i

A Comparison of PC Operating Systems for Storage

Support

Nisha Talagala, Jatoshi Asami, Daovid Paferson

Hepart Na. UCB/CSD-98-10158

=//I\/‘ﬁ Jan 1997

"‘——'*-]_ Gmn}m‘l.ﬂr Saemce 1R sion I:HH(H}
Univeraly of Calilornia
Herkeley, Calilomia $4720)

Page 2

Comparison of PC Operating Systems for Storage Support

Nisha Talagala, Satoshi Asami, David Patterson
{nisha, asami, pattrsn} @cs.berkeley.edu
University of California at Berkeley
January 1997

Abstract

In the past 10 years, the cost/megabyte of magnetic disks has been decreasing by almost a factor
of two. This decrease makes large scale disk-based storage systems attractive. However, such sys-
tems usually come in the form of RAID arrays that have a much higher cost/megabyte than the
underlying disks. To maintain the low cost ideal, COTS (commercial, off the shelf) components
must be used. A large storage system, built from off the shelf hardware, could have disks hosted
by PCs connected through a high performance LAN. The high bandwidth PCI bus and large num-
ber of expansion slots make PCs a good building block for such a system. However, most PCs (and
PC operating systems) are used in desktop environments, typically with only 1 or 2 disks.

In this report, we test how well PC operating system support large amounts of storage. We com-
pare three operating systems, Windows NT, FreeBSD and Solaris x86. A set of experiments are
conducted on each OS to test support for (i) large numbers of disks and disk controllers, (ii) PCI
expansion boxes, and (iii) Shared SCSI buses. The results show that all of the operating systems
compared had some subset of the required features. We were also able to add the missing features
to FreeBSD, and show that it is feasible to use PCs to host large amounts of storage. In addition,
we present some measurements of multiple disk 1/0 on each operating system.

This research is funded by the DARPA Roboline Grant # NO0600-93-K-2481, donations of ma-
chines from Intel, and the California State Micro Program.

Page 3

disks that could exist in a large storage system. In particu-
1.0 Introduction lar, we tested each operating system for support of large
numbers of disks and SCSI controllers, support for PCI-

In the past 10 years, the cost performance gap betwe&¢! expansion bridges, and support of shared SCSI bus-
secondary and tertiary storage has been widening. THR$. Finally we also measured multiple disk I/O perfor-
cost per megabyte of disk drives has been falling at a faghance for each OS.

tor of 2 per year, compared to 1.5 per year for tape drives

and libraries. Disk areal densities have been increasing &Ur experiments revealed that each operating system had
60% per year [1]. These trends change the possibilities i#PmMe subset of the required features, but no OS had all of
large scale storage systems. If they continue, large stoiiem. Of the three operating systems we tested, FreeBSD
age systems composed of disks will have significant cosyas the only one with freely available source code. Be-
performance advantages over tape libraries of similar cgause of this, we adopted a black box approach to the ini-
pacity_ The Currenﬂy available solution for |arge disktiﬁ' experiments. Later, we made several modifications to
storage is RAID arrays. These disk arrays have drawFreeBSD to enhance its support for the tested features.
backs in terms of cost/performance, availability, and scalOur performance experiments also revealed that the 1/0
ability. Since they use custom hardware, the cost pdperformance of each OS was far below the capabilities of
megabyte of disk arrays increases with system capacitifje disk and SCSI subsystem. In FreeBSD, we discovered
unlike raw disks and tape systems. Also, a disk arrajhat this low performance was partly due to slow memory
needs to be connected to a host computer. This connel@ memory copies. Other studies have also made this ob-
tion becomes a bottleneck for both performance angervation [2]. By replacing the memory copy routines
availability. Finally, scalability is limited by the number With higher performance handcoded routines, we were
of disks that can be supported by the infrastructure. Whedble to increase FreeBSD's I/O performance by about
applications reach the capacity limit of their disk array,22%.

another array must be added. Adding independent disk

arrays lowers the reliability of the total system and comThe rest of the paper is organized as follows. Section 2
plicates storage management. describes why PCs are a good building block for storage

systems. Section 3 describes the operating systems that
A storage systems built with commercial, off the shelf We tested. Section 4 describes some related work in com-

hardware could avoid some of the disadvantages of cugaring PC operating systems. Section 5 describes our
tom RAID systems. The low cost and good performancéestbed, experiments, and results. Section 6 describes
of PCs make them a good candidate for hosting disks ing$pme performance measurements of 1/O on the three op-
COTS based system. However, most PCs are used in ¢ftating systems. Section 7 describes our experience in in-
fice environments, typically running Windows and MS-stalling and using the three alternatives, and section 8
DOS. Not much is known about the ability of PC operatProvides a summary and conclusions. Finally, the appen-
ing systems to support |arge amounts of storage. A|S(§1'|X in section 9 outlines the enhanced memory copy rou-
there are many choices for PC operating systems, rangifi§es.
from Microsoft Windows and Windows NT to UNIX
compatible operating systems such as FreeBSD, Sola&0 PCs as Building Blocks
and Linux.

