lemma 4.63 (EventClockTL � MEventClockTA) For every EventClockTL formula � we can construct a
MEventClockTA A� that accepts exactly the pairs (�; t), where � is de�ned on the set of propositions P
appearing in � and t 2 R+ , such that (�; t) j= �.

Proof. To establish this result, we reason by induction on the level of formulas.

� Base case. Let consider � a level0-formula. We �rst de�ne a transition structure � = (S; S0; R; F)
that checks the semantics of the propositional and temporal operators of level0-formula. After, we will
transform this structure into an monitored
oating automaton. We de�ne the elements of � as follows:

{ States. S is the set of pairs (a; &) where a 2 2Cl(�) with > 2 a, & 2 fopen; singg (indicating if the
control can stay in the state for an open interval of time or just a singular interval of time) and
the following properties are veri�ed:

1. for all �1 2 Cl(�): �1 2 a i� :�1 62 a;

2. for all (�1 _ �2) 2 Cl(�): �1 _ �2 2 a i� �1 2 a or �2 2 a;

3. for all (�1U�2) 2 Cl(�):

3.a if �2 2 a and & = open then �1U�2 2 a;

3.b if �1U�2 2 a and & = open then �1 2 a or �2 2 a;

4. for all (�1S�2) 2 Cl(�):

a if �2 2 a and & = open then �1S�2 2 a;

b if �1S�2 2 a and & = open then �1 2 a or �2 2 a;

(1) and (2) enforces the semantics of propositional operators; (3.a) and (3.b) enforces local
consistency for the until operator; (4.a) and (4.b) are the local consistency rules for the since
operator.

{ Initial states. The set of initial states is the subset of pairs (a; &) 2 S such that & = sing and there
does not exist �1S�2 2 �Cl(�) and �1S�2 2 a. That is an initial state is singular and it does not
contains a since formula in positive form.

{ Transition relation. The transition relation R is the subset [(a1; &1); (a2; &2)] of S�S that respects
the following restrictions:

1. &1 = open and &2 = sing, or, &1 = sing and &2 = open;

54

2. The following rules express how until formulas are transfered from one state to the next of
the transition structure:

2.a �1U�2 2 a1 ^ &1 = sing i� �1U�2 2 a2;

2.b �1U�2 2 a1 ^ & = open ^ �2 62 a1, implies (�1U�2 2 a2 ^ �1 2 a2) _ �2 2 a2;

2.c �1 2 a1 ^ &1 = open ^ (�1 2 a2 _ (�2 2 a2 ^ �1U�2 2 a2)) implies �1U�2 2 a1.

3. The following are for the since formulas:

3.a �1S�2 2 a2 ^ & = sing i� �1S�2 2 a1;

3.b �1S�2 2 a2 ^ &2 = open ^ �2 62 a2 implies �2 2 a1 _ (�1 2 a1 ^ (�1S�2) 2 a1);

3.c �1 2 a2 ^ &2 = open ^ (�2 2 a1 _ �1S�2 2 a1) implies �1S�2 2 a2

{ Accepting states. As usual, we use a generalized B�uchi acceptance condition. For each formula
�1U�2 2 Cl(�), there is a set �:F:F�1U�2 = f(a; &) j �1U�2 62 a _ �2 2 ag.

We are now equipped to de�ne the monitored
oating automaton A�. We construct A� =

(QA� ; Q
A�
0 ; Q

A�
M ; �A� ;PA� ; �A� ; Q

A�
F
) as follows:

{ Locations. The set of locations QA� is the set of pairs ((a; &); �) such that:

1. (a; &) 2 S;

2. � is a label that is open if and only if & = open;

3. the labeling is propositionally consistent with the formula in a: for all proposition p 2 P :
p 2 � i� p 2 a.

{ Initial locations. The set of initial locations Q
A�
0 is the subset of locations ((a; &); �) 2 QA� such

that (a; &) 2 S0;

{ Monitored locations. The setQ
A�
M of monitored locations is the subset of locations ((a; &); �) 2 QA�

such that � 2 a, that is the subset of locations where the formula � is true;

{ Transition relation. The transition relation is the set of pairs [((a1; &1); �1); ((a2; &2); �2)] with
((ai; &i); �i) 2 QA� for i 2 f1; 2g, such that: [(a1; &1); (a2; &2)] 2 R;

{ Propositions. The set of propositions used by A� is the set of propositions that appear in the
formula �, i.e. PA� = fp j p 2 Cl(�)g;

{ Labeling function. The labeling function �A� is de�ned as follows: �A�(((a; &); �)) = �;

{ Accepting locations. We transfer in A� the generalized B�uchi acceptance condition of the transition

structure � : Q
A�
F is the set of sets of accepting locations fF1; : : : ; Fng where each Fi corresponds

to a set of accepting states in S as follows: Fi = f((a; &); �) j (a; &) 2 �:F:Fig.

It is routine to prove that the constructed automaton A� accepts the right
oating language.

� Induction case. By induction hypothesis, we know that for each formula of levelj with j < i, we
are able to construct a congruent monitored recursive event-clock automaton A . Let us show that
we can construct a automaton for each formula of leveli. By inspecting the grammar rules for leveli-
formulas, it is not di�cult to see that if we consider real-time formulas as atomic, the leveli-formulas are
constructed in the same way as level0-formulas. The construction of A� will be exactly as for the base
case with the exception that we must treat the real-time formulas. We treat them as follows: for each
formula �I�3, we use the (history) atomic real-time constraint xA�3 2 I , and for each formula �I�3,
we use the (predicting) atomic real-time constraint yA�3 2 I . Those constraints have the property, by

induction hypothesis, that: for every TSS �, every time t 2 R+ : (�; t) j= �I�3 i� (�; t) j= xA�3 2 I
and (�; t) j= �I�3 i� (�; t) j= yA�3 2 I . Finally, when constructing the automaton A�, we use as set of

propositions PA� the set of propositions that appears into formula � and we check that the following
additional rule for locations: if ((a; &); �) 2 QA� then for each real-time constraints �I�1, �I�1 2 a i�
(xA�1 2 I) 2 �, and similarly for the future real-time operators: for each real-time constraints �I�1,
�I�1 2 a i� (yA�1 2 I) 2 �. Again, it is routine to prove that the constructed automaton A� accepts
the right
oating language.

