
Design and Implementation of the IRAM Architecture

Manual and Functional Simulator

David R. Martin

Report No. UCB/CSD-98-1025

December 1998

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Abstract

1 In a microprocessor project such as the Berkeley
Intelligent RAM (IRAM) Project, there needs to be
a golden architectural model that is simple, precise,
and veri�able. For these reasons, the golden model is
written as a computer program so that it can be com-
pared to other models (e.g. RTL or gate-level) in an
operational manner. Furthermore, the architectural
model is often used for compiler, operating system,
and application development, and consequently needs
to be very fast. Thus, fast languages such as C++ or
even assembly are common choices. In addition to
a fast simulation environment, developers need good
documentation. In a microprocessor project, the doc-
umentation needs to be up-to-date and correct with
a high degree of con�dence. This paper describes the
approach taken in the IRAM project to derive the ar-
chitectural simulator and architecture manual from a
single source. This method disallows many types of
inconsistencies between the model and the documen-
tation of the model that can remain undetected in
traditional approaches.

1 Introduction

The IRAM vector architecture [7] is a MIPS-IV co-
processor architecture that extends MIPS with vec-
tor processing. Although the number of instructions
is not larger than one would �nd in the computa-
tional core of a traditional RISC architecture, the
number of opcodes is quite large due to the orthogo-
nality of the instructions across several independent
axes: data width, data type, speculation, predication,
and source register speci�cation. The size and highly
regular nature of the architecture leaves open the op-
portunity for typographical errors in the speci�cation
and implementation of the simulation tools.

In order to reduce the chance for inconsistency be-
tween the models and the documentation of the mod-
els in the IRAM project, we bring an old solution
to a new context. Literate programming [8, 3] was
a method pioneered by Knuth as a means of writing
highly readable, or \literate" programs. The goal was
to create well documented software and a wholly bet-

1This work was supported by DARPA grant #DABT63-96-
C-0056.

ter approach to software development. Superior soft-
ware development methods yield more reliable and
more maintainable software. As a demonstration of
the �rst literate programming system web [2], the
document processing system TEX [4, 6, 5] was origi-
nally written as a literate program.

Literate programming did not prevail as common
practice, though it enjoys the following of die-hard
fans and remains a good teaching tool. This paper
does not present an argument to revive literate pro-
gramming practices in general. Rather, it presents
one application area where literate programming is
a superb method: microprocessor architecture man-
uals. The emphasis of literate programming { by
virtue of its name alone { is programming. That is, a
literate program is a program that happens to be easy
to read and understand. We turn around the empha-
sis in order to produce a document that also happens
to be a program. Thus, the IRAM architecture man-
ual can be compiled into a functional architectural
simulator.

Most microprocessor architecture manuals contain a
great deal of pseudo-code. For example, the MIPS
RISC Architecture manual [1] contains, in appen-
dices, detailed descriptions of all MIPS instructions.
Usually one, but often several pages are dedicated
to each instruction. On these instruction de�nition
pages, every instruction contains an \Operation" sub-
section that details the operation of the instruction
using formal symbolic notation rather than plain En-
glish. The goal is to use a precise language in which to
describe the instructions, since English is not precise
enough. We simply bring this argument to its logical
conclusion. Why not use executable code to describe
each instruction? As a result, the architecture man-
ual would describe the instruction set in as precise a
manner possible { in a true operational manner.

Before we describe the details of the IRAM architec-
ture manual, Section 2 describes literate program-
ming with a small example. Section 3 describes
the design and implementation of the IRAM man-
ual/simulator. Section 4 presents the performance of
the IRAM simulator compared to a traditional ap-
proach. Section 5 discusses the costs of our approach
and the advantages and disadvantages of using the
C++ language in our implementation. Section 6 con-
cludes the paper.

1

2 Literate Programming

Literate programming is a technique of mixing code
and documentation pioneered by Don Knuth with the
web system. Since its inception, web has inspired the
creation of a variety of literate programming tools.
The tool we used is called noweb [8]. noweb targets
the LATEX document formatting system, and is inde-
pendent of programming language. The basic idea of
literate programming is to merge a program and its
documentation. Figure 1 shows how the two objects
of interest { the program and the technical manual {
are derived from a single parent document: the noweb
document. This mechanism is best described with a
small example.

A noweb document consists of alternating documen-
tation and code chunks. Figure 2 shows the ex-
ample noweb document. The example contains 5
code chunks. Code chunks begin with \hhcode chunk
nameii=" and end with \@", and may contain ar-
bitrary C++ code. Each code chunk is separated by
a possibly empty documentation chunk. The docu-
mentation chunks may contain arbitrary LATEX com-
mands.

A code chunk can be viewed as a simple macro. It
may be extracted from the �le by noweb and it may
be included by any number of other code chunks in
the noweb �le. In Figure 2, the globals code chunk
is included by the example.cc code chunk. Fig-
ure 3 shows the result of asking noweb to extract the
example.cc chunk from the noweb source �le. Note
that noweb preserves indentation for included code
chunks for good readability.2

Figure 4 shows the result of passing the noweb doc-
ument through noweb and LATEX to yield the literate
program. Note that not only did noweb format the
code chunks nicely via LATEX formatting commands,
but it also added many useful cross-references. Both
code chunks and identi�ers are cross-referenced to al-
low easy navigation of the code. Code chunks are
given numbers such as \hincludes 1di" to denote that
the \includes" code chunk is the fourth (d = 4) code
chunk on page 1. Identi�ers are also cross-referenced.
For example, we see that the \exit" identi�er is de-

2noweb will pass �le and line information via C preprocessor
directives so that the compiler and debugger reference the orig-
inal noweb source �le instead of the intermediate C++ source
�le.

