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Abstract

This thesis presents an exploratory framework for automatically generating hierarchical object

representations specialized for geometric tasks. The approach consists of two subprocesses: the

�rst extracts geometric information from the input object, and the second generates a specialized
representation based on this information.

The �rst subprocess produces a multi-resolution representation that encapsulates the salient geo-

metric features of an object, as well as its topological decomposition into parts. The representation

is generated in two steps. First, a multi-resolution Geometry Representation (G-Rep) is built. Its
main components are a Cell-Based Spatial Representation (CSR) that provides spatial �ltering at

the desired feature resolution, and an Axial Shape Graph (ASG) that captures local shape infor-

mation as well as global information about the overall geometric structure of the object. The CSR
and ASG components are calculated at multiple resolutions and linked together to form the G-Rep

hierarchy. In the second step, the Axial Shape Graph is decomposed into a tree representing the

overall shape structure of the object as a hierarchy of subcomponents. Using the Axial Shape Graph,
the task of shape decomposition is reduced to a graph partitioning problem whose solution results

in a well-balanced part hierarchy.

The second subprocess constructs a hierarchy of task-speci�c representations utilizing the geometric

information provided by the G-Rep. The entire representation generation framework is driven by

metrics that quantify the desirable characteristics of representations for the particular task. We show

that this structure can be utilized to generate representations specialized for the task of Collision

Detection in 2D environments.
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1 Introduction

1.1 Motivation

There are many ways to represent the objects comprising a two or three dimensional environment suitable
for visualization, simulation, and experimentation. Objects in the real world have descriptions of in�nite
complexity, but most applications need only a small amount of information to perform a task adequately.
The key to success in an interactive, complicated virtual environment is to choose models for each task
that best encapsulate the information necessary to perform the task in an e�cient manner.

As an example, consider a model of a cactus plant in a virtual environment for real-time visualization
and exploration. In this application, the goal is a realistic rendering of the cactus from any direction
and distance which can be chosen arbitrarily by the user. The model must contain reasonably accurate
geometric data, as well as surface reectance and texture information that de�ne its appearance in an
illuminated environment. If the same model is used in a mobile robot's world, solely as an obstacle to
be avoided, a much cruder geometric representation may su�ce, possibly as simple as a 2D area in the
ground plane into which the robot cannot pass.

The intelligent use of specialized representations has played an important role in the success of work
done to date in interactive visualization environments and will continue to make a key contribution as
the frontiers in this area are pushed even further. The Berkeley architectural WALKTHRU program
[17] is an illustrative example of a system that achieves signi�cant performance gains by specializing its
representations for di�erent tasks. Representations are also specialized within a task to optimize the
task when performed in di�erent contexts.

The WALKTHRU program makes it possible for a user to move through a complex model of a building
at interactive speeds. There are two major representations contributing to the ability of the system to
achieve interactive frame rates: visibility cells and level of detail (LOD) representations.

The WALKTHRU system performs visibility preprocessing [34, 35], a technique exploiting the fact
that in architectural environments only a small portion of the world is visible at any one time. The
representation used in this approach models the world as a collection of cells and portals, and computes
the cell-to-cell visibility in a preprocessing stage. This information is used at runtime to cull out large
portions of the model that are not visible, but that would still be rendered if only traditional view
frustum culling and z-bu�ering are used.
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Visual level of detail (LOD) representations are also utilized by the WALKTHRU system to optimize
the rendering phase [15, 16]. This technique exploits the fact that if an object contributes very little to
the �nal image, it does not need to be represented in full detail to achieve the same visual e�ect when
rendered to the display. Each object has several representations, at various levels of complexity. The
display manager chooses which representation to render in each frame based on its visual contribution
in the current context. In this method, multiple specialized representations are utilized within the same
task.

The WALKTHRU system illustrates the bene�ts of utilizing specialized representations. For the use of
these specialized representations to be practical in complex environments, however, it is essential to be
able to generate them automatically, or with only limited user intervention.

1.2 Problem Statement

Many of the tasks that are performed with objects in a virtual environment, such as collision detec-
tion, rendering, and visibility culling, are based on the geometric structure of the objects. E�cient
implementations of these tasks �rst remove objects from processing that are not relevant to the current
computation. This culling involves a test: Is the object visible? (visibility culling), Is the object in
contact with any other object? (collision detection), Is the object visually prominent enough in the
scene to be rendered at full detail? (LOD rendering). The test must be conservative, i.e. an object
may be included in the computation even if it is not relevant, but must not be excluded if it is. These
operations are most e�cient when the objects are represented with well-balanced trees of hierarchical
subcomponents that reect the geometric structure of the object at resolution levels appropriate for the
particular task. A hierarchical representation allows the elision of multiple objects with a single test,
and a balanced hierarchy provides optimal worst case performance behavior when processing represen-
tations at the leaf levels. While many systems utilize such specialized models, the process of generating
representations automatically for a wide range of objects and geometric tasks remains an open problem.

1.3 Overview of Approach

Process 1 :
 G−Rep Construction

Process 2 :
 Representation Generation Framework

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

    Original 
Representation CCCCC

CCCCC
CCCCC
CCCCC
  Relevant
Information
    (G−Rep)

!!!!!!
!!!!!!
!!!!!!
!!!!!! Extraction/

 Derivation
of Relevant
 Information

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

 Task Information
   Requirements

Generation of
Task−specific
Representation

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

 Task Representation
        Requirements

Object Abstraction CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

   Specialized
Representation

Figure 1: Two-stage process of Object Abstraction
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This thesis presents a framework for automated Object Abstraction and Decomposition. Object Ab-
straction is de�ned in the context of a particular task, and refers to the process of taking a complicated
object description and distilling out the information relevant to the task. Once the important infor-
mation is isolated, a representation is created that embodies this information in a simpli�ed form and
allows the task to be performed e�ciently. Object Decomposition is utilized as part of the Abstraction
process to produce a well-structured output representation. Our approach considers only geometric
tasks, i.e. those that are dependent solely on the geometric properties of an object such as shape, spa-
tial occupancy and area. We assume that the desired output representation is a well-balanced tree of
hierarchical, conservative representations that satisfy metrics de�ned by the particular task. We discuss
the general framework and the implementation of an application based on this framework that generates
representations specialized for the task of Collision Detection in two dimensional environments.

The problem of generating task-speci�c representations is broken down into two subprocesses: the �rst
extracts the information relevant to the task, and the second generates a specialized representation based
on this information. Figure 1 illustrates the general structure of the abstraction process.

The �rst subprocess produces a multi-resolution representation that encapsulates the salient geometric
features of an object, as well as its topological decomposition into parts. The representation is generated
in two steps. First, a multi-resolution Geometry Representation (G-Rep) is built. Its main components
are a Cell-Based Spatial Representation (CSR) that provides spatial �ltering at the desired feature
resolution, and an Axial Shape Graph (ASG) that captures local shape information as well as global
information about the overall geometric structure of the object. The CSR and ASG components are
calculated at multiple resolutions and linked together to form the G-Rep hierarchy. In the second step,
the Axial Shape Graph is decomposed into a tree representing the overall shape structure of the object
as a hierarchy of subcomponents. Using the Axial Shape Graph, the task of shape decomposition is
reduced to a graph partitioning problem whose solution results in a well-balanced part hierarchy.

The second subprocess constructs a hierarchy of task-speci�c representations utilizing the geometric
information provided by the G-Rep. The entire representation generation framework is driven by metrics
that quantify the desirable characteristics of representations for the particular task.

We have tested this framework with the implementation of an application that generates representations
specialized for the task of Collision Detection in 2D environments. For this task, the desired output
representation is a balanced hierarchy of convex approximations that conservatively yet e�ciently bound
the input object. In addition, the axis-aligned bounding boxes of the approximations should be nearly
invariant under object rotation. The metric used to guide the process is based on a quality/cost heuristic
that attempts to generate simpli�ed subcomponents that both minimize the area di�erence between the
object and its composite convex hulls and produce bounding boxes of unit aspect ratio.

The application is based on a general Representation Generation Framework structured as a feedback
loop that recursively generates potential representations for subcomponents of the object based upon its
geometric structure. The resulting representations are evaluated at each step, and this information is
used to guide the process. Figure 2 shows the basic steps of the Representation Generation Framework
schematically. The �rst step Decomposes the object into two subcomponents. The next step Generates
a representation for each subcomponent. These representations are then Evaluated in the next step
according to quality/cost metrics. The values of the new representations are Compared to the value of
the parent component, and if the improvement in value exceeds speci�ed Thresholds, the representation
is accepted. Finally, the subcomponent is removed from further processing if the representation meets
the overall task quality requirements. If the quality is still below threshold, the subcomponent is sent
back to the �rst step for further processing.

The remainder of this thesis is organized as follows. Section 2 presents the multi-resolution Geometry
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GENERATE
representations
for subcomponents

COMPARE
to task quality 
requirement

accept reject

DECOMPOSE
into subcomponents

accept

COMPARE
to quality
of  parent  
representation

EVALUATE
quality of  new
representations

           FINAL
REPRESENTATION

reject

1 2 3 4 5
GRep

Figure 2: Representation Generation Framework

Representation and the process of G-Rep decomposition based on the Axial Shape Graph. Section 3
describes the construction of the G-Rep Cell-Based Spatial Representation and Section 4 describes the
construction of the Axial Shape Graph. Section 5 describes an implementation of ASG-based G-Rep
decomposition. Section 6 discusses the use of this framework in the generation of representations for
Collision Detection. The �nal section presents conclusions and discusses future directions (Section 7) of
this work.
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2 Multi-Resolution Geometry Representation

The �rst process of Object Abstraction requires the extraction of relevant information from the input
model. For geometric tasks, the solid properties of an object are important: the space that the object
occupies, and its local and overall shape at resolution levels appropriate for the particular task . A
boundary representation only implicitly contains this information, and is therefore not suitable for our
purposes. Our approach constructs the multi-resolution Geometry Representation (G-Rep) hierarchy
from the input object, which is designed to represent geometric features of the object explicitly.

Original Representation Cell−Based Spatial Representation Axial Shape Graph

Figure 3: Components of the Geometry Representation (G-Rep)

The Geometry Representation utilizes a combination of simpli�cation and decomposition to characterize
the hierarchical geometric structure of an object. A G-Rep consists of the following structures:

1. Original Representation

2. Cell-Based Spatial Representation (CSR)

3. Axial Shape Graph (ASG)
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The �rst component of the representation is the input representation itself. This model is maintained as
a reference throughout the various processes. The second G-Rep component is the Cell-Based Spatial
Representation. This structure represents an object explicitly in terms of the cells that it intersects
in a uniform grid. The third component, the Axial Shape Graph, is designed to encode the geometric
structure of the object. It describes an object in terms of its fundamental geometric subcomponents and
their spatial relationships. Figure 3 illustrates the di�erent structures of the G-Rep for a simple input
object.

The CSR and ASG components are calculated at multiple grid resolutions and linked together to form
the G-Rep hierarchy. Figure 4 shows �ve levels selected from the hierarchy, with the CSR shown in the
top row and the ASG structure shown in the bottom row for each level. The following sections discuss
the CSR and ASG representations as well as related work in spatial and axial shape representations.
Sections 3 and 4 describe the algorithms for the construction of the G-Rep from an input object.

Figure 4: G-Rep structures in the hierarchy

The geometric structure of an object is best represented hierarchically. The Axial Shape Graph is
used to decompose the G-Rep into a well-balanced tree of subcomponents. Section 2.3 discusses the
decomposition process, and Section 5 describes implementation details.

2.1 Cell-Based Spatial Representation

The �rst derived component of the Geometry Representation is a Cell-Based Spatial Representation
(CSR). The original object description is inserted into a uniform grid at a speci�ed resolution. The
spatial �ltering inherent to the insertion process performs object simpli�cation; any details smaller than
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the grid cell resolution are �ltered out. If the cell size is chosen based on the resolution of the task, only
those features relevant to the current task are preserved.

Consider the problem of planning a path through a 2D environment for a robot represented as a disc of
radius r. In this application, the disc is tested against other objects in the environment to determine
collisions as it moves about. If an object has narrow concavities of initial width < 2r, it is not possible
for the disc to collide with any portion of the object along the interior of the cavity. All such features
can therefore be removed when creating the representation to be used for this task.

A similar approach based on a spatial representation is utilized by He et al [19, 20] as a �rst step in the
generation of simpli�ed representations of 3D objects for rendering. The original object representation
is sampled into a uniform 3D voxel grid and the result is low-pass �ltered. This provides two levels of
simpli�cation. The discrete sampling removes details smaller than the voxel size, and the �ltering process
removes high frequency features, �lling in cavities and holes and smoothing. Once the simpli�cation has
been performed, a boundary representation is constructed from the contents of the resulting bu�er.
This approach removes small features and may perform genus simpli�cation. However, while the overall
geometric structure is simpli�ed, the �nal boundary representation may be more complicated than the
original. Our Cell-Based Spatial Representation has one fundamental advantage over the voxel grid of
He et al: our grid insertion process is not sample-based. We can therefore guarantee that the resulting
representation is conservative, an essential property for the tasks that we are interested in.

There are additional advantages to performing this conversion process. The spatial representation models
objects as solids with area, not just empty hulls, making it a scheme well-suited for extracting geometric
information. Assuming the model has planar faces, the spatial representation is unique for a given
input model at a given orientation, regardless of the particular choice of polygonization of the original
boundary representation. In addition, many di�erent representation types can be accepted as input
(e.g. B-rep, mesh, pixel, CSG), if the proper insertion algorithm is provided. Groups of objects can be
handled in the same manner as single objects.

There are also potential disadvantages to working with the spatial representation instead of the original.
Any approach that discretizes the input is subject to certain artifacts: the same object at di�erent
orientations or locations may produce a di�erent representation. Because we choose the cell size to
be smaller than the error bound speci�ed by the task, and because our output representations are
conservative approximations, discretization artifacts do not cause problems in our approach.

In the G-Rep hierarchy, the cells of the grid are combined recursively to form the spatial representation
for the next level. For e�ciency, the grid is stored as an adaptive quadtree structure. During processing,
the cells corresponding to the object boundary or its interior are expanded to the �nest resolution leaf
level, but the cells exterior to the object are kept in quadtree form.

