
Flow-Insensitive Points-to Analysis with

Term and Set Constraints

Je�rey S. Foster Manuel F�ahndrich Alexander Aiken

Report No. UCB/CSD-97-964

August 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Flow-Insensitive Points-to Analysis with

Term and Set Constraints�

Je�rey S. Fosteryz Manuel F�ahndrichz

EECS Department
University of California, Berkeley

Berkeley, CA 94720-1776
fjfoster, manuel, aikeng@cs.berkeley.edu

Alexander Aikenz

August 1997

Abstract

We describe new type systems for two kinds of
ow-insensitive points-to analyses, one based on An-

dersen's algorithm and one based on Steensgaard's. The type systems are formulated using a mixed

constraint framework. These systems can be seen as a straightforward axiomatization of an informal
description of the algorithms, and we show this formally by proving soundness with respect to an oper-

ational semantics. Further, we show that these two systems are nearly identical, except that one uses

subset constraints and one uses uni�cation. We discuss an implementation of these systems and describe
experiments that demonstrate that our general framework achieves running times within a small constant

factor of a hand-coded solution. We conclude that a mixed constraint system provides a useful, practical

framework for static semantic analyses.

1 Introduction

For each pointer-valued expression in a program, points-to analysis computes the set of memory locations

to which that expression could point. The may-alias information computed by points-to analysis enables

many optimizations in pointer-based languages such as C and C++ [ASU88]. Several
ow-insensitive
points-to analyses for C have been proposed [And94, Ste96a, Ste96b, SH97]. These
ow-insensitive

analyses achieve good scaling behavior by ignoring the ordering of statements [Hor97].

Shapiro and Horwitz [SH97] compare Andersen's and Steensgaard's
ow-insensitive points-to analyses
[And94, Ste96b]. Both algorithms were originally presented using non-standard type systems; however,

although both algorithms solve the same problem, the solutions look very di�erent. [SH97] informally

uni�es the two approaches by describing the algorithms' operation on a points-to graph [EGH94].

In this paper, we present new constraint-based type systems for Andersen's and Steensgaard's analy-

ses. The correspondence between these new systems is made clear, formalizing the description in [SH97].

The di�erences between the two algorithms are expressed in a minimal fashion as a choice between

inclusion and equality constraints.

Our type systems are designed using term and set constraints. Set constraints [AW92, AW93, FA96,

HJ90, Hei92] de�ne inclusion relationships between types; we use set constraints to describe Andersen's
analysis. Term constraints de�ne equality relationships between types (e.g. ML type inference [Mil78]);

we use term equations to describe Steensgaard's analysis. We have implemented these new type systems

in a mixed term and set constraint framework [FA97]. The goal of our work is to show that not only

�Revised November, 1997.
ySupported by an NDSEG fellowship.
zSupported in part by NSF Young Investigator Award CCR-9457812, NSF Grant CCR-9416973, and a gift from Rockwell

Corporation.

1

a = &b

b = &c

a = &d

d = &e

a

b c

d e

�
�
�
�1

P
P
P
Pq

-

-

(a) Andersen's Analysis

a b, d c, e- -

(b) Steensgaard's Analysis

Figure 1: Points-to graphs generated by Andersen and Steensgaard's algorithms (from [SH97]).

is this framework a natural formalism for expressing two very practical algorithms, but that it also is a

useful and productive system in which to implement the analyses.
In Section 1.1, we give an intuitive description of Andersen's and Steensgaard's analyses. Section 2

discusses the original type systems for these analyses. In Section 3 we brie
y discuss the term and set

constraint framework. We present our type system for Andersen's analysis in Sections 4 and 5, and our
system for Steensgaard's analysis in Section 6. We formally show the correspondence between the two

analyses and prove a soundness result in Section 7. Finally, Section 8 discusses implementation and

performance issues. Section 9 concludes.

1.1 Informal Description

Both Andersen's and Steensgaard's analyses build a points-to graph [EGH94]. The nodes of a points-to

graph represent memory locations or sets of memory locations, and there must be an edge from x to y if
any permutation of the assignment statements in the program may cause location x to contain a pointer

to y. In our analysis, memory locations include local and global variables, function addresses, strings,

and heap objects.
Figure 1 shows the points-to graphs computed by Andersen's and Steensgaard's analyses for a simple

C program. Informally, Andersen's analysis begins begins with some initial points-to relationships and

closes the graph under the following rule:

For an assignment e1 = e2, anything in the points-to set for e2 must also be in

the points-to set for e1.

Thus, each node may have n successors, where n is the number of locations in the program. For example,

applying this rule to the assignment statements in Figure 1 yields the points-to graph in Figure 1a. The

statement a = &b adds b to the points-to set for a. The next statement b = &c adds c to the points-to

set for b. The last two statements add d to the points-to set for a and e to the points-to set for d.

Steensgaard's analysis uses the same idea, except each node is allowed at most one successor. Rather

than representing individual variables, each node in the points-to graph is an equivalence class [�] of
variables. The algorithm joins equivalence classes to satisfy the one-sucessor constraint. Thus, there is

an edge from [x] to [y] if any node in [x] may contain a pointer to a node in [y]. Informally, we apply the

rule

For the assignment e1 = e2, the points-to set for e2 must be equal to the points-to

set for e1.

For example, in Figure 1b, the �rst two assignments act as in Andersen's algorithm: a points to b

and b points to c. But then the assignment a = &d causes b and d to be uni�ed, making d also point to

c. The last assignment d = &e causes c and e to be uni�ed.
Intuitively, Steensgaard's analysis trades precision for e�ciency. In Figure 1b, Steensgaard's analysis

conservatively computes that c and e may be aliased, when in fact they cannot.

2

[: Set Set! Set

\ : Set Set! Set

0 : Set

1 : Set

Figure 2: Operations in the sort Set.

2 Related Work

Andersen proposes his algorithm as part of a larger thesis about the analysis of C programs [And94].

His type system requires a specialized constraint to model updatable references. In contrast, we show
that inclusion constraints on updatable references can be modeled naturally using standard notions of

covariance and contravariance. We discuss this issue in Section 4.

Steensgaard proposed his analysis as an e�cient alternative to Andersen's [Ste96b]. Andersen's anal-
ysis runs in O(n3) time, where n is the number of locations in the program. By using uni�cation instead

of inclusion constraints, Steensgaard reduces this to O(n�(n;n)), where � is the inverse Ackerman's

function.
Steensgaard's system is surprisingly di�cult to understand. First, [Ste96b] gives a system for type

checking rather than type inference: Statements are type checked but the system does not actually

assign types to program variables. Second, Steensgaard's type system only includes rules for certain
forms of statements and not for arbitrary expressions, which complicates the rules by mixing addressing,

dereferencing, and assignment expressions together in the same rule. Finally, his system uses a non-

standard notion of type equivalence. These three points combined to make formal reasoning about the
system very di�cult.

Our work was inspired by Shapiro and Horwitz's paper examining the precision-e�ciency tradeo�

between the two analyses [SH97]. They describe the analyses as being at two ends of a spectrum:
Andersen's, the more precise, allows an arbitrary set of successors for a node, while Steensgaard's, which

is less precise, allows only one. They measure the performance and precision of both analyses. To make

these comparisons, Shapiro and Horwitz implemented their algorithms in C. In Section 8, we describe
our own implementation and compare its performance to their hand-coded C version.

