
E�cient Resource Scheduling in Multiprocessors

by

Soumen Chakrabarti

Master of Science, University of California, Berkeley, 1992

Bachelor of Technology, Indian Institute of Technology, Kharagpur, 1991

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Katherine Yelick, Computer Science, Chair

Professor James Demmel, Computer Science and Mathematics

Professor Dorit Hochbaum, Industrial Engineering and Operations Research

1996

The dissertation of Soumen Chakrabarti is approved:

Chair Date

Date

Date

University of California at BERKELEY

1996

E�cient Resource Scheduling in Multiprocessors

Copyright 1996

by

Soumen Chakrabarti

1

Abstract

E�cient Resource Scheduling in Multiprocessors

by

Soumen Chakrabarti

Doctor of Philosophy in Computer Science

University of California at BERKELEY

Professor Katherine Yelick, Computer Science, Chair

As multiprocessing becomes increasingly successful in scienti�c and commercial

computing, parallel systems will be subjected to increasingly complex and challenging

workloads. To ensure good job response and high resource utilization, algorithms are needed

to allocate resources to jobs and to schedule the jobs. This problem is of central importance,

and pervades systems research at diverse places such as compilers, runtime, applications,

and operating systems. Despite the attention this area has received, scheduling problems in

practical parallel computing still lack satisfactory solutions. The focus of system builders

is to provide functionality and features; the resulting systems get so complex that many

models and theoretical results lack applicability.

The focus of this thesis is in between the theory and practice of scheduling: it

includes modeling, performance analysis and practical algorithmics. We present a variety of

new techniques for scheduling problems relevant to parallel scienti�c computing. The thesis

progresses from new compile-time algorithms for message scheduling through new runtime

algorithms for processor scheduling to a uni�ed framework for allocating multiprocessor

resources to competing jobs while optimizing both individual application performance and

system throughput.

The compiler algorithm schedules network communication for parallel programs

accessing distributed arrays. By analyzing and optimizing communication patterns globally,

rather than at the single statement level, we often reduce communication costs by factors

of two to three in an implementation based on IBM's High-Performance Fortran compiler.

The best parallelizing compilers at present support regular, static, array-based

2

parallelism. But parallel programmers are out-growing this model. Many scienti�c and

commercial applications have a two-level structure: the outer level is a potentially irregular

and dynamic task graph, and the inner level comprises relatively regular parallelism within

each task. We give new runtime algorithms for allocating processors to such tasks. The

result can be a twofold increase in e�ective mega
ops, as seen from an implementation

based on ScaLAPACK, a library of scienti�c software for scalable parallel machines.

Compilers and runtime systems target single programs. Other system software

must do resource scheduling across multiple programs. For example, a database scheduler

or a multiprocessor batch queuing system must allocate many kinds of resources between

multiple programs. Some resources like processors may be traded for time, others, like

memory, may not. Also, the goal is not to �nish a �xed set of programs as fast as possible

but to minimize the average response time of the programs, perhaps weighted by a priority.

We present new algorithms for such problems.

Most of the above results assume a central scheduler with global knowledge.

When the setting is distributed, decentralized techniques are needed. We study how

decentralization and consequent local knowledge by per-processor schedulers a�ects load

balance in �ne-grained task-parallel applications. In particular, we give new protocols for

distributed load balancing and bounds on the trade-o� between locality and load balance.

The analysis has been supported by experience with implementing task queues in Multipol,

a library for coding dynamic, irregular parallel applications.

Professor Katherine Yelick, Computer Science

Dissertation Committee Chair

iii

iv

Acknowledgements

I am grateful to Kathy for her support and encouragement throughout my stay

at Berkeley, and Jim, for getting me started on scheduling problems for mixed parallel

applications in scienti�c computing. I am greatly indebted to Professor Dorit Hochbaum

for reading my thesis at an incredibly short notice. I am grateful to Professors Richard

Karp and Ron Wol� for being on my quals committee and asking questions which led to

further studies. Thanks to Joel Wein for introducing me to the area of minsum scheduling.

Thanks to Abhiram for helping me analyze some random task allocation algorithms. It was

a pleasure working with Mike Mitzenmacher, Micah Adler and Lars Rasmussen on more

random allocation problems. I owe the work on compile-time message scheduling to Manish

Gupta, Jong-Deok Choi, Edith Schonberg and Harini Srinivasan at IBM T. J. Watson

Research Center. I thank Muthu for patient hearing while I clear jumbled thoughts.

I am grateful to many other people for helping me through graduate school in

many ways. In particular, I wish to thank Savitha and Sudha Balakrishnan, David Bacon,

Prith Banerjee, Janajiban Banik, John Byers, Satish Chandra, Avijit and Amit Chatterjee,

Domenico Ferrari, Bhaskar Ghosh, Seth Goldstein, Mor Harchol, Steve Lumetta, P. Pal

Chaudhuri, Pradyot and Keya Sen, David Shmoys, Cli� Stein, and Randy Wang for their

technical and social support. I thank Kathryn Crabtree, Gail Gran, Gwen Lindsey and Bob

Untiedt for keeping \the management" out of my way. I owe this work to my wife, Sunita

Sarawagi, who also shared the life of a graduate student, and my parents, Sunil and Arati

Chakrabarti, for their continual reassurance.

This work was supported in part by the Advanced Research Projects Agency of the

Department of Defense monitored by the O�ce of Naval Research under contract DABT63-

92-C-0026, AT&T, NSF grants (numbers CDA-8722788 and CDA-9401156), a Research

Initiation Award (number CCR-9210260), Lawrence Livermore National Laboratory, and

DOE (number DE-FG03-94ER25206). The support is gratefully acknowledged. The

information presented here does not necessarily re
ect the position or the policy of the

Government and no o�cial endorsement should be inferred.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Message scheduling via compiler analysis : 3

1.2 Scheduling jobs with mixed parallelism : 4

1.3 Scheduling resource constrained jobs : 6

1.4 Dynamic scheduling using parallel random allocation : : : : : : : : : : : : 7

2 Message scheduling via compiler analysis 9

2.1 Introduction : 9

2.2 Motivating codes : 11

2.2.1 Beyond redundancy elimination : 13

2.2.2 Earliest placement may hurt : 13

2.2.3 Syntax sensitivity : 14

2.3 Network performance : 15

2.4 Compiler algorithms : 16

2.4.1 Representation and notation : 18

2.4.2 Identifying the latest position : 20

2.4.3 Identifying the earliest position : 20

2.4.4 Generating candidate positions : 24

2.4.5 Subset elimination : 26

2.4.6 Redundancy elimination : 26

2.4.7 Choosing from the candidates : 28

2.4.8 Code generation : 29

2.5 Performance : 30

2.6 Extensions : 32

2.6.1 General models : 33

2.6.2 Special communication patterns : 35

2.7 Conclusion : 35

vi

3 Scheduling hybrid parallelism 37

3.1 Introduction : 37

3.2 Notation : 39

3.3 Switched parallel execution : 40

3.3.1 Switching a batch : 42

3.3.2 Precedence graphs : 44

3.4 Modeling and analysis : 45

3.4.1 E�ciency of data parallelism : 46

3.4.2 Regular task trees : 48

3.4.3 Analysis : 51

3.4.4 Unbalanced batch problems : 52

3.4.5 Simulations : 54

3.5 Experiments : 58

3.5.1 Software structure : 58

3.5.2 Results : 59

3.6 Related work : 61

3.7 Discussion : 62

4 Scheduling resource constrained jobs 64

4.1 Introduction : 64

4.1.1 Model and problem statement : 66

4.1.2 Discussion of results : 68

4.2 Motivation : 71

4.2.1 Databases : 71

4.2.2 Scienti�c applications : 72

4.2.3 Fidelity : 72

4.3 Makespan lower bound : 73

4.4 Makespan upper bound : 75

4.5 Weighted average completion time : 78

4.5.1 The bicriteria framework : 78

4.5.2 DualPack and applications : 81

4.6 Extensions : 84

5 Dynamic scheduling using parallel random allocation 86

5.1 Introduction : 86

5.2 Random allocation for dynamic task graphs : : : : : : : : : : : : : : : : : : 87

5.2.1 Models and notation : 88

5.2.2 Discussion of results : 90

5.2.3 Weighted occupancy : 90

5.2.4 Delay sequence : 91

5.2.5 Empirical evaluation : 94

5.2.6 Discussions : 96

5.3 Multi-round load balancing protocols : 96

5.3.1 The model : 97

5.3.2 Summary of results : 98

vii

5.3.3 Threshold protocol : 98

5.3.4 Other protocols : 106

5.3.5 Concluding remarks : 107

6 Survey of related work 108

6.1 Communication scheduling : 108

6.2 Multiprocessor scheduling : 109

6.3 Minsum metrics : 109

6.4 Resource scheduling : 110

6.5 Distributed load balancing : 111

6.6 Open ends : 111

7 Conclusion 113

Bibliography 115

viii

List of Figures

2.1 The need for combining communication. : 12

2.2 Earliest placement may lose valuable opportunity for message combining. : 12

2.3 Syntax sensitivity of earliest placement. : 12

2.4 Bu�er copying and network bandwidth studies on the IBM SP2 and the

Berkeley NOW. : 16

2.5 Prototype modi�cations to the IBM pHPF SPMDizer. : : : : : : : : : : : : 17

2.6 Running example for analysis and optimization steps. : : : : : : : : : : : : 18

2.7 Augmented single static assignment representation. : : : : : : : : : : : : : : 19

2.8 Pseudocode for locating Earliest and Latest. : : : : : : : : : : : : : : : : : : 21

2.9 Pseudocode for choosing from the candidate positions to place communication. 25

2.10 The candidate communication positions on the dominator tree. : : : : : : : 26

2.11 Performance bene�ts of the new algorithm: normalized running times. : : 31

3.1 An example application with dynamic irregular mixed parallelism. : : : : : 40

3.2 The proposed e�ciency model for data parallelism within a single task. : : 47

3.3 Validation of the asymptotic model using data from ScaLAPACK. : : : : : 49

3.4 Variation of e�ciency with � in sparse Cholesky. : : : : : : : : : : : : : : : 56

3.5 Scalability of sparse Cholesky on four machines using mixed, switched, and

data parallelism. : 56

3.6 Plot of e�ciency against problem size for a �xed number of processors. : : : 57

3.7 More e�ciency estimates. : 57

3.8 The software architecture of the dynamic scheduling module in ScaLAPACK. 59

3.9 Performance improvements of switched parallelism over data parallelism on

the Paragon and the SP2. : 60

3.10 Switching and data remapping overheads. : : : : : : : : : : : : : : : : : : : 61

4.1 Illustration of the makespan lower bound. : : : : : : : : : : : : : : : : : : 74

4.2 Existence of bicriteria schedules. : 79

5.1 Parallel branch and bound: lower and upper bounds. : : : : : : : : : : : : : 92

5.2 Comparison of speedup between Graham's list schedule and random allocation. 95

5.3 Time break-up of Graham's list schedule and random allocation on the CM5

for the symmetric eigenvalue problem. : 95

5.4 A (T; r)-tree with confused balls. : 104

ix

List of Tables

2.1 Estimates of message startup overhead � and transfer time per double word

� measured in units of the peak
oating point operation time for di�erent

machines. : 10

2.2 Reduction in compile-time message counts by using the new algorithm. : : 30

3.1 Fitting the asymptotic model to various parallel machines. : : : : : : : : : : 48

4.1 Comparison of results in resource constrained scheduling. : : : : : : : : : : 69

5.1 Simulation results. d is the number of bins that a ball sends initial request

to; this is set to two. r is the number of rounds. : : : : : : : : : : : : : : : 107

1

Chapter 1

Introduction

Parallelism exists in most forms of computation, and exploiting it is a promising

means to boost the performance of many important scienti�c and commercial applications

beyond peak uniprocessor performance. However, exploiting parallelism is not trivial;

it often requires complete algorithm redesign and implementation for di�erent parallel

machines. It has taken almost a decade to identify a few cost-e�ective parallel architecture

con�gurations, and as a result, system software is only starting to mature and reach a level

of portability and standardization that can motivate application writers to invest in parallel

programming.

This point in time is unique in the development of parallel computing, since some

basic design issues have been resolved, so that one need not chase moving targets any

more, but there is a large scope for algorithm design in systems software. The surviving

architectural choices are clear for the foreseeable future: cost-e�ective parallel machines will

be built from shared memory \symmetric" multiprocessors (SMP's). These will scale up to

a few dozen processors at most. For applications that demand more resources, these SMP's

will be interconnected by a network. Processes on di�erent processors will communicate

by passing messages to each other, either explicitly by subroutine calls, or implicitly, by

accessing remote data and triggering a software abstraction of global memory to issue

messages. In units of CPU cycles, communication overhead is expected to be large. Each

message has some �xed startup overhead time and then some proportional time per byte of

data transfered. It will be the interconnect that will de�ne the character and the price-tag

of the machine; the processors will be commodity.

Apart from interface and portability issues, the challenge for system software, such

2

as compilers, runtime systems, and application libraries, is to export a clean performance

model to the client while adjusting to diverse communication cost parameters and diverse

application behavior in terms of both locality and load balance.

The work in this dissertation is based on the following premises.

� Performance engineering is of paramount importance in parallel computing, because,

\Parallelism is not cheaper or easier, it is faster" [66].

� Scheduling the resources of the multiprocessor (mainly, processors, network, memory,

and IO activity) judiciously between the units of work is essential for achieving high

utilization of the resources. Very few compilers or runtime systems take such a

global view of the scheduling problem yet, and we shall show the bene�ts of doing so

throughout the thesis.

� These resource scheduling algorithms must use simple models of the machine and

the workload, so that the resulting system is performance-portable across diverse

platforms without need for ad-hoc tuning.

The contribution of this thesis is a resource scheduling framework for scienti�c and

commercial applications on scalable multiprocessors, comprising techniques at the compiler,

runtime, and application level.

Despite the attention that the area of resource allocation and job scheduling has

received, many problems in parallel system scheduling lack satisfactory solutions. First,

simple application of existing results to new domains is rarely possible, because the setting

often has crucial details not addressed by classical scheduling literature. Second, the

practical situation is usually complex, and it is hard to abstract a model that is both simple

and faithful to reality. Third, most of the problems are computationally intractable, and

knowledge of complexity and approximations is needed to design algorithms and analyze

them. Finally, practical algorithmics, re
ecting both the constraints and simpli�cations

o�ered by practical scenarios, are more important than exploiting powerful but impractical

primitives from theory.

The rest of this chapter summarizes the problems and new solutions described in

the thesis.

3

1.1 Message scheduling via compiler analysis

Parallelism expressed through arrays and loops is very common in scienti�c

numerical applications. Many languages have been designed for expressing array parallelism,

commonly called \data parallelism." The success of data parallelism has reached the stage

where a language standard called High Performance Fortran (HPF) has been de�ned. HPF

extends Fortran with two features: one can refer to regular array sections rather than

individual elements (this extension is also part of Fortran 90 [49]), and give directives to

the compiler to distribute and align arrays on parallel machines. The compiler partitions

computation to match the data distribution and generates communication for remote arrays.

However, compiling HPF code to get performance close to hand-coded message-passing

programs is still a major challenge. On scalable multiprocessors such as the IBM SP2 or

Intel Paragon, a single extra communication step can cost tens of thousands of CPU cycles.

There is a large body of literature on compiler analysis and optimization of

communication generated by loops involving distributed arrays. Initial progress was mostly

restricted to local optimizations at the single loop-nest level; these could not detect and

eliminate communication that is redundant between di�erent loop nests or subroutines. As

a simple example, a single value of a distributed array could be used in several loops after

its de�nition throughout a subroutine; if the array value is unchanged, communication for

the uses should be done once after the de�nition of the value, but without global analysis

it would be done before each loop enclosing an use.

Several factors complicate the situation. The main existing technique to detect

redundancy has been to trace uses of values back to the de�nition and cancel all

communication that is rendered redundant by other communication placed at that point.

This is called earliest placement, and is also good for overlapping communication with

computation. However, this technique places communication for a remote array access at

a place depending only on that access and not others, which may prevent some highly

pro�table optimizations like combining messages from multiple arrays into one. While

message combining amortizes communication overhead, it requires memory copies for

packing and unpacking data. This has to be done carefully so that the communication

bu�ers are smaller than the cache, or the bene�ts of amortizing the �xed overhead of a

message may be canceled by cache miss penalty.

In Chapter 2 we will describe a new compiler algorithm for communication analysis

4

and optimization that achieves redundancy elimination while maximizing network and cache

performance across loops and statements in a global manner [27]. This signi�cantly improves

on the recently proposed array data
ow analyses which use the \earliest placement" policy:

our algorithm takes into account all legal positions for all remote accesses before deciding

on the �nal placement of any access. One implication of this is that our algorithm may

avoid early communication placement if it can lead to larger message overhead. We

implemented the algorithm in IBM's production compiler, called pHPF. Although pHPF

already generated highly optimized code, the new technique cut down communication time

by another factor of two, which meant a 20{40% overall savings for many well-known

scienti�c benchmarks.

1.2 Scheduling jobs with mixed parallelism

The underlying execution model of HPF and similar compilers is called bulk

synchronous: there are alternating phases of computation and communication. Commodity

networks perform well if the latter are few and far between; the compiler algorithm outlined

in the previous section enhances this e�ect. However, loop-level parallelism still has limited

scalability because many processors have to communicate frequently and cooperatively on

a data-parallel problem.

Some applications have a natural two-level structure: at the outer level there is

a directed acyclic task graph, where each vertex is a task that can run only after all its

predecessors have completed. Tasks not ordered with respect to each other can be executed

in parallel. At the inner level, each task is parallelizable; it can run on some set of processors

provided they work on it simultaneously. (The inner level parallelism is the data parallelism

mentioned earlier.) There is a growing body of such applications, including eigensolvers,

adaptive mesh codes, circuit simulation, and parallel database query trees. We shall call

applications with these two forms of parallelism mixed parallel. Recent versions of the HPF

language proposal includes support for such applications, and some parallelizing compilers

have been extended to express such applications.

Given the importance of mixed parallel applications, it is not surprising that

there has been signi�cant research on scheduling them. Most of the work has been in

the area of compile-time scheduling. Array parallelism is expressed as in HPF, and task

parallelism is typically expressed using annotations. The compiler uses estimates or pro�les

5

of computation and communication in the data parallel modules and uses expensive o�-line

optimization algorithms to allocate processors to modules.

Unfortunately, the amount of static task parallelism in such problems is so small

(typically 4{8) that except for the smallest problems, the gains over pure data parallelism

are small. Problems where the task parallelism grows with problem size, such as in divide

and conquer, are therefore much more promising from the perspective of exploiting mixed

parallelism. On the other hand, these applications have to be scheduled dynamically, and

therefore cannot use the expensive optimization algorithms, such as linear-programming,

that are used in compile-time scheduling.

In Chapter 3 we will describe a simple and e�ective heuristic for scheduling divide

and conquer applications with mixed parallelism [26]. The algorithm classi�es the tasks into

two types. The large problems near the root are allocated all the processors in turn, while

small problems close to the leaves are packed in a task-parallel fashion, each task being

assigned exactly one processor. There is some internal frontier at which the execution

model switches from data to task parallelism. Some previous implementations have used

switching based on an ad-hoc switch point tuned to a given problem and machine. In

contrast, our switching algorithms are parameterized on machine and problem parameters

and are provably close to optimal. Control on the switching frontier also gives a simple

means for adjusting to diverse network cost parameters, while also trading communication

cost with the load imbalance inherent in the task graph.

We have implemented the switching algorithms as an extension of the ScaLAPACK

runtime system and used it to run a non-symmetric eigensolver. A signi�cant performance

improvement is seen over a purely data-parallel implementation.

We have also analyzed the performance gap between the switched mode execution

(which is simple to program) and the general setting of allocating arbitrary processor subsets

to jobs (for which many algorithms exist in theory) for a large class of applications. Our

analysis shows that the gap is often small. From a language or runtime design perspective,

these results indicate that this limited form of mixed parallelism will produce most of the

bene�ts with a much simpler implementation.

6

1.3 Scheduling resource constrained jobs

Chapters 2 and 3 focus on the performance of a single application on a dedicated

machine. In realistic installations many users submit jobs that contend for system resources.

Since these jobs arrive over time, it makes little sense to measure the performance of a

scheduler by giving it a batch of jobs o�-line and measuring the �nish time of only the last

job (this is called the makespan of the set of jobs). A better measure to minimize is the

average response time, which is the average time from arrival to completion of a job. For

reasons elaborated later, this problem is very hard. A useful step in that direction is to

solve the special case of minimizing the prioritized (also called weighted) average completion

time, WACT, over a �xed batch of jobs.

The situation is complicated by the jobs having diverse running times and resource

requirements. In real life, jobs need not only processors (which is the predominant case dealt

with in scheduling theory) but also other resources, such as memory and network and disk

bandwidth. While some known algorithms can deal with general resources, they assume the

jobs are independent, while in many situations, there are precedence constraints between

them.

Until recently, few machines allowed multiple jobs to execute concurrently. As most

machines are going towards a multiprogrammed full-UNIX node model, resource scheduling

is becoming more crucial at the system level. Vendors like IBM, SGI and Convex place

signi�cant emphasis on load management software, as do academic communities [50]. It

is also becoming apparent that applications should dynamically allocate and deallocate

resources to avoid under-utilization and long job response times [48]. While signi�cant

software infrastructure is being built, the algorithms at the heart of these systems are often

variants of list-based greedy schedulers, which perform poorly under heavy load.

In Chapter 4 we give several simple and near-optimal algorithms for variations

of this scenario. They depend on a framework for extending makespan algorithms

into WACT algorithms. By applying the framework, we �rst give new algorithms for

processor scheduling under the WACT metric. There appear to be qualitative di�erences

between di�erent types of resources. Some resources, like processors, are malleable,

i.e., they can be traded for time relatively gracefully, while others, like memory are

non-malleable, i.e., admitting little or no such
exibility. For jobs with both precedence

and non-malleable resource constraints, the problem appears to be very di�erent from most

7

precedence-constrained scheduling results that are based on basic lower bounds like average

work per processor or the critical path length in the precedence graph. We obtain an

O(logT) approximation for both WACT and makespan [28], where T is the longest to

shortest job time ratio. Our algorithm uses a technique that deliberately introduces delays

to improve on a greedy schedule. We also show that the logT blowup is unavoidable

for certain instances. Since our models were carefully abstracted from real-life scheduling

problems in parallel databases and operating systems, we expect that these results will

prove useful in practice.

1.4 Dynamic scheduling using parallel random allocation

The results summarized thus far work well in problem domains where the resource

requirements of jobs can be estimated with reasonable accuracy at the time the job is

submitted to the scheduler. Sparse, irregular, and dynamic problems do not always have

this benign feature. In Chapter 5 we explore randomization as an e�ective means for dealing

with such dynamic and unpredictable problems.

In the �rst part we consider applications where the tasks each run on only one

processor, but may have a precedence relation (the task DAG) unfolding dynamically. The

running time of a task may be unknown before completion, and the scheduler has to be

non-clairvoyant, i.e., it cannot know and use the running time of a job to schedule it. It is not

necessary for a centralized scheduler (e.g. Graham's list algorithm [64]) to be clairvoyant,

when evaluated using the �nish time metric, also called \makespan." But this solution has

a communication bottleneck. We analyze the running time using the following decentralized

strategy: each processor has a local task pool, new tasks are sent to a random pool, and

each processor removes and executes tasks from its local pool. Although used in practice,

the e�ect of random allocation on dynamic, irregular task graphs was unresolved before

this work; the closest known analysis was for unit-time tasks [78]. The resulting bounds

are supported by practical experience with irregular applications [30, 25], which show that

randomization is an e�ective tool for load balancing a certain class of applications.

It is well-known from the literature on occupancy problems that one round of

random allocation leads to roughly a logarithmic smoothing of load. In more concrete terms,

if n tasks are randomly assigned to n processors, each processor has O(logn= log log n) tasks

with probability at least 1�O(1=n). In the second part of Chapter 5 we study an extended

8

model of random allocation, where assignment of tasks to processors are made in multiple

rounds so as to further smooth down the load imbalance to sub-logarithmic amounts. In

addition to the task scheduling application, this setting can be motivated by the problem of

allocating �le blocks in distributed \serverless" �le systems like xFS [6]. In this setting there

are n client workstations whose local disks comprise the �le system, which can be abstracted

as n servers. As clients write �les, new disk blocks must be allocated in a decentralized

way without overloading any particular server. There is a trade-o� between the cost of

communication to obtain more global information and the cost of load imbalance owing to

imperfect knowledge. At one extreme, one can send each new block to a random server; at

the other, one can get optimal load balance by maintaining exact global load information.

We give a precise characterization of this trade-o� [1]. Initial simulation results agree with

theoretical predictions.

Extensive work has been done on all the problems studied. In Chapter 6 we will

present a survey and classi�cation of known results based on job and machine models.

Finally, in Chapter 7 we will summarize the thesis and suggest directions for future work.

9

Chapter 2

Message scheduling via compiler

analysis

2.1 Introduction

Distributed memory architectures provide a cost-e�ective method for building

scalable parallel computers. However, the absence of a global address space and the resulting

need for explicit message passing makes these machines di�cult to program. This has

motivated the design of languages like High Performance Fortran (HPF) [55], which allow

the programmer to write sequential or shared-memory parallel programs that are annotated

with directives specifying data decomposition. The compilers for these languages are

responsible for partitioning the computation and generating the communication necessary

to fetch values of non-local data referenced by a processor [72, 123, 20, 5, 21, 68].

Accessing remote data is usually orders of magnitude slower than accessing

local data, for the following reasons. It is getting increasingly cost-e�ective to build

multiprocessors from commodity hardware components and system software. Most current

generation CPU's are well beyond the 100MFLOPS mark, and are consistently out-pacing

network performance. Most vendors support UNIX-like environments on each processor, in

particular with multiprogramming and virtual memory. This means that low-overhead

message passing implementations like Active Messages [115], which work best with

gang-scheduled time slicing, user-level access to the network interface, and register-based

data transfer, are not the best choice. As a result, communication startup overheads tend

10

Machine NW software � �

Paragon NX 7:8� 10
3

9

Cray T3D BLT 2:7� 10
4

9

CM5+VU CMMD 1:4� 10
4

103

IBM SP1 MPL 2:8� 10
4

50

IBM SP2 MPL 1:2� 10
4

60

Table 2.1: Estimates of message startup overhead � and transfer time per double � scaled to the

peak
oating point operation time for di�erent machines. Estimates are in part from [107, 117, 88, 7];

the network software are described in these references.

to be very large on most distributed memory machines, although reasonable bandwidth can

be supported for su�ciently large messages [109, 106]. See Table 2.1 for some idea of the

CPU and communication speeds of current multiprocessors.

Therefore, parallelizing compilers have to be extremely careful about generating

communication code. A single suboptimal choice may waste time equivalent to several

thousand CPU operations. Unfortunately, communication optimization is a very di�cult

problem, with many potentially con
icting considerations. Consider a parallel program

where a data value is produced by some statement, after which it is sent out of the owner

processor, received by other processors, and �nally used in some other statement. There

is usually some
exibility about the placement of the send and receive subroutine calls

between the de�nition and the use. An early placement favors potential overlap between

CPU and network activity, but may consume more temporary communication bu�ers and

cache problems if the main CPU is involved in packing and unpacking data, e.g., for strided

accesses. A late placement may break up communication of a large array section into

smaller sections or individual elements, su�ering increased overhead. Furthermore, placing

one communication at some point in the code also a�ects the choice of the best place for

other communication.

There is a clear need for global scheduling of communication. \Scheduling," in

this chapter, means judicious placement of message-passing subroutine calls in the compiled

code by the compiler. In this chapter we present a novel compiler algorithm that recognizes

the global nature of the communication placement problem. Our algorithm derives from

static single assignment analysis, array dependence analysis, and data availability analysis

[69], which is extended to detect compatibility of communication patterns in addition

to redundancy. We di�er signi�cantly from previous research, in which the position of

11

communication code for each remote access is decided independent of other remote accesses;

instead, we determine the positions in an interdependent and global manner. The algorithm

achieves both redundancy elimination and message combining globally, and is able to reduce

the number of messages to an extent that is not achievable with any previous approach.

Our algorithm has been implemented in the IBM pHPF prototype compiler [68].

We report results from a preliminary study of some well-known HPF programs. The

performance gains are impressive. Reduction in static message count can be up to a factor

of almost nine. Time spent in communication is reduced in many cases by a factor of two or

more. We believe that these are also the �rst results from any implementation of redundant

message elimination across di�erent loop nests, and add signi�cant experimental experience

to research on communication optimization.

2.2 Motivating codes

We will use a few code fragments to show the importance of recognizing the global

nature of the message placement problem. We are interested in the communication patterns

and the
exibility in message placement revealed by data dependence analysis, not the

particulars of the applications.

In the code fragments that we present, we will elide actual operations and show

each right hand side (RHS) as a list of variables accessed. Frequently we deal with Fortran 90

(F90) style shift operations that involve nearest-neighbor communication; we show this

pictorially using arrows. For simplicity, the combinable messages in our examples have

identical patterns on the processor template; in practice, combining is feasible when one

pattern is a subset of another.

Speci�cally, we demonstrate the following.