2.2 Axial Shape Graph

The spatial representation provides explicit information about what area an object occupies, but for
geometric tasks, we are also interested in the overall geometric structure of the object and in the re-
lationships between its substructures. The second derived component of the G-Rep, the Axial Shape
Graph, is designed to encapsulate this information in an easily accessible form. We want to expose the
intrinsic hierarchical, geometric structure so that we can decompose the object into a balanced tree of
subcomponents, where each subcomponent corresponds to a fundamental part of the object based on its
shape.
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For our purposes, a fundamental part is de�ned to be a spatially coherent area of the object whose
boundary at a speci�ed resolution contains no concavities. The parts are fundamental in the sense that
their union covers the object with minimal overlap between parts. Such subcomponents are convex, and
can be represented up to some resolution by a linear axis segment with an associated width de�ned at
each segment point (or a point and a radius in the limit). We call these parts generalized bars.

2.2.1 Review of Axial Representations

The Axial Shape Graph is based on an axial object description composed of linear axis segments that
correspond to the fundamental parts of the object. There is a vast amount of literature on axial repre-
sentations (often called skeletons) of 2D images, originating with the work of Blum [3]. In this section
we will therefore not attempt to give a complete review, but instead describe the work most relevant to
our approach.

Many of the skeleton construction methods are based on one of several general approaches: iterative or
parallel thinning [23], analytical calculation of the medial axis (Delaunay triangulation and calculation
of Voronoi regions [26, 21]), and calculation of a Distance Map and its Medial Axis Transform (MAT)
[3, 13, 1, 25, 36, 30, 22, 33, 12, 27]. Our implementation is of the last type, and thus this section focuses
on MAT-based methods.

MAT-based methods belong to a class of approaches that represent a shape by a spine and a geometric
primitive [31] that moves along the spine sweeping out the shape, possibly changing its size as it moves.
The methods di�er in the de�nition of spines and the generator primitive. In MAT-based methods, the
generator is a disc.

The MAT approach to skeletonization �rst calculates the Distance Map for the object; each pixel is
labeled with the closest distance to the exterior of the object. The set of local maxima in this Distance
Map is then identi�ed. The �nal skeleton consists of these pixels with the possible addition of the set of
pixels necessary to form a connected structure.

Niblack et al [25] present a method for generating skeletons for binary images based on a distance
transform. In this approach, skeletal points are de�ned to be the local maxima in the distance map,
where a local maximum is any pixel with distance value greater than or equal to the distance value of
any of its eight nearest neighbors. The skeleton is connected by climbing ridges. Each pixel is assigned a
climbing neighbor, which is the neighbor representing the next step along an ascending ridge. If a pixel
is a local maximum, there are no ascending neighbors. In this case, the climb starts by �rst taking a
step to any equal valued neighbors. The local maxima are connected by climbing paths between local
maxima and out of saddle points. (Section 4.2.1 discusses this process in more detail). The skeletons
generated have the following desirable properties: they are guaranteed to have the same connectivity as
the object, they allow reconstruction of the object, and they are minimal (under the constraint of the
previous property).

The skeletonization approaches of Dorst [13], di Baja and Thiel [12], and Shih and Pu [33], are all based
on the same basic algorithm, with slight variations in the following three aspects:

1. the choice of distance metric,

2. the de�nition of local maxima,

3. the method for assembling the points into a connected skeleton.
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a b

Figure 5: Maximal Discs: a) Object with local maxima highlighted b) Maximal Discs c) Discs of strong
local maxima d) Discs of weak local maxima

In the skeletonization method of di Baja and Thiel [11], and Arcelli and di Baja [1], the local maxima are
de�ned to be loci of the centers ofMaximal Discs of the object. Maximal Discs are de�ned relative to the
distance map. A disc can be associated with each pixel; the disc is centered on the pixel and has radius
equal to the distance value of the pixel. The shape of the disc is dependent on the distance metric used
(see Figure 13 for examples of the discs de�ned by di�erent metrics). A disc is maximal if no other disc
completely covers it. Arcelli and di Baja prove that the union of the set of Maximal Discs is equivalent
to the object. The set of local maxima , along with the corresponding distance values, therefore provides
su�cient information to exactly reconstruct the object. Figure 5a shows a simple object with the local
maxima pixels highlighted. Figure 5b shows a representation of the Maximal Discs superimposed on
the object. Figures 5c,d show the discs associated with subsets of the maxima. The skeleton is treated
as a curve in 3D (x,y, and width are the three components for each pixel) which is divided into linear
segments. Each linear segment represents an elementary region which is a component of the object with
constant orientation of the skeletal spine, and monotonically changing width values. An approximate
representation of each elementary region can be generated by taking the convex hull around the two
discs associated with the segment endpoints. Merging and deletion operations are performed on the set
of segments to simplify and remove redundancy in the resulting region representation. Deletion occurs
in two forms: branch segments that correspond to non-signi�cant protrusions are pruned and internal
segments that correspond to regions that are mostly overlapped by other regions are marked as linking
segments. Linking segments are not used to represent regions, only to represent spatial relationships
between regions.

Other axis-based schemes are the Smoothed Local Symmetries (SLS) of Brady and Asada [5], and
Brooks' generalized ribbons [31]. The generator for Brooks' ribbons is a line segment constrained to
stay at a �xed angle to the spine. The generator for SLS is a line segment that makes equal angles
with the surface normals at the two points where it intersects the shape boundary. In this case, the
spine/generator characterization is a useful way of describing the shape, and not a means of generating
it.

Kimmel et al [22] present an alternate skeletonization method based on the MAT. The object boundary
is �rst segmented at points of maximal positive curvature. A distance map is calculated for each of the
resulting boundary segments. The skeleton is calculated by taking distance map di�erences of maps
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generated by di�erent boundary segments and marking the zero values as skeletal points (i.e. the zero
values correspond to points that are equidistant from two or more boundary points).

Pizer et al [6] present a related method of representing an object by axes with associated widths called
cores. Cores are computed by assigning pixels medialness values at multiple scales, and then locating
ridges in the medialness function. The medialness function is invariant to translation, rotation and zoom,
and therefore the resulting cores do not have the sensitivity to object and noise perturbations that is
present in many other axial representations.

2.2.2 Axial Shape Graph Structure

The Axial Shape Graph is derived from the spatial representation and is designed to model the object
as a connected set of bar subcomponents. Each bar is represented by a linear axis segment with the
associated object width stored at each point along the segment.

We follow the work of Arcelli and di Baja [1] and de�ne an Axis Segment to be the loci of the centers
of Maximal Discs. A Maximal Disc is an inscribed disc that touches the boundary of the object in at
least two places. Each axial point making up an Axis Segment is the center of a disc whose radius is
the distance to the closest boundary points. Each axial point is therefore associated with two or more
boundary points. Bars and their associated axes are similar to the elementary regions and corresponding
segments of di Baja and Thiel [11].

The graph structure is composed of the following components:

� Nodes: represent Axis Segments and the associated bar components. When referring to the ASG,
the terms node and axis are used interchangeably.

� Edges: connect each pair of nodes that represent the Axis Segments of adjacent object features,
or bars that meet at a concave boundary region. With respect to a particular Axis Segment, there
are three types of edges:

{ Left Edges: The corresponding adjacent object component is linked to the left/bottom end
of the axis.

{ Right Edges: The adjacent component is linked to the right/top end of the axis.

{ T Edges: If two bar components meet at two concave regions ( e.g. a \T" junction), one
end of the edge is linked to a point interior to one of the two Axis Segments. These edges are
labeled as a T edges. T edges are stored with the axial point that they are linked to. A node
may therefore have several groups of T edges, where each group corresponds to a single axial
point.

Figure 6a shows an example object with three Axis Segments. Dotted lines connect axes that represent
adjacent object components. Figure 6b is a representation of the object components associated with
each axis. The apex points of the major concavities are indicated on the �gure. Figure 6c shows a
representation of the graph structure. There are three nodes corresponding to the three axes. There
are two major concave points between component 1 and component 2, and the connecting edge is of
type T where it joins node 1 and type Right relative to node 2. There is a single concave point between
component 2 and component 3. The edge connecting the two nodes is of type Left where it joins node
2 and type Right relative to node 3.

10



1

2

3

Major Concavities

1

2

3

1
T

R

L

R

2

3
a                                                 b                             c

Figure 6: Axial Shape Graph: a) Axis Segments and connections b) Associated Components c) Graph
Representation with Edge Labels

For each node n we de�ne the Left Graph of n to be the set of all nodes reachable from the Left edges
of the node. The Right Graph contains all nodes reachable from the Right edges. The Left, and Right
Graphs may consist of a set of disjoint graphs if there are multiple edges adjacent to the node of type
Left, or Right respectively. A T Graph is de�ned for each group of T edges associated with a particular
axial point. Each T Graph contains the set of nodes reachable from that set of T edges.

The Axial Shape Graph has the following properties:

1. It has the same connectivity as the object at the speci�ed level of simpli�cation.

2. Nodes correspond to fundamental parts of the object.

3. Edges capture the spatial relationships between fundamental parts.

Many of the previous approaches we have discussed [25, 13, 12, 33] generate connected skeletal structures.
The skeletons produced consist of a collection of branches. Skeletal points are categorized according to
their connectivity to other skeletal points: end points have a single skeletal neighbor, normal points are
interior to a skeletal branch and thus have exactly two skeletal neighbors, and branch points have three
or more skeletal neighbors.

In these approaches, the points are not further organized into higher level components. The work of di
Baja and Thiel [11] most closely resembles our axial structure. Once the skeletal points are identi�ed,
they are collected into linear segments. The resulting segments are divided into two classes: those
that have \representational power" (i.e. correspond to an elementary region) and those that are linking
segments only used for showing spatial relationships. A segment is classi�ed as linking if the region it
represents is largely covered by other regions (i.e. it is not elementary). The region associated with a
segment is the union of the Maximal Discs of the segment skeletal points. The regions have signi�cant
overlap and are thus not fundamental according to our de�nition.

2.2.3 Axial Shape Graph Weighting

The Axial Shape Graph is a weighted graph. Each node stores four types of weights: an Axis Complexity
Weight, a Left Complexity Weight associated with the left end of the Axis Segment, a Right Complexity
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Weight associated with the right end of the segment, and a T Complexity Weight for each axial point
that has one or more T edges connected to it .

The complexity of an axis is measured in three di�erent ways: Size Complexity (Cs), Count Complexity
(Cc), and Spatial Complexity (Cbb).

1. Size Complexity: The estimated size of the subcomponent bar corresponding to the Axis Seg-
ment. This value is directly proportional to the axis length and distance to the closest boundary
points.

2. Count Complexity: The number of axes (this is trivially 1 for a single axis).

3. Spatial Complexity: The area of the axis-aligned bounding box around the associated subcom-
ponent.
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Figure 7: Axial Shape Graph: a) Axis Size Complexity Weights b) Axis, Left and Right Complexity
Weights

The Axis Complexity Weights are calculated for each axis using one of the above measures. The Com-
plexity Weight of an ASG subgraph is the sum of complexities of all axes that are part of the subgraph.
Any reference to ASG complexity in general is assumed to refer to Size Complexity.

Three additional types of complexity are calculated for each node, corresponding to the three edge types.

� Left Complexity Weight: The sum of the complexity weights of all nodes in the Left Graph.

� Right Complexity Weight: The sum of complexity weights of all nodes in the Right Graph.

� T Complexity Weight: The sum of complexity weights of all nodes in the T Graph.

These values are utilized by the graph decomposition process.

Figure 7a illustrates the Axial Shape Graph for the cactus. The axes are numbered for reference (in
the circles). The number below the reference number is the Axis Complexity, measured according to
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Size Complexity. Figure 7b shows the graph representation for the same example. Three values are
shown with each node, corresponding to the Left Complexity, Axis Complexity, and Right Complexity,
respectively. The Axial Shape Graph contains no T edges in this example.

At each node, the Axis Complexity Weight is a measure of the shape of the object in its neighbor-
hood, providing local geometric information. The Left,Right and T Complexity Weights provide global
information about the geometric structure of the object as a whole.

2.2.4 Axial Shape Graph Multi-Resolution Information

An Axial Shape Graph is constructed for each resolution of the spatial hierarchy. These structures are
linked across resolutions in two ways. First, nodes at one level in the hierarchy are linked to nodes of the
ASG one level up in the hierarchy if the corresponding axes represent the same bar component. Second,
multi-resolution information is captured locally at each level by assigning each Axis Segment a Feature
Weight corresponding to the number of levels in the hierarchy that it appears in. Figure 8 shows the
cactus with the Feature Weights indicated next to each axis. The axis corresponding to the base of the
cactus is shown linked across four hierarchy levels.
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22
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Figure 8: Axial Feature Weights: Axes for four levels of the hierarchy are shown. The axes of the �rst
level are labeled with their Feature Weights. The axis corresponding to the base is linked across all four
levels.

2.3 Hierarchical Decomposition of the Geometry Representation

Most objects can naturally be represented as a hierarchy of subcomponents. The ideal decomposition
will depend on the particular task that we are interested in. There are two main qualities that seem
intuitively desirable: Shape and Balance. The relative importance of each will be weighted according to
the needs of the task.

1. Shape: The subcomponents should correspond to fundamental parts of the object.

2. Balance: The hierarchy should be balanced relative to the following measures

(a) Size: total size of the subcomponents

(b) Count: number of subcomponents
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(c) Spatial : total area of axis-aligned bounding boxes of the subcomponents

A partitioning based on the �rst property corresponds to the process of shape decomposition. In our
environment, this is equivalent to partitioning an object into its component bars. This is the most
important property. The second property favors balanced trees. Property 2a requires that the sum of
the areas of the subcomponents of each branch be roughly equal. Property 2b refers to the number
of subcomponents in the tree, and implies that, on average, the same number of levels will need to be
traversed to reach any leaf component. This is a desirable property for many applications, but often will
not lead to the most natural decomposition relative to the connectivity of object components. Property
2c refers to the spatial characteristics of the partitioning and favors decompositions where the children
of each subbranch are spatially clustered. It is clear that it is not necessarily possible to meet all of the
above properties, and the decomposition process will need to make tradeo�s according to the relative
importance of each to the task.

The G-Rep is well suited for decomposition based on the stated properties. The information contained
in the G-Rep structure is approximate, but provides very strong hints to the local and global geometric
structure of the object. The decomposition process utilizes both local and global geometric characteristics
and connectivity information to determine how to make the partitions to produce a well-balanced part
hierarchy. The global information provided by the G-Rep structure can be used to infer in general where
partitioning should occur. The local information is used to decide how to make the actual partitioning
cut.

