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Abstract

This report describes a method for structuring dynamic Bayesian networks so that word and sentence-

level models can be constructed from low-level phonetic models. This ability is a fundamental prerequisite

for large-scale speech recognition systems, and is well-addressed in the context of hidden Markov models.

With dynamic Bayesian networks, however, subword units cannot simply be concatenated together, and

an entirely di�erent approach is necessary.

1 Introduction

In the speech recognition task we are given a set of utterances, each of which has an associated word-level
transcription. In the simplest case, each utterance is a single word, while in the most complex case the
utterances consist of multiple words without intervening pauses. Based on this data, we want to construct
probabilistic models of word pronunciation that will allow us to calculate the probability of any particular
word sequence, given a sequence of acoustic observations.

Two important problems immediately arise: �rst, in speaker-independent systems meant to recognize thou-
sands of words, there is rarely enough data to construct accurate models on a word-by-word basis. Hence it
is necessary to learn models for a smaller number of atomic subword units, such as phonemes, and to com-
bine these units as needed into larger structures. Secondly, while word-level transcriptions of the training
utterances are available, they are not segmented into words, phonemes, or syllables. Hence, all reasonable
partitionings of an utterance must be considered.

Hidden Markov models are currently the standard method for constructing probabilistic word models. A
HMM assumes that an observation sequence fo1; o2::ong is generated by a stochastic process that proceeds
through a sequence of states fs1; s2::sng and emits an observation symbol at each state. Thus the model
is parameterized by a state transition matrix, and a matrix of emission probabilities. Thorough reviews
of HMMs can be found in [2], [3], [4]. HMMs have proven their value in many practical applications;
nevertheless, in their original formulation they have some serious drawbacks:

� They assume that the probability of an emission is conditionally independent of previous emissions; i.e.
that it depends only on the current state. This assumption is violated by the fact that the observation
symbols are typically generated from overlapping speech segments, and furthermore, because it is
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common to use both acoustic feature vectors and their derivatives as observations at each point in
time.

� The states of a HMM do not necessarily correspond to the physical states of the actual generating
process.

� It is not possible to capture the notion that the overall state of the system consists of a combination
of separately describable factors.

The last two points have recently been addressed in [6], which describes a HMM variant with a factored
state representation and an explicit physical interpretation. The Bayesian network formalism, however,
solves these problems without ad-hoc modi�cation, and this fact motivates our use of DBNs. The main
advantage of these networks is that they work directly with the underlying variables of a physical system. In
the case of speech recognition, these include the tongue position, the degree of lip-rounding, and other similar
features. Furthermore, the overall state of the system is factored into a combination of these components,
thus allowing for a compact representation. Finally, arbitrary conditional dependencies between the variables
can be modeled in the most parsimonious way possible. Hence DBNs potentially o�er a direct and e�cient
model of the speech generation process. A similar argument is presented in [7].

In order to exploit these advantages, however, it must be possible to combine atomic phonetic models into
word and sentence-level structures. The remainder of this paper describes a method of doing this, and thus
allows for a practical implementation.

2 DBN Formalism

A Bayesian network consists of two things [8]:

1. A collection of randomvariables. The values of some of these variables are known (observable variables),
and the values of others are unknown (hidden variables). Each variable is represented by a node in the
network.

2. A speci�cation of the joint probability distribution of the variables. This is speci�ed with the aid of
the chain rule of probabilities. First the variables are assigned an ordering; then the parents of each
variable are identi�ed. The parents of a variable Xi must occur before Xi in the ordering, and given
values for its parents, Xi is conditionally independent of all other variables occurring before it in the
ordering. The parents of variable Xi are conventionally referred to as �i. Hence the probability of any
particular assignment of values to the variables can be calculated as:
P (x1; x2; :::xn) =

Q
iP (xij�i)

The necessary conditional probabilities are enumerated in conditional probability tables (CPTs) asso-
ciated with the variables.

The key advantage of a Bayesian network over a full joint probability table is that it more e�ciently represents
the same information. When each variable is conditionally dependent on only a small number of parents, an
exponential reduction in space can be achieved.

A dynamic Bayesian network is a segmented Bayesian network in which each segment represents the collection
of variables at a speci�c point in time. As de�ned, a dynamic Bayesian network is extremely general, and
as a special case it reduces to a HMM. The restrictions necessary for this reduction are:

1. The nodes in each segment or timeslice are further subdivided into \observable" and \state" nodes.
Values for observable nodes are always available, while values for state nodes are never available.
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2. Arcs can only connect:

� state nodes to observation nodes in the same timeslice or

� observation nodes within a timeslice or

� state nodes within a timeslice or

� state nodes in timeslice t to state nodes in timeslice t+ 1.