� Redundancy elimination is useful, but often not enough to reduce the number of

messages. Reducing message count is crucial for our target architectures, especially

for synchronous and collective communication.

� The traditional mechanisms of redundancy elimination can sometimes prevent the

compiler from generating the best communication code.

� The well-known redundancy elimination technique of earliest communication place-

ment is sensitive to minor syntactic di�erences in the high-level source, and may

12

Timestep loop:

glast(:; :) = g(1; : : :)

for i = 2 to nx� 1

� � � = g(i; :; :)" #!

� � � = sum(g(i;ny; :));sum(g(i;ny� 1; :));sum(g(i;0; :));sum(g(i; 1; :))

� � � = glast(:; :)" #!

� � � = sum(glast(ny; :));sum(glast(ny� 1; :));sum(glast(0; :));sum(glast(1; :))

glast(:; :) = g(i; :; :)

g(i; :; :) = � � �

Figure 2.1: A simpli�ed form of the NPAC gravity code illustrating the need for combining

communication.

Source code Earliest placement Combined placement

Loop:

cu = p!

cv = p"

z = u", v!, p!, p", p%

h = u , v#

unew = z#, h!, cv!, cv#, cv&

vnew = z , h", cu , cu", cu-

pnew = cu , cv#

Loop:

COMM!p,v "p,u u #v
cu = p!

COMM cu "cu
cv = p"

COMM!cv #cv

z = u", v!, p!, p", p%
COMM #z z

h = u , v#

COMM!h "h
unew = z#, h!, cv!, cv#, cv&

vnew = z , h", cu , cu", cu-

pnew = cu , cv#

Loop:

COMM!p,v "p,u u #v
cu = p!

cv = p"

z = u", v!, p!, p", p%

h = u , v#

COMM!cv,h #z,cv z,cu "cu,h

unew = z#, h!, cv!, cv#, cv&

vnew = z , h", cu , cu", cu-

pnew = cu , cv#

Figure 2.2: The NCAR shallow benchmark illustrating that redundancy elimination via earliest

placement may lose valuable opportunity for message combining.

F90 Source code Scalarized code Hand coded F77

distribute a; b; c :: (BLOCK)

a = 3
b = 4

c(2 : n) = a(1 : n� 1) + b(1 : n� 1)

do i = 1 : n
a(i) = 3

COMM Earliest(a)

do i = 1 : n
b(i) = 4

COMM Earliest(b)

do i = 2 : n
c(i) = a(i� 1) + b(i� 1)

do i = 1 : n

a(i) = 3

b(i) = 4
COMM Earliest(a);Earliest(b)

do i = 2 : n

c(i) = a(i� 1) + b(i� 1)

Figure 2.3: Syntax sensitivity of earliest placement. The right hand expressions are constants for

simplicity only; for this particular code constant propagation will lead to communication-free code.

13

produce suboptimal code.

2.2.1 Beyond redundancy elimination

Redundancy elimination seeks to avoid unnecessary repetitions of communication

for the same data. Programs often exhibit similar communication patterns involving

di�erent data as well. At least two types of additional communication optimization are

possible. To see this, regard each (bulk-synchronization) communication as a P �P matrix,

where P is the number of physical processors, and element (i; j) denotes the volume of data

that processor i sends to processor j.

� If, in two distinct communications, processor 1 sends to processor 2, these messages

can be combined, if permitted by data dependency analysis, to amortize the �xed

overhead for transferring a message.

� If, in one communication, processor 1 sends to processor 2, and in the other, processor

5 sends to processor 9, and data dependency permits these calls to be made by

the respective processor pair at the same point in the code, these transfers can be

parallelized.

It is quite amazing that in spite of the intense research in the area of communication

optimization, these optimizations are often missed (or not even attempted) by most

compilers.

Figure 2.1 shows a simpli�ed form of a code called gravity. In this code, the

2-d arrays are of dimension (ny,nz) distributed (BLOCK, BLOCK)1 and the 3-d arrays are

of dimension (nx,ny,nz) distributed (*,BLOCK,BLOCK)2 In this code it is easy to detect

that the nearest neighbor communication for g and glast can be combined, as can the sum

operations. Thus, we can combine the eight nearest neighbor messages into four and the

eight global sums into two parallel sets of four global sums.

2.2.2 Earliest placement may hurt

In the last example, earliest placement did not preclude other optimizations; we

merely needed a message combining post-pass. But in general, the situation could be more

1Assuming for simplicity that P divides n, an array a[n] is block distributed over P processors by

assigning fa[in=P]; : : : ; a[(i + 1)n=P � 1]g to processor i, 0 � i < P . This extends naturally to multiple

dimensions by treating the processors as a grid of the same number of dimenions.
2The notation * means that for all i, element a[i; j; k] are on the same processor.

14

complicated. In particular, redundancy elimination via earliest placement can prevent the

combining possibilities from being exploited. To demonstrate this, we study the benchmark

called shallow.

A simpli�ed form of the code is shown in Figure 2.2. Notice that each statement in

the array syntax expands into a two-deep loop-nest. If no redundant message elimination is

done across di�erent loop nests, there would be 18 exchanges generated per processor. (The

IBM compiler already optimizes diagonal communication like p% by decomposing it into

p" and p!. This is re
ected by the message counts.) Earliest placement will move up a

communication as far as possible within the loop, communicating data right after de�nition.

After a combining post-pass this will result in 12 array sections being communicated per

processor. In contrast, if minimizing the number of messages is the objective, then we can

obtain a schedule with only 8 exchanges per processor, in which placement of communication

is not at the earliest point detected by data
ow analysis.

2.2.3 Syntax sensitivity

Since earliest placement pushes communication close to the production of the

data value, placement is sensitive to the structure of intervals containing the production.

As a case in point, consider the semantically equivalent codes in the three columns of

Figure 2.3. Suppose arrays a and b have identical layout, say blocked. Using earliest

placement, the messages for the two arrays can be combined in the third column whereas

they cannot in the second code. Even if the programmer were to write the code in the

�rst column, intermediate passes of compilation may destroy the loop structure by �ssion.

In fact, the IBM HPF scalarizer [68] will translate the F90-style source to the scalarized

form in the second column. If loop fusion can be performed before this analysis, as in this

case, the problem can be avoided. But this is not always possible [120, x 9.2]. Thus, limited
communication analysis at a single loop-nest level or a rigid placement policy may not work

well. Our framework, by not relying on any restricted placement (like earliest or latest)

but evaluating many choices globally, proves to be a much more robust strategy that is not

easily perturbed by minor syntactic di�erences.

15

2.3 Network performance

By pro�ling our target networks, we justify the need for global message scheduling

and identify simplifying assumptions that can be made about the optimization problem.

We pick two platforms: the IBM SP2 with a custom network, and a network of Sparc

workstations (NOW) connected by a commodity network (Myrinet). The SP2 uses IBM's

message passing library MPL; the NOW uses MPICH, a portable implementation of the MPI

standard from Argonne National Labs. Details of the networks can be found in [109, 106, 79].

We want to measure the bene�ts of large messages, while estimating the local block copy

(bcopy) cost to collect many small messages into a large one. Figure 2.4 shows the pro�ling

code and results.

We will be mostly interested in e�ective bandwidth since the HPF runtime does

bulk transfer as the common case. For �ne-grained communication, there is a distinction

between CPU overhead per message, which cannot be overlapped with computation, and

network latency, which can. In the bulk-synchronous execution model that HPF compiles

down to, the bene�ts of overlap are very small. Kennedy et al estimate this to be typically

5{9% for 2-d stencil problems of size 256� 256 on a 16-processor iPSC/860, in the context

of the Fortran-D execution model and runtime system [81].

The top curve shows the bandwidth of local block copy (bcopy) as a function of

bu�er size. The bottom curve plots network bandwidth as a function of message length,

based on the time that the receiver waits for completion.

The top curve shows that as long as the message bu�ers �t in cache, we can

ignore the overhead of bcopy. Fortunately, for both machines, most of the message startup

amortization bene�ts occur at message sizes much smaller than the cache limit; given typical

cache sizes, we believe this is a fairly general feature.

On the other hand, for messages much larger than cache, it may be important to

suppress combining communication from non-contiguous array sections. E.g., for the SP2,

the bandwidth of copying bu�ers larger than the cache is barely twice the message-passing

bandwidth beyond cache size.

If there is a network co-processor or DMA, it is possible for the sender to quickly

inject the message and the receiver to retrieve it more slowly. The middle curve shows

bandwidth computed using the time the sender takes to inject the message. While the

injection bandwidth is much lower than bcopy, it is larger than receive bandwidth for

16

Sender:

Barrier

Time f blocking send g

Receiver:

Post non-blocking receive

Barrier

Time f wait for completion g

10
5

0

0.5

1

1.5

2

2.5
x 10

8

Buffer size (Bytes)

S
P

2
B

an
dw

id
th

 (
B

/s
)

Recv

Send

Bcopy

10
2

10
4

10
6

0

2

4

6

8
x 10

7

Buffer size (Bytes)

N
O

W
 B

an
dw

id
th

 (
B

/s
)

Recv
Send

Bcopy

Figure 2.4: Bu�er copying and network bandwidth studies on the IBM SP2 using MPL and the

Berkeley NOW using MPICH. The x-axis is to a log scale.

certain message sizes. Injection bandwidth also declines around the cache limit.

Given our execution model and typical machine characteristics, we consider

message aggregation and parallelization as the �rst-order concerns, and overlap as a

second-order concern [81]. The latter also depends on the co-processor and network

software. E.g., the implementors of MPL minimize co-processor assistance because the

i860 coprocessor is much slower than the RS 6000 CPU, and the channel between the CPU

and the co-processor is slow [106]. However, our algorithm permits additional techniques

like Give-n-Take to be used to overlap latency with computation at the sender [114].

2.4 Compiler algorithms

In this section we describe our algorithm for placing communication code. This

analysis is done after the compiler has performed transformations like loop distribution and

loop interchange to increase opportunities for moving communication outside loops [68].

Wolfe provides an excellent overview of the compiler terminology we use [120]. The steps

17

of our algorithm are described below and shown in Figure 2.5.

for hand compilation

Modified pHPF SPMDizer

Dataflow/
Dependence

Analyzer

Loop
Transformer

2. Mark candidate statements
1. Find Earliest and Latest

3. Eliminate subsets
4. Eliminate redundancy
5. Choose final candidate

Trace dump to lst file

Communication

Partitioning

Analysis

Communication
Code Generation

Data
Partitioning

Postprocessing

Preprocessing

Data

Figure 2.5: Prototype modi�cations to the IBM pHPF SPMDizer.

1. For each array expression on the right hand side of a statement that may need

communication, identify the earliest (x2.4.3) and latest (x2.4.2) safe position to place

that communication. One of our key innovations is to exploit the static single

assignment (SSA) information [39, 35] already computed in an earlier phase by pHPF,

re�ned by array dependence-testing [121]. In contrast, previous proposals for such

analysis typically use a bidirectional data
ow approach with array section descriptors

and/or bit-vectors [69].

2. For each non-local reference, identify a set of candidate positions, any one of which

can be potentially chosen as the �nal point to emit a call to a message-passing runtime

routine (x2.4.4).

3. Perform the \array-section" analog of common subexpression elimination: detect and

eliminate subsumed communication (x2.4.6).

4. For the remaining communication, choose one from the set of candidate placements.

In the prototype implementation we do this in two substeps that will be explained

later (x2.4.5 and x2.4.7).

The above algorithms have been added to a prototype version of the pHPF compiler as

shown in Figure 2.5. Throughout this section, we will use the code in Figure 2.6 as a

18

CommSet(S) after
S Source code Candidate Subset Redundancy Earliest

marking elimination elimination placement

distribute a; b; c; d :: (BLOCK,*)

1 b(:;1 : n : 2) = 1 b1 b1

2 b(:;2 : n : 2) = 2 b1; b2 b2

3 if (cond)
4 a = 3 a2

5 else
6 a = 4 a2

7 endif a1; a2; b1; b2 a1; a2; b1; b2 fa2; b2g
8 do i = 2 : n
9 do j = 1 : n : 2

10 c(i; j) = a1(i� 1; j) + b1(i� 1; j)

11 do j = 1 : n
12 d(i; j) = a2(i� 1; j)� b2(i� 1; j)

Figure 2.6: Running example for analysis and optimization steps. Di�erent uses of a and b are

subscripted to distinguish their communication entries. Code for each communication entry is

executed after executing the statement. The notation fa2; b2g means the messages for these accesses

can be combined. The results of traditional earliest placement is shown in the last column for

comparison.

running example to illustrate the operation of the steps of the algorithm.

2.4.1 Representation and notation

We represent the program using the augmented control
ow graph (CFG), which

makes loop structure more explicit than the standard CFG by placing preheader and postexit

nodes [3, 100] before and after loops. These extra nodes also provide convenient locations

for summarizing data
ow information for the loop.

The CFG is a directed graph where each node is a basic block, a sequence of

statements without jumps. Execution starts at the ENTRY node. A statement S may have a

use u or de�nition d (abbreviated to \def") of an array variable. There are two kinds of defs.

A \regular" def is one corresponding to the left hand side variable in a source statement.

Conversion to single static assignment (SSA) form also introduces other defs called \�-defs."

These look like \vi = �(: : : ; vj ; : : :)," where each variable
3 v is renamed to v1, v2, etc., and

there is only one assignment to a particular renamed version. A �-def d = �(: : : ; r; : : :)

is said to have a set of parameters frg. All regular array defs are considered preserving,

meaning that (unless proved otherwise) the original value is not assumed to be killed. See

Cytron et al for a detailed treatment of SSA algorithms [39, 35]. We refer interchangeably

3Arrays are regarded as scalars and the index information is ignored during SSA analysis.

19

Post-exit

Exit

edge
Loop-back

Pre-header

Header

d
Body
Loop

edge
Zero-trip

φ

φ

Figure 2.7: The diagram on the left hand side shows an example of a portion of the augmented

control
ow graph. It is reproduced (faint lines) on the right, and on top of it the SSA structure is

super-imposed.

to a use, def, statement, or the node containing them. The node containing S is called

CfgNode(S). When we say communication is placed at d we mean immediately after d.

A path � : v0
+�!vj from v0 to vj is a non-empty node sequence (vi) with edges

(vi�1; vi), 1 � i � j; we also call � a backward path or backpath from vj to v0. Possibly

empty paths are denoted v0
��!vj . � bypasses v if v does not occur on �. Two paths are

non-overlapping if they are node-disjoint. Non-empty paths �1 : v0
+�!vj , �2 : w0

+�!wk are

said to converge at z if v0 6= w0, vj = z = wk, and (vp = wq)) (p = j _ q = k).

Loops are named L. Every loop has a well-de�ned nesting level called NL(L):

this is the number of loops containing it. NL(v) for node v is de�ned likewise. L or v is

deep or shallow according as NL is large or small. The common nesting level CNL(u; v) of

two nodes u and v is the NL of the deepest loop containing them both. Every loop L has

a single preheader node, PreHdr(L), and there is an edge from PreHdr(L) to Hdr(L), the

header node. PreHdr(L) dominates all nodes in L. There is a postexit node for each distinct

loop exit target. Each postexit node of L has an incoming edge, called zero-trip edge, from

PreHdr(L) (along with the original loop-exiting edges). See Figure 2.7.

L has a �-def at Hdr(L), called �Hdr , for each variable de�ned in the loop or in

a loop transitively nested in L. �Hdr has two parameters, rpre and rpost, such that there

exists a backpath from rpre to ENTRY that bypasses all nodes in the loop, and there exists

a path from any node in the loop to rpost which never takes an exit edge out of the loop.

The postexit node of each loop L has a �-def, called �Exit, for each variable de�ned

20

in the loop or in a loop transitively nested in it. Because of �Exit, a de�nition d can reach

a use u only through a de�nition d0 at a level CNL(d; u). d0 can possibly be d only if

CNL(d; u) = NL(d); otherwise, d0 is a �-def at a level CNL(d; u).

2.4.2 Identifying the latest position

We describe how the compiler �nds Latest(u), the latest point to place communi-

cation for u, which is also placed in as shallow a loop level as possible, so that messages are

maximally vectorized. This follows from standard communication analysis: communication

is placed just before the outermost loop in which there is no true dependence on u, and is

placed just before the statement containing u if no such loop exists [123, 72, 68].

Given a use u, let d range over the reaching regular defs of u. (Reaching

defs are de�ned in Cytron et al [39, 35].) Consider some d. Observe that it is never

necessary to place communication for u deeper than at CNL(d; u). Given d and u, we

can compute all possible direction vectors (each is a CNL(d; u)-dimensional vector) [120].

These vectors are used in the routine IsArrayDep, shown in Figure 2.8(d) on page 21.

Let DepLevel(d; u) = maxf` : IsArrayDep(d; u; `)g, the deepest level at which there is a

loop-carried dependency between u and d.

Because of the dependency at level DepLevel(d; u), communication for u cannot

be moved outside loop level DepLevel(d; u). The overall communication level for use u,

denoted CommLevel(u), is set to maxdfDepLevel(d; u)g. Finally, to place communication,

we check CommLevel(u): if CommLevel(u) = NL(u), communication is placed immediately

before the statement containing u4; if CommLevel(u) < NL(u), communication is placed

in the loop preheader of the loop at level (CommLevel(u) + 1) that contains u. Note that

CommLevel(u) > NL(u) is not possible, and that by construction Latest(u) dominates u.

2.4.3 Identifying the earliest position

We now describe how to compute Earliest(u) for use u. Typically, data
ow analysis

with array sections marks a set of nodes as \earliest", such that a copy of the communication

code has to be placed at all these points. This is acceptable if each array section is

communicated using a separate call to the communication library, but for our purposes,

it greatly complicates code generation. In di�erent control
ow paths, communication for u

4In this case no vectorization has been possible.

21

a. Earliest(u)

For each def d of use u in depth-�rst preorder traversal:

If Test(d; u) then return d.

b. Test(d; u)

If d is a �-def, say d = �(: : : ; ri; : : :)

For each �-parameter ri
visit[�] = 0, visit[d] = 1

Let ci = Rcount(Reaching(ri); u;CNL(d; u); visit)

If two or more ci's are positive

Return TRUE

else (d is a regular def)

If IsArrayDep(d; u;CNL(d; u))

Return TRUE.

c. Rcount(d; u; l;visit)

If d is a �-def, say d = �(: : : ; ri; : : :)

If visit[d] return 0

visit[d] = 1

Return

P
i
Rcount(Reaching(ri); u; l; visit)

else (d is a regular def)

If IsArrayDep(d; u; l)

Return 1

else if d is a preserving def

Return Rcount(Reaching(d); u; l;visit)

else return 0.

d. IsArrayDep(d; u; `)

If d is the pseudo-def at ENTRY then return TRUE

If ` > CNL(d; u) then return FALSE

If 9 direction vector ~v = (v1; : : : ; vCNL(d;u)) such that

� vi = 0, for i 2 f1; : : : ; `� 1g, and
� v` � 0

then return TRUE

else return FALSE

Figure 2.8: (a) Pseudocode for iterating over reaching defs of u. (b) Pseudocode for testing a def d to

identify if d is the earliest communication placement point. (c) Pseudocode for recursively counting

the number of incoming edges at �-defs or preserving regular defs that bear possible dependences.

(In our SSA implementation, there is a pseudo-def at ENTRY for each variable accessed in the routine,

which simpli�es data
ow analyses.) (d) Routine to check array dependencies at the leaf defs.

22

may be combined with di�erent references, making it impossible to generate a single version

of the original computation containing u. The resulting code expansion can be enormous.

Moreover, each message will need to have a descriptor for their contents, because, depending

on the control path taken at runtime, the arrays packaged into a message may be di�erent.

Therefore, we restrict our search to the single earliest position that dominates the

use. Our experience with benchmarks, albeit limited, suggests that further sophistication

is often unnecessary. The pseudocode for computing Earliest(u) for a use u is shown in

Figure 2.8(a{d). Earliest goes through defs reaching u in a certain order, Testing each in

turn and returning with the �rst success. Test calls Rcount to �nd out if communication

can be pushed beyond the candidate def d, or that the def represents a merge of at least

two values and is hence a critical point to place communication. Rcount recurses through

reaching defs of d, calling IsArrayDep at the leaves of the recursion, which are regular defs.

Claim 2.4.1 Earliest(u) returns the earliest single dominating communication point d1 for

use u.

In Figure 2.6, Earliest(a1) = Earliest(a2) = 7. Traditional array data
ow analysis, which

does not insist on dominating defs [69], would lead to Earliest0(a1) = Earliest0(a2) = f4; 6g.
In both cases, a2 subsumes a1. We prove Claim 2.4.1 using the following three lemmas.

Lemma 2.4.2 d1 dominates u.

Proof. (By contradiction.) We assume d1 is not the pseudo-def at ENTRY, since the latter

dominates all nodes in the CFG. Let `1 = NL(d1), and L1 be the loop containing d1. Note

that `1 � NL(u) because Earliest will never
ag a d1 with NL(d1) > NL(u). Assume d1 does

not dominate u. Then there exist two or more paths: one from ENTRY to u that bypasses

d1, and another from d1 to u. If NL(u) = NL(d1), these two paths imply that there exists

a �-def at level `1 with (at least) two parameters, r1 and r2, such that there exist two

non-overlapping backpaths: one from r1 to d1, and the other from r2 to the pseudo-def

at ENTRY that bypasses d1. (Because of the zero-trip edges, we can ignore other loops

nested in L1.). That there is such a �-def at level `1 still holds if NL(u) > NL(d1), because

the preheader node of each loop containing u dominates u, and the two (or more) paths

converge at the preheader node which is at level `1, at the latest. Test is called on at least

one of these �-defs, say p, before d1 during the traversal of Earliest(u), starting from u.

23

During execution of Test(p; u), Rcount gets called on defs Reaching(r1) and Reaching(r2),

with nesting level CNL(p; u) = `1. The call at Reaching(r1) returns a positive number,

because some recursive call inspects d1. Similarly the call at Reaching(r2) also returns a

positive number, because some recursive call inspects ENTRY. Since at least two invocations

of Rcount return a positive numbers, the �-def, not d1, will be returned as Earliest(u) if d1

does not dominate u, a contradiction.

Lemma 2.4.3 Let n3 be any proper dominator-tree ancestor of d1. Then there exists a

regular def d2 such that IsArrayDep(d2; u;CNL(d1; u)) returns TRUE, and there also exists a

path d2
��!d1

+�!u that bypasses n3.

Proof. If d1 is the pseudo-def at ENTRY, there is nothing to prove. Also, if d1 is a regular

def, IsArrayDep(d1; u;CNL(d1; u)) must hold for d1 to be returned as Earliest(u), in which

case d1 serves as the de�nition d2 in the statement of the lemma. Therefore, we can assume

d1 is a �-def.

By design, Test(d1) returned TRUE because at least two Rcount calls on the

�-parameters of d1 returned positive counts. But because of the visit[] array, no def is

accounted more than once. Therefore the two positive counts can be attributed to two

node-disjoint backpaths to two distinct regular defs (one of which could be ENTRY). At

most one of these paths contain n3. Let d2 be some regular def on the other path such that

IsArrayDep(d2; u;CNL(d1; u)) = TRUE. Then there is a d2
+�!u path bypassing n3.

Lemma 2.4.4 There is no regular def d4 along a path d1
+�!d4

+�!u such that

IsArrayDep(d4; u;CNL(d4; u)) returns TRUE, and there is a path from d4 to u that bypasses d1.

That is, it su�ces to place communication at d1.

Proof. (By contradiction.) Assume there exists such a d4. According to SSA construction,

two cases can occur: either (1) d4, as well as d1, dominates u, or (2) d4 has a path, bypassing

d1, from it to u through one or more �-defs that dominate u.

Case 1. If d4 dominates u, d4 cannot also dominate d1. Otherwise, there exists a path

from ENTRY to d4 to u that bypasses d1 (second condition in the lemma), in which case d1

cannot dominate u, contradicting Lemma 2.4.2. Therefore, d1 dominates d4 (note that if

both d4 and d1 dominate u, one of them must dominate the other), which in turn dominates

u. Thus Test(d4; u) is called before Test(d1; u) by Earliest(u). Test(d4; u) = TRUE because

IsArrayDep(d4; u;CNL(d4; u)) = TRUE, so d4 will get returned as Earliest(u); a contradiction.

24

Case 2. In the second case, d1 dominates the �-defs. If not, then d1 would not dominate u

either, (contrary to Lemma 2.4.2) because there is a path d4
+�!� +�!u avoiding d1. Hence,

these �-defs are dominated by d1 and are visited before d1 by Earliest(u). It follows, from a

similar argument in the proof of Lemma 2.4.2, that these two paths converge at some node

at level CNL(d4; u), creating a �-def at level CNL(d4; u). This �-node has (at least) two

parameters, r1 and r2, such that there exist two non-overlapping paths: one from d4 to r1,

and the other from d1 to r2. When applied to r1, Rcount returns positive, possibly because

of d4, which satis�es IsArrayDep(d4; u;CNL(d4; u)). When applied to r2, Rcount returns

positive, possibly because of the pseudo-def at ENTRY. Since (at least) two parameters

return positive, the �-def, not d1, is returned by Earliest(u), another contradiction.

Proof of Claim 2.4.1. Observe that only a node that dominates u can serve as a single

communication point for u. Lemma 2.4.2 says that d1 = Earliest(u) dominates u. Consider

all dominator-tree ancestors of u. From this set, Lemma 2.4.3 rules out all nodes that strictly

dominate d1 as unsafe. Finally, Lemma 2.4.4 implies that d1 is a safe communication point

for u.

2.4.4 Generating candidate positions

Since any safe position to insert a single copy of communication for use u must

dominate u, the set of candidate positions has a very simple characterization in terms of

the following claims. We omit the proofs; see Figure 2.10 for the justi�cation.

Claim 2.4.5 Starting at the basic block containing Latest(u), denoted c(Latest(u)), if we

follow parent links in the dominator tree of the CFG, we will reach the basic block containing

Earliest(u).

Claim 2.4.6 The statements marked in the basic blocks encountered during the dominator

tree traversal from c(Latest(u)) up to c(Earliest(u)) are exactly those that are single candidate

positions for communication placement for use u.

Our algorithm for �nding candidate placements of communication is thus ex-

tremely simple, and shown in Figure 2.9(e). In our example (Figure 2.6), statements 3,

4, 5, and 6 are not candidates for placing communication for accesses b1 and b2 because

they do not dominate those uses.

25

e. Mark candidates:

c = CfgNode(Latest(u))

While c 6= CfgNode(Earliest(u)) do

Mark all statements up to Latest(u) in basic block c

c = DomTreeParent(c)

Mark all statements between Earliest(u) and Latest(u)

in CfgNode(Earliest(u)).

f. Eliminate redundancy:

Repeat until no progress:

Find statement S and c1; c2 2 CommSet(S)

such that c2 subsumes c1
For all S0 dominated by S

disable c1 in CommSet(S0)

g. GreedyChoose:

Let StmtSet(c) = fS : c 2 CommSet(S)g
Consider entries c in increasing order of jStmtSet(c)j:
For each S 2 StmtSet(c), count the number of entries

in CommSet(S) with which c can combine (see text)

Pick S with the highest count to place c

Delete c from CommSet(S0) for all S0 6= S

Place each group of combined entries at the latest

position common to the candidate placements of the

entries it contains, including entries disabled during

redundancy elimination.

Figure 2.9: Pseudocode for communication placement. (e) Pseudocode for marking all candidate

statements for communication placement. (f) Pseudocode for global redundancy elimination.

(g) Simple greedy heuristic to choose a �nal position from the set of candidates.

26

positions
candidate

earliest

use sub-optimal

unsafe

latest

dominator tree

entry

Figure 2.10: The candidate places for a �xed use are a set of consecutive nodes on the dominator

chain from the use up to the entry point of the procedure.

2.4.5 Subset elimination

Our current algorithm gives priority to reducing the volume and number of

messages over exploiting overlap bene�ts or reducing contention for bu�ers and cache.

Given this simpli�cation, we can preclude a large number of candidate positions without

compromising the quality of the solution. Speci�cally, let CommSet(S) denote all

communication entries associated with the statement S. A given entry can occur in the

CommSet of many statements. If for statements S1 and S2 we have CommSet(S1) �
CommSet(S2), we can reset CommSet(S1) = ; without losing opportunities for combining

or redundancy elimination. For example, in Figure 2.6, the CommSet of statements 1 and 2

can be safely set to ;. In the case that CommSet(S1) = CommSet(S2), either set may be

emptied at this stage, because the actual choice governing the placement of communication

would be made in the �nal step (x2.4.7).

2.4.6 Redundancy elimination

Typically, earlier approaches eliminated redundancy by examining the list of

communications placed before each statement, and check each pair of entries to see if

one subsumes the other. This test is based on the Available Section Descriptor (ASD)

representation of communication [69]. Brie
y, an ASD consists of a pair hD;Mi, where
D represents the data (scalar variable or an array section) being communicated, and

M is a mapping function that maps data to the processors which receive that data.

27

A communication hD1;M1i is made redundant by another communication hD2;M2i if

D1 � D2, and M1(D1) �M2(D1).