The information contained in the G-Rep can be utilized to meet the requirements speci�ed by the above
properties. The axes of the Axial Shape Graph approximately identify the fundamental parts of the
object. Property 1 can therefore be satis�ed by partitioning the graph at axis endpoints. The weighting
of the ASG provides information that can be used to achieve Property 2. Each type of balance measure
(i.e. Size, Count, and Spatial) corresponds to one of the three Complexity Weights: Size Complexity,
Count Complexity and Spatial Complexity, respectively. We utilize the information suggested by the
Complexity Weights to achieve a balanced hierarchy by casting the decomposition process into a graph
partitioning problem based on these weights. At each step in the decomposition, a partitioning point is
chosen in the graph such that the resulting two sets of subgraphs have roughly equal weight.

We are not guaranteed to �nd an optimal decomposition, both because the weights themselves are
approximations, and because the best partition may not even belong to the set presented by the graph.
In practice, however, this information provides valuable hints, which when used in conjunction with
evaluation metrics, produce well-balanced hierarchies. Section 6 discusses the decomposition process in
more detail, as it is applied to a speci�c task and shows examples of representation hierarchies generated
by an application based on the G-Rep and the general decomposition process we have described here.

Figure 9: Two possible object decompositions based on shape and Complexity Weights
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Figure 9 illustrates two possible decompositions of an object. It is assumed that the desired result is
a balanced binary tree, and that partitions are made only on shape boundaries. The original object
is shown at the left. The decomposition cut is indicated in the middle and right �gures as a dotted
line, and the resulting axis-aligned bounding boxes are shown to the right of each decomposed �gure.
In both cases, the cut produces subcomponents of equal size. The cut on the right, however, produces
subcomponents with relatively poor spatial locality, as evidenced by the overlapping bounding boxes.
The middle �gure meets all of the balance criteria. In practice, it will not always be possible to produce
a decomposition tree whose subcomponents respect the shape structure of the object and are balanced
by Size, Count, and Spatial Complexity,

The G-Rep is also used to determine where to make the actual partitioning cut. It is generally accepted
that the partitioning of an object into subcomponents based on shape should occur at concave points.
It is not su�cient, however to simply connect such points. In the ASG structure, the axis endpoints,
and points with local width minima along the axes, imply the presence of concave points. The concave
points correspond to the closest boundary points that were used to de�ne the axis points. Pairs of such
boundary points are chosen as candidates for partitioning.

The decomposition process is recursive; at each iteration, the global graph structure is utilized to de-
termine the general location of a partition, and then the local axial information is utilized to make
the actual cut. Once the partition is made, the ASG is regenerated for each subcomponent, and the
process continues on the subcomponents. In this section, we have outlined the general process of G-Rep
decomposition. In practice, each phase of the decomposition is guided by task-speci�c metrics. Section
5 discusses the implementation of general G-Rep decomposition and Section 6 discusses the details of
the process when utilized for the task of Collision Detection.
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3 Construction of the Cell-Based Spatial Representation

This section discusses the construction of the G-Rep Cell-Based Spatial Representation from a two-
dimensional input representation. The work for this thesis was primarily based on input �les in the
UniGra�x (UG3) [9] format, and on images in the Silicon Graphics RGB image format. We discuss the
construction of the spatial representation from these two types of input.

3.1 Polygon Insertion

In the case of polygonal input, the B-Rep based object description is inserted into a grid at a speci�ed
resolution. The insertion process we have implemented is a scan-line approach designed to be conserva-
tive: a grid cell is considered part of the representation if and only if it is touched by some part of the
object. This di�ers from traditional conversion algorithms, which are based upon discrete sample points
[14].
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Figure 10: Cell terminology: a) cell (x,y) and its 8 nearest neighbors b) Neighbor labeling: Direct
Neighbors ND = f0; 2; 4; 6g, Indirect Neighbors NI = f1; 3; 5; 7g

We �rst de�ne some relevant terminology as it is used in the remainder of this thesis. The neighbors
directly adjacent to a cell (in the South, West, North and East directions) are referred to as direct
neighbors, ND. The diagonally adjacent neighbors (in the South West, North West, North East, and
South East directions) are indirect neighbors, NI . The neighbors are labeled 0-7, corresponding to a
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clockwise order from S-SE, for reference. With this numbering, the direct neighbors are ND = f0; 2; 4; 6g,
and the indirect neighbors are NI = f1; 3; 5; 7g. The term neighbors is always meant to refer to the eight
closest neighbors as de�ned above. For neighbor direction i, the direction opposite to i is denoted i and
is calculated as ((i + 4) mod 8). Figure 10a illustrates the spatial relationships between a cell and its
nearest neighbors. Figure 10b shows the numerical labeling of the neighbors, with the direct neighbors
indicated by the shaded cell regions.

A cell that is not part of the object of interest is an exterior cell. Cells that are part of the object, and
totally contained within the object are called interior cells. Object cells with one or more neighbors that
are exterior are boundary cells. Grid cells are addressed by the (x; y) value of the lower left-hand corner.

The insertion process accepts a list of polygon vertices, assumed to be in counter clockwise order. The
basic algorithm follows the standard polygon rasterization approach exploiting edge coherence: the outer
loop processes one scanline at a time in the y direction, while the inner loop �lls in spans between edges
in the x direction. The algorithm is outlined below.

1. Sort edges on minimum y coordinate into cell-sized buckets, with each bucket Edge List (EL)
sorted on minimum x coordinate

2. Initialize Active Edge List (AEL) to NULL, and set y = ymin

3. While there are edges in AEL and unprocessed buckets:

(a) Perform incremental x coordinate update for each edge in AEL for new y value

(b) Add all edges starting at y into AEL sorted on x coordinate

(c) For x = minimum to x = maximum:

i. If x in polygon, mark cell (x,y) as IN

(d) Remove edges ending at y

(e) Increment y

The only portion of the algorithm that di�ers from a traditional approach is the in polygon test in the
innermost loop. Filling is done with the odd-even rule (i.e. subsequent pairs of edges are assumed to
border an IN region). Slight modi�cations are necessary to ensure that the �ll is conservative. The
traditional algorithm computes the x value of the edge where it crosses the current grid line. The oor
of this oating point value is taken as the current x value, and thus the test for inclusion is based on
a single sample point at the lower left corner of the 1x1 grid cell. To ensure a conservative answer, we
take the x value at both the current y value and at y + 1. This gives the range of grid cell(s) that the
edge passes through between the two scanlines. An x grid cell is considered IN if

� An edge E passes through the grid cell addressed by (x; y), This is true if

b(Ex(y))c <= x < Ex(y + 1) or Ex(y) = Ex(y + 1)

where Ex(y); Ex(y + 1) are the calculated x intersection of the edge E with the grid lines y and
y + 1, respectively. All oating point comparison operations are performed within an � value to
combat round-o� error.

� The x value lies interior to a �ll region. FILL is turned on between subsequent pairs of edges on
the scanline according to the following paradigm:
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{ Each edge passing through a single cell, as they are processed in left-right order, causes a
toggle of the FILL value.

{ Horizontal edges are not used to determine FILL.

{ If the initial edge or edge point on a FILL coincides with a grid line, the cell will be marked
IN. If the �nal edge or edge point falls on a gridline, the �nal cell will not be included.

{ For the initial scanline, the FILL value is calculated at y + 1, for all subsequent scans it is
calculated at y.

The �nal output of the insertion process is an adaptive quadtree structure. When the insertion process
begins, the initial representation is the root of a quadtree with dimensions su�cient to enclose the
bounding box of the input polygon. Each time the insertion routine makes a call to mark (x,y), the
quadtree is traversed to �nd the 1x1 grid cell addressed by (x; y). As the traversal proceeds down the
quadtree levels, the quadrants are expanded if necessary until the desired leaf cell is reached. In this
way, the quadtree is expanded on demand, only creating a cell at the �nest resolution if it, or one of its
three neighbors in the same parent, is touched.

   a                                           b                                      c                                       d 

Figure 11: a) Original object b) Grid Cell Representation c) Adaptive Background d) Fully compressed
quadtree representation

Once the object is inserted into the grid, a �ll process is run to remove any holes interior to the object.
For the task that we are considering (collision detection), we assume such areas are unreachable, and
therefore need not be represented.

In the G-Rep hierarchy, the cells of the grid are combined recursively to form the spatial representation
for the next highest level.

The grid cells belonging to the object are left in expanded, non-adaptive form while being used for
processing. To make input and output operations and storage more e�cient, the grid cells are compressed
adaptively and the object quadtree structure is stored in linear form in an ASCII �le format. Figure
11a shows an input polygon, Figure 11b is an image of the resulting IN grid cells. Figure 11c shows
the background in adaptive form, and Figure 11d shows a representation of the fully adaptive quadtree
form used for I/O and storage purposes.

Each cell stores pointers to its eight nearest spatial neighbors to facilitate traversals. Due to the adaptive
grouping of cells, a cell's neighbor may be at a di�erent resolution. Neighbor pointers always point to a
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cell of the same size or larger. If pointers were allowed to point down to higher resolution cells, a cell
would have multiple neighbors in a particular direction. If a cell's neighbors are smaller, the pointer
is set to the �rst parent cell encountered in an upward traversal of the hierarchy that is of the same
resolution.

3.2 Image Insertion

In addition to the polygonal boundary representation insertion approach described above, we have also
implemented an insertion routine that accepts images of objects in the Silicon Graphics RGB format. In
the images used for this work, the objects of interest could be trivially separated from the background
(e.g. colored objects on a white background), so image segmentation is not an issue.

The initial image is used as the occupied grid cells corresponding to the most detailed level of the
quadtree. The cell resolution is assumed to be the original input resolution of the image. A �ll process
is run on the grid; this not only �lls in internal holes, but also correctly relabels as interior any cells
internal to the object that happened to have the background color and therefore were labeled as exterior
initially. Background cells are combined adaptively to compress the representation. Finally, the cell
blocks are combined recursively to form the G-Rep hierarchy. Figure 12a shows an example input image
�le of a dinosaur. Figure 12b is the resulting spatial representation. Figure 12c shows the cells added in
the �ll operation.

a

b c

Figure 12: a) Original object b) Grid Cell Representation c) Fill cells
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4 Construction of the Axial Shape Graph

The Axial Shape Graph is the second derived component of the G-Rep and is constructed from the
Cell-Based Spatial Representation in two stages: Axis Segment Creation and Graph Construction.

In the �rst stage, Axial Points are identi�ed in the spatial representation using a method based on the
Medial Axis Transform (MAT) [32], and connected to form Axis Segments. The identi�cation of Axial
Points proceeds by �rst calculating the Distance Map (DM) of the spatial representation. Local Maxima
are identi�ed in the DM by applying the Medial Axis Transform. Axial Points are derived from the
resulting local maxima and then collected into Axis Segments.

In the second stage, the Axial Shape Graph is constructed by mapping the Axis Segments to graph
nodes, and connecting with edges those nodes that correspond to adjacent geometric subcomponents by
following ridges in the Distance Map. Once the graph is formed, the graph is weighted by assigning
Axis Complexity Weights representing the size of the geometric subcomponents and Left, Right and T
Complexity Weights based on graph connectivity.

The algorithm can be broken down into the following steps:

1. Axis Segment Creation

� Identify Axial Points

{ Calculate Distance Map DM

{ Find Local MaximaM in DM

� Connect Axial Points into Segments

2. Graph Construction

� Form Connected Graph

� Assign Weights to Graph Nodes

� Link Graph Across Resolutions

The following sections discuss each of these steps in detail.
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4.1 Axis Segment Creation

4.1.1 Calculating the Distance Map

The Distance Map (DM) is calculated for the object from the spatial representation. The DM labels
each cell with the distance to the closest boundary cell on the object. An integer distance value is used
as an approximation to the true Euclidean distance for e�ciency. The DM calculation utilizes a weighted
distance metric: a cell's direct neighbors are a distance dD away, and its indirect neighbors a distance
dI away, where dD < dI. It has been shown [4] that if dD = 1, setting dI = 1:351 will produce the best
approximation to the Euclidean distance. The closer the pseudo-Euclidean metric is to the true distance,
the more robust the measure will be under object rotation. We have used both the 2-3 (dD = 2; dI = 3),
and 3-4 (dD = 3; dI = 4) metrics for our study. Other integer distance metrics more closely approximate
the Euclidean measure but include a larger neighborhood (e.g. 5x5 if the cell's knight neighbors (one
move horizontal(vertical), followed by two vertical(horizontal) moves) are included). The 2-3 and 3-4
metrics are su�ciently accurate for our purposes and easier to calculate.

Figure 13 illustrates the di�erent metrics by marking the set of cells that would approximate a circle
around the center cell (i.e. the set of cells such that the distance from the center cell under the speci�ed
metric is less than or equal to the circle radius).
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Figure 13: Distance Metrics: a)1-1 unweighted (r=3) b) 1-2 (r=3) c) 2-3 (r=6) d) 3-4 (r=12)

All processing occurs on object cells that are at the �nest resolution grid level in the quadtree. If the
input is not coming directly from the insertion process (which leaves the marked object cells at the �nest
level), the branches of the quadtree containing portions of the object are expanded down to the �nest
level in an initial pass. The external areas are left in adaptive form for e�ciency.

We have implemented a two-pass algorithm to calculate the DM [10]. The distance value of each cell in
the object is initialized to some large integer value, and exterior cells are initialized to zero. For each cell
c, the distance value d(c) is calculated by taking the distance value of each of the cell's eight neighbors
and adding dD if the neighbor is directly adjacent (N,S,E, or W) or dI if it is a diagonal neighbor
(SW,NW,NE, or SE). The cell's new distance is set to the minimum of these calculated distances. This
operation is e�cient because each cell stores pointers to its eight nearest neighbors. Two passes are
made over the cells within the bounding box of the object: the �rst processes cells from top to bottom
and left to right, the second processes cells from bottom to top and right to left. In each pass, the
minimum distance to the boundary is updated for each cell.

