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Abstract
This work provides a systematic study of the impact of commu-

nication performance on parallel applications in a high performance
network of workstations. We develop an experimental system in
which the communication latency, overhead, and bandwidth can be
independently varied to observe the effects on a wide range of ap-
plications. Our results indicate that current efforts to improve clus-
ter communication performance to that of tightly integrated paral-
lel machines results in significantly improved application perfor-
mance. We show that applications demonstrate strong sensitivity
to overhead, slowing down by a factor of 60 on 32 processors when
overhead is increased from 3 to 103 �s. Applications in this study
are also sensitive to per-message bandwidth, but are surprisingly
tolerant of increased latency and lower per-byte bandwidth. Fi-
nally, most applications demonstrate a highly linear dependence to
both overhead and per-message bandwidth, indicating that further
improvements in communication performance will continue to im-
prove application performance.

1 Introduction
Many research efforts in parallel computer architecture have fo-
cused on improving various aspects of communication perfor-
mance. These investigations cover a vast spectrum of alternatives,
ranging from integrating message transactions into the memory
controller [4, 23, 26, 38] or the cache controller [1, 17, 29], to incor-
porating messaging deep into the processor [7, 8, 9, 14, 19, 20, 33,
37], integrating the network interface on the memory bus [6, 28],
providing dedicated message processors [5, ?, 34], providing vari-
ous kinds of bulk transfer support [4, ?, 26, 34], supporting reflec-
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tive memory operations [6, 18], and providing lean communication
software layers [32, 39, 40]. Recently, we have seen a shift to de-
signs that accept a reduction in communication performance to ob-
tain greater generality (e.g., Flash vs. Dash), greater opportunity
for specialization (e.g. Tempest [35]), or a cleaner communication
interface (e.g., T3E vs. T3D). At the same time, a number of inves-
tigations are focusing on bringing the communication performance
of clusters closer to that of the more tightly integrated parallel ma-
chines [3, 9, 18, 32, 39]. Moving forward from these research alter-
natives, a crucial question to answer is how much do the improve-
ments in communication performance actually improve application
performance.

The goal of this work is to provide a systematic study of the im-
pact of communication performance on parallel applications. It fo-
cuses on a high performance cluster architecture, for which a fast
Active Message layer has been developed to a low latency, high
bandwidth network. We want to quantify the performance impact
of our communication enhancements on applications and to under-
stand if they have gone far enough. Furthermore, we want to under-
stand which aspects of communication performance are most im-
portant. The main contributions of this work are (i) a reproducible
empirical apparatus for measuring the effects of variations in com-
munication performance for clusters, (ii) a methodology for a sys-
tematic investigation of these effects and (iii) an in-depth study of
application sensitivity to latency, overhead, and bandwidth, quanti-
fying application performance in response to changes in communi-
cation performance.

Our approach is to determine application sensitivity to machine
communication characteristics by running a benchmark suite on a
large cluster in which the communication layer has been modified
to allow the latency, overhead,per-messagebandwidth and per-byte
bandwidth to be adjusted independently. This four-parameter char-
acterization of communication performance is based on the LogP
model [2, 11], the framework for our systematic investigation of the
communication design space. By adjusting these parameters, we
can observe changes in the execution time of applications on a spec-
trum of systems ranging from the current high-performance cluster



to conventional LAN based clusters. We measure a suite of appli-
cations with a wide range of program characteristics, e.g., coarse-
grained vs. fine-grained and read vs. write based, to enable us to
draw conclusions about the effect of communication characteristics
on classes of applications.

Our results show that, in general, applications are most sensi-
tive to communication overhead. This effect can easily be predicted
from communication frequency. The sensitivity to messagerate and
data transfer bandwidth is less pronounced and more complex. Ap-
plications are least sensitive to the actual network transit latency
and the effects are qualitatively different than what is exhibited for
the other parameters. Overall, the trends indicate that the efforts
to improve communication performance pay off. Further improve-
ments will continue to improve application performance. However,
these efforts should focus on reducing overhead.

We believe that there are several advantages to our approach of
running real programs with realistic inputs on a flexible hardware
prototype that can vary its performance characteristics. The inter-
actions influencing a parallel program’s overall performance can be
very complex, so changing the performance of one aspect of the
system may cause subtle changes to the program’s behavior. For
example, changing the communication overhead may change the
load balance, the synchronization behavior, the contention, or other
aspects of a parallel program. By measuring the full program on
a modified machine, we observe the summary effect of the com-
plex underlying interactions. Also, we are able to run applications
on realistic input sizes, so we escape the difficulties of attempting
to size the machine parameters down to levels appropriate for the
small problems feasible on a simulator and then extrapolating to the
real case [41]. These issues have driven a number of efforts to de-
velop powerful simulators [35, 36], as well as to develop flexible
hardware prototypes [21].

The drawback of a real system is that it is most suited to investi-
gate design points that are “slower” than the base hardware. Thus,
to perform the study we must use a prototype communication layer
and network hardware with better performance than what is gen-
erally available. We are then able to scale back the performance
to observe the “slowdown” relative to the initial, aggressive design
point. By observing the slowdown as a function of network per-
formance, we can extrapolate back from the initial design point to
more aggressive hypotheticaldesigns. We have constructedsuch an
apparatus for clusters using commercially available hardware and
publicly available research software.

The remainder of the paper is organized as follows. After pro-
viding the necessary background in Section 2, Section 3 describes
the experimental setup and our methodology for emulating designs
with a range of communication performance. In addition, we out-
line a microbenchmarking technique to calibrate the effective com-
munication characteristics of our experimental apparatus. Section 4
describes the characteristics of the applications in our benchmark
suite and reports their overall communication requirements, such
as message frequency, and baseline performance on sample input
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Figure 1: LogP Abstract Machine. The LogP model describes
an abstract machine configuration in terms of four performance pa-
rameters: L, the latency experienced in each communication event,
o, the overhead experienced by the sending and receiving proces-
sors, g, the gap between successive sends or successive receives by
a processor, and P , the number of processors/memory modules.

sets. Section 5 shows the effects of varying each of the four LogP
communication parameters for our applications and, where possi-
ble, builds simple models to explain the results. Section 6 summa-
rizes some of the related work and Section 7 presents our conclu-
sions.