2

55

As the recursive event-clock automata subsume the formalisms that de�ne the counter-free real-time !-
regular languages, we propose to call the languages identi�ed by recursive event-clock automata as follows:

De�nition 4.64 The sets of timed state sequences de�nable by the formalisms of recursive event-clock
automata form the class of real-time !-regular languages.

Note that the last theorem and theorem 4.11, allow us to derive the following corollary:

Corollary 4.65 (EventClockTA � REventClockTA) The class of recursive event-clock automata is strictly
more expressive that the class of propositional event-clock automata. 2

From the base case of the last proof, we can see that if p in not real-time constrained in � then p does
not appear in the subautomata of A�.

Lemma 4.66 (Not Real-Time Constrained Propositions) Let � be an EventClockTL formula and p a
proposition of � that does not appear in the scope of a real-time operator (�;�) then we can construct an
MEventClockTA A� such that (i) FloatLang(A�) = FloatLang(�) and (ii) p does not appear in the proposition
used by subautomata of A�.

We will use this property to determine how to introduce second-order quanti�cation within real-time
logics in the following section.

5 Adding Counting and Beyond

5.1 Introduction

In this section, we show how to close the gap between the counter-free real-time regular languages identi�ed
in section 3, and the (counter) real-time regular languages identi�ed in the section 4. We will show that
there are two ways to bridge this expressiveness gap.

The �rst way, is to add automaton operators to the real-time logics EventClockTL and MetricIntervalTL,
giving respectively, E-EventClockTL and E-MetricIntervalTL. This is very similar to the situation in the
temporal formalisms where it has been shown in [Wol83] that LTL can be extended with B�uchi automata
operators giving the logic E-TL which is able to express, in contrast with LTL, all regular languages. The
only di�erence is that we need
oating automata here because we must be able to look in the past. So
E-EventClockTL and E-MetricIntervalTL de�ne exactly the same class of real-time languages than the recursive
event-clock automata.

The second way consists of adding second-order quanti�cation to EventClockTL, MetricIntervalTL and
MinMaxML1. But here the situation, surprisingly, is very di�erent from the situation in untimed languages.
In untimed languages, second-order quanti�cation can be added without restriction and close the gap between
counter-free and counter regular languages. In real-time, we will see that adding unrestricted second-order
quanti�cation leads to a fully undecidable formalism: neither satis�ability, nor validity are decidable, and the
resulting formalisms are strictly more expressive than timed automata. But we will show that if we slightly
restrict the use of second-order quanti�cation, we obtain fully decidable formalisms called Q-EventClockTL,
Q-MetricIntervalTL and MinMaxML2. Interestingly, those three formalisms de�ne exactly the class of counter
real-time regular languages as recursive event-clock automata.

We will show that the results that we have obtained are sharp in the sense that small relaxations of
the syntactical restrictions that we have imposed to our formalisms either lead to formalisms that are as
expressive as timed automata, or to fully undecidable formalisms. In particular, we will show that only
adding outermost second-order quanti�cation, called here projection, to all the fully decidable formalisms
previously de�ned, leads to formalisms as expressive as timed automata and have thus a non decidable
validity problem. As all those formalisms de�ne the same class of real-time languages, we call this class
\projected real-time languages regular languages". We also study two other relaxations that lead to fully
undecidable formalisms.

56

5.2 Adding the Ability to Count

5.2.1 Adding Automata Operators

In this section, we give the de�nition of the syntax and semantics of the real-time logics EventClockTL

and MetricIntervalTL extended with monitored
oating automata operators (or equivalently add
oating
automata instead of their monitored version).

De�nition 5.1 (E-EventClockTL-Syntax) The formulas of the extended event clock temporal logic
E-EventClockTL are de�ned as for EventClockTL, see de�nition 3.16, with the following additional clause:

� ::= A(�1; : : : ; �n)

where A = (Q;Q0; QM ; �;�; �;QF) is a monitored
oating automaton with � = f�1; �2; : : : ; �ng is the
alphabet of A, � : Q ! � is the labeling function that labels each location of A with a E-EventClockTL

formula, other elements are as for monitored
oating automata, see de�nition 4.23. 2

We de�ne the semantics of the automata operators as follows:

De�nition 5.2 (E-EventClockTL-Semantics) Let � be an E-EventClockTL formula and let � be a timed
state sequence whose propositional symbols contain all propositions that occur in �. The formula � holds at
time t 2 R+ of �, denoted (�; t) j= �, according to the following de�nition:

For the operators of the logic EventClockTL, see de�nition 3.17;
(�; t) j= A(�1; �2; : : : ; �n) i� there is an in�nite t-monitored run � of A on � that respects:

(1) Covering, Start, Consecution, Monitoring and Acceptance are as for monitored

oating automata, see de�nition 4.24;

(2) Constraint: for all t 2 R+ , (�; t) j= �(�(t));

2

Let us now turn to the extension of MetricIntervalTL.

De�nition 5.3 (E-MetricIntervalTL-Syntax) The formulas of the extended metric interval temporal logic
E-EventClockTL are de�ned as for MetricIntervalTL, see de�nition 3.9, with the following additional clause:

� ::= A(�1; : : : ; �n)

where A = (Q;Q0; QM ; �;�; �;QF) is a monitored
oating automaton where � = f�1; �2; : : : ; �ng is the
alphabet of A, � : Q ! � is the labeling function that labels each location of A with a E-MetricIntervalTL

formula, other elements are as for monitored
oating automata, see de�nition 4.23. 2

We de�ne the semantics of the automata operators as follows:

De�nition 5.4 (E-MetricIntervalTL-semantics) Let � be an E-MetricIntervalTL formula and let � be a
timed state sequence whose propositional symbols contain all propositions that occur in �. The formula �
holds at time t 2 R+ of �, denoted (�; t) j= �, according to the following de�nition:

For the operators of the logic MetricIntervalTL, see de�nition 3.11;
(�; t) j= A(�1; �2; : : : ; �n) i� there is an in�nite t-monitored run � of A on � that respects:

(1) Covering, Start, Consecution, Monitoring, Acceptance are as for monitored

oating automata, see de�nition 4.24;

(2) Constraint: for all t 2 R+ , (�; t) j= �(�(t));

2

We will study the expressiveness and decidability results of those logics in the following sections.