In our case, since there can be many entries for a reference, we have to

propagate the redundancy information globally. The pseudocode for eliminating redundant

communication in the context of our current framework is shown in Figure 2.9(f). The

modi�cation is that in each step examining a statement S, the subsumed communication

entry is cleared not only from CommSet(S) but from all statements S0 such that S dominates

S0. (The dominance ordering prevents a cycle of deletions.) We iterate over statements

and communication pairs until no more elimination occurs.

Claim 2.4.7 The subset and redundancy elimination steps are safe, i.e., the remaining

communication entries are su�cient.

Proof. Subset elimination in an arbitrary order is clearly safe because � is transitive.

The only concern is that when we throw away all copies of an entry because it was found

subsumed at one place, its copy may earlier have subsumed some other communication at

another place.

Let entries e1; e2 2 CommSet(S1) and e2; e3 2 CommSet(S2). Since e2 is in both,

assume w.l.o.g. that S1 dominates S2. We say that ej is redundant if ASD(ej) � ASD(ei),

for some statement S, and ei; ej 2 CommSet(S).

The possible mishap sequence is that we �nd ASD(e3) � ASD(e2) at S2, delete e3

from all S, �nd ASD(e2) � ASD(e1) at S1, and delete e2 from all S, including S1 and S2. If

the remaining entry e1 does not remain available at S2, it must be due to a def d of some

data in ASD(e3) between S1 and S2. But in that case, since d 2 ASD(e2), e2 could not have

occurred at both S1 and S2 in the �rst place.

One implication of the above ordering of eliminations is noteworthy. Consider

our running example (Figure 2.6), speci�cally the communication due to the uses b1

and b2 (ASD(b1) � ASD(b2), since b1 represents b[2 : n; 1 : n : 2] and b1 represents

b[2 : n; 1 : n]). Since Earliest(b1) = 1 6= Earliest(b2) = 2, an initial test of redundancy

based on earliest placement, followed by candidate marking and subset elimination will not

catch the redundancy. Thus, by choosing a placement for b1 later than Earliest(b1), we are

able to eliminate the communication for b1 completely. In contrast, the solution proposed

in [69] would move each communication to the earliest point, and reduce the communication

28

for b2 to ASD(b2)�ASD(b1), while the communication for b1 would remain unchanged. The

solution obtained with our current method is superior because it reduces the communication

startup overhead, and it makes code generation much simpler.

2.4.7 Choosing from the candidates

At this stage we can still have a communication entry c in multiple CommSet's,

and we have to arbitrate in favor of one. The goal is to minimize the total communication

cost. In the common message cost model using �xed overhead per message and bandwidth,

minimizing the cost is NP-hard (also see x2.6). In practice, simple greedy heuristics work

quite well; see Figure 2.9(g). It is similar to Click's global code motion heuristic [36]:

consider the most constrained communication entry next, and put it where it is compatible

in communication pattern (as shown by the test below) with the largest number of other

candidate communication. A more re�ned heuristic would use estimates of message sizes

and consider the communication cost if the current entry were combined with a given set

of entries.

The entries in the CommSet of each statement can now be partitioned into groups,

each group consisting of one or more entries which will be combined into a single aggregate

communication operation. Any
exibility still available in placing this aggregate can be

used to push this communication later, if reducing contention for bu�ers and cache is

more important than overlap bene�ts (as is folk truism for the SP2), or push it earlier if

the situation were reversed. Our algorithm places communication for each group at the

latest position common to the possible placements of each entry in that group (including

positions disabled during the previous step for redundancy elimination). Deferring the

placement decision until this �nal step enables our algorithm to take advantage of any

possible placement that leads to redundancy elimination or combining bene�ts, without

the drawback of unnecessary movement of communication that uses up more resources or

degrades performance.

Criteria for communication compatibility. While in principle, code for arbitrary

communications can be combined into code for a single communication operation, we are

interested in combining messages only when the startup overheads associated with all but

one of them can be eliminated, leading to improved performance. Hence, we view two

communications as compatible for combining if the associated sender-receiver relationships

29

are identical or one is a subset of the other.

Thus, communications for hD1;M1i and hD2;M2i are combined only if M1 =M2

or M1 � M2. The combined communication is given by hD1 [D2;M2i. In order to ensure

better performance and for simplicity of code generation, we impose the following additional

constraints on combining.

� The combined data size of D1 [D2 must be below a threshold (based on our study

reported in x2.3, currently set to 20 KB for SP2), beyond which combining messages

leads to diminishing returns or even worse performance. When data sizes are unknown,

the compiler uses rules of thumb like assuming that nearest-neighbor communication

(NNC) and reductions (where volume of data communicated is signi�cantly lower than

that involved in computation) are operating within the range suitable for combining.

� The size of D1 [D2, as approximated by a single section descriptor (array sections

are not closed under the union operation), should not exceed the combined size of D1

and D2 by more than a small constant. This descriptor for D1[D2 refers to identical

sections of di�erent arrays if D1 and D2 correspond to di�erent arrays, and to a single

array otherwise.

The check for M1 � M2 is done in the virtual processor space of template positions,

as described in [69]. However, we have incorporated extensions to check for equality of

mappings in physical processor space for nearest-neighbor communication and for mappings

to a constant processor position [69].

2.4.8 Code generation

As shown in Figure 2.5, the step after communication analysis and optimization

is to insert communication code in the form of subroutine calls to the pHPF runtime

library routines, which in turn invoke MPL/MPI. The runtime library provides a high-level

interface through which the compiler speci�es the data being communicated in the form of

array sections, and the runtime system takes care of packing and unpacking of data. For

NNC, data is received in overlap regions [123] surrounding the local portion of the arrays.

For other kinds of communication involving arrays, data is received into a bu�er that is

allocated dynamically, and the array reference that led to this communication is replaced

by a reference to the bu�er.

30

Benchmark shallow gravity gravity trimesh trimesh hyd
o hyd
o
Routine main main main normdot gauss
ux hydro

Comm Type NNC NNC SUM NNC NNC NNC NNC

Original (orig) 18 8 8 24 13 52 12
+ Redundancy elimination (nored) 12 8 8 24 13 30 12
+ Combined messages (comb) 8 4 2 4 4 6 6

Table 2.2: Reduction in compile-time message counts by using the new algorithm.

Redundant message elimination for NNC requires no further change to code

generation. For other forms of communication, code generation has been modi�ed to ensure

that the array reference corresponding to eliminated communication is also replaced by a

reference to the bu�er holding non-local data, and that this bu�er is deallocated only after

its last use is over.

Combining messages for di�erent arrays requires changes in code generation and

the HPF runtime library routines. The data being sent or received is still represented by a

single section descriptor, but now has a list of arrays associated with it. Correspondingly, the

runtime routines now have to take on additional responsibilities of packing and unpacking

data for the multiple array sections. Our benchmarks currently emit calls to a rudimentary

runtime library with these features, but this has not been integrated into the compiler yet.

2.5 Performance

The algorithm described above has been implemented in the pHPF compiler. In

order to study the potential performance bene�ts before the code generator and the run-time

library could be modi�ed to take advantage of the superior communication placement, we

emitted scalarized code annotated with human readable communication entries after the

analysis and optimization pass of the compiler. Table 2.2 shows some compile-time statistics

of the reduction in the number of static call sites to the communication library. Static

message counts are reduced by a factor of roughly 2{9.

The trace emitted was then used to generate C programs with calls to

MPL/MPICH message passing libraries. This enabled us to study performance

improvements not only on the IBM SP2, but also on a network of workstations (NOW)

consisting of Sparc workstations connected by a Myrinet switch. For each benchmark, the

compiler generated two or three versions of code. The baseline pulls communication into

outermost possible loops but does not detect redundancy or perform message scheduling.

31

(a) SP2 shallow P = 25, n� n, 50 runs

 CPU NW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 o
rig

 n
or

ed
 c

om
b

 n=100

 o
rig

 n
or

ed
 c

om
b

 n=125

 o
rig

 n
or

ed
 c

om
b

 n=150

 o
rig

 n
or

ed
 c

om
b

 n=175

 o
rig

 n
or

ed
 c

om
b

 n=200

 o
rig

 n
or

ed
 c

om
b

 n=225

 o
rig

 n
or

ed
 c

om
b

 n=250
 o

rig
 n

or
ed

 c
om

b

 n=275

(b) SP2 gravity P = 25, n� n � n, 50 runs

 CPU NW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 o
rig

 c
om

b

 n=100

 o
rig

 c
om

b

 n=125

 o
rig

 c
om

b

 n=150

 o
rig

 c
om

b

 n=175

 o
rig

 c
om

b

 n=200

 o
rig

 c
om

b

 n=225

 o
rig

 c
om

b

 n=250

 o
rig

 c
om

b

 n=275

 o
rig

 c
om

b

 n=300

 o
rig

 c
om

b

 n=325

(c) NOW shallow P = 8, n� n, 20 runs

 CPU NW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 o
rig

 n
or

ed
 c

om
b

 n=100

 o
rig

 n
or

ed
 c

om
b

 n=150

 o
rig

 n
or

ed
 c

om
b

 n=200

 o
rig

 n
or

ed
 c

om
b

 n=250

 o
rig

 n
or

ed
 c

om
b

 n=300

 o
rig

 n
or

ed
 c

om
b

 n=350

 o
rig

 n
or

ed
 c

om
b

 n=400

 o
rig

 n
or

ed
 c

om
b

 n=450

 o
rig

 n
or

ed
 c

om
b

 n=500

(d) NOW gravity P = 8, n� n� n, 5 runs

 CPU NW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
 o

rig

 c
om

b

 n=100

 o
rig

 c
om

b

 n=124

 o
rig

 c
om

b

 n=150

 o
rig

 c
om

b

 n=174

 o
rig

 c
om

b

 n=200
 o

rig

 c
om

b
 n=224

 o
rig

 c
om

b

 n=250

 o
rig

 c
om

b

 n=274

(e) NOW hydflo P = 8, 5� n� n� n, 5 runs

 CPU NW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 o
rig

 n
or

ed

 c
om

b

 n=28

 o
rig

 n
or

ed

 c
om

b

 n=32

 o
rig

 n
or

ed

 c
om

b

 n=40

 o
rig

 n
or

ed

 c
om

b

 n=48

 o
rig

 n
or

ed

 c
om

b

 n=56

 o
rig

 n
or

ed

 c
om

b

 n=64

(f) NOW trimesh P = 8, n� n � n, 5 runs

 CPU NW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 o
rig

 c
om

b

 n=64

 o
rig

 c
om

b

 n=128

 o
rig

 c
om

b

 n=192

 o
rig

 c
om

b

 n=256

 o
rig

 c
om

b

 n=320

Figure 2.11: Performance bene�ts of the new algorithm: normalized running times.

32

The next version uses earliest placement for redundancy elimination but does not perform

message scheduling or combining. The �nal version uses the new algorithm. (Note: gravity

and trimesh have no redundancy.) On the SP2, all codes were compiled using the IBM

xlc compiler. On the NOW, we used SUNWspro compiler cc. Optimization level -O3 was

used.

We report the results in Figure 2.11. Each diagram includes the number of

processors and the number of runs over which the median performance is reported. In each

bar-chart the x-axis is the problem size. For each size two or three bars are plotted, one for

each version of generated code. The y-axis is normalized so that the original code has unit

running time, and the dark segment representing network cost shortens as optimizations

are applied. These measurements were made with overlap disabled to clearly account for

CPU and network activity. All
oating point operations are on double words (eight bytes).

shallow and trimesh involve 2-d n � n arrays distributed (BLOCK,BLOCK); shallow has

13 and trimesh has over 25 such arrays. Thus the problem sizes are realistic in that they

occupy several MBytes. Communication time is reduced by a factor of 2{3, which typically

translates to 10{40% overall running time reduction. gravity uses a 3-d n � n � n array

distributed (*,BLOCK,BLOCK). Thus memory needed even at moderate n is quite staggering,

and the graphs again show 10{40% overall gain in this reasonable size range. hydflo uses

eight 5� (n+2)
3
arrays. Therefore even for small n, the memory requirement is enormous,

which a�ects the size range shown. Finally, the SP2 network has lower overhead and higher

bandwidth than the NOW
5
, which is evident from the higher overall performance gains on

NOW compared to SP2, although the reduction in communication cost alone is roughly

proportionate.

2.6 Extensions

The basic idea of exploiting
exibility in communication placement is rather

general. Although for the sake of practicality our current prototype makes some

simpli�cations; it would be interesting to extend the work in two ways. Currently, network

architecture is undergoing considerable
ux. If the CPU-network overlap can be exploited

more e�ectively in future generation machines, the compiler could obtain better performance

by considering the trade-o�s between enhancing the overlap and reducing the number of

5Note that we use MPI on both machines, not Active Messages [115].

33

messages and bu�er contention. In particular, the simple subset elimination step (x2.4.5)
would have to be dropped, as it could easily degrade the quality of the solution. In

fact, the general problem becomes intractable when all of these con
icting optimizations

are considered. Another future direction comprises enhancements for optimizing special

communication patterns like reductions.

2.6.1 General models

In a well-known model of communication cost, the problem of optimally selecting

�nal candidates is NP-hard, justifying our heuristic approach. A runtime call to the

communication library in general leads to a many-to-many communication pattern. Let

the inverse bandwidth of the network be scaled to one, and the message startup cost be C

in these units. The cost of this pattern to a given processor is C times the total number of

distinct processors that it sends to or receives from, plus the total volume of data that it

sends or receives. Ignoring CPU-network overlap in our bulk-synchronous model, the cost

of a pattern is the maximum cost over all processors, and the cost of a set of patterns is the

sum of their costs. The maximum number of bytes that can be bu�ered at any processor for

aggregating, sending or receiving messages is B. Unfortunately, we can show the following.

Claim 2.6.1 Picking one candidate position for each reference, such that the total cost of

all patterns is minimized, is NP-hard.

Proof. We will give two reductions with slightly di�erent models. We �rst outline the

common features of the two models. Let there be P processors. A point-to-point message

of length b bytes between any two processors costs each processor time C + b, where C is

the startup cost scaled to units of per-byte transfer cost. Each array communication entry e

gives rise to a problem similar to the h-relation problem. Our problem can be characterized

by a P � P matrix A(e)
, where A

(e)
ij

gives the number of bytes to be sent from processor i

to j. The time for executing e is given by:

t(e) = t(A(e)
) = maxj

n
C
P

i

�
sign(A

(e)
ij
) + sign(A

(e)
ji
)

�
+

P
i

�
A
(e)
ij

+ A
(e)
ji

�o

Bin packing. The model for the �rst reduction assumes that any two patterns can be

combined. Assuming any e1 and e2 combine, and ignoring bu�er copy overhead, we can also

assume t(e1[e2) = t(A(e1)+A(e2)). But we do have to ensure that if a set of entries feg are

34

combined, no processor bu�ers more than B bytes for sending or receiving. It is trivial to

reduce bin-packing to this problem. Let there be communication only from processor 1 to 2;

and let the number of bytes in the messages be the item sizes from the bin-packing problem,

and let the bu�er limit be the bin size. Minimizing the number of bins then corresponds to

the minimum number of messages.

Set cover. In practice, code generation issues make it impossible to combine arbitrary

entries e1 and e2. The second model ignores the bu�er constraint B and focuses on the

communication pattern; speci�cally, assume that similar to x2.4.7, we combine entries

e1 = hD1;M1i and e2 = hD2;M2i i� M1 �M2 or M2 �M1.

Initially make the temporary assumption that sending message is free, and

receiving message has some enormous startup cost. Under this model, the cost of an entry is

the maximum number of messages any processor receives. If sending also had large startup

cost, the cost of an entry would be the maximum number of messages any processor sends

plus receives.

Given a set cover instance with elems fe1; : : : ; eng and sets fS1; : : : ; Smg. Elems
are assigned numbers 1; : : : ; n. We will have n + m entries. Each entry is P � P where

P = n + 1. For each element j there is an entry cj of the following form: cj [0; j] = 1; all

other cj [] = 0. For every set Si there is also an entry: ci[0; j] = 1 i� j 2 Si. All other

ci[] = 0. The rules for combining are as above. We say two entries c1 and c2 are combinable

i� elementwise c1 � c2 or c2 � c1. If there is a set cover of size K, then there is a message

schedule with K messages, and conversely. It is not only NP-hard to solve set cover exactly,
but there is a constant c such that it is not possible to get a polynomial time algorithm that

returns a solution within a multiplicative factor of c logn of optimum, unless P = NP .
The reason for the temporary assumption was that otherwise processor 0 would

have to send many messages, while all other processors receive one message each in parallel

for every entry. To remove the assumption, just stagger the �rst row of each matrix: instead

of setting c[0; j] to 1, set c[j � 1; j] to 1. Now for each entry each processor has to send at

most one message and receive at most one message. By blowing up P by a factor of 2, we

can even make sure that no processor both sends and receives.

Like many other NP-hard problems, the optimization problem can be formulated

as an integer linear program (ILP). Furthermore, several additional constraints can be

35

incorporated into the ILP, including overlap between CPU and network and message bu�er

and cache constraints. Pro�le information would be crucial to specify this ILP and solve it

to adequate precision.

2.6.2 Special communication patterns

Throughout, we have focused on two-party communication that fetches remote

data before a statement involving distributed arrays can be executed. Another important

class of communication is collective communication such as scans and reductions, generated,

e.g. from statements of the following form involving associative operators.

x[0] = y[0]; /* scan */ s = 0; /* combine */

for (i = 1; i < n; i++) for (i = 0; i < n; i++)

x[i] = x[i-1] + y[i]; s += x[i];

Global operations are dealt with in a special way in the compiler since communication

requirement is, in a sense, inverted. Whereas ordinary statements require communication

to �ll in remote values before computation can proceed, for reduction the computation

occurs �rst (for the partial reduction operation on individual processors), followed by

communication for the global reduction operation that must be completed before the

use. Our preliminary prototype does not schedule collective communication yet. For

communications which are marked as reductions, we need to employ a reversed SSA analysis,

i.e., iterating through reached uses of a given de�nition to determine the latest point at which

communication may be safely placed. Conceptually this is identical to the framework in this

chapter, but the implementation is left for future work. The current implementation does

allow reduction communications placed at the same point to be combined, as in gravity.

2.7 Conclusion

We have presented an algorithm for global optimization of communication code

placement in compilers for data-parallel languages like HPF. Modern parallel architectures

greatly reward dealing with remote accesses throughout a program in an interdependent

manner rather than naively generating messages for each of them. We achieve precisely

this enabling optimization. In particular, we explore later placements of communication

that preserve the bene�ts of redundancy elimination (normally obtained by moving

communication earlier), reduce the wastage of resources like bu�ers for non-local data, and

36

improve performance due to other factors like fewer messages. Preliminary performance

results obtained on some HPF benchmarks show signi�cant reduction in communication

costs and overall improvements in performance of those programs on the IBM SP2 and

a cluster of Sparcs connected by Myrinet. In the future, we will conduct performance

studies to investigate the desirability of including partial redundancy elimination as well

into our framework. Another area for future work is interprocedural analysis; we believe

that the application of our algorithm across procedure boundaries can often lead to further

improvements in performance.

37

Chapter 3

Scheduling hybrid parallelism

3.1 Introduction

The parallel executable code that compilers for data parallel languages generate

usually runs in a bulk synchronous style. There are alternating phases of computation

and cooperative communication across most or all processors. Fine-grain asynchronous

communication is expensive on most current machines. Reducing this is an active area

of parallel architecture research. However, it is also important for compilers and runtime

systems to optimize an application to coarsen the grain size and make the communication

more coordinated. The compiler algorithm outlined in the previous chapter enhances the

bulk-synchrony of the program. Another way to reduce communication overhead is to

reduce the number of processors, which makes sense only if the application has other

work that can be done on the freed processors. In the context of data-parallel languages

like High Performance Fortran (HPF), this is equivalent to applications that show task

parallelism as well as the standard data parallelism of loops. There is a growing body of

such applications, including eigensolvers, adaptive mesh codes, circuit simulation, and query

trees in parallel relational databases. Another incentive for investigating such programming

models is that future multiprocessors are likely to be clusters of symmetric shared memory

(SMP) machines. The data and task parallelism will map e�ciently to within and across

SMP clusters, since loop-level communication in data parallelism can be supported by

shared memory, while relatively infrequent task-level communication can be implemented

via message passing across clusters.

Recent versions of the HPF proposal includes support for such applications [55].

38

Some parallelizing compilers have been extended to express such a mixed parallel execution

model, but the algorithmic details of the runtime scheduler are still under debate. These

applications are characterized by a precedence graph of tasks, each of which can run on many

processors in a data parallel fashion. For applications amenable to compile-time scheduling,

the task graph has to be known statically, and information about the communication and

computation cost of all the task nodes is needed.

Unfortunately, the amount of static task parallelism in most problems is so small

(typically 4{8) that except for the smallest problems, the gains over pure data parallelism

are negligible. Static task graphs, such as those generated from control
ow graphs

by parallelizing compilers, have a �xed small degree of task parallelism. For example,

the benchmarks in [95] have 4{7 fold e�ective task parallelism and the signal processing

applications in [110] have a 2{5 fold task parallelism. The task parallelism in climate

modeling applications is typically no more than 4{6.

Problems where the task parallelism grows with problem size, such as divide and

conquer problems, are therefore much more promising from the perspective of exploiting

mixed parallelism, and are the focus of this chapter. On the other hand, these applications

may have to be scheduled dynamically, because the structure of the task graph and costs of

tasks may not be known in advance. With runtime scheduling, the ability to use expensive

optimization techniques, such as linear-programming, is limited. This chapter explores

how to extend the purely data-parallel execution model of HPF and implement simple and

e�ective dynamic scheduling algorithms. Speci�cally, we make the following contributions:

� We identify the nature of applications that need task parallelism in addition to data

parallelism for enhanced performance. In particular, we focus on dynamic, scalable

task parallelism such as in divide and conquer.

� For dynamic scenarios, we formulate and give practical solutions for scheduling such

task graphs using a simple switched execution strategy: some tasks are allocated all

processors, some only one; the system alternates between executing tasks of the �rst

type one after the other, and packing tasks of the second type into the processors

evenly.

� We prove that the algorithms are close to the best possible switched execution. We also

show by experiments that the gains of switched parallelism over pure data-parallelism

39

can be dramatic, e.g., up to a factor of three times higher MFLOPS on the IBM SP2.

(This 3� factor is not to be compared with the 2{7� task parallelism mentioned

earlier; those amounts of statically available task parallelism do not translate into

similar improvements over data parallelism.)

� Using simulation we estimate the gap between the e�ciency of switched parallel

execution with the best possible e�ciency of any scheduler. The gap is small.

Data parallelism is the most familiar parallel execution model in scienti�c

computing, as in ScaLAPACK, CMSSL, FortranD, CM-Fortran, and High Performance

Fortran [45, 76, 72, 49, 55]. The computational load can usually be balanced statically, and

the important performance issue is generating parallel loops with minimal communication

overhead (as in Chapter 2). In general, data parallel applications show cooperative

computation and communication within loops, and the parallelism in an operation is

exploited over the complete machine partition.

Task parallelism is speci�ed at the language level using statements like \fork",

which generate a new thread of control to execute the given function invocation. Tasks

may depend on the completion of other tasks, so task parallelism is modeled by an acyclic

graph (DAG) whose vertices represent tasks. Each task runs on exactly one processor (i.e.,

is sequential). The advantage is that communication is potentially required only in setting

up the task and retrieving outputs. Since the task runs on one processor, no inter-processor

communication occurs during task execution. (In our problem domain we do not need to

deal with inter-process communication on the same processor.) The challenge is that often

no information about the structure of the task graph or the cost of tasks is available at

compile-time, making load balancing a more di�cult runtime problem.

3.2 Notation

We will model mixed parallel applications as macro-data
ow graphs [95]. Each

vertex of the (directed acyclic) graph represents a data-parallel task, which could be written

using HPF or ScaLAPACK. The edges represent data and/or control dependency. In this

chapter we will assume some advance knowledge of a task's running time given the number

of processors it is allocated, at the time the task arrives, at the latest. The most general

form in which this can be speci�ed is function tj(�), which gives the running time of task

40

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

-A

eA11

eA22

n

n

k

k

n � k

n� k

n2

k2 (n� k)2

Figure 3.1: An example application with dynamic irregular mixed parallelism.

j if it is allocated � processors that are gang scheduled to run task j cooperatively, where

1 < � < P , where P is the number of processors. In our switching algorithms we will

schedule tasks on one or all processors; we will assume that tj(1) and tj(P) are e�ectively

computable to reasonable accuracy.

Example 3.2.1 Consider the problem of �nding all eigenvalues of a dense non-symmetric

n � n matrix A. To �nd the n eigenvalues of A, which are complex in general, a new

algorithm due to Bai and Demmel divides the complex plane into two half-planes and

counts the number k of eigenvalues in one half-plane [12]. In terms of matrix operations,

this is a data-parallel operation consisting mostly of several dense LU factorizations. k is

not known before this operation. At the end of this operation, A is split into two diagonal

blocks ~A11 which is k � k and ~A22 which is (n� k)� (n� k); the union of the eigenvalues

of ~A11 and of ~A22 are the eigenvalues of A. Now we can recursively split ~A11 and ~A22.

This generates a dynamic binary divide-and-conquer tree. In this example, as in others

that our scheduling framework is suitable for, each task j has a natural notion of \problem

size," denoted Nj; tj(�) will depend of Nj in some well-de�ned way. For example, for the

data-parallel operation above, as in matrix multiplication, Nj = O(n2), where the matrix

A being split is n� n, and tj(1) = �(N
3=2
j

). 2

3.3 Switched parallel execution

The general scheduling solution for mixed parallel programs requires asyn-

chronously scheduling tasks on subsets of processors. In this section we consider a simpler

parallel execution model, where at any given time the scheduler is executing either a single

task in data parallel mode over all the processors, or it is executing many tasks each running

on only one processor. We call this the switched execution model. For divide-and-conquer,

41

there is in fact only one switch point: large tasks near the root of the divide-and-conquer

tree run in data parallel mode; the remaining tasks are packed into a task parallel mode.

Switching is simple to program and, for divide-and-conquer, has only one global

data remapping phase. General processor subset scheduling may have better processor

utilization but has much higher communication and synchronization overhead. In this

section, we will give simple heuristics to schedule tasks in such a model, and prove some

bounds on their performance. Then in x3.4, we study how close the performance of this

restricted model is to the best possible. We set up the switching problem as follows.

Input. There is a set J of n tasks and P processors. These tasks have data parallelism.

Task j speci�es running times under two settings: on one processor, it takes time tj(1)

run in task-parallel fashion; on all P processors it takes time tj(P) to run in data-parallel

fashion. (Usually tj(P) � t1(P)=P , but we will not need this property.) The tasks may be

independent as in x3.3.1, or there may be certain precedence restrictions between them, as

in x3.3.2.

Model. We wish to minimize the execution time of a schedule with the following structure.

The tasks are classi�ed (partitioned) into two groups, JP and J1. Tasks in JP are run one

after the other in some order consistent with the precedence restrictions, allocating to each

task all the P processors. Let the total time for this phase be tP . Each task in J1 is run

on one processor. They can run concurrently with each other, again as long as precedence

restrictions are not violated. Let the total time for this phase be t1. The total execution

time is tP + t1.

Classi�cation. The classi�cation problem is to �nd JP and J1 such that there is a

two-phase schedule of optimal makespan where JP is executed in data parallel mode and

J1 is executed in task parallel mode.

Scheduling. Given JP and J1, the problem is to compute a good schedule. Note

that scheduling JP is trivial, and Graham's list scheduling su�ces for J1. Even after

classi�cation, constructing an optimal schedule is clearly NP-hard via reduction from

partition. It is easy to see that even the classi�cation is NP-hard.

Claim 3.3.1 The classi�cation problem is NP-hard, even for independent tasks.

42

Proof. By reducing partition to the classi�cation problem. Given a partition instance

A = fa1; : : : ; ang, where these are positive integers, let there be P = 2 processors and n

tasks, task j having tj(1) = aj and tj(P) =
aj

2
+ � for suitably small � > 0. If there is a

partition of A, then the best classi�cation is task-parallel for all tasks. If a partition of A

does not exist, then the best classi�cation is data-parallel for all tasks.

However, it is often possible to classify tasks to achieve near-optimal makespan, as

we see next. Thereafter we can use a standard list-type near-optimal scheduling algorithm

to get an overall schedule within a small constant factor of the optimal switched schedule,

in the worst case.

3.3.1 Switching a batch

The input instance is a set J of independent tasks. Task i has sizeNi and sequential

running time ti(1) = f(Ni) which increases with Ni. Assume all Ni are large enough that

ti(1) > ti(P) (otherwise these small tasks would clearly be better o� in the task parallel

phase). The problem is to decide for each whether to execute it in data parallel mode or

task parallel mode. It is clear that there is an optimal switched schedule that switches

exactly once between the data-parallel and task-parallel phase.

A �rst cut solution is to de�ne JP = fj : tj(P) < tj(1)g; this has been used

in practice [17]. This is overly conservative since it does not consider the complete ready

list to decide the fate of a single task. We use the following algorithm: sort the tasks in

decreasing order of problem size, and �nd an index j such that the total time of executing

tasks 1; : : : ; j one after the other in data parallel mode followed by tasks j + 1; : : : ; jJ j in a

task parallel packing is minimized.