3 The Analysis Framework

We have developed type systems for Andersen's and Steensgaard's points-to analyses in the context of

the mixed term and set constraint framework described in [FA97]. Each analysis generates a system of
constraints, and we compute the points-to graph for a program by solving the generated constraints. In

this section, we brie
y discuss the framework. We describe the constraint language and give resolution

rules for solving a system of constraints.
From the user's point of view, our framework consists of a number of sorts of expressions together

with resolution rules for constraints over those expressions. We discuss only the two sorts Term and Set

used in our points-to analyses.
Each sort s is parameterized by user-de�ned constructor signatures. If S is the set of sorts, each n-ary

constructor c is given a signature

c : �1 : : : �n ! S

where �i is s or s for some s 2 S. Overlined sorts mark contravariant arguments of c; the rest are

covariant arguments. Sort Term is a set of constructors �Term and variables VTerm. Terms over �Term and
VTerm are de�ned by giving constructor signatures

c : Term : : :Term
| {z }

arity(c)

! Term c 2 �Term

Sorts may also have operations; sort Set includes the set operations in Figure 2 (the set operations

plus least and greatest sets). Set expressions are de�ned by the signatures

c : Set : : :Set
| {z }

arity(c)

! Set c 2 �Set

3

S ^ f(T1; : : : ; Tn) =t f(T
0

1; : : : ; T
0

n) � S ^ T1 ��1 T
0

1 ^ T 0

1 ��1 T1 ^ � � � ^ if f : �1 � � � �n ! Term

Tn ��n T 0

n ^ T 0

n ��n Tn

S ^ f(: : :) =t g(: : :) � inconsistent if f 6= g

S ^ f(: : :) =t � ^ � =c T � � =t T

(a) Resolution rules for sort Term.

S ^ 0 �s T � S

S ^ T �s 1 � S

S ^ c(T1; : : : ; Tn) �s c(T
0

1; : : : ; T
0

n) � S ^ T1 ��1 T
0

1 ^ � � � ^ Tn ��n T 0

n if c : �1 � � � �n ! Set

S ^ c(: : :) �s d(: : :) � inconsistent if c 6= d

S ^ T1 [T2 �s T � S ^ T1 �s T ^ T2 �s T

S ^ T �s T1 \ T2 � S ^ T �s T1 ^ T �s T2

S ^ � �s � � S

S ^ � \ T �s � � S

(b) Resolution rules for sort Set.

S ^ X �� � ^ � �� Y � S ^ X �� � ^ � �� Y ^ X �� Y

S ^ T1 �� T2 � S ^ T2 �� T1

(c) General rules.

Figure 3: Resolution rules for constraints.

Each sort s has a constraint relation �s and resolution rules. Figure 3 gives the rules for sorts
Term and Set. Constraints and resolution rules preserve sorts, so that X �s Y implies X and Y are

s-expressions.

For the Term sort, there are two constraint relations. �Term is equality, and the �rst two resolution
rules in Figure 3a implement term uni�cation for constructors with signatures Term : : : Term ! Term.

For clarity we write the constraint relation as \ =t " instead of �Term. The second constraint relation is

conditional equality, written �c or =c . The last rule in Figure 3a turns conditional equality � =c T

into unconditional equality � =t T when � is instantiated with a constructed term. We use conditional

equality for Steensgaard's analysis; see Section 6.

Figure 3b shows the rules for the Set sort. We give only the standard rules [AW93] used for Andersen's
analysis. We have omitted rules for negations, rules for simplifying intersections, and some restrictions

on the form of solvable constraints. The details may be found in [AW93, FA97].

Figure 3c gives two general rules that apply to all sorts. The �rst rule expresses that �� is transitive.

The second
ips constraints that arise from contravariant constructor arguments.

4 Andersen's Analysis: A First Cut

We begin by examining why standard set-based analysis [Hei92] seems insu�cient for expressing Ander-

sen's algorithm. Consider the C fragment

e ::= x j �e j &e j e1 = e2 j e1; e2

consisting of variables, pointer dereferencing, the address-of operator, assignment, and sequencing. Our

goal is to assign a type and a series of constraints to each expression such that the solution to the
constraints yields the Andersen points-to graph of the program.

With each variable x we associate a type variable x representing the contents of x. We shall maintain

this font distinction, writing the source language in typewriter and writing types in italics. To express
pointer types, we de�ne a parameterized type constructor ref (�), whose informal meaning is pointer to

�. Thus, our initial grammar for types � is

� ::= � j ref (�)

4

We ignore the type of function values for the moment. To compute the points-to graph, we give a series
of inference rules with constraints as side conditions. A derivation is valid only if the constraints in the

derivation are satis�able.

De�nition 4.1 Let CS be a set of constraints, and let c be an arbitrary constraint. De�ne CS ` c if c

holds in any interpretation of CS consistent with the resolution rules in Figure 3.

For the type systems presented here, CS ` c can be determined by applying the resolution rules until
closure and then checking whether c is in the �nal system of constraints. We extract the points-to graph

from the constraints by de�ning the points-to relation PPrelim:

De�nition 4.2 Let L be the set of memory locations, L = fx j x is a program variableg. De�ne the
points-to relation P : L! 2L as y 2 PPrelim(x) if

CS ` ref (y) �s x

Thus x points to y if y 2 PPrelim(x).

The �rst inference rule is the standard rule for sequencing:

e1 : �1 e2 : �2
e1; e2 : �2

(SeqPrelim)

The rule for variables is

x : ref (x) (VarPrelim)

Notice that we have lifted x to have the type pointer to x. By treating a variable as its l-value (its
address) we avoid separate rules for l- and r-values.

The address-of operator takes an expression of type � and returns a pointer to � :

e : �

&e : ref (�)
(AddrPrelim)

For the assignment e1 = e2, the points-to set for e2 should be a subset of the points-to set for e1. We
express this requirement using an inclusion constraint:

e1 : �1 e2 : �2
�2 �s �1

e1 = e2 : �2

(AsstPrelim)

Here the type of the assignment is the type of the right-hand side, which is more precise. The types

�1 and �2 describe the types that e1 and e2 point to. Assigning e2 to e1 means that e1 could point to

anything e2 points to, hence the constraint �2 �s �1.
The previous rules work correctly within the fragment of the language they cover. However, a problem

arises when we try to write down the rule for dereferencing. What the rule should do is clear: It should

be the inverse of (AddrPrelim). If the expression e contains a pointer to some type � , then �e has type � .
To �nd the type e points to, we project out a ref from the type of e:1

e : � � �s ref (�)

�e : �
(DerefPrelim)

Unfortunately, with this rule we have broken an implicit invariant of the other four rules. Previously,

the type of an expression was exactly a constructed type ref (�). But in the rule (DerefPrelim), if e has
type ref (�) then the type of �e is only an upper bound on �. Thus, rule (AsstPrelim) no longer works. In

that rule, now �1 may only be an upper bound on the type we want to constrain, and so the constraint