57

5.2.2 Adding Second-Order Quanti�cation

The quanti�ed temporal logics Q-EventClockTL and Q-MetricIntervalTL are de�ned by adding second order
quanti�cation to EventClockTL and MetricIntervalTL in a restricted way.

De�nition 5.5 (Q-EventClockTL-Syntax) The formulas of the quanti�ed event clock temporal logic
Q-EventClockTL are de�ned as for EventClockTL, see de�nition 3.16, with the following additional clause:

� ::= 9p �

where p is a proposition which, inside the formula , does not occur within the scope of a history or prophecy
operator. 2

We now de�ne the semantics of the additional clause:

De�nition 5.6 (Q-EventClockTL-Semantics) Let � be an Q-EventClockTL formula and let � be a timed
state sequence whose propositional symbols contain all propositions that occur freely in �. The formula �
holds at time t 2 R+ of �, denoted (�; t) j= �, according to the following de�nition:

For the operators of the logic EventClockTL, see de�nition 3.17;
(�; t) j= 9p � � i� there is a fpg-extension of �, noted �p, such that (�p; t) j= �;

2

Similarly, we de�ne the second order quanti�cation extension of MetricIntervalTL as follows:

De�nition 5.7 (Q-MetricIntervalTL-Syntax) The formulas of the quanti�ed metric interval temporal logic
E-MetricIntervalTL are de�ned as for MetricIntervalTL, see de�nition 3.9, with the following additional clause:

� ::= 9p �

where p is a proposition which, inside the formula , does not occur within the scope of a real-time operator
with interval di�erent from (0;1). 2

We now de�ne the semantics of the additional clause:

De�nition 5.8 (Q-MetricIntervalTL-Semantics) Let � be an Q-MetricIntervalTL formula and let � be a
timed state sequence whose propositional symbols contain all propositions that occur freely in �. The
formula � holds at time t 2 R+ of �, denoted (�; t) j= �, according to the following de�nition:

For the operators of the logic MetricIntervalTL, see de�nition 3.11;
(�; t) j= 9p � � i� there is a fpg-extension of �, noted �p, such that (�p; t) j= �;

2

Similarly, we introduce second-order quanti�cation in the real-time monadic theory that we have de�ned
in section 3.4.

De�nition 5.9 (MinMaxML2-Syntax) The formulas of the Second-Order Real-Time Monadic Logic over
the Reals MinMaxML2 are de�ned as for MinMaxML1, de�nition 3.20, with the following additional clause:

� ::= 9p �	

where p is a monadic predicate which, inside the formula 	, does not occur within the scope of a real-time
quanti�er Min;Max. 2

The semantics of the additional clause is as usual:

De�nition 5.10 (MinMaxML2-Semantics) Let � be an MinMaxML2 formula and let � be a timed state
sequence whose propositional symbols contain all propositions that occur freely in �. The formula � holds
in the pair (�; �), denoted (�; �) j= �, according to the following de�nition:

For the operators and terms of the logic MinMaxML1, see de�nition 3.21 and de�nition 3.22;
(�; �) j= 9p � � i� there is a fpg-extension of �, noted �p, such that (�p; �) j= �;

2

58

5.2.3 Expressiveness Results

From the theorem 3.38 and the way we have de�ned E-EventClockTL and E-MetricIntervalTL, we have the
following corollary:

Corollary 5.11 (E-EventClockTL = E-MetricIntervalTL) The logics E-EventClockTL and E-MetricIntervalTL

are equivalently expressive.

Similarly, we obtain the following corollary for Q-EventClockTL, Q-MetricIntervalTL and MinMaxML2:

Corollary 5.12 (Q-EventClockTL = Q-MetricIntervalTL = MinMaxML2) The logics Q-EventClockTL,
Q-MetricIntervalTL and MinMaxML2 are equivalently expressive.

So, what will be proved for Q-EventClockTL, can be derived for Q-MetricIntervalTL and for MinMaxML2.
Let us now study the relation that exists between our quanti�ed logics and the formalisms of recursive

event-clock automata:

Lemma 5.13 (REventClockTA � Q-EventClockTL) For every REventClockTA A, we can construct a congru-
ent Q-EventClockTL formula �A, that is for every TSS �, every time t 2 R+ : AcceptA(�; t) i� (�; t) j= �A.

Proof. Using the equivalence result for REventClockTA and MEventClockTA given by theorem 4.28, we can
show that for everyMEventClockTA A, we can construct a congruent Q-EventClockTL formula �A. We reason
by induction on the level of the MEventClockTA A.
Base case. The automaton A = (Q;Q0; QM ; �;P ; �;QF) is a monitored
oating automata, i.e. level(A) = 0.
In that case, the formula �A is constructed from the following formulas:

� let Controle be the following propositional formula:
W
q2Q

atq, where _ denotes an exclusive or and the

proposition atq intuitively means that the control resides in location q. Controle means that at each
time during a run, the control of the automaton resides in one and only one location.

� let Init be the following formula:

:�> !
W
q2Q0

atq

that expresses the initially (:�>) the control of the automaton must reside in an initial location;

� let Transition be the following formula:

V
q2Q atq ! 1.^ atqW

W
(q;q2)2�

atq2
2.^ atqZ

W
(q2;q)2�

atq2

that expresses the transition relation.

� let Monitoring be the following formula:

W
q2QM

atq

that is true when the control of the automaton is in a monitored location;

� let Labelling be the following formula:

V
q2q atq ! (�(q))T

where (�(q))T is as follows:

V
 2�(q)

T ^
V
 2Limit(P)n�(q) :

T

59

and:

{ (p)T = p for p 2 P ;

{ (�!p)T = p;

{ (�p)T = �p;

{ (>)T = >;

{ (
�!
>)T = >;

{ (
 �
>)T = �>.

