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Abstract

As improvements in processor performance continue to
far outpace improvements in storage performance, I/O is in-
creasingly the bottleneck in computer systems, especially in
large database systems that manage huge amounts of data.
The key to achieving good I/O performance is to thoroughly
understand its characteristics. In this paper, we present a
comprehensive analysis of the logical I/O reference behavior
of the peak production database workloads from ten of the
world’s largest corporations by focusing on how these work-
loads respond to different techniques for caching, prefetch-
ing and write buffering. Our findings include several broadly
applicable rules of thumb that describe how effective the
various I/O optimization techniques are for the production
workloads. For instance, our results indicate that the buffer
pool miss ratio tends to be related to the ratio of buffer pool
size to data size by an inverse square root rule. A similar
fourth root rule relates the write miss ratio and the ratio of
buffer pool size to data size.

This work has been supported by the State of California under
the MICRO program, and by IBM, Cisco Corporation, Fujitsu Mi-
croelectronics, Intel Corporation, Microsoft Corporation, Quantum
Corporation, Sun Microsystems and Toshiba Corporation.

This report is also available as Research Report RJ 10166, IBM
Almaden Research Center, San Jose, CA.

In addition, we characterize the reference characteristics
of workloads similar to the Transaction Processing Perfor-
mance Council (TPC) benchmarks C (TPC-C) and D (TPC-
D), which are de facto standard performance measures for
on-line transaction processing (OLTP) systems and decision
support systems (DSS) respectively. Since benchmarks such
as TPC-C and TPC-D can only be used effectively if their
strengths and limitations are understood, a major focus of
our analysis is on identifying aspects of the benchmarks that
stress the system differently than the production workloads.
We discover that for the most part, the reference behavior
of TPC-C and TPC-D fall within the range of behavior ex-
hibited by the production workloads. However, there are
some noteworthy exceptions that affect well-known I/O op-
timization techniques such as caching (LRU is further from
the optimal for TPC-C while there is little sharing of pages
between transactions for TPC-D), prefetching (TPC-C ex-
hibits no significant sequentiality) and write buffering (write
buffering is less effective for the TPC benchmarks). While
the two TPC benchmarks generally complement one another
in reflecting the characteristics of the production workloads,
there remain aspects of the real workloads that are not rep-
resented by either of the benchmarks.
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1 Introduction

I/O is increasingly the bottleneck in computer systems
as processor performance continues to improve at a much
faster rate than storage performance [24]. This is especially
the case for large database systems that reference a lot of
data. There are several well-known approaches to improv-
ing I/O performance. Among them are caching, prefetching
and write buffering. The effectiveness of these general ap-
proaches depends very much on the characteristics of the
reference stream. In addition, if the reference characteristics
are well understood, these techniques can be customized to
further improve performance. Nevertheless, there has not
been much work on analyzing the reference characteristics
of production database workloads. This reflects the fact that
production systems are by definition critical to the proper
functioning of an organization so that it is very difficult to
get access to them for the purpose of conducting a scientific
study, especially if the study requires any software changes
or if data is to be collected and removed from the system.

In this paper, we examine the logical I/O reference be-
havior of the peak production database workloads from ten
of the world’s largest corporations. Our primary focus is
on analyzing the factors that affect how these workloads re-
spond to different techniques for caching, prefetching and
write buffering. We evaluate many previously published al-
gorithms and techniques and also develop several new ones
based on our insights. Our production workloads are based
on IBM’s industrial-strength DB2 relational database man-
agement system (DBMS) and to the best of our knowledge,
represent by far the most complete and diverse set of pro-
duction workloads ever reported on in the literature. Since
it is rare to have access to such a large collection of produc-
tion workloads, an emphasis of this paper is on establishing
broadly applicable rules of thumb with regards to the effec-
tiveness of caching, prefetching and write buffering.

Though the Transaction Processing Performance Coun-
cil (TPC) benchmarks C (TPC-C) [70] and D (TPC-D) [71]
have become the de facto standard benchmarks for on-line
transaction processing (OLTP) systems and decision support
systems (DSS) respectively, and are heavily used for both
systems design and marketing, there has not been any ma-
jor focus on their I/O characteristics. Therefore, in this pa-
per, we also evaluate the logical reference behavior of work-
loads similar to the TPC-C and TPC-D benchmarks1. While
benchmarks such as TPC-C and TPC-D are important for
progress in the field in that they define the playing field by
establishing objectives that are easily measurable and repeat-

1Because our TPC benchmark setups have not been audited per
the benchmark specifications, our workloads are technically not
TPC benchmark workloads and should only be referred to as TPC-
like. In the rest of this paper, when the terms TPC-C and TPC-D
are used to refer to our benchmark workloads, they should be taken
to mean TPC-C-like and TPC-D-like respectively.

able, they may impede real progress in the field if they are
not realistic and end up focusing energy and attention on is-
sues that do not often arise in production environments. To
effectively use a benchmark, we should carefully evaluate its
characteristics against those of real production workloads to
identify both its strengths and limitations.

Therefore, one of the main objectives of this study is to
determine whether the I/O reference behavior of the TPC
benchmarks reflect that of the production workloads, espe-
cially with respect to the various techniques such as read
caching, prefetching and write buffering that can be applied
at the logical I/O level to improve overall DBMS perfor-
mance. In a companion paper [26], we analyze and compare
the system-level characteristics of the production and bench-
mark workloads. System-level characteristics are those that
can be readily understood and perhaps observed by the user
or system administrator and are therefore good features to
use for comparing and understanding workloads. Although
the current paper is self-contained, readers are encouraged
to also read the companion paper.

The rest of this paper is organized as follows. Section 2
contains a brief overview of previous work in characterizing
I/O reference behavior. Section 3 discusses our methodology
and describes the traces that we use. In Section 4, we charac-
terize the reference behavior of the workloads. Concluding
remarks appear in Section 5 and acknowledgements, in Sec-
tion 6. Because of the huge amount of data that is involved in
this study, we can only present a characteristic cross-section
in the main text. The rest of the results are presented in the
Appendix. In addition, more detailed graphs and data are
available from our web site [28].

2 Related Work

There have been numerous published studies of the ref-
erence behavior of hierarchical and network databases. See
for instance [9, 18, 32, 33, 34, 48, 54, 57, 64, 74, 73, 76, 82].
However, these studies are rather limited in scope, often
relying on data collected at only one or two installations.
In several cases, the database was real but was driven by
small contrived programs. The empirical reference behav-
ior of relational databases has received even less atten-
tion [17, 23, 32, 82]. In such databases, users state their
processing requirements using high level language inter-
faces, leaving the database system to select the best strat-
egy or query plan for accessing the data [12, 61]. Since the
pattern of data references can be predicted from the query
plan [67], research on buffering in relational databases has
for the most part focused on using semantic information de-
rived from the query plan optimizer to direct buffer manage-
ment [11, 14, 19, 45, 59, 60, 80]. Instead of relying on query
plan information, a profiling approach that uses prior execu-
tions of a query to characterize its access patterns has also
been proposed [10].
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In general, the approaches that rely on the query plan
work only for specific patterns such as sequential and cyclic
sequential. All other references are simply considered ran-
dom. Another shortcoming of these methods is that the
query plan is based on estimates such as row cardinality,
predicate selectivity and clustering factor and these may not
be accurate. Furthermore, for complex queries, the accu-
rate prediction of reference patterns from the query plan is
non-trivial. To make matters worse, in multi-user situations,
the query plans can overlap in complicated ways and this
overlap is not accounted for by the query plan directed al-
gorithms. In reality, these algorithms are best used together
with techniques based on run time access characteristics as
in [22, 68].

For the most part, studies of the I/O behavior of the
TPC-C [70] and TPC-D [71] benchmarks have been lim-
ited to analysis of query plans [27], static analysis of ac-
cesses to tables [37] and empirical measurement of buffer hit
rate [72]. File reference patterns in academic and research
environments have been more extensively studied. See for
example [5, 20, 49, 69, 78, 81]. An analysis of file usage
patterns in commercial environments is presented in [55].
There has also been a large body of recent work on char-
acterizing the I/O behavior of scientific applications in par-
allel and supercomputing environments. Among them are
[6, 15, 41, 47, 50, 51, 53]. For a more detailed discussion
of related work, the reader is referred to Section A1 in the
Appendix.

3 Methodology

The methodology used in this paper is trace-driven simu-
lation [66, 75]. In trace-driven simulation, relevant informa-
tion about a system is collected while the system is handling
the workload of interest. This is referred to as tracing the
system and is usually achieved by using hardware probes or
by instrumenting the software. In the second phase, the re-
sulting trace of the system is played back to drive a model of
the system under study. In other words, trace-driven simula-
tion is a form of event-driven simulation where the events are
taken from a real system operating under conditions similar
to the ones being simulated. More comprehensive discus-
sions of this technique and its strengths and weaknesses can
be found in [66, 75].

The traces used in this study were collected by instru-
menting commercial DBMSs. Instrumenting the DBMS al-
lows the trace information to be collected at a logical level.
This reduces dependencies on the system being traced and
allows the trace to be used in a wider variety of studies, in-
cluding those in which the models are somewhat different
from the original system. In this study, we examined a total
of 14 traces representing both industry standard benchmarks
(TPC-C and TPC-D [70, 71]) and the production work-
loads of ten of the world’s largest corporations. The bench-

mark traces were collected on a multiprocessor Personal
Computer (PC) Server running DB2/Universal Database
(DB2/UDB) V5 [30] on Windows NT 4.0. The produc-
tion traces were collected on IBM mainframes running var-
ious versions of DB2/MVS, now known as DB2/390 [29].
More information about how the traces were collected can
be found in [26].

In order to make our characterization more useful for
subsequent mathematical analyses and modeling by others,
we fitted our data to various functional forms through non-
linear regression which we solved by using the Levenberg-
Marquardt method [52]. When appropriate, we also fitted
standard probability distributions to our data by using the
method of maximum likelihood to obtain parameter esti-
mates and then optimizing these estimates by the Levenberg-
Marquardt algorithm [52].

3.1 Workload Description

The TPC-C benchmark models the operational end of the
business environment where real-time transactions are pro-
cessed [70]. It is set in the context of a wholesale supplier
and is centered around its order processing operations which
consist of business transactions that enter new orders, query
the status of existing orders, deliver outstanding orders, enter
payments from customers and monitor warehouse stock lev-
els. The TPC-C performance metric is the number of orders
processed per minute. The benchmark specifies a method for
scaling the database which is based on an assumed business
expansion path of the supplier. Our particular trace was col-
lected on a benchmark setup with a scale of 800 warehouses.

