
Page 1

Page 2

Comparison of PC Operating Systems for Storage Support

 Nisha Talagala, Satoshi Asami, David Patterson
{nisha, asami, pattrsn} @cs.berkeley.edu

University of California at Berkeley
January 1997

Abstract

In the past 10 years, the cost/megabyte of magnetic disks has been decreasing by almost a factor
of two. This decrease makes large scale disk-based storage systems attractive. However, such sys-
tems usually come in the form of RAID arrays that have a much higher cost/megabyte than the
underlying disks. To maintain the low cost ideal, COTS (commercial, off the shelf) components
must be used. A large storage system, built from off the shelf hardware, could have disks hosted
by PCs connected through a high performance LAN. The high bandwidth PCI bus and large num-
ber of expansion slots make PCs a good building block for such a system. However, most PCs (and
PC operating systems) are used in desktop environments, typically with only 1 or 2 disks.

In this report, we test how well PC operating system support large amounts of storage. We com-
pare three operating systems, Windows NT, FreeBSD and Solaris x86. A set of experiments are
conducted on each OS to test support for (i) large numbers of disks and disk controllers, (ii) PCI
expansion boxes, and (iii) Shared SCSI buses. The results show that all of the operating systems
compared had some subset of the required features. We were also able to add the missing features
to FreeBSD, and show that it is feasible to use PCs to host large amounts of storage. In addition,
we present some measurements of multiple disk I/O on each operating system.

This research is funded by the DARPA Roboline Grant # N00600-93-K-2481, donations of ma-
chines from Intel, and the California State Micro Program.

Page 3

1.0 Introduction

In the past 10 years, the cost performance gap between
secondary and tertiary storage has been widening. The
cost per megabyte of disk drives has been falling at a fac-
tor of 2 per year, compared to 1.5 per year for tape drives
and libraries. Disk areal densities have been increasing at
60% per year [1]. These trends change the possibilities in
large scale storage systems. If they continue, large stor-
age systems composed of disks will have significant cost/
performance advantages over tape libraries of similar ca-
pacity. The currently available solution for large disk
storage is RAID arrays. These disk arrays have draw-
backs in terms of cost/performance, availability, and scal-
ability. Since they use custom hardware, the cost per
megabyte of disk arrays increases with system capacity,
unlike raw disks and tape systems. Also, a disk array
needs to be connected to a host computer. This connec-
tion becomes a bottleneck for both performance and
availability. Finally, scalability is limited by the number
of disks that can be supported by the infrastructure. When
applications reach the capacity limit of their disk array,
another array must be added. Adding independent disk
arrays lowers the reliability of the total system and com-
plicates storage management.

A storage systems built with commercial, off the shelf,
hardware could avoid some of the disadvantages of cus-
tom RAID systems. The low cost and good performance
of PCs make them a good candidate for hosting disks in a
COTS based system. However, most PCs are used in of-
fice environments, typically running Windows and MS-
DOS. Not much is known about the ability of PC operat-
ing systems to support large amounts of storage. Also,
there are many choices for PC operating systems, ranging
from Microsoft Windows and Windows NT to UNIX
compatible operating systems such as FreeBSD, Solaris
and Linux.

In this work, we compare how well PC operating systems
support large amounts of storage. We compared the three
operating systems Windows NT, FreeBSD and Solaris
x86. We were unable to study Linux as it did not support
our SCSI controller. We installed each operating system
on our testbed ran a series of experiments to see whether
the operating system could support configurations of

disks that could exist in a large storage system. In particu-
lar, we tested each operating system for support of large
numbers of disks and SCSI controllers, support for PCI-
PCI expansion bridges, and support of shared SCSI bus-
es. Finally we also measured multiple disk I/O perfor-
mance for each OS.

Our experiments revealed that each operating system had
some subset of the required features, but no OS had all of
them. Of the three operating systems we tested, FreeBSD
was the only one with freely available source code. Be-
cause of this, we adopted a black box approach to the ini-
tial experiments. Later, we made several modifications to
FreeBSD to enhance its support for the tested features.
Our performance experiments also revealed that the I/O
performance of each OS was far below the capabilities of
the disk and SCSI subsystem. In FreeBSD, we discovered
that this low performance was partly due to slow memory
to memory copies. Other studies have also made this ob-
servation [2]. By replacing the memory copy routines
with higher performance handcoded routines, we were
able to increase FreeBSD’s I/O performance by about
22%.

The rest of the paper is organized as follows. Section 2
describes why PCs are a good building block for storage
systems. Section 3 describes the operating systems that
we tested. Section 4 describes some related work in com-
paring PC operating systems. Section 5 describes our
testbed, experiments, and results. Section 6 describes
some performance measurements of I/O on the three op-
erating systems. Section 7 describes our experience in in-
stalling and using the three alternatives, and section 8
provides a summary and conclusions. Finally, the appen-
dix in section 9 outlines the enhanced memory copy rou-
tines.

