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Abstract

The algorithmic approach to the analysis of timed and hybrid systems is fundamentally limited by
undecidability, of universality in the timed case (where all continuous variables are clocks), and of empti-
ness in the rectangular case (which includes drifting clocks). Traditional proofs of undecidability encode
a single Turing computation by a single timed trajectory. These proofs have nurtured the hope that the
introduction of \fuzziness" into timed and hybrid models (in the sense that a system cannot distinguish
between trajectories that are su�ciently similar) may lead to decidability. We show conclusively that
this is not the case, by sharpening both fundamental undecidability results. Besides the obvious blow
our results deal to the algorithmic method, they also prove that the standard model of timed and hybrid
systems, while not \robust" in its de�nition of trajectory acceptance (which is a�ected by tiny perturba-
tions in the timing of events), is quite robust in its mathematical properties: the undecidability barriers
are not a�ected by reasonable perturbations of the model.
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C-98-3614, ARO MURI grant DAAH-04-96-1-0341
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1 Introduction

The main limitations of the algorithmic method for analyzing timed and hybrid systems �nd their precise
expression in two well-publicized undecidability results. First, the universality problem for timed automata
(does a timed automaton accept all timed words?) is undecidable [AD94]. This implies that timing require-
ments which are expressible as timed automata cannot be model checked. Consequently, more restrictive
subclasses of timing requirements have been studied (e.g., Event-Clock Automata [AFH94], Metric Interval
Temporal Logic [AFH96]). Second, the emptiness/reachability problem for rectangular automata (does a
rectangular automaton accept any timed word, or equivalently, can a rectangular automaton reach a given
location?) is undecidable [HKPV95]. While several orthogonal undecidability results are known for hybrid
systems, it is the rectangular reachability problem which best highlights the essential limitations of the algo-
rithmic approach to systems with continuous dynamics. This is because the rectangular automaton model
is the minimal generalization of the timed automaton model capable of approximating continuous dynamics
(using piecewise linear envelopes). It follows that rectangularity as an abstraction is insu�cient for check-
ing invariants of hybrid systems, and further loss of information is necessary (e.g., initialization [HKPV95],
discretization [HK97]).

Both central undecidability results have been proved by encoding each computation of some Turing-
complete machine model as a trajectory of a timed or hybrid system. The encodings are quite fragile: given
a deterministic Turing machine M with empty input, one constructs either a timed automaton that rejects
the single trajectory which encodes the halting computation of M (rendering universality undecidable), or a
rectangular automaton that accepts that single trajectory (rendering emptiness/reachability undecidable).
However, if the speci�ed trajectory is perturbed in the slightest way, it no longer properly encodes the
desired Turing computation. This has led several researchers to conjecture that undecidability is due to
the ability of timed and hybrid automata to di�erentiate real points in time with in�nite precision, and the
same researchers have expressed the hope that a more realistic, slightly \fuzzy" model of timed and hybrid
systems might not su�er from undecidability.

This has led researchers to conjecture [Fra99] that undecidability is due to the ability of timed and hybrid
automata to di�erentiate real points in time with in�nite precision. Consequently, one might hope that a
more realistic, slightly \fuzzy" model of timed and hybrid systems might not su�er from undecidability.1

In a similar vein, in [GHJ97] it is conjectured that unlike timed automata, robust timed automata, which
do not accept or reject individual trajectories but bundles (\tubes") of closely related trajectories, can be
complemented.

In this paper, we refute these conjectures. In doing so, we show that the sources of undecidability
for timed and hybrid systems are structural, robust, and intrinsic to mixed discrete-continuous dynamics,
rather than an artifact of a particular syntax or of the ability to measure time with arbitrary precision. We
redo both undecidability proofs by encoding each Turing computation not as a single trajectory but as a
trajectory tube of positive diameter. This requires considerable care and constitutes the bulk of this paper.
As corollaries we obtain the following results:

Robust timed and rectangular automata Robust automata introduce \fuzziness" semantically, by ac-
cepting tubes rather than trajectories [GHJ97]. We prove that universality is undecidable for robust
timed automata (since emptiness is decidable, it follows that they are not complementable), and that
emptiness/reachability is undecidable for robust rectangular automata.

Open rectangular automata Open automata introduce \fuzziness" syntactically, by restricting all guard
and di�erential-inclusion intervals to open sets. We prove that emptiness/reachability is undecidable
for open rectangular automata.

A main impact of these results is, of course, negative: they deal a serious blow to our ability for analyzing
timed and hybrid systems automatically, much more so than the previously known results, which rely on
questionable, \fragile" modeling assumptions (one trajectory may be accepted even if all slightly perturbed

1Note that \fuzziness," as meant here, is fundamentally distinct from \discretization," which is known to lead to decidability
in many cases. Intuitively, fuzziness preserves the density of the time domain, while discretization does not. Mathematically,
discretization is performed with respect to a �xed real � > 0 representing �nite precision, while fuzziness quanti�es over � > 0
existentially.
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trajectories are rejected, and vice versa). There is, however, also a positive interpretation of our results:
they show that the \standard" model for timed and hybrid systems, with its fragile de�nition of trajectory
acceptance, does not give rise to a fragile theory but, on the contrary, is very robust with respect to its
mathematical properties (such as decidability versus undecidability).