Let Pack(P; S) be the makespan (length of schedule) generated by packing tasks

from set S in task parallel mode into P processors. There are approximation algorithms

that return Pack � (1 + �)PackOPT for any �xed � > 0, within time that is polynomial in

jSj [104]. Here PackOPT is the optimal makespan. It is easy to see that PackOPT(P; S) �
1
P

P
s2S ts(1) + maxs2S ts(1), by an averaging argument. Consider the following heuristic,

which we call Pre�x-Su�x.

1. Sort tasks in decreasing order of tj(1); i.e., let t1(1) � t2(1) � � � � � tL(1).

43

2. For 1 � i � L + 1, de�ne p[i] =

P
1�j<i tj(P) (p[1] = 0), and de�ne s[i] =

Pack(P; fi; : : : ; Lg) (s[L+ 1] = 0).

3. Pick 1 � i� � L+1 such that p[i�]+s[i�] is minimal over all i, such that 1 � i � L+1.

4. Run tasks 1; : : : ; i��1 in data parallel mode, and tasks i�; : : : ; L in task parallel mode.

For the analysis, consider a modi�ed problem where tasks i; : : : ; L have to be

scheduled using switched parallelism, given the constraint that the largest task i has to be

run during the task parallel phase. Let s�[i] be the optimal switched makespan subject to

this new constraint.

Lemma 3.3.2 PackOPT(P; fi; : : : ; Lg) � 2 s�[i].

Proof. Because PackOPT(P; fi; : : : ; Lg) � 1
P
(ti(1) + � � � + tL(1)) + ti(1), and s�[i] �

maxf 1
P
(ti(1) + � � �+ tL(1)); ti(1)g.

Theorem 3.3.3 Independent tasks can be classi�ed in polynomial time such that the

resulting makespan is within a factor of (2+ �) of the makespan of the optimal schedule, for

arbitrary constant � > 0.

Proof. Given an optimal schedule, let ` be the smallest index in the above sorted order

such that task ` is executed in task parallel mode. Pre�x-Su�x produces a schedule of length

p[i�]+s[i�] � p[`]+s[`] = p[`]+Pack(P; f`; : : : ; Lg) � p[`]+(1+�) PackOPT(P; f`; : : : ; Lg) �
p[`] + 2 (1+ �) s�[`] � 2 (1 + �) (p[`] + s�[`]) = 2 (1 + �) OPT, since OPT � p[`] + s�[`].

In a dynamic divide-and-conquer tree, we assume that the problem size of tasks

decreases down any path in the tree. For such trees, we can proceed as follows.

1. Maintain a ready-list of independent tasks/tasks that have been generated but not

executed yet.

2. Before scheduling a module in data parallel mode, apply the above pre�x-su�x

heuristic to the ready-list of tasks.

3. If the best data parallel pre�x is empty, decide to switch to task parallelism at this

point.

44

This is only a heuristic, since in the worst case, an adversary can prune all but the largest

task on the frontier immediately after the algorithm decides to switch. While this means

that we have no provable bounds, such malicious behavior is rare in practice. We will show

that this heuristic performs quite well in x3.5.

3.3.2 Precedence graphs

In contrast to dynamic trees, if the precedence graph is a tree and is known

before startup, we can provide a simple polynomial time constant factor algorithm. It uses

dynamic programming and is very inexpensive compared to mathematical programming

type approaches.

The problem instance is a set of n tasks, each task j specifying tj(1) and tj(P)

as before. We will consider schedules with one switch: the large nodes at and near the

tree root are processed in fully parallel mode, and then a switch is made to task-parallel

execution of the remaining nodes.

De�nition 3.3.4 For task j in a directed acyclic precedence relation �, PathToLeaf(j) =
tj(1) + maxj�i PathToLeaf(i), and PathToRoot(j) = tj(1) + maxi�j PathToRoot(i).

We will do binary search for the makespan between a lower and upper bound

similar to the classical �-approximate decision procedures [104]. Suppose in the current

search step the proposed deadline is D.

1. Compute PathToLeaf(j) by a bottom-up traversal. Compute SP = fj :

PathToLeaf(j)� tj(1) > Dg. If P
j2SP tj(P) > D then deadline D is infeasible.

2. We will solve a certain knapsack-like problem. The items to pack are tasks, these are

assigned pro�ts and weights. The knapsack has a weight limit; the goal is to maximize

the pro�t of items packed. Let the pro�t of task j be tj(1), and the weight be tj(P).

Obtain S0
P
= Knapsack(J;D) having total weight at most (1+�)D such that the pro�t

is at least that of the optimal knapsack packing. The algorithm Knapsack has been

described in Chapter 4, x?? (page 82).

3. If

P
j 62S0

P
tj(1) > D � P then deadline D is not feasible.

45

4. Execute SP [S0
P
on all P processors in any order consistent with the precedence

constraints given by the tree edges. List schedule the remaining tasks in task parallel

fashion.

Lemma 3.3.5 If deadline D is feasible, the above schedule terminates in time (4 + �)D.

Proof. If D is feasible, then

P
j2SP[S0P tj(P) � (2 + �)D. Also by a standard critical path

argument the time to execute all j 62 SP [S0P using list scheduling is at mostX
j 62SP[S0P

tj(1) + max

j 62SP[S0P
PathToLeaf(j) � 2D:

Theorem 3.3.6 A single switch point for a task tree can be found that gives makespan

within a factor of (4+ �) of the optimal switch, for an arbitrarily small constant � > 0. The

algorithm takes time polynomial in 1=� and the number of tasks.

One can solve series-parallel task graphs in a similar fashion. Notice the \single"

clause; clearly, if tj(1) and tj(P) are arbitrary, a single switch can be very bad. However,

tree precedences are most common in divide and conquer problems, where problem sized

decreases monotonically down any path from the root; thus for any P and j1 � j2, the

e�ciency of running j1 on P processors is at least that of j2. Under this realistic condition

it is easy to see that one switch makespan is within a factor of two of many switches.

While these worst-case factors are small, they may mask the bene�ts of investing in

mixed parallelism in the �rst place. Therefore, we will need to supplement these worst-case

results by simulations and actual implementation. This we do next.

3.4 Modeling and analysis

In this section we will obtain analytical and empirical results that indicate that

the switched scheduling model achieves e�ciency quite close to the best possible, in our

context of divide-and-conquer problems. For this we will develop a model in two parts:

1. We propose a model for the e�ciency of a data parallel module as a function of N=P ,

the \problem size per processor."

2. We model regular divide-and-conquer trees in terms of the out-degree d and the shrink

factor c, the ratio of the problem size of a parent to that of a child.

46

3.4.1 E�ciency of data parallelism

If all the data parallel modules j at the nodes of the task graph where ideally

scalable, i.e., had tj(�) = tj(1)=� for � as large as P , the number of processors in the

machine, then using mixed or switched parallelism is a non-issue. The gains from extending

beyond pure data parallelism are a function of how poorly scalable the data parallel modules

are. In this section we propose an e�ciency model for a data parallel module.

We let e(N;P) be the parallel e�ciency of solving a problem of size N on P

processors. Informally, the \size" N of a problem or task is the total data volume, e.g., for

n � n matrix multiplication, N = �(n2). If the serial running time is f(N), the parallel

running time r(N;P) on P processors is r(N;P) = f(N)=(P �e(N;P)). e(N;P) depends on
the algorithm, and relative speeds of computation and communication. Despite e's possibly

complex dependence on all these parameters, we will show that for a number of algorithms of

interest, e(N;P) is accurately modeled by a simple two-parameter function of the problem

size per processor, N=P .

By Amdahl's law, we expect e to be a decreasing function of P , with e(�; 1) = 1. So

our intuition is that e(N;P) should be an increasing function of N=P . We will let e1 � 1

be its asymptotic value for large N=P . The next question is how e(N;P) approaches e1.

There are, of course, an in�nite number of functions to model this, but we shall propose

a simple model that we will empirically validate. Roughly speaking, the model captures

programs having an area-to-volume relationship between communication and computation,

which abounds in parallel scienti�c applications.

3.4.1.1 A proposed model

One model we have found to agree very closely with experimental data is the

following. The e�ciency of a data parallel task of size N on P processors is modeled as

e(N;P) =

8><
>:

1 if P = 1

e1
1 + �P=N

if P > 1.

(3.1)

The parameter � measures how fast the e�ciency approaches its asymptotic value e1. As

shown in Figure 3.2 the e�ciency reaches half its asymptotic value when N=P = �. Thus,

the smaller the value of �, the more e�cient the implementation is for a �xed problem size.

47

The parallel running time r(N;P) is

r(N;P) =
f(N)

e1

�
1

P
+

�

N

�
: (3.2)

Equation (3.2) says that adding processors has diminishing returns, much like Amdahl's

law. However, since no sequential and perfectly parallel components can be identi�ed, this

model is not identical to Amdahl's law. We used this model to estimate tj(1) and tj(P) for

our switching algorithms, but any other estimator would also work �ne.

N=P�

e(N;P)
1

e1

e
1

2

Figure 3.2: The proposed e�ciency model for data parallelism within a single task.

3.4.1.2 Experimental validation

We validated our model using experimental data. In Figure 3.3 on page 49, we

consider three ScaLAPACK programs: LU, QR and Cholesky factorizations, and three

machines: the Delta, Paragon and iPSC/860 [45]. Each graph plots performance in

GFLOPS per processor versus N=P , including experimental data (the circles), as well

as the prediction of the asymptotic model. The iPSC/860 experiments were run with

128 processors, and the Paragon and Delta experiments were run with both 128 and 512

processors. Each graph includes an estimate s inf (which is proportional to the asymptotic

e�ciency e1) of the per-processor GFLOPS as N=P ! 1 and an estimate of � (sigma).

The asymptotic model is a good �t for the actual e�ciency pro�les: the mean relative error

is 6{11%.

Estimates of � are important for performance analysis as well as runtime scheduling

decisions. To this end, we collect values of � for some parallel scienti�c libraries [45],

using existing analytical performance models [40, 42]. For each of these routines, we have

available the communication and computation time as functions of problem size, number

48

Machine � � M/P �MM �LU �BS �SF
Alpha+ATM1 3:8� 105 62 64 1:3� 104 5:7� 106 3:4� 106 2:7� 106

Alpha+ATM2 3:8� 105 15 64 6500 5:6� 106 3:4� 106 2:7� 106

Alpha+Ether 3:8� 105 960 64 2:5� 105 6:9� 106 4:2� 106 3:4� 106

Alpha+FDDI 3:8� 105 213 64 4:1� 104 5:9� 106 3:6� 106 2:9� 106

CM5 450 4 32 53 490 2234 3826
CM5+VU 1:4� 104 103 32 9100 3:1� 105 1:9� 105 1:53� 105

Delta 4650 87 16 7400 1:5� 105 9:3� 104 7:2� 104

HPAM(FDDI) 300 13 64 154 9300 5400 4250
iPSC/860 5486 74 16 5490 1:5� 105 9:2� 104 7:3� 104

Paragon 7800 9 16 633 1:25� 105 7:7� 104 6� 104

SP1 2:8� 104 50 64 4250 4:8� 105 2:9� 105 2:4� 105

T3D 2:7� 104 9 64 1544 4:2� 105 2:5� 105 2� 105

Table 3.1: Estimates of � for di�erent machines and problems in the asymptotic model. The

Alphas use PVM as messaging software. ATM1 = current generation; ATM2 = projected next

generation. HPAM = a cluster of HP workstations connected by FDDI with a prototype active

message implementation. The programs are matrix multiplication (MM), LU factorization (LU),

backsolve (BS), and sign function (SF, discussed later). e1 = 1 for all problems in this table.

Parameters � (latency) and � (inverse bandwidth; transfer time per double) are normalized to a

BLAS-3 FLOP, and the model is �t to data generated from analytical models [40, 42, 107]. The

curves were �t for 2 � P � 500 and 100 � n = N1=2
� 10000. An estimate of memory per

processor in megabytes is given in the column marked M/P. Estimates for � and � are in part from

[107, 117, 88, 7].

of processors, network latency, and network bandwidth. Using these given functions, we

�rst estimate the parallel running time r(N;P) for a given machine and problem, then �t

Equation (3.1) to it using Matlab. The results are presented in Table 3.1.

3.4.2 Regular task trees

The second part of our model has to address the task graph structure. The

NP-hardness of the special case of independent tasks a fortiori means that the scheduling

problem (in either the switched or mixed model) is also NP-hard. The best algorithms

known are constant factor approximations, with worst case factors in the range 2{2.6 [111].

Unfortunately, a constant factor of this magnitude (which we will call \packing loss") may

substantially mask the bene�ts which would otherwise be obtained from mixed parallelism.

Furthermore, we know of no tighter analysis of this constant for a given graph, and the

worst case constant may not be meaningful in the average instance.

49

0 2 4 6 8

x 105

0

0.005

0.01

0.015

0.02

s_inf = 2.222552e−02

sigma = 1.726267e+05

i860−lu

N/P

G
F

LO
P

S
/P

0 2 4 6 8

x 105

0

0.005

0.01

0.015

0.02

0.025

s_inf = 2.655911e−02

sigma = 1.064709e+05

i860−qr

N/P

G
F

LO
P

S
/P

0 2 4 6 8

x 105

0

0.005

0.01

0.015

s_inf = 1.599808e−02

sigma = 1.320634e+05

i860−ch

N/P

G
F

LO
P

S
/P

0 1 2 3

x 106

0

0.01

0.02

0.03

0.04

s_inf = 3.899196e−02

sigma = 1.747440e+05

para−lu

N/P

G
F

LO
P

S
/P

0 1 2 3

x 106

0

0.01

0.02

0.03

0.04

0.05

s_inf = 4.210776e−02
sigma = 8.923423e+04

para−qr

N/P

G
F

LO
P

S
/P

0 1 2 3

x 106

0

0.01

0.02

0.03

0.04

s_inf = 3.355150e−02
sigma = 1.022670e+05

para−ch

N/P

G
F

LO
P

S
/P

0 5 10 15

x 105

0

0.005

0.01

0.015

0.02

0.025

0.03

s_inf = 2.786901e−02
sigma = 2.305176e+05

delt−lu

N/P

G
F

LO
P

S
/P

0 5 10 15

x 105

0

0.01

0.02

0.03

0.04

s_inf = 3.121336e−02
sigma = 1.198604e+05

delt−qr

N/P

G
F

LO
P

S
/P

0 5 10 15

x 105

0

0.005

0.01

0.015

0.02

0.025

s_inf = 2.185173e−02
sigma = 1.288925e+05

delt−ch

N/P

G
F

LO
P

S
/P

Figure 3.3: Validation of the asymptotic model using data from the ScaLAPACK implementations

of LU, QR, and Cholesky (CH) factorization programs. The machines are iPSC/860 (i860), Paragon

(para) and Delta (delt). In each graph, s inf is the per-processor GFLOPs as N=P ! 1, which is

proportional to the asymptotic e�ciency e1. sigma is the � in the asymptotic model.

50

3.4.2.1 Model

We therefore consider how mixed parallelism will perform in very favorable

circumstances, namely in regular divide and conquer trees. Our assumptions are listed

below.

� The task graph is a complete tree with branching factor d � 2.

� The d child tasks of a task of size N are all of size N=c, where c > 1.

� The work required to do a task of size N is f(N) = Na
, where a � 1.

We call such regular trees that have a root size of N as (N; a; c; d) trees. This is a very

simple model, and so we need to understand the limits of its applicability. First, task

communication is not accounted for. But for a > 1, task communication cost is generally

of lower order than the node cost f(N) (e.g., O(N) vs. O(N3=2
) in the case of many dense

matrix operations). Thus, we expect our model to overestimate the bene�ts of mixed

parallelism, provided problems are large enough. Therefore, a prediction of little bene�t

frommixed parallelism for a particular problem is likely to be trustworthy, while a prediction

of great bene�t from mixed parallelism must be further analyzed. Second, for evaluating

e�ciency gains with high accuracy, only regular trees could be considered. In spite of their

simplicity, regular trees provide a good starting point for preliminary analysis [18].

3.4.2.2 Examples

Eigenvalue algorithms. Several eigenvalue algorithms exhibit mixed parallelism because

they use divide and conquer. One such algorithm was described in Example 3.2.1 on page 40.

If the divide step on a matrix of size N = n2 is perfect, each child is of size
n

2 � n

2 , or N=4.

Performing this separation requires O(N3=2
) FLOPS. This successive separation process

forms a binary tree with c = 4, d = 2, and a = 3=2. (We scale time so that the constant in

O(N3=2
) becomes one.)

For symmetric matrices, an algorithm similar in spirit is the beta-function

technique of Bischof et al [17]. An eigenvalue algorithm of a di�erent
avor, but still from

the divide and conquer category, is Cuppen's method for symmetric tridiagonal matrices,

where we can actually split the matrix exactly in half all the time [38, 99] (although the

costs of the children are not so simple).

51

Sparse Cholesky. We consider the regular but important special case of the matrix

arising from the 5-point Laplacian on a square grid, ordered using the nested dissection

ordering [60]. In this case one may think of dividing the matrix into 4 independent

subproblems, corresponding to dividing the square grid into 4 subsquares, each of half

the perimeter. The work performed at a node which corresponds to an n�n grid is O(n3);

most of this cost is a dense Cholesky of a small n�n submatrix corresponding to the nodes

on the boundaries of the subsquares. Thus N = n2, a = 3=2, c = 4 and d = 4. We will also

see that the results go over to matrices with planar graphs.

3.4.3 Analysis

We make some simple observations about batches of independent tasks. For a

single task with sequential running time f(N), the choice is only between 1 and P processors,

and the running time is

f(N) � min

�
1

e1

�
1

P
+

�

N

�
; 1

�

For a batch of L independent tasks, each of size N , the sequential running time t1

of all L tasks is Lf(N). The data parallel running time tD, where we run each task in data

parallel fashion one after the other, is just L times the above expression. We let tT denote the

task parallel running time, where we assign one processor per task. Finally, we let tM denote

the mixed parallel running time, the optimal running time over all possible assignments of

processors to tasks. Let eD, eS , and eM be the corresponding overall e�ciencies.

By allocating only one processor per task, we can get parallel execution time

dL=Pef(N). Since the work lower bound is Lf(N)=P , pure task parallelism is optimal

when L � P (modulo rounding e�ects, which we ignore here and elsewhere). Thus, we

need only consider the case L < P . Also assume L divides P . We note the following easy

observations.

1. When L divides P , the running time for L independent tasks of size N in the asymp-

totic model using optimal mixed parallelism is tM = f(N)�min

n
1; 1

e
1

�
L

P
+

�

N

�o
,

2. When L divides P , the running time using data parallelism is tD = L f(N) �
min

n
1; 1

e
1

�
1
P
+

�

N

�o
.

52

3. When task parallelism is not optimal, the relative improvement of using mixed

parallelism over pure data parallelism for the batch problem is

eM

eD
=

N

�P
+ 1

N

�P
+

1
L

(3.3)

Example 3.4.1 We apply this analysis to complex matrix multiplication, which was

reported as a benchmark for the Illinois Paradigm compiler [95]. The task is MM, the

machine is the CM5 without vector units, and L = 4. From Figure 3.1 we obtain � = 53

and e1 = 1 for this problem. To attain a relative improvement � of mixed over data

parallelism, i.e. eD=eM < 1� �, we need the problem size to be small. Speci�cally, if each

MM involves n�n matrices, we can substitute the numbers into (3.3) and see that n needs

to be less than roughly

p
53P (3� 4�)=4� for this improvement. E.g., if P = 64 and � = 0:5,

then n < 42, a tiny problem indeed. It is interesting that the experiments reported in [95]

for the CM5 use P 2 f64; 128g processors and n = 64. On the Paragon with P = 512 and

� = 633, to ensure eD=eM < 0:5 as above, we will need roughly that n < 569, which is

still not large by the standard of many scienti�c applications: a matrix of this size �lls only

0.03% of the Paragon's total memory. 2

The conclusion is that MM data parallelizes too well to bene�t much from mixed

parallelism on a machine as balanced (i.e. with as low a �) as the CM5 without vectors

units. Better hunting grounds for cases where mixed parallelism helps signi�cantly are more

unbalanced machines (high �) and problems with less scalable data parallel components.

Example 3.4.2 Changing the problem to BS (backsolve; solving an n�n upper triangular

system of linear equations) in the last example and changing the machine to a 16 processor

SP1, we see that n < 1386 must hold for eD=eM � 0:5. This is a relatively realistic size.

Mixed parallelism improves the e�ciency from roughly 33% to 66%. 2

3.4.4 Unbalanced batch problems

So far we have considered batches of tasks of identical size N . Here we argue

that permitting tasks of di�erent sizes makes data parallelism only closer in performance to

optimal mixed parallelism, because, if there are a few large tasks that dominate the work

content of the batch, the margin for improvement over pure data parallelism will be small.

53

To prove this, suppose we have a batch of L > 1 tasks, the i-th task of size

Ni. Suppose all tasks have the same e�ciency pro�le e(Ni; P), and that the sequential

processing time for task i is f(Ni), where f(x) = xa as before. We will need the following

theorem for our proof.

Theorem 3.4.3 (H�older's Inequality) Let xk ; yk > 0 for 1 � k � L, p > 1, and q be

such that 1
p
+

1
q
= 1. Then

X
k

xkyk �
�X

k

x
p

k

�1=p�X
k

y
q

k

�1=q
:

Let the pure data parallel running time be tD, the optimal switched execution time be tS ,

and the optimal mixed parallel running time be tM (tM � tS � tD). We will show that,

among all possible batches, a balanced batch poses the worst instance for data parallelism

and thus provides the greatest potential for improvement through mixed parallelism. Of

course, certain quantities have to remain invariant over the space of maximization. Two

invariants are possible:

1. The total work

P
i
f(Ni) = F , a constant.

2. The total size

P
i
Ni = N , a constant.

We will consider both variations.

Lemma 3.4.4 With tD, tM , and f de�ned as above,

eM

eD
=

tD

tM
� 1

e1
+

�P

e1

�P
k f(Nk)=NkP
k f(Nk)

�
:

Proof. Immediate, using tM � 1
P

P
k f(Nk).

The remaining exercise is to bound from above the parenthesized term in the above RHS.

Theorem 3.4.5 Subject to either invariant,

eM

eD
� 1

e1

�
1 +

�PL

N

�
:

Proof. Here we will do a continuous analysis, assuming Ni's are real, rather than integers.

Also assume Ni > 1 to avoid problems near zero.

For constant F , the quantity in parentheses is maximized when all f(Ni) = F=L.

This follows since x=f�1(x) = x1�1=a which is convex for a > 1.

54

For constant N , using p = a=(a� 1) and q = a in Theorem 3.4.3, we obtain

X
k

Na�1
k

� 1 �
�X

k

Na

k

�1� 1
a � L1=a:

Since

P
k
Na

k
� L(N=L)a = Na=La�1, we have

P
k
Na�1
kP

k
Na

k

� L1=a�P
k
Na

k

�1=a � L

N
:

This value is achieved when all Nk are set to N=L.

It can be veri�ed that the claim also holds for functions of the form f(x) = x log x, etc., so

the claim is quite broadly applicable. We can trivially get similar bounds on the e�ciency

gap for irregular task graphs by throwing away the dependency information.

Corollary 3.4.6 The maximum bene�t from mixed parallelism for a task graph G with L

vertices such that the sum of problem sizes is N can be bounded as

eM

eS
� eM

eD
� 1

e1

�
1 +

�PL

N

�
;

in the asymptotic model using P processors.

We can also derive some heuristic bounds to the performance gap in some irregular

graphs. E.g., Gilbert and Tarjan study nested dissection algorithms to solve sparse systems

on planar graphs [62], where a problem of size N is divided into d = 2 subproblems, where

each part is no bigger than 2N=3. No matter what strategy we use in the upper levels, we

only need to go down roughly `(�) =
lg(�=P)
lg(2=3) � 1:71(1� log �

logP) lgP levels before the largest

leaf is of size at most �N=P . At this point task packing is at most (1 + �) times optimal.

Given that there is not much need to go below this level, L � P 1:71
, so the maximum bene�t

cannot be much larger than tS=tM � tD=tM � 1 + �P 2:72=N .

3.4.5 Simulations

As we mentioned earlier, to get accurate estimates of the performance gains from

mixed or switched parallelism, we use simulations based on the data parallel and task graph

models.

Our space of optimal schedules includes those that assign arbitrary subsets of

processors to the tasks. This involves the following runtime support:

55

� It must be possible to create and destroy subsets of the set of physical processor

and rename them in a virtual processor space. These are called contexts in the

Message Passing Interface (MPI) jargon [44]. Note that every message has to be

indirectly addressed to a virtual destination processor, and if many contexts are

de�ned hierarchically, many table-lookups are needed for each message.

� Contexts need to provide synchronization and collective communication primitives,

so that they can be gang-scheduled. These can be potentially expensive. The CM-5,

for example, provides a 5�s hardware barrier over the physical partition, but the best

software barrier over a processor subset takes over 50�s.

In our simulations, we will ignore these overheads, and thus get an upper bound

to the best possible e�ciency, and compare our switched performance against this upper

bound. We will also compare switching with pure data parallelism as in HPF.

Results. The space of programs, machines, and problem sizes is too large to examine

completely; therefore we take some slices through this space that give insight into the

bene�ts of mixed parallelism for typical current architectures and our suite of scienti�c

programs. The following graphs are shown.

1. We �x P = 128, e1 = 1, a = 3=2, and c = d = 4 (as in sparse Cholesky), and

plot eD=eM and eS=eM against � (log-scale) in Figure 3.4. The memory per node

is assumed to be 64MBytes, and the four plots correspond to problem sizes that �ll

25, 50, 75 and 100% of the memory. For typical values of � for various machines see

Table 3.1.

2. For the same sparse Cholesky problem, we consider four machines. In each case, the

x-axis is P . N is such that the memory is completely �lled. We plot eM , eS , and eD

against lg P in Figure 3.5.

3. The setting is as above, except that typical values of P are chosen for each machine

and the x-axis is n = N1=2
(log-scale). See Figure 3.6.

4. The setting is as in item (3), but the problem is the sign function program (c = 4,

d = 2). See Figure 3.7. For each task, as a reasonable estimate, there are 15 LU's, 15

BS's and 8 MM's. For this compound data parallel task, estimates of � for various

56

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
n=16384 (25% mem)

R
el

at
iv

e
ef

fic
ie

nc
y

(P
=

12
8,

 M
/P

=
64

M
B

)

log10(sigma)
2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
n=23170 (50% mem)

log10(sigma)
2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
n=28377 (75% mem)

log10(sigma)
2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
n=32768 (100% mem)

log10(sigma)

Figure 3.4: Cholesky. The line with stars is absolute e�ciency of mixed parallelism (eM). The

dashed line with circles is the relative e�ciency eS=eM of switched parallelism. The solid line is the

relative e�ciency eD=eM of data parallelism.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

lg P

A
bs

ol
ut

e
ef

fic
ie

nc
y

cm5

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

lg P

paragon

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

lg P

hpam

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

lg P

sp1

Figure 3.5: four machines using mixed, switched, and data parallelism. eM (starred), eS=eM

(circled), and eD=eM (solid) are plotted against lgP , always choosing N to �ll all memory.

machines are shown in column SF of Table 3.1 (e1 = 1). If Cuppen's eigenvalue

algorithm is used, and the e�ect of \de
ation" is small [38], the task tree has the

same parameters as the sign function example above, although � is di�erent.

Comments. From Table 3.1, typical values of � are all in the 10
2
to 10

6
range.

Throughout this range, switched parallelism appears to make up for much of the de�cit

in data parallel performance. The non-monotonicity in Figure 3.4 occurs because after

� becomes absurdly large (> 10
6
), parallelism is no longer e�ective. In general, for

�ne-grain MPP-class machines, mixed parallelism has little marginal bene�t, while for

more coarse-grain networks of workstations, switched parallelism is adequate. The choice

57

9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
cm5,P=128

lg n

R
el

at
iv

e
ef

f.
(m

ix
ed

=1
)

9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
paragon,P=512

lg n
9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1
hpam,P=16

lg n
9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1
sp1,P=16

lg n

Figure 3.6: except that typical values of P are chosen for each machine and the x-axis is n = N1=2

(log-scale). Maximum size limit is shown by the vertical bar, where memory per node is from

Table 3.1. The line with stars is absolute e�ciency of mixed parallelism (eM). The dashed line with

circles is the relative e�ciency eS=eM of switched parallelism. The solid line is the relative e�ciency

eD=eM of data parallelism.

9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
cm5,P=128

lg n

R
el

at
iv

e
ef

f.
(m

ix
ed

=1
)

9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
paragon,P=512

lg n
9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1
hpam,P=16

lg n
9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1
sp1,P=16

lg n

Figure 3.7: The setting is as in Figure 3.6, except that the problem is changed to sign function, with

parameters c = 4, d = 2, and a di�erent value of �.

58

of strategy is dictated not only by �, N and P , but also the size reduction factor c and

branching degree d. This is seen in �gures 3.6 and 3.7: mixed parallelism gives less marginal

bene�t over switched or data for small values of d and large values of c (and vice versa).

Figures 3.6 and 3.7 exhibit troughs because at the lower end of problem sizes, absolute

e�ciency of all the strategies are very small but close to each other.