� let Acceptance be the following formula: for the generalized B�uchi acceptance QF = fF1; : : : ; Fng:V
Fi2F

2�
W
q2Fi

atq

The formula �A that corresponds to the monitored
oating automaton A is:

9atq0 ; : : : ; atqn : 1.^ �Control ^ 2Control ^ Control
2.^ �Init
3.^ �Transition ^ 2Transition ^ Transition
4.^ Monitoring� Labeling ^ 2Labeling ^ Labeling
5.^ Acceptance

Induction case. By induction hypothesis, for every sub-automaton B 2 SUB(A), we are able to con-
struct a congruent formula �B . Let us show that we can do it for A too. The only di�erence between
an MEventClockTA and a monitored
oating automata is the ability of MEventClockTA to use clock con-
straints in their labeling function. We de�ne the function T that given a label � of A, return the right
EventClockTL formula. The label � is a set of literals, more precisely, � � Limit(PA[AA). The construction
is as for the base case, we only have to show how to deal with atomic clock constraints. We treat atomic
real-time constraints as follows:

� = yB � c then
T = ��c�B ;

� = xB � c then
T = ��c�B ;

By examining the construction above, it is easy to see that the existentially quanti�ed proposition, i.e.
atq0 ; : : : ; atqn do not appear in the scope of a real-time operator, so the formula �A is in Q-EventClockTL. 2

We now prove the reverse lemma:

Lemma 5.14 (Q-EventClockTL � REventClockTA) For every Q-EventClockTL formula �, we can construct
a congruent REventClockTA automaton A�, that is for every TSS �, every time t 2 R+ : AcceptA�(�; t) i�
(�; t) j= �.

Proof. By theorem 4.28, we can consider monitored recursive event clock automata in the proof. In the
proof of lemma 4.63, we have shown that for every EventClockTL formula �, we can construct a congru-
ent MEventClockTA A�, from that proof, it can easily be shown that MEventClockTA are closed under all
EventClockTL operators. Further, in lemma 4.52 it has been shown that MEventClockTA are partially closed
under projection: a proposition that does not appear in a sub-automaton can be projected. So as quanti�ed
propositions do not appear, by de�nition, in the scope of real-time operators, they do not appear into a
sub-automaton, see lemma 4.63, and thus can be projected. 2

60

From the two previous lemmas and corollary 5.12, we obtain the following theorem:

Theorem 5.15 The logics Q-EventClockTL, Q-MetricIntervalTL and MinMaxML2 have the same expressive
power as REventClockTA automata. 2

And thus, as we have translation procedures between those formalisms, we have:

Theorem 5.16 The satis�ability problems for Q-EventClockTL, Q-MetricIntervalTL and MinMaxML2 are
decidable. 2

Since already the untimed quanti�ed temporal logic Q-TL is non-elementary [Sis83], so are the satis�ability
problems for Q-EventClockTL and Q-MetricIntervalTL.

Theorem 5.17 The satis�ability problems for Q-EventClockTL, Q-MetricIntervalTL and MinMaxML2 are
NonElem. 2

Let us now turn to the logics E-EventClockTL and E-MetricIntervalTL. Again, by theorem 3.37 and the
de�nition of E-EventClockTL and E-MetricIntervalTL, we have the following corollary:

Corollary 5.18 (E-EventClockTL = E-MetricIntervalTL) The logics E-EventClockTL and E-MetricIntervalTL

are equivalently expressive. 2

So, what will be proved for E-EventClockTL, can be derived for E-MetricIntervalTL.

Lemma 5.19 (E-EventClockTL � REventClockTA) For every E-EventClockTL formula �, we can construct
a congruent REventClockTA automaton A�, that is for every TSS �, every time t 2 R+ : AcceptA�(�; t) i�
(�; t) j= �.

Proof. Again, thanks to the theorem 4.28 we can show that E-EventClockTL � MEventClockTA. We already
know thatMEventClockTA are closed under all EventClockTL operators. With an adaptation of the techniques
of [SVW85] (see also section 4.5) it can be shown that MEventClockTA are closed under monitored
oating
automata operators. 2

The other direction is trivial:

Lemma 5.20 (REventClockTA � E-EventClockTL) For every REventClockTA automaton A�, we can con-
struct a congruent E-EventClockTL formula �, that is for every TSS �, every time t 2 R+ : (�; t) j= � i�
AcceptA�(�; t).

Thus the two formalisms are equally expressive.

Theorem 5.21 The logic E-EventClockTL and automata REventClockTA are equally expressive.

And thus,

Theorem 5.22 (All Equivalent) The logics E-EventClockTL, Q-EventClockTL, E-MetricIntervalTL,
Q-MetricIntervalTL and MinMaxML2 are all equivalent in expressive power to the formalisms of
REventClockTA, and thus de�ne the (counter) real-time regular languages. 2

As we have translation procedure between those formalisms, we have that:

Theorem 5.23 (E-EventClockTL and E-MetricIntervalTL-Decidability) The logics E-EventClockTL and
E-MetricIntervalTL are decidable. 2

Further, it can be shown that:

61

Theorem 5.24 (E-EventClockTL and E-MetricIntervalTL-Complexity) The satis�ability problems for
E-EventClockTL and E-MetricIntervalTL0;1 are complete for Pspace. The satis�ability problem for
E-MetricIntervalTL is complete for Expspace. 2

5.3 Projected Regular Real-Time Languages

In this section, we study the impact, in term of decidability and expressivity, of adding projection, i.e.
outermost existential quanti�cation, to the fully decidable that we have de�ned previously.

We will detail the introduction of projection into the logic of event clocks giving its projected version
P-EventClockTL, the propositional (non recursive) event-clock automaton giving P-EventClockTA and the
recursive event-clock automata giving P-REventClockTA. Using equivalence results that we have presented
above, we derive implicitly all the corollaries for the other formalisms.