�2 �s �1 may have no e�ect.
For example, consider the statement *x = y. Applying the type rules yields

x : ref (x) ref (x) �s ref (�)

�x : � y : ref (y)

ref (y) �s �

�x = y : ref (y)

1In set-based analysis [Hei92], this would be written with an explicit projector ref
�1

:

5

def ::= f(x1; : : : ;xn)! y = e Function de�nition

j def1def2 Sequencing

e ::= n Constant integer n

j x Variable
j �e Pointer dereference

j &e Address of e

j if e1 then e2 else e3 Conditional
j e1 = e2 Assignment

j f(z1; : : : ;zm) Function application

j \string" String constant
j malloc(e) Heap allocation

j e1op e2 Scalar operation (e.g. +, --, *)

j e1; e2 Sequencing
j (type) e Type cast

j e:id Field access

j e! id Field indirection (= (�e):id)
j e1[e2] Array access (� �(e1 + e2))

Figure 4: Syntax for the source language

The points-to set for y
ows from y to �, but the connection to x is broken because � is an upper bound

on x.
This direct approach fails because of a well-known problem with updatable references. References of

type � can be viewed as an abstract data type with two operations get : unit ! � and set : � ! unit.

Notice that � appears both covariantly and contravariantly, which suggests that correctly modeling
references requires covariant and contravariant components. Our naive type rules model references as

covariant, which fails. Set-based analysis [Hei92] does not directly model contravariance, and so without

specialized constraints as in [And94], it cannot express Andersen's analysis.

5 Andersen-Style Analysis

5.1 Source language

Figure 4 shows the fragment of C for which we present our type rules. Because the analyses are
ow-
insensitive, many constructs of the language have no e�ect. A program consists of a sequence of function

de�nitions. Note that we give a name to the return value from a function (written as y in the grammar).

Return statements are treated as assignments to this special return value. For example, within the

function foo, the statement return a is interpreted as @foo return = a.

We assume that the source program satis�es C's type rules. For example, we make no e�ort to

disallow strings on the left-hand side of an assignment in the abstract syntax, although of course this
could not happen in a legal program.

5.2 Types

Our solution to the problem outlined in Section 4 is to re
ect the get and set operations of updatable
references directly in the type rules. We split what was one �eld in Section 4 into two �elds, one of which

is covariant and the other of which is contravariant. In the cases when these �elds are identical, we have

an invariant �eld. By carefully choosing where these �elds are not identical, we can control the
ow of
information precisely to yield Andersen's analysis.

In this new system, types are described by the following grammar:

�A ::= � j ref (pget = �A; pset = �A; fget = �A; fset = �A)

�A ::= � j lamn(�A0
; �A1

; : : : ; �An)

with constructor signatures

6

And

n : 0 (Const� IntA)

x : ref (pget = pset = x; fget = fset = x0) (VarA)

e : �

&e : ref (pget = pset = �)
(AddrA)

e : � � �s ref (pget = �)

�e : �
(DerefA)

e1 : �1 e2 : �2
�1 �s ref (pset = �;fset = �0) �2 �s ref (pget = �;fget = �0)

� �s � �0 �s �
0

e1 = e2 : �2

(AsstA)

f : ref (fget = fset = f)

y : �y e : �e 81 � i � n : xi : �i
lamn(�y; �1; : : : ; �n) �s f

f(x1; : : : ; xn)! y = e : void

(DefnA)

f : �f xi : �i 81 � i � n

�f �s ref (fget = lamn(�0; �1; : : : ; �n))

�i �s ref (pset = �if ; fset = �0

if
) �i �s ref (pget = �ix ; fget = �0

ix)

�ix �s �if �0

ix �s �
0

if

f(x1; : : : ; xn) : �0

(AppA)

Figure 5: Inference rules for Andersen-style analysis.

ref : (pget = Set; pset = Set; fget = Set; fset = Set)! Set

lamn : Set � � � Set
| {z }

n+1

! Set

The informal meaning of ref (pget = pset = �; fget = fset = �) is pointer to location � and pointer

to function �. The pget �eld is covariant, the pset �eld contravariant. There is one lamn constructor

for each function arity, where lamn(�0; �1; : : : �n) stands for a function with n arguments whose formal
parameters have types �1 : : : �n and whose return value has type �0. We discuss functions with variable

numbers of arguments in Section 8. When we omit a label from a type, it means that �eld contains a

fresh, unconstrained variable.
Figure 5 shows the basic type system And for our implementation of Andersen's algorithm. An

implicit global environment maps each variable x to a type ref (pget = pset = x; fget = fset = x0), as

expressed in the rule (VarA). We assume that all variables are distinct; in our implementation, we �rst
�-convert the program before applying the type rules.

The remaining rules Common covering the rest of C are shown in Figure 6. Although some of these

rules look non-compositional, in fact that is not the case. The non-compositional antecedents of type
rules like (Array) merely serve as convenient abbreviations for more complicated rules.

Let

`A� provable in And+Common

We de�ne the points-to graph for Andersen-style analysis:

De�nition 5.1 Let L be the set of all memory locations in the program; a memory location is a local

or global variable, string, or a syntactic occurrence of malloc. De�ne the points-to relation PA : L! 2L

as y 2 PA(x) if
CS `A ref (pget = pset = y; fget = fset = y

0) �s x

where x and y are from the rule (VarA).

7

Common

&Vl : � Vl fresh

\string00l : �
(Const� Str)

&Vl : � e : �e Vl fresh

mallocl(e) : �
(Malloc)

Vl : � e1 : �1 e2 : �2 e3 : �3 Vl fresh

Vl = e2 : �
0

1 Vl = e3 : �
0

2

ifl e1 then e2 else e3 : �

(Cond)

Vl : � e1 : �1 e2 : �2 Vl fresh

Vl = e1 : �
0

1 Vl = e2 : �
0

2

e1 opl e2 : �

(Op)

e1 : �1 e2 : �2
e1; e2 : �2

(Seq)

def 1 : void def 2 : void

def 1def 2 : void
(Def � Seq)

e : �

(type) e : �
(Cast)

e : �

e:id : �
(Field � direct)

�e : �

e! id : �
(Field � indirect)

�(e1 + e2) : �

e1[e2] : �
(Array)

Figure 6: Inference rules common to both analyses.

PA de�nes the points-to graph: There is an edge from x to y if y 2 PA(x). Note that this interpretation

is somewhat di�erent than the typical result of set constraint analysis. In this case, only the relationships
between types are important. It would be possible to add constants to the system by adding more �elds

to ref , but that adds no power.
We assert that And+Common is exactly an axiomatization of the informal algorithm described

earlier. We shall discuss each type rule of And to illustrate this correspondence and prove the claim

formally in Section 7.2.

5.3 Discussion of Inference Rules

The �rst rule of And, (Const� IntA), assigns the empty set to integers. As discussed before, the rule

for variables (VarA) lifts the type of a variable to a pointer type. The rule (AddrA) says that &e points
to e. The rule for dereferencing (DerefA) states almost exactly the reverse: �e is an upper bound on the

type of whatever e points to. Notice that we use the pget �eld to get the contents of e.