3.5 Experiments

Encouraged by the promising simulation and analysis, we implemented the

switched parallel scheduler as a new module in the ScaLAPACK scalable scienti�c software

library [45]. In particular, it was used to schedule the divide and conquer tree generated

by the sign function example in x3.2. The ScaLAPACK library is structured as follows.

The lowermost layer called BLACS (Basic Linear Algebra Communication Subroutines) is

built on top of a message passing layer such as NX (on the Paragon), MPI/MPL (Message

Passing Interface, on the IBM SP's), or CMMD (on the CM-5). For us BLACS provides

two types of functions:

� Routines to de�ne contexts: these are subsets of processors that form a virtual machine

and can participate in collective communication.

� Routines to transfer array sections between contexts.

On top of BLACS is built PBLAS (Parallel Basic Linear Algebra Subroutines):

these handle elementary matrix-vector and matrix-matrix operations with block-cyclic

layouts. ScaLAPACK itself is the topmost layer providing higher functionality like Cholesky

and LU factorization.

3.5.1 Software structure

Our implementation of the library has the following components.

� PBLAS/ScaLAPACK subroutines are modi�ed to export the FLOP count of relevant

subroutines symbolically in terms of the input problem size. Currently we implement

this by hand using header �les.

� The machine can be queried for its message latency and bandwidth. This is a set of

functions similar to query functions for machine epsilon and over
ow.

59

Low-level

ScaLAPACK

communication layer

Task enq

Application, e.g., Sign function

Processor
subset layer

LU factorization

High-level library

Contexts

Parallel

Numerical routine calls

e.g., matrix multiply,

matrix & vector

/dequeue

PBLAS

BLACS

operations

D
at

a
re

m
ap

 r
ou

tin
e

ca
lls

In
st

ru
m

en
ta

ti
o

n

Switching
algorithm

Frontier
profile

Performance model

ready-list
Distributed

decision
Switching

Figure 3.8: The software architecture of the dynamic scheduling module in ScaLAPACK.

� Our (�; e1) model is constructed from the above information statically at con�gura-

tion time. This is later used to estimate tj(1) and tj(P) for tasks j on the ready-list

at runtime.

� There is a distributed data structure for the ready-list. Before the switch-point,

this is essentially a replicated work-list kept consistent across all processors. The

scheduling computation is currently replicated on all processors as well. When the

switching decision is made, several things happen. First, new singleton contexts are

generated in each processor. Second, a preliminary task packing is done to decide

which task goes where. Third, a global data remap phase moves arrays distributed

over all processors to the appropriate singleton context. At this point the work-lists

of di�erent processors are di�erent. Finally, the ready-list behaves as a task-parallel

distributed queue with work-stealing [19].

3.5.2 Results

We measured performance on two machines: a 25-processor Paragon and a

36-processor SP-2. The results are shown in Figure 3.9. Each graph plots performance

(MFLOPS) against problem size. The problem size

p
N is the side of the matrix at the

root of the divide and conquer tree. The bottom line shows \data-parallel" performance.

This is not merely letting pure data parallelism take its course on the entire machine right

60

10
3

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

S
w

itc
he

d
pa

ra
lle

l M
F

LO
P

S

Problem size: sqrt(N)

Paragon

Data parallel

10
3

1

1.5

2

2.5

3

S
w

itc
he

d
pa

ra
lle

l M
F

LO
P

S

Problem size: sqrt(N)

SP2

Data parallel

Figure 3.9: Performance improvements of switched parallelism over data-parallel execution on the

Paragon and SP2, with the latter being scaled to 1. The data parallel baseline scheduler switches

when the largest task j in the ready-list has tj(1) < tj(P); the switched scheduler applies the

pre�x-su�x heuristic. The x-axis is problem size n, the side of the matrix at the root of the

divide-and-conquer tree, and the y-axis is MFLOPS normalized to the purely data-parallel version

(higher is better).

down to leaves (of size 1�1 or 2�2). Instead, we look at the largest task j in the ready-list,
and if tj(1) < tj(P), where P is the total number of physical processors, we switch. This is

what the most reasonable HPF runtime may do, although we certainly cannot claim even

production compiler or runtime systems do this.

The upper line is the performance of our pre�x-su�x heuristic relative to

data-parallel as above; higher is better. On the Paragon, which has a weak CPU and

relatively strong network (at least for coarse-grain communication) the gains are already up

to 50%; on the more recent SP-2 with a signi�cantly worse communication to computation

cost, the gains are between 200 and 300%. In both cases, as N ! 1 no optimization is

needed; the performance of data and switched parallelism tend to the same limit (1, for this

problem). While not quite in�nite, our problem range

p
N goes into several thousands, and

therefore the performance gains are much more impressive and meaningful than the bene�ts

on static problems typically of size

p
N = 64 : : :128, on P = 64 processors [110, 95].

We have also measured some typical numbers for the overhead of the data remap

step in the switching algorithm. They are quite low; a few percent. See Figure 3.10. But the

61

10
3

0.005

0.01

0.015

0.02

Matrix side (n)

F
ra

ct
io

n
ov

er
he

ad

SP2

10
2

10
3

0

0.01

0.02

0.03

0.04

0.05

Matrix side (n)

F
ra

ct
io

n
ov

er
he

ad

Paragon

Figure 3.10: More statistics. The x-axis is the problem size as before. The y-axis gives the fraction

of total time spent in parallel by all processors doing data remapping during switching.

task graphs expanded typically have ten or more data-parallel nodes; if we had implemented

general mixed parallelism with arbitrary processor subsets, a data remap would be needed

before and after executing each data-parallel task, blowing up this overhead to perhaps tens

of percents. Thus switched parallelism is not only appealing for its simplicity, but also for

locality reasons.

3.6 Related work

As noted before, the idea of supplementing data parallelism with task parallelism

where available is quite obvious and has been explored earlier. In adaptive mesh re�nement

(AMR) algorithms, there is task parallelism between meshes and data-parallelism within

a mesh [11]. In computing eigenvalues of nonsymmetric matrices, the sign function

algorithm does divide and conquer with matrix factorizations at each division [12].

In timing-level circuit simulation there is parallelism between separate subcircuits and

parallelism within the model evaluation of each subcircuit [116]. In sparse matrix

factorization, multi-frontal algorithms expose task parallelism between separate dense

sub-matrices and data parallelism within those dense matrices [85]. In global climate

modeling [89], there are large data parallel computations performed on grids representing

the earth's atmosphere and oceans, and task parallelism from the di�erent physical processes

62

being modeled.

Several researchers have proposed support to take advantage of this mixed

parallelism. In the theory area, the best known on-line scheduling algorithm for mixed

parallelism is 2:62-optimal [16, 52], and the best o�-line algorithm is 2-optimal [113, 87].

But these are worst-case guarantees. In the systems area, the Paradigm compiler [95],

iWarp compiler [110], and NESL compiler [32] all support forms of mixed task and data

parallelism, and there are plans to merge data Fortran D with Fortran M [56] and pC++

with CC++ [84] to support mixed parallelism. The compiler e�orts all depend on static

task graph and pro�le data and perform extensive optimizations to allocate processors. We

have already noted how dynamic task parallelism is more promising to exploit.

A problem domain quite di�erent from scienti�c computing where mixed paral-

lelism has been used is in parallel database query scheduling. In a relational database, each

query is roughly speaking an in-tree of parallelizable tasks; where each task is an operator

like a join or select. Each operator has partitioned parallelism similar to data-parallelism.

A chain of operators may also show pipelined parallelism, but we can regard those nodes to

be collapsed into a single node with data parallelism. There is also task parallelism between

unordered nodes. Recently algorithms have been designed for trading between locality and

load balance in this scenario [33]. We will come back to similar problems in Chapter 4.

The switching technique has been independently discovered after our paper [26]

was published in a di�erent context: that of scheduling tasks with penalties. Every task

has a running time, and a penalty for rejection; the goal is to minimize the sum of the

makespan of accepted tasks and the penalty of rejected tasks [15]. While their main result

is an on-line algorithm for independent tasks, we also give an o�-line algorithm for trees

(this can be generalized to series-parallel graphs).

3.7 Discussion

We have shown in this chapter that by exploiting dynamic task parallel to

supplement the diminishing returns of data parallelism in mixed parallel divide-and-conquer

applications, and by designing simple heuristics for switched scheduling, signi�cant

performance improvements are possible. We conclude the chapter with a few comments.

What happens if the leaf tasks are di�erent from the interior tasks? It is usually the

case that the leaf tasks are more e�cient in terms of CPU operations, but they may be less

63

parallelizable. This in fact happens in the non-symmetric eigenvalue code. The pre�x-su�x

heuristic can be modi�ed so that the task packing is done with the leaf estimates. This

works well in practice (the pro�t margin is even higher than 300%), but is not interesting

to report on from the modeling and analysis point of view.

What happens if the task tree folds back, as in a conquer phase? In our application

domain, the sizes are known during the unfolding, so the folding back will be a static

scheduling problem. In terms of the runtime strategy, processors can do one of these two

things:

� rendezvous at the �rst phase switch point, compute the second phase reverse switch

frontier, and go into a task parallel phase in between, OR

� go into the �rst phase task parallel mode as before, rendezvous before the folding

back, compute the reverse switch frontier, and proceed as above.

Can we extend the analysis to make global statements about the switching

heuristic, in particular, qualify the empirical intuition that since problem sizes decrease

down any path, a switching decision cannot be far wrong? This will depend on the

out-degree and the size shrink factor.

What if data transfer cost at the switching point/s are signi�cant? This will be

particularly important for arbitrary task graphs with arbitrary problem sizes at the nodes,

where many switches may be needed. In that case we will need to minimize number or cost

of switches, or trade that against the costs of data parallel ine�ciency and task parallel

packing loss.

64

Chapter 4

Scheduling resource constrained

jobs

4.1 Introduction

So far in this thesis we have been concerned mostly with optimizing the

performance of a single parallel program. On a typical multiprocessing system several

such programs run simultaneously, contending for CPU time and other resources. While

classical scheduling theory has been largely concerned with processor scheduling, memory,

network and IO bandwidth are other resources which dictate how best to schedule programs

with diverse needs. Moreover, classical scheduling results are predominantly for minimizing

makespan (the �nish time of a �xed set of programs); in real life, system utilization, fairness,

and honoring priority are also important. In this chapter we will develop new techniques

for scheduling such workloads.

To use terminology consistent with scheduling literature, we will refer to what

independent users submit as programs. Each program is a collection of jobs. (In Chapter 3

there was only one program, and we called the jobs parallelizable or data-parallel tasks.)

Every job speci�es some resources that it needs to reserve during execution and perhaps

some other jobs that need to �nish before it can start.

Judicious job scheduling is crucial to obtaining fast response and e�ective

utilization. Consequently, algorithms for scheduling have been extensively researched since

the 60's, both in theory and in practice. In the past decade, there has been increasing

65

interest in scheduling speci�cally for parallel systems. There is increased awareness of

general resource scheduling problems, rather than just processor scheduling [50].

Owing to the vastly di�erent nature and applicability of sequential and parallel

computing systems, the scheduling problems of practical interest are rather di�erent in the

two settings. For example, scheduling general-purpose jobs is essential for a uniprocessor

operating systems, while it is hardly an issue yet for existing parallel systems, none of which

run the average workstation workload; similarly, scheduling threads for massive game tree

searches is a reality for parallel systems while it is not an issue for uniprocessors.

In this chapter, we extend our scope from optimizing single programs using

compiler and runtime approaches to that of scheduling multi-user parallel workloads. To

propose a model, we focus on applications where parallelism has been e�ectively exploited.

We isolate parallel databases and scienti�c computing as two such areas. In both these areas

the computation is well-structured so regular subproblems can be solved in parallel, and

the resource requirements of jobs can be estimated in advance. For these reasons, parallel

computing has proven highly successful in these two areas. Here, we carefully model the

resource scheduling problems in these applications and study them.

In the model we abstract from these applications, many users submit programs to

the system over time; each program is a directed acyclic graph of jobs; the graph is assumed

to be known when the program is submitted. A job is characterized by a set of resource

requirements, which are also known at submission time. Resources are of various di�erent

types. Some resources, like processors, can be traded for time gracefully, while others,

like memory, are not
exible in such a continuous fashion. The acyclic graph represents

precedence constraints; each job speci�es a set of predecessors that must complete before it

starts.

We initiate a study of such resource scheduling models. Two features distinguish

our goal from many classical results. First, our jobs are themselves parallelizable, like the

data-parallel tasks in the applications in Chapter 3. Second, rather than minimizing the

�nish time of a �xed set of jobs, we wish to accept programs over time; these programs

have priorities and we minimize the sum of �nish time weighted by the respective priorities

(this is called a minsum metric, as compared to makespan, which is a minmax metric). The

results in this chapter represent initial work towards extending scheduling algorithms to

take into account features of real-life multiprocessing workload, and we expect a number of

possible directions for extending them.

66

4.1.1 Model and problem statement

We describe some motivating scenarios in parallel databases and scienti�c compu-

tation later in x4.2. The model and problems we abstract from there are as follows.

Model. The multiprocessor consists of m identical processors and s types of other

resources not including the processors. It is not necessary to maintain the identity of

programs separate from jobs: the arrival of a program is equivalent to the arrival of some

number of jobs, specifying some precedence graph between them. Thus we will consider the

unit of computation to be a job. A job j will need several kinds of resources. A resource is

malleable if there is a range of trade-o�s between the amount of that resource allocated to

the job and its running time. It is non-malleable if the job has to reserve a �xed amount of

the resource for as long as it runs, no matter what that time is.

A job arrives with the following information:

� The trade-o� between processor and time. This is expressed by a running time

function, tj(�), on 1 � � � m processors, where m is the number of processors

in the system. In general, the running time tj would be a function of all malleable

resources. Our case studies seem to indicate that only one resource is really malleable:

processors. Once the processor allocation is �xed, we shall see that all other resouces

essentially become non-malleable.

We shall study various forms of the trade-o� function. In the most general setting

we will assume that tj() are arbitrary computable functions; in this case we say the

processor resource is malleable. In a simpler setting, we will assume tj(�) = tjmj=�,

where j shows linear speedup up to mj processors, on which its running time is tj ;

in this case we shall say the processor resource is perfectly malleable, up to a limit.

Some programs are not written to be adaptive to any number of processors. For jobs

generated by such programs, processors are a non-malleable resource. Job j will run

on exactly mj processors for time tj . We will round tj 's to powers of 2 for convenience,

and also denote T = maxjftjg=minjftjg. We will overload tj to represent both a �xed

number and a function; the meaning will be clear from context.

� Precedence constraints: a set of jobs (that have already been submitted to the

scheduler) that must complete before j can start. This induces a partial order �

67

on the jobs. Note that if jobs arrive on-line, then � may be revealed to the scheduler

gradually.

� Apart from the processors requirement, jobs may also specify a vector of other

non-malleable resources. We will let there be s distinct types of resources, where we

can assume s = O(1). E.g., if we are modeling processors, memory and IO bandwidth

as resources, s = 2. The resource vector will be denoted ~rj = (rj1; : : : ; rjk; : : : ; rjs), of

the fractions rjk of resource of type k demanded by job j, k = 1; : : : ; s. For notational

simplicity we scale the total available resource to be 1 unit for each type. For the

reasons above we keep the processor resource separate from all others.

� Job j speci�es a positive priority wj, also called its weight. The higher this number,

the more pro�table it is to �nish it early.

Problem. A scheduler is an algorithm that speci�es for each processor and time slot,

a portion of at most one job to be executed, so that all jobs get executed subject to all

the constraints above. Consider a set of n jobs. Let a scheduler complete job j at time

Cj . The two performance metrics that we seek to minimize are the makespan, maxj Cj

and the weighted average completion time (WACT),
1
n

P
j wjCj . Other possible metrics are

mentioned in x4.6, some of those are provably much harder than either makespan or WACT.

We impose further constraints on the schedulers. First, preemption is not allowed.

Time-slicing and preemption of space-shared resources is very expensive because (1) the

state has to be evicted to slower layers of the memory hierarchy, (2) processes have to

synchronize and switch across protection domains, and (3) in-
ight messages have to be

ushed and reinjected [50, page 6]. Anecdotal evidence suggests that many practitioners

switch o� time sharing for production runs on parallel machines that do not permit creating

dedicated space partitions. To recover from pathological cases, some machines (like the

Cray T3D) have an expensive roll-in/out mechanism, but it is important to minimize its

deployment. Second, the number of types of non-malleable resources, s, can be assumed to

be a small constant. Resources are not private to processors; they are equally accessible

by all jobs. Typically the set of resources will be memory, disk and network bandwidth

(i.e., s = 3). IO and network bandwidth are often centralized from the user's perspective.

With respect to memory, our model is closer to SMP's than distributed memory machines.

Third, it su�ces for our scheduler to be a sequential algorithm since in both databases and

68

operating systems these decisions are typically made by a front-end processor connected

to clients. Fourth, the precedence graph may be thought of as a collection of trees or

series parallel graphs only; these are the most prevalent instances in applications (see x4.2).
Finally, the scheduler can collect jobs over some time window but cannot wait for all jobs

to be submitted, as jobs arrive on-line over time. Moreover, each arriving job speci�es only

its predecessors at the time of its arrival, but not its successors.

4.1.2 Discussion of results

Many special cases of our resource scheduling problem are strongly NP-hard, even
for makespan. Thus the goal is to �nd approximations for the worst case and heuristics in

practical settings.

4.1.2.1 Makespan lower bound

We �rst show that the resource scheduling problem has somewhat di�erent

character from classical makespan results for job graphs. In fact, theoretical results

show that if precedence is combined with non-malleable resource constraints, there exist

workloads that make common scheduling techniques perform arbitrarily badly. Feldmann

et al show that if tj is not known before a job completes, no on-line algorithm can give a

makespan within a factor better than n, the number of jobs, of the o�-line optimal [51].

Even if tj is known upon arrival, Garey and Graham showed that any greedy list-schedule

has worst case makespan performance ratio at least nT=(n+ T), which is roughly T when

T � n and n when T � n [57, Theorem 1]. No algorithm is needed to achieve these bounds.

The status of clairvoyant non-greedy algorithms was previously unknown.

Essentially all known job graph scheduling results depend on two bulk parameters

of the input graph: the volume and the critical path. To simplify the discussion suppose

there is only one non-malleable resource. The volume V is the sum, over all jobs in the

graph, of their resource-time product; the critical path � is the earliest possible completion

time assuming unlimited resources. Clearly
(V + �) is then a lower bound to makespan,

and in most existing settings this can be achieved to a constant factor. In our problem, some

parameter other than V and � is at work. Speci�cally, we give instances of our problem

where no schedule can achieve a makespan smaller than
(V + � logT).

69

Reference # Job Malleable Non-malleable Precedence On-line/ Makespan
procs type processor processor � o�-line / WACT

Garey et al [57] N/A N/A � p ; on makespan

Feldmann et al [51] m par
p � any on makespan

Hall et al [70] 1;m seq � � any o� both
1;m seq � � ; on both

This chapter [29, 28] m par
p � any on both

m par � p ; on both
m par

p p
any on makespan

m par
p p

any o� WACT
m par

p p
forest/SPG on both

Table 4.1: Comparison of results. N/A=not applicable, seq=sequential, par=parallel, SPG=series-

parallel graph. A SPG is expressed recursively as follows: every SPG is a single node or a DAG

with a source and sink; an SPG is either two SPG's with an edge from the sink of one to the source

of the other; or it comprises a new source, with edges to the sources of two SPG's, and edges from

their sinks to a new sink.

4.1.2.2 Makespan upper bound

Certain special cases of the resource scheduling problem had previously known

approximation algorithms; these are discussed below and summarized in Table 4.1.

No precedence. If the precedence graph is empty, (i.e., jobs are independent) then a

number of approaches are known to get approximation bounds [57, 87, 113, 112, 111]. In

the database scenario, it is possible to collapse each query, consisting of several jobs with

a precedence relation among them, into one job, i.e., allocate maximum resources over all

the jobs in the query, and then apply the results for independent jobs [119]. This has a

serious drawback in that some obvious, critical co-scheduling may be lost. For example, a

CPU-bound job from one query and the IO-bound job of another can be co-scheduled and

it is highly desirable to do so [73]; this cannot be done after collapsing the query.

Only a malleable resource. If there are no non-malleable resources but only a malleable

resource, then precedence can be handled (in the sense of approximating makespan) even

by a scheduler that does not know tj before a job �nishes [51].

Small resource demand. Another possible restriction is to allow non-malleable re-

sources, but require each job to reserve no more than � fraction of the non-malleable

resources, where � is small. That is, the maximum fraction requested by a job is at most �.

In that case naive approaches will work well. The approximation ratio for greedy scheduling

70

can be easily shown to be 1+
1

1�� . This is however useless even if one, or a few jobs need a

large fraction, or equivalently, if � approaches 1. In fact, � = 1�O(1=m) su�ces to render

the greedy schedule useless. Intuitively, a few resource-intensive jobs can delay a convoy of

tiny jobs.

We show that we can attain the existential lower bound on the makespan, for the

above choice of parameters (V , � and T). We give a simple approximation algorithm that

matches the O(V + � logT) makespan bound. In contrast to our algorithm, most known

practical solutions use some variant of greedy list- or queue-type scheduling [50, 59, 90].

Jobs on arrival are placed in a list ordered by some heuristic (often FIFO). The scheduler

dispatches the �rst ready job on the list when enough resources become available. List

scheduling and its variants are appealingly simple to implement, but they can be notoriously

bad, which is not surprising given the negative results mentioned above.

4.1.2.3 Weighted average completion time

We extend the makespan upper bound to the weighted average completion time

metric. For this we use a recent elegant framework by Hall et al for optimizing WACT, which

we also show to be nearly optimal for makespan. The framework needs two subroutines: a

knapsack-type routine for picking a set of \high-returns" jobs to run next, and a makespan

algorithm to run them. By designing these subroutines, we give the �rst logarithmic

approximation algorithm for our resource scheduling problem using the WACT metric.

For several slightly simpler variants, the logarithmic factor can be reduced to a small

constant. Many of these on-line results are the �rst constant approximation algorithms for

the corresponding problems, on-line or o�-line, while others are on-line algorithms whose

performance is close to the best known o�-line results. These ideas can be adapted to yield

the �rst known (o�-line or on-line) constant-approximation algorithms for minsum open

shop scheduling and minsum job shop scheduling with a �xed number of machines.

Previous work on the WACT metric gave either non-clairvoyant, preemptive

solutions for sequential jobs or jobs that used a perfectly malleable processor resource,

with job precedence [41]; or clairvoyant, non-preemptive solutions for independent jobs

with only non-malleable resource, if any [92, 112]. Apart from algorithm design, we believe

it is important to point out some di�erences between existing scheduling literature and

features needed by schedulers in parallel computing systems. We also remark that although

71

our problem is di�erent from existing theoretical settings, our solution borrows from various

existing techniques [57, 103, 29, 70].

In x4.2 we study database and scienti�c computing scenarios to justify our model.
In x4.3 and x4.4 we give the makespan lower and upper bounds. In x4.5 we show how to

extend the makespan algorithm to a WACT algorithm. In x4.6 we pose some unresolved

problems.

4.2 Motivation

4.2.1 Databases

Query scheduling in parallel databases is a topic of active research [23, 90, 119, 66,

59]. Queries arrive from many users to a front-end manager process. A query is an in-tree,

where the internal vertices are operations like sort, merge, select, join etc., which we call

jobs. (We think of pipelines as collapsed into single vertices.) The leaves are relations

stored on disk. Edges represent data transfer; the source vertex sends output to disk, which

the target vertex later reads. Queries may have a priority associated with them, e.g., an

interactive transaction has high priority and statistics collection has low priority.

Databases keep certain access statistics along with the relations, which are used

to predict the size of the result of a join or a select and how many CPU instructions will

be required to compute these results. The tools are standard in database literature [101].

For parallel databases, one can also estimate for each operation the maximum number

of processors that can be employed for near-linear speedup [73]. Thus tj and mj can be

estimated when a job arrives. Estimates of sizes of intermediate results can be used to

estimate the memory and disk bandwidth resource vector ~rj .

The running time of a job is roughly inversely proportional to the number of

processors in the range [1; mj], but not the total available memory. For example, a

hash-join between two relations R1 and R2 with, say, R1 being smaller, takes time roughly

proportional to dlogr jR1je, where r is the memory allocated; typically the query planner

picks r = jR1j or r = jR1j1=2, independent of other queries [90]. Once processor and memory
allocation are �xed, the disk bandwidth requirement can be estimated from the total IO

volume and job running time.

This model is best suited to shared memory databases running on symmetric

72

multiprocessors (SMP) with shared access to disk [73]. They currently scale to 30{40

processors. There is growing consensus that SMP's and scalable multiprocessors will

converge to networked clusters of SMP nodes [66]. Since communication costs across clusters

is much more expensive than shared access within a cluster, the expectation is that most

queries will be parallelized within an SMP node.

4.2.2 Scienti�c applications

Multiprocessor installations are shared by many users submitting programs to

manager processes running on the front-end that schedules them. Examples of front-end

schedulers are DJM (distributed job manager) on the CM5, NQS (network queuing system)

on the Paragon, POE (parallel operating environment) on the SP2. Users may submit a

script to the manager. A script �le has a sequence of invocations of executables, each line

typically specifying a priority, the number of processors, estimated memory and running

time. Notice that although there may be some
exibility in the amount of memory needed,

the user typically speci�es a �xed choice to the scheduler, which has to regard it as in
exible.

To improve utilization, system support has been designed to express jobs at a �ner level

inside an application and convey the information to the resource manager by annotating

the parallel executable [65, 48, 91].

The common precedence graphs are chains for scripts, series-parallel graphs

(de�ned in Table 4.1) for structured programs, forests for database queries, and trees for

divide-and-conquer and branch-and-bound algorithms.

4.2.3 Fidelity

The most general representation of a job is its running time as a function of the

resources allocated to it. It is di�cult to �nd this function [59], and unclear if it is simple

enough to be used by the optimizer. We group the resources into two types: malleable and

non-malleable. We handle only one malleable resource that a�ects the running time. It

may be of interest to evaluate more elaborate alternatives. We assume that tj is known

(constant or function), which is reasonable for our target domain, but for less predictable

applications, some type of adaptive scheduling is needed. Even though virtual memory

appears to make memory a malleable resource, most parallel systems that support paging

(including the SP2 or the Paragon, and excluding the CM5) strongly encourage users to

73

write programs that �t in physical memory. Paging non-cooperatively on a multiprocessor

can be disastrous for performance.

We have tried to avoid both unwarranted simpli�cations and gratuitous generality.

For example, we have not assumed for simplicity that all resources are malleable. Memory is

clearly not malleable, even for programs that are adaptive in limited ways to the amount of

allocated memory. On the other hand, we have not modeled the details of the inter-processor

network.

4.3 Makespan lower bound

Many results in DAG scheduling rely on two bulk parameters of the workload.

One, which we call the volume parameter, is the sum of resource-time products over jobs in

the graph, denoted V . For example, consider jobs with only one resource type: processors.

If each job runs on only one processor, as in list-scheduling [64], then the fractional resource

every job occupies is rj = 1=m, where there are m processors in all. If the processor

resource is perfectly malleable up to limit mj , or non-malleable, �xed at mj for job j, then

the fractional resource job j occupies is rj = mj=m. In all cases we de�ne V =

P
j tjrj.

The other parameter is the critical path � of the graph. � = maxj �j , where �j is the

minimum time at which j can complete, if in�nite resources were available.

(V +�) is a lower bound to makespan. If the problem is relaxed to remove either

precedence or non-malleable resources, then this lower bound can be achieved to a constant

factor: �+
1
m

P
j
tj = �+V for sequential jobs [64], and �+(

p
5�1

3�
p
5
)
1
m

P
j
tjmj = �+O(V)

for malleable jobs [51]. These depend on arguments of the form: \if a critical path is being

ignored, most of the resources are being utilized."

In this section, we show that O(V +�) makespan is not always possible with both

non-malleable resources and precedence constraints. Thus this di�erentiates our problem

from list-scheduling [64, 57] and malleable job scheduling [51]. Our formulation is di�erent

in
avor because jobs may have to wait even when resource utilization is very low because

their speci�c requirement of the non-malleable resources are not met. In contrast, jobs can

proceed with a smaller amount of a malleable resource with proportionate slowdown. Thus

some parameter other than V and � is at work.

Claim 4.3.1 With precedence and non-malleable resources, the optimal makespan can be

74

fat jobs before this...
Time

� 1

T

T=2
T=4

1

1 + logT chains

1 unit of resource

Optimal makespan schedule

t=2

t=4t

tall

fat
t=8

... or after this time

Figure 4.1: Illustration of the makespan lower bound.

as large as
(V + � logT), where T = maxjftjg=minjftjg.

Proof. Consider the following instance with one non-malleable resource dimension. There

are 1+log T independent job chains. Chain i has 2i sequential compositions of the following

two-job chain: the tall predecessor has tj = T=2i and rj = � (which is a small number we will

pick shortly) and the fat successor has tj = rj = 1. Then it can be veri�ed that � = O(T),

and that V =

P
i 2

i
(�T=2i + 1) � �T logT + 2T = O(T), when we choose � � 1= logT .