1. Pass 1:

d(c) = min(d(N2) + dD; d(N3) + dI ; d(N4) + dD; d(N5) + dI):
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2. Pass 2:
d(c) = min(d(c); d(N6) + dD; d(N7) + dI ; d(N0) + dD; d(N1) + dI):

The quadtree structuring of the cells exterior to the object makes the sequential scanning process more
e�cient. When processing areas of the bounding box not covered by the object, the scan is able to
quickly step over the larger scale exterior cells to reach the fully expanded cells of the object.
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Figure 14: Setting Direction Vectors a) Distance values after �rst pass b) Highlighted cell is missing NE
direction vector

Each cell is annotated with the direction(s) from which it received its lowest distance value (N, NE,
E, SE, S, SW, W, or NW). Following a path along the vectors representing these directions produces
a shortest path to the object's boundary. The directions are stored with the cell in an 8-bit direction
bit-vector and are referred to as the cell's DM Direction(s) (DMD). An additional pass is performed
to set the Distance Map Directions for each cell. It is not possible to overlap the two-pass setting of
the distance values with setting the DMD values, because not all of the �nal neighbor information is
available until the completion of the second pass. Figure 14a shows an example object with the distance
values after the �rst pass. Figure 14b shows the DMD vectors if they are set during the two passes. The
highlighted cell is missing the NE direction vector because when the cell received its distance value, the
neighbor cell in the NE direction had not yet achieved its minimum value.

Figure 15a shows the Distance Map for the cell representation of the cactus example with the increasing
height values shown in greyscale. A close up of a portion of the �gure is shown on the right with the
DMD vectors to the closest boundary point indicated as arrows. Figure 15b shows the Distance Map
represented as a 3D surface with the cell heights corresponding to distance values.

4.1.2 Identifying Local Maxima in the Distance Map

The set ofAxial Points is derived from the Distance Map by applying the Medial Axis Transform (MAT).
If the Distance Map is represented as a 3D surface, with the height corresponding to the distance values,
the MAT is the set of local maxima M . Many skeletonization approaches [12, 1, 25], originating with
the work of Blum on the SAT [3], utilize a distance map/MAT approach, but with varying de�nitions
of the local maxima set M . We follow the de�nition of Arcelli and di Baja [1] where M is de�ned to be
the centers of the set of Maximal Discs of the object. Any subsequent mention of a \maximum" in this
report will be assumed to refer to such a local maximum.

Arcelli and di Baja show that the centers of the MaximalDiscs are those pixels through which information
does not \ow" during the computation of the distance function. In our environment, this corresponds
to cells with no DMD vectors pointing into the cell. This is expressed computationally as follows: for
each neighbor Ni of the cell, the ith bit in the DMD vector of Ni is not set:
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a b

Figure 15: Distance Map: a) greyscale by distance with direction vectors. b) 3D representation of DM

8i 2 [0; 7] B(DMD(Ni); i) = 0

where DMD(n) is the Distance Map Direction bit vector of cell n and B(b; i) is the value of the ith bit
of bit vector b.

This de�nition is also utilized by Niblack [25]. Niblack de�nes a witness to a cell c (their work is in terms
of pixels, but the de�nition is equivalent in our cell-based environment) as any direct neighbor ND with
distance value d(c)� dD or any indirect neighbor NI with distance value d(c)� dI , i.e. those cells that
de�ned c's distance value. Under this de�nition, the set of local maxima as de�ned above is composed
of all non-witness cells.

We de�ne three types of local maxima: strong, weak, and strict. A strong local maximum has one or
more pairs of DMD vectors that are at 180�. Each pair of directions present is referred to as an Axial
Normal Direction (AND) of the cell. The remaining set of maxima are referred to as weak local maxima.
A strict local maximum has distance value d greater than the distance value of any of its eight closest
neighbors. Strict maxima may be weak or strong.

The set of Axial Points is de�ned to be all cells that are strict or strong local maxima (they may be
both). Our approach does not consider the non-strict, weak local maximawhen forming Axial Segments.
The strong maxima and strict maxima are indicative of the bar-like components of the object that we
wish to represent. The weak local maxima do not necessarily correspond to geometric regions of interest
and increase the complexity of the axial structure. We �lter these cells out, resulting in a cleaner, more
e�cient axial representation that is su�cient to represent the geometric structure that we are interested
in.

Figures 16a,c and e show both the weak and strong maxima cells for three example objects. Figures
16b,d, and f show only the strong maxima cells from the same examples. For the rectangle object, it is
clear that the weak maxima cells do not correspond to any geometric subcomponents as we have de�ned
them. In the case of the cactus and the dinosaur, the strong maxima capture the geometric structure
well. The removal of the weak maxima cells in these two cases simpli�es the representation.

Due to the discrete nature of the cell environment, a pair of DMD vectors de�ning a strong local
maximummay meet at a single cell or at a pair of adjacent cells. In the latter case, the pair of adjacent
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Figure 16: Axial Points: a) Rectangle Local Maxima cells b) Rectangle Strong Local Maxima cells c)
Cactus Local Maxima cells d) Cactus Strong Local Maxima cells e) Dino Local Maxima cells f) Dino
Strong Local Maxima cells

cells is treated as a single composite cell. Each cell is linked to its 180� partner. Figure 17a-d illustrates
the possible DMD pairs that produce a strong local maximum. For each case, the upper �gure shows the
Distance Map Directions for a single-cell strong local maximum, and the lower �gure shows the DMD
when they meet at a pair of cells.

An axial cell may have any combination of 180� DMD pairs set. In this case, the composite cell may
be formed from several adjacent cells, and the Axial Normal Direction will consist of multiple direction
pairs. Figure 17e shows a composite cell with the SW-NE and N-S direction pairs leading to the closest
boundary points. If all direction pairs are set, the object is \circular" within the resolution of the discrete
approximation. In this labeling scheme, a cell that is a strong local maximum belongs to exactly one
composite cell, and thus has a unique Axial Normal Direction that is the combination of the Axial
Normal Directions of all the component cells. This property is used to collect the Axial Points into
Axial Segments ( see Section 4.1.3).

Axial Points are identi�ed utilizing the Distance Map distance values and direction vectors. Each cell is
�rst tested to see if it is a strong local maximum. The Distance Map Directions are stored as a bit vector,
with the directions numbered in counter-clockwise order, starting with South (i.e. South is represented
by bit 0, South-West by bit 1, etc.). A cell is a single-cell strong local maximum if it has one or more
pairs of Distance Map Direction pairs (E-W, N-S, SW-NE, or NW-SE) set in the DMD bit vector. The
test for a single-cell strong maximum is very e�cient in our implementation and can be performed with
a single bitwise SHIFT and AND operation. If any bit is set in the result, the cell is marked as an Axial
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      a                              b                            c                             d                         e 

Figure 17: Axial Normal Direction Pairs a) E-W b) N-S c) NW-SE d) SW-NE e) N-S/SW-NE

Point and the DMD pairs are recorded.

In the case when DMD vectors meet at a pair of cells, the test requires two comparisons. If a cell has
bit i set, and its neighbor N

i
has DMD bit i set and does not have DMD bit i set, then the two cells

form a composite pair with Axial Normal Direction (i � i).

The identi�cation of composite cells with multiple Axial Normal Directions is done by following transitive
relationships after all single and pair composite cells are formed. We will use Figure 17e as an example.
The lower left cell has DMD SW set, and it will be labeled in the �rst pass along with its neighbor in the
NE direction as part of a composite pair of strong maxima cells with Axial Normal Direction SW-NE.
Similarly, the top and bottom cells on the right will be labeled as a N-S composite pair. In a second
pass, each strong maximal cell is examined to determine if any of its Axial Normal Direction partners
have other Axial Normal Directions set. If so, the two sets are merged into a composite cell and the
Axial Normal Direction vectors are updated accordingly. In this example, it would be discovered when
processing the lower left hand cell that its partner, the neighbor in the NE direction, had Axial Normal
Direction N-S set. The two pairs are therefore merged into a single composite voxel with Axial Normal
Directions N-S/SW-NE.

If the cell is not a strong local maximum, it may still be an Axial Point if it is a strict local maximum.
The test for a strict local maximum is also a local operation. A cell's distance value d is compared to
the distance value of each of its eight closest neighbors. Strict local maximum are always composed of
a single cell.

4.1.3 Creating the Axis Segments from Axial Points

Once the set of Axial Points has been identi�ed, the corresponding cells are organized into linear Axis
Segments. Axis Segments correspond to connected ridges in the 3D distance map and are composed of
connected axial cells with the same set of Axial Normal Directions.

If a cell has Axial Normal Direction d, any neighbors it has in the direction approximately perpendicular
to d, called the Axial Direction, that are also axial with Axial Normal Direction d, are potential nodes
on the same axis. If an axial cell has a E-W DM direction pair, for example, we would look to neighbors
on the North and South as potential axial neighbors. Figure 18a shows a set of axial cells (shaded grey)
with E-W Axial Normal Direction. The Axial Direction is N-S in this case. In Figure 18b, the Axial
Normal Direction is N-S and the Axial Direction is E-W. In Figure 18c, there are two Axial Normal
Directions (N-S/SW-NE), and two corresponding Axial Direction pairs (E-W/NW-SE).
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Figure 18: Axial Normal Directions (AND) and Axial Directions: a) N-S Axial Direction b) E-W Axial
Direction b) E-W/NW-SE Axial Direction

We will now describe our implementation of Axis Segment Creation. In the following discussion, any
reference to an axial cell is meant to refer to the entire composite cell where applicable. The axial cells
are put in a list when they are identi�ed in the previous step that performs the Medial Axis Transform.
Axial cells are processed one at a time from the list. A new axis is formed with Axial Normal Direction
equal to the Axial Normal Direction of the axial cell. Axes are built up and stored in left-right (bottom-
top) order. The initial end cell for an axis is the cell that de�nes the left/bottom end of the axis. An
initial axis end cell for a particular AND is an axial cell that does not have any adjacent neighbors to
the left/bottom with the same set of Axial Normal Directions.

If the current cell is an initial axis end cell, a new axis is started from that cell. Cells are visited in the
right/top Axial Direction to grow the axis (i.e. perpendicular to the AND). If these neighbors are axial
cells with the same AND set, they are added to the axis.

If the current cell is not an initial axis end cell, cells are visited to the left/bottom Axial Direction until
an initial axis end cell is found.

There is one additional caveat to growing the axis: it must remain linear. The axis is tested for linearity
after the addition of each new cell. If the test fails, the new cell is not added to the axis, but instead
the current axis is ended, and a new one started with the last cell as the initial axis end cell.

To test whether an axis is linear, we run a procedure to determine if a line segment exists that stays
within the bounds of all of the cells on the axis. This test is implemented by casting the problem as a
test for linear separability. For each cell that is added to the axis, we add a set of intervals to a list. The
intervals correspond to the bounds of the cell along each of the Axial Normal Directions. For example, if
the AND is E-W, and the axis is growing to the right/top, then the bottom and top x intervals of the cell
are saved in the list. The left side of each of these intervals is grouped with a set of left points and the
right side with a set of right points. A linear programming solution to the 2D linear separability problem
[29] is then run on the two sets. This procedure determines if it is possible to �t a line that strictly
passes through each cell, and if it is possible, it returns one such line. This line is used to de�ne the
Axis Segment for visualization purposes only, and thus no attempt is made to �nd a line that optimally
�ts the axial cells.

Figure 19 shows the groups of axial cells from Figure 18. The DMD vectors de�ne the intervals that the
Axis Segment must pass through. The top �gure of 19a,b,c shows the points representing the interval
endpoints. The circles correspond to left points and triangles to the right points passed to the linear
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separability code. The bottom �gure in each case shows a possible resulting line that is returned from
the linear separability code.

a                                                 b                                                  c

Figure 19: Fitting linear segments to axial cells: a,b,c) The top �gure shows the axial cells with the left
points labeled by circles and the right points labeled by triangles. The bottom �gure shows the resulting
axis line segments.

The skeletonization process of di Baja and Thiel [11] also forms linear segments from skeletal points.
The endpoints of a skeletal branch are set as the end vertices of a linear segment. This segment is then
recursively split if the pixels along the branch fall too far outside of the segment. The split occurs at the
pixel with the greatest distance from the line segment. This process has the advantage over our approach
of being independent of the order in which pixels are processed. A �nal segment splitting is performed
by di Baja and Thiel where non-monotonic changes occur in the width. Our axes maintain this width
information internally, but are not split at these locations. We view these width changes as secondary
indications of subregions within a parent region, and thus do not split the axes. The decomposition
process will discover these features once the parent region has been isolated.

Our approach is unique in that it does a preliminary high-level segmentation; axial points are not
considered for grouping into a segment unless they have the same Axial NormalDirections. This approach
has the advantage of utilizing local shape information, and results in Axis Segments whose endpoints
correspond directly to concave boundary regions.

Di Baja and Thiel only consider the spatial relationships between skeletal points when forming segments.
They split segments at branches and points where non-linear changes occur in the branch. These
locations correspond to concave regions in the boundary. This generates segments whose endpoints only
roughly correspond to the concave boundary points. Our approach more naturally assigns segments
to fundamental regions. Our axes are therefore better suited for the balanced, hierarchical type of
decomposition into fundamental parts that we are interested in.

Each axial cell contains a pointer to the axis it belongs to. The Axis Segment stores its Axial Normal
Direction set, length, cells corresponding to its initial and �nal endpoints, and the maximumDM distance
value of all its component axial cells. The interior cells lying along the axis between the endpoints are
derived if needed by retraversing the axis.
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4.2 Creating the Axial Shape Graph

The Axis Segments are connected into a graph structure reecting the spatial relationships between the
fundamental parts of the object.

4.2.1 Constructing the Graph Structure

The graph structure is formed by associating a node with each Axis Segment. An edge is added between
each pair of nodes that represent Axis Segments of adjacent fundamental parts. The Axis Segments may
be directly connected, or indirectly connected via ridges in the Distance Map.

The graph structure has the same connectivity as the object: if the object consists of a single, connected
component, the ASG is composed of a single tree structure. The Axis Segments lie along ridges in the
Distance Map. We connect each axis endpoint to all other axes that are directly reachable by walking
out from the axis endpoint along DM ridges.

In order to describe the ridge-walking implementation, we will �rst establish terminology for character-
izing axial cells in the DM. This follows directly from the work of Niblack [25].

� Strict Maximum: A cell with DM distance value d strictly greater than any of its eight nearest
neighbors.

� Maximum: A cell with DM distance value d greater than or equal to any of its eight nearest
neighbors.

� Saddle Point: A cell with DM distance value d whose nearest neighbors represent alternating
humps and valleys relative to d. A hump is a series of cells with value greater than d, bounded
on either end by cells with distance values less than or equal to d (the valleys), or a series of cells
with distance equal to d with adjacent valleys with value strictly less than d. A saddle point is a
cell with two or more humps.