�ned by chunk 1d, and is used in chunk 1b. Since the
noweb tool knows nothing about the programming
language (C++ in this case), it relies on the \%def"
commands to determine which identi�ers a chunk de-
�nes. noweb then automatically �nds uses of identi-
�ers in all other code chunks in the document.

Note that the includes code chunk seems to be de-
�ned twice. The chunk is not being rede�ned, how-
ever. noweb concatenates all instances of a chunk,
allowing a code chunk to be conveniently de�ned in
multiple pieces. It was convenient to separate the
two #include statements in their own code chunks
so that it is clear that stdlib.h de�nes exit, and
stdio.h de�nes puts.

3 The IRAM Simulator and

Manual Implementation

The goal in this work was to produce a traditional-
looking architecture manual whose \pseudo-code"
could be compiled into an architectural simulator.
Writing executable code that looks like pseudo-code
and can be compiled into an eÆcient program is ex-
tremely challenging. Pseudo-code can be made con-
cise and clean precisely because it does not need to
be compiled and it does not need to be computation-
ally eÆcient. In sum, the manual/simulator needed
to satisfy the following opposing requirements:

� Instruction operation de�nitions were to be writ-
ten using a high-level pseudo-code-like symbolic
notation.

� Instruction operation de�nitions needed to be
written in an existing language for which good
compilers exist, and in a style that allows com-
plier optimizations.

Several languages were initially candidates: Java,
Modula-3, and C++. These languages were chosen
because object orientation, exceptions, and operator
overloading were deemed important to create code
that looks like pseudo-code. It was clear that an
object-oriented language was required for data ab-
straction purposes. All three languages have good
support for exceptions, though the C++ model is
the weakest. Since operator overloading provides a

2

noweb

LaTeX

LaTeX
document

C++
program

Simulator Manual

CC (5 minutes)(5 minutes)

document
noweb

(13 seconds)
"tangle"

(48 seconds)
"weave"

Figure 1: Literate Programming Figures 2, 3, and 4 show an example noweb doc-
ument at three points in the tool
ow. Figure 2 shows the noweb document. noweb

extracts the C++ program shown in Figure 3. noweb also produces a LATEX document,
the rendered version of which is shown in Figure 4. The process of producing a com-
puter program from a literate program is called tangling. The process of producing the
readable document is called weaving. Execution times are shown for the full IRAM sim-
ulator/manual. The MIPSpro 7.2.1 C++ compiler was run on a 180 MHz MIPS R10000
system; noweb and LATEX were run on a 300 MHz Pentium II system.

3

Code chunk continuation

Regular LaTeX

Include code chunks

Define identifier

Code chunk definition

Code chunk

Documentation chunk

Documentation chunk

Documentation chunk

Documentation chunk

Documentation chunk

Code chunk

Code chunk

Code chunk

Code chunk

\usepackage{noweb}
\begin{document}

\texttt{example.cc}:

<<example.cc>>=
<<includes>>
<<globals>>
<<main>>
@

The main program prints out the standard greeting
for example programs:

<<main>>=

{

 exit (0);
}
@

The message is stored in a global variable:

<<globals>>=

We need two standard include files:

#include <stdlib.h>
@ %def exit

<<includes>>=
#include <stdio.h>
@ %def puts

\end{document}

<<includes>>=

Here is the structure of the example program

\documentclass[12pt]{letter}

void main (int argc, char** argv)

 puts (msg);

static char* msg = "hello, world!";
@ %def msg

Figure 2: A noweb example. This is the noweb document that is written by
the user. It consists of alternating code chunks and documentation chunks. The code
chunks collectively form a valid C++ program, while the documentation chunks form a
valid LATEX document.

#include <stdlib.h>
#include <stdio.h>
static char* s_pc_msg = "hello, world!";
void main (int i_argc, char** ppc_argv)
{
 puts (s_pc_msg);
 exit (0);
}

Figure 3: C++ program extracted from the noweb example document. This is
the result of passing the noweb source of Figure 2 through noweb to extract the embedded
C++ program.

4

Here is the structure of the example program example.cc:

1a hexample.cc 1ai�
hincludes 1di
hglobals 1ci
hmain 1bi

This code is written to �le example.cc.

The main program prints out the standard greeting for example programs:

1b hmain 1bi�
void main (int i_argc, char** ppc_argv)

{

puts (s_pc_msg);

exit (0);

}

Uses exit 1d, puts 1e, and s_pc_msg 1c.

The message is stored in a global variable:

1c hglobals 1ci�
static char* s_pc_msg = "hello, world!";

De�nes:

s_pc_msg, used in chunk 1b.

We need two standard include �les:

1d hincludes 1di�
#include <stdlib.h>

De�nes:

exit, used in chunk 1b.

1e hincludes 1di+�
#include <stdio.h>

De�nes:

puts, used in chunk 1b.

1

Figure 4: Rendered document extracted from the example noweb document.

The noweb source of Figure 2 is �rst passed through noweb to produce a LATEX document
(not shown). This �gure shows the rendering of that LATEX document.