The TPC-D benchmark models the analysis end of the
business environment where trends are analyzed and re-
fined to support sound business decisions [71]. The TPC-D
database is a decision support database that tracks, possibly
with some delay, the OLTP database through batch updates.
The benchmark consists of 17 read-only queries that are far
more complex than most OLTP transactions and typically
examine large volumes of data using a rich set of operators
and selectivity constraints. To exercise the update function-
ality of the DBMS, the benchmark includes two update func-
tions that modify a small percentage of the database. The
TPC-D benchmark defines both a power test to measure the
raw query execution power of a system with a single active
user and a throughput test that may be omitted. Our trace
captures the entire run of a power test. This test starts off
with the first update function (UF1). Next, the 17 queries
are processed in a sequence specified by the benchmark. Fi-
nally, the second update function (UF2) is executed. As with
TPC-C, the TPC-D benchmark specifies a method for scal-
ing the database. Our trace was collected on a system with a
scale factor of 30.

More details about the benchmarks can be found in [26]
and in the benchmark specifications [70, 71]. Note that the
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

Source Aerospace
company

Banking
corp.

Consumer
goods

company

Direct mail
marketing

firm

Direct mail
marketing

firm

Financial
services

firm

Insurance
company

Discount
store

Telecom.
Company A

Telecom.
company B

Telecom.
company B

Utility
company -

TPC
benchmark

C

TPC
benchmark

D

Platform MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

WinNT on
Intel X86

WinNT on
Intel X86

DBMS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/UDB DB2/UDB

Date Collected 2/3/1992 5/13/1991 9/8/1992 9/18/1991 9/19/1991 6/6/1991 10/7/1992 7/1/1992 4/15/1992 10/8/1990 10/9/1990 5/14/1991 - 2/10/1998 3/8/1998

Duration (h:m) 2:29 22:57 1:59 1:03 2:02 3:54 2:41 4:52 1:40 2:27 1:42 3:16 4:15 (withheld) (withheld)

# Objects 2203 1281 626 1446 1446 3124 1953 434 521 255 255 1139 1224 101 192

 Data Size (MB) 33558 53079 3423 18191 18191 10064 38095 72188 197422 15114 15114 39070 42792 70246 77824

Footprint (MB) 1397 9600 726 1137 1362 2127 1732 6769 2986 947 976 5727 2957 13267 51580

# References 7779007 35916414 7133845 6401880 14396125 15664004 20648874 38646360 13072916 11531195 13757374 37653369 18550114 196067649 218130354

# Xacts 98931 85173 66102 11892 14906 20956 70242 797637 84378 36508 25899 118191 119235 890885 230

Read Ratio (%) 93.8 90.6 86.9 95.4 95.6 90.9 84.8 86.9 85.9 93.0 98.1 89.3 90.9 87.4 97.8

Table 1: Summary of Trace Characteristics.

TPC benchmark rules prohibit publicly disclosing TPC per-
formance figures that have not been independently audited.
Therefore, we withhold from this paper any data that may
be used to derive our TPC metrics. This omission of abso-
lute TPC performance numbers should not compromise our
understanding of the logical reference behavior of the bench-
marks.

Our other traces were collected in the day-to-day produc-
tion environments of a diverse group of very large corpora-
tions. The industries represented include aerospace, bank-
ing, consumer goods, direct mail marketing, financial ser-
vices, insurance, retail, telecommunications and utilities. In
all cases, our traces include the peak production database
workload as identified by the system managers. This is
typically a combination of transaction processing and long-
running queries. The trace referred to as Telecom in [82]
and Phone in [62] is the first 30 minutes of the trace we call
TelecomB1.

3.2 Trace Description

Table 1 summarizes the characteristics of the various
traces that are used in this paper. Because of the large num-
ber of production workloads, we often also present the arith-
metic mean of their results. This is denoted as “Prod. Ave.”
In the table, the termobjectrefers to a logical collection of
data, such as a database table or an index, that is managed as
an entity in much the same way as a file.Data sizerepresents
the total size of all the objects in the system and was obtained
from the catalog dumps that were taken when the systems
were traced. Thefootprintof a trace is defined as the amount
of data referenced at least once in the trace. The traces record
information from the perspective of the DBMS. Therefore,
the object count includes DBMS system objects like cata-
logs, views and plans. In addition, the transactions recorded
are database transactions, several of which may be needed to

perform a single business transaction. The production traces
were taken off the primary systems in use at some of the
world’s largest corporations in the early nineties. Though
these databases were considered large a few years ago, they
are comparable in size to the TPC benchmark databases that
can be supported on a high-end multiprocessor PC server to-
day.

In the course of this research, there were situations where
the state of various simulators had to be established before
meaningful statistics could be collected. This is often re-
ferred to as warming up the simulator. For instance, the
buffer pool in a real system is seldom empty, except during
start up. Therefore, if we simulate the buffer pool miss ratio
starting with an empty buffer pool, the results will be skewed
by the extra misses that are needed to fill the buffer pool. A
more meaningful approach is to collect the statistics after
the buffer pool has been filled or warmed up. Such statistics
are known aswarm statistics. Unless otherwise stated, we
used half of the trace for such warm-up purposes for most of
the traces. Because the footprint of Bank increases abruptly
around the middle the trace, we prolonged the warm-up pe-
riod for Bank to slightly beyond the halfway mark. For the
TPC-D trace, we used only a quarter of the trace to warm up
our simulators because this already achieved a large enough
footprint. The various warm-start points are presented in Ta-
ble 2.

In this paper, we generally present only the results for
buffer pools that are filled at the predetermined warm-start
point. However, in computing the average result of the pro-
duction workloads (denoted “Prod. Ave.”), we consider all
the results, including those for buffer pools that are not full
by the warm-start point. This ensures that we are always tak-
ing the arithmetic mean of 12 results (one for each produc-
tion trace) so that the average is continuous. Note that some
of the traces contain references to large pages,i.e.,those with
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Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility TPC-C TPC-D

# References 3889504 20000000 3566923 3200940 7198063 7832002 10324437 19323180 6536458 5765598 6878687 18826685 98033825 54532589

% References 50.0 55.7 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0

% Trace Time 42.6 65.8 49.1 45.0 40.1 51.4 50.4 50.5 64.6 45.3 50.3 50.3 51.9 42.0

Table 2: Warm-Start Point.

sizes that are multiples of the 4KB base page size. For con-
sistency, we converted these to refer to 4KB pages. More
detailed description of the traces can be found in [26].

4 I/O Reference Characteristics

4.1 Overview

The key to good I/O performance lies in discovering
useful reference patterns in the workload and effectively
exploiting such patterns. Imagine the references trudging
through I/O space and leaving footprints wherever they have
visited. The highly-frequented regions will have deep foot-
prints. Figures 1.i and 1.ii plot the footprints left by the ref-
erences over time. In these plots, the y-axis represents the
address modulo 32MB while the x-axis represents time in
terms of the number of references. Each dot in the plots rep-
resents a space-time region of 256KB by 4096 references.
In such plots, hot spots will appear as horizontal lines while
sequential reference patterns will be manifested as lines run-
ning upwards at an angle. In order to show the relative depth
of the footprints, the dots are plotted on a 256-level gray
scale with a 5% saturation level,i.e., any dot with 5% or
more of the maximum intensity is treated as having the max-
imum intensity. We apologize for the small scale of these
plots; a scale that permitted one to distinguish individual
pages would require wallpaper for display.

Observe that TPC-C’s reference behavior is markedly
different from that of the production workloads. TPC-C’s
references are random and noise-like with relatively few ob-
vious hot spots. Also, unlike the production workloads,
which clearly exhibit sequentiality of reference, TPC-C does
not exhibit any significant sequentiality. There does exist
a faint line that slopes up very gradually in TPC-C’s plot.
This results from appending a row to the ORDER-LINE ta-
ble for every item ordered [26, 70]. Because a page contains
many rows, the page references increase very slowly. In this
case, temporal reuse rather than sequentiality is the domi-
nant characteristic. On the other hand, the reference pat-
terns exhibited by the TPC-D queries are clearly sequential
and are more structured and regular than those of the pro-
duction workloads, perhaps because the TPC-D queries are
run serially. Most of the production workloads have regions
with distinct reference patterns. This reflects the fact that
real production environments are typically much less con-
trolled than benchmark environments and therefore have a

greater variation in their workloads. Results from [26] in-
dicate that TPC-C is made up of small transactions while
TPC-D is dominated by very large transactions. The pro-
duction workloads contain a combination of small and large
transactions but their reference behavior appears to be more
complex and varied than a simple superposition of the refer-
ence streams of TPC-C and TPC-D.

A closer examination of Figures 1.i and 1.ii shows that
the production workloads exhibit what appears to be cyclic
sequential or looping reference patterns. In Section 4.3, we
will consider how this affects attempts to reduce buffer pool
pollution by purging pages that have been sequentially ac-
cessed. Notice also that the plot for TPC-D’s queries con-
tains clearly sequential patterns with two or three dark hor-
izontal lines. This sort of reference pattern is the result of
sequential or near sequential index probes where an index is
repeatedly used to look up keys that are ordered or nearly
ordered. The dark horizontal lines reflect references to the
root and intermediate nodes of the index while the sequen-
tial patterns reflect references to the leaf nodes. There are
index lookaside techniques, such as [3], that avoid complete
traversal of the index in these situations but we did not en-
able them in our TPC-D run so as to reduce the effect of
any DBMS-specific optimizations. This sort of access pat-
tern, though less prevalent, is also observed in the production
workloads and suggests that the index lookaside techniques
will be useful for the production workloads too. With this
qualitative overview of the reference patterns as a backdrop,
we will quantitatively characterize the reference behavior of
the various workloads in the next few sections.

4.2 Locality and Skew

In this section, we evaluate the amount of temporal reuse
that is exhibited by the various workloads. Because varia-
tions of the Least-Recently-Used (LRU) replacement algo-
rithm are widely used in commercial systems [22, 68], we
present the LRU miss ratio in Figure 2. Some more recently
proposed replacement algorithms have been reported to of-
fer a 5-10% improvement in hit rate over pure LRU for rela-
tively small buffer sizes [32, 48, 56].

That the workloads exhibit locality of reference is evi-
dent from Figure 2. All the workloads, with the exception of
Bank, have LRU miss ratios of less than 15% with a 100MB
buffer pool. Bank’s LRU miss ratio remains well above that
of the other workloads until a buffer pool of 7GB at which
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Figure 1.i: Reference Map. The addresses that are referenced are plotted modulo 32MB. Each dot in the figure represents a
space-time region of 256KB by 4096 references. Any dot with 5% or more of the maximum intensity is treated as having the
maximum intensity. 6



TelecomA
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

TelecomB1
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

TelecomB2
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

Utility
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

TPC-C
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

TPC-D Update Stream 1 (UF1)
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

TPC-D Queries
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

TPC-D Update Stream 2 (UF2)
32MB

        0                                                                                                                      # References                                                                                                 4M

O
ffs

et

Figure 1.ii: Reference Map. The addresses that are referenced are plotted modulo 32MB. Each dot in the figure represents a
space-time region of 256KB by 4096 references. Any dot with 5% or more of the maximum intensity is treated as having the
maximum intensity. 7



TPC-C

TelecomA

0

2

4

6

8

10

12

14

0 200 400 600 800 1000
Size of Buffer Pool (MB)

LR
U

 M
is

s 
R

at
io

 (%
)

Prod. Ave.

