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Abstract

Modern production operating systems are large and complex sys-
tems developed over many years by large teams of programmers,
containing many hundreds of thousands of lines of code. Conse-
quently, it is extremely difficult to add significant new functionality
to these systems [16, 1, 42]. In response to this problem, a number
of recent research projects have addressed the issue of extensible
operating systems; these include SPIN [7, 5], VINO [45, 41], Ex-
okernel [20], Lipto [17], and Fluke [21]. This paper addresses the
problem of providing extensibility for existing production operat-
ing systems such as Solaris, through the technique of interposition
on existing kernel interfaces. Interposition is useful for extensions
because it is transparent, it permits the incremental addition of func-
tionality to an interface, and it enables the easy composition of mul-
tiple extensions.

We have designed and implemented a prototype extension mech-
anism, SLIC, which utilizes interposition to efficiently insert trusted
extension code into a production operating system kernel. We have
used SLIC to implement a number of useful operating system exten-
sion, such as a patch to fix a security hole described in a CERT advi-
sory, an encryption file system, and a restricted execution environ-
ment for arbitrary untrusted binaries. Performance measurements
of the SLIC prototype show that interposition on existing kernel in-
terfaces can be accomplished efficiently.

1 Introduction

Modern production operating systems are large and complex
systems developed over many years by large teams of pro-
grammers, containing many hundreds of thousands of lines
of code. To make matters worse, in order to run on SMP’s,
much of the code must be multi-threaded, compounding its
complexity and requiring extensive revalidation even for the
smallest of changes. It is common for major releases of
production operating systems to be riddled with flaws intro-
duced in developing the features in the release, usually re-
quiring multiple “bug fix” releases that in turn introduce their
own flaws.

Consequently, in practice, it is extremely difficult to add
significant new functionality to modern production operating
systems [16, 1, 42]. This does not diminish the need to con-
tinue to modify these systems. For example, security flaws
are routinely discovered and reported by organizations such
as Carnegie-Mellon’s Computer Emergency Response Team
(CERT) and the Department of Energy’s Computer Incident
Advisory Capability (CIAC). Despite the need for immedi-
ate repair to prevent wide exploitation of the flaw, the re-
quired patches often take weeks to become available [13].
In addition, there is a large catalog of value-add functional-
ity that has not been widely deployed, in part because of the
difficulty of modifying existing systems: load sharing [56],
process migration [48, 16], fast communication primitives
[6, 49], upcalls [14], distributed shared memory [32], and
user-level pagers [54].

The goal of this paper is to simplify the process of evolv-
ing and extending existing production operating systems. A
consequence of accomplishing this would be to enable in-
dependent software vendors (ISV’s) to develop and deploy
innovative operating system features. By contrast with op-
erating systems where relatively few successful ISV’s ex-
ist (Transarc being a notable exception), robust ISV markets
exist in other areas, such as databases [18], Web software
[24, 33], and desktop publishing [38, 9] — in each case, be-
cause extensibility has been designed into the system.

Prior approaches to extending operating systems can be
roughly divided into three categories: (i) re-engineer the op-
erating system from the ground up, in the process making it
easier to extend, (ii) incrementally re-engineer selected por-
tions of the kernel, and (iii) add extensions to existing sys-
tems without significant modification to either the operating
system or its applications.

Over the years, a number of systems have attempted to re-
duce the cost of adding new kernel functionality by restruc-
turing the operating system with extensibility as a design
goal. Systems built using this approach include Hydra [53],
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Mach [1], SPIN [7, 5], VINO [45, 41], Exokernel [20], Lipto
[17], and Fluke [21]. Many of these systems have success-
fully demonstrated greatly reduced costs of adding new func-
tionality. However, the cost of starting over from scratch can
be prohibitive; for example, Microsoft has spent over $300M
developing Windows NT [55]. Thus, it is likely that the need
to extend existing production operating systems will persist
for the foreseeable future.

A small number of projects have taken the alternative ap-
proach of re-engineering existing kernel interfaces to reduce
the complexity of adding new functionality at those inter-
faces. The vnode interface [30, 39] is a prime example of
this approach. While this interface is extremely useful for
adding complete new file systems, it does not support incre-
mentally adding functionality. Implementation details of the
interface also vary widely across operating system vendors
[51]. Applying this technique to make existing operating
systems more extensible would require substantially modi-
fying and exposing all interfaces where additional function-
ality is desired, effectively re-engineering the majority of the
operating system.

We take the alternative approach of adding functionality
with no modifications of application code and only minor
modifications to the underlying operating system. We dif-
fer with earlier efforts in that our solution — kernel-level in-
sertion of trusted extension code — is simple to implement,
efficient, requires no hardware support, simplifies compos-
ability among extensions, and protects extensions from mali-
cious or buggy applications. We believe that no other system
provides this powerful combination of features for extending
existing production operating systems.

Specifically, Interposition Agents [27] leverages the Mach
system call redirection facility to transparently insert exten-
sions at the system call interface. However, since the exten-
sion code runs in the application’s address space and pro-
tection domain, this solution cannot enforce security guar-
antees or share resources among distrustful processes. Soft-
ware Fault Isolation (SFI) [50] can be used to rewrite ap-
plication binaries to protect extensions running at user level
from the application; unfortunately, it is difficult to apply SFI
to arbitrary application programs without prohibitive imple-
mentation complexity. Protected Shared Libraries [4] has the
same capability as SFI with less software effort, but requires
specialized hardware support that is not available on most ar-
chitectures.