2 Background

When investigating trade-offs in communication architectures, it is
important to recognize that the time per communication operation
breaks down into portions that involve different machine resources:
the processor, the network interface, and the actual network. How-
ever, it is also important that the communication cost model not
be too deeply wedded to a specific machine implementation. The
LogP model [11] provides such a middle ground by characteriz-
ing the performance of the key resources, but not their structure. A
distributed-memory multiprocessor in which processors physically
communicate by point-to-point messages is characterized by four
parameters (illustrated in Figure 1).

L: the latency, or delay, incurred in communicating a message
containing a small number of words from its source proces-
sor/memory module to its target.

o: the overhead, defined as the length of time that a processor
is engaged in the transmission or reception of each message;
during this time, the processor cannot perform other opera-
tions.

g: the gap, defined as the minimum time interval between con-
secutive message transmissions or consecutive message re-
ceptions at a module; this is the time it takes for a message
to cross through the bandwidth bottleneck in the system.

P : the number of processor/memory modules.



Platform o (�s) g (�s) L (�s) MB/s(1/G)
Berkeley NOW 2.9 5.8 5.0 38
Intel Paragon 1.8 7.6 6.5 141
Meiko CS-2 1.7 13.6 7.5 47

Table 1: Baseline LogGP Parameters. This figure shows the
performance of the hardware platform used, the Berkeley NOW.
Two popular parallel computers, the Intel Paragon and the Meiko
CS-2 are included for comparison.

L, o, and g are specified in units of time. It is assumed that the
network has a finite capacity, such that at most dL=ge messagescan
be in transit from any processor or to any processor at any time. If
a processor attempts to transmit a message that would exceed this
limit, it stalls until the message can be sent without exceeding the
capacity limit.

The simplest communication operation, sending a single packet
from one machine to another, requires a time of L+ 2o. Thus, the
latency includes the time spent in the network interfaces and the ac-
tual transit time through the network, which are indistinguishable
to the processor. A request-response operation, such as a read or
blocking write, takes time 2L + 4o. The processor issuing the re-
quest and the one serving the response both are involved for time
2o. The remainder of the time can be overlapped with computation
or sending additional messages.

The available per-processor message bandwidth, or communica-
tion rate (messages per unit time) is 1=g. Depending on the ma-
chine, this limit might be imposed by the available network band-
width or by other facets of the design. In many machines, the limit
is imposed by the message processing rate of the network interface,
rather than the network itself. Because many machines have sepa-
rate mechanisms for long messages(e.g. DMA), it is useful to ex-
tend the model with an additional gap parameter, G, which speci-
fies the time-per-byte, or the reciprocal of the bulk transfer band-
width [2]. In our machine, G is determined by the DMA rate to or
from the network interface, rather than the network link bandwidth.

The LogGP characteristics for our cluster, the Berkeley NOW,
are summarized in Table 1. For reference, we also provide mea-
sured LogGP characteristics for two tightly integrated parallel pro-
cessors, the Intel Paragon and Meiko CS-2 [12].

3 Methodology

In this section we describe the empirical methodology of our study.
The experimental apparatus consists of commercially available
hardware and system software, augmented with publicly available
research software that has been modified to conduct the experi-
ment. The experimental apparatus is calibrated using a simple mi-
crobenchmarking technique.
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Figure 2: Varying LogGP Parameters. This figure describes
our methodology for individually varying each of the logP param-
eters. The interaction between the host processor, the network pro-
cessor (LANai) and the network is shown for communication be-
tween two nodes.

3.1 Experimental setup

The apparatus for all our experiments is a cluster of 32 UltraSPARC
Model 170 workstations (167 MHz, 64 MB memory, 512 KB L2
cache) running Solaris 2.5. Each has a single Myricom M2F net-
work interface card on the SBUS, containing 128 KB SRAM card
memory and a 37.5 MHz “LANai” processor [?]. This processor
plays a key role in allowing us to independently vary LogGP pa-
rameters. The machines are interconnected with ten 8-port Myrinet
switches (model M2F, 160 MB/s per port).

All but two of the applications are written in an SPMD model
using Split-C [10], a parallel extension of the C programming lan-
guage that provides a global address space on distributed mem-
ory machines. Split-C (version 961015) is based on GCC (ver-
sion 2.6.3) and Generic Active Messages (version 961015), which
is the base communication layer throughout the study. While the
programming model does not provide automatic replication with
cache coherence, a number of the applications perform application-
specific software caching. The language has been ported to many
platforms [2, 31, 39, 40]. The sources for the applications, com-
piler, and communication layer can be obtained from a publically
available site 1.

3.2 Technique

The key experimental innovation is to modify the communication
layer so that it can emulate a system with arbitrary overhead,gap, or
latency. We then vary these parameters independently and observe
the effect on application performance. Our technique is depicted in
Figure 2 which illustrates the interaction of the host processor, the

1ftp.cs.berkeley.edu/pub/CASTLE/Split-C/-
release/sc961015



LANai (network interface processor) and the network for commu-
nication between two nodes.

The majority of the overhead is the time spent writing the mes-
sage into the network interface or reading it from the interface.
Thus, varying the overhead,o, is straightforward. For each message
send and before each message reception, the operation is modified
to loop for a specific period of time before actually writing or read-
ing the message.

The gap is dominated by the message handling loop within the
network processor. Thus, to vary the gap, g, we insert a delay loop
into the message injection path after the message is transferred onto
the wire and before it attempts to inject the next message. Since the
stall is done after the message is actually sent the network latency is
unaffected. Also, since the host processor can write and read mes-
sages to or from the network interface at its normal speed, overhead
should not be affected. We use two methods to prevent excessive
network blocking from artificially affecting our results. First, the
LANai is stalled at the source rather than the destination. Second,
the firmware takes advantage of the LANai’s dual hardware con-
texts; the receive context can continue even if the transmit context
is stalled. To adjust G, the transmit context stalls after injecting a
fragment (up to 4KB) for a period of time proportional to the frag-
ment size.

The latency, L, requires care to vary without affecting the other
LogGP characteristics. It includes time spent in the network in-
terface’s injection path, the transfer time, and the receive path, so
slowing either the send or receive path would increaseL. However,
modifying the send or receive path would have the side effect of in-
creasing g. Our approach involves adding a delay queue inside the
LANai. When a message is received, the LANai deposits the mes-
sage into the normal receive queue, but defers setting the flag that
would indicate the presence of the message to the application. The
time that the message “would have” arrived in the face of increased
latency is entered into a delay queue. The receive loop inside the
LANai checks the delay queue for messages ready to be marked as
valid in the standard receive queue. Modifying the effective arrival
time in this fashion ensures that network latency can be increased
without modifying o or g.