TPC-D

FinSvcs

DirMktg1

DirMktg2

Insurance

TelecomB2TelecomB1

ConsGds Aerospace

Retail

Utility

Prod. Ave.-Fitted

f(x)=49.5(x-4.42)-0.328

r2=0.998

Bank

Retail

0

5

10

15

20

0 2000 4000 6000 8000 10000
Size of Buffer Pool (MB)

LR
U

 M
is

s 
R

at
io

 (%
)

Prod. Ave.

TPC-D

TPC-C

Prod. Ave.-Fitted

f(x)=49.5(x-4.42)-0.328

r2=0.998

Figure 2: LRU Miss Ratio.

point it plummets. This sort of behavior is primarily due to
loops that just fit within a 7GB buffer pool. Compared to the
production workloads on average, TPC-C’s miss ratio im-
proves more quickly with increases in buffer pool size while
the opposite is true of TPC-D. For the most part, the average
miss ratio of the production workloads falls between that of
TPC-C and TPC-D.

We can often obtain the miss ratio for a given workload at
a given buffer pool size. For instance, DB2/UDB maintains
performance counters that can be used to calculate the buffer
pool miss ratio [30]. The interesting question is whether
such data can be used to project the miss ratio at larger buffer
pool sizes. More generally, an analytical model of the rela-
tionship between miss ratio and buffer pool size will be ex-
tremely useful for guiding both the design of future systems
and the upgrade decisions for current systems. To this end,
we fitted the data for our production workloads to various
functional forms. As shown in Figure 2, we found that the
relationship between miss ratio and buffer pool size is accu-
rately described by a function of the formf(x) = a�(x�b)c,
wherea, b andc are constants. In this case,c is approxi-
mately1

3
. Interestingly, [38] presents a similar cube root rule

(f(x) � d � x�
1

3 whered is a constant) which was obtained
by examining I/O workloads at 11 commercial installations
using a simple statistical model of cache reference locality.
The difference between the two results is that our function
is shifted to the right byb units which probably reflects that
the minimum buffer space required isb units. In this case,b
is about 4MB.

The main criticism of using LRU in database buffer man-
agement is that it will not perform well for a cyclic or loop-
ing reference pattern until the buffer pool is large enough to
hold the entire loop, at which point the miss ratio will sud-

denly improve dramatically. This sort of behavior can be
seen as a concave kink in the miss ratio plots in Figure 2.
Among the production workloads, Bank, Retail, TelecomA,
FinSvcs and Insurance clearly show this behavior. To a much
lesser extent, TPC-D also has this behavior but not TPC-
C. Possible ways to improve the handling of loops include
caching a loop only if it will fit within the buffer pool and
using the Most Recently Used (MRU) replacement policy to
handle the loops. The first technique hinges on the ability to
determine whether a loop will fit within the buffer pool while
the second requires knowledge of the marginal benefit of al-
locating buffer space between the loop and other competing
needs. On a per transaction basis, both can be estimated to
a certain extent using the query plan optimizer [11], How-
ever, when there are other transactions in the system, as is
typically the case in real production systems, the problem
becomes much harder.

In Figure 3, we plot the LRU miss ratio against the ratio
of buffer pool size to data size. The intention is to establish
a rule of thumb to determine what are reasonable buffer pool
sizes relative to the data size. Again, we find that the data
tends to follow a function of the formf(x) = a � (x � b)c

wherea, b and c are constants. As shown in the figure,c

is approximately� 1

2
, resulting in a square root rule in this

case. Note, however that the production workloads exhibit
somewhat diverse behavior. Most of them can effectively
utilize buffer pools that are on the order of 3-10% of their
data size. The notable exceptions are TelecomA, which has
a miss ratio curve that bottoms out at less than 1%, and Bank,
which continues to improve in miss ratio with buffer pools
that are bigger than 15% of its data size. Although TPC-
C’s miss ratio continues to improve at buffer pool sizes be-
yond 10% of its data size, the knee in its miss ratio curve is
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Figure 3: LRU Miss Ratio as a Function of Ratio of Buffer Pool Size to Data Size.

achieved at below 5% of the data size. For TPC-D, the knee
in its miss ratio curve occurs at less than 1% but its miss ra-
tio continues to improve at buffer pool sizes beyond 10% of
its data size.

Such results are important because they indicate what
a balanced database server should look like. For instance,
storage-wise, a PC server today can easily accommodate
databases that are hundreds of gigabytes in size. The bar-
rier to good performance is likely to be the relatively small
amount of memory that can be addressed by today’s PC op-
erating system to serve as the buffer pool. For instance, Win-
dows NT 4.0 has a main memory addressing limit of 4GB
of which 1GB is reserved for the operating system. This
constraint has been deemed serious enough that Intel has an-
nounced a hardware architecture that allows main memory
beyond the 4GB barrier to be used as a RAM disk [31].

In Figure 4, we consider how long pages tend to remain
in the buffer pool by plotting the average buffer pool resi-
dency time as a function of the buffer pool size. Because of
the large number of production workloads, we also plot the
arithmetic mean of their residency time. This is labeled as
“Prod. Ave.” in Figure 4. Since the production traces are
of different sizes, if we simply take the arithmetic mean of
the residency time, the number of traces being averaged will
decrease with the buffer pool size so that the resulting curve
will contain discontinuities. Therefore, we take the mean of
the rate of increase of the residency time and then integrate
the resulting expression. More formally, we define the arith-
metic mean of the average residency time for the production

workloads with a buffer pool of sizeX as
RX
0

d
dx

(fi(x)) dx,
wherefi(x) denotes the average residency time of tracei

with a buffer pool of sizex.
We find that for the production workloads on average, the

relationship between the average buffer pool residency time

and the size of the buffer pool can be accurately described by
the Hill equation which was originally proposed for model-
ing the absorption of oxygen by hæmoglobin [25]. The Hill
model,Hill(fmax; k; n), represents a family of sigmoidal
saturation curves defined byf(x) = fmax�xn

k+xn
wherefmax

is the asymptotic value off(x) andk andn are parameters
that determine the shape and slope of the curve. The values
of these parameters in our current context are presented in
Figure 4. Observe that for the TPC benchmarks, pages tend
to remain in the buffer pool for a shorter duration than for
the production workloads. This is probably because the pro-
duction traces were collected on older and slower systems.

For the purpose of establishing a baseline level of miss
ratio, we also performed simulations using Belady’s MIN,
the optimal lookahead or offline page replacement pol-
icy [7]. Figure 5 plots the ratio of LRU miss ratio to MIN
miss ratio for the various workloads. Note that as discussed
earlier, for the individual workloads, we only plot the results
for buffer pools that are filled by the warm-start point. How-
ever, in computing the average of the production workloads,
we always take the arithmetic mean of the results for all the
production workloads, regardless of whether the buffer pool
is full at the warm-start point. This ensures that the aver-
age curve is continuous but it may give the illusion that the
average is lower than the curves of which it is the average.

Notice that the ratio of LRU miss ratio to MIN miss ra-
tio is not very stable. This suggests that there are well-
defined working set boundaries so that the miss ratio changes
abruptly at certain buffer pool sizes. Observe that for buffer
pool sizes ranging from 100MB to 1GB, the average LRU
miss ratio for the production workloads tends to be almost
40% higher than the MIN miss ratio. This is slightly higher
than the 30% difference reported in [82] but is still reason-
ably consistent with the difference in miss ratio between the

9
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optimal realizable algorithm and the optimal lookahead al-
gorithm which is reported to be about 35% in [63]. This
suggests that on average, LRU is close to the optimal realiz-
able algorithm for the production workloads.

The behavior of TPC-C is different in that its LRU miss
ratio is more than 50% higher than its MIN miss ratio for
a wide range of buffer pool sizes. The implication of this is
that there may be a realizable algorithm that performs signif-
icantly better than LRU for TPC-C. On the other hand, TPC-
D’s LRU miss ratio tends to be much closer to its MIN miss
ratio than the production workloads. This is because TPC-
D has the tendency to sequentially scan a table or index. In
such an operation, all the records on a page are sequentially
read. Since each record read generates a page reference, this
results in an access pattern where there are multiple refer-
ences to the same page within a very short period of time.
Such degenerate access patterns leave MIN with little ad-
vantage over LRU.

Some previous work on analyzing database reference
streams, for instance [64], filtered out such degenerate ac-
cess patterns by deleting immediate rereferences to the same
page. However, as we shall see in Section 4.3, our work-
loads tend to contain complex interleavings of references
from different transactions and to different objects so that
it is very difficult to accurately identify the degenerate ref-
erences. Therefore, we chose not to try to filter them out.
Furthermore, as discussed earlier, many DBMSs includ-
ing DB2/UDB maintain performance counters that can be
queried and used to calculate the buffer pool miss ratio. If
we were to try to remove the degenerate references, our anal-
ysis would not be consistent with these numbers which are
easily obtainable and and are therefore widely used. See for
example [72].

4.2.1 Static vs Dynamic Buffer Management

The Independent Reference Model (IRM) of program
behavior assumes that the probability of referencing page
i is alwayspi wherepi is a constant,0 � pi � 1 andP

all pagespi = 1 [13]. Under such a model, an ex-
act solution to the LRU miss ratio can be obtained analyt-
ically [13, 35]. Approximate solutions have also been pre-
sented in [16, 46]. In addition, if such a model is valid, then
the buffer pool can be effectively managed by statically al-
locating space to pages with the highest rate of reference.

Let dist(i) be the distance or time to the next reference
of pagei. TheAo replacement algorithm [1, 13] always
replaces the page with the largest expected value ofdist.
Therefore, if the IRM is valid,Ao is the optimal realizable
(non-lookahead) replacement algorithm. (Note thatAo will
require determination of the reference probabilities, which
itself may require lookahead.) In Figure 6, we plot the ra-
tio of Ao miss ratio to LRU miss ratio. From the figure, the
Ao miss ratio for all the workloads and in particular the TPC
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benchmarks is clearly much higher than their LRU miss ra-
tio. In other words, theAo algorithm is clearly not the opti-
mal algorithm for these workloads. This implies that the in-
dependent reference model for program behavior is not valid
for database reference streams and that mathematical models
that are based on the IRM are also invalid. In addition, as far
as miss ratio is concerned, a statically managed buffer pool
is clearly a poor idea, especially for the TPC benchmarks.
This is consistent with results presented in [65].

4.2.2 Inter-Transaction Locality

As mentioned earlier, one of the primary weaknesses of
buffer management strategies that are based solely on query
plan information is that they do not account for interaction
between transactions. Since the TPC-D queries are run se-
rially in the power test, this shortcoming should not affect
TPC-D. However, the production workloads typically have
a high degree of concurrency and involve a complex mix of
short transactions and long running queries [26]. Therefore,
in this section, we try to quantify the amount of interaction
that actually occurs between the transactions.