5

means of writing high-level syntax, and since neither
Java nor Modula-3 provide operator overloading, C++

seemed the best choice. In addition, high-quality C++

compilers are abundant in comparison to Java and
Modula-3 compilers. The need to interface with other
tools and libraries provided yet more reasons to use
C++.

The abundance of features in the C++ language was
attractive for this project, but great care was taken in
their use. It is not diÆcult to employ a wide array of
C++ constructs to produce an undeciferable program.
Furthermore, many layers of dynamically-dispatched
abstractions could yield high run-time overhead. Al-
though I explored a wide array of available mecha-
nisms, the only \exotic" features that I use in the
�nal simulator is operator overloading. In addition, I
employed exclusively static data abstractions. There
is no inheritance, and consequently no dynamic dis-
patch. In theory, since all method invocations can be
determined at compile time, the compiler could com-
pletely remove them through inlining and standard
code optimizations. Thus, through carefully chosen
constructs, highly readable and eÆcient code can be
written in C++.

Before we present the implementation of the IRAM
manual, let us consider an example from page A-37
of the MIPS Architecture manual [1]. The top por-
tion of Figure 5 shows the \Operation" section for the
Branch On Not Equal (BNE) instruction. For each
instruction, the \Operation" section presents pseudo-
code that de�nes the instruction in a precise manner.
If we apply the techniques we used to write the IRAM
manual to this example, we would have written the
code shown at the bottom of Figure 5. We may then
take this chunk of C++ code and drop it into a con-
text that de�nes the free variables such as GPR and
rs. We will then have used the instruction de�nition
in the architecture manual to build an architectural
simulator.

The conversion of the pseudo-code in Figure 5 into ex-
ecutable C++ code was straight-forward, and yielded
very eÆcient code. Furthermore, the code remains
high-level and extremely easy to read. We have lost
the ability to use fancy mathematical symbols, but
we have gained the ability to execute the code chunk
and verify its correctness against other models. Ex-
tracting the simulator from the architecture manual
improves both the accuracy of the pseudo-code and
the consistency between the pseudo-code and the sim-

ulator.

3.1 The Role of noweb

The goal of this project was to write the MIPS vector
instruction set extensions in the manner of Figure 5.
All instruction code chunks could then be collected
and compiled into a fast architectural simulator. The
translation from pseudo-code to C++ is simple for the
MIPS instruction set, but is more diÆcult for the vec-
tor instructions of the IRAM project. Vector instruc-
tions represent a large amount of computation, and
are more complex than most scalar instructions. For
this reason, it was a challenge to write concise and
eÆcient C++ code for our vector instructions, but the
goal was attained.

Figure 6 shows an example page from the IRAM ar-
chitecture manual. The operation of the unsigned
vector add instruction is de�ned by the following code
chunk:

<<check vector length>>

<<for each unmasked vp>> {

if (vv) {x = VR[src1][vp]; y = VR[src2][vp];}

if (sv) {x = VSR[src1]; y = VR[src2][vp];}

VR[dest][vp] = x + y;

}

This chunk of code handles all 4 versions of
the unsigned vector add instruction: vadd.u.sv,
vadd.u.vv, vadd.u.sv.1, and vadd.u.vv.1. The
\.sv" quali�er means that the �rst source is scalar
and the second vector. The \.vv" quali�er means
that both sources are vectors. The \.1" quali-
�er means that the instruction uses the alternate
mask. It should be clear from context that the
alternateMask, vv, and sv variables are true when
the relevant quali�er is in e�ect. This code chunk
uses two other code chunks, which are not shown in
the �gures. Expanding these two chunks, we get:

if (VCR[vc_vl] > VCR[vc_mvl])

throw Exception (EvectorLength);

for (vp = 0; vp < VCR[vc_vl]; vp++)

if (alternateMask

? VFR[vf_mask1][vp]

: VFR[vf_mask0][vp]) {

if (vv) {x = VR[src1][vp]; y = VR[src2][vp];}

if (sv) {x = VSR[src1]; y = VR[src2][vp];}

VR[dest][vp] = x + y;

}

6

T : target (o�set15)
14 k o�set k 02

condition (GPR[rs] 6= GPR[rt])
T + 1 : if condition then

PC PC+ target
endif

hexecute BNE: branch on not equali�
/* T: */ target = signExtend (offset << 2);

condition = (GPR[rs] != GPR[rt]);

/* T+1: */ if (condition) {

PC = PC + target;

}

Figure 5: Nowebifying the MIPS Architecture Manual The top portion shows
the de�nition of the BEQ instruction, as shown on page A-37 in the MIPS Architecture
Manual [1]. The bottom portion shows how this code would be written as a literate
program. We have lost the fancy mathematical symbols (like , k, and 6=), but we have
gained the ability to use this piece of code in an architectural simulator.

This type of macro expansion allows code reuse. A
principle of software engineering is that code should
never be replicated, since replicating code will repli-
cate bugs. The noweb-style macros allow single pieces
of code to be replicated safely, since the code is reused
without being manually replicated by the program-
mer. The number of lines of C++ code in the simula-
tor noweb document is 7229. Tangling this document
produces a 17757 line C++ program. Thus, noweb re-
duced the number of lines of code that I had to write
by a factor of 2.3. If one believes that bugs are a
linear function of the number of lines of code, as is
commonly accepted, then using noweb should have
reduced the number of bugs in the simulator. This
e�ect was seen in practice. Since the instruction def-
initions share a tremendous amount of code, debug-
ging one instruction had the e�ect of also debugging
all other similar instructions.