2 Trajectories and Tubes

In this paper, we consider �nite trajectories only. A trajectory over an alphabet � is an element of the
language (��R+ )�, where R+ stands for the set of positive reals excluding 0. Thus, a trajectory is a �nite
sequence of pairs from �� R+ . We call the �rst element of each pair an event, and the second element the
time-gap of the event. The time-gap of an event represents the amount of time that has elapsed since the
previous event of the trajectory (the �rst time-gap can be thought of representing the amount of time that
has elapsed since the \beginning of time"). For a trajectory � , we denote its length (i.e., the number of
pairs in �) by len(�), and its projection onto �� (i.e., the sequence of events that results from removing the
time-gaps) by untime(�). We assign time-stamps to the events of a trajectory: for the i-th event of � , the
time-stamp is de�ned to be t� (i) =

P
1�j�i �j , where �j is the time gap associated with the j-th event of � .

Metrics on trajectories

Let the set of all trajectories be denoted Traj. Assuming that trajectories cannot be generated and recorded
with in�nite precision, in order to get an estimate of the amount of error in the data that represents a
trajectory, we need a metric on Traj. Here we de�ne, as an example, one particular metric d; in [GHJ97],
it is shown that all reasonable metrics de�ne the same topology on trajectories. Given two trajectories �
and � 0, we de�ne:

� d(�; � 0) =1 if untime(�) 6= untime(� 0).

� d(�; � 0) = maxfjt� (i)� t� 0(i)j : 1 � i � len(�)g:

Thus, only two trajectories with the same length and the same sequence of events have a �nite distance,
and �nite errors may occur only in measuring time. The metric measures the maximal di�erence in the
time-stamps of any two corresponding events: two timed words are close to each other if they have the same
events in the same order, and the times at which these events occur are not very di�erent. For instance, for
�1 = (a; 1)(a; 1)(a; 1) and �2 = (a; 0:9)(a; 1:2)(a; 1:2), we have d(�1; �2) = 0:3.

Given a metric, we use the standard de�nition of open sets. Formally, for the metric d, a trajectory � ,
and a positive real � 2 R+ , de�ne the d-tube around � of diameter � to be the set T (�; �) = f� 0 : d(�; � 0) < �g
of all trajectories at a d-distance less than � from � . A d-open set O, called a d-tube, is any subset of Traj
such that for all trajectories � 2 O, there is a positive real � 2 R+ with T (�; �) � O. Thus, if a d-tube
contains a trajectory � , then it also contains all trajectories in some neighborhood of � . Let the set of all
d-tubes be denoted Tube.

From trajectory languages to tube languages

A trajectory language is any subset of Traj; a tube language [GHJ97] is any subset of Tube. Every trajectory
language L induces a tube language [L], which represents a \fuzzy" rendering of L. In [L] we wish to include
a tube i� su�ciently many of its trajectories are contained in L. We de�ne \su�ciently many" as any dense
subset, in the topological sense.

For this purpose we review some simple de�nitions from topology. A set S of trajectories is closed if
its complement Sc = Traj � S is open. The closure S of a set S of trajectories is the least closed set

containing S, and the interior Sint is the greatest open set contained in S. The set S0 of trajectories is dense
in S i� S � S0.

Formally, given a trajectory language L, the corresponding tube language is de�ned as

[L] = fO 2 Tube : O � Lg:
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Thus, a tube O is in [L] if for each trajectory � 2 O there is a sequence of trajectories with limit � such
that all elements of this sequence are in L. Equivalently, L must be dense in O; that is, for every trajectory
� 2 O and for every positive real � 2 R+ , there is a trajectory � 0 2 L such that d(�; � 0) < �. Since the tubes
in [L] are closed under subsets and union, the tube language [L] can be identi�ed with the maximal tube

in [L], which is the interior L
int

of the closure of L.
We will de�ne the semantics of a robust rectangular automaton with trajectory set L to be the tube

set [L]. This has the e�ect that a robust rectangular automaton cannot generate (or accept) a particular
trajectory when it refuses to generate (rejects) su�ciently many surrounding trajectories. Neither can the
automaton refuse to generate a particular trajectory when it may generate su�ciently many surrounding
trajectories. Our de�nition of \su�ciently many" as \dense subset" does not seem all that strong, because
every tube O, while uncountable, has dense subsets that are countable (such as the set of trajectories in
O all of whose time-gaps are rationals). However, when we de�ne rectangular automata below, we will see
that the syntax of rectangular automata will not allow us to specify very strange trajectory languages L. In
particular, we will not be able to specify a trajectory language L such that both L and Lc are dense in some
tube O. Thus, for rectangular automata, a tube will be accepted i� all but �nitely many of its trajectories
are accepted, and it will be rejected i� all but �nitely many of its trajectories are rejected.

3 Robust Timed and Rectangular Automata

A interval has the form (a; b), [a; b], (a; b], or [a; b), where a 2 Q [ f�1g, b 2 Q [ f1g, and a � b if I is of
the form [a; b], and a < b otherwise. We say that the interval I is open if it is of the form (a; b) and closed if
it is of the form [a; b]. We write Rect for the set of intervals. A rectangular constraint for the variable x is
an constraint of the form x 2 I where I is an interval.