PCs are a natural choice for hosting disks. The main sys-
In this work, we compare how well PC operating systemgem bus, PCI, has a peak bandwidth of 132 MB/s. Typical
support large amounts of storage. We compared the thr&Cs have 4 PCI expansion slots on the main bus. If one
operating systems Windows NT, FreeBSD and Solarislot is used for a network connection, 3 slots are available
x86. We were unable to study Linux as it did not supporfor disk controllers. In this manner, a large number of
our SCSI controller. We installed each operating systerdisks can be connected to a single PC. If each remaining
on our testbed ran a series of experiments to see whethglot holds a single channel wide SCSI controller, the PC
the operating system could support configurations o€an host up to 45 disks. If dual channel SCSI controllers

Page 4

are used, the number of disks doubles. Other competingindows NT supports applications written for Windows,

machines, like the SPARCStation series from Sun Microand also offers additional features available in UNIX.

systems, usually have only 1-2 expansion slots. Two filesystems are available under Windows NT, the
FAT file system used in DOS and NTFS. We used NTFS

It is also possible to extend the PCI bus using PCI-PGh our experiments. More details on Windows NT are

bridges. The design of the PCI bus limits the number oévailable in [6,7].

slots to 7. However, if one of these slots is connected to a

PCI-PCI bridge, six more slots are available. Such PC4.0 Related Work

expansion boxes are commercially available [3]. In this

fashion, the number of disks connected to a single PC cafwo earlier studies have compared PC based operating

be increased dramatically and many different configurasystems. The first study, done by Chen et al., compared

tions are possible. Windows for Workgroups, Windows NT and NetBSD
[9]. The authors used hardware counters on the Pentium

PCs are also attractive from a cost perspective. The hightocessor to gather data on a variety of processor events,

volumes and fierce competition in the PC industry makegike instruction counts and on chip cache misses. They

these machines cheaper than most UNIX based plagiso used microbenchmarks to measure performance of

forms. operating systems functions (syscalls, read/write calls,
etc.) and application workloads (web server, Ghostscript,
3.0 Methodology etc.) to measure end-to-end performance. The second

study, by Lai et al. [2], compared Solaris x86, FreeBSD
Since we were looking for PC operating systems thaand Linux. These authors also used a mixture of mi-
could function as storage nodes, we limited our choices torobenchmarks and application level workloads to evalu-
operating systems that were used in server environmeniste each operating system.
In particular, we did not include Windows in the study.
We chose Windows NT version 3.5.1, FreeBSD versiomhese two studies had different goals. The first study
2.1.5 and Solaris x86 version 2.4. Linux also meets thessompared three operating systems that are quite different
requirements. We had intended to include Linux, buin system functionality and user requirements. Windows
there was no driver available for the SCSI controller thafor Workgroups is a version of Windows with integrated
we were using. For each operating system, we chose timetworking support. It does not support more advanced
latest version available in mid 1996. features like protected address spaces and preemptive
multitasking, features that are available in Windows NT
Solaris is a System V based version of UNIX from Surand UNIX. While the first study showed the choices
Microsystems. Solaris is available for both SPARC andavailable to PC users with a range of requirements, the
x86 archtectures. In early 1996, Solaris was available ogecond study compared UNIX operating system alterna-
CDROM for $99, source code not included. The Solarigives for the PC.
kernel is fully preemptive multithreaded and has support
for multiprocessor systems. More detailed information orSince we are interested in using PCs to host disks and
Solaris can be found at [4]. serve data, the information about Windows for Work-
groups was not relevant to our work. The performance
FreeBSD is a freely available version of UNIX. It is de-studies of the other five OSes are relevant. For instance
rived from the BSD 4.4 Lite release from UC Berkeley.Chen et al. [9] observed that Windows NT has much
Its source code is freely available and a large number dfigher latency than NetBSD for disk 1/0. For both the
people have contributed to it. The FreeBSD file system iBITFS and FAT file systems, NT performance lags behind
based on Berkeley FFS. More information on FreeBSINetBSD by almost a factor of two. We do not attempt to
can be found at [5 6]. summarize all the performance data in these two studies
here. Some results are mentioned in Section 6, where we
discuss the I/O performance of Solaris, FreeBSD and