Note that in writing instruction de�nitions, we have
made an assumption that the reader will understand
the type and meaning of certain variables accord-
ing to context. These variables must, of course, be
declared and de�ned elsewhere, but the instruction
de�nition page is not the appropriate place. The
fact that we can rely on the reader to provide some

amount of meaningful context and common sense is
vitally important to keeping pedantic details (such as
variable declarations) out of the executable pseudo-
code. Both noweb and C++ are exceptionally useful in
providing the context to the compiler that the reader
provides naturally. noweb provides the mechanism
that drops the instruction operation code chunk into
a context that de�nes all of the free variables for the
compiler. C++ provides the context that de�nes the
unde�ned operators.

3.2 The Role of C++

Operator overloading is easy to misuse, since one can
cause arbitrary side-e�ects through the use of seem-
ingly innocuous operators like the plus sign. In or-
der to avoid this situation, I strictly adhere to the
rule that every overloaded operator does exactly what
you think it is doing. This rule may seem imprecise,
but is suÆcient for producing readable code in prac-
tice. For example, the line that reads \VR[dest][vp]
= x + y" in Figure 6 contains 4 implicit calls to
overloaded operator functions: both brackets opera-
tors, the assignment operator, and the plus operator.

7

85

Unsigned Vector Integer Add VADD.U

VR-Type
31 26

cop2

6

25

1

1

24 21

op

4

20 16

src2

5

15 11

src1

5

10 6

dest

5

5 0

op

6

Assembly

VADD.U

�
.VV[:1] vrdest, vrsrc1, vrsrc2
.SV[:1] vrdest, vssrc1, vrsrc2

Operation

85 hexecute unsigned vector integer add 85i�
hcheck vector length 76bi
hfor each unmasked vp 75ci {

if (vv) { x = VR[src1][vp]; y = VR[src2][vp]; }

if (sv) { x = VSR[src1]; y = VR[src2][vp]; }

VR[dest][vp] = x + y ;

}

Uses VR 226b and VSR 226b.

This code is used in chunk 251.

Description

Each unmasked VP writes into vrdest the unsigned integer sum of vssrc1/vrsrc1 and vrsrc2.

Exceptions

EvectorLength Vector length too long.

Notes

The only di�erence between VADD and VADD.U is that VADD can over
ow, while VADD.U

cannot.

Figure 6: Example page from the IRAM Architecture Manual. This instruc-
tion performs unsigned vector integer addition. The \Operation" section shows that a
scalar addition is performed for each virtual processor (VP), or vector element. Both
sources may be vector registers (speci�ed by the .vv quali�er), or the �rst source may
be a scalar value (speci�ed by the .sv quali�er). The instruction is always masked, and
the .1 quali�er speci�es that the alternate mask is in e�ect. See the text for expansions
of the \hcheck vector length 76bi" and \hfor each unmasked vp 75ci" code chunks.

8

Code Description Lines Percent

Code on instruction de�nition pages 806 11
Overloaded operator functions 806 11
Utility functions 1026 14
Register �le abstractions 355 5
Instruction dispatch 4238 59

Total 7231 100

Figure 7: Breakdown of Simulator Code The C++ code from the simulator noweb
document is divided into 5 categories. The reason that the dispatch code is so large is
that though there are only 116 vector instructions, there are 1082 vector opcodes. The
size of the dispatch code is a linear function of the number of opcodes.

There is nothing deceptive going on behind the op-
erators, however. The plus operator performs integer
addition, the brackets dereference an (abstract) 2-
dimensional array, and the assignment operator per-
forms assignment.

Why, then, are these operators overloaded? For var-
ious technical reasons not important to this discus-
sion, the vector register �le VR cannot be implemented
as a simple array, since it can hold values of many dif-
ferent data types. Furthermore, the innocuous plus
operator is actually performing either 8-bit, 16-bit,
32-bit, or 64-bit integer arithmetic according to the
contents of a vector control register. Thus, operator
overloading allows us to multiplex the same simple
code chunk over a large group of subtly di�erent but
basically identical instructions.

In sum, I use C++ to provide register �le abstractions
that look like simple arrays, and overloaded operators
to hide the details of arithmetic. The majority of the
complexity of an architecture lies in the control
ow
rather than the computation. For example, although
it is important to precisely de�ne two's complement
addition somewhere in the simulator, the instruction
de�nition page is not a good place. It is far more im-
portant how data and control
ow are a�ected by the
instruction. Most of the instruction de�nition code
in the IRAM manual deals with detecting and pro-
cessing exceptional conditions. That the complexity
of an architecture lies in its control
ow is the over-
riding rule that guided decisions about what should
be exposed and what should be abstracted in the in-
struction de�nition code chunks.

3.3 Code Breakdown

Figure 7 shows the breakdown of C++ code in the sim-
ulator noweb document. Much of the code is rather
trivial, as it deals with dispatching the 1000 odd op-
codes to instruction execution routines. After exclud-
ing the dispatch code, only 40% of the code is non-
trivial. A total of 806 lines (11%) are directly visible
to the reader in instruction de�nitions such as Fig-
ure 6. This yields an average of 7 lines of code per
instruction de�nition code chunk. The range is 1 line
to 19 lines, but Figure 6 is representative.