Let page reusebe the ratio of the number of references to
the number of pages,i.e.,

page reuse=
# references

# pages
(1)

On a per transaction basis,

page reuseper xact=
transaction size

transaction footprint
(2)

where following the terminology in [26],transaction sizeis
the number of references in the transaction andtransaction
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footprint is the number of pages referenced by the transac-
tion.

To get an overall picture of the amount of page reuse on
a per transaction basis, we compute the average over all the
transactions, weighted by the transaction footprint so that
transactions with larger footprints are counted more heavily.
We refer to this as the intra-transactional page reuse.

page reuseintra xact

=

X

all xacts

page reuseper xact� transaction footprint

X

all xacts

transaction footprint

=

X

all xacts

transaction size

X

all xacts

transaction footprint

=
# referencesX

all xacts

transaction footprint
(3)

The difference between equations 1 and 3 is that the overall
number of pages referenced is less than the sum of the trans-
action footprints because there is reuse of pages among the
transactions. In other words, intra-transactional page reuse
is the page reuse that would result if there is no page sharing
among transactions; the remaining reuse can be considered
to be page reuse between transactions or inter-transactional
page reuse:

page reuseinter xact=

page reuse� page reuseintra xact (4)

In Figure 7, we break down the page reuse in our various
workloads into inter-transactional and intra-transactional
components. Among the production workloads, total page
reuse varies from 13 in ConsGds to over 55 in TelecomB1.
On average, total page reuse for the production workloads
is about 25 of which 15% can be attributed to page reuse
within the same transaction. TPC-C’s total page reuse at al-
most 60 is the highest among all the workloads while TPC-
D’s reuse at about 17 ranks among the lowest. Observe that
with the exception of TPC-D, most of the reuse is the re-
sult of page sharing among transactions. As expected, TPC-
D’s reuse behavior is rather different from that of the other
workloads — it has very low inter-transactional page reuse
but very high intra-transactional page reuse. TPC-D’s high
intra-transactional page reuse results from its tendency to se-
quentially read all the records on a page before moving on to
the next page. As discussed earlier, each record read gener-
ates a page reference. Therefore, reading all the records on
a page will result in multiple references to the same page.

Having seen that most of the page reuse for TPC-C and
the production workloads results from interaction between
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Figure 7: Inter and Intra Transaction Page Reuse.

transactions, we now relate this to buffer pool management.
In particular, we consider the averageinter-transactional
page sharing, which we define to be the percentage of a
transaction’s footprint that is already present in the buffer
pool as a result of accesses by other transactions. The re-
sults assuming an LRU buffer pool are summarized in Fig-
ure 8. Comparing the unweighted average in Figure 8(a) to
the average that is weighted by the transaction footprint in
Figure 8(b), we observe that, as expected, the larger trans-
actions tend to exhibit less inter-transactional sharing. Fig-
ure 8(b) shows that with a 1GB buffer pool, we will overes-
timate buffer space requirements for most of the workloads
by more than 80% if we ignore inter-transactional page shar-
ing. The only exceptions are for TPC-D and to a lesser ex-
tent, Bank. TPC-D’s low inter-transactional page sharing
is expected because it contains very long queries that are
run serially. Similarly, Bank’s behavior can be anticipated
from results presented in [26] that show Bank to have long
queries and relatively low concurrency. As shown in Fig-
ure 8, for the production workloads on average, the relation-
ship between inter-transactional page sharing and the size of
the buffer pool can again be accurately described by the Hill
equation.

4.3 Sequentiality

Sequentiality is the characteristic that the pages refer-
enced tend to be increasing in page number. Sequential
patterns of access allow us to anticipate which pages are
likely to be accessed next and to fetch them before they are
needed. Such anticipatory fetching of pages is commonly
referred to as sequential prefetch. Sequential reference pat-
terns may also allow us to identify pages that are less likely
to be reused. In addition, if we discover that the reference
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Figure 8: Degree of Page Sharing Among Transactions.

pattern is sequential when we are repeatedly using an in-
dex to look up a set of keys, then the keys must be sorted
or nearly sorted. In this case, we may be able to avoid re-
peatedly traversing the root and upper levels of the index
through the use of index lookaside techniques mentioned in
Section 4.1.

This paper focuses on sequentiality in the logical page
numbers. However, we note that because the characteris-
tics of I/O devices are such that they operate most efficiently
when fetching big blocks, the effectiveness of sequential
prefetch depends very much on whether the logically se-
quential pages are physically sequential on the I/O devices.
As a database is updated, data pages may overflow and in-
dex nodes may have to be split. In such cases, the physical
reference stream may not be strictly increasing. However, if
the database is reorganized or dumped and reloaded periodi-
cally, logical sequentiality will for the most part correspond
to physical sequentiality.

[64] briefly discusses why sequentiality is common in the
database reference stream. Other work such as [23, 57, 82]
also found sequentiality but several empirical studies of
database reference behavior found little or no sequential-
ity [18, 33, 76]. Whether sequentiality is present in the
reference stream clearly depends on the database workload.
For relational databases, long-running queries that examine
a large number of records and those that involve joins of
multiple relations will typically exhibit sequentiality of ref-
erence. While the query plan can usually provide some in-
dication of sequentiality, especially in straightforward cases

like table scans, some sort of run-time detector is generally
needed to fully capture the sequentiality in complex queries.

Most of the previous work used rather strict definitions
of sequentiality, the most common of which is that page ref-
erences are consecutively numbered in ascending order or
are separated by a fixed interval [17, 18, 23, 57, 64, 82].
However, in relational databases, the page references may
occasionally run backwards in the middle of a forward run.
This may occur as the result of a merge join operation that
encounters duplicate keys. In addition, it is possible for the
page reference stream to be generally increasing but be inter-
spersed by gaps. This typically results from scanning a table
using a clustered index as for instance, in an index nested-
loop join operation. Moreover, with intra-query parallelism
in which a query is concurrently worked on by more than one
database agent or thread, references seen on a transactional
level may not be strictly increasing.

In order to determine whether such pseudo-sequential
reference patterns occur in practice, we consider a refer-
ence r to pagep to be part of a sequential runR if p

lies within �extentbackward and +extentforward of the
largest page number so far inR, whereextentbackward and
extentforward are positive constants. As illustrated in Fig-
ure 9, such a definition establishes a high watermark from
which the subsequent references may deviate. It captures
the case where the page references are generally increas-
ing but may occasionally back up. This definition of a se-
quential run is a generalization of that defined in [64] where
extentbackward = 0 andextentforward = 1. Later, we will
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examine our workloads to figure out appropriate values for
extentbackward andextentforward and thereby determine
whether pseudo-sequential reference patterns occur in prac-
tice. As in [64], we define therun lengthto be the number
of references in the run. In addition, we define thesizeof
a run to be the number of unique pages in the run, itsspan
to be the difference between the largest and smallest page
numbers, and itsdensityto be its size to span ratio.

It is generally not easy to discover sequentiality in the ag-
gregate reference stream because of the complex interleav-
ing of references from different transactions and to differ-
ent objects. This is especially the case when there is a high
degree of concurrency as is common in production work-
loads [26]. More recently, [34, 82] examined sequentiality
on a per object (file) and/or per transaction basis. But this is
still not sufficient because even on a per object and transac-
tion basis, the sequential references may still be interspersed
by other references. For instance, in an index scan, the ref-
erences to the leaf pages of the index will be sequential but
will be interleaved with accesses to the root and intermedi-
ate nodes of the index. In addition, the accesses to the leaf
pages themselves may not be totally sequential if the index
has not been reorganized for a while. Moreover, with intra-
query parallelism, a simple scan of an object may be broken
down into multiple concurrent partitioned scans. Therefore,
the reference stream on a per transaction and per object basis
may still contain multiplexed pseudo-sequential streams.

This suggests that we need to maintain a buffer of pos-
sible sequential runs for each transaction and object combi-
nation. In this study, we use an LRU list to implement the
run buffer. On a reference, we march down the LRU list to
determine the first run that the reference belongs to. If no
such run is found, a new run is created and the least recently
used run is replaced if necessary. The operation of the run

buffer is similar to that of the segmented cache that is im-
plemented in many of today’s disks. The number of entries
in the run buffer determines the number of runs that can be
tracked. This approach is similar to the Sequential Working
Set idea in [82] where a page is considered sequential if its
predecessor exists in the cache. In our case, we use a sep-
arate run buffer instead of the cache directory to remember
the recently referenced pages. We also explicitly identify the
sequential run so that we can maintain some state for each
run. This is useful not only for understanding the character-
istics of the runs but also for prefetching where it allows us
to condition on the run size.

In Figure 10, we investigate appropriate values for
extentbackward and extentforward. In these simulations,
we use a run buffer with 64 entries. We will examine suit-
able sizes for the run buffer later. TPC-C stands out among
the workloads in that it does not show any significant se-
quentiality and will be omitted from the analysis in this sec-
tion. Observe from Figure 10 that by relaxing the definition
of sequentiality so that the page numbers may occasionally
run backwards (extentbackward > 0), substantially more se-
quentiality can be detected. Whenextentbackward is twice
extentforward, even more of the references can be consid-
ered sequential. The motivation for havingextentforward >
1 is that the page numbers may be generally increasing but
be interspersed by gaps. In addition to handling such gaps,
the backward extent also takes care of situations where the
reference stream backs up and where there is a trailing set
of subagents working on the same query. Therefore, having
the backward extent to be larger than the forward extent is
justifiable. For the rest of this paper, we will assume that
extentbackward is twiceextentforward.

Observe further that withextentbackward = 0, increas-
ing extentforward results in the detection of significantly
less sequentiality. This is because withextentbackward = 0,
once we make a mistake in considering a forward reference
to be part of a run, we cannot go backwards so that the
run is essentially terminated prematurely. For instance, with
extentbackward = 0 andextentforward = 4, if the refer-
ence stream is “1, 2, 5, 3, 4, ...”, we would consider “5”
to be a continuation of the run “1, 2” and this would pre-
vent “3, 4” from being part of the run. Therefore, having
extentbackward � extentforward is extremely important in
that it is forgiving of such mistakes.

In Figure 11, we further examine the relative significance
of forward and backward reference patterns by classifying
references into different categories depending on whether
they can be considered part of an existing run and if so,
whether the page numbers referenced are increasing, de-
creasing or stationary. From Figure 11(a), on average, 21%
of the references in the production workloads belong to an
existing run and reference a page number that is smaller than
the largest page number already in the run. The correspond-
ing figure for TPC-D is 12%. The percentage of references
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an existing run with respect to the largest page number
in the run. For instance, if a reference accesses pagep

wherep < largest page number so far in the run, it is
considered a backward reference.
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(b) In this figure, we classify the references that are part of
an existing run with respect to the last referenced page
number in the run. For example, a reference to page
p wherep < last page number accessed in the runis
classified as a backward reference.