2.0 PCs as Building Blocks

PCs are a natural choice for hosting disks. The main sys-
tem bus, PCI, has a peak bandwidth of 132 MB/s. Typical
PCs have 4 PCI expansion slots on the main bus. If one
slot is used for a network connection, 3 slots are available
for disk controllers. In this manner, a large number of
disks can be connected to a single PC. If each remaining
slot holds a single channel wide SCSI controller, the PC
can host up to 45 disks. If dual channel SCSI controllers

Page 4

are used, the number of disks doubles. Other competing
machines, like the SPARCStation series from Sun Micro-
systems, usually have only 1-2 expansion slots.

It is also possible to extend the PCI bus using PCI-PCI
bridges. The design of the PCI bus limits the number of
slots to 7. However, if one of these slots is connected to a
PCI-PCI bridge, six more slots are available. Such PCI
expansion boxes are commercially available [3]. In this
fashion, the number of disks connected to a single PC can
be increased dramatically and many different configura-
tions are possible.

PCs are also attractive from a cost perspective. The high
volumes and fierce competition in the PC industry makes
these machines cheaper than most UNIX based plat-
forms.

3.0 Methodology

Since we were looking for PC operating systems that
could function as storage nodes, we limited our choices to
operating systems that were used in server environments.
In particular, we did not include Windows in the study.
We chose Windows NT version 3.5.1, FreeBSD version
2.1.5 and Solaris x86 version 2.4. Linux also meets these
requirements. We had intended to include Linux, but
there was no driver available for the SCSI controller that
we were using. For each operating system, we chose the
latest version available in mid 1996.

Solaris is a System V based version of UNIX from Sun
Microsystems. Solaris is available for both SPARC and
x86 archtectures. In early 1996, Solaris was available on
CDROM for $99, source code not included. The Solaris
kernel is fully preemptive multithreaded and has support
for multiprocessor systems. More detailed information on
Solaris can be found at [4].

FreeBSD is a freely available version of UNIX. It is de-
rived from the BSD 4.4 Lite release from UC Berkeley.
Its source code is freely available and a large number of
people have contributed to it. The FreeBSD file system is
based on Berkeley FFS. More information on FreeBSD
can be found at [5 6].

Windows NT supports applications written for Windows,
and also offers additional features available in UNIX.
Two filesystems are available under Windows NT, the
FAT file system used in DOS and NTFS. We used NTFS
in our experiments. More details on Windows NT are
available in [6,7].

4.0 Related Work

Two earlier studies have compared PC based operating
systems. The first study, done by Chen et al., compared
Windows for Workgroups, Windows NT and NetBSD
[9]. The authors used hardware counters on the Pentium
processor to gather data on a variety of processor events,
like instruction counts and on chip cache misses. They
also used microbenchmarks to measure performance of
operating systems functions (syscalls, read/write calls,
etc.) and application workloads (web server, Ghostscript,
etc.) to measure end-to-end performance. The second
study, by Lai et al. [2], compared Solaris x86, FreeBSD
and Linux. These authors also used a mixture of mi-
crobenchmarks and application level workloads to evalu-
ate each operating system.

These two studies had different goals. The first study
compared three operating systems that are quite different
in system functionality and user requirements. Windows
for Workgroups is a version of Windows with integrated
networking support. It does not support more advanced
features like protected address spaces and preemptive
multitasking, features that are available in Windows NT
and UNIX. While the first study showed the choices
available to PC users with a range of requirements, the
second study compared UNIX operating system alterna-
tives for the PC.

Since we are interested in using PCs to host disks and
serve data, the information about Windows for Work-
groups was not relevant to our work. The performance
studies of the other five OSes are relevant. For instance
Chen et al. [9] observed that Windows NT has much
higher latency than NetBSD for disk I/O. For both the
NTFS and FAT file systems, NT performance lags behind
NetBSD by almost a factor of two. We do not attempt to
summarize all the performance data in these two studies
here. Some results are mentioned in Section 6, where we
discuss the I/O performance of Solaris, FreeBSD and

Page 5

Windows NT. However, both studies showed that each
operating system is superior to the others in some way,
but no operating system is clearly the winner. The choice
depends on the intended application. Lee et al. [2] points
out that other factors like cost, ease of installation and
support may help a user to choose an operating system.

There are two main differences between these two studies
and our PC-OS comparison. These two studies compared
the strengths of each OS for a range of microbenchmarks.
Our study focuses only the abilities of the operating sys-
tems to function as part of a storage node in a larger sys-
tem. The two studies also do not test the hidden OS limits
for hardware support. This in an important part of our
study, as we are using PCs in a way that the they are not
normally used.

5.0 TestBed and Experiments

In this section, we describe our testbed, the experiments
we designed to test support for large storage configura-
tions, and the results of these experiments.