A rectangular automaton [HKPV95] is a tuple A = h�; Q;Q0; Qf ; C; E; Lab; Init;Pre;Reset;Post;Flowi (i)
� is a �nite alphabet of events; (ii) Q is a �nite set of locations; (iii) Q0 � Q is a set of start locations; (iv)
Qf � Q is a set of accepting locations; (v) C is a �nite set of real-valued variables; (vi) E � Q � Q is a
�nite set of transitions; (vii) Lab : E ! � is a function that labels each edge e with a letter of the alphabet
�; (viii) Init : Q0 ! C ! Rect is a function that indicates for each initial location q0 2 Q0 and each variable
x 2 C the possible initial values of this variable when the control of the automaton starts in location q0;
for convenience, in �gures we write x 2 I inside q0 instead of Init(q0; x) = I ; (ix) Pre : E ! C ! Rect is a
function that associates for each edge e and each continuous variable x a rectangular constraint that must
hold to cross the edge; Pre(e; x) = I means that the value of the continuous variable must lie in the interval
I before crossing the edge e; (x) Post : E ! C ! Rect is a function that associates with each edge e and
each continuous variable x a rectangular constraint that must hold after crossing the edge; Post(e; x) = I

means that the value of the continuous variable x must lie in the interval I after crossing the edge e; (xi)
Reset : E ! 2C is the function that associates with each edge e the subset of variables that are reset when
crossing e; if a variable x belongs to the set Reset(e) then the value, after crossing the edge e, of this variable
is taken nondeterministically from the interval Post(e; x); (xii) Flow : Q ! C ! Rect is a function that
associates with each location q and variable x a rectangular 
ow constraint; Flow(q; x) = I implies that the

ow (the �rst derivative) of the variable x when the control is in location q lies within the rectangle I .

We now de�ne timed automata as a syntactical subset of rectangular automata. A rectangular automaton
A is a timed automaton [AD94] if the function Flow of A is such that for all locations q 2 Q, and for all
variables x 2 C: Flow(q; x) = [1; 1], that is, every continuous variable is a clock. We say that a timed
automaton A is open if all intervals used in constraints with the functions Init, Pre, and Post are open.
Similarly, a rectangular automaton A is open if all intervals used in constraints with the functions Init, Pre,
Post, and Flow are open.

A rectangular automaton A de�nes a labelled transition system with an in�nite state space S, the in�nite
set of labels R+ [ �, and the binary relation R. Each transition with label � correspond to an edge step
whose observation is � 2 �. Each transition with label � 2 R+ corresponds to a time step of duration �.
The states and transitions of A are de�ned as follows:

State. A state (q;x) of A consists of a discrete part q 2 Q and a constinuous part x 2 Rn . The state space
S � Q�Rn is the set of all states of A. The state (q;x) is an initial state of A if q 2 Q0 and x 2 Init(q).
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Jump transitions. For each edge e = (q1; q2) of A, we de�ne the binary relation !e� S2 by (q1;x) !e

(q2;y) i� x 2 Pre(e), y 2 Post(e) and for every coordinate i 2 f1; : : : ; ng with i 62 Reset(e), we have
xi = yi. Hence x and y di�er only at coordinates that are in the reset set of e. For each observation
� 2 �, we de�ne the edge-step relation !�� S2 by s1 !� s2 i� s1 !e s2 for some edge e 2 E with
Lab(e) = �.

Flow transitions. For each strictly positive real number � 2 R+ , we de�ne the binary time-step relation
!�� S2 by (q1;x)!� (q2;y) i� q1 = q2 and

y�x
�

2 Flow(q1).

So the transition relation R � S � S is de�ned as follows: R = f!ej e 2 Eg [ f!�j � 2 R+g.

Trajectory acceptance and reachable locations

We now de�ne the trajectory language and the reachable locations of a rectangular automaton A.

Trajectory language. A run of the automaton A is a path (q0;x0)!�0 (q0;y0)!�0 (q1;x1)!�1 : : :!�n

(qn+1;xn+1) in the transition system of A that alternates between time steps and edge steps. The
run is said initial if q0 2 Q0 and x0 2 Init(q0), and accepting if qn 2 Qf . We say that the trajectory
� = (�0; �0)(�1; �1) : : : (�n; �n) is accepted by the rectangular automaton A if A has an initial and
accepting run (q0;x0) !�0 (q0;y) !�0 (q1;x1) !�1 : : : !�n (qn+1;xn+1). We say that the trajectory
� leads to location qn+1. We note L(A) the set of trajectories accepted by A.

Reachable locations. We say that a location q of A is reachable if there exists an trajectory � accepted by
A that leads to q. We say that a set of locations fq1; : : : ; qng is reachable if there exists q 2 fq1; : : : ; qng
such that q is reachable.

The trajectory emptiness problem for a rectangular automaton A is to decide wether or not L(A) is empty.
The trajectory universality problem for a rectangular automaton A is to decide wether or not L(A) contains
all trajectories over the alphabet �. The reachability problem for a rectangular automaton A is to decide if a
given set of locations of A is reachable. Note that the language emptiness problem for a class of rectangular
automaton is decidable i� the location reachability problem is decidable. The previously known results about
these problems are summarized in the following table:

Class of Automata Emptiness/Reachability Universality
Timed Automata [AD94] Decidable Undecidable

Rectangular Automata [HKPV95] Undecidable Undecidable

Figure 1: Known decidability and undecidability results about timed and rectangular automata.

Tube acceptance and robustly reachable locations

The rectangular automaton A accepts the set [L(A)] of tubes [GHJ97]. The following examples illustrate
tube acceptance. First, consider the timed automaton A1 of Figure 2(a). This automaton accepts all
trajectories over the unary alphabet fag which contain two consecutive a events with a time-gap in the

x 2 [1; 2]x 2 (1; 2)

(b)(a)

a

aa

a

x := 0 x := 0
a

a a

a

Figure 2: The timed automata A1 and A2.
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q2

q0

q1
q3

a a

a a

x = 1

x < 1

Figure 3: Robustly and non-robustly reachable locations.

open interval (1; 2). This property is invariant under su�ciently small perturbations of the time-stamps.
Hence the automaton A1 accepts precisely those tubes that consist of trajectories in L(A1), and the maximal
accepted tube is L(A1) itself. In the timed automaton A2 of Figure 2(b), the open interval (1; 2) is replaced
by the closed interval [1; 2]. This changes the set of accepted trajectories but not the set of accepted tubes:
L(A1) � L(A2) but [L(A1)] = [L(A2)]. Notice that the \boundary trajectories" accepted by A2, with two
consecutive a's at a time-gap of 1 or 2 but no consecutive a's at a time-gap strictly between 1 and 2, are not
accepted robustly, because there are arbitrarily small perturbations that are not acceptable.