To investigate these issues, we have developed SLIC, a
prototype system for efficiently inserting trusted extension
code into existing operating system kernels without applica-
tion or kernel source code. Conceptually, SLIC is a wrap-
per around the operating system kernel, potentially capturing
events at many different interfaces — system calls, excep-
tions, page faults, and device interrupts (although only sys-
tem calls and certain signal-generating exceptions are sup-
ported in the prototype). This wrapper transparently invokes

extension code, enabling an extension to export new func-
tionality to applications while the underlying kernel remains
oblivious to the extension. SLIC dynamically loads exten-
sions into the kernel, where they are installed either by mod-
ifying jump tables or by patching the kernel’s event handlers,
as appropriate. The prototype currently runs on Solaris 2.5;
a Linux 2.0 port is in progress.

We have used the SLIC prototype to implement a number
of extensions that would have been significantly more diffi-
cult to accomplish by other means. One extension patches
a security flaw publicized by CERT [11]. A second enables
process execution with restricted capabilities, while a third is
an encrypted file system.

The rest of this paper is organized as follows. Section 2
provides background on interposition. In section 3, we de-
scribe the design, implementation, and performance of SLIC,
our prototype interposition system. Three sample extensions
and their performance are presented in section 4. In section
5 we discuss our experience with interposition as an exten-
sion tool, and the lessons we have learned on building system
interfaces to support interposition effectively. Section 6 dis-
cusses related work while sections 7 and 8 close with future
work and conclusions.

2 Interposition Background

Interposition is the process of capturing events crossing an
interface boundary and forwarding those events to an inter-
face extension. The extension performs some processing on
the event, and then passes the event on to its original destina-
tion. Figure 1 demonstrates interposition on an interface by
first one, and then a second, extension. The original interface
is maintained by the inserted extension code. Interposition is
thus transparent; user applications and the kernel are obliv-
ious to extension code.

Interposition enables incremental extensions. Extensions
need only capture the events that they are interested in, in-
stead of all events crossing the interface boundary, and they
can leverage the functionality of the existing interface. This
means that extension writers only have to implement the de-
sired extension functionality, instead of the functionality of
the entire interface.

Because interposition maintains the original interface
above and below the extension, it can be applied recursively;
this is composition. The right-hand side of Figure 1 shows a
second extension being added to the extension stack. In the
diagram, extensions A and B are oblivious of each other’s
presence, just as the application and kernel are oblivious to
the presence of any extensions.

The features of transparency, incrementality, and compos-
ability make interposition uniquely suited to the extension of
existing interfaces. Specifically, the transparency of interpo-
sition implies that interfaces not originally designed for ex-

2



Application

Kernel

Extension A

Application

Kernel

API API

API

Extension B

Kernel

Application

API

Extension A

Figure 1: Interposing extensions on an interface. The dotted
lines illustrate an interface which was interposed on by an
extension. Events are intercepted as they cross the original
interface and are routed through extension code. In this dia-
gram, the original API on the left is maintained at each level
on the right, making the interposed extension transparent to
the applications, the kernel, and even the other extensions.

tensibility can be extended. Incrementality ensures that ex-
tensions need only provide the functionality desired, without
re-implementing substantial portions of the kernel. Compos-
ability means that any number of extensions provided by in-
dependent vendors can be applied to a single interface.

Using kernel-level interposition, extensions have a broad
range of capabilities. Extensions can provide security guar-
antees (for example, patching security flaws or providing ac-
cess control lists), virtualize resources (providing a cluster-
wide process identifier), modify data (transparently com-
pressing or encrypting files), re-route events (sending events
across the network for distributed systems extensions), or in-
spect events and data (tracing, logging).

However, interposition does have a number of limitations.
First, interposition requires a well-defined interface on which
to capture events. System with poorly decomposed func-
tionality may have few such interfaces. Second, new func-
tionality can only be implemented in terms of existing func-
tionality. Extensions cannot, for example, add new abstrac-
tions to the system, but only compositions and variants of
existing abstractions. This can limit extension functionality;
for example, a cache-coherent file system can only be con-
structed through interposition if underlying layers expose a
cache-management mechanism in the file system interface
[28]. This limitation on new functionality being express-
ible only as a composition or variant of existing functionality
is more strict: interposition cannot add new events to inter-
faces. New events can only be added by overloading exist-
ing events (as routinely occurs with the Unix ioctl() inter-
face).

Despite these limitations, interposition’s power and flexi-
bility has led to its wide-spread use throughout modern com-
puting systems. Forms of interposition can be found in

the ‘pipe’ construct used in Unix shells, in the extensibility
mechanisms of programming language systems [29], in dis-
tributed file systems such as NFS [40], in distributed shared
memory systems such as TreadMarks [2], in World Wide
Web proxy caches [8], and in MS-DOS terminate-and-stay-
resident utilities and Macintosh toolbox extensions.

3 SLIC Design and Implementation

To investigate the suitability of interposition for adding new
functionality to existing operating systems, we have de-
signed and implemented SLIC, an interposition mechanism
for production Unix operating systems. The primary pur-
pose of SLIC is to leverage the transparency, incrementality,
and composability of interposition to extend existing operat-
ing systems with minimal kernel modifications. Within this
framework, SLIC was designed to provide extensions with
the following features:

Security: Extensions should be able to make decisions that
cannot be subverted. This enables extensions which af-
fect physical resources, such as file systems, and exten-
sions which enforce security mechanisms.

Efficiency: The interposition mechanism should impose
minimal overhead on the system and per-extension
overhead should be a few times the cost of a proce-
dure call, when performance is a concern. The user-
level extension code used in systems such as Interpo-
sition Agents [27] is costly to access; our mechanism
should enable in-kernel or mixed in-kernel/user-level
extensions for performance [47].