Given a DBN, inference procedures can be used to calculate

1. the probability of observed data,

2. the likeliest instantiation of the hidden nodes given observed data,

3. the marginal distributions of the hidden nodes given observed data, and

4. conditional probability tables for the hidden nodes, via an expectation-maximization (EM) procedure.

Because a DBN is a special kind of Bayesian network, the inference methods described in [8], [9], [10] can
all be used. The EM procedure is described in [5].

3 Word Models, Subword Models, and the Concatenation Prob-

lem

The training data consists of a set of utterances fU1; U2::Ung, each with an associated word-level tran-
scription: ffw11; w12::w1ig; fw21; w22::w2jg::fwn1; wn2::wnkgg. With the aid of a dictionary, the word-level
transcriptions can be turned into phonetic transcriptions: ffp11; p12::p1qg; fp21; p22::p2rg::fpn1; pn2::pnsgg.
With both HMMs and DBNs, we want to learn a probabilistic model for each phoneme, and then to con-
struct word and sentence-level models through composition. (Section 3.1.1 shows how to accommodate
multiple phonetic models for each word.)

Figure 1 gives an example of this process with HMMs. The top half of Fig. 1 shows models for the phonemes
\n" and \o" separately. There are initial and �nal states, which are dummy states, and three intermediate
states. Each of the intermediate states has associated emission probabilities. The bottom half of Fig.
1 shows a composite model for the word \no". Note that subword models can be concatenated without
explicitly partitioning the observation sequence between the di�erent model components. The sequence of
allowable state transitions which is speci�ed by a HMM does not make any explicit reference to time; it is
time-inde�nite.

Unfortunately, the semantics of DBNs arcs prevent an analogous concatenation process: arcs represent
conditional dependencies, not allowable state transitions. DBN are time-de�nite: each segment refers to
a speci�c point in time, and the concatenation of phoneme-speci�c segments would require an explicit
partitioning of the observation sequence. Since this partitioning is unknown, a fundamentally di�erent
approach is needed, and in the following sections we present a solution to this problem.

3.1 DBN Control Structures

Figure 2 shows a very simple generative model in the DBN context. Each index node speci�es the index of
the phoneme being emitted by the timeslice it occurs in (is it the �rst phoneme of the utterance, the second,
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n1 n2 n3 final
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o3initial finalo1 o2

Figure 1: HMM model concatenation.

phoneme transition signal

speech apparatus

acoustic observation

generated phoneme

phoneme sequence index

Figure 2: A simple generative model. Elaborations might include the addition of arcs between observation
nodes to model conditional dependencies, or the addition of arcs from phoneme nodes in one timeslice to
transition nodes in the next. The �nal dummy observation node is shaded.
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Node Type Deterministic CPTs Example-Speci�c CPTs Learned CPTs

Transition N N N

Index Y Y N

Phoneme Y Y N

Speech App. N N Y

Acoustic Obs. N N Y

Table 1: The properties of the di�erent node types.

etc.). A mapping particular to each utterance maps the index to an actual phoneme, and this mapping is
hard-coded into the CPTs of the generated-phoneme nodes. Hence these CPTs must be adjusted to re
ect
the transcription of each utterance. The transition nodes are binary, with the value 1 marking a transition
between two phonemes.

The prior on the �rst index node ensures that the model begins with the �rst phoneme in the transcription. A
dummy observation node is added to the last timeslice to ensure that the model ends with the last phoneme.
This is done by \observing" the node to have a value that is only possible if its parent, the index node, has
a value equal to the number of phonemes in the utterance. The CPTs of the index-node are deterministic
and force the index value to increase by 1 every time the transition signal is 1. The transition nodes have
prior probabilities arbitrarily set to the non-zero value of 0:5. Since the DBN inference process will consider
all possible assignments of values to the hidden nodes, all possible partitionings of the observation sequence
will be examined.

Each speech-apparatus node represents a sub-network of physically meaningful variables, for example tongue
position or vocal cord activity. The values of these variables are dependent on their values at the previous
time step - thus expressing continuity constraints - and on the phoneme being generated. Finally, the
acoustic observations are dependent on the speech apparatus. All the nodes in this model are hidden, except
for the acoustic observations. Only the speech-apparatus and acoustic-observation nodes have CPTs which
are subject to training. Table 1 summarizes the properties of each node type.