Note that only tall jobs can run concurrently; fat jobs cannot run concurrently

with each other or with tall jobs. Because of the dependencies, the optimal schedule can

run at most one job from each chain in parallel. Also note that the total length of tall jobs is

�(T log T). We will account for the makespan of an optimal schedule by iteratively picking

the currently largest job j in the schedule, say of length tj = T=2x. No larger jobs are present

at this point. Thus this job only overlaps with smaller jobs, but at most one of each distinct

length. Remove j and all these jobs from consideration. This reduces the makespan by T=2x

and the total remaining tall job length by at most T (1=2x + 1=2x+1 + � � � + 1) � 2T=2x.

Note that the fat jobs need to be only over 1� 1= logT wide in the resource dimension.

We shall use shop-scheduling techniques in the next section to get a logarithmic

approximation for this problem, but we know of no similar lower bound instance for shop

75

problems. Speci�cally, a shop problem instance has some number of jobs; each job j consists

of some operations; the i-th operation must run for time tji on a speci�ed machine mji;

for each job, no two of its operations may run concurrently. Let � = maxjf
P

i
tjig and

V = maxmf
P

mji=m
tjig, then maxf�; V g is the only known lower bound on the shop

makespan based on bulk properties of the instance; this seems to indicate that the resource

scheduling problem is somewhat di�erent from shop-scheduling.

Claim 4.3.1 also implies that a recent elegant constant factor WACT approximation

technique due to Chekuri et al, which converts uniprocessor schedules to multiprocessor

schedules [34], will not generalize to handle non-malleable resources. Their technique is

to start with a uniprocessor schedule, where job j completes at time C1
j
, and derive an

m-machine schedule with Cm

j
= O(C1

j
=m+�j). In their model all jobs are sequential and

the jobs need no other resources. If we additionally add jobs that request non-malleable

resources, their conversion does not go through, and with good reason: if it did, a schedule

with O(�) additive term, rather than the
(� logT) term that we showed above, will hold,

thus violating the lower bound.

4.4 Makespan upper bound

In this section we will give an algorithm Makespan that is polynomial in s, T and

n that will achieve a makespan of O(V s+� logT) for an input set of jobs J with the bulk

parameters V , � and T de�ned before, where there is one malleable resource and there are

s types of non-malleable resources. Let ~vj = tj~rj, and V = maxf 1
m

P
j
mjtj ; k

P
j
~vjk1g.

Also let �j be the critical path length from a root through job j, and � = maxjf�jg.
The makespan algorithm �rst invokes the malleable scheduling of Feldmann et

al [51] to allocate processors to jobs in J , and to assign (infeasible) preliminary execution

intervals to these jobs that still violate other resource constraints. Then we partition the

jobs into a sequence of layers with jobs within a layer being independent of each other.

Finally we schedule these layers one by one using bin-packing.

Step 1. Let
1
2 <
 < 1 be a free parameter to be set later. Compute a greedy schedule for

J ignoring all non-malleable resource requirements, as follows. Whenever there are more

than
m free processors, schedule any job j in J (whose predecessors have all completed)

on the minimum of mj and the number of free processors [51].

76

Denote by �j the number of processors allocated to job j. After processor

allocation let the modi�ed job times be t0
j
= tjmj=�j , and modi�ed critical path lengths be

�
0
j
. At this stage the non-malleable resource requirements may not be satis�ed.

Step 2. Round all job times to powers of two: �rst scale up the time axis by a factor of

two, then round down each job to a power of two. Do not shift the job start times, so that

all precedences are still satis�ed. We will show that after this step, for all j, t0
j
= O(tj) and

�
0
j
= O(�j). For notational convenience we will continue to refer to the modi�ed quantities

as tj and �j , and assume that the modi�ed time t0
j
is a power of two, with minj t

0
j
= 1 and

maxj t
0
j
= T , all this a�ecting only constants.

Step 3. Partition the jobs by Dividing their earliest possible start times into blocks of

length T ; i.e., let B� = fj : �T � �j � tj < (� + 1)Tg. Each block of length T will

be expanded to a sequence of layers of total length O(T logT). Speci�cally, remove from

B� all jobs of length T and schedule them in a layer of length T . This is the last layer.

Divide [�T; (� + 1)T) into [�T; (� + 1
2)T) and [(� + 1

2)T; (� + 1)T) and recurse, placing the

generated layers in pre-order [103]. The total length of the schedule, which may still violate

non-malleable resource limits, will be O(� logT).

Step 4. Schedule each layer separately in time order. Consider each layer to be an instance

of a generalized s-dimensional bin-packing problem1
In this problem, studied by Garey and

Graham [57], and Garey, Graham, Johnson and Yao [58], there are items to pack into bins;

each item e is an s-dimensional vector ~re with components in (0; 1), and the bin is an

s-dimensional with all components set to one. A set E of items �ts in a bin if

P
e2E ~re � ~1,

where � is elementwise. A �rst-�t (FF) bin packing of each layer su�ces for our purpose.

Lemma 4.4.1 After Step 2, the modi�ed times and critical paths obey t0
j
= O(tj) and

�
0
j
= O(�j). Furthermore, the length of the schedule is O(1

m

P
j mjtj + �).

Proof. (Sketch) The former claim follows because each job j is assigned eithermj machines,

in which case t0
j
= tj , or at least
m machines, in which case t0

j
� tj=
. Picking
 such that

(1�
)(1+ 1

) = 1, the length of the (invalid) schedule is at most � +

1
m

P
j mjtj , similar

to [51].

1However, this problem is not one where items are solid blocks with volume and the bin is a hollow unit
cube.

77

Lemma 4.4.2 Jobs assigned to a particular layer I are independent; the layer ordering is

consistent with job precedence � and in any layer I,
P

j2I �j � m.

Proof. At every stage in the recursion, consider the jobs of length t removed from the

block of length t (and put in a separate layer of length t). Any pair of such jobs must

have overlapping \execution" intervals after the �rst step. They must therefore have been

independent, and the sum of processors assigned to them was at most m in the �rst step.

A job of length t starting in a block of length t can only have (smaller than t) predecessors

starting in the same block and no successors starting in the same block. When the block

is bisected, these predecessors are all completed before any of the t-long jobs in this block

starts.

Note moreover that every job j placed in a layer I of length t(I) has tj =
(t(I)). We will

need the following observation which follows from a pigeon-hole argument.

Lemma 4.4.3 For any set f~vg of s-dimensional vectors, k�~vk1 � 1
s
� k~vk1.

Theorem 4.4.4 For s resource dimensions the above algorithm obtains a makespan of

O(V s +� logT).

Proof. Consider a layer I that is t(I)-long in time, and generates f(I) + 1 bins using FF.

Then there is at most one bin that is less than half-full in all s dimensions. Each of the

other f(I) bins are at least half-full in at least one dimension. Call these bins F1=2(I). For

a bin b de�ne ~vb =
P

j2b ~vj . Then for all b 2 F1=2(I), k~vbk1 � 1
4 t(I). Hence we obtain

V � kPb ~vbk1 � 1
s

P
b k~vbk1 � 1

s

P
I

P
b2F1=2(I) k~vbk1 � 1

4s

P
I f(I)t(I). The total length

of the schedule is thus at most

P
I
t(I)(f(I) + 1) � 4V s+ O(� logT).

Observe that the makespan routine is polynomial in n, T , and s, and works for any

precedence. The above method also gives an alternative algorithm and much simpler

analysis (weaker only in a constant) for the (s + 1)-approximate resource constrained

scheduling result of [57]. Their (s+ 1)-approximation is for �= ;. In this case � = T , and

we allocate logT layers with t(I) 2 f1; 2; 4; : : : ; Tg. Then

P
I t(I) < 2T , giving an O(s)

approximation.

Corollary 4.4.5 If �= ;, the above analysis (with a trivial Step 3) gives a schedule of

length O(V s+ T).

78

We do not know the status of the gap between the upper and lower bound w.r.t. the

factor of s.

4.5 Weighted average completion time

In this section we will describe how to extend the makespan algorithm developed

earlier to the weighted average completion time (WACT) metric. We �rst justify why this

metric is of interest. Makespan algorithms were designed for batch operations, which means

that only the maximum completion time maxjfCjg was of concern. In parallel computer

installations, jobs are submitted by di�erent parties over time, are collected over some

windows and then scheduled with some priorities. One good metric is response time, which

over an arbitrary set of test jobs can be denoted

P
j(Cj � aj), where aj is when job j is

submitted and Cj is the completion time. Unfortunately this is a rather intractable metric

in the worst case, but in practice the following strategy works well: collect jobs in suitable

time windows, assign priorities to jobs based on how long they have been waiting, and

then run a priority-based batch scheduling algorithm to select which jobs to do next. The

Operating Systems research literature has many proposals for choosing the priority function

to favor starved or short jobs [54].

We will thus be interested in designing subroutines that input a set of jobs that

have arrived but not been scheduled yet, and constructs a schedule with near-minimalP
j
wjCj , where wj is the priority assigned to job j and Cj the completion time of job j

measured from the current time. This metric is called weighted average completion time

(WACT). For a single processor and no other resources, \shortest remaining processing

time" is optimal for WACT, given independent jobs. In some sense, we show how to

generalize this intuition to multiple processors, multiple resource types, and jobs with

precedence.

4.5.1 The bicriteria framework

For a single processor, any optimal WACT schedule has optimal makespan.

Surprisingly, this does not hold for unrelated parallel machines, on which a job can run

at various speeds on various machines, and the speed of a machine is not independent of

the job. For unrelated machines, there are instances where any optimal WACT schedule

for n jobs has makespan
(logn= log logn) times the optimal makespan [74].

79

2L

voids

����������

������ ������
������������������������

��������
����������

���
���
���
���

Optimal WACT schedule Optimal makespan schedule

L L

Bicriteria schedule

��������
a

b

c

b
a

c

b

a
c

Figure 4.2: Illustration of existence of schedules that are good in both the makespan and WACT

metric.

By relaxing the requirement on WACT from optimal to a constant factor, we show

in Theorem 4.5.2 that there are schedules optimal for both WACT and makespan to within

constant factors [29], even for unrelated machines and jobs with precedence. The basic

idea is to truncate the optimal WACT schedule at the optimal makespan point, collect

the un�nished jobs and schedule them in a second round of length at most the optimal

makespan; we omit the proof and instead show it in a picture (Figure 4.2).

De�nition 4.5.1 Given a set of jobs, an (a1; a2) schedule is one that has makespan at

most a1 times the optimal makespan, and WACT at most a2 times the optimal WACT, of

the given set. Note that the two optimal schedules are in general di�erent.

Theorem 4.5.2 For any scheduling problem, there exists a (2; 2)-schedule.

The constants have since been improved to (2; 1:8) [108]. However, note that

the proof is not constructive, since we need the optimal schedules for makespan and

WACT for the construction. How can we get constructive polynomial-time computable

(a1; a2)-schedules for small constants a1 and a2?

Hall et al suggest a framework to achieve small a2 [70]; their framework is actually

also good for makespan [29]. First divide time into geometrically increasing intervals. That

80

is, de�ne �0 = 1, �` = 2
`�1

, ` = 1; : : :. In what follows, consider the `th interval in time,

namely, (�`�1; �`]; other intervals are processed similarly.

Step 1. Let J` be the set of jobs that have arrived within time [1; �`] but have not already

been scheduled. We remove from consideration any job which cannot be scheduled within

the `-th interval because of dependence and consequent critical path length. Compute the

earliest possible �nish time �j of each job j based on critical path (assuming unlimited

resources and processors). Any job j for which �j > �` is removed from J` and deferred to

a later interval.

Step 2. In this step, we choose a suitable subset of J` to be scheduled, carrying a possibly

empty remainder forward to the subsequent intervals.

The subset of J` chosen for scheduling is described as follows. From J` we have to

pick a subset J�
`
such that

P
j2J�

`
tjmj � m�`,

P
j2J�

`
tj~rj � �`~1, for any jobs j1; j2, j1 � j2

and j2 2 J�
`
implies j1 2 J�

`
, and the objective w(J�

`
) =

P
j2J�

`
wj is maximized. Suppose

the optimal value of the objective above is W �
`
. Since the above problem is NP-hard,

we will instead obtain a subset J 0
`
with value at least W �

`
closed under �, and satisfyingP

j2J 0
`
tjmj = �m�`, and

P
j2J 0

`
tj~rj � ��`~1, for some factor �. We will describe this

�-approximate procedure2, called DualPack, in x4.5.2. We postpone the jobs in J` n J 0` to a
later interval.

Step 3. In this step we schedule the jobs in J 0
`
using a suitable �-approximate Makespan

subroutine which will �nd a schedule of length ��`. We schedule the output of Makespan in

the interval [���`; ���`+1).

The following analysis of the geometric series framework for WACT was proposed

by Hall et al [70]. We repeat this for later reference, and give a proof that it is also good

for makespan.

Theorem 4.5.3 Given a �-approximation for the makespan problem and a �-

approximation to the knapsack problem, one can constructively and deterministically �nd a

(4��; 4��)-schedule.

2Notation: a �-approximate minimization algorithm returns an objective function that is at most � times
optimal in the worst case.

81

Proof. (Sketch) Consider J` and J 0
`
as in the algorithm. Let w(J 0

`
) be weight of the jobs

in J 0
`
. Say an optimal schedule completes within time �L, �nishing job j at time C�

j
, and

let the total weight of jobs completing in (�`�1; �`] be W �
`
in that optimal schedule. Notice

that for all ` = 1; : : : ; L,
P

`

i=1 w(J
0
i
) �P`

i=1W
�
i
. This follows from the design of DualPack.

Now observe that because of this dominance property, the above algorithm too �nishes

within round L, and also that

P
`
w(J 0

`
) =

P
`
W �

`
. Finally, the cost of the the schedule it

determines is at most ��
P

L

`=1 �`+1w(J
0
`
) = 4��

P
L

`=1 �`�1w(J
0
`
) � 4��

P
L

`=1 �`�1W
�
`
, which

is at most 4��
P

j
wjC

�
j
. Let the optimal makespan be C�

max, and Bmax = 2
K
be the start

of the interval containing C�
max. By the design of DualPack, all jobs will be scheduled in

iteration K + 1, and will complete within time ��2K+2
.

The best expected constants are obtained by scaling the geometric series by a

random variable [29]. Speci�cally, instead of �` = 2
`
, one picks �` = 2

�X+`
, where X is a

random variable uniformly distributed in (0; 1].

Theorem 4.5.4 Given a �-approximation for the makespan problem and a �-

approximation to the knapsack problem, one can �nd an expected (2��ln 2 ;
2��
ln 2) approximation

for makespan and WACT.

Proof. (Sketch) Fix an optimal WACT schedule in which job j completes at C�
j
. Let

Bj be the start of the interval [�; 2�) in which j completes. Since the intervals have

random endpoints, Bj is a random variable. Its expected value is E[Bj] = C�
j

R 1
0 2

�xdx =

1
2 ln2C

�
j
. As in Theorem 4.5.3 this means that the approximate schedule has E[

P
j
wjCj] �

4��
P

j
wj E[Bj] � 4��

2 ln2

P
j
wjC

�
j
. The makespan argument extends similarly.

4.5.2 DualPack and applications

Using the basic framework, we propose new WACT algorithms for a variety

of scheduling scenarios where jobs may have malleable and/or non-malleable resource

constraints. The crux of these algorithms is the design of the two subroutines: DualPack

and Makespan. The most general version of Makespan described in x4.4 will su�ce in all

the problems we shall study. Therefore in this section we will focus on DualPack.

Our implementation of DualPack(J;D) has the same outline in each of our

applications. The inputs are J , the candidate jobs for the next iteration from which

we pick a subset, and D, the amount of time allocated for the next iteration. First,

82

we prune from J the jobs that are impossible to complete within D time units, either

because of precedence constraints or because their processing time is too large. In the

exposition, we shall restrict our attention to precedence constraints � that are out-trees;

in- or out-forests and series-parallel graphs can all be handled similarly. To prune

out-trees based on precedence constraints, de�ne PathToRoot(j) = tj if j is a root, and

PathToRoot(j) = PathToRoot(parent(j)) + tj otherwise. This quantity can be computed in

linear time, and then jobs j with PathToRoot(j) > D can then be pruned. Second, we use

a auxiliary routine Knapsack to solve an appropriate knapsack problem over the remaining

jobs in order to �nd a set of jobs of su�ciently large weight to schedule in the next iteration.

The input to the routine Knapsack(J; S) consists of a set J of n items (jobs), where

item j has weight wj and size sj , and a knapsack of size S; in addition, we might be given

precedence constraints on the items; if j1 � j2 in the precedence ordering then we forbid

the packing of j2 into the knapsack unless j1 is also packed. The knapsack problem is to

�nd the maximum weight set that can be packed into the knapsack; let the optimal value

be denoted W �
. The routine Knapsack(J; S) �nds a set of total weight at least W �

that has

total size at most (1 + �)S, where � > 0 is an arbitrarily small constant (we used � = 1+ �

in the previous section). To achieve this, we round down each sj by units of �S=n and then

use dynamic programming as in [75].

In each of the following subsections, we will give an implementation of DualPack

for a speci�c problem; throughout, we denote the deadline by D and the set of jobs from

which we choose by J . All of these are results for both makespan and WACT; we report

only the WACT result and omit proofs for brevity.

4.5.2.1 Malleable jobs

We give an algorithm for malleable parallelizable jobs without precedence con-

straints. The best o�-line performance guarantee known for the non-malleable special case,

where all jobs arrive at time zero, is 8.53, due to Turek et al [112]. Using an idea of Ludwig

et al [87], this can be extended to the malleable case. Our WACT algorithm handles

malleable jobs, on-line job arrival and has a performance guarantee of 12 + �, and if we

allow randomization, a nearly identical (expected) guarantee of 8:67.

Recall that each job j speci�es a running time function tj(�). We implement

DualPack(J;D) as follows: for each job j, we �nd the value of � such that tj(�) � D

83

for which �tj(�) (i.e., the processor-time product) is minimized. Jobs for which there is

no such � are removed from J ; otherwise, let mj be the value for which this minimum is

attained. If job j is scheduled by DualPack, it will be run onmj machines. We set the weight

and size of job j 2 J to be wj and mjpj , respectively, and then call Knapsack, returning

J 0 = Knapsack(J;mD). Finally, we use the list scheduling algorithm of Garey and Graham

[57] to schedule J 0.

Theorem 4.5.5 The above DualPack routine is a (3 + �)-approximation algorithm for

the maximum scheduled weight problem. This gives a deterministic on-line (12 + �)-

approximation algorithm for scheduling malleable jobs on parallel machines, and a ran-

domized on-line algorithm with expected performance within 8:67 of optimal.

4.5.2.2 Perfectly malleable jobs with precedence

We shall consider perfectly malleable jobs, as in Feldmann et al [51], and

precedence constraints that are forests or series parallel graphs. Our DualPack routine is

as follows. We remove from J any j with PathToRoot(j) > D, set J 0 = Knapsack(J`; mD),

and list schedule J 0 as in [51]: let � = (

p
5� 1)=2 be the golden ratio; whenever there is a

job j with all of its predecessors completed and the number of busy processors is less than

�m, schedule the job on the minimum of mj and the number of free processors.

Theorem 4.5.6 The above DualPack routine is a dual (2 + � + �)-approximation algo-

rithm for the maximum scheduled weight problem. This gives a deterministic on-line

10:48-approximation minsum algorithm for perfectly malleable jobs with forest precedence

constraints, and a randomized algorithm with expected performance within 7:58 of optimal.

4.5.2.3 Resource and precedence constraints

After handling the special cases of independent jobs and perfectly malleable jobs,

we study the general model set up at the beginning of this chapter where jobs use both

malleable and non-malleable resources and have precedence constraints. We point out that

throughout the previous applications, we had �, the approximation factor for Makespan, to

be a small constant, and �, the approximation factor for Knapsack, to be 1 + � for � > 0

arbitrarily small. As we saw in x4.3, if we can only use bulk parameters like volume and

path in the knapsack routine (this is all we can do at the moment), then � = �(logT) for

the case where we have both non-malleable resources and precedence constraints.

84

Thus we can use the same DualPack routine as for perfectly malleable jobs, but

cannot use list-scheduling for the makespan routine. We instead use the algorithm in x4.4,
obtaining the following.

Theorem 4.5.7 There is an algorithm polynomial in T and n which gives an O(logT)

approximation for both makespan and WACT with on-line job arrival, assuming s = O(1).

Recall that throughout we have assumed s = O(1). In general, the algorithm

above can be proved to be an O(s+ logT) approximation.

If we are only interested in o�-line schedules, we can compute J 0
`
via rounding an

integer program similar to [70], obviating the need for the DualPack routine. We omit the

details of the following claim.

Theorem 4.5.8 There is an o�-line algorithm, polynomial in s, T and n, that approxi-

mates makespan and WACT to an O(s+ log T) multiplicative factor.

If there is no precedence (�= ;), we can use Corollary 4.4.5 to obtain the following
generalization of Turek et al's result [112] to many non-malleable resources.

Corollary 4.5.9 There is an o�-line algorithm, polynomial in s, T and n, that approxi-

mates makespan and WACT to an O(s) multiplicative factor.

4.6 Extensions

Finally, we raise several questions regarding extensions of the model and algorithms

in this chapter.

Tighter bounds. V , � and T are not the best characterization of an instance, since the

optimal makespan is
(� logT) for some but not all instances. A better characterization

of the lower bound and improved algorithms are needed. It is not clear how such a

characterization can improve the WACT algorithm.

Imperfect malleability. In reality the processor resource is not perfectly malleable,

neither are other resources perfectly non-malleable. How important is it to model and

optimize for complicated intermediate forms of malleability?

85

Persistent resources. A job may allocate memory mid-way through execution. We

cannot model this by a chain of two jobs, since the memory the job was already holding is

not released. How can jobs with such persistent resource needs be scheduled?

Non-clairvoyance and preemption. For the motivating applications, reasonable es-

timates of job running time are possible. More general purpose schedulers must be

non-clairvoyant, i.e., work without knowledge of tj before j completes [105, 92]. To handle

this, recourse to job preemption or cancellation is needed, whose large cost has to be factored

into the algorithm.

Arbitrary DAGs. While we have handled hierarchical job graphs such as forests or series-

parallel graphs, the general DAG case is open. It is known that precedence-constrained

knapsack with general precedence is strongly NP-hard [75], unlike forests. We show that

settling the approximability issue will be challenging [4]. This shows that the framework of

[70] may need modi�cation to handle DAG's, not necessarily that the scheduling problem

is di�cult.

Claim 4.6.1 There is an approximation preserving reduction from Expansion, the problem

of estimating the vertex expansion of a bipartite graph, to P.O.K., the partial order knapsack

problem, even when all item costs and pro�ts are restricted to f0; 1g.

Proof. Given G = (L;R;E), suppose we need the vertex expansion of R. Construct a two

layer partial order �: the upper layer contains a job j for every u 2 L, with c(j) = 1,

p(j) = 0. The lower layer contains a job j for every v 2 R, with c(j) = 0, p(j) = 1. E is

directed from L to R. Run the routine for P.O.K. n times, with target pro�ts P 2 f1; : : : ; ng.
Return minP fC(P)=Pg, where C(P) is the cost returned for target pro�t P .

Flowtime. In this chapter we consider maxj Cj and

P
j
wjCj ; some more ambitious

objective functions are

P
j(Cj � aj) and

P
j wj(Cj � aj), commonly called
owtime.

Unfortunately, even with a single machine, o�-line problem instance, and no resource or

precedence constraints, it is NP-hard to approximate non-preemptive
owtime better than
about a factor of
(

p
n) [80]. In a practical implementation of our algorithm, one might

arti�cially increase wj for jobs waiting for a long time.

86

Chapter 5

Dynamic scheduling using parallel

random allocation

5.1 Introduction

Thus far in the thesis we have developed scheduling algorithms for problems with

one benign feature: when a job arrives at the scheduler, its resource requirements and

running time can be estimated. For the scienti�c problem domain addressed so far, this is

a reasonable assumption. However, in more dynamic and irregular programs, the scheduler

may not have any knowledge of the running time of jobs or tasks prior to completion.

Schedulers that produce schedules without this knowledge are called non-clairvoyant. There

are a few techniques to handle non-clairvoyant scenarios, depending on the cost model and

the optimization objective.

In the simplest non-clairvoyant model, the goal is to minimize the �nish time of

a dynamically growing task graph, and there is a central pool in which all ready jobs are

placed. Assuming that shared access to the central pool takes zero time, Graham analyzed

the makespan of the resulting schedule (called a list-schedule) and showed that it is less

than a factor of two worse than the optimal makespan [64].

This solution has a communication bottleneck problem: all processors access the

central pool. The overhead can be especially large for �ne-grain tasks. One technique to

reduce the overhead is to let each processor have a local task pool from which it removes

and executes some task, if any. New tasks are sent to the pool of a processor chosen

87

uniformly at random. Karp and Zhang analyzed the performance of this strategy for

unit-time tasks. In x5.2 we extend the analysis to handle arbitrary unknown task times

without preemption, i.e., tasks run to completion once they are started. (If arbitrarily

frequent preemption is permitted, the unknown time case is no di�erent from the unit-time

case. We mention in passing that for the weighted average completion time metric, the only

known non-clairvoyant approximation algorithms use preemption every time-step.)

The chapter continues in x5.3 with the study of an extension of random allocation

in a distributed setting. In the previous model, each task was assigned a random destination

only once, independent of where other tasks were sent. Roughly speaking, a single round

of random allocation gives a logarithmic smoothing of load. As a more precise example,

when n balls are thrown independently and uniformly at random into n bins, the number of

balls in the most heavily loaded bin is �(logn= log logn), with probability over 1�O(1=n).

Note that balls do not need to communicate with each other, and only one round of random

throwing is needed. We show how the load imbalance can be decreased as we invest more

rounds of random throws (which implicitly propagates the load information).

Apart from the usual applications in distributed job scheduling, such multi-round

load distribution protocols may �nd other uses. For example, in a serverless distributed �le

system, newly created data blocks have to be assigned storage on the disk at one of the

workstations using the �le system. To distribute blocks evenly among the disks, we may

send each block to a random disk, or maintain global information about the number of free

blocks on each disk. Our analysis explores the trade-o� between these two extremes.

5.2 Random allocation for dynamic task graphs

We analyze the performance of random allocation schemes applied to irregular and

dynamic task-parallel programs. Execution of the program de�nes a job precedence graph

with vertices representing jobs and directed edges representing precedence constraints. The

precedence graph is revealed on-line and is irregular in shape, and the processing times of

jobs are diverse and unknown before job completion. The objective function to minimize

is makespan, the maximum completion time of a job. Although the exact problem is

NP-hard, good approximations are possible if the algorithm assigning jobs to processors is

centralized, and thus has perfect global knowledge. For example, Graham's list-scheduling

algorithm [64] will result in a �nish time at most 2 � 1=P times optimal, where P is the

88

number of processors. However, this may lead to a severe communication bottleneck at

the processor where the pool of jobs resides, especially for �ne-grained tasks. Our goal,

therefore, is to study decentralized allocation which avoids such bottlenecks.

The bottleneck can be relieved in a variety of ways, each of which reduces

communication cost by sacri�cing global load information and thus risking some load

imbalance. We study work sharing, where busy processors forward jobs to random

processors. Some other techniques are work stealing, where idle processors ask for work [19],

and di�usion, where neighbors exchange local load information and then move some jobs

from busy to lazy processors [61].

5.2.1 Models and notation

The input comprises a set J of jobs presented to the algorithm in a distributed and

on-line fashion. Job j has running time tj , also referred to as its \weight" (not to be confused

with \priority" as in Chapter 4). We assume these are powers of 2; this will a�ect the results

only in constant factors. We assume that tj can be known only when job j completes. The

total work or weight in a job set J is denoted t(J) =
P

j2J tj . The number of jobs in J

is denoted n(J). The average job weight is t(J) = t(J)=n(J). Let tmax(J) = maxj2Jftjg
and tmin(J) = minj2Jftjg, and let T (J) = tmax(J)=tmin(J). Equivalently we scale jobs

so that tmin = 1 and tmax = T . This is in keeping with recent analyses of on-line load

balancing algorithms [10], and is more broadly applicable than results with assumptions

about distribution or variance.

J will have an associated acyclic precedence relation � � J � J . Let �j =

maxj0�jf�j0g+ tj be the earliest time at which j can �nish given in�nitely many processors

(the de�nition is not circular since the precedence graph is acyclic). Let �(J) = maxj2Jf�jg
be the longest critical path. We assume there is a unique root job. The number of edges

on a path from j to the root is denoted h(j); the path will be clear from context. Also let

h(J) be the maximum number of edges on any precedence path in J .

J will be omitted when clear from context. We assume that job times and the job

graph are oblivious of the decisions made by the scheduler. In exhaustive traversal, J is

�nite and the goal is to execute all jobs in J in any order obeying �. In heuristic search

or branch and bound, the job graph J provided may be very large or even in�nite. Each

job j has an associated cost c(j), with the requirements that j1 � j2) c(j1) < c(j2) and

89

all costs are distinct without loss of generality. The goal of the execution is to start at the

root and execute jobs obeying �, until the leaf node with minimum cost c� is identi�ed. It

is not necessary to generate and execute all jobs in J .