Ease of Development: Extension writers should be able to
use state-of-the-art programming tools such as sym-
bolic debuggers and performance analysis tools.

SLIC assumes that extensions are trusted. For untrusted
extensions, kernel code and data can be protected from mali-
cious or faulty extensions through technologies such as Soft-
ware Fault Isolation [50, 41], or by writing extensions in a
safe language such as Modula-3 or Java [44, 26].

3.1 SLIC Architecture

SLIC is comprised of multiple dispatchers and extensions as
well as various support routines. Dispatchers are respon-
sible for intercepting system interface events and for rout-
ing those events to interested extensions. Extensions receive
events from the dispatcher and provide additional functional-
ity to the operating system. Support routines provide a sim-
ple, consistent interface to useful functionality such as mem-
ory allocation and synchronization primitives. These rou-
tines enable extensions to be portable across implementa-
tions of SLIC for various operating systems. Each dispatcher
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Figure 2: The basic design of SLIC. The dotted lines repre-
sent the interposed interface. Events crossing this interface
are captured by a dispatcher and forwarded to one or more
extensions.

may provide additional support routines as appropriate for
the interface. For example, the system call dispatcher may
provide routines to determine the children of a given process.

3.1.1 Dispatchers

Each dispatcher is responsible for capturing events on a sin-
gle system interface (such as system calls or signals). SLIC

dispatchers use two different techniques to intercept inter-
face events. For those interfaces which are implemented us-
ing jump tables, such as the system call, vnode, and vir-
tual memory interfaces, SLIC records the original function
address from the jump table and stores the address of its
own interception routine. For procedural interfaces which
are called directly from various locations in the kernel, such
as the Solaris signal delivery and page replacement policy in-
terfaces, dispatchers intercept events on these interfaces us-
ing binary patching. The first few instructions of the relevant
procedure is saved and replaced with instructions to jump to
the dispatcher whenever the procedure is called. After the
dispatcher runs, if the event has not been aborted by an ex-
tension, the saved instructions from the interposed procedure
are executed and control is returned to that interposed pro-
cedure right after the binary patch. Using these techniques,
SLIC dispatchers can intercept interface invocations for the
cost of a procedure call.

Once an event has been captured by a dispatcher, that
event is sent to interested extensions for processing. Figure 2

depicts the relationship between dispatchers and extensions.
Extensions express interest in events using a small number of
predicates defined by the dispatcher. For example, the sys-
tem call dispatcher filters system call events based on pro-
cess identifier and system call type; an extension that only
wishes to trace the open() system call from process 4191
can specify this easily. The signal dispatcher provides sim-
ilar functionality, enabling filtering on process id and signal
type. These predicates are roughly analogous to the guards
found in SPIN [35].

Table 1 presents a simplified portion of the system call dis-
patcher interface. Upon receiving an event, an extension has
a number of options available: the extension can pass along
the event unmodified, the extension can modify the event
parameters in struct Slic SyscallInfo and then pass it
along, or the extension can complete the event with an ar-
bitrary return value or error condition (e.g., when a system
call would exploit a known security hole) by setting fields in
struct Slic ReturnInfo. When an event is completed,
extensions further down the call chain (and the kernel) never
see the event for processing. Additionally, the extension may
initiate other events using Slic IssueSyscall() with ar-
bitrary parameters, capturing the return values. For example,
a system call tracing extension must periodically dump col-
lected tracing data to stable storage. A limitation of our cur-
rent system call dispatcher is that additional events generated
by extensions appear to have been generated by the user ap-
plication, and have the same privileges (and limitations) of
the user process.

If an extension passes an event on for further process-
ing, the dispatcher routes that event to other interested exten-
sions. For this purpose, the dispatcher maintains a chain of
extensions through which events flow. Events can be mod-
ified or completed at any point along this chain. The dis-
patcher treats the underlying kernel as the last extension on
the chain, passing it the event only if the event was not com-
pleted by an extension earlier on the chain. When an exten-
sion marks an event as completed, the return value then flows
up the chain in reverse order, supporting inspection or mod-
ification of the value.

On initialization, extensions register with one or more
dispatchers using Slic RegisterExtension(). The two
predicates for the system call interface, a per-process tracing
flag and a bit-mask of intercepted system calls, are manipu-
lated using the Slic TraceProc()/Slic UntraceProc()

and Slic RegisterHandler() functions. An extension is
only invoked for a given system call event if the process
which generated the system call is marked for tracing by this
extension and the extension has a handler registered for this
system call. Similar functionality is provided by the signal
dispatcher.
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struct Slic SyscallInfo f
int syscallNum;

int args[];

g;

struct Slic ReturnInfo f
bool forceReturn;

int returnValue;

int errno;

g;

Slic RegisterExtension(int dispatcherId);

Slic RegisterHandler(int syscallNum,

void (handler)(Slic SyscallInfo *syscallInfo,

Slic ReturnInfo *returnInfo));

Slic TraceProc(int pid, bool traceAllChildren);

Slic UntraceProc(int pid, bool untraceAllChildren);

Slic IssueSyscall(Slic SyscallInfo *syscallInfo,

Slic ReturnInfo *returnInfo);

Table 1: Simplified interface for the system call dispatcher.

3.1.2 Extensions

The SLIC architecture enables extensions to be structured in
two ways, supporting a tradeoff between performance and
ease of extension development. Extensions can be loaded as
user-level servers or as in-kernel extensions, as shown in Fig-
ure 3, or as a combination of these types.