Let us now de�ne the notion of robust reachability. We say that a location q of a rectangular automaton
A is robustly reachable if there exists a tube O accepted by A such that each trajectory in O leads to q. The
automaton of �gure 3 illustrates this notion: the locations q0, q2, and q3 are robustly reachable, while the
location q1 is not robustly reachable.

The robust emptiness problem for a rectangular automaton A is to decide if wether or not [L(A)] is empty.
The robust universality problem for a rectangular automaton A is to decide wether of not [L(A)] contains
all tubes over �. The robust reachability problem for a rectangular automaton A is to decide, given a set
of locations of A, if some location in the set is robustly reachable. In the next sections of this paper, we
sharpen the known undecidability results about timed and hybrid systems. We show that the introduction
of fuzziness into timed and hybrid models via the notion of tubes (this fuzziness can be intuitively seen as
the semantic removal of equality) does not change the undecidability results. Our results are summarized in
the following table; only the positive result was previously known [GHJ97]:

Class of Automata Robust Emptiness/Robust Reachability Robust Universality
Timed Automata Decidable Undecidable

Rectangular Automata Undecidable Undecidable

Figure 4: Decidability results about robust timed and rectangular automata.

4 Some Properties of Robust Timed Automata

We recall in this section some results presented in [GHJ97]. We will need those notions to establish our
results. The �rst proposition tells us that when we consider tube acceptance, we can restrict our attention
either to closed or open timed automata.

Proposition 1 For every timed automaton A, we can construct a timed automaton A, called the closure
of A, that uses only closed rectangles in Pre;Post; Init and such that L(A) = L(A). Furthermore, we can

construct an open timed automaton Aint, called the interior of A, such that: [L(A)] = [L(Aint)] = [L(A)].

The following proposition shows that for open timed automata, tube emptiness coincides with trajectory
emptiness.

Proposition 2 For every open timed automaton A and every trajectory � , if � is accepted by A along some
path, then there is a positive real � 2 R+ such that all trajectories in the tube T (�; �) are accepted by A along
the same path.
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By Proposition 1 we can reduce the problem of checking if a timed automaton A accepts any tube to

the problem of checking if the interior automaton Aint accepts any tube. Moreover, by Proposition 2, the

open automaton Aint accepts any tube i� it accepts any trajectory. The latter problem can be solved using

the region construction of [AD94]. In fact, for checking the emptiness of open timed automata such as Aint,
only open regions need be considered.

Theorem 1 The problem of deciding whether a timed automaton accepts any tube is complete for PSPACE.

The previous result shows that timed automata yield a decidable theory of tubes. The tube languages
de�ned by timed automata are closed under union intersection [GHJ97]. The closure under negation was
left open in [GHJ97]. We show here that unfortunately, the tube languages de�nable by timed automata
are not closed under negation. We �rst recall some notions about the complement of a tube language.
The timed automaton B is a trajectory complement of the timed automaton A i� B accepts precisely the
trajectories that are not accepted by A; that is, L(B) = L(A)c. Before de�ning the tube complements of
a timed automaton, we observe an important property of the trajectory languages that can be de�ned by
timed automata.

Proposition 3 For every timed automaton A, there is no tube O such that both L(A) and L(A)c are both
dense in O.

It follows that a tube cannot be accepted by both a timed automaton A and a trajectory complement
of A. This observation will allow us to relate the tube complements of a timed automaton to its trajectory
complements.

For de�ning the tube complements of a timed automaton A, it is not useful to consider the boolean
complement Tube � [L(A)] of the tube language [L(A)]. For [L(A)] is closed under subsets and union.
Therefore, unless [L(A)] = ; or [L(A)] = Tube, the boolean complement Tube� [L(A)] cannot be induced
by any trajectory language and, hence, cannot be accepted by any timed automaton. Thus, for every tube
language L � Tube, we de�ne the tube complement of L to be the set

Lc = fO 2 Tube : O \
[

L = ;g

of tubes that are disjoint from the tubes in L. The following proposition shows that for every timed
automatonA, the tube complement [L(A)]c is induced by the trajectory complement L(A)c; that is, [L(A)c] =
[L(A)]c.

Proposition 4 If L is a trajectory language and there is no tube O such that both L and Lc are dense in O,
then [L]c = [Lc].

For two timed automata A and B, we say that B is a tube complement of A i� B accepts precisely the
tubes that do not intersect any tube accepted by A; that is, [L(B)] = [L(A)]c. From Propositions 3 and 4,
it follows that every trajectory complement of a timed automaton is also a tube complement (the converse

is generally not true). Since [L(A)]c = [L(Aint)]c = [L(Aint)c], in order to construct tube complements, it
would su�ce to construct trajectory complements of open timed automata.2 This, however, is not possible
as we show in the next section.

5 The Universality Problem for Robust Timed Automata

In this section, we show that the halting problem for two-counter machines can be reduced to the robust
universality problem for robust timed automata.