3.3 Calibration

With any empirical apparatus, as opposed to a discrete simulator, it
is important to calibrate the actual effect of the settings of the in-
put parameters. In this study, it is essential to verify that our tech-
nique for varying LogGP network characteristics satisfies two cri-
teria: first, that the communication characteristics are varied by the
intended amount and second that they can be varied independently.
Such a calibration can be obtained by running a set of Active Mes-
sage micro-benchmarks, described in [12]. The basic technique is
to measure the time to issue a sequence of m messages with a fixed
computational delay,� between messages. (The clock stops when
the last message is issued by the processor, regardless of how many
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Figure 3: Calibration of LogP Parameters. The LogP sig-
nature is visible as the isobaric plot of burst size vs. fixed computa-
tional delay,�. This signature was a calibration made when the de-
sired g was 14 �sec. The send overhead, receive overhead and gap
can be read from the signature. Overhead is modeled as the average
of the send and receive overhead. Latency is computed as 1

2
(round

trip time)-2o.

requests or responses are in flight.) Plotting the average message
cost as a function of the sequence size and delay generates a LogP
signature, such as that shown in Figure 3. Each curve in the figure
shows the average initiation interval seenby the processoras a func-
tion of the number of messages issued,m, for a fixed�. For a short
sequence, this shows the send overhead. Long sequences approach
the steady-state initiation interval, g. For sufficiently large � the
bottleneck is the processor, so the steady state interval is the send
overhead plus the receive overhead plus�. Finally, subtracting the
two overheads from half the round-trip time gives L.

Table 2 describes the result of this calibration process for three of
the four communication characteristics. For each parameter, the ta-
ble shows the desired and calibrated setting for that parameter. For
overhead, the calibrated value is within 1% of the desired value.
Observe that as o is increased, the effective gap increases because
the processor is the bottleneck, consistent with the LogP model. As
desired, the value of L is independent of o. The calibrated g is
somewhat lower than intended and varying g has little effect on L

and no effect on o. Increasing L has little effect on o. A notable
effect of our implementation is that for large values ofL, the effec-
tive g rises. Because the implementation has a fixed number of out-
standing messages independent of L, when L becomes very large
the implementation is unable to form an efficient network pipeline.
In effect, the capacity constraint of our system is constant, instead
of varying with L and g as the LogGP model would predict.

To calibrate G, we use a similar methodology, but instead send
a burst of bulk messages, each with a fixed size. From the steady-
state initiation interval and message size we derive the calibrated
bandwidth (not shown). We increase the bulk messagesize until we
no longer observe an increase in bandwidth (which happens at a 2K



Desired Observed Desired Observed Desired Observed
o o g L g g o L L L o g

2.9 2.9 5.8 5.0 5.8 5.8 2.9 5.0 5.0 5.0 2.9 5.8
4.9 5.1 10.1 5.0 8.0 7.5 2.9 5.1 7.5 8.1 2.9 6.3
7.9 8.1 16.0 4.7 10 9.6 2.9 5.5 10 10.3 2.9 6.4

12.9 13.0 26.0 5.0 15 14 3.0 5.5 15 15.5 2.9 7.0
22.9 23.1 46.0 4.9 30 29 3.0 5.5 30 30.4 2.9 9.6
52.9 52.9 106.0 5.4 55 52 2.9 5.5 55 55.9 3.0 15.5
77.9 76.5 151.0 5.3 80 76 2.9 5.5 80 80.4 2.9 21.6

102.9 103.0 205.9 6.0 105 99 3.0 5.5 105 105.5 3.0 27.7

Table 2: Calibration Summary. This table demonstrates the calibration of desired LogP parameter values versus measured values. The
table also shows that the LogP parameters can be varied independent of one another.

byte message size). The calibrated values are used in the analysis
done below.

4 Applications and Baseline
Characteristics

With a methodology in place for varying communication charac-
teristics, we now characterize the architectural requirements of the
applications in our study. To ensure that the data is not overly influ-
enced by startup characteristics, the applications must use reason-
ably large data sets. Given the experimental space we wish to ex-
plore, it is not practical to choose data sets taking hours to complete;
however, an effort was made to choose realistic data sets for each of
the applications. We used the following criteria to characterize ap-
plications in our benchmark suite and to ensure that the applications
demonstrate a wide range of architectural requirements:

� Message Frequency: The more communication intensive the
application, the more we would expect its performance to be
affected by the machine’s communication performance. For
applications that use short messages, the most important fac-
tor is the message frequency, or equivalently the average in-
terval between messages. However, the behavior may be in-
fluenced by the burstiness of communication and the balance
in traffic between processors.

� Write or Read Based: Applications that read remote data
and wait for the result are more likely to be sensitive to latency
than applications that mostly write remote data. The latter are
likely to be more sensitive to bandwidth. However, depen-
dences that cause waiting can appear in applications in many
forms.

� Short or Long Messages: The Active Message layer used for
this study provides two types of messages, short packets and
bulk transfers. Applications that use bulk messages may have

high data bandwidth requirements, even though message ini-
tiations are infrequent.

� Synchronization: Applications can be bulk synchronous or
task queue based. Tightly synchronized applications are
likely to be dependent on network round trip times, and so
may be very sensitive to latency. Task queue applications may
tolerate latency, but may be sensitive to overhead. A task
queue based application attempts to overlap message opera-
tions with local computation from a task queue. An increase
in overhead decreases the available overlap between the com-
munication and local computation.

� Communication Balance: Balance is simply the ratio of the
maximum number of messages sent per processor to the av-
erage number of messages sent per processor. It is difficult to
predict the influence of network performance on applications
with a relatively large communication imbalance since vary-
ing LogP parameters may exacerbate or may actually alleviate
the imbalance.

4.1 Benchmark Suite

Table 3 summarizes the programs we chose for our benchmarksuite
as run on both a 16 and a 32 node cluster. Most applications are well
parallelized when scaled from 16 to 32 processors. Each applica-
tion is discussed briefly below.