Only 255 lines (5%) of code were required to imple-
ment the 5 register �le abstractions.3 This code is
extremely simple, easy to debug, and easy to main-
tain. The overloaded arithmetic operators consume
806 lines (11%) of code. This code is very regular,
and also easy to implement. Due to the restrictions
of C++, I was not able to use operators for all arith-
metic operations. There are 1026 lines (14%) of code
devoted to utility functions such as the signExtend

function in Figure 5.

Overall, the code is not complex, and is quite short.
Since this simulator is the reference model for our re-
search project, it is important that it is free of bugs
and easy to change. Due to their simplicity, the layers
of abstraction introduced by the register �le abstrac-
tions and overloaded operators do not compromise
this requirement.

3In addition to the scalar integer register �le, there are 4
vector register �les.

9

Benchmark Version vops inst ops Description

scalar 0 8.7M 8.7M Strip-mined memory-to-memory vector
vecadd

vector 6M 1.4M 7.4M add of length N vectors.

scalar 0 5.9M 5.9M Product of an N x N matrix
mvmult

vector 3M 0.6M 3.6M and a length N vector.

scalar 0 9.4M 9.4M Select pixels from one of two images
cromakey

vector 5M 1.1M 6.1M based on the values in one of the images.

Figure 8: Benchmarks The scalar versions were written in plain C. The vector ver-
sions were written in vector assembly language. vops is the number of scalar operations
performed by the vector instructions. inst is the total number of scalar and vector
instructions executed. ops is the total number of scalar operations, including those per-
formed by vector instructions. For example, a scalar instruction contributes 0 vops, 1
inst, and 1 op; a vector instruction of length N contributes N vops, 1 inst, and N ops.

4 Performance Analysis

We performed three experiments in order to under-
stand the performance of simulating vector instruc-
tions with our methods. Figure 8 describes the three
benchmarks we used in the 3 experiments. The fol-
lowing sections describe the experiments.

4.1 Scalar vs. Vector Performance

Two versions of each benchmark in Figure 8 were
coded { one in plain C (\scalar"), and one in vec-
tor assembly language (\vector"). The C versions
were compiled with aggressive compiler optimiza-
tions. Since the kernels are all small and simple, the
compiler's optimized non-vector assembly language
is a fair comparison to hand-coded vector assembly
language.

The simulation methods described in this paper were
applied only to simulating vector instructions. For all
scalar instructions, we use the fast MIPS-V simula-
tor MINT+, written by Jack Veenstra. Thus, though
we send both scalar and vector versions of the bench-
marks though our simulator, pure scalar code is sim-
ulated entirely by MINT+.

Figure 9 shows the di�erence in simulator execution
time for scalar and vector versions of each benchmark.
The total amount of computation is held constant be-
tween versions of the same benchmark. We see that
there is no penalty for simulating vectorized codes.

The vectorized code simulates 19% slower to 27%
faster than functionally equivalent scalar code. This
data demonstrates that our simulator simulates vec-
tor instructions at a speed competitive with the very
fast simulation of pure scalar code by the MINT+
simulator.

4.2 Vector Performance

Though Figure 9 shows that the speed of simulat-
ing vector instructions is good, it does not show that
the simulation could not be faster. In order to deter-
mine if our simulation methods carry performance
penalties, we need to compare our vector simula-
tor to others. Given that vector architectures are
not widespread, it is diÆcult to make a meaningful
comparison between our and other simulators. Even
if there were another vector architecture simulator
available, a head-to-head comparison would tell us
little about the overhead of writing highly readable
code, isolated from all the other di�erences of the two
simulators.

To see how architectural factors can a�ect simula-
tion speed, consider our vector
oating-point com-
pare instruction. This instruction consists of 144 op-
codes, accounting for speculation, data-type, predi-
cate, source-register speci�cation, and mask speci�-
cation. The most highly optimized simulator would
perform a table lookup on the opcode to branch to
one of 144 virtually identical routines that implement
this one instruction. Such a style of writing a simu-

10

normalized
Benchmark Version execution time

scalar 0.84
vecadd

vector 1.00

scalar 1.37
mvmult

vector 1.00

scalar 1.03
cromakey

vector 1.00

Figure 9: Scalar vs. Vector Simulator Performance Times are normalized within
each benchmark to the time for the vector version. For the same computational task,
vectorized code simulates 19% slower to 27% faster than scalar code. The simulator has
a slowdown of 100 for scalar code on a 180MHz MIPS R10000 system with a uni�ed
2MB cache, using -O2 optimization with the MIPSpro 7.2.1 C++ compiler.

normalized execution time
Benchmark vsim-0 vsim-1 vsim-2

vecadd 1.30 1.09 1.00
mvmult 1.30 1.11 1.00
cromakey 1.46 1.11 1.00

Figure 10: Vector Simulator Performance Times are normalized within each
benchmark to the vsim-2 simulator. vsim-1 is uniformly 10% slower than vsim-2. vsim-

0 is 20% to 30% slower than vsim-1. Figure 11 describes the di�erences between the
vsim-0, vsim-1, and vsim-2 simulators.

Simulator Description

vsim-0 The simulator is compiled as a literate program,
as shown in Figure 6.

vsim-1 All operator overloading is removed from the vsim-

0 simulator.
vsim-2 Hand-optimizations are added to the vsim-1 simu-

lator. These optimizations primarily involve loop
fusion and moving switch statements out of inner
loops.