Page 5

Windows NT. However, both studies showed that eaclscribed in the following sections, we changed the machine
operating system is superior to the others in some wagonfiguration by attaching SCSI controllers, disks and PCI
but no operating system is clearly the winner. The choicexpansion boxes. We used Adaptec 2940W and 3940W
depends on the intended application. Lee et al. [2] pointSCSI controllers, the latest available at the time. The
out that other factors like cost, ease of installation an@940W model is a single channel Fast-Wide SCSI control-
support may help a user to choose an operating system.ler, while the 3940W model is the dual channel version.
Our disks were 7200 RPM, 4GB, Seagate Barracuda
There are two main differences between these two studiekives. The PCI expansion boxes we used were manufac-
and our PC-OS comparison. These two studies comparédred by Bit3 corporation. For some experiments, we also
the strengths of each OS for a range of microbenchmarkased an ANCOT SCSI Bus Analyzer to monitor activity
Our study focuses only the abilities of the operating sysen the SCSI bus.
tems to function as part of a storage node in a larger sys-
tem. The two studies also do not test the hidden OS limitfhe PCI expansion boxes we are using provide four PCI
for hardware support. This in an important part of ourslots on a separate bus, which can be connected to the
study, as we are using PCs in a way that the they are nmiain bus using a bridge. Since one PCI bus can only offer

normally used. 4 new PCI slots, and one of the slots of the master bus is
taken by the expansion card, typical PCI expansion boxes
5.0 TestBed and Experiments have two PCI buses in the expansion unit. Also, because

of electrical considerations, the cable to connect the host
In this section, we describe our testbed, the experimen@d the expansion unit is usually a separate PCI bus.
we designed to test support for large storage configura-
tions, and the results of these experiments. 5.2 Experiments

5.1 Testbed Next, we describe the experiments we designed to test
how well each operating system supported different disk/
We installed each operating system, in turn, on a 2GRontroller configurations. Since we did not have source
Quantum disk drive. All the experiments were done on &ode for two of the three operating systems, we used a
Pentium 133 machine with this 2GB internal disk. Thisblack box approach in all the experiments described in this
machine had PCI 4 expansion slots. In the experiments déection. The features that we tested support of were:

PCI-PCI Bridge Chips

Host PC SCSI Controller Chips Host PC
// Slave Busl/
| ﬁ é‘ﬁ\—ShevaeBusl
il 14

Master Bus
Master Bus

PCI-PCI Bridge Chips

M

Slmavg BTJSZ = ga\/e Bus3

Expansion Unit

Figure 1(a) Figure 1(b)

Figures 1(a) and 1(b) show two PCI-PCI bridge configurations. Figure 1(a) shows a PCI-PCI bridge as used in a twin
channel SCSI controller. Both SCSI controllers are on a separate PCI bus, connected to the main PCI bus through a bridge.
Figure 1(b) shows the layout of a PCI expansion box. The cable connecting the expansion box to the machine is the first
slave PCI bus. Three free slots are available in each of the second and third slave buses.

Page 6

ware when ever possible, we experimented with shared
(i) Support for large numbers of disks and disk controllers:SCSI buses. Figure 2 shows the structure of a shared SCSI
If a PC were to function as a storage node in a large storages. The two controllers are on either sides of the bus, with
system, the operating system should be able to support atite disks in between. The SCSI string is terminated at both
access a large number of disks. In this experiment, we coends using external terminators. Since passive termination
nect up to 40 disks to our test machine. We then accessiasused, it is theoretically possible to power down one of
many as possible through the operating system. We wethe host PCs and disconnect it form the bus without upset-
limited to testing upto 40 disks since we had only 40 diskéing the other host PC. Although SCSI buses and com-
to use for this experiment. However, the performance remands work with multiple initiators (controllers), some
sults in the next section show that even if the OS supportsgperating system support is required to make shared SCSI
more disks, connecting more than 40 disks is probably ndiuses work.
advisable in general for performance reasons.

(i) Support for PCI-PCI bridges:
PCI-PCI bridges can be used to expand beyond a single
PCI bus. Figure 1 shows two configurations using PCI-PCI

bridges. Figure 1(a) shows a single bridge integrated into Terminator Terminator

an expansion card. A dual channel SCSI controller uses SCS! Comtraller SCS Controller
this scheme. Both SCSI buses are on the new PCI bus, con- LK

nected to the main bus through the bridge. Figure 1(b) | °¢ | é é Disks é o
shows the slightly more complicated configuration used in

a PCI-PCI expansion box. In this case, the cable that con-
nects the expansion box to the Pentium machine is itself a
PCI bus. The slots on the left hand side on the expansion
box are Separated from the main PCI bus by two levels of Figure 2: A shared SCSI bus. The SCSI controllers are con-

bridging. The slots on the right side of the expansion box nected at opposite ends of the bus, with the disks in between.
are one bridge level deeper Passive termination is used (the termination available in the

SCSI controllers is disabled).

We used the dual channel SCSI controllers to test support
for a single level of bridging. We connected disks to each

channel of. the dual channel control!er and attempted to agrst, the operating system must support variable SCSI ID
cess the disks through each operating system. For multipfgy Scs| controllers. Although the SCSI-2 specification
levels, we used the PCI expansion boxes. In this case, Wfiows initiators to have any SCSI ID between 0 and 15,
connected disks to single channel controller cards in thg,ost SCS| controllers are assigned an ID of 7. The reason

left hand and right hand slots of the expansion box. We that SCSI ID 7 has the highest priority (priorities in de-
then attempted to access these disks through each Qfeasing order are 7-0, 8-15).