A two-counter machine M is a triple hfb1; : : : ; bng; C;Di where fb1; : : : ; bng are n instructions, C and D

are two counters ranging over the natural numbers. Each instruction bi, 0 � i � n is of three possible forms:
(i) Conditionnal jump instruction: those instructions test a counter being zero and then jump conditionally

2Similarly, since [L(A)]c = [L(A)]c = [L(A)c], it would su�ce to construct trajectory complements of closed timed automata.
This, however, is known to be impossible [AD94].
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to the next instruction; (ii) Increment/Decrement instruction: those instructions increment or decrement
the value of one of the two counters and then jump nondeterministically to one of the two possible next
instructions; (iii) Stop instruction: this instruction puts an end to the machine execution.

A con�guration of a two-counter machine M is a triple 
 = hi; c; di where i is the program counter
indicating the current instruction, c and d are the values of the counters C and D. An computation of a
two-counter machine M is a sequence 
 = 
0
1 : : : 
n : : : of con�gurations such that 
0 = h0; 0; 0i that is
the �rst instruction is b0 and the initial value of the two counters C and D is zero, for every position i,
0 � i < j
j, 
i+1 is a M -successor con�guration of 
i. The halting problem for a two-counter machine M is
to decide whether or not the execution of M has at least one computation that ends in a stop instruction.
The problem of deciding if a 2-counter machine M has a halting computation is undecidable.

An Undecidable Tube Language L
Undec

Tube

We de�ne in this section a tube language that we call LUndecTube (M) that is parametrized by a two-counter
machine M and is non-empty i� M has a halting computation.

We �rst review how the undecidability of the universality problem for timed automata was estab-
lished by Alur and Dill [AD94] and explain why their proof does not translate directly to our robust
timed automata. The language LUndec(M) is de�ned as follows: � = (�; �) 2 LUndec(M) i� (i) � =
bi0c

c0dd0bi1c
c1dd1 : : : bimc

cmddm such that hi0; c0; d0i; hi1; c1; d1i : : : him; cm; dmi is a halting computation of
M ; (ii) for all positions j � 0, the time-stamp of bij is j; (iii) for all j � 1, (a) if cj+1 = cj then for every c

at time t in the interval (j; j + 1) there is a c at time t + 1; (b) cj+1 = cj + 1 then for every c at time t in
the interval (j + 1; j + 2), except the last one, there is a c at time t� 1; (c)if cj+1 = cj � 1 then for every c
at time t in the interval (j; j + 1), except the last one, there is a c at time t+ 1; (iv) the same requirements
hold for d's.

So the i-th con�guration is encoded on the interval [i; i + 1) and to enforce a requirement such as the
number of c events in two successive con�gurations is the same, it is required that every c in the �rst interval
is matching a c at distance 1 and vice versa. Note that the use of the punctuality constraint has the following
consequence.

Proposition 5 There is no tube O 2 Tube such that O is dense in LUndec, i.e. [LUndec] = ;.

This has nurtured some hope that, by removing the possibility to specify punctuallity constraints, robust
timed automata could have a decidable robust universality problem. Unfortunately this is not the case. We
next show that we can de�ne a set of trajectories that is a tube language and encode halting computations
of a two-counter machine M . Furthermore the tube complement of this tube language can be de�ned by
a robust (open) timed automata. The undecidability of the tube universality problem and the non closure
under complement of robust timed automata will follow.

To facilitate the de�nition of LUndecTube , the undecidable tube language, we �rst introduce some new notions.
We call an open (closed) slot an open (closed) interval of the real numbers. We de�ne the open (closed) slot
between t1 and t2 as the set ft j t1 < t < t2g (ft j t1 � t � t2g). Given two real numbers t1 and t2, with
t1 < t2, we say that (t3; t4), respectively [t3; t4], is the open, respectively, the closed, slot generated by t1 and
t2 if we have t1 + 1 = t3 and t2 + 1 = t4.

The main idea of LUndecTube is that we will encode the con�guration i within open intervals (i; i+1) and the
next con�guration i + 1 will be encoded in the open slot generated by the time of occurence of the begin
marker and the end marker of con�guration i. For the encoding of the elements of a con�guration and their
relation with the next con�guration we also use open slots. For instance, we use the sequence BInst � bji �E

Inst

to encode that bji is the instruction executed in the i-th con�guration, BInst and EInst are used as delimiters
of the instruction encoding and to generate the slot for the next instruction. Let us assume that t1 and
t2 are the time-stamp of BInst and EInst respectively. Then the encoding of the next instruction has to take
place in the open slot (t1 + 1; t2 + 1) generated by the slot for the current instruction. As we use a dense
time domain, this constraint can always be satis�ed. We will proceed in the same way for the encoding of
the values of the two counters. The value of the counters C and D are encoded as follows: if the value of
the counter C is u in con�guration i then the sequence bc � ec is repeated u times in the encoding of the
con�guration i. If the counter C is unchanged from con�guration i to con�guration i+1, we verify that the
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bc � ec sequences in con�guration i + 1 appear exactly in the open slots de�ned by the bc � ec sequences in
con�guration i.

Having the intuition underlying the language LUndecTube (M), we now de�ne it more precisely and establish
that the set of trajectories that forms LUndecTube (M) de�ne indeed a non empty set of tubes i� the machine M
has a halting computation.