5.3.1 Projected Event-Clock Temporal Logic

We de�ne the syntax and semantics of this logic as follows:

De�nition 5.25 (P-EventClockTL-Syntax) The formulas of the projected event clock temporal logic
P-EventClockTL are de�ned by the following clause:

9p1; : : : ; pn � �

where � is an EventClockTL-formula, see de�nition 3.16, and p1; : : : ; pn are propositional symbols. 2

Let us note that, in contrast with the de�nition of Q-EventClockTL, we allow in P-EventClockTL that
quanti�ed propositions appear in the scope of real-time operators. But on the other hand, quanti�cation
is only allowed as the outermost operator. The semantics of second-order existential quanti�cation is the
expected one:

De�nition 5.26 (P-EventClockTL-Semantics) Let � be an P-EventClockTL formula and let � be a timed
state sequence whose propositional symbols contain all propositions that occur freely in �. The formula �
holds at time t 2 R+ of �, denoted (�; t) j= �, according to the following de�nition:

For the operators of the logic EventClockTL, see de�nition 3.17;
(�; t) j= 9p1; : : : ; pn � � i� there is a fp1; : : : ; png-extension of �, noted �fp1;:::;png, such that

(�fp1;:::;png; t) j= �;

2

The anchored language of the P-EventClockTL formula 9p1; : : : ; pn � � has the following relation with the
anchored language of the EventClockTL formula �:

Lemma 5.27 If P is the set of propositions that appear in � 2 EventClockTL and P 0 = P n fp1; : : : ; png
then AncLang(9p1; : : : ; pn � �) = f� # P 0 j � 2 AncLang(�)g. 2

5.3.2 Projected (Propositional) Event-Clock Automata

The de�nitions for projected (propositional) event-clock automata are obtained in a similar way:

De�nition 5.28 (P-EventClockTA-Syntax) A projected (propositional) event-clock automaton is a pair
(A; fp1 : : : png) that consists of a (propositional) event-clock automaton A and a set of propositions
fp1 : : : png. 2

De�nition 5.29 (P-EventClockTA-Semantics) The anchored language de�ned by a P-REventClockTA
(A; fp1 : : : png), with A de�ned on the set of propositions P , is the (P n fp1 : : : png)-projections of
TSS that belongs to the anchored language of A, that is, if we note P 0 = P n fp1; : : : ; png, we have
AncLang((A; fp1 : : : png)) = f� # P 0 j � 2 AncLang(A)g. 2

62

5.3.3 Projected Recursive Event-Clock Automaton

We now turn to the de�nition of projection into recursive event clock automata.

De�nition 5.30 (P-REventClockTA-Syntax) A projected recursive event-clock automaton is a pair
(A; fp1 : : : png) that consists of a recursive event-clock automaton A and a set of propositions fp1 : : : png. 2

De�nition 5.31 (P-REventClockTA-Semantics) The anchored language de�ned by a P-REventClockTA
(A; fp1 : : : png), with A de�ned on the set of propositions P , is the (P n fp1 : : : png)-projections of
TSS that belongs to the anchored language of A, that is, if we note P 0 = P n fp1; : : : ; png, we have
AncLang((A; fp1 : : : png)) = f� # P 0 j � 2 AncLang(A)g. 2

5.3.4 Timed Automata

We brie
y recall here the de�nition of timed automata. See [AD94] for a complete study of this formalism.

De�nition 5.32 (Continuous Timed Automaton) A continuous timed automaton is a tuple A =
(Q;Q0; C; E;P ; �p; �c; QF) where:

� Q is a �nite set of locations;

� Q0 � Q is the subset of starting locations;

� C is a �nite set of clocks;

� E � Q� 2C �Q a set of edges. An edge (q1; &; q2) represents a transition from location q1 to location
q2, & is the subset of clocks that are reset when crossing the edge;

� P is a �nite set of propositions;

� �p : Q! 2P is a labeling function which labels each location with the set of atomic propositions that
are true in that location;

� �c : Q! �(C) is a labeling function which assigns to each location a constraint of �(C) on the value
of clocks that should be veri�ed when staying in that location;

� QF is a set of accepting locations (B�uchi acceptance condition).

2

De�nition 5.33 (TA-Timed Run) A continuous timed run of a continuous timed automaton A is an
in�nite sequence

� = (q0; I0)!&0 (q1; I1)!&1 : : : (qn; In)!&n : : :

� qi are locations;

� I0I1 � � � In � � � is a sequence of intervals that partitions R+ ;

� &i � C are sets of clocks (to reset).

2

De�nition 5.34 (TA-Clock Value) The value of a clock x 2 C along a continuous timed run � =
(q0; I0)!&0 (q1; I1)!&1 � � � , at time t 2 Ii, noted �(�; t)(x), is de�ned as follows:

�(�; t)(x) =

�
t� r(Ij) if x 2 &j and 8k � j < k < i : x 62 &k
t if 8j : 0 � j < i : x 62 &j

We use �(�; t) to denote the clock valuation at time t along �. 2

63

De�nition 5.35 (Clock Constraints-Semantics) A clock constraint is satis�ed by a clock valuation
�, noted � j= , according to the following rules:

� j= x � c i� �(x) � c, with �2 f<;�;=;�; >g;
� j= : i� � 6j= ;
� j= 1 _ 2 i� � j= 1 or � j= 2.

2

De�nition 5.36 (TA-Accepted Run) A continuous timed run � = (q0; I0) !&0 (q1; I1) !&1

: : : (qn; In) !&n : : : is accepted by the continuous timed automaton A = (Q;Q0; C; E;P ; �p; �c; QF) when
reading the TSS � = (s; I) i� � respects the following requirements:

� Starting. The �rst location in � is a starting location of A, that is q0 2 Q0;

� Consecution. The continuous timed run � respects the transition relation of A, i.e. for all positions
i � 0, we have that either (qi; &i; qi+1) 2 E, or qi = qi+1 and &i = ; (stuttering steps are allowed);

� Timing constraints. The timing constraints about clocks are respected along �, that is, for every
position i � 0, for all time t 2 Ii : �(�; t) j= �c(qi);

� Adequation. The labels along the continuous timed run � are in adequation with the truth value of the
propositions along the TSS �, that is for all time t 2 R+ , (�; t) j= �p(�(t));

Further, we say that � is accepting if there exists in�nitely many positions i � 0 such that qi 2 QF . We note
AcceptA(�) the fact that A has an accepted continuous timed run on �. 2

De�nition 5.37 The anchored language of a continuous TA A is the set of TSS � on which A has an accepted

run, i.e. AncLang(A) = f� 2 TSS(2P
A

) j AcceptA(�)g. 2

Timed automata are closed under positive boolean operation but not under negation.

Theorem 5.38 (Closure under Union and Intersection) [AD94] Timed automata are closed under
union and intersection. 2

Theorem 5.39 (Non-Closure under Complement) The formalism of timed automata is not closed un-
der complement. 2

The emptiness problem of timed automata is decidable, on the other hand, its universality problem is
undecidable.