� Radix Sort: sorts a large collection of 32-bit keys spread over
the processors, and is thoroughly analyzed in [16]. It pro-
gresses as two iterations of three phases. First, each proces-
sor determines the local rank for one digit of its keys. Sec-
ond, the global rank of each key is calculated from local his-
tograms. Finally, each processor uses the global histogram to
distribute the keys to the proper location. For our input set of
one million keys per processor on 32 processors the applica-
tion spends 98% of its time in the communication phases.



Program Description Input Set 16 node 32 node
Time (sec) Time (sec)

Radix Integer radix sort 16 Million 13.66 7.76
32-bit keys

EM3D(write) Electro-magnetic wave 80000 Nodes, 40% remote, 88.59 37.98
propagation degree 20, 100 steps

EM3D(read) Electro-magnetic wave 80000 Nodes, 40% remote, 230.0 114.0
propagation degree 20, 100 steps

Sample Integer sample sort 32 Million 24.65 13.23
32-bit keys

Barnes Hierarchical N-Body 1 Million Bodies 77.89 43.24
simulation

P-Ray Ray Tracer 1 Million pixel image 23.47 17.91
16390 objects

Mur' Protocol SCI protocol, 2 procs, 67.68 35.33
Verification 1 line, 1 memory each

Connect Connected 4 Million nodes 2.29 1.17
Components 2-D mesh, 30% connected

NOW-sort Disk-to-Disk Sort 32 Million 127.2 56.87
100-byte records

Radb Bulk version of 16 Million 6.96 3.73
Radix sort 32-bit keys

Table 3: Applications and Data Sets. This table describes our applications, the input set, the application’s communication pattern, and
the base run time.

The communication density plot of Figure 4a is useful in un-
derstanding the communication behavior of this application.
The darkness of cell i; j indicates the fraction of messages
sent from processor i to processor j. The dark line off the di-
agonal reflects the global histogram phase, where the ranks are
accumulated across processors in a kind of pipelined cyclic
shift. The grey background is the global distribution phase.
Overall, the communication is frequent, write-based and bal-
anced.

� EM3D: EM3D [10] is the kernel of an application that mod-
els propagation of electromagnetic waves through objects in
three dimensions. It first spreads an irregular bipartite graph
over all processors. During each time-step, changes in the
electric field are calculated as a linear function of the neigh-
boring magnetic field values and vice versa. We use two com-
plementary versions of EM3D, one write-based and the other
read-based. Both versions contain relatively short compu-
tation steps. The write-based EM3D uses pipelined writes
to propagate updates by augmenting the graph with special
boundary nodes. EM3D(write) represents a large class of bulk
synchronousapplications, alternating between local computa-
tion and global communication phases. The read version uses
simple blocking reads to pull update information locally and
does not need to create special boundary nodes. The locality

of connectivity in the graph for both versions is indicated by
the dark swath in Figures 4b and 4c.

� Sample Sort: is a probabilistic algorithm which sorts a large
collection of 32-bit keys by first choosing p� 1 “good” split-
ter values and broadcasting them to all processors. Every pro-
cessor distributes its keys to the proper destination processor,
based on the splitter values, and finally, a local radix sort is
performed on the received keys. An interesting aspect of this
application is the potential for unbalancedall-to-all communi-
cation as each processor potentially receives a different num-
ber of keys. This is reflected in the vertical bars in Figure 4d.
For our input size, the local sort time is dominated by the dis-
tribution of keys to their proper destinations. For our input of
16 million keys Sample sort spends 85% of the time in the two
communication phases.

� Barnes: Our implementation of this hierarchical N-Body
force calculation is similar to the version in the SPLASH
benchmark suite [41]. However, the main data structure, a
spatial oct-tree, is replicated in software rather than hard-
ware. Each timestep consists of two phases, a tree construc-
tion phase and an interaction phase among the simulated bod-
ies. Updates of the oct-tree are synchronized through block-
ing locks. During the interaction phase, the processors cache
oct-tree nodes owned by remote processors in a software man-



(a) Radix (b) EM3D(write) (c) EM3D(read) (d) Sample (e) Barnes

(f) P-Ray (g) Mur' (h) Connect (i) NOW-sort (j) Radb

Figure 4: Communication Balance. This figure demonstrates the communication balance between each of the 32 processors for our 10
applications. The greyscale for each pixel represents a message count. Each application is individually scaled from white, representing zero
messages, to black, representing the maximum message count per processor as shown in Table 4. The y-coordinate tracks the message sender
and the x-coordinate tracks the receiver.

aged cache. Communication is generally balanced, as the
solid grey square shows in Figure 4e.

� P-Ray: This scene passing ray tracing program distributes a
read-only spatial oct-tree over all processors. The processors
evenly divide ownership of objects in the scene. When a pro-
cessor needs access to an object stored on a remote processor,
the object is cached locally in a fixed sized software-managed
cache. Communication thus consists entirely of blocking read
operations; the frequency of such operations is a function on
the scene complexity and the software caching algorithm. The
dark spots in Figure 4f indicate the presence of “hot” objects
which are visible from multiple points in the scene.

� Parallel Mur': In this parallel version of a popular protocol
verification tool [15, ?], the exponential space of all reachable
protocol states are explored to catch protocol bugs. Each pro-
cessor maintains a work queue of unexplored states. A hash
function maps states to “owning” processors. When a new
state is discovered, it is sent to the proper processor. On recep-
tion of a state description, a processor first checks if the state
has been reached before. If the state is new, the processoradds
it to the work queue to be validated against an assertion list.

� Connected Components: First, a graph is spread across all
processors [30]. Each processor then performs a connected
components on its local subgraph to collapse portions of its
components into representative nodes. Next, the graph is
globally adjusted to point remote edges (crossing processor
boundaries) at the respective representative nodes. Finally, a
global phasesuccessivelymerges componentsbetweenneigh-

boring processors. The communication to computation ratio
is determined by the size of the graph.

� NOW-sort: The version of NOW-sort used in this study sorts
records from disk-to-disk in two passes [?]. The sort is highly
tuned, setting a the MinuteSort world record in 1997. The
sorting algorithm contains two phases. In the first phase, each
processor reads the records from disk and sends them to the
final destination processor. The perfectly balanced nature of
the communication of phase 1 is shown by the solid black
square in Figure 4i. The sort uses one-way Active Messages
directly, sending bulk messages at the rate the records can be
read from disk. Phase 2 of the algorithm consists of entirely
local disk operations. Unlike the other applications, NOW-
sort performs a large amount of I/O, so can overlap commu-
nication overhead with disk accesses.