5.1 Testbed

We installed each operating system, in turn, on a 2GB
Quantum disk drive. All the experiments were done on a
Pentium 133 machine with this 2GB internal disk. This
machine had PCI 4 expansion slots. In the experiments de-

scribed in the following sections, we changed the machine
configuration by attaching SCSI controllers, disks and PCI
expansion boxes. We used Adaptec 2940W and 3940W
SCSI controllers, the latest available at the time. The
2940W model is a single channel Fast-Wide SCSI control-
ler, while the 3940W model is the dual channel version.
Our disks were 7200 RPM, 4GB, Seagate Barracuda
drives. The PCI expansion boxes we used were manufac-
tured by Bit3 corporation. For some experiments, we also
used an ANCOT SCSI Bus Analyzer to monitor activity
on the SCSI bus.

The PCI expansion boxes we are using provide four PCI
slots on a separate bus, which can be connected to the
main bus using a bridge. Since one PCI bus can only offer
4 new PCI slots, and one of the slots of the master bus is
taken by the expansion card, typical PCI expansion boxes
have two PCI buses in the expansion unit. Also, because
of electrical considerations, the cable to connect the host
and the expansion unit is usually a separate PCI bus.

5.2 Experiments

Next, we describe the experiments we designed to test
how well each operating system supported different disk/
controller configurations. Since we did not have source
code for two of the three operating systems, we used a
black box approach in all the experiments described in this
section. The features that we tested support of were:

M
as

te
r

B
us

Slave Bus 2 Slave Bus 3

Figure 1(b)

Expansion Unit

Slave Bus 1

Host PC PCI-PCI Bridge Chips

M
as

te
r

B
us

Host PC

Slave Bus 1

SCSI Controller Chips

PCI-PCI Bridge Chips

Figure 1(a)

Figures 1(a) and 1(b) show two PCI-PCI bridge configurations. Figure 1(a) shows a PCI-PCI bridge as used in a twin
channel SCSI controller. Both SCSI controllers are on a separate PCI bus, connected to the main PCI bus through a bridge.
Figure 1(b) shows the layout of a PCI expansion box. The cable connecting the expansion box to the machine is the first
slave PCI bus. Three free slots are available in each of the second and third slave buses.

Page 6

(i) Support for large numbers of disks and disk controllers:
If a PC were to function as a storage node in a large storage
system, the operating system should be able to support and
access a large number of disks. In this experiment, we con-
nect up to 40 disks to our test machine. We then access as
many as possible through the operating system. We were
limited to testing upto 40 disks since we had only 40 disks
to use for this experiment. However, the performance re-
sults in the next section show that even if the OS supports
more disks, connecting more than 40 disks is probably not
advisable in general for performance reasons.

(ii) Support for PCI-PCI bridges:
PCI-PCI bridges can be used to expand beyond a single
PCI bus. Figure 1 shows two configurations using PCI-PCI
bridges. Figure 1(a) shows a single bridge integrated into
an expansion card. A dual channel SCSI controller uses
this scheme. Both SCSI buses are on the new PCI bus, con-
nected to the main bus through the bridge. Figure 1(b)
shows the slightly more complicated configuration used in
a PCI-PCI expansion box. In this case, the cable that con-
nects the expansion box to the Pentium machine is itself a
PCI bus. The slots on the left hand side on the expansion
box are separated from the main PCI bus by two levels of
bridging. The slots on the right side of the expansion box
are one bridge level deeper.

We used the dual channel SCSI controllers to test support
for a single level of bridging. We connected disks to each
channel of the dual channel controller and attempted to ac-
cess the disks through each operating system. For multiple
levels, we used the PCI expansion boxes. In this case, we
connected disks to single channel controller cards in the
left hand and right hand slots of the expansion box. We
then attempted to access these disks through each OS.
Note: In this case, we used only single channel SCSI con-
trollers to attach the disks, since the dual channel control-
lers would have added another level of bridging.

(iii) Support for shared SCSI buses
One obvious problem with such an approach of connecting
many disks to a single machine is availability. A single PC
failure will make a large number of disks unreachable from
the rest of the network. One solution to this problem is to
connect disks to two hosts at the same time. However, even
though dual ported disks exist, they are expensive and not
widely available. Since our goal is to use commodity hard-

ware when ever possible, we experimented with shared
SCSI buses. Figure 2 shows the structure of a shared SCSI
bus. The two controllers are on either sides of the bus, with
the disks in between. The SCSI string is terminated at both
ends using external terminators. Since passive termination
is used, it is theoretically possible to power down one of
the host PCs and disconnect it form the bus without upset-
ting the other host PC. Although SCSI buses and com-
mands work with multiple initiators (controllers), some
operating system support is required to make shared SCSI
buses work.