Figure 11: Description of Simulators of Figure 10 Each benchmark is executed
on three di�erent implementations of the architectural simulator. The higher vsim
numbers consist of less readable, less maintainable, and more hand-optimized code.

11

lator is time-consuming, error-prone, and diÆcult to
maintain. It is more likely that the author would at-
tempt to strike a balance between specializing the
routines that implement instructions, and merging
similar routines to reduce programming e�ort.

Writing a single routine that implements all 144 op-
codes is not diÆcult if one uses data abstraction with
objects and operator overloading as we did. The per-
formance cost results from the fact that branches are
introduced into the inner-loops of vector instructions
that could have been removed in a more brute-force
implementation. Note that this is a problem only be-
cause we have instructions that are orthogonal across
a large number of axes, and because this is a vec-
tor instruction set where each instruction contains a
loop.

In order to isolate the methods of our simulator im-
plementation from artifacts of the IRAM vector archi-
tecture, we compare several implementations of our
vector simulator to each other. This allows us to com-
pletely eliminate vector architectural artifacts from
the analysis. Figure 11 describes the three simulators
we compared with the vectorized kernels. The �rst
simulator, vsim-0 is the literate simulator with all
data abstraction and operator overloading as shown
in the example page in Figure 6. The next simu-
lator, vsim-1 removes all operator overloading from
the simulator. As discussed in Section 3, there is
a great deal of operator overloading in vsim-0. Fi-
nally, vsim-2 adds many hand-coded optimizations
to vsim-1. These optimizations are of the nature dis-
cussed earlier in this section that allow each minute
variant of an instruction to be highly optimized, so
that the inner loop contains no branches. Note that
I was careful to write vsim-0 so that the compiler
would have the opportunity to perform the optimiza-
tions that are represented by vsim-1 and vsim-2.

Comparing vsim-0 to vsim-1, we see that operator
overloading and data abstraction cost 20-30% in sim-
ulator execution time. I believe this to be an accept-
able cost, considering the bene�ts of the approach.
This number was initially 200-300%, until I removed
a seemingly innocent pointer indirection from a crit-
ical code path. Microbenchmarks showed an 1800%
performance penalty for a naive 1-dimensional array
abstraction; removing the guilty pointer indirection
reduced this penalty to a mere 15%.4 It is disap-

4A proper 2-dimensional array abstraction costs 480% per

pointing, but perhaps not surprising, that the com-
piler cannot reduce the penalty of such abstractions
to 0%. Since array abstractions are used for the reg-
ister �les and are consequently abundant in our code,
an overall penalty of 20-30% for using both 1-D and
2-D overloaded array syntax is not unreasonable.

Comparing vsim-1 to vsim-2, we see that simulat-
ing similar opcodes with a single routine costs 10%
in simulator execution time. Though, in theory, the
compiler could perform the optimizations to reduce
this overhead to zero, it is not surprising that the op-
timizer did not �nd the optimal solution. The vsim-2

simulator represents optimal C++ code for very long
code sequences. A 10% performance penalty for im-
plementing tens or even hundreds of instructions with
single code sequences is far within the bounds of be-
ing acceptable.

The approach of using literate programming to write
the architecture manual/simulator is shown in the
vsim-0 to vsim-1 comparison, and is independent of
the slowdown shown between vsim-1 and vsim-2. Al-
though the vsim-2 implementation would be desired
for performance reasons, it would only be practical if
the architecture were static. Because the IRAM ar-
chitecture is not frozen, we need the ability to change
instructions easily. A performance penalty of 10% to
reduce the amount of code that implements the in-
structions by an order of magnitude is certainly a
good trade-o�. Thus, the cost of the literate pro-
gramming approach, using C++ overloaded operators
and object abstractions costs 20-30% in simulator ex-
ecution time, as shown by the vsim-0 to vsim-1 com-
parison.

4.3 Compiler Optimization

Since it was an assumption in this work that we could
rely on the compiler to perform many optimizations,
it was interesting to quantify the e�ect of compiler op-
timization. Figure 12 shows that for scalar code, sim-
ulator execution time shows 2.3-2.6x speedups, while
simulating vector code shows 10-13x speedups. Since
we wrote the routines that simulate vector instruc-
tions using many abstractions that we expected the
compiler to remove, an order of magnitude speedup
from compiler optimization was expected.

array access (e.g. VR[src][vp]).

12

normalized
execution time

Benchmark Version -O0 -O2

scalar 2.60 1.00
vecadd

vector 13.00 1.00

scalar 2.30 1.00
mvmult

vector 11.40 1.00

scalar 2.60 1.00
cromakey

vector 10.50 1.00

Figure 12: E�ect of Compiler Optimization on Simulation Speed Times are
normalized within each row to the -O2 execution time. For scalar code, compiler opti-
mization yields 2.3x to 2.6x speedups. For vector code, however, compiler optimization
yields 10x to 13x speedups. These large speedups for the vector code are expected, since
the code that simulates vector instructions was written with many overheads that we
expected the compiler to remove through optimization.

I have noted that it was important to avoid pointer
indirections in order to reap the bene�ts of compiler
optimization. At one point in this work, the speed of
vsim-0 was much slower than is reported here. Elim-
inating an seemingly innocent pointer indirection im-
mediately yielded a 2-3x improvement in simulator
execution time. Though the MIPSpro compiler we
used is excellent, the 10-13x speedup from optimiza-
tion was not the result of applying a heroic compiler
to arbitrary code. In contrast, the simulator was im-
plemented very carefully in order to enable extensive
compiler optimization.