� Radb: This version of the radix sort [2] was restructured to
use bulk messages. After the the global histogram phase, all
keys are sent to their destination processor in one bulk mes-
sage. Depending on network characteristics, use of these bulk
messages can speed up the performance of the sort relative to
the standard radix sort.

4.2 Characteristics
As summarized in Table 3, the applications represent a broad spec-
trum of problem domains and communication/computation charac-
teristics. To quantify the differences among our target applications,
we instrumented our communication layer to record baseline char-



Program Avg. Msg./ Max Msg./ Msg./ Msg. Barrier Percent Percent Bulk Small
Proc Proc Proc/ms Interval (�s) Interval (ms) Bulk Msg. Reads Msg. KB/s Msg. KB/s

Radix 1,278,399 1,279,018 164.76 6.1 408 0.01% 0.00% 26.7 4,612.9
EM3D(write) 4,737,955 4,765,319 124.76 8.0 122 0.00% 0.00% 0.6 3,493.2
EM3D(read) 8,253,885 8,316,063 72.39 13.8 369 0.00% 97.07% 0.0 2,026.9
Sample 1,015,894 1,294,967 76.76 13.0 1,203 0.00% 0.00% 0.0 2,149.2
Barnes 819,067 852,564 18.94 52.8 279 23.25% 20.57% 110.4 407.1
P-Ray 114,682 278,556 6.40 156.2 1,120 47.85% 96.49% 358.5 93.5
Connect 6,399 6,724 5.45 183.5 47 0.06% 67.42% 0.0 152.5
Mur' 166,161 168,657 4.70 212.6 11,778 49.99% 0.00% 3,876.6 65.8
NOW-sort 69,574 69,813 1.22 817.4 1,834 49.82% 0.00% 3,125.1 17.2
Radb 4,372 5,010 1.17 852.7 25 34.73% 0.04% 33.6 21.4

Table 4: Communication Summary. For a 32 processor configuration, the table shows run times, average number of messages sent
per processor, and the maximum number of messages sent by any processor. Also shown is the message frequency expressed in the average
number of messages per processor per millisecond, the average message interval in microseconds,the average barrier interval, the percentage
of the messages using the Active Message bulk transfer mechanism, the percentage of total messages which are read requests or replies, the
average bandwidth per processor for bulk messages, and the average bandwidth per processor for small messages.

acteristics for each program (with unmodified LogGP parameters)
on 32 nodes. Table 4 shows the average number of messages, max-
imum number of messages per node (as an indication of commu-
nication imbalance), the message frequency expressed in the aver-
age number of messages per processor per millisecond, the average
message interval in microseconds, and the average interval between
barriers as a measure of how often processors synchronize. Table 4
also shows the percentage of the messages using the Active Mes-
sage bulk transfer mechanism, the percentage of the total messages
which are a read request or reply, the average bandwidth per pro-
cessor for bulk messages, and the average bandwidth per processor
for small messages. Note that the reported bandwidth is for bytes
transmitted through the communication layer as opposed to band-
width delivered to the application.

Table 4 shows that the communication frequency of our appli-
cations varies by more than two orders of magnitude, and yet none
of them are “embarrassingly parallel.” This disparity suggests that
it is quite difficult to talk about typical communication behavior
or sensitivity. Most of the applications have balanced communica-
tion overall, whereas others (Sample, P-Ray) have significant im-
balances. Barnes and EM3D(write) are bulk synchronous applica-
tions employing barriers relatively frequently. Barnes, Mur', P-
Ray, Radb and NOW-sort utilize bulk messages while the other ap-
plications send only short messages. Finally, EM3D(read), Barnes,
P-Ray, and Connect do mostly reads, while the other applications
are entirely write based. Applications doing reads are likely to be
dependent on network round trip times, and thus sensitive to la-
tency, while write based applications are more likely to be tolerant
of network latency. Most of the applications demonstrate regular
communication patterns. However, Connect and P-Ray are more
irregular and contain a number of hot spots. While these applica-

tions do not constitute a workload, their architectural requirements
vary across large classes of parallel applications.

5 Sensitivity to Network Performance

Given our methodology and application characterization, we now
quantify the effect of varying LogGP parameters on our application
suite. To this end, we independently vary each of the parameters
in turn to observe application slowdown. For each parameter, we
attempt to explain any observed slowdowns based on application
characteristics described in the last section. Using this intuition, we
develop models to predict application slowdown.

5.1 Overhead

Figure 5(b) plots application slowdown as a function of added over-
head measured in microseconds for our applications run on 32
nodes. The extreme left portion of the x-axis represents runs on
our cluster. As overhead is increased, the system becomes simi-
lar to a switched LAN implementation. Currently, 100 �s of over-
head with latency and gap values similar to our network is approx-
imately characteristic of TCP/IP protocol stacks [24, 25, 39]. At
this extreme, applications slow down from 2x to over 50x. Clearly,
efforts to reduce cluster communication overhead have been suc-
cessful. Further, all but one of our applications demonstrate a linear
dependence to overhead, suggesting that further reduction in over-
head will continue to yield improved performance. Qualitatively,
the four applications with the highest communication frequency,
Radix, Sample, and both EM3D read and write, display the high-
est sensitivity to overhead. Barnes is the only application which
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Figure 5: Sensitivity to Overhead for 16 and 32 Nodes. This figure plots application slowdown as a function of overhead in microsec-
onds. Slowdown is relative to application performance with our system’s baseline LogGP parameters. Measurements for the graph on the left
were taken on 16 nodes, while measurements for the graph on the right were taken on 32 nodes with a fixed input size.

demonstrates a non-linear dependence to overhead. Instrumenta-
tion of Barnes on 16 nodes revealed that as overhead is increased,
lock contention causes the program to go into livelock. With zero
added overhead, the average numberof failed lock attempts per pro-
cessor is 2000 per timestep. At 13 �s of overhead, the number of
failed lock attempts per processor per timestep skyrockets to over 1
million. This implementation of Barnes does not complete for over-
head values greater than 13 �s on 16 nodes and 7 �s on 32 nodes.