Informally, the rule (AsstA) should make the points-to set for e2 a lower bound on the points-to set for
e1. Suppose e1 points to some type �l and e2 points to some type �r. Ignoring the f �elds for simplicity,

by the de�nition of PA, we have

ref (pget = pset = �l) �s �1
ref (pget = pset = �r) �s �2

The �s is not necessarily an equality because of rule (DerefA). Appendix A provides justi�cation for

having pget and pset the same. For now, simply observe that it is certainly true of the types of variables,

8

and these are the types that propagate through the rest of the system. Since pset is a contravariant �eld,
the constraint

�1 �s ref (pset = �)

makes � a lower bound on the points-to set for �l:

� �s �l

Similarly, �2 � ref (pget = �) makes � an upper bound on �r, � �s �r. Thus, we get the desired constraints

�r �s � �s � �s �l

and the points-to set for e2 becomes a lower bound on the points-to set for e1.

Function pointers originate with the function de�nition, in the rule (DefnA). This rule boxes up the

(l-value) types for the formal parameters and the return value for the function, making it a lower bound
on the points-to set for f . Function de�nitions have type void, i.e. they have no type.

When a function is applied, rule (AppA) extracts the types of the actual parameters and assigns them

to the formal parameters. In e�ect, (AppA) rewrites the application f(z1; : : : ; zn) as the sequence

x1 = z1; : : : ; xn = zn; y

where the xi are the formal parameters and y is the return value.

The rules in Common are straightforward, so we discuss only the essential ideas. The type of a

string or dynamically allocated memory is a pointer to a fresh variable, as in the rules (Const� Str) and
(Malloc).

The rules (Cond) and (Op) create a fresh program variable Vl and join the subexpression types

by assigning them to Vl. We explain the reason for these slightly convoluted rules in Section 6. For
Andersen's analysis, the result type points to the union of the subexpressions' points-to sets. This is

overly conservative for And+Common, but we chose this rule to match [SH97]. We discuss this issue

further in Section 8.
Structures and arrays are atomic; we make no distinction between array elements or between �elds

of structures. These rules assume that the programmer does not take advantage of the compiler's data

layout strategy. Note that, in fact, a common (non-portable) implementation of functions with variable
numbers of arguments relies on having parameters contiguous in memory to access the variable-length

part. Currently, neither our system nor Shapiro and Horwitz's system supports this.

5.4 Implementation

Our implementation uses type rules that di�er slightly from those presented here. In general, only two

of the four �elds of a particular ref are used, because most C programs do not mix function types and
pointer types in the same variable. Thus, to reduce the number of type variables generated by the rules,

in our implementation we remove the fget and fset �elds and place lamn terms in pget and pset . Thus,

in general the p �elds may contain a union of terms with ref and lamn head constructors. We use the
pattern matching mechanism described in [FA97] to select the correct terms when projecting out of a

certain constructor.

6 Steensgaard-Style Analysis

Intuitively, Steensgaard's analysis replaces inclusion constraints with equality constraints. Where Ander-
sen's analysis creates a set, Steensgaard's analysis uni�es the members of that set to create an equivalence

class. For example, for an assignment e1 = e2, the rule (AsstA) adds the members of the points-to set for

e2 to the points-to set for e1. The analogous rule for Steensgaard's analysis instead uni�es the equivalence
classes for the points-to sets of e1 and e2.

Figure 7 shows the rules for our implementation of Steensgaard's Algorithm, Ste. As before, Ste+

Common is the complete type system. The type language is a small modi�cation of the previous system:

�S ::= � j ref (p = �S; f = �S ; t = �S)

�S ::= � j lamn(�S0 ; �S1 ; : : : ; �Sn)

9

Ste

n : (Const� IntS)

x : ref (p = x; f = x0; t = xt) (VarS)

e : �

&e : ref (p =c �)
(AddrS)

e : � � =c ref (p = �)

�e : �
(DerefS)

e1 : �1 e2 : �2
�1 =c ref (p = �; f = �0) �2 =c ref (p = �;f = �0)

� =c � �0 =c �
0

e1 = e2 : �2

(AsstS)

f : ref (p = f;f = f 0; t = f 00)

y : �y e : �e 81 � i � n : xi : �i
lamn(�y; �1; : : : ; �n) =c f

0

f(x1; : : : ; xn)! y = e : void

(DefnS)

f : �f xi : �i 81 � i � n

�f =c ref (f = lamn(�0; �1; : : : ; �n))

�i =c ref (p = �i1 ; f = �i2) �i =c ref (p = �i0
1

; f = �i0
2

)

�i0
1

=c �i1 �i0
2

=c �i2

f(x1; : : : ; xn) : �0

(AppS)

Figure 7: Type system for Steensgaard's algorithm

with signatures

ref : (p = Term; f = Term; t = Term)! Term

lamn : Term � � � Term
| {z }

n+1

! Term

This system uses Term �elds instead of Set �elds and replaces inclusion constraints with uni�cation.

The pget and pset �elds in the previous type system have coalesced into one �eld in this system because

=t models invariance. Function types lamn now appear structurally within ref types because uni�cation

can only join terms with the same head constructor. The tag �eld t serves to identify equivalence classes.

Because pure uni�cation is a coarse operation, Ste uses a form conditional uni�cation to improve

the precision of the analysis, as proposed by Steensgaard [Ste96b]. We use =c to denote Steensgaard's

conditional uni�cation. Figure 3a contains the rewrite rule for =c . Intuitively, conditional uni�cation

x =c y becomes unconditional uni�cation x =t y if x is instantiated with a constructed term. More

formally,

De�nition 6.1 De�ne x =c y � (9c:CS ` c(: : :) =t x =) x =t y).

For an example in which conditional uni�cation is useful, consider the program from [Ste96b]

a = 2, x = a, y = a

Since a is not a pointer, x and y may remain distinct.

De�ne the relation

`S� provable in Ste+Common

Then we de�ne the points-to relation as before.

10

De�nition 6.2 The points-to relation PS : L! 2L is de�ned by y 2 PS(x) if

CS `S ref (p = y; f = y
0
; t = yt) =t x

Although the points-to relation is de�ned in terms of memory locations, the points-to graph is de�ned

in terms of equivalence classes:

De�nition 6.3 Let L be the set of all memory locations. The equivalence relation on locations [�] is

de�ned as [x] = fy j CS `S xt = ytg.

The nodes of the points-to graph are the equivalence classes de�ned by [�], and there is an edge

from [x] to [y] if y 2 PS(x). Note that 8y 2 PS(x):[y] = PS(x). To illustrate the usefulness of the tag
�eld, consider the program a = &c, b = &c. Ignoring the f �eld, this program generates typings and

constraints

`S a : ref (p = a; t = at)

`S b : ref (p = b; t = bt)

`S c : ref (p = c; t = ct)
a = ref (p = c; t = ct)

b = ref (p = c; t = ct)

If the types of a and b did not contain the tag �eld, then we could not tell that they are distinct locations

pointing to the same thing, since their p �elds are equal.
Note that an equivalence class may point to itself. Thus, circular uni�cation is needed to implement

this system.