Alphabet of the language The set of events that we will use in the encoding is the following: (i) BConf

and EConf are the delimiters for the begin and end of the encoding of a con�guration; (ii) BInst and EInst

are the delimiters for the begin and end of the encoding of the instruction executed in a con�guration; (iii)
b1; b2; : : : ; bn are used to represent the n instructions; (iv) BC and EC are the delimiters for the encoding of
the value of the counter C in a con�guration; (v) BD and ED, idem for the counter D; (vi) bc and ec are used
to encode the value of the counter C; (vii) bd and ed, idem for D.

Qualitative requirements The trajectories of LUndecTube agree with the following regular expression: (BConf �

B
Inst � (b1 j b2 j : : : j bn) � EInst � BC � (bc � c � ec)� � EC � BD � (bd � d � ed)� � ED � EConf)� . Furthermore, if the con�guration

i contains the sequence BInst � bji � E
Inst then the con�guration i + 1 contains the sequence BInst � bji+1 � E

Inst

where bji+1 is a valid next instruction of bji . We refer to those requirements as QUAL. Note that QUAL can
be imposed by an untimed �nite automaton, and thus, also its negation.

Encoding of con�gurations (i) The �rst con�guration is encoded on the open interval (0; 1). That is, if
the event BConf occurs at time t1 and the event EConf occurs at time t2 then we have that 0 < t1 < t2 < 1.
This requirement is noted RTa

1 ; (ii) the con�guration i+1 is always encoded in the open slot de�ned by the
con�guration i. That is, if the event BConf of con�guration i occurs at time t1 and the event EConf occurs
at time t2 then the encoding of the con�guration i + 1 takes place in the open slot (t1 + 1; t2 + 1). This
requirement is noted RTb

1.

Encoding of instructions The encoding of the instruction executed by the two-counter machine M

during the con�guration i + 1 takes place in the slot de�ned by the encoding of the instruction executed
in the con�guration i. That is, if BInst and EInst append at time t1 and t2 in encoding of con�guration i

then BInst and EInst appear at time t3 and t4 in the encoding of con�guration i+1 with the following (open)
real-time constraint: t1 + 1 < t3 < t4 < t2 + 1. This requirement is noted RT2.

Encoding of the two counters We only explain in details the case when the counter C is incremented
from con�guration i to con�guration i + 1. The other operations are left to the reader. The encoding of
the values of the counter C for two adjacent con�gurations is represented graphically in �gure 5, there the
counter C is incremented from u to u+1. (i) If in con�guration i the event BC and EC occur at time t1 and t2
respectively, then the events BC and EC appear for in con�guration i+1 within the open slot (t1+1; t2+1).
This requirement is noted RTa

3 ; (ii) for each bc � ec sequence, such that bc occurs at time t1 and ec occurs
at time t2, in the encoding of con�guration i, there is exactly one sequence bc � ec sequence in the encoding
of con�guration i+ 1 that takes place in the open slot (t1 + 1; t2 + 1). This requirement is noted RTb

3; (iii)
conversely, each bc � ec that appears in the encoding of the con�guration i+1, with the exception of the last,
must lie in the open slot de�ned by bc � ec sequence of con�guration i. This requirement is noted RTc

3; (iv)
�nally, the last bc � ec sequence in the encoding of con�guration i + 1 appears in the slot generated by the
two events BC and EC if C = 0 in con�guration i, and appears in the slot generated by the last ec event and
EC event of con�guration i if C > 0 in that con�guration. This requirement is noted RTd

3.
The following proposition is a direct consequence of the use of strict inequalities in the de�nition of the

language LUndecTube (M).

Proposition 6 For every trajectory �1 that belongs to LUndecTube (M), there exists an � > 0 such that for every
trajectory �2, if d(�1; �2) < � then �2 2 LUndecTube (M).

Corollary 1 For every two-counter machine M with a halting computation, [LUndecTube (M)] is a nonempty tube
language.

8



b
c

b
c

bc ec

EC

t5 + 1

u times
BC

B
C

E
C

ec bc ec bc ecbc

e
c

e
c

b
c

e
c

t0 + 1 t1 + 1 t2 + 1 t4 + 1 t6 + 1 t7 + 1

t5 t6 t7t2 t4t3t1t0

t3 + 1

: : :

Figure 5: Incrementation of the value of C in two consecutive con�gurations.

Another direct consequence of the proposition 6 is the following corollary.

Corollary 2 There is no tube O that is dense both in LUndecTube (M) and in (LUndecTube (M))c.

Note also that by proposition 6 and by the corollary 2, we know that the tube semantics of a timed automaton
that accepts the complement of the trajectories of LUndecTube (M), is exactly the complement of the tube language
[LUndecTube (M)]. The following lemma shows that it is possible to construct such a timed automaton. Its proof
is given in the appendix.

Lemma 1 There exists a timed automaton AM that accepts exactly the trajectories that are not in LUndecTube (M).

Combining lemma 1 and proposition 4, we obtain the following theorem.

Theorem 2 For every two-counter machine M , there exists a timed automaton AM that accepts every tube
i� the two-counter machine M has no halting computation.

As a direct consequence, we have the following.

Theorem 3 The robust universality problem for timed automata is undecidable.

As the robust emptiness problem for timed automata is decidable, we have the following.

Corollary 3 There are tube languages de�nable by robust timed automata whose complements are not de-
�nable by any robust timed automata.

The Trajectory Complementation Problem for Open Timed Automata

We now give an answer to the question whether the trajectory language of every open timed automaton
is complementable. We answer this question negatively in the following theorem which is derived from the
results of previous section. The proof of this theorem is given in the appendix.

Theorem 4 There are trajectory languages de�nable by open timed automata whose trajectory complements
are not de�nable by any timed automata (open or not).