Extension code executing as a user-level server enables
extension development to proceed as with normal user pro-
grams, with access to user-level libraries (such as communi-
cation libraries) and state-of-the-art development tools (such
as symbolic debuggers and performance analysis tools such
as Purify [36] and Quantify [37]). A user-level extension
must not register its own events or events from its devel-
opment tools with any dispatchers. The extension is pro-
tected against modification by user programs by virtue of
running in a separate address space. The drawback of this
approach is that invoking the extension from the dispatcher
requires costly context switches and kernel-user boundary
crossings. This organization is similar to that employed by
micro-kernels such as Mach [1].

An in-kernel extension is loaded directly into the kernel.
When events are frequent, this organization has consider-
ably better performance than the user-level approach, since
the extensions are directly invoked by a procedure call from
the dispatcher. Extensions are protected against modification
by user applications because they are in the protected kernel
region of the address space. There are a number of limita-
tions to this approach: the kernel is not protected from ma-
licious or faulty extension code and there is no support for
user-level development tools. Methods of protecting the ker-
nel are well-known [35, 26, 43, 41]. By supplying exten-
sions with the same interface, whether at the user level or

in the kernel, extensions can be safely developed at the user
level and then inserted into the kernel. This enables develop-
ment in a safe environment without sacrificing the potential
for good performance.

SLIC extensions can also use both models simultaneously.
Performance-critical sections of an extension can be located
in the kernel, while functionality that is rarely used or which
requires access to user-level libraries can be located in a user-
level server.

3.2 SLIC Implementation

The current implementation of SLIC provides dispatchers on
the system call and signal interfaces of Solaris 2.5 running
on UltraSPARC workstations; work is in progress for a So-
laris page replacement policy dispatcher and a port to the In-
tel 80x86 version of Linux 2.0, an operating system whose
internals share no heritage with Solaris. At this time, the sig-
nal dispatcher is not yet fully functional and only supports
simple extensions used for tracing. All SLIC components —
dispatchers, extensions, and support routines — are dynam-
ically loaded by the system administrator into the kernel as
loadable device drivers.

Solaris system calls are routed through the sysent table,
which contains function pointers to the appropriate system
call routines. The system call dispatcher intercepts system
call events by replacing entries in this table with pointers
to its own dispatch function. Solaris signal delivery pro-
ceeds through the sigaddq() and sigaddqa() functions;
the signal dispatcher intercepts signals by modifying the in-
memory images of these two functions. To enable the in-
memory modification of these functions, one line of So-
laris source code was changed to make the kernel text image
writable by root processes.

The current implementation catches events within the ker-
nel, rather than at the machine level (interrupts); for example,
system calls are caught at the sysent table rather than upon
execution of the trap instruction. While the two approaches
are conceptually similar, catching events within the kernel
considerably simplified the implementation of our prototype.

3.2.1 System Call Dispatcher

System calls transfer data in the form of pass-by-value ar-
guments and pass-by-address memory buffers. Modifying
the pass-by-value arguments in an extension is straightfor-
ward. Modifying in-memory data is more difficult, as the
data is located in a user-level page. When user programs are
multi-threaded, in-place modification of data buffers renders
the extension’s operation vulnerable to inspection or subver-
sion by the user program. Thus, only the kernel can be al-
lowed to access the modified memory buffer. However, the
Solaris kernel has protection checks on memory buffers that
require that these buffers be located in the application’s ad-
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Figure 3: Organization alternatives in SLIC. In 3(a), extension code is located within the kernel’s address space, while in 3(b),
extension code is run as a separate user level process. Dotted lines represent protection domain boundaries. Passing the event
to a user level extension (as in 3(b)) involves multiple context switches and protection boundary crossings.

dress space. (In general, applications cannot pass kernel ad-
dress as memory arguments to system calls.) These checks
are performed in the kernel’scopyin()and copyout() rou-
tines.

Our solution to this problem is to mark regions of the ker-
nel address space as valid for system call memory buffers
and to modify the copyin() and copyout() routines to rec-
ognize these regions. This is a potential security hole, as user
applications could pass in the addresses of these buffers into
the kernel and the modified copyin()/copyout() routines
would not catch this violation. To ensure security, the in-
kernel system call buffers are marked valid on a per-thread
and per-event basis. This ensures that in-kernel buffers can
only pass security checks when an extension has explicitly
requested such a buffer. Even when such a buffer exists,
other user threads cannot access it.

3.3 Micro-benchmarks

We have measured the overhead imposed by SLIC on system
calls and signals. All micro-benchmark numbers reported
are from a 167MHz UltraSPARC running Solaris 2.5.1.

There are three micro-benchmarks; we run each oper-
ation one million times and average the result. The first
micro-benchmark performs a getpid() call, which in So-
laris is essentially a null system call. This micro-benchmark
measures the raw overhead of the system call dispatcher,
but does not invoke the modified copy routines. In order
to quantify the overhead resulting from our modification to
the copy routines, the second micro-benchmark performs a
sigprocmask() system call. This system call involves a
memory copy of 16 bytes from a kernel data structure into
user space. The kill() micro-benchmark measures the
overhead of the signal dispatcher. It involves a single pro-

cess sending itself a SIGUSR1 signal. We use a single process
to avoid context switches, thus maximizing the effect of our
overhead. This micro-benchmark measures the overhead of
the signal mechanism and the cost of interposing on the sig-
nal mechanism.

We tested our micro-benchmarks with various configura-
tions of SLIC: unloaded (i.e., a bare system), loaded and ac-
tive with no extensions, and loaded and active with multiple
extensions. The extensions used for these measurements are
null extensions which merely catch events and re-issue them.
For system call events, after an extension re-issues a system
call, the extension also receives the return value from this
system call. The results are presented in Table 2. The im-
plementation for user-level extensions of the signal interface
is not yet complete.