Theorem 5.40 (TA-Emptiness) [AD94] The emptiness problem for timed automata is PSpace-

Complete. 2

But the universality problem, that is given a timed automaton, determine if it accepts all possible timed
traces, is undecidable.

Theorem 5.41 (TA-Universality) [AD94] The problem of universality for timed automaton is undecid-
able. 2

64

5.3.5 Expressiveness Results

In this paragraph, we show that adding projection to the fully decidable formalism is powerful. In fact, we will
show that even if added to propositional event-clock automata we obtain a formalism which is expressively
equivalent to timed automata. The same occurs with all the other formalisms that we have de�ned.

We now prove that adding projection to the logic EventClockTL extends is expressive power in such a
way that P-EventClockTL at least as expressive as TA:

Lemma 5.42 (TA � P-EventClockTL) For every continuous timed automaton A, we can compute a pro-
jected event clock temporal formula �A that de�nes exactly the anchored timed language de�ned by A, that
is, AncLang(�) = AncLang(A)

Proof. Let A = (Q;Q0; C; E;P ; �p; �c; QF) be the continuous timed automaton for which we want to
construct the P-EventClockTL formula �A. We construct �A as follows:

� For each location q 2 Q we introduce the proposition atq to express that the control of automaton
resides in location q. During a run the control of an timed automaton A resides in one and only one
location at a given time. This is expressed by the following formula:

FQ � 2
W
q2Q

atq

with Q = fq1; q2; : : : ; qng

� The initial condition is expressed by the following formula:

FQ0
�
W
q2Q0

atq

� the propositional labeling function �p is translated as follows:

FP � 2
V
q2q(atq !

V
p2�p(q)

p ^
V
p2Pn�p(q)

:p)

� The resetting of clocks can be expressed with the help of existentially quanti�ed variables. For each
clock ci 2 C, we associate a proposition that we note rci . This proposition rci will be true when
and only when the clock ci is reset. By de�nition of timed automata, clocks are reset when crossing
edges, and implicitly at the initial moment. For each edge (qi; �r; qj) of the automaton, we introduce
the proposition cross(qi;�r ;qj) that is true i� the automaton crosses the edge between location qi and
location qj .

FR1
� 2

V
(qi;�r;qj)2E

cross(qi;�r;qj) $ (atqi ^ alqj) _ (atqj ^�alqi)

FR2
� 2[

V
(qi;�r;qj)2E

(cross(qi;�r;qj) !
V
c2�r

rc)] ^ :�>!
V
c2C rc

when the edge (qi; �r ; qj) is crossed, the clocks that decorates the edge are reset (clocks are only reset
when crossing edges that are labeled by the clock and initially).

FR3
� 2[

V
c2C rc !

W
(qi;
;qj)2R(c)

cross(qi;�r;qj) _ :�>]

where R(c) is the set of edges where the clock c is reset, i.e. R(c) = f(qi; �r; qj) j (qi; �r; qj) 2 E ^ c 2
�rg.

FR � FR1
^ FR2

^ FR3

� The consecution rule is expressed by the following formula:

FE � 2
V
q2Q(atq ! atqW

W
q02Sq

atq0)

65

where Sq is the set of locations that are successors of q in A, i.e. Sq = fq0j(q; q0) 2 Eg;

� The semantics of the time constraint labeling function �c is translated as follows:

FC � 2
V
q2Q(atq ! T (�C(q)))

where T is de�ned as:

{ T (1 _ 2) = T (1) _ T (2)

{ T (:) = :T ()

{ T (x � c) = ��crx

� The acceptance condition constraint is de�ned as follows:

FQF �
V
Fi2QF

2�
W
q2Fi

atq

The P-EventClockTL formula whose anchored language is exactly the timed state sequences accepted by
A is:

9A;C;R(FL ^ FL0 ^ FE ^ F�P ^ FR ^ F�C ^ FF)

where :

� A = fatqjq 2 Qg;

� C = fcross(qi;�r;qj)j(qi; �r; qj) 2 Eg;

� R = frcjc 2 Cg.

2

We now take a look at the other direction:

Lemma 5.43 (P-EventClockTL � TA) For every projected event clock temporal formula � 9p1; : : : ; pn ��,
we can compute a timed automaton A that de�nes exactly the anchored language de�ned by �, that is,
AncLang(A) = AncLang()

Proof. By theorem 3.33, we know that for every EventClockTL formula, we can compute an equivalent
MetricIntervalTL formula �T . By theorem ??, we know that for this formula �T , we can construct an
equivalent timed automaton A�T which is also equivalent to �. Finally, as timed automata are closed under
projection, it follows that we can construct a timed automata for the P-EventClockTL formula 9p1; : : : ; pn ��
simply by projecting p1; : : : ; pn in A�T . 2

From the two previous lemmas, we derive the following theorem:

Theorem 5.44 (P-EventClockTL = TA) The formalisms of projected event clock temporal logic and timed
automata are equally expressive to de�ne anchored languages.

Let us now turn to the characterization of the expressive power of the projected (propositional) event-
clock automata. First, we have the following lemma:

Lemma 5.45 (P-EventClockTL � P-EventClockTA) For every projected event clock temporal formula
9p1; : : : ; pn � �, we can compute a projected propositional event-clock automaton (A�; Q) that de�nes exactly
the anchored language de�ned by �, that is, AncLang((A�; Q)) = AncLang(�).

66

Proof. In [RS97], it is shown that for every formula � 2 EventClockTL, it is possible to construct an
propositional event-clock automaton A� that accepts exactly the Hintikka sequences of �. Remember that
Hintikka sequences are just H-extensions of TSS that belongs to the anchored language of � and the P-
projections of those TSS, where P is the set of propositions appearing in � are exactly the TSS that belongs
to AncLang(�). So the following P-EventClockTA (A�; H [fp1; : : : ; png) is exactly the projected automaton
we are looking for. 2

We now show that the formalism of projected propositional event clock automata de�nes anchored lan-
guages that can be de�ned using timed automata:

Lemma 5.46 (P-EventClockTA � TA) For every projected propositional event-clock automaton
(A; fp1; : : : ; png), we can compute a timed automaton B that de�nes exactly the same anchored lan-
guage, that is, AncLang((A; fp1; : : : ; png)) = AncLang(B).