Note: In this case, we used only single channel SCSI con-
trollers to attach the disks, since the dual channel controkecond, the SCSI driver of one host PC should be capable

lers would have added another level of bridging. of handling SCSI commands issued by the SCSI controller
on the other host PC. For example, if one machine reboots,
(ili) Support for shared SCSI buses several BUS_RESET commands will be issued of the

One obvious problem with such an approach of connectingcs| bus. The effect of the reset is that all activity on the
many disks to a single machine is availability. A single PGScs) pus is aborted and both controllers must renegotiate

the rest of the network. One solution to this problem is tonyst support this renegotiation.

connect disks to two hosts at the same time. However, even

though dual ported disks exist, they are expensive and nigisks are not simultaneously accessed by both machines,
widely available. Since our goal is to use commodity hard-

Page 7

Operating System
Feature Experiments
NT/NTFS FreeBSD Solaris x86

Large Upto 40 disks and 3 dual Upto3l Up to 32 Upto6
number channel SCSI controllers allowed by allowed allowed
of disks accessed through each Disk per SCSI bus

operating system Administrator

Onelevel of bridging
PCI-PCI - Dual channel SCSI controller Y Y Y
Bridge
Support Multiple bndgeleyels v N N

- PCI-PCI expansion boxes
Shared Variable SCSI Controller ID N Y Y
SCsl
Buses

Renegotiate on BUS-RESET Y N Y

Table 1: OS comparison. This table summarizes the experiments and their results. Windows NT, FreeBSD and Solaris x86
are tested for support of many disks, shared SCSI buses and PCI-PCI bridges. A ‘Y’ indicates that the OS passed our test,
and an ‘N’ indicates that it did not.As the table shows, each OS supported some subset of the features. None of the three
OSes got Y’s in all experiments.

the features mentioned above are the minimum required toent uncovered a bug that would cause the Solaris operat-
support shared SCSI. We tested the three OSes for suppong system to crash if a disk with SCSI ID greater than 7
of variable SCSI IDs for controllers and for renegotiationwas connected. Therefore, to get to 40 disks in Solaris, we
on BUS-RESETs. We changed the SCSI controller’s ID tdhad to use 6 SCSI controllers, or 2 single channel and 2
something other than 7, to see if each operating systedual channel controllers.
could recognize the new ID and use the controller. To test
the response to BUS-RESETS, we set up a shared SCSéxt, we tested PCI-PCI bridge support. All three operat-
string between two machines. Then, we rebooted one mig systems were able to access disks through the dual-
chine and attempted to access the disks through the othgrannel controllers, indicating that one level of bridging
machine. By inserting a SCSI Bus Analyser into thewas supported. Windows NT was able to access devices
string, we were able to verify that the OS SCSI driver reconnected to PCl expansion boxes. FreeBSD was not able
sponded correctly to the BUS-RESET event. to recognize devices below more than one bridge level and
neither was Solaris x86.
5.3 Results
Next, we tested for support of variable controller SCSI
Table 1 summarizes the experiments and results. We gé3s. We were not able to change the controller SCSI ID in
different results for all three operating systems when w&Vindows NT, it appeared to be hardwired to 7. In FreeB-
tried to connect 40 disks at the same time. In Windows NTSD we were able to change the controller ID to any value
we were not able to access more than 31 disks through the the 0-15 range. In Solaris x86, we were also able to
Disk Administrator GUI. (this utility is used to format change the controller SCSI ID, as long as we remained
disks and set up stripe groups). In FreeBSD, we were abithin the range 0-7.
to access 32 disks through the OS. In Solaris x86, we were
able to access all 40 disks through the OS, as long as orfjpth Windows NT and Solaris reacted correctly when a
7 disks were attached to a single SCSI bus. The expef@US-RESET appeared on a SCSI string. The SCSI drivers

Page 8

immediately renegotiated transfer parameters with alperformance. We also present some raw disk performance
disks. The SCSI driver in FreeBSD did not react in thismeasurements of dedicated and shared SCSI buses.
manner, so we were not able to access the disks in the

string after a BUS-RESET event. 6.1 Single disk performance

These results show that none of the operating systems Waple 2 lists single disk bandwidth for each operating sys-
studied was initially able to meet all the requirementstem. These measurements were taken through the file sys-
Since we had source code for FreeBSD, we were able {8m. The workload was sequential reads and writes in
place fixes for FreeBSD in all cases where the operating4kB blocks. By inspecting SCSI traces, we determined
system failed our experiments. For instance, we found thaat Windows NT used tagged queuing, while Solaris x86
FreeBSD was only able to recognize 32 disks because gfd not. Tagged queuing allows the SCSI driver to have
the size of a data structure that held the disk minor numbefultiple outstanding requests to a single disk. The disk
(this field was set at 5 bits). By expanding the size of thigan order the commands for maximum performance.
field, we were able to access a lot more disks. The secodeeBSD could be configured with or without tagged
problem was that FreeBSD was not able to recognize deueuing.