Figure 11: Relative Significance of Forward and Backward Reference Patterns. We assume thatextentbackward = 16,
extentforward = 8 and that the run buffer can track 64 concurrent runs. The references that cannot be considered part of
any existing run are denoted as “new run.” The remaining references are further classified into those that are part of a backward
pattern, those that are stationary and those that are going forward.
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Figure 12: Run Density.

that increase the largest page number in the run is roughly
the same. In Figure 11(b), we determine whether the page
numbers are increasing or decreasing with respect to the last
page number referenced in the run. In this case, 24% of the
references jump backwards while 46% of them go forward
for the production workloads on average. For TPC-D, the
corresponding numbers are 50% and 32%. In either case,
backward reference patterns are very significant.

In general, increasing the values ofextentbackward and
extentforward relaxes the definition of a sequential run and
enables more sequentiality to be detected. However, the
problem with too relaxed a definition is that we may end
up with very sparse runs. Recall that we define the density
of a run to be the ratio of its size (number of unique pages
referenced) to span (difference between largest and smallest
page numbers). In Figure 12(a), we present the average run
density as a function of the extent size. As shown in the fig-
ure, the data follows approximately a logarithmic function
of the formf(x) = a� b � lnx wherea andb are constants.
Note that in this figure, the runs in each workload are equally
weighted. In Figure 12(b), we weight the average by the run
span. The rationale for such a weighting is that when per-
forming sequential prefetch, we usually fetch the run span,
in which case the average run density weighted by the run
span indicates the percentage of useful pages that will be
prefetched. We fitted several functional forms to the data and
found that a reciprocal function of the formf(x) = 1

a�x+b

wherea andb are constants is a very good fit. Such a fitted
function can be used to analytically determine the optimal
prefetch policy using a cost and benefit model. See for in-
stance [64]. Observe that withextentbackward = 16 and
anextentforward of eight, about one in four pages in a run
span are not referenced, which is pretty reasonable. We will
therefore use these values for the rest of the paper.

Finally, we determine suitable sizes for the run buffer; the
run buffer keeps track of the length, size and the lowest and
highest numbered referenced pages for each run. The results
are summarized in Figure 13. For the production workloads
on average, a run buffer with four entries is able to capture
most of the sequentiality. For TPC-D, a 16-entry run buffer
is more appropriate; that size will be used for the rest of the
paper.

4.3.1 Sequential Prefetch

Having seen that all the workloads except TPC-C exhibit
strong sequentiality of reference, in this section we consider
how to exploit the sequential patterns of reference to fetch
pages before they are needed. Such prefetching of pages
has the potential to increase I/O efficiency by transforming
several small block I/Os into one large block I/O which can
be more efficiently handled by the I/O device. In addition,
prefetching may reduce CPU overhead by decreasing the
number of start I/Os and the number of transaction blocks
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Figure 13: Sensitivity to Run Buffer Size. The distribution of run length weighted by the run length is plotted. The circled point
indicates that for TPC-D with an eight-entry run buffer,extentbackward = 16 andextentforward = 8, 81% of the references
occur in sequential runs with fewer than 100,000 references.

due to I/O wait. However, inaccurate prefetching can waste
resources if pages that are not needed are fetched. In gen-
eral, the amount of resources that we commit to prefetching
should increase with the likelihood that the reference pattern
is sequential.

There are generally two different ways to prefetch. In
in-line or synchronous prefetching, the prefetch request is
issued as a tag along request when a demand fetch occurs.
Synchronous prefetching incurs no extra overhead except
that the transaction is blocked until the I/O request is com-
pleted. It is useful for prefetching small amounts in cases
where we are not very certain whether the access pattern is
sequential. In asynchronous prefetch, the prefetch request
is carried out in the background while the transaction is pro-
cessed. Asynchronous prefetch of large amounts can be used
to speed up a transaction by reducing the need to wait for
I/O. However, it tends to be more costly because of the need
to initiate and manage asynchronous I/Os. In addition, it has
to be initiated well in advance so that pages are prefetched
early enough. Therefore, it is generally more useful in situ-
ations where we are certain that there is strong sequentiality
in the reference stream.

Results presented above show that the various workloads,
especially TPC-D, contain some very long sequential runs.
In such cases, it generally makes sense to asynchronously
prefetch large amounts to keep a transaction fed so as to
speed it up. However, this may affect other transactions in
the system. In a production environment where there is a
complex mix of short transactions and long queries, the over-
all impact of such aggressive prefetching has to be carefully
evaluated. In the TPC-D power test where the performance
metric is the run time of a single stream of queries, com-

mitting otherwise unused resources to speed up the single
stream of queries is clearly beneficial.

The prefetching strategy to use depends critically on the
size of the sequential runs. In Figure 14, we plot the distribu-
tion of the run size weighted by the run size for the selected
configuration (16-entry run buffer,extentbackward = 16,
extentforward = 8). Such a weighting allows one to con-
sider the number of pages in the runs rather than the number
of runs and is more indicative of the importance of sequen-
tial prefetch. To make the data more useful for mathematical
modeling and analysis, we fitted it with standard probability
distributions. As shown in the figure, the weighted run size
distribution for the production workloads tends to follow the
lognormal distribution (denoted LogNorm(�, �) where� is
the mean and� is the variance). Note that because the data
are plotted on a logarithmic scale, the fit at small values of
run size appears poorer than it actually is.

In Figure 15, we plot the expected future run size,
E[FRS(x)]. This is defined as the expected remaining run
size given that the run size has already reachedx. More for-
mally,

E[FRS(x)] =

1X

i=x+1

(i� x)l(i)

1� L(i)
(5)

wherel(�) is the probability distribution of the run size,i.e.,
l(j) is the probability that a run has a size ofj andL(�) is
the cumulative probability distribution of the run size,i.e.,
L(j) =

Pj

i=1 l(i). Note that each of the production work-
loads has a different maximum run size so that the expected
remaining run size becomes zero for the different workloads
at different values of run size. In Figure 15, we only plot the
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Figure 14: Distribution of Run Size Weighted by Run Size.

average of the production workloads up to the point where
the expected remaining run size of one of the workloads be-
come zero. Observe that as in [63, 82], E[FRS(x)] is gen-
erally increasing. In other words, the larger the current run
size, the longer the run is likely to continue. This suggests
prefetch policies that progressively fetch larger numbers of
pages as the run size increases.

With the intent of better understanding how the various
workloads respond to prefetch, we generalize the hazard rate
used in [64]. We define theprefetch HazardHpf (k; r) to be
the probability that a sequential run ends with size� k +
r given that its size is at leastk. In other words, given a
run that has reached a size ofk, Hpf (k; r) is roughly the
chance that we will overfetch if we prefetch more thanr
pages. More formally,

Hpf (k; r) =

rX

i=0

l(k + i)

1� L(k � 1)
(6)

Figure 16 summarizes the average prefetch hazard for the
production workloads and for TPC-D. The individual plots
for the production workloads can be found in Figures A-1.i
and A-1.ii in the Appendix. Observe that the hazard rate is
generally declining as the run size increases. A high haz-
ard rate indicates that the prefetched blocks will not be used
and conversely. Therefore these results again support the
idea of determining prefetch amounts by conditioning on the
run size seen so far [64]. Notice that as expected, the haz-
ard rate increases withr. In other words, the chances that
the prefetched blocks will not be used increases with the
prefetch amount. As mentioned earlier, in order to keep a
query fed, asynchronous prefetch typically has to be initiated
well in advance. Suppose that in order for the prefetch to be
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completed on time, we need to initiate itx pages in advance.
In this case, if the run is already of sizek, thenHpf (k; r+x)
is approximately the probability that a prefetch amount ofr

will result in an overfetch. In view of these considerations
and the shape of the curves in Figure 16, a good prefetch
strategy is to perform in-line prefetching of small amounts
initially and to switch to asynchronous prefetching of large
amounts when a long run is detected.

Although all the workloads except TPC-C share the char-
acteristic that their reference behavior is highly sequential
in nature, their exact behavior varies from one workload
to another, as is apparent from Figures A-1.i and A-1.ii in
the Appendix. This suggests that it may be worthwhile to
have an adaptive prefetch strategy that dynamically accounts
for these differences to determine, for instance, the prefetch
amount. Such an adaptive strategy will be especially useful
if the sequential behavior is non-stationary, as has been sug-
gested in [64], Generally, the prefetch policy to use depends,
among other things, on the system and workload characteris-
tics as well as the performance metric. Determining the opti-
mal prefetch policy is beyond the scope of the current study,
which only examines the I/O characteristics at the macro-
scopic level and leaves the refinement of specific techniques
to more focused future research.

In Figure 17, we examine the effectiveness of a prefetch
policy that on encountering a run of size at least 16, fetches
the next eight pages if fewer than four of these pages are al-
ready in the buffer pool. The production workloads again
exhibit a wide range of responses. Prefetching reduces the
LRU miss ratio of Bank by about 90% but reduces that of
Retail by only less than 20%. On average, the miss ra-
tios of the production workloads are decreased by almost
60%. This is significantly better than the 30% improvement
that has previously been reported for commercial database
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Figure 16: Prefetch Hazard. The circled point indicates that for the production workloads on average, there is a 20% chance
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Figure 17: Miss Ratio Improvement with Prefetch. In these
simulations, we fetch the next 8 pages whenever a run that
has a size of at least 16 is encountered.

workloads[64, 82] for simpler sequential prefetching poli-
cies. We believe part of the reason for the better results lie
in our more elaborate sequential detector. Observe further
from Figure 17 that TPC-D’s miss ratio is reduced by 50%,
which is well within the spectrum defined by the production
workloads. As expected, TPC-C, which shows no significant
sequentiality, is not affected by the prefetch.

Note that the LRU miss ratio generally decreases with
bigger buffer pools. Therefore, if prefetching reduces the
number of misses by a constant amount as the buffer pool is

increased in size, we expect the ratio of prefetch miss ratio to
LRU miss ratio to decrease with buffer pool size. This is the
case for some of the workloads. For most of the workloads,
the curves are relatively flat. For the remaining workloads,
notably, TelecomA, the opposite happens. For these work-
loads, the prefetch benefit is greatly reduced with the bigger
buffer pools because of the presence of loops that just fit
within the bigger buffer pools.

A major problem with fetching pages before they are
really needed is that such prefetching may dramatically
increase the amount of I/O traffic because of useless
prefetches. We consider this in Figure 18. Observe that
our prefetch criteria seems to be very accurate for practically
all the workloads. This is consistent with results presented
in [64, 82] for a prefetch policy that determines prefetch
amount by conditioning on the run length. The only excep-
tions are TPC-D and TelecomA. The behavior of TelecomA
as the buffer pool is increased in size is especially disturbing.
A deeper analysis reveals that TelecomA contains some very
sparse sequential runs that are not effectively handled by the
buffer pool. As the buffer pool is increased in size, more and
more of the other runs, which are denser, are cached within
the buffer pool. This causes the overall prefetch accuracy
to become less and less accurate and eventually leads to the
rather dramatic increase in traffic ratio. A more sophisticated
prefetch mechanism that dynamically monitors the prefetch
accuracy on a per run basis would help to solve this problem
with TelecomA.