Proof. In [AFH94], it is proved that for every propositional even-clock automaton we can construct a timed
automaton that de�nes exactly the same anchored language. So for A, we can construct an equivalent timed
automaton C. By lemma ??, we know that we can construct B form C by projecting the set of propositions
fp1; : : : ; png. 2

So we have the following corollary:

Corollary 5.47 The formalism of TA, P-EventClockTL, P-EventClockTA are equally expressive to de�ne
anchored languages.

Finally, we turn to the expressiveness of projected recursive event-clock automata:

Lemma 5.48 (P-REventClockTA � P-EventClockTA) For every projected recursive event-clock automaton
(A; fp1; : : : ; png), we can compute a projected propositional event clock automaton (B;Q) that de�nes exactly
the same anchored language, that is, AncLang((A; fp1; : : : ; png)) = AncLang((B;Q)).

Proof. First lemma 4.55 says that given an recursive event clock automaton A, we can construct a propo-
sitional event-clock automaton C that accepts exactly the timed Hintikka sequences of A. Let us note P 0

the set of propositions used by B, we now that f� # P j � 2 AncLang(B)g = AncLang(A), so the follow-
ing projected propositional event-clock automaton (B; (P 0 n P)[fp1; : : : ; png) accepts the desired anchored
language. 2

So, from the previous lemmas, we obtain the following lemma:

Theorem 5.49 All the formalisms TA, P-EventClockTA, P-REventClockTA and P-EventClockTL de�ne the
same class of real-time languages.

As all those formalisms de�ne the same class of languages, we give it a name:

De�nition 5.50 The class of real-time languages de�ned by TA, P-EventClockTA, P-REventClockTA and
P-EventClockTL are called the projected real-time regular languages.

The proof that the projected formalisms are all equivalent to timed automata contains an e�ective
translation, giving their decidability:

Theorem 5.51 (Projection and Decidability) The projected formalisms P-EventClockTA,
P-REventClockTA and P-EventClockTL have decidable decidable satis�ability (emptiness) problems and
undecidable validity (universality) problems.

67

Proof. The decidability of satis�ability follows directly, for each projected formalisms, from the fact that
existential quanti�cation does not change satis�ability. The undecidability of validity follows from the
undecidability of the universality problem for timed automata, see theorem 5.41, and the equivalence of
expressive power of the projected formalisms with timed automata, see theorem 5.49. 2

5.4 Undecidable Extensions

In this section, we show that the result about decidability and expressiveness that we have obtained in the
previous sections are sharp in the sense that if we liberalize the de�nitions of the previous formalisms we
encounter undecidability problems.

First, in our second-order formalisms MinMaxML2, respectively in Q-EventClockTL, we have prohib-
ited quanti�ed monadic predicates, respectively propositions, from occurring within the scope of Min or
Max quanti�ers, respectively history or prophecy operators. We de�ned the unrestricted MinMaxML2 and
Q-EventClockTL as follows:

De�nition 5.52 (Unrestricted-Q-EventClockTL and MinMaxML2) The unrestricted-Q-EventClockTL
logic is obtained by adding (unrestricted) second-order quanti�cation to EventClockTL and the unrestricted-
MinMaxML2 logic is obtained by adding (unrestricted) second-order quanti�cation to MinMaxML1.

Obviously, we have the following lemma:

Lemma 5.53 The logic unrestricted-Q-EventClockTL contains P-EventClockTL and is closed under boolean
operations. The logic unrestricted-MinMaxML2 contains P-MinMaxML2 and is closed under boolean opera-
tions.

The restriction on the use of second-order quanti�cation is necessary for decidability. If, as seen above,
we admit only outermost existential quanti�cation (projection) over monadic predicates (propositions) that
occur within the scope of real-time operators, we obtain a positively decidable formalism (satis�ability is
decidable, but validity is not) which is expressively equivalent to timed automata. Consequently, if we admit
full quanti�cation over monadic predicates (propositions) that occur within the scope of real-time operators,
then both satis�ability and validity are undecidable, and the formalism is expressively equivalent to boolean
combinations of timed automata.

Theorem 5.54 Formalisms that are able to express boolean combinations of projected formalisms have un-
decidable satis�ability and validity problems.

So, as unrestricted MinMaxML2 and Q-EventClockTL allow the expression of boolean combinations of
projected timed regular languages, we have the following theorem:

Theorem 5.55 The logics unrestricted-Q-EventClockTL and unrestricted-MinMaxML2 have undecidable sat-
is�ability and validity problems.

We now turn to the restriction that we impose on MinMaxML1 formulas. A fully undecidable extension
of MinMaxML1 is obtained by relaxing the restriction that in every formula of the form (Min t1)(t1 >

t2 ^ 	(t1)) � (t2 + c) or (Max t1)(t1 < t2 ^ 	(t1)) � (t2 � c), the sub-formula 	(t1) contains no free
occurrences of �rst-order variables other than t1. If we suppress this restriction, it can be shown that the
real-time temporal logic MetricTL can be embedded in MinMaxML1.

De�nition 5.56 (Unrestricted-MinMaxML1) The formulas of unrestricted-MinMaxML1 are obtained from
relaxing the constraints on the free variables occuring in the scope of Min�Max quanti�ers.

For this unrestricted version of MinMaxML1, we have the following lemma:

Lemma 5.57 For every formula of MetricTL there exists a congruent formula of MinMaxML1.

68

Proof. We simply show that we are able to express the �=c operator of MetricTL (which is su�cient to
obtain undecidability), other constructs of the logic are easier. The formula �=1p of MetricTL is expressed
as follows in unrestricted-MinMaxML1:

9t2 � [Mint1 � (t1 > t ^ t1 = t2) = t+ 1] ^ p(t2)

In fact, 9t2 �Mint1 � (t1 > t ^ t1 = t2) = t+ 1 forces t2 to be equal to t+ 1. 2

Since MetricTL is undecidable [AH93], so are the satis�ability and validity problems for unrestricted
MinMaxML1.