Sequential algorithm. A common sequential strategy is the \best �rst" traversal. All

available jobs with completed predecessors are maintained in a priority queue. While the

queue is non-empty, the job j with least c(j) is removed and executed. The jobs executed

are ~J = fj 2 J : c(j) < c�g � J . In the special case of complete traversal, ~J = J . For all

models, we assume that operations on a priority queue for job selection take negligible time

compared to job execution time. In this model, the sequential algorithm takes time t(~J).

We assume jJ j � j ~J j � P . The interesting case for us is when jJ j � j ~J j, so that work

stealing is not an option.

Parallel algorithm. Parallel execution starts with the root job in one processor. A job

can be started when all predecessors have been completed. When a processor completes

executing a job j, all successors of j become available to that processor. Processors can

negotiate to transfer available jobs among themselves.

There is no coordinated global communication for load balancing purposes. We

study the setting with a local priority queue of jobs in the memory of each processor as

in [78]. Thus, priority is preserved within each local queue but not across processors. An

idle processor non-preemptively executes the best job from its local queue, if any. Any

newly available job with completed predecessors is enqueued into the priority queue of a

processor chosen uniformly at random. The destination processor is not interrupted.

Communication. The machine model consists of processors with individual local

memory connected by a communication network. We ignore the topology of the interconnect

as in the LogP model [37]. Communicating a job takes unit time at the two processors

involved in the transfer.

Pruning and termination. In parallel branch and bound, each processor has to

periodically propagate the cost of the least cost leaf it has expanded, so that all processors

know the cost of the global best cost leaf in order to use it for pruning. Also, barrier

synchronizations are required to detect situations where all local queues are empty so

90

that the processors can terminate. We note that these can be done infrequently with

low overhead, so they do not a�ect the time bounds we derive.

5.2.2 Discussion of results

For exhaustive search ~J = J , and greedy centralized schedules give a simple bound

on makespan in terms of variables de�ned above: �(t=P+�), the average work per processor

plus the critical path length. We show that the situation changes somewhat in the branch

and bound setting:
(
t(~J)
P

+ h(~J) � T (J)) may be necessary even for an ideal centralized

scheduler with no communication cost. Then we give an analysis of parallel branch and

bound with ~J 6= J in a complete network: we show that with probability at least 1 � �,

the makespan is O(t
P
+ hT log hT + T log

n

�
), where t = t(~J), h = h(~J), n = n(~J), and

T = T (J). We also report on experience with some irregular programs. This is necessary

for two reasons. First, our analysis is probabilistic and asymptotic; in practice, constant

factors would be important. Second, although the above result establishes near-optimal load

balance, our model does not re
ect the gains from avoiding communication bottlenecks.

Other results of the di�usion type are based on occasionally matching busy and

idle processors and transferring jobs [61, 98]. These are not appropriate for relatively

�ne-grain jobs which is our focus. Notice also that diversity in job execution times makes

coordination even harder unless a processor can suspend long jobs and participate in global

communication.

Work stealing is the strategy of least communication for the particular case where

the job graph J is an out-tree, all jobs must be executed, and the relative order of execution

is immaterial (provided it obeys �). In work stealing, the graph is expanded depth-�rst

locally in each processor, and idle processors steal jobs nearest to the root [122, 19]. In

many application such as parallel search or branch and bound, the total work done is very

sensitive to the job order, and one wishes to deviate from the best sequential order as little

as possible [47, 8].

5.2.3 Weighted occupancy

At �rst we consider the weighted occupancy problem, where there is no precedence

among jobs. There are n weighted balls (jobs), ball j having weight tj . These balls are

thrown uniformly at random into P bins (processors). We want to bound the weight of the

91

heaviest bin.

Lemma 5.2.1 For random allocation of weighted balls to bins, with probability at least 1��,
each bin has O(t

P
+ T (log log T + log

P

�
)) weight.

Proof. Classify the balls into weights 1; 2; : : : ; T , where there are ni balls of weight 2
i
. Fix

one bin. The probability that there are at least mi balls of weight 2
i
in this bin is at most�

ni

mi

�
P�mi � (

eni

Pmi
)
mi , which is less that

�

P logT for mi = O(ni
P
+ log logT + log

P

�
). Adding

over i and all P bins gives the result.

5.2.4 Delay sequence

Next, we show an upper bound for random allocation. Unlike in the previous

section, occupancy results cannot be used directly, since unlike a batch, a DAG schedule

cannot be composed from arbitrary task subsets. Further, in analyses related to global

task pools as above, arguments depend signi�cantly on statements to the e�ect that during

certain intervals of time, most processors do useful work. We can no longer say this when

each processor has a local task pool: processors can remain idle even though there are tasks

yet to expand, because they can be in the queues of other processors. We handle this using

a delay sequence argument. The following lemma is similar to Ranade's construction [96].

Lemma 5.2.2 Suppose the execution �nishes at time � . Then the following 4-tuple

(s; Q;R;�) exists:

� s is a job that �nished no earlier than � . Let S = (s1; : : : ; sh(s)) be a path of \special"

jobs from the root of the DAG to job s = sh(s).

� Q = (q1; : : : ; qh(s)) is an ordered list, where q` is the processor that executed s`, for

1 � ` � h(s).

� R � ~J is a set of jobs, and

� �1; : : : ;�h(s) is a partition of [1; �] such that

{ R \ fs1; : : : ; sh(s)g = ;.
{ Each job in R become \ready" and arrives into qj during interval �j , for some

j, 1 � j � h(s).

92

{ t(R) � � ��(~J)� h(~J)T (J).

Proof. Label s as sh(s) and starting at task s, move up towards the root. If a task s` has

more than one parents, go to the one that completed last of all parents, and call it s`�1.

Thus trace a path root = s1; : : : ; sh(s) = s.

To obtain R, work backwards from the time � and consider the latest time instant

� 0 < � such that qh(s) was empty at time �
0�1 (we refer interchangeably to a processor and

its local work pool). This means that all tasks executed by qh(s) during the interval [� 0; �]

also arrived there during this interval. Call these tasks Rh(s). Include Rh(s) into R, and set

�h(s) = [� 0; �]. Then continue the construction from � 0 � 1 in an iterative manner.

From Figure 5.1 (b), it can be seen that the processing times of nodes in R must

cover all of [1; �], except for the time spent in processing nodes s1; : : : ; sh(s), which is at

most �(~J), and the time spent �nishing jobs in progress when s` arrives at q`, which accounts

for at most h(~J)T (J). Thus let R =

S
`
R` and observe that t(R) � � ��(~J)� h(~J)T (J).

We have also constructed a ordered partition � = (�1; : : : ;�h(s)) of [1; �].

We also note the following fact, which follows, e.g., from considering the two cases

b log 2a � a and b log 2a > a.

Lemma 5.2.3 x > a+ b logx holds for x >
(a+ b log b), where a; b > 0,

� � �

� � �

J n ~J

1

1

1 1

T T

P � 1

T � 2

x

tj

s`�1 �nishes

useful

work

s` runs� T

y

Processor q`�1

s` received

q`

Time

~J

Figure 5.1: (a) A bad instance for the central scheduler. (b) Accounting for time in the delay

sequence.

93

Theorem 5.2.4 With probability at least 1� �, the execution time for branch and bound is

O(t
P
+ hT log hT + T log

n

�
), where t = t(~J), h = h(~J), n = n(J), and T = T (J).

Proof. We will bound the probability over all s, Q, � and R that a 4-tuple as above will

occur. Given �xed values for s, Q, �, R and � , a conforming execution happens with

probability at most P�(h(s)+jRj). Thus our target expression is

P
s;Q;�;R P

�(h(s)+jRj)
=P

s;�;R P
�jRj

, since, given s, the number of choices for Q is just Ph(s)
. In the sumP

s;�;R P
�jRj

, s can be chosen in n ways. The number of ways to pick � is at most�
�+h
h

� � (6�)h. It only remains to evaluate

P
R P

�jRj
, where the sum is over all R such

that t(R) � � ��(~J)� h(~J)T (J).
P

R
P�jRj is the probability, over all R1; : : : ; Rh(s), that

R` got assigned to q`, 1 � j � h(s). This is the same as the probability that some bin gets

a weight of at least � ��(~J)� h(~J)T (J) when n� h(s) balls were randomly assigned to P

bins. This can be bounded using Lemma 5.2.1.

Speci�cally, setting � � � � hT =
(
t

P
+ T log

P logT
�

) bounds the probability of

makespan being � to at most n � (6�)h � �. By picking � to be suitably large, � can be made

small. Fortunately, � goes up only as log
1
�
, so we will be able to drive the above product

down to a small probability �. We need n � (6�)h � � < �, which means we need
1
�
>

n(6�)h

�
.

We can therefore use a value of � such that

� �

t

P
+ hT + T log

nP (6�)h logT

�

!

=

�
t

P
+ hT + T log

n

�
+ hT log �

�
; (5.1)

from which the result follows by using Lemma 5.2.3.

For branch and bound, this is not far away from the best possible makespan, even

with a central pool and free communication.

Claim 5.2.5 With a centralized scheduler, the execution time for branch and bound is

�

�
t(~J)
P

+ h(~J)T (J)
�
.

Proof. For the lower bound we will produce a J and ~J � J with t(~J) = o(�(~J)) such

that even a centralized scheduler will need
(h(~J)T (J)) time. The instance is shown in

Figure 5.1 (a). In the �rst time-step, one processor expands the root job, generating P

children that all P processors start expanding at the second time-step. P � 1 of these are

jobs in J n ~J with tj = T , meant to keep P � 1 processors busy for time T , so the last

94

processor is left alone to expand part of ~J as shown. In the �gure, job x has P children and

job y has T � 1, so that when the new set of P nodes are generated, the P � 1 processors

just freed grab the new decoys. This can be arbitrarily repeated.

For the upper bound, suppose the makespan is � and s is a job �nishing at time

� . Label s as sh(s) and starting at s, move up towards the root. If a task s` has more than

one parent, go to the one that completed last of all parents, and call it s`�1. Thus trace

a path root = s1; : : : ; sh(s) = s. Note that
P

`
ts` � �(s). Suppose s` runs in the interval

[B`; E`]. Note that s` appears in the central job pool at time E`�1 + 1, and in the interval

[E`�1+ T;B`], if non-empty, all processors are executing jobs inside
~J since they all picked

some other jobs j0 with c(j0) < c(s`), meaning j0 2 ~J . Thus P (� � �(~J) � T � h(~J)) � t,

which proves the claim since � = O(hT).

5.2.5 Empirical evaluation

Unlike in analyses of centralized schemes, our results are probabilistic and hide

constants at several places. It is therefore interesting to evaluate the cost and bene�t of

decentralization in practical settings. We report on experiments with two applications. The

�rst is a parallel divide and conquer algorithm to solve a symmetric tridiagonal eigenvalue

problem [43]. The second is a parallel symbolic multivariate polynomial equation solver

which uses a procedure similar to branch and bound [31]. Both our applications lead to

tree-shaped precedence between jobs, and the job times are diverse. In both cases, most of

shared data can be replicated at small communication cost, so random allocation is feasible.

Random allocation with diverse times have also been use in N -body simulation [86] and

integer linear programming [47].

For each application, we added instrumentation to the sequential program to emit

the task tree with task times, and input this tree to a simulator that simulated the parallel

execution of the randomized load balancing algorithm, as well as Graham's list schedule. By

an idealized simulation without communication cost and other overheads, we �rst isolate

and study only the loss in load balance owing to random allocation. In Figure 5.2, the

eigenproblem instance has t = 108247480�s, n = 2999, h = 20, T = 184377�s�4486�s� 41,

� = 237917�s, and t=� � 455. The symbolic equation instance has t = 11053339�s,

n = 142, h = 11, T = 174860�s�1184�s� 148, � = 474880�s, and t=� � 23.

In the graphs above we have presented the speedup without explicitly measuring

95

0 10 20 30 40
0

5

10

15

20

25

P

S
pe

ed
up

(a)

Upper bound Central

Random

0 200 400 600
0

100

200

300

400

500

P

S
pe

ed
up

(b)

Upper bound

Central

Random

Figure 5.2: Comparison of speedup between Graham's list schedule and random allocation with zero

communication cost. (a) Symbolic algebra, (b) Eigensolver.

 Comp Comm Idle

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 r
an

do
m

 c
en

tr
al

 P=1

 r
an

do
m

 c
en

tr
al

 P=2

 r
an

do
m

 c
en

tr
al

 P=4

 r
an

do
m

 c
en

tr
al

 P=8

 r
an

do
m

 c
en

tr
al

 P=12

 r
an

do
m

 c
en

tr
al

 P=16

 r
an

do
m

 c
en

tr
al

 P=20

 r
an

do
m

 c
en

tr
al

 P=24

 r
an

do
m

 c
en

tr
al

 P=28

Figure 5.3: Performance comparison of Graham's list schedule and random allocation on the CM5.

The y-axis represents time, broken down into computation, accessing the job pool, and idle time.

96

communication costs. We also measured actual speedup on the CM5 multiprocessor.

Comparing the speedup curves enabled us to judge the closeness of the simulation to

reality. In Figure 5.3, we present a break-up analysis of parallel running time for the

eigensolver, comparing a centralized task queue with the random distributed allocation.

Although load imbalance is larger for random allocation, the bene�t due do decentralization

is overwhelming.

5.2.6 Discussions

Several questions arise from this and related results. It would be interesting to

tighten the makespan estimates in this section, as well as to provide randomized lower

bounds. The performance of multiple round strategies [9, 1] for dynamic job graphs remains

open, as is their e�ect on further reducing the load imbalance. Finally, extending the results

to capture network contention as in the atomic message model [86] seems like a natural goal.

5.3 Multi-round load balancing protocols

The goal of this section is to generalize single round random allocations to multiple

rounds, aided by spreading load information, to facilitate better load balance. It is well

known that when n balls are thrown independently and uniformly at random into n bins,

with high probability (by which we shall mean 1 � O(1
n
)) the maximum number of balls

received by any bin is �(
logn

log logn) [93]. Recently, an important extension of this result was

proven by Azar et al [9]. Suppose we place the balls sequentially, one at a time; for each ball,

we choose two bins independently and uniformly at random, and place the ball in the less

full bin. When all the balls have been placed, the fullest bin contains only �(log log n) balls

with high probability, an exponential improvement over the simple randomized approach.

Notice that in both these cases, the expected number of balls in a bin is one, but the

maximum occupancy grows with n, with the obvious implication that any technique for

reducing the gap between the expected and maximum occupancy may be useful for load

balancing parallel jobs. For example, such logarithmic terms appeared in the analysis in

x5.2.
We mention a few scenarios that motivate a detailed study of the trade-o�

between the investment in communication rounds and the resulting load balance. The

�rst motivation is directly from the analysis in x5.2, where the randomized upper bounds

97

had logarithmic multiplicative factors over the lower bound (Theorem 5.2.4) in the context

of allocating processors to �ne-grain tasks in a scalable multiprocessor where the overhead of

central load information is prohibitive. Here is another setting: modern computer networks

often have decentralized compute-servers (bins) and client workstations issuing jobs (balls).

A distributed load-balancing strategy has to assign jobs to servers. Clients are ignorant

of the intention of other clients to submit jobs; contention is known only from server

load. Servers are ignorant of jobs from clients that have not communicated with them.

It is also prohibitively expensive for clients to globally coordinate job submissions. The

primary objectives are to minimize the maximum load achieved as well as the number of

communication rounds required. Reducing the number of rounds is an important goal since,

in a network setting, the time to complete a round is determined by network latency, which

is generally orders of magnitude higher than CPU cycle times.

Description Rounds Max Load

Occupancy problem 1 �

�
logn

log logn

�
Azar et al n �(log log n)

The single round and n-round policies are extremes on a continuum, as shown in

the above table. Unfortunately, the new method requires the resting place of the balls to be

determined sequentially [9]. This limits its applicability in parallel and distributed settings,

a major drawback when compared to the simple approach, which has one parallel round

of random assignment (we will give a precise de�nition of rounds later). In this section

we will explore the middle ground, which enables load-balancing algorithms to adjust their

communication to the relative cost of communication and computation on the system.

5.3.1 The model

We describe our model in terms of balls and bins, with the understanding that

\balls" refer to jobs or tasks, and \bins" refer to processors. Each of m balls is to be

placed in one of n bins. (For simplicity, we shall concentrate on the case m = n. Extension

to general values of m and n are analogous.) Each ball begins by choosing d bins as

prospective destinations, each choice being made independently and uniformly at random

(with replacement) from all possible bins. The balls decide on their �nal destinations using

r rounds of communication, where each round consists of two stages. In the �rst stage each

ball is able to send, in parallel, messages to any prospective bin, and in the second stage

98

each bin is able to send, in parallel, messages to any ball from which it has ever received a

message. In the �nal round, the balls commit to one of the prospective bins and the process

terminates. Messages are assumed to be of size polylog(n;m). The goal is to minimize

the maximum load, which is de�ned to be the maximum number of balls in any bin upon

completion.

5.3.2 Summary of results

Our main goal is to develop and analyze a multiple round protocol for assigning

balls to bins. Informally, for each round, each bin sets a threshold T , and accepts up to

T balls in that round. Excess balls are thrown to a random destination again. Clearly,

increasing T will complete the protocol in a few communication steps, but the maximum

bin load will be large. On the other hand, reducing T limits the maximum load at the

expense of many rounds. We will quantify this trade-o� in x5.3.3.
Our analysis exploits a basic tool that expresses the relation between occupancy

distributions and Poisson distributions [63, 1]. Using this tool, we show that after a �xed

number of rounds r, the �nal maximum load is O
�

r

q
logn

log logn

�
with high probability.

We also show via lower bounds that no better load balance can be achieved by

a large class of load balancing algorithms. The class that we restrict our attention to are

non-adaptive, in that the possible destinations are chosen before any communication takes

place. We will also restrict our discussion to strategies that are symmetric, in the sense

that all balls and bins perform the same underlying algorithm and all possible destinations

are chosen independently and uniformly at random. We believe that these restrictions have

practical merit, as an algorithm with these properties would be easier to implement. We

provide a lower bound for non-adaptive and symmetric strategies. For any �xed number r

of rounds of communication and any �xed number d of choices for each ball, we show that

with constant probability the maximum load is at least

�
r

q
logn

log logn

�
.

5.3.3 Threshold protocol

Balls and bins execute the following protocol, which we call Threshold(T).

1. While there exists a ball that has not been assigned to a bin do the following round

of steps.

2. In parallel, each unaccepted ball chooses a random bin and sends it a request.

99

3. In parallel, each bin chooses up to T requests from the current round, sends

acceptances to these requesting balls, and sends rejects to the other balls of the same

round.

Notice that the protocol is asynchronous: each ball maintains a count of its current round

in the messages that it sends to bins. As long as a request includes the number of its current

round as part of the message, messages from distinct rounds can be handled simultaneously.

Moreover, balls send and receive at most one message per round. Finally, we shall show

that this method demonstrates a potentially useful tradeo� between the maximum load and

the number of rounds.

5.3.3.1 Poisson approximation

In this section we show a relationship between occupancy and Poisson distribu-

tions. Suppose ` balls are thrown into n bins independently and uniformly at random, and

let X
(`)
i

be the number of balls in the i-th bin, where 1 � i � n. Also let Y
(m)
1 ; : : : ; Y

(m)
n be

independent Poisson random variables with mean
m

n
. We will omit the superscript when

clear from context. In this section we will derive some relations between these two sets of

random variables. We note the following lemma that follows from routine manipulations.

Lemma 5.3.1 For non-negative integers x1; : : : ; xn,

Pr

h
Y
(m)
1 = x1; : : : ; Y

(m)
n = xn

i
= Pr

h
X

(�ixi)
1 = x1; : : : ; X

(�ixi)
n = xn

i
: (5.2)

This means in particular that for any non-negative f ,

E

h
f(Y

(m)
1 ; : : : ; Y (m)

n)

���Pi Y
(m)
i

= k
i

= E

h
f(X

(k)
1 ; : : : ; Y (k)

n)

i
(5.3)

Note that m disappears from the right hand side. We will also need the following facts.

Lemma 5.3.2 For a Poisson distributed random variable Y with mean � � 1, where �

takes integer values, Pr[Y � �] and Pr[Y � �] are both bounded strictly between zero and

one. Speci�cally, 1
2 � Pr[Y � �] � 3

4 .

Proof. Let p�(k) = Pr[Y = k] = e
��

�
k

k! . We need to show that p� =

P
k�� p�(k) lies

between
1
2 and

3
4 . First, p1 � 0:74. Next, we need to verify that p�+1 � p�.

p� � p�+1 =

P
k��

e
��

�
k

k! �Pk��+1
e
�(�+1)(�+1)k

k!

100

= e�(�+1)
hP

k��
e�

k�(�+1)k
k! � (�+1)�

�!

i
� e

�(�+1)

�!

hP
k��

�
e�k � (�+ 1)

k

�
� (�+ 1)

�

i
� e

�(�+1)

�(��1)�!
h
e��+2 � �(�+ 1)

� � (e� 1)�� 1

i
:

The expression in brackets is at least

��
�
e�2 � �(1 + 1

�
)
�

�
� (e� 1)�� 1 � e��+1(�� 1)� (e� 1)�� 1;

which is positive for all � � 2.

Finally, we apply the Central Limit Theorem [53] to observe that lim�!1 p� =
1
2
.

Let fXig be a sequence of n iid random variables. Suppose the expectation

� = E[Xi] and variance �2 = V[Xi] exist and let Sn =

P
iXi. Then for every

�xed �,

lim
n!1Pr

�
Sn � n�

�
p
n

< �

�
= �(�);

where �(x) = Pr[X � x], and X is a normally distributed random variable with

E[X] = 0 and V[X] = 1.

As an immediate corollary, let there be n = � Poisson distributed variables each

with � = � = 1. Then Sn is distributed Poisson with mean and variance �, i.e., Sn � Y .

Now letting � = 0 gives the result.

Theorem 5.3.3 If f(x1; : : : ; xn) be a non-negative function, then

E

h
f(X

(m)
1 ; : : : ; X(m)

n)

i
�

p
2�mE

h
f(Y

(m)
1 ; : : : ; Y (m)

n)

i
: (5.4)

Further if E
h
f(X

(k)
1 ; : : : ; X

(k)
n)

i
is monotonically increasing with k, then

E[f(X1; : : : ; Xn)] � 4 � E[f(Y1; : : : ; Yn)]: (5.5)

Similarly if E
h
f(X

(k)
1 ; : : : ; X

(k)
n)

i
is monotonically decreasing with k, then

E[f(X1; : : : ; Xn)] � 2 � E[f(Y1; : : : ; Yn)]: (5.6)

Proof. We have that

E

h
f(Y

(m)
1 ; : : : ; Y (m)

n)

i
=

X
k�0

E

h
f(Y

(m)
1 ; : : : ; Y (m)

n)

���Pi Y
(m)
i

= k
i
� Pr

hP
i Y

(m)
i

= k
i

=

X
k�0

E

h
f(X

(k)
1 ; : : : ; X(k)

n)

i
� Pr

hP
i Yi = k

i
; using (5.3)

� E

h
f(X

(m)
1 ; : : : ; X(m)

n)

i
� Pr

hP
i Yi = m

i
:

101

Equation (5.4) now follows by noting that Pr[�iYi = m] =
m
m
e
�m

m!
and applying Stirling's

approximation.

If E

h
f(X

(k)
1 ; : : : ; X

(k)
n)

i
increases with k, then by a similar argument we have

E

h
f(Y

(m)
1 ; : : : ; Y (m)

n
)] =

X
k�0

E

h
f(X

(k)
1 ; : : : ; X(k)

n
)

i
�Pr

hP
i
Yi = k

i
; using (5.3)

� E

h
f(X

(m)
1 ; : : : ; X(m)

n
)

i
�Pr

hP
i
Yi � m

i
Since E[�iYi] = m, Lemma 5.3.2 says that Pr[�iYi � m] � 1

4
, and (5.5) follows. The

derivation of (5.6) is similar.

In what follows, we will use \[c]" to stand for the indicator Ic which has value one if condition

c is true, zero otherwise.

Example 5.3.4 Suppose we want to show that the number of bins with at least � balls is

not likely to be much larger than B, for appropriate � and B. De�ne f as follows:

f(x1; : : : ; xn) =

hP
i
[xi � �] > B

i
:

Since E
h
f(X

(k)
1 ; : : : ; X

(k)
n)

i
increases with k, we can upper bound the probability that more

than B bins have at least � balls each, by the probability that I = �iIi > B, where

Ii =
h
Y
(m)
i

� �
i
, where the Yi's are iid Poisson with mean

m

n
. For m � n, � > 2 will su�ce

to infer that Pr[Yi � �] � 2Pr[Yi = �] � 2
�! . Note also that Pr[Yi � �] � Pr[Yi = �]. 2

5.3.3.2 Upper bound for Threshold

Theorem 5.3.5 For m = n balls, if r is �xed independent of n, then Threshold(T)

terminates after r rounds with high probability, where T = O
�

r

q
r logn
log logn

�
.

Proof. Let kj be the number of balls to be (re)thrown after j rounds (k0 = n). We will

show by induction that

kj � n

�
4 logn

T !

�Tj�1
T�1

(5.7)

with high probability (by which we mean 1 � O(1
na
) for a suitably large constant a). The

case j = 0 is readily veri�ed. Now consider the situation when kj balls are thrown into n

bins in the (j + 1)-st round. For large enough n, kj=n � 1 < T for all j 2 f0; : : : ; rg.

102

Moving freely between the occupancy and the Poisson case by virtue of Theo-

rem 5.3.3, we can now proceed as in Example 5.3.4 to obtain that

e�kj=n(kj=n)T

T !
� Pr[Ii = 1] � 2e�kj=n(kj=n)T

T !
: (5.8)

the expected number Ii's that are ones is at most
2ne

�kj=n(kj=n)
T

T !
. Now we use the simple

version of Cherno� bound, which says that for n Bernoulli trials with success probability p,

and 0 < � � 1, the number of successes Sn obeys Pr[Sn � (1+ �)np] � e��
2
np=3

. In our case

p = Pr[Ii = 1]. By setting � = 1 and verifying that np � a logn for a suitably large constant

a (this su�ces since r is constant too), we get that with high probability, after the (j+1)-st

round, w.h.p. the number of bins with more than T balls is at most
4ne�kj=n(kj=n)

T

T ! . We can

make the conservative upper bound assumption that with probability exponentially close

to one, none of these over-full bins have more than logn balls in it, so that w.h.p.,

kj+1 � 4ne�kj=n logn
T !

�
4 logn

T !

�T (Tj�1)

T�1

� n

�
4 logn

T !

�1+T (Tj�1)

T�1

= n

�
4 logn

T !

�T (Tj+1
�1)

T�1

: (5.9)

The induction follows. It only remains to verify that for constants r and 0 < � < 1, and

suitably large n, T = O
�

r

q
r logn
log logn

�
su�ces to reduce kr�1 to less than n1��, at which point

one more round su�ces. This immediately implies a maximum load of O(rT), which, for

�xed r, is O(r
p
logn= log logn).

Some additional bounds can be derived for non-constant r. In particular, for T = 1, one

can show that r = �(log logn) w.h.p.

5.3.3.3 Lower bound

In this section we will show a matching lower bound for �xed r. We can show

directly that the Threshold protocol will need
(r) rounds to complete given a choice of T

only slightly smaller than the above choice in the upper bound case. More generally, we

can show this property for all symmetric, non-adaptive protocols.

Symmetric, non-adaptive protocols can be modeled using an edge orientation

setting. Consider the case of n balls and n bins. Each ball is an vertex in an n-vertex

graph. Initially, n random undirected edges are added to the graph, where by \random" we

103

mean that for each edge, independent of others, the two endpoints are chosen uniformly at

random (the issue of self-loops does not a�ect the asymptotic analysis). Choosing a �nal

destination is equivalent to choosing an orientation for the edge. The goal of the algorithm

is to minimize the maximum indegree over all vertices of the graph. In the case where there

are n balls and n bins, the corresponding graph is a random graph from Gn;n, the set of all
graphs with n vertices and n edges.

De�nition 5.3.6 Let N(x) be the edges incident with vertex x. The (r; x)-neighborhood

of an edge e = (x; y), denoted by Nr;x(e), is de�ned inductively by: N1;x(e) = N(x)� feg,
Nr;x(e) = N(Nr�1;x(e))� feg.

A ball (edge) (x; y) gets confused about which way to orient if large neighborhoods

of both the endpoints are isomorphic. Speci�cally, suppose we invest r rounds of

communication. In each round of communication, a ball discovers a little more about

the graph. Speci�cally, since we want lower bounds, we may assume that the bins transport

all available information about the balls whenever possible. In r rounds, a ball e = (x; y)

knows everything about the balls in Nr;x(e)[Nr;y(e), and no more, before it must commit

to a bin; this follows from a simple induction argument. Suppose Nr;x(e) and Nr;y(e) are

isomorphic trees rooted at x and y. Then the ball has no reason to prefer one bin over

another, and must essentially choose randomly between bins x and y.

Obvious tie-breaking schemes do not a�ect the lower bound. For instance, if the

balls are ordered at the bins, either by random I.D. numbers or by a random permutation,

and then choose a bin according to their rank, the balls are essentially choosing a bin at

random. The proof can easily be modi�ed also for the case where the balls are ranked at

the bins by some �xed ordering, by using the symmetry of the destination choices of the

balls.