vices that were two PCI bridge levels away from the main
PCI bus. We fixed this problem by adding code to do a
depth first search down all PCI-PCI bridges that were en-
countered in the initial device search at boot time. After
this fix was in place, we tested the operating system with
configurations of 5-6 PCI bridge levels. In all cases, we
were able to access the disks. The third problem, the re-

NT/NTFS FreeBSD Solarisx86

. . Read BW (MB/! 371 7.99 7.69
sponse to BUS-RESETS, was fixed by adding code to the - (MBI9
SCSI driver to renegotiate transfer parameters with the
disks after a BUS-RESET message was detected.)
Write BW (MB/s) 2.95 6.49 321

We found that with several minor source code changes, we
were able to fix one operating system to meet all the re-
quirements we tested. This suggests that if necessary, fixes Taple 2: Sequential read and write performance for a sin-

may also be possible for the other operating systems. gle disk. These measurements were taken through the
file system using 64KB requests. Both Windows NT and

6.0 Performance Measurements FreeBSD are using tagged queuing, while Solaris x86 is
not.

In this section, we describe some performance measure-
ments of the three operating systems. The two prior stud-
ies, [9] and [2], measured the performance of a variety of

system services. However, we focus only on I/O perforWindows NT with NTES got almost 4 MB/s on reads and

mance. In particular, we measure each operating systemssMB/S on reads. FreeBSD had a peak bandwidth of 8

I/O performance with multlpl_e disks. Chen et al.[9] an.dMB/s on reads and 6.5MB/s on writes with tagged queu-
Lee et al. [2] only measured file system performance with

a single disk. We did two types of multi-disk performancemg' Without tagged queuing, FreeBSD stil got almost
. . . . MB/s on reads, but the write performance dipped to 3.6
experiments. First we used the striping drivers that wer

: . . . B/s. Solaris x86 had peak bandwidths of 7.7 MB/s on
available with each operating system. These drivers en- d 432 MB/ it > ts simil inal
abled us to create virtual disks by grouping disks into gecads and o. s on writes. [2] reports similar single

: . o ... disk performance for Solaris x86. Their results for FreeB-
stripe set. We also did multi-disk measurements by issuin . .
. . . SD agree with our results for FreeBSD without tagged
parallel /O requests to several disks. Finally, we studie

the effect of improving memory copy bandwidth on /o AUeUing.

Page 9

6.2 Multiple disk performance SCSI bus. Since each disk is capable of delivering almost
8 MB/s on reads, 6 disks could deliver upto 48 MB/s. The
For our measurements of I/O on mu|t|p|e disks, we usegonfiguration that delivered 21 MB/s had three SCSI con-
both striping and parallel requests. The first set of medrollers, so the performance is not SCSI limited either.
surements were done using the striping software availabiEhree Fast-Wide SCSI buses can have a peak bandwidth
with each operating system. For Windows NT, we used thef 60 MB/s.
striping software available through the Disk Administra-
tor utility. On FreeBSD we used the CCD (concatenated-ee et al. [2] observed that the memory write performance
disk) driver. On Solaris x86 we used the DiskSuite softin both Solaris and FreeBSD was well below the capabil-
ware that is packaged with the operating system. Althougfiies of the hardware. We suspected that this may be limit-
both the Windows NT and Solaris software provide§ng our read performance in FreeBSD to 21 MB/s. To test

RAID 1 and RAID 5, we only created RAID 0 (no redun- this hypothesis, we replaced the memory copy routines in
dancy) stripe sets for our experiments. FreeBSD with several hand-coded assembler routines.

The Pentium has a write allocate cache, so the perfor-

Figure 3 shows the performance of the striping softwar&ance of memory write routines can be improved by

on the three operating systems. In each case, the measupeefetching cache lines. Using this prefetching technique,
ments are done on a stripe set accessed through the #1 implemented a set of custom memory copy routines.
system. Figure 3 shows the read bandwidth as the numb&R€ copy routines we used are described in the Appendix.
of disks is increased. This data is based on the maximufAur hand coded routines delivered copy bandwidths of 80
achieved by each operating system over a range of contrd{!B/s, compared to the 40MB/s possible without prefetch-
ler/disk configurations. We varied the number of SCSINg- We incorporated these prefetching routines into
adapters in the machine and the number of disks per SCE1€€BSD and repeated our I/O performance measure-
string. For Windows NT, the read performance did not imments. Figure 4 shows the read bandwidth on a striped ar-
prove with multiple disks, and remained close to the perf@y With and without the specialized copy routines. We
formance of a single disk. The read bandwidth of Solarigvere able to improve read performance on striped arrays
x86 peaked at 12 MB/s. FreeBSD with the concatenatebly about 22%, to 27 MB/s.