Saddles can be either formed from a single cell (a 1x1 saddle) or a cluster of four cells (a 2x2
saddle):

{ 1x1 Saddle: A single cell whose eight closest neighbors form two or more humps.

{ 2x2 Saddle: A 2x2 cluster of cells all having the same distance value, and none of which
is a 1x1 saddle. The twelve closest neighbors adjacent to the 2x2 block are de�ned as the
neighborhood in this case and must contain two or more humps.

� Climbing Neighbor: For a non-maximum cell, the neighbor with the maximum DM distance
value. If there is more than one such equal valued cell in a series, the climbing neighbor is chosen
according to the following rules:

{ If the series contains an odd number of cells, the middle cell is chosen.

{ If the series contains an even number of cells, one of the cells that is a direct neighbor is
chosen.

If there is more than one series, one is chosen arbitrarily. Each non-maximum, non-saddle cell
is therefore assigned a single climbing neighbor. Saddle cells have a climbing neighbor for the
maximum valued cell on each of their humps.
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Figure 20 shows examples of cells �tting these de�nitions. In each case the upper �gure shows the
distance values and cell type labels, and the bottom �gure illustrates the climbing neighbors. The center
cell in Figure 20a is a 1x1 saddle point,designated by the S label. Its humps and valleys are labeled H

and V, respectively. The maximum cell for each hump is shown highlighted. Figure 20b illustrates a
2x2 saddle cell. Figure 20c shows two 1x1 saddles, two local maximum (labeled as L) and a strict local
maximum (labeled as M).
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Figure 20: Cell Connectivity Types a) 1x1 saddle b) 2x2 saddle c) 1x1 saddles, local maxima and a strict
local maximum

Niblack et al construct a skeleton composed of local maxima in a distance map that are connected along
climbing ridges. They prove that the resulting skeletal structure will have the same connectivity as the
original object. For any two maxima, with no local maximum in between the two, the path from the
minimumof the two will either be strictly increasing after one step to an equal valued neighbor, or it will
pass through a saddle point. In their approach, the skeletal structure is connected by climbing uphill
from equal valued neighbors of the local maxima, and from all paths out of saddle point humps, until a
maximum is reached.

We have utilized this basic approach to implement a ridge walking procedure from axis endpoints. The
axis endpoints may or may not be local maxima. If they are, then they can be connected as outlined
above. If they are not local maxima, the approach still holds. Axis Segments coincide with Distance
Map ridges, and therefore lie along a path between pair(s) of local maxima.

The path between axis endpoints may pass through multiple saddles and local maxima. We have
implemented an approach based on the path climbing of Niblack et al to make connections directly from
axis endpoints. This is similar to the methods employed by Dorst [13] and Arcelli and di Baja [1].

An initial pass is made that labels all special cells with a connectivity type (strict maximum, maximum,
saddle). Each cell is then assigned a climbing neighbor and saddle cells are assigned multiple climbing
neighbors, one for each hump. This information could easily be generated on demand for the cells as
they are encountered on a climb to make the approach more e�cient.

Next, we link each local maximum to the saddle points from which it is directly reachable along an uphill
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climb. This is done by following the climbing path from each saddle hump until a maximum (strict or
not) is reached. The saddle is then added a list stored with the maximum recording which saddle points
can reach it directly along a climbing path. The maximum also stores which of the saddle's humps the
climb initiated from.

We are only interested in climbing the ridges connecting Axis Segments. The connection algorithm
proceeds by starting a walk from each axis endpoint cell. The following algorithm is performed for each
cell encountered along the walk:

1. If the cell lies on another axis, make the connection between the two axes and terminate this walk.

2. (a) If the cell is a maximum (nonstrict), then continue the walk from each of its direct neighbors
with the same distance value.

(b) In addition, begin walk(s) from each of the maximum's associated saddle points. This corre-
sponds to walking down the ridge to the saddle and then out of the saddle from the remaining
humps.

i. For each saddle point, we �rst check if any axes lie on the downhill path from the maximum
to the saddle point. If there are any axes along this ridge, we wish to �nd the one closest
to the maximum. Because the ridge following climbs up ridges, the walk is started from
the saddle point hump whose climbing path leads directly to the maximum (we have
recorded this value in the initial maximum-saddle linking phase). We keep track of the
last axis, if any, seen on this climb. The climb terminates when the local maximum is
reached. If an axis is found along this path, the algorithm proceeds to Step 1 and makes
a connection.

ii. If there are no axes along the path from the saddle to the maximum, a walk is started
from each of the remaining climbing paths out of the saddle.

3. If the cell is a strict maximum, proceed as in step 2b above (there are no equal valued direct
neighbors, so part 2a is unnecessary).

4. If the cell is a saddle point, start walks from all hump climbing paths out of the saddle.

5. If the cell is not one of those specially classi�ed, continue the walk by moving to the cell's unique
climbing neighbor.

Connections are added as edges in the graph structure. When a connection is made, each end of the
edge is labeled with a Connectivity Type: type L speci�es that the edge connects to a cell that is the
left/bottom endpoint cell of an Axis Segment, type R to the right/top endpoint cell of the Axis Segment,
and type T (for T-connection) to an axial cell internal to the Axis Segment.

Figure 21 illustrates the process for a portion of an object. The Axis Segments labeled 1,2, and 3 are
connected by the highlighted climbing paths. The endpoint cell of axis 1 is a local maximum (labeled
L). The walk starts at step 2) of the algorithm. The cell has no neighbors of the same distance value, so
the algorithm skips 2a and proceeds to 2b. A walk is started from the maximum's single saddle point
(labeled S). The saddle is adjacent to the local maximum, so there are no axes on the downward climb
into the saddle. The walk continues out of the saddle via the single remaining hump. The rest of the
path continues along the marked climbing neighbors until segment 2 is reached. The climb connecting
axis 2 and 3 follows the cells highlighted on the right of the �gure. The resulting graph representation
is shown below. The letters L and R (for Left and Right) at the ends of the edge designate which end
of the axis the edge connects to.
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Figure 21: Connecting the Graph: The Axis Segments 1,2, and 3 are connected by following the high-
lighted climbing paths. The resulting graph representation is shown below: the letters L and R (for Left
and Right) at the ends of the edge designate which end of the axis the edge connects to.

4.2.2 Assigning Weights to the Graph Nodes

The Axial Shape Graph is a weighted graph. Each node stores four types of weights: an Axis Complexity
Weight, a Left Complexity Weight, a Right Complexity Weight, and a T Complexity Weight for each axial
cell that is part of a T-connection.

The complexity of an axis can be measured three di�erent ways: Size Complexity (Cs), Count Complexity
(Cc), and Spatial Complexity (Cbb). These values are calculated for a single axis as follows:

1. Size Complexity: This is an relative estimate of the size of the subcomponent measured as one
half the area of the approximating bar. If l is the length of the segment and wmax is the maximum
half-width along the axis:

Cs = lwmax

2. Count Complexity:
Cc = 1

3. Spatial Complexity: This is an estimate of the area of the axis-aligned bounding box around
the component.

Cbb = j(xmax � xmin)(ymax � ymin)j

The Complexity Weight of an ASG subgraph is the sum of complexities of all axes that are part of the
subgraph.

The Left ComplexityWeight of a node corresponds to the sum of the complexities of the set of subgraphs
attached to the Left end of the node. The Right ComplexityWeight is de�ned similarly, representing the
sum of all subgraphs reachable from the edges attached to the Right end of the node. A T Complexity
Weight is calculated for each T-junction axial cell by summing the complexities of all subgraphs connected
through each T-edge connected to the cell.

The ComplexityWeights are calculated by a running a graph traversal. To calculate the Left Complexity,
the traversal starts by following all Left edges of out of the cell. The traversal continues through all
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edges (i.e. Left, Right, and T edges) of each node encountered, and the ComplexityWeight is recursively
summed. Once a node has been visited, it is marked. The traversal continues until there are no more
edges to follow that lead to unmarked nodes. A similar traversal is run to calculate the Right and T
Complexities, initially following all Right edges out of the node to determine Right Complexity, and all
T edges out when calculating T Complexity. The Left, Right and T Complexity Weights are stored with
the node and used by the ASG decomposition process.

4.2.3 Linking the Axial Shape Graph across Resolutions

Axial Shape Graph nodes at one level in the hierarchy are linked to nodes of the ASG one level up
in the hierarchy if the corresponding Axis Segments represent the same bar component at the next
resolution. To determine if an Axis Segment corresponds to an Axis Segment of the graph one level up
in the hierarchy, the axial cells de�ning the two axes are compared. If the axial cells de�ning the axis
at the �ner (lower) level pass only through cells whose parents in the cell hierarchy are part of the Axis
Segment at the coarser (higher) level, the segments are the same to the resolution of the grid cells.

For e�ciency, we compare only the cells that are covered by the line segment representing the axis. This
line segment is guaranteed to lie entirely within the axial cells.

Axes at subsequent levels may not exactly coincide, even if they represent the same subcomponent.
Axes that di�er only by a set percentage of the total number of axial cells in the �ner resolution axis
are considered to represent the same feature.

If the Axis Segment is matched to the next resolution level, the corresponding nodes are linked and the
test continues on to the next resolution level. The Feature Weight of an axis corresponds to the number
of levels above the axis node in the hierarchy that the match is successful.
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5 Hierarchical Decomposition of the Geometry Representation

Our goal is to decompose the object into a well-balanced tree of hierarchical subcomponents that reect
its geometric structure. In a geometric decomposition, each component corresponds to a fundamen-
tal part of the object at a particular scale. The object is recursively decomposed into components
representing fundamental parts at increasingly smaller scales.
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Figure 22: G-Rep Decomposition process and the Representation Generation Pipeline

This section describes a method for decomposing the Geometry Representation into a hierarchy of
subcomponents based on the Axial Shape Graph. G-Rep Decomposition is the �rst phase of the Rep-
resentation Generation Pipeline. Figure 22 shows its relationship to the overall pipeline introduced in
Figure 2. The exact details of the decomposition will depend on the needs of the particular task. In
this section we discuss the general process, and in section 6 we address the details of the process when
utilized for the task of Collision Detection.

The partitioning is performed at the most detailed level of the G-Rep hierarchy, utilizing the Axial Shape
Graph to identify the subcomponents and their connectivity relationships. G-Rep decomposition occurs
in two steps:

1. Selection: of a Partition Point p.

2. Partitioning: of the G-Rep into the two subcomponents de�ned by p.
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5.1 Selecting a Partitioning Point

Using the Axial Shape Graph, the task of shape decomposition is reduced to a graph partitioning
problem. The decomposition should reect the geometric structure of the object (i.e. satisfy Property
1 of Section 2.3), and produce a well-balanced tree of subcomponents (Property 2). To meet Property
1, we choose partitions along boundaries between bar subcomponents, which are suggested by the Axis
Segment endpoints and width discontinuities along the Axis Segment. An ideal decomposition would
produce a tree that is balanced according to all three criteria: Size, Count, and Spatial. It is not always
possible to achieve this balance, however, especially since Property 1 requires that the decomposition be
based on the shape structure of the object. The exact weighting used will depend on the application.
Section 6 discusses the graph weighting used for the task of Collision Detection. In this section, for the
purposes of explaining the general algorithm, we will use Size Complexity as the graph weight.

We �rst �nd a Partition Node at which to partition the graph structure. Once a node is selected, we
choose one of the axial cells of the Axis Segment associated with the node as the Partition Point.

5.1.1 Choosing a Graph Partition Node

For now we assume that the graph is partitioned only at axis endpoints. We will remove this restriction
later. The graph is decomposed by selecting a node and removing all edges from one side of the node
(i.e. the Left edges or Right edges). This partitions the nodes of the graph into two sets. We want a
balanced decomposition, and therefore we choose a Partition Node that will break the graph into two
sets of nodes with roughly equal complexity weight.

If we partition at a node n by removing all Left edges, one set of the resulting two node sets will contain
the Left Graph, and the other set will contain the Right Graph of n, as well as node n. We de�ne Left
and Right Partition Ratios as the relative complexity of the resulting subgraphs if we partitioned at a
node n by removing the Left or Right edges, respectively.

Given that Cl is the Left Complexity of a node n, Cr is the Right Complexity, Ct is the T Complexity,
and Ca is the Axis Complexity, we de�ne the following set of ratios:

� Left Partition Ratio Rl:

Rl =
Cl

Cr +Ct +Ca

� Right Partition Ratio Rr:

Rr =
Cr

Cl +Ct +Ca

� Axis Ratio Ra:

Ra = max(Rl; Rr)

We are interested only in the relative balance of complexities when calculating Rl and Rr and therefore
constrain all ratio values to lie in (0; 1]: if the ratio exceeds 1, the reciprocal value is utilized instead. If
the value of Cr or Cl is zero, the Ratio is set to zero.

Figure 23 is a representation of a single node and its associated axis. The Left (L) and Right (R) edges
of the node are shown. The circles represent the subgraphs reachable from each edge. In this example,
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Figure 23: Calculation of Axis Partition Ratio

the Left Complexity of the node is 10 and the Right Complexity is 30. The values of the Left and Right
Partition Ratios and the Axis Partition Ratios for this example are shown on the �gure.

We choose nodes with high Axis Partition Ratios as potential Partition Nodes. If the ratio is 1, the
removal of the edges from one side of the node will divide the graph into two sets of subgraphs of equal
complexity. The process of �nding the node with maximumAxis Partition Ratio for each decomposition
step is very e�cient. The Partition Ratios are calculated in the same graph traversals that calculate the
Left and Right Complexity Weights. Once the weights have been assigned to a node in the traversal,
the node is inserted into a Node List sorted in descending order on the Axis Partition Ratios. The head
of the Node List is removed each step and utilized as the Partition Node.

5.1.2 Choosing a Axis Segment Partition Point

Once a graph node is chosen for partitioning, we select one of the axial cells de�ning the associated Axis
Segment as the Partition Point. The Partition Point is used to de�ne the actual cut that partitions the
G-Rep into two subcomponents. If partitioning at the axis endpoints would lead to a strongly unbalanced
partition, we allow points interior to the axis to be selected as Partition Points. In this case, partitioning
at the node corresponds to splitting the Axis Segment at the Partition Point and generating two new
sub-nodes.