The rules for Ste are similar to those forAnd. The \ " in (Const� IntS) stands for a wild-card, which
is a fresh, unconstrained variable. The somewhat mysterious rules (Cond) and (Op) are written so that

conditional uni�cation between the subexpressions is symmetric. The remaining rules are straightforward.

7 Properties of the Type Systems

7.1 Correspondence Between the Two Systems

It is clear that the systems are closely related. In fact, it is possible to express both systems with one

set of rules, where the only di�erence is in the signatures for constructors. To do this, we combine the

type languages for Ste and And to yield a ref with two p �elds, two f �elds, and a tag �eld:

�AS ::= � j ref (pget = �AS; pset = �AS ; fget = �AS ; fset = �AS ; t = �AS)

�AS ::= � j lamn(�AS0 ; �AS1 ; : : : ; �ASn)

For an Andersen-style analysis, the pget and fget �elds of ref are covariant, the pset and fset �elds

contravariant, and the t �eld is ignored:

ref : (pget = Set; pset = Set; fget = Set; fset = Set; t = Set)! Set

lamn : Set � � � Set
| {z }

n+1

! Set

For a Steensgaard-style analysis, all the sub�elds are Term �elds, and we assure, in our rules, that
pget = pset and fget = fset:

ref : (pget = Term; pset = Term; fget = Term; fset = Term; t = Term)! Term

lamn : Term � � � Term
| {z }

n+1

! Term

The type rules are similar to those we presented before for an Andersen-style analysis. The interesting

rules are shown in Figure 8. If the constraints �� are subset constraints (��=s, constraint system CS s),
then the rules compute an Andersen-style analysis. If we use conditional uni�cation constraints (��=c,

constraint system CS c), we get a Steensgaard-style analysis.

De�nition 7.1 Let L be the set of memory locations, and de�ne the parameterized points-to relation

Q� : L! 2L as y 2 Q�(x) if

CS � ` ref (pget = pset = y; fget = fset = y
0
; t = yt) �� x

11

Comb�

x : ref (pget = pset = x;fget = fset = x0; t = xt) (VarComb�)

e : �

&e : ref (pget = pset = �)
(AddrComb�)

e : � � �� ref (pget = �)

�e : �
(DerefComb�)

e1 : �1 e2 : �2
�1 �� ref (pset = �0; fset = �00) �2 �� ref (pget = �0; fget = �00)

�0 �� �
0 �00 �� �

00

e1 = e2 : �2

(AsstComb�)

Figure 8: Type system for combined analysis.

Although we will not prove it formally, the following lemma should be clear:

Lemma 7.2 (a) 8x:Q�=s(x) = PA(x), and
(b) 8x:Q�=c(x) = PS(x), and

(c) 8x:[x] = [x]0 where [�] is from Ste+Common and [�]0 is from Comb�=c.

Before proving the correspondence between the systems, we need the following lemma.

Lemma 7.3 (Translation) Let CS s be a system of set constraints containing only variables and con-
structed terms, and let CS c be the translated system in which each inclusion constraint �1 �s �2 has been

replaced by a conditional uni�cation constraint �1 =c �2, and the constructor signatures have changed

from Set to Term. Then
CS s ` �

0

1 �s �
0

2 =) CS c ` �
0

1 =c �
0

2

Proof idea: There are two important cases. If CS s ` � 01 = 0 then CS c ` � 01 = 0, and thus where

� 01 �s �
0

2 makes no constraint on � 02, neither does �
0

1 =c �
0

2. On the other hand, if CS s ` c(: : :) �s �
0

1 then
CS c ` c(: : :) =c �

0

1, and so c(: : :) =c �
0

1 becomes c(: : :) =t �
0

1. Thus, CS c�
0

1 =t �
0

2.

Thus we can state the following:

Theorem 7.4 If y 2 PA(x) then y 2 PS(x).

Proof: Suppose y 2 PA(x). Then by Lemma 7.2, y 2 Q�=s(x). By de�nition of Q�=s,

ref (pget = pset = y; fget = fset = y
0
; t = yt) �s x

Therefore by Lemma 7.3,

ref (pget = pset = y; fget = fset = y
0
; t = yt) =c x

in Comb�=c. But then, by Lemma 7.2 again, we have y 2 PS(x).

7.2 Soundness

Figure 9 shows an operational semantics for the C fragment

e ::= x j �e j &e j e1 = e2 j e1; e2

Variable names such as x stand for memory locations. We maintain a global mapping � from dynamic

memory locations Loc to syntactic locations SyntacticLoc. Recall that the points-to analyses confound

all dynamic occurrences of a variable with the same name; � formalizes this property. For this fragment
there is a one-to-one correspondence between semantic (dynamic) locations and syntactic locations, and

so

� = f[lx 7! x] j x is a program variableg[

f[l0 7! &i] j &i appears in the program, l0 is the corresponding location from (Addr)g

12

Domains: Loc = flx; ly; : : : g

SyntacticLoc= fx;y; : : : &i; : : : g

Expr = SyntacticLoc j �Expr j &iExpr j Expr1 = Expr2 j Expr1;Expr2
Store : Loc ! Loc

� ! � : < Expr;Store >! < Loc;Store >

< x; � >! < lx; � > (Var)

< e1; � >! < l1; �1 > < e2; �1 >! < l2; �2 >

< (e1; e2); � >! < l2; �2 >
(Seq)

< e; � >! < l; �0 > l0 fresh

< &ie; � >! < l0; �0[l0 7! l] >
(Addr)

< e; � >! < l; �0 >

< �e; � >! < �0(l); �0 >
(Deref)

< e1; � >! < l1; �1 > < e2; �1 >! < l2; �2 >

< e1 = e2; � >! < l2; �2[l1 7! �2(l2)] >
(Asst)

Figure 9: Operational semantics for fragment of the source language.

We explain the second set of mappings below. For the full source language this mapping is in general

a many-to-one mapping, and it can be modeled by threading an environment through the semantics.
The model of the store maps locations to their contents, which can only be other locations. We write

; for the empty store. The semantics maps a pair < Expr;Store > to a pair < Loc;Store > containing

the location the expression corresponds to (its l-value) and a possibly modi�ed store.
We brie
y discuss the semantics. The result of evaluating a variable in (Var) returns the l-value of

the variable and does not change the store. The rule (Seq) evaluates a sequence of expressions, executing

them in order from left to right and returning the value of the right expression.
Because our semantics evaluates expressions to l-values, we need a location for the value of inter-

mediate expressions to handle the address-of operator correctly. Accordingly, we add a new program

variable &i for each occurrence of an address-of operation in the program. The rule (Addr) operating on
&ie creates a fresh location and stores the l-value of e in it; the subscript i serves to identify the syntactic

location of the operation. The second set of mappings in � maps the fresh locations to the program

variables &i. This semantics, which is more general than C, allows expressions such as &i&jx.
To prove soundness, we must extend the type system (which uses the C semantics) slightly:

e : �

&ie : ref (pset = pget = �) &i : ref (pget = pset = �)
(Addr0A)

Notice that the variable &i corresponds to the value of &e; thus, the type of &ie is a pointer to e, and the

semantic location l0 is the l-value of &i.