The base overhead of SLIC is very low, adding between
200 and 600 nanoseconds to the overhead of a system call.
Loading an extension adds between 300 nanoseconds and 3
microseconds to the overhead; the reason for the discrepancy
is that getpid() does not pass in any memory arguments,
while sigprocmask() invokes the modified copy routines.
Note that the cost of the copy routines is paid regardless of
whether any extensions are active or not. The primary source
of per-extension overhead is the allocation of register win-
dows in the UltraSPARC. The current implementation forces
a register window to be allocated for every extension that
wishes to examine the return value from a system call. Mea-
surements indicate that extensions which do not capture re-
turn values, and thus do not require a register window, add an
average of only 220 nanoseconds to the dispatcher overhead.
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getpid() sigprocmask() kill()

Unmodified system 2.82 3.90 80.83
SLIC, dispatcher loaded, 3.08 4.53 89.09
no extensions
SLIC, dispatcher loaded 3.22 4.44 88.99
null extension (disabled)
SLIC, dispatcher loaded 8.27 9.69 99.28
null extension (enabled)
SLIC, dispatcher loaded 10.79 12.28 103.27
2 � null extension
SLIC, dispatcher loaded 13.37 14.84 108.01
3 � null extension
SLIC, dispatcher loaded 57.45 62.53
null extension at user level

Table 2: Micro-benchmark performance of SLIC. All numbers are in microseconds and are averaged over one million itera-
tions. The getpid() and sigprocmask() tests were run with the system call dispatcher loaded while the kill() test was
run with the signal dispatcher. The getpid() test is effectively a measure of a null system call; the sigprocmask() test mea-
sures the overhead of SLIC’s interposition on the kernel copy routines. The kill() benchmark measures the time required
for a process to signal itself. The implementation for user-level extensions of the signal interface is not yet complete.

4 Extending the Operating System

To demonstrate the functionality and performance of SLIC,
we have implemented prototypes of a variety of extensions:
a solution to a recent CERT advisory, an encryption file sys-
tem, and a restricted execution environment. Without SLIC,
these extensions would have required kernel source code
modifications to achieve similar functionality and perfor-
mance. Further, without SLIC, changes to add these features
to the existing kernel would likely be ad hoc rather than a
general solution that can be leveraged for future extensions.

4.1 CERT Advisory extension

The Computer Emergency Response Team (CERT) of
Carnegie Mellon University’s Software Engineering In-
stitute regularly provides the Internet community with
information regarding system security problems. Whenever
possible, these advisories include information on how to
resolve the problem reported. However, due to the lack
of extensibility in existing systems, frequently this advice
is to completely disable the insecure feature [11, 10, 12].
Though operating system vendors do provide patches for
software found to be insecure, these patches can take weeks
to become available [13]. Since CERT does not have access
to source code for many systems, they are unable to directly
provide patches for these problems. However, using SLIC,
many of these advisories could be accompanied by small
extensions which would resolve the problem.

To demonstrate this, we have implemented an extension
to patch a recent security hole discovered in the Solaris
admintool [11] which allowed unprivileged users to delete
arbitrary files in the system in certain circumstances. Our 25

line extension monitors file operations, denying the opera-
tions which cause the problem. Operation of the admintool
is maintained.

4.2 Encryption File System

In a distributed file system, maintaining file security is often
a concern. For example, in a networked environment with
a central file server, traditional Unix file protections can be
easily circumvented by monitoring the network traffic. To
protect sensitive files, users may use encryption tools such
as PGP [22]. However, stand-alone encryption tools can be
time consuming and are not easily integrated with existing
application binaries. A more effective method of ensuring
file security is to support file encryption directly in the file
system, transparently encrypting file writes, and decrypting
file reads, when communicating with the server.

We have implemented a simple encryption file system.
This extension implements a trivial exclusive-or encryption
algorithm similar to that implemented in VINO [41]. The
extension watches for open() and creat() system calls of
files with a particular suffix and then records the process id
and the file descriptor returned to the application. On subse-
quent read() or write() system calls to these file descrip-
tors, the extension applies a byte-wise xor on the data. This
operation adds an extra copy step to the data transfer.

Implementing an encryption file system using the standard
vnode interface found in most production systems would
have required implementing a full file system. In contrast,
our extension implements only the additional functionality
of encryption and can be applied to any mounted file system.
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4.3 Restricted Execution Environment

Under UNIX, processes run by a user has access to all of the
resources granted to that user. There are many cases, how-
ever, in which the user does not trust the program being run.
For example, programs downloaded from untrusted sources
like the Internet may actually be Trojan horses designed to
steal or destroy information [52, 15]. In addition, there are
cases in which the user trusts the program, but not the data
being processed, as in the case of helper applications used
by web browsers to display various data formats. Input data
could potentially exploit bugs in helper applications to insert
Trojan horses into the system, a process similar to that used
by the Internet Worm fingerd attack [19].

A common method for constructing a restricted execu-
tion environment is to use the tracing facility of the standard
/proc file system to selectively deny or change those sys-
tem calls which would violate security [23]. This approach
suffers from a number of shortcomings. First, the Solaris
2.5 /proc file system only allows system calls to be denied
with EINTR as the error code, a code normally used to indi-
cate that the attempted operation was interrupted and should
be retried. Returning this code causes many applications to
loop endlessly rather than receiving a permission violation
error. Second, the /proc file system cannot trace programs
which are markedsetuid; in Solaris, this includes programs
such as crontab, ps, and ping. Finally, intercepting system
calls using /proc is expensive. We measured an added 150
microseconds to the base system call overhead. This is es-
pecially problematic for system-call intensive applications.
Using SLIC we have implemented a restricted execution en-
vironment extension that does not have these limitations.