5 Discussion

The goal of this work was to produce a literate IRAM
architecture manual that could be compiled into a
fast architectural simulator. This goal was met, with
a simulator performance penalty of 20-30%. However,
it is both interesting and important to ask if the end
justi�ed the means. If this style of programming is
extremely diÆcult, then the advantages of owning the
end-product are diminished.

The concepts of literate programming are extremely
simple. The length of Section 2 is representative of
many tutorials on the subject. Thus, issues pertain-
ing to the use of literate programming in this project
consumed little of my time. The vast majority of

the e�ort was spent in deciding how best to use C++

to reach the goal of eÆcient, high-level syntax. The
simple and elegant solution was preceded by several
relatively ugly implementations that did not o�er ad-
ditional functionality. This startup cost of learning
and discovery cannot be fairly included in an evalu-
ation of the cost of this method. We must therefore
estimate the cost of setting up the proper data ab-
stractions after only one or two iterations, rather than
�ve or six.

Given that the �nal solution was far simpler than
initial e�orts, I postulate that the cost of coding the
proper operators and objects is quite low. After the
infrastructure of high-level syntax was complete, ex-
tremely complex instructions could be coded quite
clearly in 10s of lines of code. Even accounting for
the overhead of implementing an infrastructure that
provides high-level syntax, the total number of lines
of code in the simulator is reduced. A smaller simu-
lator is easier to debug and easier to maintain. High-
level programming is also less prone to error, since
low-level mechanisms are hidden { and protected {
behind objects and operators. Furthermore, since
nearly all instructions shared the low-level code that
implements computational elements and register �les,
only a small number of instructions needed to be de-
bugged before nearly all instructions became opera-
tional. The bene�ts of high-level programming are
well known, and they apply in full force to this appli-
cation.

13

This project relied heavily on some less frequently
used features of the C++ language such as operator
overloading. As a result, I spent much time both eval-
uating the features available for the task at hand and
wishing that certain other features were available.
The following sub-sections discuss the language fea-
tures that were helpful in this work, the language fea-
tures that were avoided, and language features that
would have been helpful if they existed in C++.

5.1 Helpful Language Features

I chose C++ as the language for this project for many
reasons. The following is a list of the most important
features:

Objects Data abstraction is important in nearly ev-
ery program including the IRAM simulator. Ob-
jects provided an extremely natural way to ab-
stract the register �les, memory, and low-level
data types that the reader does not want to know
about.

Operator Overloading This completes the illusion
that the expression x + y performs simple addi-
tion on the two numbers x and y, even though
both x and y are object types, and the plus oper-
ator is actually a function call to an overloaded
operator routine. Though operator overloading
is probably overused in general, there are many
small programs that truly bene�t from its exis-
tence.

Exceptions Once one has programmed with a
strong exception model such as provided by C++

and Java, it is diÆcult to imagine any other rea-
sonable model. The exceptions of the simulated
program were implemented quite naturally with
C++ exceptions.

Inlining Function inlining allows one to build zero-
overhead abstractions. This was one of the goals
of this project, and I relied heavily on inlining.
Combined with overloaded operators, high level
abstractions can be made quite inexpensive.

Good Compilers The MIPSpro C++ compiler I
used generates excellent code and employs so-
phisticated optimization techniques. Such high-
caliber compilers do not exist for most languages.
Since one of the assumptions of the project was

that I would rely on the compiler to optimize
away the abstractions I introduced for the sake
of readability, a good compiler was essential.

5.2 Hurtful Language Features

The design of the abstractions in the IRAM simulator
were driven by a paranoia that the compiler would fail
at any high-level optimizations. In order to maximize
the odds that the compiler could optimize away all
abstractions, the following features were avoided:

Dynamic Dispatch Only purely static data struc-
tures were used in the simulator. Any abstrac-
tion involving dynamic dispatch was avoided be-
cause truly heroic analysis is required to inline
dynamically dispatched functions. Since I was
attempting to build zero-overhead abstractions,
function inlining was vitally important.

Pointers Pointer indirections were carefully avoided
because they e�ectively kill all optimizations in
the vicinity. Microbenchmarks of a simple 1-
dimensional array abstraction revealed a 120x
speedup when a seemingly innocent pointer in-
direction was removed. After this discovery, I
removed all pointer indirections from the regis-
ter �le implementations in the simulator.

The result of avoiding dynamic dispatch and pointer
indirection is a program where all routines can be
statically inlined, and all data abstractions can be
optimized completely away. In theory, there is noth-
ing preventing the compiler from producing a simula-
tor that would be competitive with the most highly-
tuned C or even assembly language simulator.

5.3 Wished-For Language Features

An interesting approach to this project would have
been to create a very high level language appropri-
ate for this domain, and compile this language into
C or C++. In the general case, this would have re-
quired building a compiler. However, some new fea-
tures could be provided at a lower cost, by building a
source-to-source translator. With the bene�t of hind-
sight, this fantasy language would be most useful if
it included the following features:

14

Safety It is generally accepted that high-level lan-
guages o�er far more opportunity for optimiza-
tion that low-level languages. Many of the diÆ-
culties in optimizing C and C++ programs stem
from the fact that C is an unsafe language with
pointers. Thus, much of the optimization e�ort
is obfuscated by the presence of pointers, and
much of the e�ort is spent optimizing pointers.
There are many possible optimizations that our
C++ compiler did not exploit that may be ex-
plained by problems inherent to the C program-
ming language.