Another issue in prefetching is to decide how to treat the
pages that have been prefetched with respect to replacement.
These pages can be entered into the buffer pool as if they
have been referenced but this may pollute the buffer pool
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Figure 18: Increase in I/O Traffic with Prefetch. In these simulations, when a run of size at least 16 is encountered, we fetch
the next eight pages if fewer than four of these pages are already in the buffer pool.

with pages that will never be accessed. An alternative is to
hold these pages in a separate prefetch buffer but then the
issue becomes one of allocating space between the prefetch
buffer and the buffer pool. A general approach is to enter
the prefetched pages into the buffer pool at a certain depth in
the LRU stack to control pollution. We refer to this depth
as theprefetch depth. The idea was investigated in [64]
and no noticeable difference was found. Nevertheless, re-
cent patents such as [77] suggest that a pollution prevention
mechanism for prefetched pages may be important. There-
fore, we reexamine the issue by varying the prefetch depth
from zero, i.e., the MRU position, to three-quarters of the
LRU stack. The only workload to display any noticeable
response was TelecomA. Even then the difference was not
significant. Since varying the prefetch depth is essentially a
way to control pollution of the buffer pool by the pages that
have been prefetched, that there is no significant effect is a
testament to the accuracy of our prefetch.

4.3.2 Sequential Prepurge

[68] suggests that sequentially accessed pages may be
much less likely to be rereferenced than randomly accessed
pages and should therefore be handled differently by the
buffer pool replacement algorithm. In this section, we con-
sider whether it is beneficial to purge a page after it has been
sequentially accessed. We refer to this as prepurging and de-
fine theprepurge hazardHpp(k; s) to be the probability that
a page referenced in a sequential run of sizek is referenced
again in another run before it is evicted from a buffer pool of
sizes. We further define intra-transactional prepurge hazard
to be the special case where the rereference is by the same

transaction. Figure 19 presents the average prepurge hazard
for the production workloads and for TPC-D. The individual
plots for the production workloads can be found in Figures
A-2.i and A-2.ii in the Appendix.

Note thatHpp(1; s), the prepurge hazard corresponding
to a run of size one, is essentially the probability that a ran-
domly referenced page will be reused before it is evicted
from the buffer pool. On average for the production work-
loads, this value is higher than that for the sequentially ac-
cessed pages but not by much (Figure 19(a)). In other words,
although it is true that sequentially accessed pages are less
likely to be rereferenced than randomly accessed pages, the
probability for them to be rereferenced is generally not low,
especially for the larger buffer pools. Hence we should ex-
ercise caution in prepurging sequentially accessed pages.
Moreover, Figures A-2.i and A-2.ii in the Appendix show
that the individual behavior of the production workloads is
rather diverse in this regard, suggesting that no single pre-
purge policy will work well across all these workloads and
that any prepurge mechanism will probably have to be tuned
to each environment or be made self-tuning. Notice that
TPC-D’s prepurge hazard tends to be much lower than that
of the production workloads. This is not surprising since the
TPC-D workload is dominated by very long queries that are
run serially so that there is little chance for a sequentially
referenced page to be still in the buffer pool when it is next
needed. Nevertheless, the prepurge hazard for TPC-D is still
significant, indicating that prepurge is probably not a good
idea for TPC-D either.

In relational databases, the query optimizer can usually
provide some indication as to whether a sequential run is part
of a cyclic reference pattern and should therefore not be pre-
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Figure 19: Prepurge Hazard.

purged. However, this sort of indication only covers reref-
erences by the same transaction. As is apparent from Fig-
ure 19 and Figures A-2.i and A-2.ii in the Appendix, there
is actually quite a bit of inter-transactional reuse of sequen-
tially accessed pages in the production workloads. TPC-D
stands out clearly among the workloads in that it exhibits
very little inter-transactional reuse of sequentially accessed
pages. As discussed earlier, this can be attributed to the fact
that the queries in TPC-D access a lot of data and are run
one after another in a serial fashion, thereby reducing any
chance of inter-transactional reuse. The implication of this
is that strategies that consider only reference behavior on a
per transaction level will perform disproportionately well for
TPC-D.

It is generally not a good idea to immediately evict the
prepurged pages because they may still be needed. One ap-
proach is to place them in a separate buffer like a victim
buffer but as in the case of the prefetch buffer, the issue be-
comes one of allocating space between the buffer pool and
the separate buffer. In Figure 20(a), we investigate the idea
of placing prepurged pages at a certain depth in the LRU
stack. In these simulations, whenever a page is accessed in a
run that has a size of at least 16, we place it at depths ranging
from zero (MRU position) to three-quarters in the LRU stack
. Observe that for the most part, the idea of prepurging pages

performs poorly for both the production workloads and for
TPC-D, which is consistent with results reported in [65] and
is not surprising in view of our earlier results on the prepurge
hazard.

In Figure 20(b), we perform both prefetching and pre-
purging, in which case prepurging yields a lower miss ra-
tio for the production workloads. This indicates that the
sequentially accessed pages are reused sequentially so that
the prepurged pages can be effectively prefetched if neces-
sary. Whether this is actually a performance improvement
requires a more detailed study using a timing model but we
believe that it is generally not worthwhile unless the system
has a lot of I/O bandwidth but is memory limited. Observe
that TPC-D is unlike the production workloads in that pre-
purging, even with prefetching, increases the miss ratio. This
is because in our TPC-D setup, we aggressively have multi-
ple database agents working concurrently on the same query
and these agents may go out of synchronization in complex
join operations. If prepurging is performed in this case, the
same page may have to be fetched more than once by the
different agents.
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prefetched are already in the buffer pool.

Figure 20: Effect of Prepurge Depth.

4.4 Write Behavior

From a performance perspective, the write behavior of
a workload is an extremely important characteristic because
writes or update operations complicate a system and throttle
its performance. For instance, a static database can be sim-
ply replicated to improve not only its performance but also
its scalability and durability. But once there are writes in the
system, the system has to ensure that the writes occur in the
correct order and has to propagate the results of each write
to all possible replicated or derived copies such as the parity
in a parity-protected striped disk (e.g.,RAID-5) storage sys-
tem. The intensity of these operations will depend largely
on the percentage of writes in the reference stream. From
the read ratio reported in Table 1, the production workloads
are very dissimilar in this regard. Insurance has the lowest
read to write ratio of 5.6:1 while TelecomB2 has the high-
est of 51.4:1. TPC-C and TPC-D lie within this very broad
spectrum with 6.9:1 and 45.0:1 respectively.

These numbers are in line with those reported in [82] but
they are significantly higher than what has been measured at
the physical level. For instance, measurements conducted at
the physical level at 12 moderate-to-large MVS installations
found the read-to-write ratio to be about 3.5:1 [39]. Part of
the reason for this difference is that main memory buffering
is more effective at reducing read traffic than write traffic,
especially when modified pages must be written to disk in a

timely fashion to reduce the possible loss of data in case of
a system crash. We will examine the effectiveness of write
buffering later in this section. Another reason for our higher
read-to-write ratio is that we did not consider activity to the
database logs which are known to be dominated by writes. In
addition, our trace data reflects only database system I/O and
not whatever I/O may have been generated by the operating
system or other applications. Measurements reported in [39]
show that the read-to-write ratio for storage used by DB2 is
20:1, which is much higher than the overall.

[26] shows that the fraction of data that is updated in
the TPC benchmarks is much higher than in the produc-
tion workloads. The fraction of dynamic data is affected
by the relative length of our traces although Bank, which
has a duration of nearly a day, still has a very small frac-
tion of dynamic data. In general, if the dynamic portion of
the database is relatively small and stable, handling dynamic
data differently may result in better performance and lower
overall cost. For instance, one technique is to place only the
dynamic portions of the database in RAID-1, also known as
mirrored disks, and the rest in RAID-5 [79]. Though this
may be an interesting idea, our traces are not long enough
for us to investigate this in enough detail.

Perhaps the most important technique to improve write
performance is to delay the writes so as to allow write coa-
lescing to take place. Write coalescing can generally occur
in two ways. First, multiple logical updates of the same page

22



Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-D

Inst. 4.48 322 0.406 17.4 43.7 96.6 26.7 20.0 15.1 43.1 5.57 4.20 49.9 1555

100-ms 4.44 322 0.398 17.4 43.6 96.5 26.6 20.0 14.8 43.0 5.52 4.20 49.9 1554

1-s 4.20 322 0.397 17.4 43.4 96.1 25.9 20.0 13.1 42.4 5.05 4.13 49.5 1548

10-s 2.41 321 0.346 11.3 40.4 92.6 18.5 19.3 8.47 41.0 3.69 4.11 46.9 1500

1-min 0.81 316 0.118 8.54 33.1 76.5 14.0 18.3 2.60 31.4 2.65 3.92 42.3 1391

10-min 0.14 302 0.0212 1.34 10.2 70.4 4.08 10.6 0.266 10.6 1.74 1.36 34.4 1093

100-min 0.0452 150 0.0081 0.781 5.62 51.3 0.101 2.94 0.0535 4.08 0.695 1.24 18.1 553

Trace Len. 0.0324 18.0 0.0103 0.750 3.26 34.2 0.329 1.83 0.0437 1.76 0.420 0.572 5.10 234

Table 3: Temporary Space Usage (MB) Averaged over Various Time Intervals. The table shows the peak or maximum value
observed for each interval size. The instantaneous maximum is denoted by “Inst.”. The row labeled “Trace Len.” is essentially
the temporary space utilization time-averaged over the entire trace.

may be combined into a single physical write of the page,
thereby reducing the number of actual physical writes that
have to be performed by the system. This is especially ben-
eficial to log-structured filesystems/arrays [40, 58] because
it reduces the need to perform garbage collection. Second,
writes to sequential pages may be merged into a big block
I/O, which can be more efficiently handled. In particular,
writing big chunks at a time helps to reduce the penalty for
small writes in a RAID-5 storage system. Since our focus in
this paper is on the logical I/O characteristics, we will con-
centrate on understanding the first type of write coalescing.
In a subsequent study, we intend to investigate the second
type of coalescing and its effect on the physical storage sys-
tem.

4.4.1 Persistent vs Temporary Writes

The write operations in a system can usually be divided
into persistent writes, or writes to permanent objects, and
temporary writes, or writes to temporary objects. In order
to buffer persistent writes in memory without opening up a
window within which committed updates may be lost, most
database management systems log the updates to stable stor-
age such as disk before allowing the changes to be commit-
ted. This is known as Write Ahead Logging (WAL) [43].
With WAL, the destage policies used in the database buffer
pool can be more elaborate than those used in filesystem
caches, where the age of “dirty” or modified pages must be
bounded in order to restrict the loss of data in case of a sys-
tem crash.