This extension provides the user with a configurable se-
curity environment. For example, applications can be given
a subset of read/write/execute access to any number of di-
rectory subtrees. The right to fork() can be disabled. Any
attempts by the application to perform a proscribed opera-
tion results in an EPERM error. The extension monitors only
the subset of system calls necessary to maintain the security
guarantees, providing low overhead. When traced applica-
tions invoke restricted system calls, the extension checks the
arguments to the call and determines if the call should be al-
lowed or denied. For example, applications running under
the X Window System can send X events to other running
X applications, which could potentially corrupt the user’s
trusted applications (such as netscape). A solution is to
run the untrusted application in a secure, restricted X server
such as Xnest1. Our restricted environment extension can
check write() calls to ensure that they are going to the
Xnest server instead of the standard X server. Because it
runs under SLIC, this extension cannot be circumvented and
thus maintains its security guarantees. The restricted envi-
ronment used for benchmarking denies 45 system calls out-

1Xnest is part of the standard X11R6 distribution.

right (for example chown()), and performs security checks,
such as checking the path or file access permissions, for 21
additional system calls (for example rmdir().

4.4 Performance

To evaluate the impact of these extensions on system perfor-
mance, we ran the extensions under three benchmarks: the
Modified Andrew Benchmark [25, 34], a TEX compilation
of a 262-page (760KB) document, and a gcc compilation of
emacs-19.34 without support for X Windows. The Mod-
ified Andrew Benchmark consists of multiple phases which
(i) create directory subtrees, (ii) copy files, (iii) search file at-
tributes via find commands, (iv) search files for a text string
via grep, and (v) compile files. While the benchmark fits
entirely in the file cache of modern systems and is therefore
useless for measuring file system performance, this will ex-
pose the overhead imposed by SLIC. The TEX benchmark
was chosen to be representative of a document processing
workload. Lastly, we chose the gcc benchmark because it
performs significant I/O. Table 3 reports some relevant statis-
tics for each benchmark.

Table 4 presents the results of running the benchmarks on
each extension as well as on all extensions simultaneously.
To decrease variability due to disk latency, all data files for
the benchmarks were placed in a memory-mounted/tmp file
system. The TEX benchmark shows very little change in per-
formance due to SLIC, as expected from the relative infre-
quency of system calls listed in Table 3. We believe that vari-
ance in the measurements accounts for the fact that the TEX
benchmark appears to run faster under the Restricted Execu-
tion Environment than with no extensions loaded. Though
SLIC imposes a certain amount of overhead on applications,
the last line in Table 4 illustrates that the much of the over-
head experienced by the benchmarks is due to the SLIC in-
frastructure, a cost which is only paid once; the per-extension
overhead is small for common workloads.

5 Evaluating Interposition

This section describes our experiences in implementing SLIC

and presents a number of general principles for developing
interfaces that are conducive to interposition. Although SLIC

was designed for and will work with existing operating sys-
tems, there are a number of improvements that can be made
to make these systems more interposition-friendly. We have
drawn these lessons from our implementations of the sys-
tem call and signal dispatchers for Solaris 2.5.1, as well as
preliminary analyses of interposing on the virtual memory
mechanism and page replacement policy for Solaris and the
scheduler interface for FreeBSD 2.1.6, and our experiences
in an initial port of SLIC to Linux 2.0.
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Total System calls Caught
Procs System Calls CERT Encrypt Rexec

AFS 471 40500 5760 14% 2732 7% 9246 23%
TEX 3 2457 126 5% 850 35% 188 8%
gcc 379 140656 43720 31% 11031 8% 47888 34%

Table 3: Benchmark characterization. For each benchmark, this table presents the total number of processes created during
a run, the total number of system calls issued by those processes, and the portion of those system calls which are caught by
each extension.

AFS TEX gcc

Time (s) Overhead Time (s) Overhead Time (s) Overhead
Baseline 15.81 6.36 158.30
No extensions 16.65 5% 6.69 5% 164.14 4%
CERT 17.51 11% 6.65 5% 163.83 3%
Encrypt 17.45 10% 6.42 1% 166.87 5%
Rexec 17.14 8% 6.48 2% 166.35 5%

CERT + Encrypt + Rexec 17.92 13% 6.78 7% 168.14 6%

Table 4: Benchmark performance on sample extensions. All measurements were run on a 167MHz UltraSPARC running So-
laris 2.5. Each column for each benchmark contains both the total elapsed run time in seconds and the percent slowdown.
“Baseline” represents a machine without any SLIC dispatchers or extensions loaded. “No extensions” represents the system
call dispatcher loaded, but no extensions. The rows labels “CERT”, “Encrypt” and “Rexec” (Restricted Execution Environ-
ment) present the benchmark elapsed times with a single extension loaded. The last line presents benchmark performance
with all three extensions interposing simultaneously.

The problems that we have encountered can be divided
into four categories:

1. The asymmetric trust mechanisms of the system call in-
terface;

2. The lack of explicit information in the interfaces we in-
terposed on;

3. An incomplete decomposition of functionality in the
system; and

4. Other implementation issues.

5.1 Asymmetric Trust Mechanisms

The system call interface is an untrusted interface; the ker-
nel views all data provided by user applications as potentially
malicious and performs security checks to ensure that user
processes cannot access secure kernel state. System call ex-
tensions must take the same distrustful view of application-
supplied data. For example, when an application issues an
open() system call, it provides the kernel with the address
of a buffer containing the file name. Before actually reading
data from this buffer, the kernel validates that the buffer is
located in the process’ address space. However, extensions
such as the CERT patch need to perform their own security
checks. Security would be violated if an application were

able to modify the file name after the CERT extension val-
idated the file name but before the kernel actually performed
the open(). To prevent this, the CERT extension must first
copy the file name into a buffer that the user application can-
not access; once validated by the CERT extension, the ad-
dress of this secure buffer is then passed to the kernel to per-
form the open() operation.