First, the operating system must support variable SCSI ID
for SCSI controllers. Although the SCSI-2 specification
allows initiators to have any SCSI ID between 0 and 15,
most SCSI controllers are assigned an ID of 7. The reason
is that SCSI ID 7 has the highest priority (priorities in de-
creasing order are 7-0, 8-15).

Second, the SCSI driver of one host PC should be capable
of handling SCSI commands issued by the SCSI controller
on the other host PC. For example, if one machine reboots,
several BUS_RESET commands will be issued of the
SCSI bus. The effect of the reset is that all activity on the
SCSI bus is aborted and both controllers must renegotiate
transfer parameters with the disks. The operating system
must support this renegotiation.

If disks are not simultaneously accessed by both machines,

SCSI Controller

PC

Terminator Terminator

Disks
PC

SCSI Comtroller

Figure 2: A shared SCSI bus. The SCSI controllers are con-
nected at opposite ends of the bus, with the disks in between.
Passive termination is used (the termination available in the
SCSI controllers is disabled).

Page 7

the features mentioned above are the minimum required to
support shared SCSI. We tested the three OSes for support
of variable SCSI IDs for controllers and for renegotiation
on BUS-RESETs. We changed the SCSI controller’s ID to
something other than 7, to see if each operating system
could recognize the new ID and use the controller. To test
the response to BUS-RESETs, we set up a shared SCSI
string between two machines. Then, we rebooted one ma-
chine and attempted to access the disks through the other
machine. By inserting a SCSI Bus Analyser into the
string, we were able to verify that the OS SCSI driver re-
sponded correctly to the BUS-RESET event.

5.3 Results

Table 1 summarizes the experiments and results. We got
different results for all three operating systems when we
tried to connect 40 disks at the same time. In Windows NT,
we were not able to access more than 31 disks through the
Disk Administrator GUI. (this utility is used to format
disks and set up stripe groups). In FreeBSD, we were able
to access 32 disks through the OS. In Solaris x86, we were
able to access all 40 disks through the OS, as long as only
7 disks were attached to a single SCSI bus. The experi-

ment uncovered a bug that would cause the Solaris operat-
ing system to crash if a disk with SCSI ID greater than 7
was connected. Therefore, to get to 40 disks in Solaris, we
had to use 6 SCSI controllers, or 2 single channel and 2
dual channel controllers.

Next, we tested PCI-PCI bridge support. All three operat-
ing systems were able to access disks through the dual-
channel controllers, indicating that one level of bridging
was supported. Windows NT was able to access devices
connected to PCI expansion boxes. FreeBSD was not able
to recognize devices below more than one bridge level and
neither was Solaris x86.

Next, we tested for support of variable controller SCSI
IDs. We were not able to change the controller SCSI ID in
Windows NT, it appeared to be hardwired to 7. In FreeB-
SD we were able to change the controller ID to any value
in the 0-15 range. In Solaris x86, we were also able to
change the controller SCSI ID, as long as we remained
within the range 0-7.

Both Windows NT and Solaris reacted correctly when a
BUS-RESET appeared on a SCSI string. The SCSI drivers

Table 1: OS comparison. This table summarizes the experiments and their results. Windows NT, FreeBSD and Solaris x86
are tested for support of many disks, shared SCSI buses and PCI-PCI bridges. A ‘Y’ indicates that the OS passed our test,
and an ‘N’ indicates that it did not.As the table shows, each OS supported some subset of the features. None of the three
OSes got Y’s in all experiments.

Experiments

Operating System

NT/NTFS FreeBSD Solaris x86

Shared
SCSI
Buses

Upto 40 disks and 3 dual

operating system

channel SCSI controllers

accessed through each

One level of bridging
- Dual channel SCSI controller

Multiple bridge levels
- PCI-PCI expansion boxes

Variable SCSI Controller ID

Renegotiate on BUS-RESET

Administrator

Up to 31
allowed by

Up to 32

Y

Y N

N Y

Y N Y

Large

number

Feature

of disks

PCI-PCI

Bridge

Support

Y Y

Y

N

Up to 6

allowed
per SCSI bus

allowed
Disk

Page 8

immediately renegotiated transfer parameters with all
disks. The SCSI driver in FreeBSD did not react in this
manner, so we were not able to access the disks in the
string after a BUS-RESET event.

These results show that none of the operating systems we
studied was initially able to meet all the requirements.
Since we had source code for FreeBSD, we were able to
place fixes for FreeBSD in all cases where the operating
system failed our experiments. For instance, we found that
FreeBSD was only able to recognize 32 disks because of
the size of a data structure that held the disk minor number
(this field was set at 5 bits). By expanding the size of this
field, we were able to access a lot more disks. The second
problem was that FreeBSD was not able to recognize de-
vices that were two PCI bridge levels away from the main
PCI bus. We fixed this problem by adding code to do a
depth first search down all PCI-PCI bridges that were en-
countered in the initial device search at boot time. After
this fix was in place, we tested the operating system with
configurations of 5-6 PCI bridge levels. In all cases, we
were able to access the disks. The third problem, the re-
sponse to BUS-RESETs, was fixed by adding code to the
SCSI driver to renegotiate transfer parameters with the
disks after a BUS-RESET message was detected.