6 The Robust Reachability Problem for Rectangular Automata

In this section we investigate undecidable reachability problems and show that they remain undecidable even
when we remove equality from the speci�cation formalism. In [HKPV95], it is shown that the formalism of
rectangular automata lies at the boundary between decidable hybrid formalisms and undecidable ones. We
show here that this boundary stays valid if we do not use equality.
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Another Encoding of Two-Counter Machines Computations

We �rst expose a way to encode computations of two-counter machine using trajectories that are de�nable
by rectangular automata.

To each halting computation hi0; c0; d0i; hi1; c1; d1i; : : : ; hin; cn; dni, we associate the following trajectory
(bij ; t(j;0)); (B

C; t(j;1)); (c; t(j;2))(B
D; t(j;3))(d; t(j;4)) with 0 � j � n, and with the following additional timing

constraints: (i) if the value of the counter C is u in con�guration i then the time di�erence between the
events BC and c in the encoding of con�guration i is equal to 1

2u , that is t(i;2) � t(i;1) =
1
2u . So incrementing

the value of C is encoded as dividing by two the distance between the events BC and c in two adjacent
con�gurations. Testing that the value of the counter C is equal to 0 amounts in verifying that the delay
between the event BC and the following c is equal to 1. (ii) idem for the counter D.

The language de�ned as above associated to the two-counter machine M is noted LUndecRect (M) and it is
de�nable by a rectangular automata [HKPV95].

A Relaxation of this Encoding

Again, let us show that we do not need equality to encode the two-counter machine computations. We de�ne
the following relaxation of the previous encoding. To each halting computation hi0; c0; d0i; hi1; c1; d1i; : : : ; hin; cn; dni,
we associate the following trajectories:

(bij ; t(j;0)); (B
C; t(j;1)); (b

c; t(j;2)); (e
c; t(j;3))(B

D; t(j;4))(b
d; t(j;5))(e

d; t(j;6)) with 0 � j � n.

with the following additional timing constraints. We just give the constraints for the encoding of the value
of counter C, the same requirements stand for the counter D.

Encoding of the initial value of C. Initially the value of the counter C is zero. To encode that C = 0,
we require that if the events BC,bc, and ec are issued at time t1, t2, and t3 then the following constraint
is satis�ed: t1 +

1
2 < t2 < t3 < t1 + 1.

Encoding of the value of C in the con�guration i+ 1. Let d1 denote the distance that separates the
events BC and bc, and let d2 denote the distance that separates the events BC and ec in the encoding
of the value of C in the con�guration i. And in the same way, let d3 and d4 be those two distances in
the encoding of the value of C in con�guration i+ 1. Then we have the following requirements: (i) if
C is incremented between i and i+1: d1

2 < d3 < d4 <
d2
2 ; (ii) if C is decremented between i and i+1:

2� d1 < d3 < d4 < 2� d2; (iii) if C is unchanged between i and i+ 1: d1 < d3 < d4 < d2.

We note this trajectory language LUndecOpenRect(M). We can establish the following invariant from the real-time
constraints expressed above.

Proposition 7 If the value of the counter C is u in con�guration i then the following invariant is true:
1

2u+1 < d1 < d2 < 1
2u , where d1 is the time gap between event BC and event bc, and d2 is the time gap

between event BC and event ec.

This last proposition gives us a way to check that the value of counter C is 0. To verify that C is equal
to 0, we only have to check that the sequence bc � ec appends in the open slot (t + 1

2 ; t + 1) where t is the
time at which BC is issued. Now let us show that given a two-counter machine M , we are able to construct
an open rectangular automaton AM that accepts exaclty the language LUndecOpenRect(M). This is established in
the following proposition and its proof is given in the appendix.

Lemma 2 The trajectory language LUndecOpenRect(M) is de�nable by an open rectangular automaton AM .

As a direct consequence of the last lemma, we have the following.

Theorem 5 The trajectory emptiness and reachability problems for open rectangular automata are undecid-
able.

The following proposition is a generalization to open rectangular automata of proposition 2.
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Proposition 8 For every open rectangular automaton A and every trajectory � , if � is accepted by A along
some path, then there is a positive real � 2 R+ such that all trajectories in the tube T (�; �) are accepted by A
along the same path.

This proposition implies that tube and trajectory emptiness coincide for open rectangular automata, so we
have the following theorem.

Theorem 6 The robust emptiness and robust reachability problems for rectangular automata are undecid-
able.

7 Conclusion

We refuted the conjecture that the undecidability results in timed and hybrid systems are due to the ability
of these systems to di�erentiate real points in time with in�nite precision. We showed that the robust
universality problem for timed automata and the robust reachability problem for rectangular automata are
undecidable. Furthermore, we showed that the reachability problem for open rectangular automata is also
undecidable. Finally, we established that there exist trajectory languages de�nable by open timed automata
whose trajectory complements are not de�nable by any (open or closed) timed automata. We suspect that
the undecidability proof for the robust universality problem of timed automata can be modi�ed to prove
that the trajectory universality problem for open timed automata is also undecidable, but we have not yet
succeeded in doing this.
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Appendix: Proofs

Lemma 1 There exists a timed automaton AM that accepts exactly the trajectories that are not in LUndecTube (M).

Proof. It is su�cent to show that for each of the requirements, we can construct a timed automaton that
accepts exactly the trajectories that are violating the requirement. The union of those automata is exactly
what we are looking for: the timed automaton that accepts the trajectory complement of LUndecTube (M).