Nevertheless, it is still prudent to not hold dirty data
indefinitely in main memory. The primary reason is that
database recovery time depends on how old the memory
pages are at the time of a crash. Furthermore, when the page
to be replaced is dirty, it has to be written back before the
buffer space can be reused. Moreover, the storage system
may perform better when a page is updated soon after it is
read. For instance, in a RAID-5 storage system, the write

penalty for generating the new parity can be reduced if the
page is still present in the storage cache at the time of a write.
Therefore, as a general rule, the dirty pages should be kept
in memory only to the point where write coalescing becomes
insignificant. In Section 4.4.2, we will try to determine this
point for the various workloads.

Temporary objects are used in the processing of certain
SQL statements that require working storage space. For in-
stance, when a sort requires more memory than has been
allocated for the sort heap, a multi-phase sort [36] is typ-
ically used and the intermediate runs of the sort operation
are stored in temporary objects. Writes to such temporary
objects do not have to be recovered in a system crash. Fur-
thermore, if the temporary writes are held in memory beyond
the lifetime of their corresponding objects, they do not have
to be written to disk. In Table 3, we summarize the amount
of temporary or working space that is used by the various
workloads. The values in this table are obtained by time-
averaging the temporary space utilization over various time
intervals and then taking the maximum values observed for
each of the interval sizes. In Figure 21, we show the tempo-
rary space usage as it varies over time. As mentioned ear-
lier, TPC-C is unique among the workloads in that it does
not contain any references to the temporary objects. It is
therefore omitted from both Table 3 and Figure 21.

Results presented in [26] indicate that temporary writes
account for a very significant portion of the write activity.
Specifically, 41.5% of the writes in TPC-D are to tempo-
rary objects. The corresponding figure for the production
workloads on average is 47.6%. Nevertheless, the maxi-
mum temporary space requirement for all the workloads ex-
cept Bank, FinSvcs and TPC-D is well under 50MB at any
one time. This small amount of working space can be easily
kept in main memory. However, Bank, perhaps FinSvcs and
especially TPC-D have large temporary space requirements
that cannot be easily accommodated in main memory. In
these cases, we have to decide how to allocate buffer space
between the various competing demands and in particular,
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Figure 21: Temporary Space (Work File) Usage over Time. The data in this figure have been smoothed by averaging over
one-minute intervals.

when to spill the temporary writes to disk and in what order.
Note that, for a given memory size, the I/O behavior corre-
sponding to temporary objects is generally well-understood
on a per database operation basis. See for example [21].
Therefore, the temporary objects can be managed using hints
based on the database operation as in [22]. However, as we
have discussed, production workloads tend to have a com-
plex mixture of concurrent transactions competing for re-
sources so that it is difficult to reliably estimate the amount
of memory that will be available for a particular database
operation.

4.4.2 Write Buffering

In database systems, the technique of delaying or buffer-
ing the writes is typically implemented by allowing pages in
the buffer pool to exist in a modified state. This allows the
write buffer to vary in size as needed up to the size of the
buffer pool. Such a design makes sense because the set of
pages that are read tends to overlap with the set of pages that
are written. Furthermore, sharing a common pool of buffer
space between caching reads and buffering writes allows the

allocation to dynamically adjust to demands.
For the purpose of understanding the effectiveness of

write buffering at reducing the amount of physical writes,
we introduce the metricwrite miss ratio. This is defined as
the fraction of logical writes that ultimately have to result in
physical I/Os for writing or destaging the modified pages to
persistent storage. More specifically,

write miss ratio=
# write buffer misses� # modified pages purged

# logical writes
(7)

A write is considered to be a write buffer miss if the page
being written to is either not in the buffer pool or is in a clean
state in the buffer pool. Pages are purged when the object to
which they belong is deleted. This typically happens only
for temporary objects. Notice that the definition of write
miss ratio is similar to that usually used for miss ratio in that
it measures the ratio of physical to logical I/O operations.

Because variations of the LRU replacement algorithm are
often used in database buffer pools, we first investigate how
a write back policy will work with such a buffer pool. In
this design, the victim page,i.e., the page to be replaced, is
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Figure 22: Write Miss Ratio with LRU Write Back Buffer Pool.

the least recently used page. If the victim page is dirty, it
is destaged to persistent storage before the buffer space is
reused. To avoid having to wait for the destage to be com-
pleted, the destage can be performed asynchronously by al-
ways keeping the bottom few pages of the LRU stack clean.
In Figure 22, we show the write miss ratio for such a design
as a function of the buffer pool size.

Notice that Retail stands out among the workloads in that
its write miss ratio plot has an obvious concave kink. A
deeper analysis reveals that Retail contains cyclic patterns
of sequential updates. Observe also that the write miss ratio
for TPC-C and especially TPC-D is much higher than that
of the production workloads. In addition, we find that ex-
cept for TPC-C, the write miss ratio for all the workloads
tends to bottom out at a smaller buffer pool size than the
reference miss ratio, which is presented in Figure 2. Re-
sults in [82] indicate that write miss ratio as low as 20% can
be achieved with an LRU write back cache. However, [82]
did not take into account the purging of temporary objects,
which may explain why our write miss ratio numbers are
lower. Compared to UNIX filesystem workloads, the pro-
duction database workloads appear to be more responsive to
write buffering. For instance, [49] reports that only up to
75% of the data written in a UNIX filesystem environment
are overwritten or deleted before they are replaced.

As in the case of the reference miss ratio (Section 4.2),
we use our data for the production workloads to derive an
analytical model of the relationship between write miss ra-
tio and buffer pool size. We find that the write miss ratio,
like the reference miss ratio, can be accurately modeled by a
power function of the formf(x) = a � (x � b)c, wherea, b
andc are constants. As shown in Figure 22, the values ofa,
b andc in this case are 29.1, 11.5 and -0.188 respectively. To

make our data more generally useful, we also plot the write
miss ratio as a function of the ratio of buffer pool size to
data size. This is presented in Figure 23. The average of the
production workloads again follows a function of the form
f(x) = a � (x � b)c, wherea, b andc are constants. In this
particular case,c is about� 1

4
, meaning that the relationship

can be approximately described by a fourth root rule.
Results presented earlier in Figure 4 indicate that pages

may remain in large buffer pools for many tens of minutes.
If such pages have been modified, the updates may be lost
or may have to be recovered in case of a system crash. A
straightforward approach to limiting the amount of data loss
is to flush the dirty pages periodically. Variations of this
policy are used in several flavors of the UNIX filesystem
cache [4, 44]. However, periodically flushing all the dirty
pages has some bad side effects such as increasing the bursti-
ness of the write traffic. This has been found to lengthen
the mean response time for read operations and to add to its
variance [8, 42]. Therefore, we consider cleaning a dirty per-
sistent page only when it is older than a specified age limit.
Figure 24 presents the write miss ratio that can be achieved
with an LRU write back cache for different age limits.

On average, the write behavior of the TPC benchmarks is
clearly unlike that of the production workloads. Among all
the workloads, TPC-D has the highest write miss ratio and
is the least responsive to more relaxed age limits. This can
be attributed to the fact that most of TPC-D’s writes are to
temporary objects which are not affected by the age limit.
TPC-C responds well to larger age limits but its write miss
ratio, even at huge buffer pool sizes, is dramatically higher
than that of the production workloads.

One of the drawbacks of letting pages exist in a mod-
ified state in the buffer pool is that when such a page is
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Figure 26: Profile over Time of Percentage of Dirty Pages in 512MB LRU Write Back Buffer Pool.

replaced, it has to be destaged before the buffer space can
be reused. Therefore, we next investigate the percentage of
pages in the buffer pool that are dirty. In Figure 25, we plot
the average dirty percentage which is computed by observ-
ing the number of dirty pages in the buffer pool on every
reference. For both the production workloads and TPC-D,
only about 20% of the pages in the buffer pool are dirty. On
the other hand, for TPC-C, more than 50% of the pages in
the buffer pool can be modified. To better understand the ef-
fects of write buffering, it is useful to consider how the dirty
percentage varies over time. The results for a 512MB LRU
write back cache are presented in Figure 26. Notice that the
dirty percentage for the production workloads and especially
for TPC-D tend to be rather bursty. Therefore, allowing the
write buffer to vary in size as needed is generally a good idea
for these workloads. On the other hand, the dirty percentage
for TPC-C is very constant, suggesting that a fixed-size dirty
buffer will work well.

In order to establish a lower bound for the write miss ra-
tio, we next modify the MIN [7] algorithm to consider only
writes and to account for both the lifetime of dirty tempo-
rary pages and the age limit on dirty persistent pages. We re-
fer to this new algorithm asWMIN. WMIN is a fixed-space
algorithm that always destages the dirty page that will not
be updated again before it is purged or before it has to be
destaged. It should be apparent that WMIN is the optimal
lookahead destage algorithm. In Figure 27, we compare the
LRU write miss ratio with the WMIN write miss ratio. Note
that in this figure, the write miss ratio is plotted as a func-
tion of the write buffer pool size and not the total buffer pool

size, as is the case for the other plots. To obtain the LRU
numbers for this figure, we simulated a buffer pool that only
caches writes but that updated the LRU information on every
hit, read or write.

Notice from the figure that as expected, the potential for
improving the destage algorithm increases as the age limit
is relaxed. With a write back cache, the performance differ-
ence between LRU and WMIN for the production workloads
is only about 25% on average. This is somewhat lower than
the corresponding number for the reference miss ratio and
suggests that there is probably not a lot of room for improv-
ing the destage policy for these workloads. The same can be
said for TPC-D. On the other hand, the difference in write
miss ratio for TPC-C with relaxed age limits can be more
than 50%. It might be possible to design a more elaborate
destage policy for TPC-C but we believe that this would be
of little value for the real workloads.

5 Conclusions

In this paper, we empirically examine the logical I/O ref-
erence behavior of the peak production database workloads
from ten of the world’s largest corporations. In particular,
we analyze how these workloads respond to different tech-
niques for caching, prefetching and write buffering by evalu-
ating many previously published algorithms and techniques
and several new ones that we developed. Since, it is ex-
tremely rare to have access to real production workloads, let
alone such a large collection of them, we also establish sev-
eral general rules of thumb with regards to the effectiveness
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Figure 27: Ratio of LRU Write Miss Ratio to WMIN Write Miss Ratio.

of caching, prefetching and write buffering. For instance, we
discover that the relationship between the buffer pool miss
ratio and the ratio of buffer pool size to data size can be
modeled by a function of the formf(x) = a � 1p

x
, wherea is

a constant. We refer to this rule of thumb as the square root
rule. For the write miss ratio, we find that a fourth root rule
is more appropriate.