We found that with several minor source code changes, we
were able to fix one operating system to meet all the re-
quirements we tested. This suggests that if necessary, fixes
may also be possible for the other operating systems.

6.0 Performance Measurements

In this section, we describe some performance measure-
ments of the three operating systems. The two prior stud-
ies, [9] and [2], measured the performance of a variety of
system services. However, we focus only on I/O perfor-
mance. In particular, we measure each operating system’s
I/O performance with multiple disks. Chen et al.[9] and
Lee et al. [2] only measured file system performance with
a single disk. We did two types of multi-disk performance
experiments. First we used the striping drivers that were
available with each operating system. These drivers en-
abled us to create virtual disks by grouping disks into a
stripe set. We also did multi-disk measurements by issuing
parallel I/O requests to several disks. Finally, we studied
the effect of improving memory copy bandwidth on I/O

performance. We also present some raw disk performance
measurements of dedicated and shared SCSI buses.

6.1 Single disk performance

Table 2 lists single disk bandwidth for each operating sys-
tem. These measurements were taken through the file sys-
tem. The workload was sequential reads and writes in
64KB blocks. By inspecting SCSI traces, we determined
that Windows NT used tagged queuing, while Solaris x86
did not. Tagged queuing allows the SCSI driver to have
multiple outstanding requests to a single disk. The disk
can order the commands for maximum performance.
FreeBSD could be configured with or without tagged
queuing.

Windows NT with NTFS got almost 4 MB/s on reads and
3 MB/s on reads. FreeBSD had a peak bandwidth of 8
MB/s on reads and 6.5MB/s on writes with tagged queu-
ing. Without tagged queuing, FreeBSD still got almost
8MB/s on reads, but the write performance dipped to 3.6
MB/s. Solaris x86 had peak bandwidths of 7.7 MB/s on
reads and 3.2 MB/s on writes. [2] reports similar single
disk performance for Solaris x86. Their results for FreeB-
SD agree with our results for FreeBSD without tagged
queuing.

Table 2: Sequential read and write performance for a sin-
gle disk. These measurements were taken through the
file system using 64KB requests. Both Windows NT and
FreeBSD are using tagged queuing, while Solaris x86 is
not.

NT/NTFS FreeBSD Solaris x86

3.21

Read BW (MB/s)

Write BW (MB/s)

3.71

2.95

7.99

6.49

7.69

Page 9

6.2 Multiple disk performance

For our measurements of I/O on multiple disks, we used
both striping and parallel requests. The first set of mea-
surements were done using the striping software available
with each operating system. For Windows NT, we used the
striping software available through the Disk Administra-
tor utility. On FreeBSD we used the CCD (concatenated
disk) driver. On Solaris x86 we used the DiskSuite soft-
ware that is packaged with the operating system. Although
both the Windows NT and Solaris software provides
RAID 1 and RAID 5, we only created RAID 0 (no redun-
dancy) stripe sets for our experiments.

Figure 3 shows the performance of the striping software
on the three operating systems. In each case, the measure-
ments are done on a stripe set accessed through the file
system. Figure 3 shows the read bandwidth as the number
of disks is increased. This data is based on the maximum
achieved by each operating system over a range of control-
ler/disk configurations. We varied the number of SCSI
adapters in the machine and the number of disks per SCSI
string. For Windows NT, the read performance did not im-
prove with multiple disks, and remained close to the per-
formance of a single disk. The read bandwidth of Solaris
x86 peaked at 12 MB/s. FreeBSD with the concatenated
disk driver achieved 21MB/s.

 A direct comparison between the three striped drivers is
not possible, as their structure and functions are quite dif-
ferent. We measured their performance because this is
software that the OS vendor intended to help uses manage
large numbers of disks. To compare multi-disk perfor-
mance on a more even platform, we measured the peak
read bandwidth possible with parallel disk accesses. Win-
dows NT performance did not improve. Even with parallel
disk requests, the peak bandwidth was close to that of a
single disk. The performance on FreeBSD remained sim-
ilar to that under the CCD stripe set. In Solaris, running
parallel reads to all disks gave us a peak bandwidth of 14
MB/s, slightly more than its result with the DiskSuite soft-
ware. This suggests that the DiskSuite software may be
the bottleneck in the results of Figure 3.

Although the multi-disk read performance of FreeBSD
was well above that of the other two operating systems, it
was still well below the capabilities of the disks and the

SCSI bus. Since each disk is capable of delivering almost
8 MB/s on reads, 6 disks could deliver upto 48 MB/s. The
configuration that delivered 21 MB/s had three SCSI con-
trollers, so the performance is not SCSI limited either.
Three Fast-Wide SCSI buses can have a peak bandwidth
of 60 MB/s.