We de�ne the balance potential of an axial point as the estimate of the ratio of the sizes of the resulting
two object subcomponents that would be produced if the graph were split at the axial point. The ratio
is chosen such that the balance potential is always in (0; 1]. For axial endpoints, we use the Partition
Ratios as an estimate of the balance ratio. For axial points interior to the axis, the axis is split into two
sub-segments at the axial point, and Partition Ratios are calculated for the two new nodes produced.
The Axis Size is recalculated for each new Axis Segment and the Left Complexity, Right Complexity,
and T Complexities are derived from the values of the parent segment. Partition Ratios are calculated
from the complexities and used as an approximation of the balance potential of the axial point.

When selecting a Partition Point, we favor axis endpoints because these points are associated with
concave points on the object's boundary. If the Axis Complexity and T Complexity Weights are large
relative to the Left and Right Complexities, however, partitioning at either end of the node will result
in an unbalanced tree. We also wish to satisfy the balance properties, and therefore in these cases we
consider points on the axis between the endpoints. If the axis endpoints do not have an acceptable
balance potential, we next consider any points with adjacent T-edges as potential Partition Points. If
there are no such points, or they do not have an acceptable balance potential, we next examine any
points de�ning width discontinuities. These points also correspond to concave points on the object
boundaries and thus suggest good partitions. Finally, if we have still not found an acceptable Partition
Point, we choose the axial point that best balances Left and Right Complexities. This point is called
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the axial balance point.

This results in a process that prefers partitions at axis endpoints, assuming these will coincide with
subcomponent boundaries, but will favor a more balanced cut if the balance potential is below the
speci�ed balance threshold.

Partition Points are therefore chosen in the following order:

1. Axis Segment endpoints

2. T-connection points

3. Width Discontinuities

4. Balance Point
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Figure 24: Selection of Partition Point

Figure 24 shows an object and its associated ASG representation. For this example, we assume that
the potential balance threshold is 0:25. Axis 1 has the highest Axial Partition Ratio (0:14) and is
therefore chosen as the Partition Node. The Ratio Partitions of the axial endpoints are below threshold
(2=30 = :07 and 4=28 = :014), so the T-connection point (labeled \x" ) is considered next. This point
is also rejected because its balance potential is 4=28 = 0:14. There are no width discontinuities in this
case, and therefore the balance point (indicated with the label p) is chosen as the Partition Point.

5.2 Partitioning the Geometry Representation

Once an interesting Partition Point has been selected, the actual partition cut to decompose the G-Rep
is determined. We want cuts to occur along boundaries between bar subcomponents, and thus at the
apex of de�ning concavities.

The Partition Point is used to �nd a pair of boundary or shore points that de�ne the actual cut. Every
axis point is associated with at least two boundary cells on \opposite" shores. These cells are reached
by following the Distance Map Direction vectors. The lower left corner of the cell (i.e. the address of
the cell) is used as the actual shore point. These points constitute a natural termination of the bar
associated with the Axis Segment. A cut made between such a pair of boundary points will create a
partitioning that separates the bar component from the rest of the object.
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There may be multiple shortest paths to the boundary, but most often they end up at the same shore
points, and therefore produce a manageable number of pairs of shore points through which a cut can be
made.
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Figure 25: G-Rep Decomposition: a) Original b) Paths to shore from axis end cell c) Resulting Decom-
position d) Resulting expanded cut area

Figure 25 illustrates a single G-Rep decomposition step. The box in 25a indicates the expanded region
shown in Figures 25b and 25d. In Figure 25b, the composite axial end cell chosen for the Partition Point
is indicated. The cells on the paths leading to the two shore cells from the axial endpoints are shown
highlighted.

Once the two cut points on the boundary are selected, the object is partitioned along the line segment
between the two points. Cells along the line segment belong to the part that lies to the right/top of the
line. This is done for simplicity, so that after a cut, each cell belongs to exactly one of the two resulting
pieces. The cutting routine walks along the line between the cut points, labeling each cell that the line
intersects as belonging to the part on the right/top of the line. A ood �ll is then run on either side of
the cut to label all of the cells belonging to the new left and right subcomponents. Figure 25d shows
the resulting cut chosen by the partitioning code. The cut line segment is shown and the cells that the
line intersects are shown highlighted. Figure 25c shows the resulting two parts after the partitioning.

After the two subcomponents have been isolated, the Axial Shape Graph is reconstructed for each
subcomponent.
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5.3 Utilizing the Hierarchy

In addition to connections to adjacent axes, an axis may also be connected across the hierarchy to an
axis representing the same feature at the next resolution. This multiresolution information is captured
locally at each level by a Feature Weight indicating at how many levels of resolution the feature appears.

The Feature Weight can be utilized to order the axes on importance. Features that occur at multiple levels
in the hierarchy are more likely to represent true strong geometric structure, and not discretization noise.
Components associated with high importance are given preference when performing the decomposition.
The partitioning is done in decreasing order of Feature Weight, i.e. strong components are separated
�rst, and then later decomposed into their subcomponents.

5.4 Managing the Part Hierarchy

A hierarchical part structure is maintained to keep track of the components as they are created. This
part structure is a binary tree where a node represents a part. Each part has a number and an associated
G-Rep structure. Internal nodes in the part tree also have a cut. The cut is represented by two 2D
points which correspond to the two cells de�ning the ends of the cut. The cut will break the parent part
into two parts which are the children of the node (it is possible for a cut to produce a single child in
objects of genus greater than zero, but here we are assuming genus zero objects because of the ood �ll
performed on the object).
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Figure 26: Part Tree Structure: a-d show the progressive decomposition of an object into parts. The
upper �gure shows the cut and resulting object parts and the lower �gure shows the tree representation.

Each part in the tree has an unique number that stores the cut history. The part number is a collection
of bits, where each pair of bits corresponds to a cut. If a part is on the left/bottom side of a cut i, then
the value stored in the two bits for cut i (i.e. bits (2i� 2) and (2i� 1) ) will be 1. If the part lies on the
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right/top side of the cut, it will have the value 2. The cut number is assigned in the order that the cuts
are made.

The part tree lives in conjunction with the quadtree data structure. Each cell references the part that it
belongs to. The part numbers are also assimilated up the quadtree such that all parts exist in the same
quadtree, but individual parts can be managed e�ciently because each internal node keeps a record of
which parts have cells beneath that node.

The part tree records all information relevant to the partitioning process. At any point, the cut history
can be retraced, and if desired, undone.

Figure 26 shows a sequence of G-Rep partitions, and a representation of the corresponding part tree.
Figure 26a shows the original object with a single part, Part 1. In Figure 26b the object has been
partitioned at the shoulder by Cut c1, resulting in Parts 2 and 3. Part 3 is further partitioned at the
elbow by Cut c3 as shown in Figure 26c. The next cut is shown in Figure 26d, where Part 2 is partitioned
at the shoulder into Parts 6 and 7.

5.5 Comparison to Previous Work

An object's shape can be most naturally described as a hierarchy of subcomponents. Axial-based rep-
resentations have been utilized to perform shape decomposition and description. In this section we
compare relevant work in 2D shape segmentation to our decomposition approach.

Di Baja and Thiel [11] present a skeleton decomposition method that can be utilized to represent an
object as a collection of elementary regions. We have discussed their skeleton construction approach in
Section 2.2.1. This approach produces a representation composed of the union of a set of overlapping
regions, and is thus not a strict decomposition per se.

Rom and Medioni [30] utilize an axial representation to hierarchically decompose an object based on
its shape. This approach is a combination of existing approaches. The input object is represented by
a B-spline approximation. Smooth Local Symmetries (SLS) are used for the axial description of parts,
but because SLS produces superuous axes, the contour is �rst segmented into regions bounded by
consecutive negative curvature sections. The SLS axes are computed for all such parts. These de�ne
local ribbons, which are potential parts of the object decomposition. Parallel symmetries are used to
represent global shape, characterizing global ribbons. The relationship between local and global ribbons
is maintained; a local ribbon may continue a global one, or local and global ribbons may conict. Once
a potential part is identi�ed it is removed by deleting all but the �rst and last two boundary control
points of the B-spline control polygon of the region to be segmented and generating the closing curves
on the two subcomponents. The decomposition is a recursive process that proceeds by �rst removing
small parts, and continuing with the remainder of the object. Local ribbons that conict or continue a
global ribbon are not removed until all other local ribbons are segmented. In this way, the relationship
between the global and local information is used to create a hierarchical decomposition.

Our approach is structurally similar to the approach of Rom and Medioni, and our axis formation is
similar to that of di Baja and Thiel, but our approach is novel in many ways. Our decomposition process
had been designed for a di�erent purpose, and therefore we discuss improvements over the previous
work in the context of the tasks that we are interested in. The structure of the Axial Shape Graph
provides many advantages over previous skeletons for the purpose of shape decomposition. First, axial
points are selectively joined into Axis Segments based on the local shape characteristics of the object,
not just by proximity. Our approach is also novel in the use of the weighted Axial Shape Graph to
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produce balanced part trees. Our partitioning process applied to the Cell-Based Spatial Representation
produces a strict decomposition. Finally, the overall Representation Generation Framework allows the
decomposition process to be driven by user-speci�ed metrics, and provides a means of evaluating the
resulting decompositions.
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6 Generating Representations for Collision Detection

We have implemented an application based on the Geometry Representation that automatically generates
representations specialized for the task of Collision Detection in 2D environments. In this section we
�rst discuss the task of Collision Detection and its representational requirements. We then describe an
implementation of the Representation Generation Framework presented in Section 1 (Figure 28), and
present results of using this application to generate representations for a variety of objects. In the �nal
section, we compare the Representation Generation Framework, and the representations it produces for
the task of Collision Detection, to existing approaches and representations.

6.1 Representations for Collision Detection

A robust and e�cient collision detection mechanism is an integral part of any animated and interactive
virtual environment. As dynamic objects move through the virtual world, intersection tests must be
performed quickly between the moving object and all other objects near it.

Many collision detection systems utilize a hierarchy of representations [21, 8, 24, 28]. In these approaches,
intersection testing occurs in two main phases: a broad phase followed by a narrow phase [21]. In the
broad phase, intersection tests are made against simpli�ed approximations of the object. If a possible
intersection is detected from these approximate tests, the actual object is tested in the �nal narrow
phase. The intersection test is �rst performed against the coarsest representation at the root of the
hierarchy. If such a test reports that there is no intersection, all objects below that representation in the
hierarchy can be removed from further consideration. If, on the other hand, a possible intersection is
detected, the test moves to the next, more detailed and accurate representation found at the next level
of the hierarchy. In this paradigm, �nding a true intersection will require multiple levels of testing, but
the extra computation required is usually more than balanced by the performance gain provided by the
fast intersection testing and culling based on the approximations in the case of a miss.

Axis-aligned bounding boxes are often used as the components of these representation hierarchies. An
object's bounding box is easy to construct and to perform intersection tests against. Axis-aligned
bounding boxes, however, are often very poor approximations of an object. This means that many
false hits will be detected at the coarse level, and several additional intersection tests will need to be
performed before the collision detection mechanism is able to determine whether or not the object has
been hit. In addition, axis-aligned bounding boxes are not rotation invariant. If the object is not a
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circle, and is allowed to rotate, the bounding box representation will either need to be set as the worst
case bounds for any orientation, or be recalculated.

The convex hull of the object is also often used as one of the approximations in the hierarchy of repre-
sentations. The convex hull is rotation invariant, and more closely approximates a larger class of objects
than the axis-aligned bounding box. We are assuming that the collision detection algorithm used is
some variant of the Lin-Canny approach [24], such that intersection testing is performed very e�ciently
between convex objects. In addition, we assume that the system can handle non-convex objects as
well, although at a signi�cantly higher cost (such as I-Collide [8]). If the objects are convex, then the
intersection test is extremely fast. If the objects are non-convex, but well-approximated by their convex
hull, then the test is still e�cient.

Di�erent types of representations may be combined in the hierarchy of representations for collision
detection. The representation at the most detailed level may or may not be the original representation.
It may be possible to replace the original with a representation that is simpler, but equivalent for the
collision detection task. For example, if the task is to insert a part into an engine, and the minimum
feature size of the part is known, the probe size, then concave features of the engine smaller than this size
do not a�ect the process. The original object can therefore be replaced with one that has all such features
removed. An object may also contain a complicated network of internal cavities. This information is
irrelevant in determining if the outer hull of the object (assuming that the simulation does not utilize
other physical information about the object) contacts another solid object, and can therefore be �ltered
out.

To satisfy the requirements of the collision detection task, a representation must meet the following
Representation Criteria :

1. Correctness: The representation must produce conservatively correct results when tested with a
probe of a speci�ed size. False positives are acceptable and only represent a performance loss, but
the test must not miss when there is an actual intersection.

2. E�cient IntersectionTesting: The representation should allow inexpensive intersection testing.

3. E�ciency of Representation:

� Detail: The representation should be minimal in terms of detail, i.e. it should only contain
those features relevant to the task.

� Redundancy: There should be minimal overlap between the representations for subcompo-
nents of the object.

� Size: The representation should not cover a large (relative to the application domain ) spatial
extent. If there is a pipe running through a building, for example, the entire pipe will have
to be considered for potential intersection whenever the object of interest is anywhere within
the building. It would be more e�cient to partition the pipe into smaller components such
that if the object of interest is in a certain room, it only needs to be tested against the small
portion of pipe that passes through the room.

For our study, we utilize the following representations:

1. Conservative Hull (CH)

2. Axis-aligned Bounding Box (BB)
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Representation 1, the Conservative Hull, is a convex representation that fully encloses the object. The
tightest �tting Conservative Hull corresponds to the object's convex hull. The Conservative Hull could
potentially consist of multiple levels of detail if the object is very complex (e.g. a �nely tesselated
representation of a circle). The most detailed level Conservative Hull could be either the convex hull of
the original object or a conservative convex approximation if the detail of the original object exceeds the
resolution of the collision detection task. For the intermediate level Conservative Hulls, we construct
the convex hull of a simpli�ed version of the object. An alternative conservative convex approximation
could also be utilized, such as Oriented Bounding Boxes (OBBs) [18].

The top row of Figure 27 shows an input object and the corresponding Conservative Hull and axis-aligned
Bounding Box, marked as level 0 in the �gure.

If the original object is not convex, the Conservative Hull may be a very poor approximation. To produce
more e�cient representations for the task, we decompose the object and generate convex representa-
tions for the resulting subcomponents such that the object is better approximated by the composite
Conservative Hulls.