Theorem 5.58 (Undecidability) The satis�ability and validity problems for unrestricted-MinMaxML1 are
undecidable. 2

6 Conclusion

We have shown that EventClockTL, when evaluated in timed state sequences, has exactly the same expres-
sive power as MetricIntervalTL. This nice result is surprising because EventClockTL and MetricIntervalTL

are rather di�erent logics, that propose orthogonal restrictions to reach decidability: EventClockTL allows
punctuality constraints but restricts real-time constraints to refer to the next (last) time a formula will be
(was) true, whereas MetricIntervalTL allows formulas to refer to any time where a formula will be true, but
disallows punctuality constraints. In the process of proving the equivalence between the expressive powers
of EventClockTL and MetricIntervalTL, we have also shown that the PSpace fragment of MetricIntervalTL,
that is MetricIntervalTL0;1, is expressively complete. Those results have been reinforced by the de�nition of
a real-time �rst-order monadic theory, called MinMaxML1, that identi�es exactly the same class of real-time
languages as MetricIntervalTL and EventClockTL. As two very di�erent logics and a classical theory identify
the same class of fully decidable real-time languages, we have proposed to call this class of languages the
\counter-free real-time regular languages".

We have also shown that the expressive powers of EventClockTL and the propositional event-clock au-
tomata, as proposed in [AFH94], are incomparable. To remedy this situation, we have proposed to generalize
the concept of event clock by allowing, recursively, automata as events. More precisely, these automata reset
a clock when they enter their monitored locations. This yields a formalism that we have called the recur-
sive event-clock automata, noted REventClockTA. These automata subsume the expressive power of the logic
EventClockTL, and keep all the nice properties of the propositional version, namely: closure under all boolean
operations and decidability of both the emptiness and universality problems. Further, we have shown that by
adding the ability to count to the formalisms that identify the \counter-free real-time regular languages", we
obtain formalisms that recognize the same class of languages than our REventClockTA. So, we proposed to
call this class of languages the \real-time regular languages". The introduction of second-order quanti�cation
into real-time logics requires some care: second-order quanti�cation can be used outside or inside real-time
operators but not through real-time operators. This is quite di�erent from the qualitative case, where no
restriction on second-order quanti�cation is needed. We have shown that this result is sharp in the sense
that: �rst, it is exactly what we need to bridge the gap between counter-free and counting real-time regular
languages, second, even small relaxations of this restriction lead to lose full decidability and closure under
negation. Finally, we have shown that adding projection, that is an outermost second-order quanti�cation, to
counter-free or (counting) real-time regular languages, leads to formalisms expressively equivalent to timed
automata. Therefore, we proposed to call these languages, the \projected real-time regular languages". This
class is not closed under negation and the corresponding formalisms are only positively decidable. All those
results are summarized in the following tables:

69

Languages Temporal logics Monadic theories Finite automata

Fully decidable
R-timed

1 counter-free MetricIntervalTL =
!-regular EventClockTL MinMaxML1

2 R-timed Q-MetricIntervalTL =
!-regular Q-EventClockTL = MinMaxML2 REventClockTA

E-MetricIntervalTL =
E-EventClockTL

(projection, or outermost existential quanti�cation, is indicated by P-):

Positively decidable
3 projection-closed P-EventClockTL P-MinMaxML2 P-REventClockTA

R-timed !-regular = Ld$ = TA

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183{235,
1994. Preliminary version appears in Proc. 17th ICALP, 1990, LNCS 443.

[AFH91] R. Alur, T. Feder, and T.A. Henzinger. The bene�ts of relaxing punctuality. In Proceedings of the
Tenth Annual Symposium on Principles of Distributed Computing, pages 139{152. ACM Press,
1991.

[AFH94] R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed automata. In D.L. Dill,
editor, CAV 94: Computer-aided Veri�cation, Lecture Notes in Computer Science 818, pages 1{13.
Springer-Verlag, 1994.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The bene�ts of relaxing punctuality. Journal of the ACM,
43(1):116{146, 1996.

[AH90] R. Alur and T.A. Henzinger. Real-time logics: complexity and expressiveness. In Proceedings
of the Fifth Annual Symposium on Logic in Computer Science, pages 390{401. IEEE Computer
Society Press, 1990.

[AH92] R. Alur and T.A. Henzinger. Back to the future: towards a theory of timed regular languages. In
Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pages 177{186.
IEEE Computer Society Press, 1992.

[AH93] R. Alur and T.A. Henzinger. Real-time logics: complexity and expressiveness. Information and
Computation, 104(1):35{77, 1993. Special issue for LICS 90.

[AH94] R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181{204, 1994.

[BKP86] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and its temporal
logic. In Proceedings of the 13th Annual Symposium on Principles of Programming Languages,
pages 173{183. ACM Press, 1986.

[B�uc62] J.R. B�uchi. On a decision method in restricted second-order arithmetic. In E. Nagel, P. Suppes,
and A. Tarski, editors, Proceedings of the First International Congress on Logic, Methodology,
and Philosophy of Science 1960, pages 1{11. Stanford University Press, 1962.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proceedings
of the Seventh Annual Symposium on Principles of Programming Languages, pages 163{173. ACM
Press, 1980.

70

[Kam68] J.A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California
at Los Angeles, 1968.

[RS97] J.-F. Raskin and P.-Y. Schobbens. State clock logic: a decidable real-time logic. In O. Maler,
editor, HART 97: Hybrid and Real-time Systems, Lecture Notes in Computer Science 1201, pages
33{47. Springer-Verlag, 1997.

[Sis83] A.P. Sistla. Theoretical Issues in the Design and Veri�cation of Distributed Systems. PhD thesis,
Harvard University, 1983.

[SVW85] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for B�uchi automata
with applications to temporal logic. In Proc. 10th Int. Colloquium on Automata, Languages
and Programming, volume 194, pages 465{474, Nafplion, July 1985. Lecture Notes in Computer
Science, Springer-Verlag.

[Wil94] T. Wilke. Specifying timed state sequences in powerful decidable logics and timed automata. In
H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, FTRTFT 94: Formal Techniques in
Real-time and Fault-tolerant Systems, Lecture Notes in Computer Science 863, pages 694{715.
Springer-Verlag, 1994.

[Wol82] P. Wolper. Synthesis of Communicating Processes from Temporal-Logic Speci�cations. PhD thesis,
Stanford University, 1982.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72{99, 1983.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about in�nite computation paths. In Proceed-
ings of the 24th Annual Symposium on Foundations of Computer Science, pages 185{194. IEEE
Computer Society Press, 1983.

71