Lee et al. [2] observed that the memory write performance
in both Solaris and FreeBSD was well below the capabil-
ities of the hardware. We suspected that this may be limit-
ing our read performance in FreeBSD to 21 MB/s. To test
this hypothesis, we replaced the memory copy routines in
FreeBSD with several hand-coded assembler routines.
The Pentium has a write allocate cache, so the perfor-
mance of memory write routines can be improved by
prefetching cache lines. Using this prefetching technique,
we implemented a set of custom memory copy routines.
The copy routines we used are described in the Appendix.
Our hand coded routines delivered copy bandwidths of 80
MB/s, compared to the 40MB/s possible without prefetch-
ing. We incorporated these prefetching routines into
FreeBSD and repeated our I/O performance measure-
ments. Figure 4 shows the read bandwidth on a striped ar-
ray with and without the specialized copy routines. We
were able to improve read performance on striped arrays
by about 22%, to 27 MB/s.

6.3 Shared SCSI Bus Performance

All of the prior measurements were done using dedicated
SCSI buses. Next we examined the performance implica-
tions of sharing a SCSI bus. We set up the machine/SCSI
configuration shown in Figure 2. Next, we ran read bench-
marks on disks on the shared bus, first from one machine
and then simultaneously from both machines. These ex-
periments used the raw disk interface. Figure 5 shows the
read performance on one machine while the other machine
is idle. Figure 6 shows the read performance on one ma-
chine while both machines are executing the same bench-
mark on the disks. Both figures show the results for
FreeBSD; we also ran the experiment for Solaris x86, with
similar results. The workload is read requests of varying
sizes.

 We can make two main observations from the data in Fig-
ures 5 and 6. First, for the smaller requests (8KB) both
hosts get the same performance with shared SCSI as a sin-

Page 10

gle host did with dedicated SCSI. This is because the SCSI
bus is not a bottleneck for smaller request sizes. For the
larger request sizes, the SCSI bus does become a bottle-
neck. When two hosts share the SCSI bus, each gets half
the read bandwidth.

7.0 Observations

While running these experiments, we made the following
general observations about the three operating systems;

Windows NT: Installation was the easiest of the three op-
erating systems. However, detailed information is harder
to find. References such as [7,8] only give very high lev-
el information. It was difficult to perform low-level mea-
surements, of raw disk access, for instance, as the

options needed to do this were not described in any of
the Windows NT documentation we checked.

FreeBSD: Installation is more involved than for Win-
dows NT. However, there is documentation available on-
line, as well as many precompiled utilities. Mailing lists
and newsgroups are also available.

Solaris: There is a bug which causes the operating sys-
tem to crash during installation if more than 7 SCSI
disks are placed on the same string and an IDE disk is
also present in the system. If this is not the case, the in-
stallation process is similar to FreeBSD. Periodic driver
updates are available from an ftp site. However, since
Solaris x86 does not appear to have a large user commu-
nity, not much information is available on-line. Also, the
operating system does not come with a compiler.

Figures 3 and 4: Figure 3 shows performance through striped drivers with multiple disks. In each case the disks were configured into
a striped array. This graph shows read performance for sequential 64KB requests. FreeBSD had the best performance, but none of the
OSes came close to the theoretical peak performance supported by the disks and the SCSI hardware. Figure 4 shows the effects of mem-
ory copy performance on large I/O performance. This figure compares the read performance of a striped disk array in FreeBSD using
two memory copy routines. The first is the standard copy routine offered by libc. The second is a handcoded copy routine. As user level
programs, the standard libc routine peaks at 40MB/s, the handcoded routine at 80MB/s. In the file system, the second routine improves
read performance by about 22%.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

R
ea

d
B

an
dw

id
th

 (
M

B
/s

)

Number of disks

FreeBSD

Solaris

Windows NT

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7
R

ea
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Disks

FreeBSD + FastCopy

FreeBSD

Page 11

Lai et al. [2] also made similar observations about
FreeBSD and Solaris in their study.

8.0 Summary and Conclusions

We tested each operating system for support of large
numbers of disks and SCSI controllers, support of PCI-
PCI bridges, and support for shared SCSI buses. The re-
sults showed that each operating system had some subset
of the required features, but none had support all the fea-
tures that we tested. However, we were able to add this
support to FreeBSD, the one operating system for which
we had source code. This suggests that the missing fea-
tures can be added for the other two operating systems as
well.

The performance measurements showed that there is a
wide variance in the I/O performance of the three operat-
ing systems. In our experiments, FreeBSD had consis-

tently the best performance. However, even FreeBSD was
not able to deliver close to the peak bandwidth of the un-
derlying disk and SCSI subsystem. We also showed that
optimizing the memory copy routines can greatly im-
prove the I/O bandwidth. Finally we examined the perfor-
mance implications of sharing SCSI buses. The results
were quite intuitive; there was no performance penalty
when the SCSI bus was not the bottleneck and each of the
two machines had half the dedicated bus performance
when the SCSI bus was the bottleneck.