The rule (Deref) returns the value stored at the location corresponding to expression e. Finally, the

assignment rule (Asst) operating on e1 = e2 stores the contents of e2 in e1. Here we can clearly see an
e�ect that C-like imperative languages most often hide: In evaluating an assignment, there is an implicit

dereference of the right-hand side.

Given this semantics, we want to prove that for any program, if variable x ever contains the location
of y, then y 2 PA(x). In order to do so, we must prove something slightly stronger. We also need to

show that the l-values assigned by the operational semantics correspond to the types given by And. In

addition, we need to assume that the initial state corresponds to the points-to sets computed by And;
otherwise, we cannot possibly show that And is sound with respect to the �nal state.

Let
�

! be the re
exive transitive closure of !. For simplicity, we omit the fset and fget �elds, since

there are no functions in this fragment.

13

De�nition 7.5 For each syntactic location x, let �(x) be the type � such that `A x : ref (pget = pset = �).
For a program variable, �(x) = x.

Let PA be the points-to relation for the input program, and let � be the global mapping described
above.

Theorem 7.6 For any program e, if < e; � >
�

! < l; �0 > and 8x 2 Dom (�):�(�(x)) 2 PA(�(x)), then

(a) `A e : � where ref (pget = pset = �(�(l))) � � , and
(b) 8x 2 Dom (�0):�(�0(x)) 2 PA(�(x))

Proof: By induction on the derivation of < e; � >
�

! < l; �0 >.

Base case (Var): < x; � > ! < l; �0 >. Then clearly (b) holds, and (a) holds by the de�nition of PA,
since `A x : ref (pget = pset = x), and x = �(x) = �(�(lx)).

Induction:

Case 1 (Seq): < (e1; e2); � >! < l2; �2 >. Then by (Seq) we have (1) < e1; � >! < l1; �1 > and (2)
< e2; �1 > ! < l2; �2 >. To show (b), by induction on (1) we have 8x 2 Dom (�1):�(�1(x)) 2 PA(�(x))

and therefore by induction on (2) we have 8x 2 Dom (�2):�(�2(x)) 2 PA(�(x)). Similarly, (a) holds by

induction on (1) and (2): `A e2 : � where ref (pget = pset = �(�(l2))) � � .

Case 2 (Addr): < &ie; � >! < l0; �0[l0 7! l] >. Then by (Addr) we have (�) < e; � >! < l; �0 >. By

induction on (�), (1) `A e : � where ref (pget = pset = �(�(l))) � � and (2) 8x 2 Dom (�0):�(�0(x)) 2

PA(�(x)). By de�nition of �, �(l0) = &i. Then by (Addr0A), (a) holds, since program variable &i has type
ref (pget = pset = �), thus �(&i) = � . To show (b), by (2) we need only show that �(�0[l0 7! l](l0)) 2

PA(�(l
0)), i.e. �(l) 2 PA(&i). By (1) we have ref (pget = pset = �(�(l))) � �(&i), thus �(l) 2 PA(&i).

Case 3 (Deref): < �e; � > ! < �0(l); �0 >. Then by (Deref) we have (�) < e; � > ! < l; �0 >. (b)

holds by induction on (�), since 8x 2 Dom (�0):�(�0(x)) 2 PA(�(x)). Also by induction on (�), `A e :

� where ref (pget = pset = �(�(l))) � � . But by (DerefA) `A �e : � where � � ref (pget = �). Thus,
we have �(�(l)) � �, and since �(�0(l)) 2 PA(�(l)) by (b), we have (a) ref (pget = pset = �(�(�0(l)))) �

�(�(l)) � �.

Case 4 (Asst): < e1 = e2; � > ! < l2; �2[l1 7! �2(l2)] >. By (Asst), (1) < e1; � > ! < l1; �1 > and
(2) < e2; �1 > ! < l2; �2 >. By induction on (1) and (2), (1a) `A: e1 : �1 where ref (pget = pset =

�(�(l1))) � �1 and (2a) `A: e2 : �2 where ref (pget = pset = �(�(l2))) � �2 Thus (a) holds, since it's just

(2a). By the same argument as in Case 1, (�) 8x 2 Dom (�2):�(�2(x)) 2 PA(�(x)), so for (b) we need
only show that �(�2[l1 7! �2(l2)](l1)) = �(�2(l2)) is in PA(�(l1)).

If l1 = l2, then �2[l1 7! �2(l2)] = �2[l1 7! �2(l1)] = �2, and so (b) is just (�).

Otherwise, suppose l1 6= l2. By the constraints in (AsstA), we have �1 � ref (pset = �), �2 � ref (pget =
�), and � � �. Putting this together with (1a) and (2a) yields

ref (pget = pset = �(�(l1))) � �1 � ref (pset = �)

ref (pget = pset = �(�(l2))) � �2 � ref (pget = �)

� � �

And thus �(�(l2)) � � � � � �(�(l1)) By induction, �(�2(l2)) 2 PA(�(l2)), and therefore since �(�(l2)) �

�(�(l1)) =) PA(�(l2)) � PA(�(l1)), we have �(�2(l2)) 2 PA(�(l1)).

Corollary 7.7 (SoundnessA) For any program e, if < e; ; >
�

! < l; � >, then 8x 2 Dom (�):�(�(x)) 2

PA(�(x)).

Corollary 7.8 (SoundnessS) For any program e, if < e; ; >
�

! < l; � >, then 8x 2 Dom (�):�(�(x)) 2

PS(�(x)).

Proof: By Corollary 7.7 and Theorem 7.4.

14

8 Implementation

We have implemented both type systems for C using the mixed term and set constraint solver described

in Section 3. The type systems and constraint solver are coded in ML. The analysis traverses the source
program's parse tree and applies inference rules at the appropriate points. Once the constraints have

been generated, the framework solves the constraints, and the de�nitions of PA and PS are used to

extract the points-to sets.
Only the code that implements the inference rules calls the constraint solver. The rules are packaged

as an ML structure, one for And+Common and one for Ste+Common, and they parameterize a

functor for the traversal code. The traversal calls the inference rule module in exactly eight cases to
assert the appropriate constraints.

Shapiro and Horwitz (SH) have implemented these analysis in C [SH97]. SH uses the same general

technique, although, as their implementation is in C, they do not have a built-in module system. Their
rules separate l- and r-types, which doubles the number of cases. They use Andersen's specialized

constraints, which is appropriate as their implementation is custom-designed for points-to analysis.

8.1 Di�culties with C

C is di�cult to analyze because of its weak semantics and numerous details. Several features in particular

complicate the implementation.

Library functions are the largest problem. Standard C includes, as does any practical language, many
library functions, the sources of which are not directly available. Thus, the analyses cannot be applied

to these routines. Our solution is to assume, in general, that any unde�ned function has no e�ect on

the analysis. For those functions that have an e�ect, we write a short, simple code routine that models
the e�ect. For example, the strcpy(char* s1, char* s2) function copies the string s2 into the string

s1 and returns s1. To model this, we simply write a function that takes two arguments and returns the

�rst. By preprocessing a �le of these de�nitions, we can correctly model the points-to e�ects of library
functions.

A second problematical aspect of C is functions that take variable numbers of arguments (varargs).