However, because the CERT extension is interposed on
the system call interface, the kernel views the extension as
part of the untrusted user application. Consequently, the ker-
nel’s protection mechanisms will fail and reject this secure
buffer address supplied by the CERT extension, aborting the
system call with an error.

Resolving this problem requires either modifying or cir-
cumventing the kernel’s security checks. SLIC interposes on
the kernel’s copyin() and copyout() routines and checks
for secure buffers allocated via SLIC’s support routines, by-
passing the kernel security checks when necessary. Naı̈vely
disabling the kernel’s security checks can create a potential
security hole, as malicious user applications could pass the
kernel a pointer to one of these buffers. To prevent this, se-
cure buffers are allocated on a per-thread and a per-event
basis. If an extension copies user data into a secure buffer,
the Slic CopyIn() routine validates the user pointer before
marking the secure buffer as valid for the kernel copyin()
routine. If no extension modifies the user data, no buffers are
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marked as secure and the kernel copyin() routine will flag
any pointer to a kernel address. The overhead imposed by
these additional checks is negligible.

5.2 Lack of Explicit Information

Many of the interfaces in today’s operating systems are not
fully explicit: some information is not passed directly as an
argument to the event but rather is stored in global data struc-
tures. For example, when a system call is performed, the pro-
cess id of the calling process is not part of the system call in-
vocation. System call error conditions are also not explicit;
they are instead stored directly in the kernel’s process struc-
ture and loaded into the user’s registers upon return to user-
mode. The Solaris virtual memory system relies heavily on
global data structures to determine information such as page
ownership.

Our solution to this scattering of information has been to
develop utility functions which provide extensions with ac-
cess to important information such as process identifiers. A
number of these utility functions are reasonably complex,
and have to walk through internal operating system data
structures. A well-formed interface would make this infor-
mation readily accessible when an event is raised.

While the system call interface is generally quite con-
ducive to interpose on (despite its lack of explicit informa-
tion), the ioctl() call is a notable exception. Originally de-
signed as a way to manage a particular device, ioctl() has
evolved into the generic method of extending Unix function-
ality. An ioctl() call can pass in arbitrary memory buffers,
which may contain pointers to other memory buffers; the
structure of each buffer is defined by the particular device
driver. This means that an extension cannot know, in ad-
vance, how to handle the arguments to anioctl() call. This
is problematic for extensions such as system call tracers or
security extensions which must understand the arguments
of an ioctl(). We are currently experimenting with more
elaborate interposition on the copyin() and copyout()

routines to capture all reads from user space, in order to iden-
tify the location of every buffer read for the ioctl() call.

5.3 Separation of Policy and Mechanism

Extensible operating systems papers often argue that the sep-
aration of policy and mechanism is essential for maintain-
ing extensibility. Our experiences agree with this contention.
While experimenting with extending the scheduler interface
in FreeBSD 2.1.6, we found that the FreeBSD scheduler rou-
tine (cpu switch()) implements both the policy of select-
ing the next process to run as well as the actual context switch
mechanism. To enable interposition on the scheduler policy,
we relocated the code which selects the next process to run
into a separate routine, creating a procedural interface which
can be interposed on.

This problem also occurs in the kernel copyin() and
copyout() routines, which combine the kernel’s security
policy with a mechanism for bringing in data from user
space. In Solaris, we can interpose on these two routines
and implement our own security mechanism for SLIC se-
cure buffers. However, the Linux versions of these routines
(getuser() and putuser()) are normally inlined, and in-
terposing on inlined routines is significantly more difficult
than on standalone functions (which need only be modified
once). Because of this increased difficulty, our Linux port
modifies the Linux source to disable inlining of the copy rou-
tines.

5.4 Other Issues

Our method of using binary patching to intercept procedu-
ral invocations was simple to implement. However, inter-
cepting procedural interface events using binary patching re-
quires a writable kernel text. Unfortunately, Solaris is loaded
such that the kernel text is read-only. By modifying a single
line of Solaris source, we were able to make the text writable.
In earlier versions of Solaris, a system configuration file en-
abled kernel writability, but this functionality has recently
been removed.

The dispatchers and extensions often need a way of
recording state that persists across event invocations. For
instance, the system call dispatcher needs to keep track of
which processes are marked for tracing and a virtual memory
extension may need to store per page information. The tradi-
tional place to store this information is in the process table or
the page structures, but in many operating systems, adminis-
trative tools rely on the size and organization of these struc-
tures to remain constant. Consequently, we currently imple-
ment shadow structures of the kernel’s process and thread
structures to store information for the system call and signal
dispatchers and the extensions.

Extensions operate with the privileges of the calling thread
when they are invoked. Consequently, an extension cannot
write to files owned by root or signal root-owned processes,
except when invoked from a root process. We are currently
investigating this problem and solutions to it.

5.5 Lessons for Kernel Developers

Given these experiences, there are a number of lessons which
we learned about making operating system interfaces con-
ducive to interposition. First, when an interface defines a
boundary between trusted and untrusted code, it should be
possible to keep the two distinct. For example, isolating the
security checks into a collection of well-defined functions
(which Solaris does but Linux does not) allows these checks
to be interposed on and augmented.