9.0 Appendix: Memory Copy Routines

In this appendix, we describe our experiments with fast
memory copies on Pentium processors. All these
experiments were done under FreeBSD v2.2 on our
testbed machine, a 133 Mhz Pentium with Triton
chipset, 60ns EDO RAM and 256KB pipeline burst
cache. All performance measurements were run as user
level programs.

Figures 5 and 6: Figure 5 shows raw disk read performance for multiple disks in FreeBSD. Raw disk performance in Solaris x86 is
similar. For smaller requests, the disk is the bottleneck, and performance is limited by seek/rotational delays. For larger requests per-
formance is limited by SCSI bandwidth. Figure 6 shows Shared SCSI performance. This figure shows raw read performance for shared
SCSI in FreeBSD. Small request performance is not affected by shared SCSI (as the disk seek/rotational delays are the bottleneck).
The performance of large requests is halved, each host getting half of the SCSI bandwidth.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

R
ea

d
B

an
dw

id
th

 (
M

B
/s

)

Number of disks

8KB

64KB
256KB

0

10

20

30

40

50

60

70

0 10 20 30 40 50

R
ea

d
B

an
dw

id
th

 (
M

B
/s

)

Number of disks

8KB

64KB

256KB

Page 12

We provide examples of three copy routines and
compare their performance. The first copy routine uses
therep/movsl instructions, the second uses integer
registers and the third uses floating point registers. We
also discuss the effectiveness of loop unrolling and
prefetching when integer and floating point registers are
used.

Standard libc:

We begin with the assembly code used in the libc
memory copy routine. Figure A1 shows sample code for
this experiment. Similar code is used for memory copies
within the FreeBSD kernel.

movb %cl,%al
/* copy longword-wise */
shrl $2,%ecx
cld
rep
movsl
movb %al,%cl
/* copy remaining bytes */
andb $3,%cl
rep
movsb

Figure A1: libc memory copy routine.

This routine uses therep/movsl instruction pair. The rep
instruction repeatedly executes the following instruction
as many times as specified in the%ecx register. The
movs instruction moves data from an area pointed to by
the %esi ("source index") register to that pointed to by
%edi ("destination index"). Sincemovsl is used, items
are moved in 32-bit longword units until there are at
most 3 bytes remaining. Then the last 3 bytes are moved
with rep/movsb.

On our testbed, this routine gets a peak performance of
about 40MB/s when run as a user level program.

Using integer registers:

Figure A2 shows our next copy routine. Here we use the
integer registers as temporay storage. The sample code
in Figure A2 copies 64 bytes per iteration. It also

attempts to prefetch the next cache line by touching the
src+32 and src+64'th bytes. (We are assuming the cache
line size is 32 bytes.)

cmpl $63,%ecx
jbe unrolled_tail

.align 2,0x90
unrolled_loop:
/* prefetch next cache line */
movl 32(%esi),%eax
cmpl $67,%ecx
/* and one more if we have */
/* >= 68 bytes to move */
jbe unrolled_tmp
movl 64(%esi),%eax

.align 2,0x90
unrolled_tmp:
movl 0(%esi),%eax /*
load in pairs */
movl 4(%esi),%edx
movl %eax,0(%edi) /*
store in pairs */
movl %edx,4(%edi)
movl 8(%esi),%eax
movl 12(%esi),%edx
movl %eax,8(%edi)
movl %edx,12(%edi)
movl 16(%esi),%eax
movl 20(%esi),%edx
movl %eax,16(%edi)
movl %edx,20(%edi)
movl 24(%esi),%eax
movl 28(%esi),%edx
movl %eax,24(%edi)
movl %edx,28(%edi)
movl 32(%esi),%eax
movl 36(%esi),%edx
movl %eax,32(%edi)
movl %edx,36(%edi)
movl 40(%esi),%eax
movl 44(%esi),%edx
movl %eax,40(%edi)
movl %edx,44(%edi)
movl 48(%esi),%eax
movl 52(%esi),%edx

Page 13

movl %eax,48(%edi)
movl %edx,52(%edi)
movl 56(%esi),%eax
movl 60(%esi),%edx
movl %eax,56(%edi)
movl %edx,60(%edi)
addl $-64,%ecx
addl $64,%esi
addl $64,%edi
cmpl $63,%ecx
ja unrolled_loop

unrolled_tail:
 /* this part same as libc */
movl %ecx,%eax
shrl $2,%ecx
cld
rep
movsl
movl %eax,%ecx
andl $3,%ecx
rep
movsb

Figure A2: Move using integer registers.

This version has a peak performance of 60MB/s on our
test machine. This is a 50% speedup over the standard
libc routine.