We also analyze the reference characteristics of the de
facto standard benchmarks for both on-line transaction pro-
cessing and decision support systems, namely TPC-C and
TPC-D. Comparing the reference behavior of these bench-
marks with that of the production workloads, we find that,
for the most part, the reference behavior of TPC-C and TPC-
D fall within the spectrum of behavior exhibited by the pro-
duction workloads. However, there are some noteworthy
exceptions that have implications for well-known I/O opti-
mization techniques such as caching, prefetching and write
buffering. Although TPC-C and TPC-D are generally com-
plementary in that they tend to be representative of differ-
ent aspects of the production workloads, there remain some
characteristics of the real workloads that are not reflected by
either of the benchmarks.

More specifically, we find that the difference between the
optimal lookahead and LRU miss ratios for TPC-C is sig-
nificantly higher than the corresponding difference for the
production workloads on average. In fact, the gap is much
larger than the difference between the optimal realizable and
optimal lookahead algorithms presented in [63]. This seems
to suggest that for TPC-C, there may be considerable room
for improving the page replacement algorithm beyond LRU.
Expending effort in this direction, however, will primarily
benefit TPC-C. Our analysis also clearly shows that there
is a lot of interaction between the reference streams of the

transactions in the production workloads. TPC-C is gener-
ally consistent in this regard but not TPC-D. This indicates
that strategies that only consider per-transaction reference
behavior will perform disproportionately well for TPC-D.

As has been suggested in previous studies such as [64],
all the production workloads clearly exhibit significant
amounts of sequentiality in their reference streams. In addi-
tion, we find that there is a lot of pseudo-sequentiality where
the page references are generally increasing but may be in-
terspersed by gaps and may occasionally back up. Our re-
sults indicate that a simple sequential prefetching scheme
can reduce the average miss ratio of these workloads by
more than half. The behavior of TPC-D in this regard is
in-line with that of the production workloads. On the other
hand, TPC-C has no significant sequentiality in its reference
stream, meaning that it will not exercise one of the most ef-
fective techniques for improving the performance of produc-
tion database workloads.

From a performance perspective, one of the most im-
portant characteristics of a workload is its write behavior.
But it is in this aspect that differences between the produc-
tion workloads and the TPC benchmarks are most apparent.
We find that for almost all the production workloads, write
buffering is an effective technique for reducing the number
of physical writes to the storage system. However, for TPC-
C and especially TPC-D, write buffering is far less effective.
Furthermore, we find that for the production workloads on
average, the percentage of buffer space that is modified tends
to be small but this is not true for TPC-C. In addition, our
analysis suggests that there may be more room to optimize
the destage policy for TPC-C than for the other workloads.

The use of temporary or workfile space is another area
where the TPC benchmarks do not track the behavior of the
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production workloads. Although temporary objects account
for a significant portion of the write traffic in the produc-
tion workloads, TPC-C has no such activity. While TPC-D
has references to temporary objects, the behavior is different
from that of the production workloads. More specifically,
we find that the temporary space required by the production
workloads tends to be small and to fit within the buffer pool
but this is not the case for TPC-D. Deciding how to balance
the demands for temporary buffer space with that for caching
requires more work in TPC-D but this will tend not to matter
in the production environments.

Finally, as we discussed in [26], the behavior of the pro-
duction workloads tends to be dynamic while that of TPC-C
is very static and regular. For example, we find that unlike
the production workloads which have bursty demands for
write buffer space, TPC-C’s write buffer space requirement
is practically constant. This indicates that TPC-C will tend
not to reward dynamic or adaptive strategies that are useful
in production environments. The fact that TPC-C’s behavior
is stationary also means that it is relatively easy and tempting
to analyze TPC-C for the sole purpose of designing custom
policies for achieving good benchmark numbers.
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Appendix

A1 Related Work (Expanded)

A1.1 Hierarchical and Network DBMS

There have been several published studies of the refer-
ence behavior of database workloads. However, most of
these studies were conducted on hierarchical and network
databases. In addition, the studies are rather limited in scope,
often relying on data collected at only one or two installa-
tions. In several cases, the database was real but was driven
by small contrived programs. These studies report conflict-
ing results as to whether locality or sequentiality is present
in the database reference stream. Clearly, the characteristics
of the reference stream depend on the workload imposed on
the database and the various studies should be interpreted
with this in mind.

Some of the earliest empirical studies of database refer-
ence behavior are based on an IMS database used in an on-
line manufacturing control system [54, 57, 64, 74, 73]. The
system was observed to have strong sequentiality and weak
locality. The run length was found to be a useful predic-
tor of future access patterns [57]. A prefetch algorithm that
selectively prefetches pages by using the run length distribu-
tion and conditioning on the current run length is proposed
in [64]. In addition, a method for estimating the optimal
prefetch amount is presented. In [33], a large commercial
IMS database was faithfully reproduced and was observed
while it was driven by two small non-production programs
in batch mode. These two programs were supposed to be
representative of the types of batch programs used to main-
tain a large database. The reference stream was found to
have strong locality but no significant sequentiality [34].

A subsequent study of a small CODASYL database run-
ning retrieval transactions found moderate levels of locality
but no sequentiality [18]. In this study, the database con-
tained live data for a blood center and for a bibliographic
system. A typical day-time query stream was analyzed.
In [76], two batch non-productionprograms were run against
a real CODASYL-like database. The first program listed a
selected part of the database in a given order while the sec-
ond program updated, inserted and deleted records from the
database. The system was observed to exhibit weak local-
ity and no significant sequentiality. More recently, a page
reference trace taken from a production CODASYL OLTP

system of a large bank was used to evaluate new page re-
placement algorithms [32, 48]. The results suggest that the
reference stream does exhibit locality.

Based on IMS database references from two commercial
installations, [34] discovered that the per transaction and per
database reference behavior varied widely across the dif-
ferent transactions and databases but was stable over time.
In [9], five hierarchic databases were observed in a produc-
tion setting over a five day period. The block reference be-
havior was found to closely approximate a Bradford-Zipf (B-
Z) distribution. [82] investigated design issues in disk caches
using data from several commercial installations, including
both IMS and DB2 customer sites. The reference streams
clearly exhibited locality of reference and sequentiality was
found to be prevalent in most of them.

A1.2 Relational DBMS

There has been little published data on the empirical ref-
erence behavior of relational databases. In an early work
based on INGRES, [23] looked at the reference behavior
of several different types of queries using a course/room
scheduling database and an accounting database. Using both
user query streams and query streams assembled from user
queries, [23] found localized reference behavior to the tem-
porary relations in queries with aggregate functions. In addi-
tion, some short queries were found to frequently rereference
system tables. Strong sequentiality was exhibited by queries
that reference large number of records. For queries that in-
volve multiple relations, pages were found to be cyclically
re-referenced. More recently, [17] used reference traces
taken from two commercial installations of DB2 to charac-
terize the access skew of different data objects so as to pre-
dict buffer hit ratio. In [32], a DB2 trace from a commercial
installation was used to evaluate the 2Q page replacement
algorithm. Strong locality of reference was indicated in both
these studies. Finally, as mentioned above, DB2 reference
traces were used in [82] to study disk caching.

For the most part, research on buffering in relational
DBMS has focused on using semantic information derived
from the query plan optimizer to direct buffer manage-
ment. In relational DBMS, users state their processing re-
quirements using high level language interfaces, leaving the
DBMS to select the best strategy or query plan for accessing
the data [12, 61]. Since the pattern of data references can be
predicted from the query plan, [67] suggests that a replace-
ment algorithm specific to relational DBMS should outper-
form the LRU replacement policy. This approach of using
the query plan to direct buffer management is developed
in [11, 59, 60]. The issue of buffer allocation among multiple
concurrent queries is subsequently addressed in [19, 45, 80].
[14] suggests that query optimization and buffer manage-
ment should be integrated because the optimal query plan is
a function of the available buffer size. Instead of relying on
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query plan information, a profiling approach that uses prior
executions of a query to characterize its access patterns has
also been proposed [10].

In general, the approaches that rely on the query plan
work only for specific patterns such as sequential and cyclic
sequential. These approaches consider all other references
as simply random. Another problem with these methods is
that the query plan is based on estimates such as row car-
dinality, predicate selectivity and clustering factor and these
may not be accurate. Furthermore, for complex queries, the
accurate prediction of reference patterns from the query plan
is difficult. To make matters worse, in multi-user situations,
the query plans can overlap in complicated ways and this
overlap is not accounted for by the query plan directed al-
gorithms. In reality, these algorithms are best used together
with techniques based on run time access characteristics as
in [22, 68].

A1.3 TPC Benchmarks

Although he TPC-C [70] and TPC-D [71] benchmarks
have become the de facto standard benchmarks for on-line
transaction processing and decision support systems respec-
tively, there has not been any major effort to empirically ex-
amine and understand their I/O characteristics. Based on
static analysis of accesses to tables, [37] looked at the skew-
ness in the data access of TPC-C. [72] contains an empirical
study of how the database size, buffer size and the number of
CPUs affect the throughput and buffer hit rate of TPC-C on
symmetric multiprocessors (SMPs). Recently, [27] presents
the query plans taken from a recently certified TPC-D setup
and considers the potential benefit of offloading TPC-D op-
erations to storage systems with embedded processors.

A1.4 Filesystem Reference Behavior

[49, 69, 81] studied file reference characteristics on time-
shared VAX-11/780s in an academic environment. The mea-
surements show that the accesses tend to be bursty and
highly sequential. A major finding is that most file data are
deleted or overwritten within a few minutes of creation. In
addition, caches of several megabytes can eliminate a large
proportion of all disk traffic. Similar file usage patterns are
reported in a subsequent study conducted on a collection
of about 40 10-MIPS workstations running the Sprite op-
erating system in a comparable academic environment [5].
[78] reports measurements on the performance of caching
in the Sprite network filesystem. The patterns of reference
to the UNIX filesystem directory is studied in [20]. The re-
sults show that the directory references exhibit strong local-
ity and that caches are an effective way to decrease directory
overhead. An analysis of the file usage patterns in commer-
cial computing environments is presented in [55]. Unlike
most other studies that are based on data from academic or

research environments, this study was based on traces col-
lected at eight different and relatively large VAX/VMS cus-
tomer sites.

A1.5 Parallel and Supercomputing I/O

There has been a lot of recent work on characterizing the
I/O behavior of scientific applications in parallel and super-
computing environments. See for instance [6, 15, 41, 47,
50, 51, 53]. In general, the I/O reference patterns of these
applications are more regular and predictable than those of
commercial database workloads. This reflects the fact that
these huge scientific applications tend to be highly structured
and are designed to use carefully formatted data sets. More
specifically, in scientific vector applications, the files tend
to be large and are usually accessed completely and sequen-
tially. For scientific parallel applications, the requests are
smaller and tend to be non-consecutive but still generally se-
quential.
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Figure A-1.ii: Prefetch Hazard.
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Figure A-2.i: Prepurge Hazard.
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Figure A-2.ii: Prepurge Hazard.
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