To determine the effect of scaling the number of processors on
sensitivity to overhead, we executed our applications on 16 nodes
with fixed inputs. Figure 5(a) plots the resulting slowdown as a
function of overhead for runs on 16 nodes. With the exception of
Radix, the applications demonstrate almost identical sensitivity to
overhead on 16 processors as they did on 32 processors, slowing
down by between a factor of between 2 and 25. Recall that Radix
contains a phase to construct a global histogram. The number of
messages used to construct the histogram is a function of the radix
and the number of processors, not the number of keys. For a con-
stant number of keys, the relative number of messages per proces-
sor increases as processors are added. Radix thus becomes more
sensitive to overhead as the number of processors is increased for a
fixed input size. In addition, the difference in sensitivities between
16 and 32 nodes is exacerbated by a serial phase in program, which
is described below.

To develop insight into our experimental results, we develop a
simple analytical model of application sensitivity to added over-
head. The model is based on the fact that added overhead is incurred
each time a processor sends or receive a message. Thus, given an
processor’s base runtime, rorig , the added overhead, �o, and m,
the number of communication events for each processor, we expect
runtime, rpred, to be:

rpred = rorig + 2m�o

The factor of two arises because, for Split-C programs, all com-
munication events are one of a request/response pair. For each re-
quest sent, the processor will incur an overhead penalty receiving
the corresponding response in addition to the overhead for the sent
request. If the processor is sending a response, it must have incurred
an overhead penalty when it received the request message.

Given this model for the overhead sensitivity of individual pro-
cessors, we extrapolate to predicting overall application runtime by
making the following simplifying assumptions. First, applications
run at the speed of the slowest processor, and second, the slowest
processor is the processor that sends the most messages. Thus, by
replacingm in the equation with the maximum number of messages
sent by a processor from Table 4, we derive a simple model for pre-
dicting application sensitivity to added overhead as a function of the



o �s Radix EM3D(write) EM3D(read) Sample Barnes
measure predict measure predict measure predict measure predict measure predict

2.9 7.8 7.8 38 38 114 114 13.2 13.2 43.2 43.2
3.9 10.5 10.3 48.1 47.5 138.7 130.7 16.1 15.8 50.1 44.9
4.9 13.2 12.9 58.1 57.0 161.6 147.3 18.7 18.4 56.3 51.8
6.9 18.7 18.0 77.4 76.1 208.8 180.5 23.8 23.6 76.1 60.3
7.9 21.5 20.5 87.4 85.6 232.9 197.2 26.5 26.2 N/A N/A
13 36.3 33.3 138.5 133.3 354.4 280.3 39.3 39.1 N/A N/A
23 68.9 58.9 236.2 228.6 600.1 446.7 65.2 65.0 N/A N/A
53 198.2 135.7 535.9 514.5 1332.5 945.6 142.7 142.7 N/A N/A

103 443.2 263.6 1027.8 991.0 2551.7 1777.2 272.1 272.2 N/A N/A

o �s P-Ray Mur' Connect NOW-sort Radb
measure predict measure predict measure predict measure predict measure predict

2.9 17.9 17.9 35.3 35.3 1.17 1.17 56.9 56.9 3.73 3.73
3.9 19.0 18.5 37.1 35.7 1.19 1.18 56.7 57.0 3.77 3.74
4.9 19.6 19.0 37.7 36.0 1.20 1.19 61.2 57.1 3.77 3.75
6.9 22.0 20.1 41.8 36.7 1.23 1.20 57.9 57.4 3.82 3.77
7.9 20.8 20.7 41.9 37.0 1.24 1.21 58.3 57.6 3.83 3.78
13 28.2 23.5 46.2 38.7 1.31 1.25 58.1 58.3 3.93 3.83
23 39.0 29.1 51.2 42.1 1.44 1.34 58.3 59.7 4.10 3.93
53 69.7 45.8 72.6 52.2 1.85 1.61 61.7 63.9 4.81 4.23

103 114.0 73.6 107.8 69.1 2.52 2.08 71.1 70.8 6.19 4.73

Table 5: Predicted vs. Measured Run Times Varying Overhead. This table demonstrates how well our model for sensitivity to
overhead predicts observed slowdown for the 32 node runs. For each application, the column labeledmeasure is the measured runtime, while
the column labeled predict is the runtime predicted by our model. For frequently communicating applications such as Radix, EM3D(write),
and Sample, the model accurately predicts measured runtimes.

maximum number of messagessent by any processor during execu-
tion.

Table 5 describes how well this model predicts application per-
formance when compared to measured runtimes. For two applica-
tions which communicate frequently, Sample, and EM3D(write),
our model accurately predicts actual application slowdown . For
a number of other applications, most notably Radix, P-Ray and
Mur', the sensitivity to overhead was actually stronger than our
model’s prediction; the model consistently under-predicts the run
time. To explain this phenomenon,we turn back to the assumptions
in our model.

Recall in the simple overhead model, we assume that Pm, the
processor which sent the most messages,m, is the slowest proces-
sor. In addition, we implicitly assume all work in the program is
perfectly parallelizable. It is this second assumption which leads
to under-predicted run times. If a processor,Pn, serializes the pro-
gram in a phase n messages long, when we increase o by �o, then
the serial phase will add to the overall run time by n�o. However,
the simple model does not capture this “serialization effect” when
Pm 6= Pn.

A more important result of the of the serialization effect is that it

reduces speedup as a function of overhead, i.e. speedup gets worse
the greater the overhead. Thus, parallel efficiency will decrease as
overhead increases for any applications which have a serial portion.
Notice how for Radix, parallel decreases as a function of overhead
when scaled from 16 to 32 nodes.

Radix sort demonstrates a dramatic example of the serialization
effect. The sensitivity to overhead for Radix on 32 processors is
over double that of 16 processors. When overhead rises to 100�s,
the slowdown differential between 16 and 32 processors is a factor
of three. The global histogram phase contains a serialization pro-
portional to the radix and number of processors [16]. In the unmod-
ified case, the phase accounts for 20% of the overall execution time
on 32 processors. When the overhead is set to 100�s, this phase
accounts for 60% of the overall execution time. However, on 16
processors with 100�s of overhead, the histogram phase takes only
16% of the total time.

5.2 Gap
We next measure application sensitivity to gap. Figure 6 plots ap-
plication slowdown as a function of added gap in microseconds.
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Figure 6: Sensitivity to gap. This figure plots slowdown as a
function of gap in microseconds.