Using floating-point registers:

The last version (shown in Figure A3) uses floating
point registers for temporary storage instead of integer
registers. This routine also uses loop unrolling.

The Intel x86 floating-point unit has eight 80-bit
registers organized as a stack. The fildq (floating-point
integer load quadword) instruction loads a 64-bit integer
into a 80-bit register, converting it into floating point in
the process. (Note there is no data loss since the 80-bit
floating-point format has 64 bits for the significand.)
The fistpq (floating-point integer store and pop
quadword) does the opposite .

cmpl $63,%ecx
jbe unrolled_tail

4:
pushl %ecx
cmpl $1792,%ecx /*
prefetch up to 1792 bytes */
jbe 2f /*
(1792 = 2048 - 256) */
movl $1792,%ecx
2:
subl %ecx,0(%esp)
cmpl $256,%ecx
jb 5f
pushl %esi
pushl %ecx
.align 4,0x90
3:
movl 0(%esi),%eax
movl 32(%esi),%eax
movl 64(%esi),%eax
movl 96(%esi),%eax
movl 128(%esi),%eax
movl 160(%esi),%eax
movl 192(%esi),%eax
movl 224(%esi),%eax
addl $256,%esi
subl $256,%ecx
cmpl $256,%ecx
jae 3b
popl %ecx
popl %esi
5:
 .align 2,0x90
 unrolled_loop:
fildq 0(%esi)
fildq 8(%esi)
fildq 16(%esi)
fildq 24(%esi) /*
load 8 quad (64-bit) words */
fildq 32(%esi)
fildq 40(%esi)
fildq 48(%esi)
fildq 56(%esi)
fistpq 56(%edi)
fistpq 48(%edi)
fistpq 40(%edi)
fistpq 32(%edi) /*
store them in reverse order */
fistpq 24(%edi)

Page 14

fistpq 16(%edi)
fistpq 8(%edi)
fistpq 0(%edi)
addl $-64,%ecx
addl $64,%esi
addl $64,%edi
cmpl $63,%ecx
ja unrolled_loop
popl %eax
addl %eax,%ecx
cmpl $64,%ecx
jae 4b

unrolled_tail:
 /* this part same as libc */
 movl %ecx,%eax
 shrl $2,%ecx
 cld
 rep
 movsl
 movl %eax,%ecx
 andl $3,%ecx
 rep
 movsb

Figure A3: Copy routine using floating point registers.

This version can move up to 80MB/s on our test
machine. This is a 100% speedup over standard libc and
50% speedup over using integer registers.

Figure A4 compares the performance of the three copy
routines for copy sizes between 32 bytes and 8K bytes.
As the graph shows, the libc routine (figure A1) starts
out at about 30MB/s for 32 byte copies and increases to
about 40 MB/s for 8KB copies. For second and third
routines, figure A4 shows copy bandwidth for different
levels of loop unrolling. The level of unrolling affects
the number of bytes moved in one loop iteration. As
more of the loop is unrolled, the separation point
between the integer/floating point register copy
performance and libc moves to the right. In other words,
with more unrolling, it takes a larger copy size to get the
benefits. The best compromise seems to be the floating
point copy with 64 bytes moved per iteration.

More information about the memory copies and more

measurements can be found at
http://now.cs.berkeley.edu/Td/mcopy.html.

10.0 References

[1] Growchowski, E.G, Hoyt, R.F, “Future Trends in
Hard Disk Drives”, IEEE Transactions on Magnetics 32,
3 May 1996 pp1850-1854.

[2] Lai, K. Baker M. A Performance Comparison of
UNIX Operating Systems on the Pentium.Proceedings of
the USENIX Technical Conference January 1996.

[3] PCI-PCI Bridges. Bit3 Corporation. http://
www.bit3.com/

[4] Graham, J.Solaris 2.x: Internals and Architecture.
McGraw Hill, 1995.

[5] FreeBSD Group.http://www.freebsd.org/

[6] McKusik, M. The Design and Implementation of the
4.3 BSD Operating System. Addison Wesley Press.

[7] Helen Custer, Inside Windows NT, Microsoft Press,

0

10

20

30

40

50

60

70

80

32 64 1282565121K 2K 4K 8K

B
an

dw
id

th
 (

M
B

/s
)

Copy Size

FPcopy (2K)FPcopy (64)

INTcopy (512)
INTcopy (2K)

INTcopy (64)

libc

Figure A4: Performance comparison of memory copy
routines using rep/movsl, integer registers and float-
ing point registers.

Page 15

Redmond, Washington 1993

[8] Helen Custer,Inside the Windows NT File System, Mi-
crosoft Press, Redmond, Washington 1994

[9] Chen, B. Endo, Y. Chan K. Mazieres D. Dias A. Selt-
zer M. Smith M. “The Measured Performance of Personal
Computer Operating Systems”Proceedings of SOSP
1995.