Conservative Hull Hierarchy 

level 0 

level 2

level 1 

level 2

level 1 

level 0 

level 2

level 1

Bounding Box Hierarchy

Figure 27: Hierarchical Representation for Collision Detection

The object in Figure 27 is an example of an object that is not approximated very well by its Conservative
Hull and Bounding Box. Figure 27 shows a possible representation of the same object after it has been
recursively decomposed into components better approximated by the Conservative Hull and Bounding
Box representations. The middle �gure shows three levels of convex representations resulting from
the decomposition. The rightmost �gure shows the three levels of Bounding Boxes resulting from the
decomposition.

In the following section we show how the Representation Generation Framework can be used to produce a
hierarchy of Conservative Hull and Bounding Box representations that meet the Representation Criteria
of correctness (criterion 1) and e�ciency (criteria 2-3) for the task of Collision Detection.

6.2 Overview of the Representation Generation Framework

We have implemented an application based on G-Rep decomposition that produces a hierarchy of ap-
proximate representations to be used in the broad phase of a Collision Detection approach. For this task,
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the desired output representation is a balanced hierarchy of convex approximations that conservatively
and e�ciently bound the input object. In addition, the axis-aligned bounding boxes of the approxima-
tions have aspect ratios close to unity and should not vary too much under object rotation. To achieve
these goals, the process of representation generation is guided by a quality/cost metric that favors sim-
pli�ed subcomponents that both minimize the area di�erence between the object and its composite
Conservative Hulls and produce Bounding Boxes of unit aspect ratio.
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Figure 28: Representation Generation Framework for Collision Detection

The application we have developed is structured as a feedback loop that recursively generates representa-
tions for subcomponents of the object based upon its geometric structure. The resulting representations
are evaluated at each step, and this information is used to guide the process.

The algorithm is based on the following Representation Generation Framework:

1. Decompose an object component into two subcomponents.

2. Generate a representation for each subcomponent.

3. Evaluate the new representations.

4. Compare the value of the new representations to the representation value of the parent.

� If the improvement exceeds a speci�ed threshold, the decomposition and resulting represen-
tations are accepted.

� If the improvement is below threshold, the next iteration is started.

5. Compare each new representation value against the speci�ed quality threshold.

� If the threshold is exceeded, the representation is accepted as the �nal representation and the
subcomponent is removed from further processing.

� If the quality is below threshold, the subcomponent is sent back for further decomposition.

Figure 28 shows the basic Representation Generation Framework schematically. The following sections
discuss the implementation of the various Framework modules. The corresponding section number is
indicated for each module in the �gure. In Section 6.6 we present the results of utilizing this frame-
work for representation generation for a variety of input objects. In Section 6.7 we compare both the
representations generated and the generation process to other approaches.
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6.3 Quality Metrics

In order to generate representations for Collision Detection that �t the speci�ed requirements of the
task, we must �rst develop a measure of the quality of a representation. Each of the modules in the
Representation Generation Framework is dependent upon task-speci�c metrics: we must evaluate rep-
resentations to decide if an object component should be decomposed further (Module 1,5), to determine
how it should be decomposed (Module 1), and to evaluate if a potential decomposition produces a better
representation (Module 4). This evaluation is based on a quality/cost metric.

In the context of the Collision Detection task, quality is measured as area di�erence between the original
and the representations. In addition, representations should also have approximately unit aspect ratio,
i.e. be close to circular in shape.

We also characterize the cost of a representation hierarchy. We want to decompose the object into com-
ponents that are well-approximated by Conservative Hulls and axis-aligned Bounding Boxes. Each time
a subcomponent is decomposed, however, an additional level is added to the representation hierarchy.
There is a cost associated with the number of levels that must be traversed on a hierarchical intersection
test. There is therefore a tradeo� between the number of levels in the hierarchy, and thus the number
of decomposition steps performed, and the tightness of the representation. The decomposition process
is guided by this cost consideration. A partition is rejected if the resulting representations do not im-
prove the quality function by a given amount. Partitioning is also terminated if the size of the resulting
subcomponents falls below a given threshold. In this way, the cost of adding an additional level in the
representation is weighed against the quality gain. While it is clearly wasteful to store a convex hull
and a bounding box for a square object, other cases are more subtle and require further inspection. The
quality/cost metric together weighs the accuracy of the representations against the amount of informa-
tion that needs to be stored and processed. For example, if a decomposition improved the value of the
representation by 5%, but increased the representation cost by 80%, it might be rejected.

The following values are calculated for each Conservative Hull and Bounding Box:

� Representation Quality QCH ;QBB ;QAR: The Representation Qualities QCH and QBB mea-
sure the relative area di�erence between the Conservative Hull (QCH ) and Bounding Box (QBB)
representations and the original object. If P is the object subcomponent:

QCH =
Area(P )

Area(CH)
<= 1:0

QBB =
Area(P )

Area(BB)
<= 1:0

The representations are conservative, and therefore the quality values are in (0,1], with an exact
representation yielding an optimal Representation Quality value of 1.

The Representation Quality QAR is a measure of the aspect ratio of the Bounding Box representa-
tion. If Length(BB) is de�ned to be the maximum extent of the Bounding Box, QAR is calculated
as follows:

QAR =
Width(BB)

Length(BB)
<= 1:0

Quality QAR achieves a maximum value of 1 for a square, or Bounding Box with unit aspect ratio.
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� Decomposition Bene�t: BCH ;BBB;BAR. The Decomposition Bene�t expresses the relative
improvement in quality resulting from decomposing an object into subcomponents. If CHR; BBR
are the representations for the parent component and CHR1,BBR1 and CHR2, BBR2 are the
representations of the two child subcomponents, the Decomposition Bene�ts are calculated as
follows:

BCH =
Area(CHR)

Area(CHR1) + Area(CHR2)

BBB =
Area(BBR)

Area(BBR1) + Area(BBR2)

BAR =
min(QAR(CHR1);QAR(CHR2))

QAR(R)

Decomposition Bene�ts BBB and BCH express the improvement as the relative decrease in area
from the parent representation to the pair of child representations. The aspect ratio Decomposition
Bene�t BAR chooses the child with the worst aspect ratio (i.e. smallest), and compares the relative
improvement with the parent representation. The Decomposition Bene�ts may be < 1, indicating
that the quality of the composite of the child representations is worse than the quality of the
parent.

If the Decomposition Bene�t is greater than one, the children represent the object more accurately
than the parent. There are, however, practical costs associated with the number and complexity of
representations in the hierarchy. The current system adopts a simple cost model. By only accepting
partitions with Decomposition Bene�ts above a �xed percentage, we take into account the cost incurred
by adding levels to the hierarchy. The cost could also be adapted to include the number of edges in the
Conservative Hull, and the absolute number of sub-components making up the hierarchy.

The Hausdor� distance [29] is an additional measure of the accuracy of a representation. It is de�ned
to be the maximum of the distances from each point on the object boundary to the closest point on the
representation boundary. We calculate the perpendicular distance from each cell representing a concave
point on the boundary of the object to the Conservative Hull edge covering that concavity.

Hausdorff point

Hausdorff point

Hausdorff point
d d

d

Figure 29: Hausdor� points for dinosaur parts

We utilize the Hausdor� measure only to evaluate the quality of the generated representations, but it
could easily be incorporated as a metric to guide the decomposition process. The cell or Hausdor�
point associated with the maximum distance represents a concave point. These points could be chosen
as initial starting points for the decomposition process. Figure 29 illustrates the Hausdor� points for
various parts of the dinosaur example. The resulting maximum distance is shown as a line from the
point to the Conservative Hull.
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The following sections describe the utilization of the Quality and Bene�t metrics in the generation of
representations.

6.4 Construction of Geometry Representation

The application �rst constructs the multi-resolution Geometry Representation hierarchy from the input
object. For Collision Detection, we are primarily concerned with what space an object occupies, and
therefore the G-Rep spatial representation is well-suited for this task. The grid-insertion process also
�lters out details not relevant to the Collision Detection task. If the probe size is known, details in areas
where the probe cannot reach due to its size can be �ltered out by choosing a cell size based on the
probe size. In addition, the spaces interior to the object are �lled. If we are probing an object to test for
collision, the interior spaces of an object are irrelevant, as these areas are not reachable by a colliding
probe of any size.

Our goal is to partition objects into components that are well approximated by a Conservative Hull
and by a Bounding Box. A circle �ts this ideal: it is convex, and has the same Bounding Box at
any orientation. We can therefore cast the problem as one of decomposing the object into circular
components. In practice, however, objects do not naturally decompose into a small number of minimally
overlapping circles. We instead seek to �nd components that are as circle-like as possible, meaning that
they are relatively convex and have an aspect ratio close to unity.

The Axial Shape Graph described earlier can reveal these approximate convex, or generalized bar features
in an object. A circle would have a single axial point with complete symmetry (direction vectors in every
direction). The bar subcomponents should have a single strong axis that is relatively short compared to
its distance from the boundary to meet the bounding box criteria.

6.5 Generation of Hierarchical Representations

The �nal output of the program is a collection of hierarchical Bounding Boxes and Conservative Hulls
that closely bound the original object. The decomposition of the object into subcomponents is guided by
the evaluation of the metrics presented in Section 6.3. There are three Representation Quality metrics
associated with the process, listed in order of importance:

1. Conservative Hull Representation Quality (QCH )

2. Bounding Box Representation Quality (QBB)

3. Aspect Ratio Representation Quality (QAR)

The user supplies Quality Thresholds (�Q) for each type of Representation Quality ( �QCH ; �QBB; �QAR).
For example, if the Quality Threshold for the Conservative Hull is �QCH = 0:1, the area of the Conser-
vative Hull representation must not di�er from the area of the object by more than 10%.

The user also speci�es Bene�t Thresholds for each type of Decomposition Bene�t (�BCH ; �BBB; �BAR),
and a Minimum Size (SMIN ) and Maximum Size (SMAX) value indicating the smallest and largest
allowable subcomponent, measured in cells.

The application makes four passes over the subcomponents, using a di�erent evaluation metric for each
pass. The order emphasizes the relative importance of the quality metrics. The decomposition proceeds
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in Pass 1 until all components meet the Conservative Hull Representation Quality Threshold speci�ed
by the user, or cannot be further processed by the algorithm. Pass 2 is then run on the resulting
subcomponents to verify that the Bounding Box Representation Quality threshold is also met. Any
subcomponents that do not meet this criterion will be further decomposed. In the third pass, the
Aspect Ratio Representation Quality is utilized as the metric. A fourth pass is made to make sure that
the �nal components do not exceed the Maximum Size limit.

It would be possible to make a single pass over the subcomponents by utilizing a single, uni�ed metric
taking into account all of the Quality and Size considerations. The criteria often present conicting
desires in the choice of decomposition and it is not clear how to appropriately weight such a metric, in
order to satisfy the criteria for a good representation. We therefore chose to separate the decomposition
into passes, and only consider a single criterion in each pass.

Each pass is a three step process:

1. Decomposition

2. Representation Generation

3. Evaluation

The following sections discuss these steps.

6.5.1 Decomposition

At each iteration of the process, the object subcomponent with the worst Representation Quality is
chosen for possible partitioning. Subcomponents are maintained in a list based on the Representation
Quality value (QCH , QBB or QAR) or size value being used in the current pass. The list is sorted with
the components with the worst representation value occurring �rst.

The partitioning is performed utilizing the G-Rep Decomposition process presented in Section 4. We
have chosen Size Complexity alone as the weighting criterion for our graph. By choosing Size as the
single measure, the graph partitioning process is simpli�ed, while still producing acceptable balance for
all three criteria. To see why this is possible, we will consider each of the two remaining balance criteria
individually. Because we have a minimum and maximum size threshold (i.e. SMIN and SMAX), a
part tree that is Size-balanced will tend to have approximately the same number of components in each
subtree. For the Collision Detection task, Spatial balance is very important, potentially even more so
than Size balance. Since partitions are chosen based on shape as the primary consideration and since the
graph structure itself reects the spatial connectivity of the object, the only types of partitions permitted
are those that have some amount of spatial coherence via their shape and the graph connectivity. The
result is that partitions chosen on Size balance tend to have good Spatial balance as well. Figure 30
illustrates the e�ect of Size balancing with the object from Figure 9. The original �gure is shown in
Figure 30a and its Axial Shape Graph in 30b. The initial decomposition of the ASG based on shape and
Size balance is illustrated in 30c. The �nal hierarchy is shown in 30d,e. The resulting decomposition
has good Size, Spatial, and Count balance.

The Axis Segment's end points are �rst considered when choosing potential Partition Points, and then
its balance point. The application does not currently consider T-connections or width discontinuities
when choosing Partition Points. A single Partition Point chosen by the G-Rep Decomposition process
may generate more than one possible partition. In this case, all partitions are made and the one resulting
in components with the greatest Representation Quality is chosen.
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    a                                b                               c   

Figure 30: Size balanced Decomposition a) Input Object b) Axial Shape Graph c) ASG after single
decomposition step d) Resulting Conservative Hull Hierarchy e) Resulting Bounding Box Hierarchy

6.5.2 Representation Generation

Once a Partition Node has been chosen and the proposed decomposition made, representations are
generated for the new components. The Conservative Hull and Bounding Box are constructed around
the cells of the subcomponents identi�ed by the partitioning process and are therefore guaranteed to be
conservative since the spatial representation is conservative.

The Conservative Hull is constructed by collecting all of the convex cell vertices on the boundary of the
cell representation of the object. A convex boundary cell is one that meets the following criteria:

1. The cell lies on the object boundary, i.e. one or more of its eight nearest neighbors does not belong
to the object component.

2. The cell has one or more convex vertices. The convex vertices are easy to determine in the G-Rep
structure: if a boundary cell has one or more pairs of direction vectors set at 90 degrees, the cell
corner that lies between the two directions is a convex vertex.

A simple package-wrapping convex hull construction approach is then run with this point set as input,
producing a polygonal boundary representation of the Conservative Hull.

The axis-aligned Bounding Box is calculated by taking the extents of the Conservative Hull in the x and
y directions.

The area of the Conservative Hull is calculated as the sum of the areas of the trapezoids de�ned by each
edge and the projection of the edge onto the x-axis.

Area = 0:5 �
nX

i=1

(xi � xi+1)(yi + yi+1)
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The area of the object subcomponent is approximated by counting the number of cells labeled interior
to or on the boundary of the subcomponent.