The programs demonstrate widely varying reactions to gap, ranging
from being unaffected by 100 �s of gap to slowing down by a fac-
tor of 16. The qualitative difference between application sensitivity
to gap and sensitivity to overhead can be explained by the fact that
sensitivity to gap is incurred by the program only on the portion of
the messageswhere the application attempts to send at a rate greater
than the gap. The rest of the messages are not sent quickly enough
to be affected by the gap. Thus, infrequently communicating ap-
plications can potentially ignore gap entirely, while overhead is in-
curred independent of message frequency. The four applications
with the highest communication frequency, Radix, EM3D(write)
and read, and Sample, suffer the largest slowdowns from addedgap.
The other applications are much more tolerant to gap, slowing down
by no more than a factor of 4 even in the presenceof 100�s of added
gap.

Developing a model for application sensitivity to gap presents
more difficulties than developing the model for sensitivity to over-
head. A processor is not affected unless it attempts to send mes-
sages more frequently than the gap. At this point, the processor
must stall for a period waiting for the network interface to become
available. Without more precise knowledge of inter-message inter-
vals, the model for gap sensitivity depends on assumptions made
about these intervals. At one extreme, the uniform model assumes
that all messages are sent at the application’s average message in-
terval, I , from Table 4. In this case, the predicted runtime, r(u)pred,

can be predicted as a function of total gap, g, the average message
interval, I , the base runtime, rbase, and the maximum number of
messages sent by any node, m:

r
(u)

pred
=

�
rbase +m(g � I) if g > I

rbase otherwise

At the other extreme, the burst model assumes that all messages
are sent in discreet communication phases where the application at-
tempts to send as fast as the communication layer will allow. Under
this model, the added gap,�g, is incurred for each communication
event. This second model again assumes that the applications runs
at the speed of the processor sending m messages, the maximum
number of messages per processor from Figure 4, and would pre-
dict runtime, r(b)

pred
, as:

r
(b)

pred = rbase+m�g

Application communication patterns determine which of the two
models more closely predicts actual application runtime. The uni-
form model predicts that applications ignore increased gap until
reaching a threshold equaling the application’s average message in-
terval. At this threshold, the applications should slowdown linearly
with increasing gap. The burst model predicts a linear slowdown
independent of average message interval. Given the linear depen-
dence to gap demonstrated by the applications in Figure 6, we be-
lieve that for our applications, the burst model more accurately pre-
dicts application behavior. Table 6 depicts how well the burst model
predicts actual program slowdown. As anticipated, the model over
predicts sensitivity to gap since not all messages are sent in bursts.
The model works best for heavily communicating applications, as
a larger percentage of their messages are slowed by gap.

The two models considered demonstrate a range of possible ap-
plication behavior. Applications communicating at very regular in-
tervals would follow the uniform model, while applications com-
municating in discreet phases would track the burst model.

5.3 Latency
Traditionally, most attempts at improving network performance
have focused on improving the network latency. Further, perceived
dependencieson network latencies have led programmers to design
their applications to hide network latency. Figure 7 plots appli-
cation slowdown as a function of latency added to each message.
Perhaps surprisingly, most of applications are fairly insensitive to
added latency. The applications demonstrate a qualitatively differ-
ent ordering of sensitivity to latency than to overhead and gap. Fur-
ther, for all but one of the applications the sensitivity does not ap-
pear to be strongly correlated with the read frequency or barrier in-
terval, the operations most likely to demonstrate the strongest sen-
sitivity to latency.



g �s Radix EM3D(write) EM3D(read) Sample Barnes
measure predict measure predict measure predict measure predict measure predict

5.8 7.8 7.8 38 38 114 114 13.2 13.2 43.2 43.2
8 10.2 11 46.1 49.9 119 134.8 14.8 16.5 44.1 45.4

10 13 14.2 56.5 61.8 129.7 155.6 17.5 19.7 50.2 47.5
15 19.2 20.5 78.5 85.6 164.7 197.2 24.2 26.2 55.3 51.8
30 38.1 39.7 150.3 157.1 289.3 321.9 42.9 45.6 61.6 64.6
55 69.9 71.7 273.1 276.2 523 529.8 75.1 78 99.1 85.9
80 101.9 103.7 394 395.4 756.9 737.7 107.5 110.4 157.3 107.2

105 133.8 135.7 515.6 514.5 993.1 945.6 139.7 142.7 207.9 128.5

g �s P-Ray Mur' Connect NOW-sort Radb
measure predict measure predict measure predict measure predict measure predict

5.8 17.9 17.9 35.3 35.3 1.17 1.17 56.9 56.9 3.73 3.73
8 18.1 18.6 37.4 35.8 1.19 1.18 57.9 57.0 3.77 3.74

10 17.8 19.3 36.1 36.2 1.21 1.19 57.6 57.2 3.78 3.75
15 17.9 20.7 36.2 37.0 1.24 1.23 60.9 57.6 3.80 3.78
30 19.1 24.9 38.4 39.5 1.34 1.32 57.3 58.6 3.86 3.85
55 23.2 31.8 37.5 43.8 1.51 1.50 57.2 60.4 3.96 3.98
80 29.0 38.8 39.3 48.0 1.68 1.69 56.9 62.1 4.08 4.10

105 35.5 45.8 39.9 52.2 1.85 1.88 57.4 63.9 4.25 4.23

Table 6: Predicted vs. Measured Run Times Varying gap. This table demonstrates how well the burst model for sensitivity to gap
predicts observed slowdown. For each application, the column labeled measure is the measured runtime, while the column labeled predict
is the runtime predicted by our model.

The sensitivity of EM3D(read), Barnes, P-Ray, and Connect to
latency results from these applications’high frequency of read oper-
ations (see Figure 4). Read operations require network round-trips,
making them the most sensitive to added latency. However, for all
but one of these applications, the observed slowdowns are modest
(at most a factor of four in the worst-case) even at the latencies of
store-and-forward networks (100 �s).

EM3D(read) performs a large number of blocking reads; it repre-
sents a “worst-case” application from a latency perspective because
it does nothing to tolerate latency. It is also the only application for
which a simple model of latency is accurate. Interestingly, for equal
amounts of added “work” per message (100 �s of latency and 50 �s
of overhead), the simple latency model for EM3D(read) is quite ac-
curate yet the simple overhead model under predicts the run time.

The applications which do not employ read operations largely ig-
nore added latency. The small decrease in performance at the tail
of the slowdown curves is caused by the increase in gap associated
with large latencies as the Active Message flow control mechanism
limits the network capacity (see Table 2).