The most common example is printf and its brethren, and by simply ignoring calls to these functions
(which do not a�ect points-to sets) we solve most of the problem. Unfortunately, in at least one (non-

portable) implementation of varags, the address of the last argument is used as a pointer to any subsequent

arguments. For example, in the declaration void foo(int a, ...), the address of a is used to retrieve
any arguments that follow. A general solution to the problem requires pre-computing which functions

are varargs and treating calls to them accordingly. To our knowledge, this problem has not be addressed

in the literature, and neither our implementation nor SH handles this correctly.
For our current set of test programs, we have manually modi�ed the few varags functions to take a

�xed number of arguments, as our type systems require, padding out calls to those functions with 0's,

and adding in some assignment statements to simulate the fetching of extra arguments. This process
could also be automated by preprocessing the input program.

Handling arrays is the last di�culty. In C, de�ning an array int a[5] allocates space for the array

contents and makes variable a point to it. To handle this situation correctly, we make a new variable,
in this case a[], and add it to the points-to set for the array name a. De�ning a multidimensional array

allocates a contiguous piece of memory rather than a series of pointer arrays. Consider the following

piece of code:

int *a[2][2], **b, c, d;

b = (int**) a;

a[0][0] = &c;

b[0] = &d;

Here b[0] and a[0][0] are aliased. Solving this problem requires treating the expression e1[e2] di�erently

depending on the C type of e1. If e1 is a one-dimensional array (or a pointer), then e1[e2] is exactly

�(e1 + ke2) for some constant k. If e1 has dimension two or higher, then e1[e2] can be interpreted as

e1+ke2, with no dereference. Solving these problems requires knowing the full C types of each expression,

which complicates the implementation.

15

Andersen-style Analysis

And+Common SH

Name Lines Time (s) Size Sets Time (s) Size Sets SH Time

Framework

di�.di�h 293 0.13 42 19 0.06 42 19 0.45

genetic 324 0.12 34 16 0.07 34 16 0.62

anagram 344 0.11 33 25 0.07 34 26 0.60

allroots 428 0.04 11 7 0.04 11 7 0.90

ul 445 0.16 10 10 0.08 10 10 0.53

ks 574 0.26 190 55 0.17 222 62 0.66

compress 652 0.25 15 15 0.10 15 15 0.40

ft 1179 0.40 140 64 0.15 140 64 0.37

ratfor 1540 1.11 642 111 0.42 618 113 0.38

compiler 1895 0.50 406 29 0.40 406 29 0.80

eqntott 2316 1.72 506 159 0.47 296 158 0.27

assembler 2987 1.48 596 179 0.66 522 183 0.45

simulator 4230 6.51 14721 288 8.79 14377 289 1.35

ML-typecheck 4903 3.20 10070 254 2.03 9973 252 0.63

li 5798 473.72 809489 1314 3880.47 809834 1316 8.19

ex-2.4.7 9358 13.59 3929 373 45.28 3661 371 3.33

less-177 12108 8.43 33497 492 11.25 32794 504 1.33

make-3.72.1 15214 190.67 221937 1141 384.60 222147 1144 2.02

espresso 21583 713.16 249965 1932 343.56 243521 1928 0.48

Steensgaard-style Analysis

Ste+Common SH

Name Lines Time (s) Size Sets Time (s) Size Sets SH Time

Framework

di�.di�h 293 0.13 192 19 0.04 192 19 0.33

genetic 324 0.10 92 16 0.05 92 16 0.53

anagram 344 0.10 151 30 0.04 220 31 0.41

allroots 428 0.03 14 7 0.03 14 7 0.88

ul 445 0.13 10 10 0.08 11 11 0.61

ks 574 0.11 537 57 0.08 607 64 0.71

compress 652 0.15 15 15 0.10 15 15 0.63

ft 1179 0.13 223 64 0.10 259 73 0.76

ratfor 1540 0.70 13567 177 0.42 13154 181 0.60

compiler 1895 0.58 1080 49 0.18 1080 49 0.32

eqntott 2316 0.93 1495 160 0.30 1116 160 0.32

assembler 2987 0.92 4069 227 0.38 3201 229 0.41

simulator 4230 2.45 24012 304 1.38 25320 325 0.56

ML-typecheck 4903 1.29 13685 262 0.53 13556 261 0.41

li 5798 5.67 1054796 1409 100.03 1152974 1417 17.64

ex-2.4.7 9358 10.03 23775 415 2.04 25854 452 0.20

less-177 12108 2.73 147795 646 5.15 151839 656 1.89

make-3.72.1 15214 7.10 927441 1609 73.72 938203 1634 10.38

espresso 21583 12.51 315372 1935 27.23 316999 1970 2.18

Figure 10: Comparison of And+Common and Ste+Common with Shapiro and Horwitz [SH97].

16

8.2 Measurements

Figure 10 compares our implementation with SH. All times were measured on a Sun UltraSPARC; hence

the SH times di�er from [SH97]. The results are summarized by two metrics. Sets counts the number of

non-empty points-to sets computed. Total size is the sum of the cardinalities of all points-to sets. SH
has been improved since [SH97], and so the reported sizes do not match. The sizes we report do not

include temporary variables introduced by SH during program transformations.

In order to correspond more closely with SH, we made two modi�cations to our system. First, we
temporarily disabled the �le of library routine stubs, since although SH has the same sort of facility,

that code is currently disabled. Second, we modi�ed the rule (Op) slightly. Recall that this rule gives

a op b the type of a fresh variable and assigns a and b to the fresh variable. This results in either a
union (And+Common) or a symmetric conditional uni�cation (Ste+Common). Depending on the

operation, this may be overly conservative; for example, it is possible to recover neither a nor b from a

relational operation, which returns a boolean. To match SH, we only apply (Op) to addition, subtraction,
and exclusive-or. We give other operations the type 0 for And or a fresh variable for Ste.

Even with these adjustments, the set sizes di�er slightly because the systems still disagree in some

details. We are con�dent that the performance comparison is accurate, because in most cases the set
sizes di�er by only a few percent, and in almost all remaining cases our implementation is the more

conservative, and making it less conservative can only make it faster.

The remaining di�erence that we know about concerns conditional uni�cation, though clearly there
are also di�erences we do not understand. Recall from the de�nition that a conditional uni�cation x =c y

becomes a regular uni�cation if x is instantiated with a constructed term. In SH, the return values for

unde�ned functions trigger regular uni�cation, but in our system they do not.
The reported times show that our implementation is often faster than SH for large programs. One

program in particular stands out: li. In this case, the Andersen analysis in And+Common is over eight

times faster than SH, and the Steensgaard analysis is seventeen times faster.2 For small programs, our
implementation is at most three times slower (except one program, eqntott, which is 3.7 times slower),

though the absolute running times are also small. We attribute these results to the e�ort spent making

our general framework scale to large programs [FA96], something that is di�cult to do for one-time use
systems like SH. There are also two anomalous results: Our system takes twice as long for Andersen-style

analysis of espresso and �ve times as long for Steensgaard-style analysis of flex. We currently have no

explanation for these apparent outliers.
Our framework is designed to make analyses easy to write, and so it is useful to subjectively compare

the two code bases. The code for And, Ste, and Common comprises about 2,000 lines of ML, not
counting the parser. Around 500 of these lines are for constraint generation and points-to set extraction,

with the traversal making up the rest of the code. The reusable constraint framework is another 12,000

lines of code, not all of which is used by these analyses.
Compare this to SH, which is approximately 13,000 lines of C, not counting the parser. While line

counts are only a proxy for programming e�ort, a factor of six is signi�cant. Additionally, our framework

lends itself to experimentation, which is often di�cult in a custom implementation. For example, we are
currently experimenting with changing from �xed-length argument lists to variable-length argument lists

using a row type [R�em89]. The change to the type systems took only an hour. (We have not reported

these results because the experiments were not complete at publication time.) The change from regular
uni�cation to conditional uni�cation took only a few hours and required no change (except to the kind

of constraint) in the type rules.