disk driver achieved 21MB/s.
6.3 Shared SCSI Bus Performance

A direct comparison between the three striped drivers is

not possible, as their structure and functions are quite difAll of the prior measurements were done using dedicated
ferent. We measured their performance because this 8CSI buses. Next we examined the performance implica-
software that the OS vendor intended to help uses managiens of sharing a SCSI bus. We set up the machine/SCSI
large numbers of disks. To compare multi-disk perfor-configuration shown in Figure 2. Next, we ran read bench-

mance on a more even platform, we measured the peakarks on disks on the shared bus, first from one machine
read bandwidth possible with parallel disk accesses. Wirand then simultaneously from both machines. These ex-
dows NT performance did not improve. Even with parallelperiments used the raw disk interface. Figure 5 shows the
disk requests, the peak bandwidth was close to that ofrgad performance on one machine while the other machine
single disk. The performance on FreeBSD remained sinis idle. Figure 6 shows the read performance on one ma-
ilar to that under the CCD stripe set. In Solaris, runninghine while both machines are executing the same bench-
parallel reads to all disks gave us a peak bandwidth of 1aark on the disks. Both figures show the results for

MBI/s, slightly more than its result with the DiskSuite soft- FreeBSD; we also ran the experiment for Solaris x86, with

ware. This suggests that the DiskSuite software may bgmilar results. The workload is read requests of varying

the bottleneck in the results of Figure 3. sizes.

Although the multi-disk read performance of FreeBSD We can make two main observations from the data in Fig-
was well above that of the other two operating systems, ltres 5 and 6. First, for the smaller requests (8KB) both
was still well below the capabilities of the disks and thehosts get the same performance with shared SCSI as a sin-

Page 10

30 T T T T T T 30 T T T T T T
FreeBSD + FastCo;Ly

25 . 25 t .

FreeBSD | --—-+-FreeBSD |

20 20

Solaris
-t

/+»7»—+——7~+<—»7+

0 . 10+ / .

Read Bandwidth (MB/s)
[EEN
ol
1
Read Bandwidth (MB/s)
A=Y
(6]
T
1

Windows NT

St o o gmT o 5F]

O 1 1 1 1 1 1 O 1 1 1 1 1 1
0O 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7
Number of disks Number of Disks

Figures 3 and 4: Figure 3 shows performance through striped drivers with multiple disks. In each case the disks were namfigured i

a striped array. This graph shows read performance for sequential 64KB requests. FreeBSD had the best performancethieut none of
OSes came close to the theoretical peak performance supported by the disks and the SCSI hardware. Figure 4 showsrtesreffects of
ory copy performance on large 1/0 performance. This figure compares the read performance of a striped disk array in FrgeBSD usin
two memory copy routines. The first is the standard copy routine offered by libc. The second is a handcoded copy routileeehs use
programs, the standard libc routine peaks at 40MB/s, the handcoded routine at 80MB/s. In the file system, the secondeogatne imp
read performance by about 22%.

gle host did with dedicated SCSI. This is because the SCSbptions needed to do this were not described in any of
bus is not a bottleneck for smaller request sizes. For thehe Windows NT documentation we checked.

larger request sizes, the SCSI bus does become a bottle-

neck. When two hosts share the SCSI bus, each gets haffeeBSD: Installation is more involved than for Win-

the read bandwidth. dows NT. However, there is documentation available on-
line, as well as many precompiled utilities. Mailing lists
7.0 Observations and newsgroups are also available.

While running these experiments, we made the followingSolaris: There is a bug which causes the operating sys-
general observations about the three operating systems:tem to crash during installation if more than 7 SCSI
disks are placed on the same string and an IDE disk is
Windows NT: Installation was the easiest of the three op-also present in the system. If this is not the case, the in-
erating systems. However, detailed information is harderstallation process is similar to FreeBSD. Periodic driver
to find. References such as [7,8] only give very high lev-updates are available from an ftp site. However, since
el information. It was difficult to perform low-level mea- Solaris x86 does not appear to have a large user commu-
surements, of raw disk access, for instance, as thdity, not much information is available on-line. Also, the
operating system does not come with a compiler.

Page 11

70 T T T T T 70 T T T T T

60 . 60

50 .

(@]

N

~

v9)
1

50 + 4

40 o56kB 1

30F .

oF :
30 B / N

20 | / e
’ 7 8KB

0 - 0 -
g - 8KB

20 -/ T

Read Bandwidth (MB/s)
Read Bandwidth (MB/s)

O : 1 1 1 1 1 O
10 20 30 40 50 60 0O 10 20 30 40 50
Number of disks Number of disks

o

Figures 5 and 6: Figure 5 shows raw disk read performance for multiple disks in FreeBSD. Raw disk performance in Solaris x86 is
similar. For smaller requests, the disk is the bottleneck, and performance is limited by seek/rotational delays. Foudstggrereq
formance is limited by SCSI bandwidth. Figure 6 shows Shared SCSI performance. This figure shows raw read performance for shared
SCSI in FreeBSD. Small request performance is not affected by shared SCSI (as the disk seek/rotational delays are K)e bottlenec
The performance of large requests is halved, each host getting half of the SCSI bandwidth.