5.4 Bulk Gap
Only applications attempting to send large amounts of data in bursts
should be affected by reductions in bulk transfer bandwidth. Note

that we do not slow down transmission of small messages, but
rather add a delay corresponding to the size of the message for each
bulk message. Further, applications should tolerate decreases in
available bulk bandwidth until the bandwidth dips below the appli-
cation’s requirements at any point during its execution.

Figure 8 plots application slowdown as a function of the maxi-
mum available bulk transfer bandwidth. Overall, the applications
in our suite do not display strong sensitivity to bandwidth. No ap-
plication slows by more than a factor of three even when bulk band-
width is reduced to 1 MB/s. Further, all of the applications, includ-
ing Radb, which moves all of its data in a single burst using bulk
messages,do not display sensitivity until bulk bandwidth is reduced
to 15 MB/s. Surprisingly, the NOW-sort is also insensitive to re-
duced bandwidth. This version of the NOW-sort uses two disks per
node. Each disk can deliver 5.5 MB/s of bandwidth [?], and dur-
ing the communication phase a single disk is used for reading and
the other for writing. As Figure 8 shows, NOW-sort is disk lim-
ited. Until the network bandwidth drops below that of a single disk,
NOW-sort is unaffected by decreased bandwidth.

5.5 Summary
Varying the LogGP parameters for our cluster of workstations and
benchmark suite lead to a number of interesting results. Applica-
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Figure 7: Sensitivity to Latency. This figure plots slowdown
as a function of latency in microseconds.

tions displayed the strongest sensitivity to network overhead, slow-
ing down by as much as a factor of 50 when overhead is increased to
roughly 100�s. Even lightly communicating processessuffer a fac-
tor of 3-5 slowdown when the overhead is increased to values com-
parable to many existing LAN communication stacks. Frequently
communicating applications also display strong sensitivity to gap
suggesting that the communication phases are bursty and limited by
the rate at which messages can be injected into the network. For
both overhead and gap, a simple model is able to predict sensitiv-
ity to the parameters for most of our applications. Perhaps most
interesting is the fact that all the applications display a linear de-
pendence to both overhead and gap. This relationship suggest that
continued improvement in these areas should result in a correspond-
ing improvement in application performance (limited by Amdahl’s
Law). In contrast, if the network performance were “good enough”
for the applications, (i.e. some other part of the system was the bot-
tleneck), then we should observe a region were the application did
not slow down as network performance decreased.

The effect of added latency and bulk gap is qualitatively different
from the effect of added overhead and gap. Further, the effects are
harder to predict because they are more dependent on application
structure. For example, applications which do not perform synchro-
nization or read operations (both of which require round trip net-
work messages)can largely ignore addedlatency. For our measured
applications, the sensitivity to overhead and gap is much stronger
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Figure 8: Sensitivity to Bulk Gap. This figure plots slowdown
as a function of maximum available network bandwidth.

than sensitivity to latency and available bandwidth. Thus, efforts in
improving overhead and gap will result in the largest performance
improvements across a wide class of applications demonstrating di-
verse architectural requirements.

Finally, this study demonstrates an interesting tradeoff between
processor performance and communication performance. For
many parallel applications, relatively small improvements in net-
work overhead and gap can result in a factor of two performance
improvement. This result suggests that in some cases, rather than
making a significant investment to double a machine’s processing
capacity, the investment may be better directed toward improving
the performance of the communication system.

6 Related Work

The Flash team recently conducted a study with very similar goals
under simulation [22]. This study focuses on understanding the per-
formance requirements for a communication controller for a cache-
coherentdistributed memory machine. It is difficult to make a direct
quantitative comparison with their results because of differences in
the simulated machine, the application sets, the small problem sizes
used for simulation, and the metrics used. Still, a qualitative com-
parison is useful. The Flash study introduces a concept of occu-
pancy, the cycles spent in the communication controller on each end



of a messageevent. In their study, the messagerequest and response
is free from the processor’s viewpoint. From the processor’s view-
point, occupancyadds to both the round-trip time and also slows the
rate at which requests can be serviced, i.e., occupancy is part of our
latency as well as gap. Their study also shows that many applica-
tions are surprisingly sensitive to occupancy. The Flash hardware
prototype should provide an ideal testbed to perform a systematic
in situ study like the one reported here in the DSM context.

The Wind Tunnel team has explored a number of cooperative
shared memory design points relative to the Tempest interface
through simulation and prototyping [27, 35], focused primarily on
protocols. In principle, the wind tunnel provides enough power to
systematically determine application sensitivity to the LogGP pa-
rameters within a given protocol, although the small local memory
of the underlying CM5 may limit the study to small data sets.

Cypher [13] described the characteristics of a set of substantial
message passing applications also showing that application behav-
ior varies widely. The applications were developedin the context of
fairly heavy weight message passing libraries and are more heavily
biased to bulk transfers. The average message intervals are much
larger than what our applications exhibit. Calculations on the data
shows that actual data transfer rate is quite low. However, it is dif-
ficult to predict from the reported data how the performance would
be affected with changes in the underlying message layer.

7 Conclusions

We have developed a simple empirical method for exploring the
sensitivity of parallel applications to various aspects of communi-
cation performance. Using a high performance cluster as a base-
line, we are able to increase each of the four communication pa-
rameters of the LogGP model — latency, overhead, message band-
width and byte bandwidth — independently, and we have observed
the effects on a broad range of applications. In general, we see that
efforts to improve communication performance in a cluster archi-
tecture beyond what would be expected of a well-designed LAN
are well rewarded. Applications are most sensitive to overhead, and
some are hyper-sensitive to overhead in that the execution time in-
creases with overhead at a faster rate than the message frequency
would predict. Many applications are also sensitive to message rate
or to message transfer bandwidth, but the effect is less pronounced
than with overhead. The linear response to increased gap suggests
that communication tends to be very bursty, rather than spaced at
even intervals. Applications are least sensitive to network latency,
the effects are uncorrelated with message frequency, and they ap-
pear complex to predict. Overall, the considered applications are
surprisingly tolerant to latency.

The results suggest that there is considerable additional gain
to be obtained by further reducing the communication overheads
in clusters. Ongoing architectural efforts which integrate the net-
work interface closer to the processor, either by placing the net-

work interface onto the memory bus [8, 9, 35], into the memory
controller [26], or by minimizing the number of stores and loads
required to launch a communication event will continue to improve
application performance.
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