First note that this is trivial for the requirements QUAL. In fact, regular languages are closed under
negation and expressible as �nite state automata. We give the two automata for the negation of the real-
time requirements RTb

1 and RTc
3. The timed automata for the other requirements are obtained in a similar

way and left to the reader.

� The timed automata for requirement RTb
1 is given in �gure 7 and this automaton accepts exactly the

trajectories where there exists a con�guration i+ 1 which is not encoded in the open slot de�ned by
the encoding of con�guration i.

� The timed automata for requirement RTc
3 is given in �gure 7 and this automaton accepts exactly the

trajectories where there is two adjacent con�gurations i and i+ 1 such that:

{ the instruction executed in con�guration i increments the counter C, i.e. b 2 IC , where IC is the
subset of instructions that increment the counter C;

{ there is a sequence bc � ec in con�guration i that de�nes an open slot in con�guration i+ 1 that
does not contain the sequence bc � ec.

BConf EConf

y := 0

BConf x � 1

�
EConf

�

x := 0

� n fEConfg

B
Conf

x > 1 � n fEConfg

�

y � 1

Figure 6: A timed automaton for the negation of requirement RTb
1

� � n fBCg � n fECg

bc

x := 0

ec y := 0

�; x � 1

� n fbcg

x > 1

bcec

y � 1

�

� n fecg y < 1

b

BC

�

Figure 7: A timed automaton for the negation of requirement RTc
3
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q1

y := (0; 1)

x := (�1; 0)

BC

y 2 (1; 2)

q0

_x 2 (0; 1)

_y 2 (1; 2)

x 2 ( 12 ;1)

bc

q2

y 2 (0; 1)

ec

q3

Figure 8: Open rectangular automaton for checking C = 0.

Theorem 4 There are trajectory languages de�nable by open timed automata whose complements are not
de�nable by any timed automata (open or closed).

Proof. By reduction ad absurdum. We have shown that we were able to construct a timed automaton AM

that was accepting the complement of the trajectories contained in LUndecTube (M). This automaton AM de�nes
a set of trajectories L(AM ) such that [L(AM )] is exaclty the complement of the tube language [LUndecTube (M)].
By proposition 1, we know that there exists an open timed automaton, namely the interior of AM , noted
Aint
M such that [L(Aint

M )] = [L(AM )] = [LUndecTube (M)]c. By lemma 4, if we were able to complement the open
automaton Aint

M , then we should obtain an automaton whose tube semantics would be precesely [LUndecTube (M)]
and this is impossible as emptiness of robust timed automata is decidable and this would allow us to decide
the halting problem of two-counter machines.

Lemma 2 The language LUndecOpenRect(M) is expressible by an open rectangular automata AM .

Proof We sketch the proof by giving an open rectangular automaton that checks if the value of C equals 0
or not. After we give an open rectangular automaton that checks that C is actually incremented after that
an instruction that increments C is executed.

Let us show that the control of the automaton of �gure 7 reaches the location q3 only if the events BC,
bc and ec occurs at time t1, t2, and t3, respectively, and d1 = t2� t1 and d2 = t3� t1, then

1
2 < d1 < d2 < 1.

When bc is issued, we have d1 2 ( 12 ;+1), in fact, the inferior value 1
2 is obtained by observing that when

BC occurs Inf(x) = 0, its maximal 
ow is bounded by 1 when the control resides in location q1, so it takes at
least 1

2 time units for the variable x to overtake the value 1
2 . As the 
ow of x can be arbitrarilly small in q1,

it can take arbitrarilly long for x to overtake the value 1
2 , so the upper bound is +1. Let us now see what

are the constraints on the value of d2. First, note that y can be initialized arbitrarily close to 0 when the
event BC is issued. Also the 
ow of y can be arbitrarilly large when the control is in location q1 or q2, so we
can only deduce that d2 2 (0;1). But as ec has to occur before ec, we have d1 < d2 and thus d2 >

1
2 . Let us

now give an upper bound on the value of d2. The value of y when initialized must be at least strictly greater
than 0. In q1 and q2, the 
ow of y is at least greater than 1 so d2 < 1. We obtain as desired 1

2 < d1 < d2 < 1
if the control reaches q3.

Let us now check that the automaton of �gure 7 accepts only trajectory where an instruction that
increments the counter C is encountered then time of occurence of the events BC, bc and ec re
ect this
incrementation. To show that the automaton checks exactly the desired constraints, we �rst establish
bounds on the value of the variable x and y at time t0, t1, t2, and t3 represented in �gure 7. The bounds are
given in table 7. So at time t3, we have that x 2 (d1;+1) and y 2 (�1; d2). Now let us see the constraints
that we obtain on d3 and d4. First, by taking into account that x 2 (d1;+1) at t3 and the 
ow of x in q5
in included in the interval (�2; 0), we can deduce that d3 2 (d12 ;+1). Second, by taking into account that

y 2 (�1; d2) at t3 and that the 
ow of y in q5 is included in the interval (�1;�2), we obtain d3 2 (�1; d22 ).

As bc is issued before ec, we have that d3 < d4 and thus d1
2 < d3 < d4 <

d2
2 , as desired.
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t0 t1 t2 t3
Inf(x) 0 d1 d1 d1
Sup(x) 1 2� d1 + 1 d1 + d2 + 1 +1
Inf(y) �1 �1 �1 �1
Sup(y) 0 d1 d2 d2

Figure 9: Inferior and superior bounds on the values of variables x and y.
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Figure 10: Open rectangular automaton to check incrementation of counter C.
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Figure 11: Two successive encodings of the value of counter C.
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