tently the best performance. However, even FreeBSD was
Lai et al. [2] also made similar observations aboutot able to deliver close to the peak bandwidth of the un-

FreeBSD and Solaris in their study. derlying disk and SCSI subsystem. We also showed that
optimizing the memory copy routines can greatly im-
8.0 Summary and Conclusions prove the I/O bandwidth. Finally we examined the perfor-

mance implications of sharing SCSI buses. The results

We tested each operating system for support of larg@ere quite intuitive; there was no performance penalty
numbers of disks and SCSI controllers, support of PCIwhen the SCSI bus was not the bottleneck and each of the
PCI bridges, and support for shared SCSI buses. The rwo machines had half the dedicated bus performance
sults showed that each operating system had some sub%éten the SCSI bus was the bottleneck.

of the required features, but none had support all the fea-

tures that we tested. However, we were able to add th8.0 Appendix: Memory Copy Routines

support to FreeBSD, the one operating system for which

we had source code. This suggests that the missing feln-this appendix, we describe our experiments with fast

tures can be added for the other two operating systems agemory copies on Pentium processors. All these
well. experiments were done under FreeBSD v2.2 on our

testbed machine, a 133 Mhz Pentium with Triton
The performance measurements showed that there ischipset, 60ns EDO RAM and 256KB pipeline burst
wide variance in the 1/0O performance of the three operateache. All performance measurements were run as user
ing systems. In our experiments, FreeBSD had considevel programs.

Page 12

attempts to prefetch the next cache line by touching the
We provide examples of three copy routines and src+32 and src+64'th bytes. (We are assuming the cache
compare their performance. The first copy routine uses line size is 32 bytes.)
therep/movslinstructions, the second uses integer
registers and the third uses floating point registers. We

also discuss the effectiveness of loop unrolling and cmpl $63,%ecx
prefetching when integer and floating point registers are jbe unrolled_tail
used.
.align 2,0x90
Standard libc: unrolled_loop:
[* prefetch next cache line */
We begin with the assembly code used in the libc movl 32(%esi),%eax

memory copy routine. Figure Al shows sample code forcmpl $67,%ecx
this experiment. Similar code is used for memory copies/* and one more if we have */

within the FreeBSD kernel. /* >= 68 bytes to move */
jbe unrolled_tmp
movb %cl,%al movl 64(%esi),%eax
[* copy longword-wise */
shrl $2,%ecx .align 2,0x90
cld unrolled_tmp:
rep movl 0(%esi),%eax [*
movsl load in pairs */
movb %al,%:cl movl 4(%esi),%edx
[* copy remaining bytes */ movl %eax,0(%edi) I*
andb $3,%cl store in pairs */
rep movl %edx,4(%edi)
movsb movl 8(%esi),%eax
movl 12(%esi),%edx
Figure Al: libc memory copy routine. movl %eax,8(%edi)

movl %edx,12(%edi)
This routine uses thep/movslinstruction pair. The rep movl 16(%esi),%eax
instruction repeatedly executes the following instruction movl 20(%esi),%edx
as many times as specified in #ecx register. The movl %eax,16(%edi)
movsinstruction moves data from an area pointed to by movl %edx,20(%edi)
the %esi ("source index") register to that pointed to by movl 24(%esi),%eax
%edi ("destination index"). Sinaaovslis used, items movl 28(%esi),%edx
are moved in 32-bit longword units until there are at ~ movl %eax,24(%edi)
most 3 bytes remaining. Then the last 3 bytes are moveadnovl %edx,28(%edi)
with rep/movsh. movl 32(%esi),%eax

movl 36(%esi),%edx
On our testbed, this routine gets a peak performance of movl %eax,32(%edi)

about 40MB/s when run as a user level program. movl %edx,36(%edi)
movl 40(%esi),%eax
Using integer registers: movl 44(%esi),%edx

movl %eax,40(%edi)
Figure A2 shows our next copy routine. Here we use themovl %edx,44(%edi)
integer registers as temporay storage. The sample codemovl 48(%esi),%eax
in Figure A2 copies 64 bytes per iteration. It also movl 52(%esi),%edx