9 Conclusion

We have discussed two type systems that capture Andersen's algorithm and Steensgaard's analyses. We
have shown that, as has been intuitively described in [SH97], these are closely related analyses, and we

can account for the di�erence as a tradeo� between using inclusion constraints and using uni�cation.

We believe these type systems demonstrate that our mixed term and set constraint framework is
a natural formalism for expressing this kind of analysis. The translation from type rules to program

code is straightforward, and thus we are con�dent that the soundness proof translates into correct code.

Performance is within a small constant factor of a hand-coded implementation, and often better for large

2An essential routine in li takes a variable number of arguments. This routine uses a non-portable implementation of varags.

When we modi�ed this routine to take a �xed number of arguments (so that we could model it correctly), the set sizes increased
dramatically from [SH97].

17

programs. With low implementation cost and competitive performance, our framework provides a useful
and productive platform with which to develop program analyses.

10 Acknowledgments

The idea for dealing with library functions came from a discussion with Erik Ruf. Thanks to Susan

Horwitz and Marc Shapiro for providing their large suite of test programs and the source code for their
analyses. Thanks to Detlef Sodtke and Jens Krinke for an ANSI C parser. Also thanks to Mart��n Abadi

and Gordon Woodhull for commenting on an earlier draft of this paper.

References

[And94] L. Andersen. Program Analysis and Specialization for the C Programming Language. PhD
thesis, DIKU, University of Cophenhagen, May 1994.

[ASU88] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison

Wesley, 1988.

[AW92] A. Aiken and E. Wimmers. Solving Systems of Set Constraints. In Symposium on Logic in

Computer Science, pages 329{340, June 1992.

[AW93] A. Aiken and E. Wimmers. Type Inclusion Constraints and Type Inference. In Proceedings of

the 1993 Conference on Functional Programming Languages and Computer Architecture, pages

31{41, Copenhagen, Denmark, June 1993.

[EGH94] M. Emami, R. Ghiya, and L. Hendren. Context-Sensitive Interprocedural Points-to Analysis

in the Presence of Function Pointers. In Proceedings of the 1994 ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 242{256, Orlando, Florida, June

1994.

[FA96] M. F�ahndrich and A. Aiken. Making Set-Constraint Based Program Analyses Scale. In First

Workshop on Set Constraints at CP '96, Cambridge, MA, August 1996. Available as CSD-TR-
96-917, University of California at Berkeley.

[FA97] M. F�ahndrich and A. Aiken. Program Analysis using Mixed Term and Set Constraints. In
Static Analysis, Fourth International Symposium, SAS'97, 1997.

[Hei92] N. Heintze. Set Based Program Analysis. PhD dissertation, Carnegie Mellon University, De-
partment of Computer Science, October 1992.

[HJ90] N. Heintze and J. Ja�ar. A Decision Procedure for a Class of Herbrand Set Constraints. In
Symposium on Logic in Computer Science, pages 42{51, June 1990.

[Hor97] S. Horwitz. Precise Flow-Insensitive May-Alias Analysis is NP-Hard. ACM TOPLAS, 19(1):1{
6, January 1997.

[Mil78] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System

Sciences, 17:348{375, 1978.

[R�em89] D. R�emy. Typechecking records and variants in a natural extension of ML. In Conference

Record of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,

Austin, Texas, pages 60{76, January 1989.

[SH97] M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Analysis. In Proceed-

ings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, January 1997.

[Ste96a] B. Steensgaard. Points-to Analysis by Type Inference of Programs with Structures and Unions.
In Proceedings of the International Conference on Compiler Construction, volume 1060 of

Lecture Notes in Computer Science, pages 136{150. Springer-Verlag, April 1996.

[Ste96b] B. Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings of the 23th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 32{41,
January 1996.

18

A Typings given by And+Common

The discussion in Section 5 arguing that And+Common implements Andersen's algorithm requires

that the system give expressions types of a certain form. Speci�cally, although the type language allows
types like ref (pget = �; pset = �), in And it is always the case that � = �. This is easy to show:

Lemma A.1 De�ne the property B

B(�) = (� � ref (pget = �;pset = �)) � = � and B(�))

Then `A e : �) B(�).

Proof: By induction on the derivation of `A e : � . We shall only show the important cases. Clearly the
property holds if the only rule used was (VarA). If the last rule used was (AddrA), then B(�) holds by

induction and therefore B(ref (pget = pset = �)) holds. If we last used (DerefA), then by induction B(�),

so � � ref (pget = �) implies B(�).
Finally, if we last used (AsstA), then by induction B(�1) and B(�2) hold before the rule. Thus, B(�)

holds, which implies B(�), since � �s � and � and � do not leave the scope of the rule. Then, since

B(�1) holds before we applied this rule and B(�), B(�1) holds after we apply the rule, too, since all the
new lower bounds we added satisfy the property B.

This proof can be extended to the rest of And+Common easily, and a similar result holds for the f

�elds. Note that it makes no claim that all of the types used in the constraints have this special property.
Speci�cally, it is essential in (DerefA) and (AsstA) that in the ref constructors pget and pset are distinct.

B * and & as inverses

In both type systems, we can basically prove that *& and &* pairs cancel each other out. Let e be an

arbitrary expression.

Lemma B.1 If `A e : � and `A �&e : � 0, then � � � 0.

Proof:

`A e : �

`A &e : ref (pget = pset = �) ref (pget = pset = �) �s ref (pget = � 0)

`A �&e : � 0

and since ref (pget = pset = �) �s ref (pget = � 0), we have � � � 0.

We can prove something slightly weaker for &*:

Lemma B.2 If `A e : ref (pget = �) and `A &�e : ref (pget = pset = � 0), then � � � 0.

Proof:

`A e : ref (pget = �) ref (pget = �) �s ref (pget = � 0)

`A �e : � 0

`A &�e : ref (pget = pset = � 0)

We claim that these lemmas imply that * and & are inverses, in the sense of points-to sets. In order

to formalize this fully, we need to show that these upper bounds do not e�ect the points-to sets. We
shall state without proof the corresponding lemmas for Steensgaard's system:

Lemma B.3 If `S e : � and `S �&e : �
0, then � = � 0.

Lemma B.4 If `S e : ref (p = �) and `S &�e : ref (p = � 0), then � = � 0.

19