We refer to the transition, index, and generated-phoneme nodes as the network control nodes. Although it
is not immediately obvious, the CPTs of the control nodes do not introduce bias. Since every explanation
of an example has the same number of time steps s, the factor contributed by the transition-nodes to the
overall probability (i.e. 2�s) is the same for all explanations. (By \explanation" we mean an assignment
of values to the hidden nodes.) Furthermore, before the statistics from di�erent examples are combined,
the statistics for each individual example are divided by the probability assigned to the example (see [5]).
Since the control nodes contribute the same factor to every explanation of an example, this factor is also
present in the overall example probability, and the division eliminates it. In fact, the control nodes never
have unwanted e�ects; in particular they have no ill-e�ects in these situations:

� In EM because of the division just mentioned;

� In �nding the likeliest explanation of a single example because the factor contributed is the same for
every explanation, and nulli�ed by the maxing operation;

� In computing marginals again because the factor is the same for each explanation, and removed by
normalization;

� And when comparing models because the factor is the same for each model of an utterance.

Finally, we note that in general the transition probabilities will be phoneme-dependent and learned with
EM. In this case there is no bias because all the other control CPTs have entries which are either 0 or 1.
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acoustic observations

phoneme sequence index

perceived phoneme

perceptual apparatus

Figure 3: A perceptual model.

Hence the control nodes will have the e�ect of contributing a factor of 1:0 to all explanations that respect
the phonetic transcription, and of rejecting all explanations that violate it.

3.1.1 Multiple Word Models

In the previous section we assumed that there is a single phonetic transcription for each word. Hence we
were able to construct a unique phonetic transcription for the sequence of words in each utterance. A simple
modi�cation of the index-node CPTs allows for multiple word models. Here we think of the index-node as
taking values Cijk indicating that the timeslice is explaining the kth phoneme of the jth word model for the
ith word of the word sequence. Transitions are allowed sequentially within a word model, as before, and
with equal probability between models when the end of a model is reached.

Since each explanation has the same number of word-transitions, and the number of possibilities faced at
each transition is the same, the factor contributed by the control variables to the overall example probability
is again the same for all explanations.

4 Extensions

4.1 A Perceptual Model

Figure 3 shows a simple perceptual model. In contrast to the generative model, information 
ows upwards
from the acoustic observations. Here the values of the central variables - those associated with the perceptual
apparatus - are causally determined by the observations.

As in the generative model, the index nodes ensure that the phonetic transcription is respected. If the
perceived phoneme at time t is the same as the phoneme perceived at t�1, then the index remains unchanged.
If the perceived phoneme at time t is consistent with the next phoneme in the transcription, then the index
is incremented. Otherwise, the index takes a special \out-of-bounds" value which never changes. Since
an explanation, after admitting an inconsistency, can never end up with correct �nal index value, it will
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acoustic observation

phoneme sequence index

generated phoneme

perceived phoneme

perceptual apparatus

speech apparatus

Figure 4: A combined generative and perceptual model.

be assigned zero probability by the �nal dummy observation and ignored. Here we have assumed that two
occurrences of a phoneme do not occur consecutively; if desired, models of this sort can be made with explicit
transition variables.

4.2 Combined Models

Figure 4 shows a combined generative and perceptual model. Note that an arc from the perceived phoneme
to the index node in the same time-step would not make sense because perception occurs after generation.
Hence the loop is completed with an arc from the perceived phoneme to the index node of the next time-step.
The CPTs of the index nodes are again set so that the index value at time t+1 can either be the same as the
previous time step, one-greater, or \out-of-bounds" in the case of an inconsistency between the generated and
perceived phonemes. Explicit transition-signal nodes may be added. Di�erent observations can be used for
the generative and perceptual models, provided that appropriate arcs are introduced between the di�erent
kinds of evidence to re
ect their interdependencies.

4.3 Noise Models

Figure 5 shows how a noise model can be expressed in this framework; it could be grafted onto any one of
the other models.

5 Conclusions

Dynamic Bayesian networks provide a concise and 
exible means of describing generative and perceptual
processes. Due to their time-de�nite nature, however, the composition of low-level phonetic models into
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noise model

speech apparatus

ideal (noiseless) observation

actual observation

Figure 5: A noise model.

word and sentence-level models requires special techniques. The contribution of this report is a method of
structuring DBNs that enables this sort of composition.

We are currently in the process of experimenting with detailed models of speech generation. As a proof-
of-concept, without the speech-apparatus level, we have already achieved good results on a multi-speaker
database of spoken digits. In the future we will extend this work to perceptual and combined models.
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