Page 13

mov! %eax,48(%edi)

movl %edx,52(%edi) 4:
mov! 56(%esi),%eax pushl %ecx
movl 60(%esi),%edx cmpl $1792,%ecx /*
mov! %eax,56(%edi) prefetch up to 1792 bytes */
mov! %edx,60(%edi) jbe 2f /*
addl $-64,%ecx (1792 = 2048 - 256) */
add| $64,%esi movl $1792,%ecx
addl $64,%edi 2:
cmpl $63,%ecx subl %ecx,0(%esp)
ja unrolled_loop cmpl $256,%ecx
jb 5f
pushl %esi
unrolled_tail: pushl %ecx
[* this part same as libc */ .align 4,0x90
movl %ecx,%eax 3:
shrl $2,%ecx movl 0(%esi),%eax
cld movl 32(%esi),%eax
rep movl 64(%esi),%eax
movsl movl 96(%esi),%eax
mov! %eax,%ecx mov! 128(%esi),%eax
andl $3,%ecx movl 160(%esi),%eax
rep movl 192(%esi),%eax
movshb movl 224(%esi),%eax
addl $256,%esi
Figure A2: Move using integer registers. subl $256,%ecx

cmpl $256,%ecx
This version has a peak performance of 60MB/s on ourjae 3b
test machine. This is a 50% speedup over the standard popl %ecx

libc routine. popl %esi
5:
Using floating-point registers: .align 2,0x90
unrolled_loop:
The last version (shown in Figure A3) uses floating fildg 0(%esi)
point registers for temporary storage instead of integer fildq 8(%esi)
registers. This routine also uses loop unrolling. fildg 16(%esi)
fildg 24(%esi) /*
The Intel x86 floating-point unit has eight 80-bit load 8 quad (64-bit) words */

registers organized as a stack. The fildg (floating-point fildq 32(%esi)
integer load quadword) instruction loads a 64-bit integer fildq 40(%esi)
into a 80-bit register, converting it into floating pointin fildq 48(%esi)
the process. (Note there is no data loss since the 80-bit fildg 56(%esi)
floating-point format has 64 bits for the significand.) fistpg 56(%edi)

The fistpq (floating-point integer store and pop fistpg 48(%edi)
quadword) does the opposite . fistpg 40(%edi)

fistpg 32(%edi) /*
cmpl $63,%ecx store them in reverse order */

jbe unrolled_tail fistpg 24(%edi)

Page 14

fistpg 16(%edi) measurements can be found at

fistpq 8(%edi) http://now.cs.berkeley.edu/Td/mcopy.html.
fistpg 0(%edi)
addl $-64,%ecx
addl $64,%esi
addl $64,%edi

80 _I T T T T T T T I_
cmpl $63,%ecx e
ja unrolled_loop 70 FPcopy/(6?Z) FPcopy (2K
popl %eax ¥ ool (2K
addl| %eax,%ecx = 60 / INTcopy (%JL\ESQ ,F’%()
cmpl $64,%ecx 5 K
jae 4b = 50 | . INTcogy (64)
= A !
S 40 1 libe .
unrolled_tail: £ 30 |l i
[* this part same as libc */ s}
movl %ecx,%eax 20 | .
shrl $2,%ecx 0L |
cld
rep ou 1 1 1 1 1 1]]
movsl 32 641282565121K 2K 4K 8K
movl %eax,%ecx Copy Size
andl $3,%ecx _ .
rep Figure A4: Performance comparison of memory copy
movsb routines using rep/movsl, integer registers and float-

ing point registers.
Figure A3: Copy routine using floating point registers.

This version can move up to 80MB/s on our test 10.0 References
machine. This is a 100% speedup over standard libc and

o L .
50% speedup over using integer registers. [1] Growchowski, E.G, Hoyt, R.F, “Future Trends in

. Hard Disk Drives”, EEE Transactions on Magneti&g,
Figure A4 compares the performance of the three copy 3 Mav 1996 pp1850-1854
routines for copy sizes between 32 bytes and 8K bytes. y PP '
As the graph shows, the libc routine (figure Al) starts [2] Lai, K. Baker M. A Performance Comparison of
out at about 30MB/s for 32 byte copies and increases to UNIX Operating Systems on the PentiuPnoceedings of
about 40 MB/s for 8KB copies. For second and third the USENIX Technical Conferenganuary 1996.
routines, figure A4 §hows copy bandW|dth_ for different [3] PCI-PCI Bridges. Bit3 Corporation. http:/
levels of loop unrolling. The level of unrolling affects .

. : : www.hit3.com/

the number of bytes moved in one loop iteration. As
more of the loop is unrolled, the separation point [4] Graham, JSolaris 2.x: Internals and Architecture
between the integer/floating point register copy McGraw Hill, 1995.
performance and libc moves to the right. In other words,)
with more unrolling, it takes a larger copy size to get the[s] FreeBSD Grouphttp:/fwww.freebsd.org/
benefits. The best compromise seems to be the floating [6] McKusik, M. The Design and Implementation of the
point copy with 64 bytes moved per iteration. 4.3 BSD Operating Systerddison Wesley Press.

More information about the memory copies and more [7] Helen Custerjnside Windows NTMicrosoft Press,

Page 15

Redmond, Washington 1993

[8] Helen Custennside the Windows NT File Systédvti-
crosoft Press, Redmond, Washington 1994

[9] Chen, B. Endo, Y. Chan K. Mazieres D. Dias A. Selt-
zer M. Smith M. “The Measured Performance of Personal
Computer Operating Systemdroceedings of SOSP
1995.