Figure 31: Step-by-step decomposition of dinosaur

6.5.3 Evaluation

The new representations are evaluated. If the quality has improved by an acceptable amount (i.e. the
Bene�t Threshold is exceeded), the decomposition step is accepted. If the step is rejected, then the
process returns to the Decomposition step and attempts an alternate partitioning. If the partition is
accepted, each of the two new representations is evaluated according to the Representation Quality
value. If its value is above the allowable Quality Threshold, the representation is accepted as the �nal
representation for that subcomponent, and the subcomponent is not processed further. If, on the other
hand, the Quality value is below threshold, the new subcomponent is inserted into the subcomponent
list and the process continues with the next subcomponent.
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The evaluation process compares the Conservative Hull and Bounding box of the original component
before the partitioning to the Conservative Hull and Bounding Box of the two resulting subcomponents.
A cut is accepted if the Decomposition Bene�t (BCH ;BBB or BAR) value of the representations exceeds
the speci�ed Bene�t Threshold, and the sizes of the resulting subcomponents are above the Minimum
Size (SMIN ).

If the quality of the resulting decomposition does not pass the evaluation, the cut is rejected, and
the process continues on a di�erent subcomponent. If the partition is accepted, the process continues
recursively on the two new components. The parent component is removed from the component list, and
the new components are inserted into the sorted list according to their Representation Quality value.
The process will stop when when the Quality Threshold is met for all components or if no more desirable
cuts can be found.

The Bene�t Threshold is set to be a �xed percentage higher than the speci�ed value in the beginning,
and is then reduced to the input Threshold value as the process continues. This method attempts to
�nd the best partitions �rst.

Figure 31 illustrates the step-by-step decomposition of the dinosaur example. The Conservative Hull is
shown for each component, in addition to a representation of the Axial Shape Graph.

6.5.4 Output Representation

The application is fully automatic, and generates two types of output �les. The �rst �le is in the
UG3 format and contains polygonal descriptions of the components of the resulting Conservative Hull
Hierarchy (the Bounding Box Hierarchy can be trivially regenerated from the Conservative Hulls).

The second output �le can be used to visualize the decomposition process. The �le contains the G-Rep,
Part Tree, and generated representations for each decomposition step of the representation generation
pipeline. The �le is accepted as input to an interactive visualization program provided by the appli-
cation that allows the user to visually step through the decomposition process, by either following the
decomposition steps iteratively, or hierarchically .

6.6 Results

We have utilized this application to generate representations for a variety of 2D objects. In all cases
the application was able to meet the speci�ed Representation Quality Thresholds. Figure 32 shows the
representation hierarchy produced for the dinosaur. More results are shown in Appendix 1. We utilized
the same threshold values, chosen somewhat arbitrarily, for all of the examples:

Quality Benefit Size

�QCH 0:90 �BCH 0:80 SMIN 60
�QBB 0:50 �BBB 1:02
�QAR 0:33 �BAR 1:02 SMAX 5000

The average and maximum Hausdor� distances (HAVG and HMAX) for the resulting leaf parts in the
hierarchy are also shown below each �gure.

The representations we have generated meet the Representation Criteria speci�ed in Section 6.1:
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level 1

level 2
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Conservative Hulls Bounding Boxes

level 4

level 5

Original Object Axial Shape Graph

Figure 32: Dinosaur: HMAX = 5:1;HAVG = 1:8;QCH = 0:9;QBB = 0:5;QA = 0:33;BCH = 0:8;BBB =
1:02;BA = 1:02
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1. Correctness: The output representations are provably correct, since the Conservative Hull en-
closes the spatial representation which is guaranteed by construction to be conservative.

2. E�cient Intersection Testing: The representations are convex, and therefore because we are
assuming a Collision Detection system utilizing the Lin-Canny approach, intersection testing is
extremely e�cient. Since we are utilizing a hierarchical intersection test, the representations must
also �t the data well to be e�cient, and the hierarchy should be well-balanced. The application
generates representations that meet the speci�ed Representation Quality Threshold, and produces
fairly balanced trees, indicating the potential for good overall performance.

3. E�ciency of Representation:

� Detail: The �ltering provided by the spatial representation removes details irrelevant to the
Collision Detection task.

� Redundancy: The Conservative Hull representations produced in most cases contain very
little overlap. The application does not explicitly test for overlap of subcomponent represen-
tations when performing the decomposition. Such a test could be built into the evaluation
module if desired.

� Size: The Absolute Size Threshold SMAX ensures the decomposition of any relatively large
components.

6.6.1 E�ects of Object Rotation

The representation hierarchy is constructed by decomposing the object into subcomponents based on its
shape, and constructing convex approximations for each subcomponent. Since both the shape and the
convex hull of an object are invariant to rotation, the output representations generated from an ideal
process should be insensitive to object rotation as well.

The decomposition process of our Representation Generation Application utilizes the Axial Shape Graph,
which is based on the discretized, axis-aligned Cell-Based Spatial Representation. The CSR is intrin-
sically sensitive to rotations, and to noise and small perturbations in the object boundary. Figure 33
illustrates the ASG for the dinosaur rotated 5,10,15,45, and 90 degrees. It is clear that the skeleton is
di�erent, but the main structure is present in all cases. The di�erences appear as small branch details
o� the main structure. The decomposition process is rather insensitive to these extra branches. The
ASG is utilized as a hint only, and the evaluation of any possible cuts generated by these branches shows
them to be inappropriate partitions.

While not invariant to rotation, our method of axis construction �lters out much of the noisy information
found in many skeletonization approaches, and is therefore less sensitive to rotation. Many approaches in
the vast skeletonization literature have addressed the issue of stability. The early work of Pizer presents
a multi-resolution blurring approach to produce more stable axial representations [27]. It is also possible
to produce an axial representation that is rotation invariant, such as the more recent method of cores
presented by Pizer et al [6]. It would be possible, therefore, to replace our axial generation approach
with one that is more stable. A main advantage of our ASG decomposition approach, however, is that
we do not require that the axial representation be exact, or even particularly stable. The purpose of the
graph structure is to capture general shape feature trends, not exact information. In the decomposition
process, the ASG is utilized to provides hints about the location of potential subcomponents, and about
the global structure of the object. In practice, our approach performs very well under object rotation,
despite the possible changes in the underlying Geometry Representation structure.
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Figure 33: E�ects of Rotating Object on Axial Shape Graph

To determine the sensitivity of the approach to object rotation, we have run the application on rotated
versions of a single input object. We then compared the representation hierarchy generated with the
rotated object as input, to a rotated version of the hierarchy generated for the original, un-rotated object.
Figure 34 shows the �nest level of the Conservative Hull representation hierarchy when the application
is run on the object after it has undergone the di�erent rotations. The �gure on the left in each case is
the output representation, and the �gure on the right is created by taking the output of the application
when run on the unrotated dinosaur, and then rotating it by the speci�ed amount. The results are
similar in that the same features are captured and the hierarchical decompositions are similar. The
results are not exactly the same, but that is not surprising. There is no single correct representation.
The application is set to the task of producing a representation that meets the speci�ed metrics; in all
cases both representations satisfy the metrics, and are therefore equivalent under the given framework.

6.6.2 Application Performance

The application running time depends on the number of cells representing the object in the Cell-Based
Spatial Representation, and on the number of parts produced. The running time is also dependent on
the number of partitions that are tried and rejected. This is related to the shape complexity of the
object, but hard to quantify.

The amount of per-cell computation is signi�cant in the current implementation, resulting in an overall
process requiring minutes for any object of reasonable detail. At each decomposition step, the next
cut is determined, made, and evaluated. In the current implementation, this involves recalculating the
ASG structure for each subcomponent. It would be possible to achieve signi�cantly faster results by
utilizing the ASG information of the parent component, and performing local �x-ups at the partitioning
boundaries to recalculate the ASG structure.

Figure 35 illustrates the e�ects of cell size and number of partitions on the application running time.
A rectangle is utilized as the input object to remove any factors due to shape complexity. The largest
component of the rectangle is divided approximately in half along its maximum dimension at each
partitioning step. The graph in 35a shows the e�ects of object size on the application running time:
times for a rectangle undergoing a single partition are shown along with the best �tting line on a log-log
scale as the size of the rectangle in cells is increased (i.e. the cell size is decreased). In this case, the
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Figure 34: E�ects of Rotating Object on Output Representation
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running time increases linearly with the number of cells. The graph in 35b illustrates the e�ect on
the running time when the number of partitions is increased. Again, the increase in running time is
approximately linear as the number of partitions increases. Figure 35c shows the running time on a
log-log scale for the various cell sizes, with a line �t to the data for each di�erent number of partitions
(1,2,4,8,16). The partition count is shown to the left of each graph.

The following table lists approximate running times of the application for some of the examples from
the appendix. The overall size of the object in cells is listed, as well as the total number of parts in the
resulting hierarchy, and total running time. All times were based on running the application on a Silicon
Graphics 200MHZ Indigo2 with 64MB of main memory, taking the CSR representation as input.

Application Performance
Object Cactus Skeleton T-Rex Dinosaur Marlin Frog Duck Snowake
Size (cells) 1740 7129 7858 8527 10209 10876 14946 17434
Parts 13 67 87 37 39 45 29 101
Time (s) 42 583 2143 340 770 1055 1410 2689

6.7 Comparison to Previous Work

Since we assume the Collision Detection system utilizes a variant of the Lin-Canny intersection algo-
rithm for convex objects, our approach generates a hierarchy of convex approximations whose union is
guaranteed to conservatively cover the object. Our approach has several advantages over a strict convex
decomposition of the object. First, it has been shown that the problem of optimal convex decomposition
is NP-hard [7]. More importantly, the worst case lower bound on the number of resulting subcomponents
is O(N2), where N is the number of concave vertices [2, 7]. Consider a polygonal approximation to a
half circular arc. With a strict convex decomposition, this object would be decomposed into as many
pieces as there are edges approximating the curve. There is clearly a tradeo� between the number of
subcomponents and the tightness of the convex approximation.

Bounding boxes are often utilized as the sole approximating structure in the hierarchy. Ponamgi et
al [28] automatically construct an axis-aligned bounding box hierarchy from the input object utilizing
an approach based on a variant of octree subdivision. Optimally aligned bounding boxes have been
proposed [18], o�ering rotation invariance at a slightly higher intersection testing cost. But whether
optimally aligned or not, bounding boxes most often do not provide a tight �t of the data.

The approach of Hubbard [21] utilizes spheres as approximations for the broad phase of Collision Detec-
tion. Spheres are rotationally invariant, and allow very e�cient intersection testing , but su�er from the
same representational e�ciency problem as bounding boxes; most objects do not naturally decompose
into a set of components that are closely approximated by minimally overlapping spheres.

Hubbard's sphere hierarchy construction is similar to our approach in that it utilizes an approximate
medial axis representation when choosing a set of spheres to represent the object. The medial axis
is calculated by constructing the Voronoi diagram [29] of the object and taking points along Voronoi
cell boundaries as the axial points. Each such cell boundary point is equidistant to two points on the
object boundary. In 2D, a circle is associated with each axial point. The axial point is the center of the
circle, and the circle passes through three points (called the forming points) on the object's boundary.
The representation is progressively simpli�ed by merging adjacent circles with a single circle that passes
through the forming points of both circles. The result may not be conservative, so an additional pass is
necessary to add the necessary circles to ensure full coverage.
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Figure 35: Application running times: a) Running times for a rectangle at di�erent cell sizes undergoing
a single partition. b)Running times for a size of 9600 cells with 1,2,4,8 and 16 partitions. c)Running
times for each size and partition count.
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7 Conclusion/Future Work

This thesis provides two main contributions: �rst, the G-Rep hierarchy is introduced as a means of
encapsulating the geometric characteristics of an object, second, a general framework is presented that
utilizes the G-Rep in conjunction with task-speci�c metrics to automatically produce representations for
geometric tasks.

We have shown how this structure can be utilized to generate representations specialized for the task
of Collision Detection in 2D environments. The general framework has proved successful in generating
representations that meet the task speci�cations for a variety of 2D objects. The current implementation
is a prototype, and could be improved upon and extended in many ways.

Implementation optimizations could substantially decrease the running time, both by utilizing local
update operations and the multi-resolution information which is currently calculated, but not used, in
the representation generation process. It is not clear, however, if even an improved approach could be
utilized as anything but a preprocessing step.

To increase e�ciency and stability, the Axial generation module could be replaced by an alternate con-
struction method such as used in producing Pizer's cores. Pizer's approach also provides additional
exoskeleton information which represents object concavities explicitly, and could be utilized in the de-
composition process. Most importantly, this approach is far more e�cient, generating axial information
on demand and making it potentially feasible to have an approach that works at interactive speeds.
Even if it is not possible to generate axial information for all objects in realtime, with a more e�cient
approach it may be possible to allow some dynamic updates on the shape of objects, or allow new objects
to be inserted into the environment at runtime.

We believe this basic framework can be extended to accommodate a variety of geometric tasks. In
particular, we will apply this approach to generate cell-and-portal representations to be used for visibility
preprocessing, and as a means of introducing hierarchy in unstructured models. In addition we would
like to investigate incorporating di�erent classes of metrics beyond geometric measurements into the
framework, most speci�cally perceptually-based metrics.

Moreover, this work provides a solid stepping stone towards the development of an analogous approach
to perform object abstraction in 3D environments, a realm in which there is a strong need for practical
and e�cient task-speci�c representations.
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8 Appendix

This appendix illustrates the representation hierarchies generated by our approach for various objects.
Each �gure shows the original object, its Axial Shape Graph, and the Conservative Hull and Bounding
Box Representation Hierarchies. The Hausdor� distance values are noted under the �gure.

level 0 level 5level 1 level 2 level 3 level 4

Conservative Hulls
level 0 level 1 level 2 level 3 level 4 level 5

Bounding Boxes

Original Object Axial Shape Graph

Figure 36: Duck: HMAX = 7:3;HAVG = 2:9
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Original Object Axial Shape Graph
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level 3 level 4level 0 level 1 level 2 level 5

Figure 37: Skeleton:HMAX = 5:2;HAVG = 2:3
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Figure 38: T-Rex: HMAX = 7:3;HAVG = 3:0
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Figure 39: Snowake:HMAX = 9:1;HAVG = 2:4
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Figure 40: Marlin: HMAX = 31:9;HAVG = 3:4
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Figure 41: Frog: HMAX = 8:5;HAVG = 2:6
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Figure 42: Muledeer:HMAX = 9:14;HAVG = 2:7
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Figure 43: Praying mantis: HMAX = 14:4;HAVG = 3:5
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Figure 44: Dancing skeleton: HMAX = 7:9;HAVG = 2:7
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