Second, it is important to distinguish between mechanism
and policy, and to enforce this distinction even in the com-
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piled binary. This enables extensions to replace system poli-
cies while still leveraging the mechanisms of the system. Al-
though this solution may impact performance slightly, the
costs involved with most mechanisms and policy decisions
in today’s production operating systems considerably out-
weigh the relatively low costs of a procedure call.

Third, a full set of functions should be provided which per-
form the side effects required by the system. For instance,
Solaris provides a function to set the error value for a sys-
tem call, but does not provide a function to clear that error,
which some extensions may need to do. Currently dispatch-
ers provide such functionality in utility functions, but doing
so requires an understanding of many details of the system.
Providing these functions in the underlying kernel will make
dispatcher implementations simpler and more robust.

Finally, a simple method should be provided to enable dis-
patchers to write to the kernel code image. This is necessary
to enable interposition on procedural interfaces using binary
patching.

6 Related Work

There has been a considerable amount of recent work [17,
45, 5, 20, 21] that has focused on building highly-extensible
operating systems. Because these systems have built new
operating systems kernels and new kernel structures, they
have not focused on the problem of extensibility for exist-
ing systems. Of these systems, SPIN [5] and VINO [45, 41]
are the closest in concept to our work. Both offer exten-
sibility through interposition on a number of kernel inter-
faces. These interfaces have been explicitly designed for ex-
tensibility, rather than enabling extensibility on existing in-
terfaces, which SLIC supports. SPIN and VINO also aggres-
sively focus on ensuring kernel protection from extensions,
SPIN by using a type-safe language [44, 26], and VINO
through software fault isolation [50] and in-kernel transac-
tions [41]. We assume trusted extensions.

Interposition Agents [27] demonstrated that it is useful to
construct interposition extensions in terms of the underlying
abstractions of the interposed interface, rather than in terms
of the physical events crossing that interface. The interposi-
tion technology used in [27] bounced system calls to exten-
sions linked into an application’s address space. This mech-
anism has two disadvantages relative to SLIC. First, exten-
sions are not protected from applications and thus cannot im-
plement security extensions or share data between distrust-
ful applications. Second, the multiple protection boundary
crossings limit the performance of the system. Our interposi-
tion technology enables high-performance interposition that
is both enforced upon, and protected from applications, en-
abling a larger class of extensions. The actual toolkit pre-
sented in [27] could easily be constructed on our interposi-
tion platform and could simplify the process of extension de-

velopment.
COLA [31] enables interposition at the system call inter-

face, but without any modification of the operating system
kernel. It operates through interposition at the library level
and consequently suffers from the same security drawbacks
as the interposition technology used in [27].

Protected Shared Libraries [4] enables extensions to be se-
curely loaded into an application’s address space, so that user
programs cannot access or modify extension code or data.
Protected Shared Libraries is primarily used for adding new
interfaces to a system, although they could be combined with
the interposition mechanisms used in SLIC to enable mod-
ification of existing interfaces. Their protection techniques
rely on hardware features of the IBM RS/6000 architecture,
while the principles in SLIC are generally applicable across
a variety of operating system platforms.

7 Future Work

Work on SLIC is proceeding in a variety of directions. We are
focusing on extending the functionality of the base system,
such as adding support for interposition at the page replace-
ment policy and page replacement mechanism interfaces of
Solaris 2.5. In addition, we are working toward making the
base system portable to a number of other platforms, and on
developing a large number of useful extensions.

An area of active research is in managing conflicts be-
tween extensions. While interposition enables compos-
able extensions, these extensions may behave in ways that
negatively impact system stability. Prior experiences with
with conflicts among MS-DOS terminate-and-stay-resident
(TSR) utilities and Macintosh toolkit extensions indicate that
a method of managing conflicts among extensions is sorely
needed.

A Linux 2.0 port of the base SLIC system is nearly com-
plete. Because the base system encapsulates a significant
amount of functionality, extensions written for the Solaris
version of SLIC should port with few or no modifications to
the Linux version.

We are also exploring the design space of useful exten-
sions to be built with SLIC. Among these are transparent
remote execution, a single system image in a network of
workstations, extending the semantics of NFS to include full
cache-coherency for simultaneous access [46] and support-
ing scheduler activations [3] through interposition on signals
or directly on the scheduler.

8 Conclusion

This paper has examined the utility of interposition as a
mechanism for adding extensibility to production operating
systems. We have shown that interposition is suitable to a
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number of useful extensions, and we have presented a pro-
totype system, SLIC, which enables operating system ex-
tensions through interposition in Solaris with minimal ker-
nel source modifications. SLIC demonstrates that extending
an existing operating system can be done efficiently and se-
curely, enabling a larger class of extensions than previous
work in this area.

We have also examined the problems found in trans-
parently extending operating system functionality, such as
the asymmetric trust found across the system call interface.
Drawing from experiences with these problems, we pre-
sented a number of lessons that can be used by operating
systems designers to provide interfaces which are conducive
to interposition. Foremost is the imperative to maintain
clear procedural barriers between operating system policy
and mechanism. Additionally, in order to reduce the effort
necessary in implementing an interposition mechanism, ex-
tension interfaces should be explicit and expose all informa-
tion related with an event.

We believe that the techniques and technology we have
described in this paper can provide substantial benefits to
users of existing operating systems, enabling a viable third-
party industry in operating system extensions. The resulting
competition will stimulate innovation and increase the rate
of technology transfer from operating systems research into
production systems.

Availability

SLIC is implemented on Solaris 2.5.1 and a port to Linux 2.0
is in progress. Current status and source code is available at
http://now.cs.berkeley.edu/Slic/
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