Dynamic Scoping It is clear that dynamic scop-
ing is not a good replacement for static scoping.
However, there are cases where dynamic scoping
is extremely useful. For example, exception han-
dlers have dynamic scope. In this project, there
was a large emphasis on sharing code between
di�erent opcodes. This basically involves run-
ning the same code under the in
uence of di�er-
ent variable values. Modularity in this style re-
quires either dynamic scoping, putting the code
in a function and passing additional parameters,
or global variables. The �rst option was not
available, and the second could not be hidden
well without a closure mechanism. For lack of an
alternative, I settled on using global variables,
but I suspect that using globals instead of dy-
namically scoped variables robbed the optimizer
of important information. For example, a dy-
namically scoped variable could be declared con-
stant, which would have enabled bene�cial opti-
mizations in our code. In addition, true mod-
ularity was not achieved because of the use of
global variables.

User-De�ned Operators In C++, most existing
operators can be overloaded, but new operators
cannot be de�ned. De�ning new operators can
certainly be abused, but in some cases it can be
extremely useful. We could have used mathe-
matical symbols instead of function calls in sev-
eral high-visibility code sequences if we could
have de�ned new operators.

Strong Exception Model The C++ language has
built-in exceptions, but not as strongly as other
languages such as Java. I mapped C++ excep-
tions to implement IRAM architectural excep-
tions in the simulator. A stronger exception
model that allows static exception analysis by

moving exceptions into the type-system would
have helped.

Multiple Return Values This is perhaps the most
unusual request, but would be simple to imple-
ment in a source-to-source translator. A com-
mon idiom in pseudo-code is for operations to
return multiple results. This ability would have
aided in producing the illusion that the instruc-
tion de�nitions were actually pseudo-code and
not executable code. The CLU programming
language has this feature.

New operators and multiple L-values could be pro-
vided relatively easily with a source-to-source trans-
lator. Safety, dynamic dispatch, and strong excep-
tions are deep properties of a language that cannot
be provided if the target of the translator does not
already support them. Since the target would have
been C or C++, these features could only be provided
at prohibitive costs. Using an existing language di-
rectly had many bene�ts, and, in retrospect, was the
most e�ective use of my time. It is interesting, nev-
ertheless, to imagine the most ideal language for this
particular application.

6 Conclusion

This paper describes the implementation of the
IRAM architectural manual and simulator, which are
derived from a single parent document. The technol-
ogy that enables this style of programming is called
literate programming. The IRAM architecture man-
ual is structured like a traditional architecture man-
ual, yet the high-level code chunks that precisely de-
�ne each instruction can be compiled into an archi-
tectural simulator. Not only is this compilation pos-
sible, but the simulator is very fast { fast enough to
be the reference model for the IRAM project. By
extracting the simulator from the architecture man-
ual, debugging the simulator actually removes bugs
from the manual, thereby improving the quality and
consistency of the documentation.

Many simulator details are hidden from the reader
of the architecture manual, and a conscious method-
ology was used to pick those details that should be
obscured. All control
ow issues and all exception
conditions were exposed in the instruction de�nitions,

15

while the arithmetic and logical operator details were
hidden in utility routines and overloaded operators.
This emphasis re
ects the fact that control
ow and
exceptions are the complex and di�erentiating parts
of most architectures. Finally, as is done in tradi-
tional architecture manuals, we were able to appeal
to the context a reader provides to the instruction
de�nitions, so that pedantic low-level details such as
variable types and precise operator de�nitions could
be omitted from the high-level code.

We measured the overhead incurred by writing very
high-level C++ code that uses many data abstrac-
tions and overloaded operators. By avoiding certain
language features such as dynamic abstraction and
pointer indirection, we were able to keep the overhead
down to 20-30%. Though it seems to the author that
the compiler should be able to reduce the overhead
to zero, we were satis�ed with the 10-13x improve-
ment in execution time that compiler optimization
provided. A 20-30% overhead remains small in face
of the bene�ts of this approach. The main bene�t
is that we are able to verify the correctness of the
architectural manual by comparing the architectural
simulator to our RTL model. The ability to write
veri�able documentation is the primary contribution
of this research. The concept is proven that liter-
ate programming can remove a sometimes frustrating
level of obscurity that separates traditional architec-
ture manuals and software implementations.

References

[1] Gerry Kane and Joe Heinrich. MIPS RISC Ar-

chitecture. Prentice Hall, 1992.

[2] D. E. Knuth. The web system of structured doc-
umentation. Technical Report 980, Stanford Uni-
versity, 1983.

[3] D. E. Knuth. Literate programming. Technical
report, Stanford University, 1992.

[4] Donald E. Knuth. TEX and METAFONT: New

Directions in Typesetting. Digital Press, 1979.

[5] Donald E. Knuth. The TeXbook. Addison-Wesley,
1984.

[6] Donald E. Knuth. TEX: The Program. Addison-
Wesley, 1986.

[7] David Martin. Vector extensions to the MIPS-
IV instruction set architecture (the IRAM archi-
tecture manual). Technical report, UC Berkeley,
TBD.

[8] Norman Ramsey. Literate programming simpli-
�ed. IEEE Software, 1984.

16