If many confused balls are incident on one bin, with constant probability, over half

of them will opt for the bin, which will become overloaded. We thus need to show that for

r and T suitably related to n, a random graph G 2 Gn;n has, with high probability, a near

isolated (T; r)-tree, de�ned as follows (see Figure 5.4).

1. It is a rooted balanced tree of depth r. All the leaves are at depth r.

2. The root has out-degree T . Internal nodes have one parent and T � 1 children.

104

Overloaded bin

level r � 1

level r

(T � 1)
r

T � 1

(T � 1)
r�1

level 0

level 1

T children

T � 1

v

z

Confused ball

Figure 5.4: A (T; r)-tree with confused balls.

3. The tree is near-isolated in the sense that no edge of G other than the tree edges are

incident to any internal node of the tree.

Theorem 5.3.7 With constant probability, a random graph from Gn;n contains a near-

isolated (T; r)-tree for �xed r and T =
(
r
p
logn= log logn). Assuming confused balls pick

each bin with probability 1
2, some bin will have load
(T) with constant probability.

Proof. A (T; r)-tree has

X(T;r) = 1 + T
P

0�k<r (T � 1)
k

= 1 + T
(T�1)r�1

T�2 � T r
vertices,

Y(T;r) = 1 + T
P

0�k<r�1 (T � 1)
k

= 1 + T
(T�1)r�1�1

T�2 � T r�1

vertices incident only on internal edges, and Z(T;r) = X(T;r)�1 internal edges. We will drop

the subscript (T; r) from X , Y , and Z when clear from context.

Let ~v = (v1; : : : ; vX) be a sequence of X(T;r) vertices, and let I~v be the indicator

for \~v is a near-isolated (T; r)-tree," with v1 being the root, v2; : : : ; vT+1 being the �rst

level children, and so on. Let I =

P
~v I~v . Note that I is not an indicator; it is a

non-negative integer random variable. For such variables it is routine to verify that

Pr[I = 0] � 1� E[I]2=E[I2]. We will use this inequality to show that Pr[I = 0] is strictly

less than one; for this we will bound E[I] from below and E[I2] from above by appropriate

constants in the next two lemmas.

Lemma 5.3.8 E[I] is at least a constant for �xed r and T =
(
r
p
logn= log logn).

105

Proof. Given ~v, the probability that ~v represents a (T; r)-tree is

�
n�Y
2

�
n�Z �

n

Z

�
Z!�

n

2

�
n : (5.10)

The denominator is all possible ways of picking n edges in an n-vertex graph. For the

numerator, we multiply the number of ways in which Z tree edges can be chosen and

permuted, and the number of ways in which the remaining n � Z edges can be assigned

endpoints from the n� Y external or excluded nodes. The number of ways of picking ~v is
n

1;T ;T � 1; : : : ;T � 1| {z }
Z�T
T�1

!
=

n!

T
�
(T � 1)!

�(Z�1)=(T�1)
(n�X)!

; (5.11)

where the multinomial

� n
a; b
�
means

n!
a! b! (n� a� b)!

. Multiplying (5.10) and (5.11) and

simplifying we get

E[I] =

n2Z
�
1 + o(1)

�
e2Y T

�
(T � 1)!

�(Z�1)=(T�1) ;
from which the result follows for the given choice of T .

Lemma 5.3.9 For �xed r and T =
(
r
p
log n= log logn), E[I2] =

�
E[I]+E[I]2

��
1+ o(1)

�
.

Proof. Since E[I2] = E[I] +
P

~v 6=~w I~vI~w, we need to �nd only the second term in the sum.

There are two cases: the trees represented by ~v and ~w do not intersect, or they do. In the

former case, it is routine to check that

X
~v\~w=;

E[I~vI~w] �
�
n�2Y
2

�
n�2Z �

n

2Z

�
(2Z)!�

n

2

�n � n! (n� Y)!

(n�X)! (n�X � Y)! T 2
�
(T � 1)!

�2(Z�1)

T�1

:

In the latter case, the only way ~v and ~w can intersect at an internal node is when the root

of ~w is an internal node in ~v (without loss of generality). The greater the overlap between

~v and ~w, the more likely it is that these will be subgraphs of a random graph G. Let z be

a �xed child of the root of ~v. By the above argument, we can bound

X
~v\~w6=;;~v; ~w

E[I~vI~w] � Y � E[I~v] �Pr[z is a root of a (T; r)-tree, given I~v = 1]:

106

Let pz be the the last Pr[� � �]. The number of new edges that must be added to ~v so that z

can be the root of a (T; r)-tree is Z0 = (T � 1)
r
. If we can show pz = o(1=Y), we will be

done. The denominator of pz is
�
n�Y
2

�
n�Z

, the number of ways in which n� Z additional

edges can be added to the graph without touching any of the Y internal nodes of ~v. The

numerator has several factors:

� The number of ways in which additional vertices can chosen to complete the (T; r)-tree

rooted at z is
�

n�X
T�1;:::;T�1| {z }
Z0=(T�1)

�
1

(T�1)!
�
T�1
1;:::;1

�Z0=(T�1)
.

� The number of ways of picking Z0 edges from n� Z edges to complete the (T; r)-tree

rooted at z, which is at most

�
n�Z
Z0

�
Z0!.

� The number of ways of adding n � Z � Z0 remaining edges while avoiding our trees

of interest; this is

�
n�Y � Z0

T�1

2

�n�Z�Z0
.

Using Stirling's approximation, pz can be simpli�ed to roughly

(2m=n)Z
0

exp(�2mZ
0

nT
)

T !Z
0=T

.

Summing over all cases completes the proof. We omit the manipulations.

The techniques carry over directly to the case where there are m balls and n

bins, and each ball sends requests to d > 2 bins, by generalizing each edge to a d-vertex

hyperedge. The details can be found in [2].

5.3.4 Other protocols

Other parallelizations of the Azar et al
(n)-round protocol are possible. For

example, we can run the following protocol, called Sibling(2):

1. In parallel each ball picks two random bins and sends them requests.

2. In parallel each bin sends the total number of requests that it has received to each

requesting ball.

3. Each ball commits to the bin that reported fewer requests.

Notice that this, too, is a symmetric, non-adaptive protocol and therefore the lower bound

of x5.3.3.3 applies with r = 2. Intuitively, the \noise" in the request information, as against

previous commits as in Azar et al's protocol, makes it impossible to achieve an O(log logn)

107

Balls Simple Azar Sibling(2) Threshold(T)

n Random et al d = 2 r = 2 r = 3 r = 5

10
6

8{11 4 5{6 5{6 4{5 4

5 � 106 9{12 4 5{6 5{6 4{5 4

10
7

9{12 4 5{6 5{6 4{5 4

5 � 107 9{12 4 5{6 6 5 4

Table 5.1: Simulation results. d is the number of bins that a ball sends initial request to; this is set

to two. r is the number of rounds.

load balance. We can show a corresponding upper bound [1]; we omit the details. Notice

that this is a synchronous protocol; bins need to know when all balls are done sending

requests before sending out load information.

Theorem 5.3.10 The Sibling(2) protocol achieves an O
�q

logn
log logn

�
load balance.

5.3.5 Concluding remarks

For simplicity, we limited the number of bins chosen in each round by each ball

to one or two. The results above can be extended to d-way choices by the balls, where d

is constant or grows su�ciently slowly with n. The details can be found in Adler et al's

paper [1]. Also, the general case of m � n balls and n bins can be handled readily.

Since the maximum load grows very slowly with n for all these schemes, and our

analysis is asymptotic and probabilistic, we were interested in performance seen in actual

simulations. We set the number of balls and bins to be equal, over the range of values

shown in Table 5.1. The numbers given in the table represent the ranges for the maximum

load found after between �fty and one hundred trials for each strategy. As expected, both

Sibling and Threshold perform somewhere between simple random allocation and Azar et al.

Also, we note that T was not optimized for Threshold; in practice one might want to take

care to optimize the threshold for a given number of balls.

108

Chapter 6

Survey of related work

Scheduling and resource allocation problems have been studied extensively in all

the forms discussed in this thesis. In this chapter we review some of the major results in the

various areas. Most of the exact problems are NP-hard, sometimes in the strong sense, and
therefore the thrust is on developing good approximation algorithms. Particular technical

references and their relation with this thesis are given in speci�c chapters.

6.1 Communication scheduling

The results in Chapter 2 follow (and generalize) a large number of preliminary

results in communication optimization, such as message vectorizing, coalescing, and

redundancy elimination [72, 123, 20, 5, 21, 68]. Message vectorization is the technique of

hoisting communication of array elements or sections out of loops to produce a single large

message. Typically this works locally on single loop-nests [123, 72, 67, 83, 68]. As compilers

were applied to more complex code, eliminating redundant communication beyond single

loop-nests and even across procedures became essential. This was typically done by tracing

the uses of an array (section) to a de�ning statement, placing all the communication entries

after that def, and canceling subsumed communication entries [69].

Communication can also be regarded as invoking a long-lasting asynchronous

operation on the network \functional unit." To minimize the latency penalty for �ne-grain

communication, it helps to detect writes to shared memory that can be reordered or

overlapped without violating the programmer's view of consistency of program variables. An

early result in this direction �nds cycles of con
icting reads and writes and inserts minimal

109

synchronization to break all cycles [102]. This technique has recently been improved for

single program multiple data (SPMD) sources [82]. Another related area is instruction

scheduling, which has been intensively studied [94]. The performance impact of these

scheduling algorithms has grown with the advent of superscalar RISC architectures which

have multiple functional units permitting out-of-order execution.

6.2 Multiprocessor scheduling

Job scheduling in multiprocessors has been extensively researched in both Oper-

ations Research and Computer Science [71]. Two decades later there is signi�cant interest

in the Computer Science community on scheduling parallel jobs [111, 41]. For independent

jobs that need a �xed given number of processors, various rectangle packing algorithms

naturally model the problem: every job can be regarded as a rectangle of width equal to

the number of processors, and of height representing the running time [14, 13].

It is more realistic to assume that processors are a malleable resource: i.e., they can

be traded for time. This trade-o� can be speci�ed as an arbitrary function for the running

time on any given number of processors. For jobs with this model of trade-o�, various

constant-factor approximations for makespan are known for the special case where there is

no precedence relation; i.e., the jobs are independent [16, 87]. Our results in Chapters 3

and 4 extend these results.

In a slightly simpler but still reasonably realistic model of malleability, every job

speci�es a maximum number of processor up to which it will give perfect speedup. For

this model, constant factor makespan approximations are known that handle precedence

between jobs exposed on-line. Furthermore, the algorithm is non-clairvoyant; i.e., it does

not need to know the running time of a job before completion [51]. These and similar

algorithms [15, 34] are essentially based on online gambling techniques.

6.3 Minsum metrics

Most makespan results are relatively straight-forward in that the approximation

algorithms are compared against a very simple lower bound: the sum of average work per

processor and critical path length [64, 51]. Also, makespan results are relevant for a batch

of jobs in isolation; in fact, on-line arrival of the batch make little di�erence [105] (also see

110

Chapter 5). In contrast, for a parallel computer installation, other measures that emphasize

notions of fairness or resource utilization are considered more appropriate. In such scenarios,

on-line arrivals may make problems harder.

Some such measures of recent interest are weighted average completion time

(WACT) and weighted
ow time (WFT), de�ned as follows. Suppose job j arrived at

aj and is completed at time Cj . It also speci�ed a weight, or priority, wj . Then the WACT

is

P
j
wjCj and WFT is

P
j
wj(Cj � aj). Another dimension of the problem is whether the

jobs arrive on-line or are all known o�-line; in the former model the scheduler does not

know of job j before time aj .

For independent non-malleable jobs in the o�-line setting, several WACT results

have been known [111]. Recently, Hall etal suggested two important general frameworks

for o�-line and on-line WACT optimization [70]. Our results in Chapter 4 build upon these

results.

6.4 Resource scheduling

Garey et al [57] study a generalization of non-malleable jobs where there are s

distinct types of resources. At any time a total of at most one unit of each resource can

be allocated. Job j speci�es an s-dimensional resource vector ~rj = (rjk), where rjk � 1

is the fraction of resource of type k that j keeps allocated for the duration it runs. Their

positive (makespan) results are for independent jobs [57] and for dependent jobs all of equal

duration [58].

We showed in Chapter 4 that for the general case with arbitrary times and

precedence, even with only one resource type, the simple lower bound: the maximum of

average resource-time product V =

P
j
tjrj and critical path �, cannot always be matched

to a constant factor by even an optimal makespan algorithm. (Here �j is the earliest time

job j can �nish ignoring resource needs and only considering the total time of its longest

predecessor chain.) Not surprisingly, Garey et al [57] observe that list scheduling algorithms

can perform very poorly (give a makespan that is larger than optimal by a factor equal to

the number of jobs) on such problems.

111

6.5 Distributed load balancing

The above settings all assumed a centralized scheduler. For �ne-grain jobs, such

as in parallel programs with light-weight task parallelism, an important concern it to make

scheduling decisions in a decentralized way, so that there is no central bottleneck where

processor allocation is done.

The bottleneck can be relieved in a variety of ways, each of which reduces

communication cost by sacri�cing global load information and thus risking some load

imbalance. We studied work sharing, where busy processors forward jobs to random

processors. This is similar to Karp and Zhang's model [78]. Work sharing is good at

dispersing hot-spots.

Another technique that has been designed and analyzed lately is work stealing,

where idle processors ask for work [19]. The theoretical bounds are only applicable to

divide and conquer, where a �nite, �xed task tree has to be completely executed. The

basic idea, dating back to Kung and Wu's work, is for each processor to follow depth-�rst

tree expansion order locally, while an idle processor that \steals" work from others gets a

shallowest unexpanded node [122]. Work stealing is good at reducing communication, since

many jobs run on the processors where they were generated. They do not handle more

general cases like branch and bound where the total work to �nd the solution may depend

on the schedule.

Both of the above assume an amorphous network. For general network topologies,

another technique that has been studied a great deal recently is di�usion, where neighbors

exchange local load information and then move some jobs from busy to lazy processors [98,

61].

Our application of random allocation to load balancing scenarios is related to

results on random hashing and PRAM emulation [22, 77]. In those problems, reusing hash

functions and economizing on randomness are important issues; we have used randomness

generously, our main concern being communication and load balance.

6.6 Open ends

Except in Chapter 5, we have only considered clairvoyant scheduling, where the

resources and time required by a job are speci�ed when the job arrives. This is reasonable

112

for the applications we have targeted. In the design of schedulers for general-purpose

workstations that run a mix of diverse jobs for which no a priori estimates of time and

resource can be made, non-clairvoyance is of great importance. As might be suspected,

non-clairvoyant schedulers are remarkably handicapped compared to clairvoyant ones [92],

even when permitted the (essential) power of preemption. These results are for sequential

jobs; some of them have been extended to the perfectly malleable job model [41].

A further re�nement of the scheduler performance metric is weighted
ow time,

de�ned as

P
j
wj(Cj � aj), where wj is the priority of job j, and aj and Cj are its arrival

and completion time respectively. The results reported above show that polynomial time

constant factor approximations for weighted average completion time are possible for a

variety of situations, including non-clairvoyant ones (the latter with preemption). In sharp

contrast, a remarkable recent result shows that for non-preemptive weighted
ow time,

approximating better than about a factor of

p
n is NP-hard [80] even in the simplest

model of sequential jobs on a single processor, with an o�-line clairvoyant scheduler. This

lower bound holds a fortiori for our generalized job models. It is perhaps unreasonable

in practice to demand near-optimal weighted
ow time without preemption. Here an

interesting distinction arises between one and many processors. For a uniprocessor, the

least remaining processing time or LRPT heuristic is easily seen to be optimal for total
ow

time

P
j
(Cj � aj), while for any �xed number of processors m � 2, Du et al [46] show that

obtaining a preemptive schedule to minimize total
ow time is NP-hard. In fact, C. Phillips
(personal communication) has shown that LRPT is o� by a factor of
(logn) from optimal

for just two machines.

113

Chapter 7

Conclusion

In this thesis we have formulated and solved several resource allocation and

scheduling problems relevant to parallel computation, in the context of compilers, runtime

systems, operating systems, and applications. The speci�c contributions of the thesis are

summarized below.

� By judicious compile time communication code scheduling through global array

data
ow analysis, we optimized network access while also performing redundant

communication elimination; this reduced communication cost by factors of two to

three in data-parallel programs.

� By extending the pure data-parallel model to support dynamic task parallelism,

and designing runtime scheduling heuristics, we extended the class of scienti�c

applications that can be e�ciently solved. Two to three times the MFLOPS of pure

data-parallelism was obtained.

� We initiated a study of generalized resource scheduling that is intended to model

realistic extensions of processor scheduling scenarios. We designed new algorithms

that handle in
exible resources such as memory, precedence between jobs, and job

priorities.

� For irregular, dynamic problems, we gave a precise characterization of the trade-o�

between load balance and communication cost. These results give valuable guidelines

for distributed load-balancing systems. We also showed that randomness is useful to

exploit in �ne-grain task allocation.

114

It seems that promising areas of parallel computing research will be guided by the

following goals.

� Reasonable and cost-e�ective speedups must be obtained for essentially all applica-

tions on low-end personal desktop installations.

� Remarkable speedups and scaleups must be obtained on perhaps expensive high-end

installations shared by many users.

Multithreaded architectures and aggressive compilation are prominent means to

attain the �rst objective. Moreover, as transistor density increases, it becomes more

attractive to design multiple processors on a chip. Such machines can either be used to

improve utilization over di�erent unrelated jobs, or parallelize a single job. For the former

goal, compilers have to solve the problem of scheduling threads which are, roughly speaking,

a sequence of operations on di�erent functional units. This appears related to
ow-shop

problems in Operations Research. For the latter goal, two di�erent problems arise. The

�rst problem is to detect parallelism; since our goal here is general-purpose parallelism, this

detection must be automatic. For popular languages like C or C++, detecting parallelism

in presence of aliases, pointers, and linked data structures is very di�cult. Several projects

such as Suif, Olden, and Jade, as well as commutativity and synchronization analyses have

made initial progress in these directions [24, 118, 97]. The second problem is for the compiler

to explicitly orchestrate communication between di�erent register �les or functional units.

The latter goal appears to guide multiprocessor system design in the following direction.

� They must be built out of commodity processors with a stable instruction set and

interface between the processor and the network, so that a processor upgrade can be

directly integrated into an existing multiprocessor.

� The network interface and software must have performance high enough for asyn-

chronous, small messages, to enable e�cient execution of challenging irregular and

dynamic codes.

� Since such installations are likely to be expensive, system support at the OS level

has to be provided so that apart from running one application well, the system

allocates resources to multiple jobs e�ectively. The work in the latter half of the

thesis represents some advance in that direction.

115

Bibliography

[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel randomized

load balancing. In Symposium on the Theory of Computing (STOC). ACM, 1995.

[2] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel randomized

load balancing. 1996. Journal version of [1] in preparation.

[3] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the

ptran analysis system for multiprocessing. Proc. ACM 1987 International Conference

on Supercomputing, 1987. Also published in Journal of Parallel and Distributed

Computing, Oct., 1988, 5(5) pages 617-640.

[4] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83{96, 1986.

[5] S. P. Amarasinghe and M. S. Lam. Communication optimization and code generation

for distributed memory machines. In Programming Language Design and Implemen-

tation (PLDI), Albuquerque, NM, June 1993. ACM SIGPLAN.

[6] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Serverless

network �le systems. In ACM Symposium on Operating Systems Principle (SOSP).

ACM, Dec. 1995. To appear in TOCS, February 1996.

[7] R. Arpaci, D. Culler, A. Krishnamurthy, S. Steinberg, and K. Yelick. Empirical

evaluation of the CRAY-T3D: A compiler perspective. In International Symposium

on Computer Architecture. ACM SIGARCH, 1995.

[8] G. Attardi and C. Traverso. Strategy-accurate parallel Buchberger algorithms. In

International Conference on Parallel Symbolic Computation, 1994.

116

[9] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. In Symposium on

the Theory of Computing (STOC). ACM, 1994.

[10] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. Online load

balancing of temporary tasks. In Workshop on Algorithms and Data Structures

(WADS), LNCS 709, pages 119{130, 1993.

[11] S. B. Baden. Programming abstractions for dynamically partitioning and coordinating

localized scienti�c calculations running on multiprocessors. SIAM Journal on

Scienti�c and Statistical Computing, 12(1):145{157, 1991.

[12] Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox,

Part I. In Proceedings of the Sixth SIAM Conference on Parallel Proceesing for

Scienti�c Computing. SIAM, 1993. Long version available as UC Berkeley Computer

Science report all.ps.Z via anonymous ftp from tr-ftp.cs.berkeley.edu, directory

pub/tech-reports/csd/csd-92-718.

[13] B. S. Baker, E. G. Co�man, and R. L. Rivest. Orthogonal packings in two dimensions.

SIAM Journal on Computing, 9(4):846{855, Nov. 1980.

[14] B. S. Baker and J. S. Schwarz. Shelf algorithms for two-dimensional packing problems.

SIAM Journal on Computing, 12(3):508{525, 1983.

[15] Y. Bartal, S. L. A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Multiprocessor

scheduling with rejection. In Symposium on Discrete Algorithms (SODA). ACM-

SIAM, 1996.

[16] K. Belkhale and P. Banerjee. An approximate algorithm for the partitionable

independent task scheduling problem. In International Conference on Parallel

Processing (ICPP). IEEE, August 1990. Full version in technical reports UILU-ENG-

90-2253 and CRHC-90-15, University of Illinois, Urbana.

[17] C. Bischof, S. Huss-Lederman, X. Sun, A. Tsao, and T. Turnbull. Parallel performance

of a symmetric eigensolver based on the invariant subspace decomposition approach.

In Scalable High Performance Computing Conference, pages 32{39, Knoxville, TN,

May 1994. IEEE.

117

[18] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. An analysis

of DAG-consistent distributed shared-memory algorithms. In Symposium on Parallel

Algorithms and Architectures (SPAA), Italy, June 1996. ACM.

[19] R. Blumwofe and C. Leiserson. Scheduling multithreaded computations by work

stealing. In Foundations of Computer Science (FOCS), Santa Fe, NM, November

1994. IEEE.

[20] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. A compilation

approach for Fortran 90D/HPF compilers on distributed memory MIMD computers.

In Proc. Sixth Annual Workshop on Languages and Compilers for Parallel Computing,

Portland, Oregon, Aug. 1993.

[21] T. Brandes. ADAPTOR: A compilation system for data-parallel Fortran programs. In

C. W. Kessler, editor, Automatic parallelization { new approaches to code generation,

data distribution, and performance prediction. Vieweg Advanced Studies in Computer

Science, Vieweg, Wiesbaden, Jan. 1994.

[22] A. Broder and A. Karlin. Multi-level adaptive hashing. In Symposium on Discrete

Algorithms (SODA). ACM-SIAM, 1990.

[23] K. Brown et al. Resource allocation and scheduling for mixed database workloads.

Technical Report 1095, University of Wisconsin at Madison, July 1992.

[24] M. Carlisle and A. Rogers. Software caching and computation migration in Olden.

In Principles and Practice of Parallel Programming (PPoPP), Santa Barbara, CA,

1995. ACM SIGPLAN.

[25] S. Chakrabarti. Random allocation of jobs with weights and precedence. Theoretical

Computer Science, 1996. To appear.

[26] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the bene�ts of mixed data and

task parallelism. In Symposium on Parallel Algorithms and Architectures (SPAA).

ACM, 1995.

[27] S. Chakrabarti, M. Gupta, and J.-D. Choi. Global communication analysis and

optimization. In Programming Language Design and Implementation (PLDI),

Philadelphia, 1996. ACM.

118

[28] S. Chakrabarti and S. Muthukrishnan. Resource scheduling for parallel database

and scienti�c applications. In Symposium on Parallel Algorithms and Architectures

(SPAA), Italy, June 1996. ACM.

[29] S. Chakrabarti, C. Phillips, A. Schulz, D. Shmoys, C. Stein, and J. Wein. Improved

scheduling algorithms for minsum criteria. In Automata, Languages and Programming

(ICALP), LNCS, Paderborn, Germany, July 1996. Springer-Verlag.

[30] S. Chakrabarti, A. Ranade, and K. Yelick. Randomized load balancing for tree

structured computation. In Scalable High Performance Computing Conference, pages

666{673, Knoxville, Tennessee, May 1994. IEEE.

[31] S. Chakrabarti and K. Yelick. Distributed data structures and algorithms for Grobner

basis computation. Journal of Lisp and Symbolic Computation, 7:147{172, 1994.

[32] S. Chatterjee. Compiling data-parallel programs for e�cient execution on shared-

memory multiprocessors. Technical Report CMU-CS-91-189, CMU, Pittsburgh,

PA 15213, October 1991.

[33] C. Chekuri, W. Hasan, and R. Motwani. Scheduling problems in parallel query

optimization. In ACM Symposium on Principles of Database Systems, 1995.

[34] C. Chekuri, R. Motwani, and B. Natarajan. Scheduling to minimize weighted

completion time. Manuscript, 1995.

[35] J.-D. Choi, R. Cytron, and J. Ferrante. On the e�cient engineering of ambitious

program analysis. IEEE Transactions on Software Engineering, 20(2):105{114, Feb.

1994.

[36] C. Click. Global code motion global value numbering. In Programming Language

Design and Implementation (PLDI), pages 246{257. ACM SIGPLAN, 1995.

[37] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Sumbramonian,

and T. von Eicken. LogP: Towards a realistic model of parallel computation.

In Principles and Practice of Parallel Programming (PPoPP), pages 1{12. ACM-

SIGPLAN, 1993.

[38] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.

Numer. Math., 36:177{195, 1981.

119

[39] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. E�ciently computing

static single assignment form and the control dependence graph. ACM Transactions

on Programming Languages and Systems, 13(4):451{490, Oct. 1991.

[40] J. Demmel and K. Stanley. The performance of �nding eigenvalues and eigenvectors

of dense symmetric matrices on distributed memory computers. In Proceedings of the

Seventh SIAM Conference on Parallel Proceesing for Scienti�c Computing. SIAM,

1994.

[41] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs on

multiprocessors. In Symposium on Discrete Algorithms (SODA). ACM-SIAM, Jan.

1996.

[42] F. Desprez, B. Tourancheau, and J. J. Dongarra. Performance complexity of LU

factorization with e�cient pipelining and overlap on a multiprocessor. Technical

report, University of Tennessee, Knoxville, Feb 1994. (LAPACK Working Note #67).

[43] I. Dhillon and J. Demmel. Private communication., March 1994.

[44] J. Dongarra, R. Hempel, A. Hay, and D. Walker. A proposal for a user-level

message passing interface in a distributed memory environment. Technical Report

ORNL/TM-12231, Oak Ridge National Laboratory, Oak Ridge, TN, February 1993.

[45] J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable dense linear algebra

libraries. In Scalable High-Performance Computing Conference. IEEE Computer

Society Press, April 1992.

[46] J. Du, J. Y.-T. Leung, and G. H. Young. Minimizing mean
ow time with release

time constraint. Theoretical Computer Science, 75(3):347{355, Oct. 1990.

[47] J. Eckstein. Parallel branch and bound algorithms for general mixed integer

programming on the CM-5. SIAM Journal on Optimization, 4, 1994.

[48] K. Ekanadham, J. E. Moreira, and V. K. Naik. Application oriented resource

management on large scale parallel systems. Technical Report RC 20151, IBM

Research, Yorktown Heights, Aug. 1995.

[49] Fortran 90. ANSI standard X3.198-199x, which is identical to ISO standard ISO/IEC

1539:1991.

120

[50] D. G. Feitelson and L. Rudolph, editors. Job Scheduling Strategies for Parallel

Processing, number 949 in LNCS. Springer-Verlag, Apr. 1995. Workshop at

International Parallel Processing Symposium.

[51] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal online scheduling of

parallel jobs with dependencies. In Symposium on the Theory of Computing (STOC),

pages 642{651. ACM, 1993.

[52] A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel machines. In

Foundations of Computer Science (FOCS), pages 111{120, 1992.

[53] W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley

and Sons, New York, 1958.

[54] L. L. Fong and M. S. Squillante. Time-function scheduling: a general approach to

controllable resource management. Operating Systems Review, 29(5):230, Dec. 1995.

[55] H. P. F. Forum. High Performance Fortran language speci�cation, version 1.0.

Technical Report CRPC-TR92225, Rice University, May 1993.

[56] I. Foster, M. Xu, B. Avalani, and A. Chowdhary. A compilation system that integrates

High Performance Fortran and FortranM. In Scalable High Performance Computing

Conference, pages 293{300. IEEE, 1994.

[57] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with resource

constraints. SIAM Journal on Computing, 4(2):187{200, June 1975.

[58] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao. Resource constrained

scheduling as generalized bin packing. Journal of Combinatorial Theory, Series A,

21(3):257{298, Nov. 1976.

[59] M. Garofalakis and Y. Ioannidis. Multi-dimensional resource scheduling for parallel

queries. In ACM SIGMOD Conference on the Management of Data. ACM, May 1996.

[60] A. George and J. Liu. Computer Solution of Large Sparse Positive De�nite Systems.

Prentice-Hall Inc., Englewood Cli�s, New Jersey, 1981.

121

[61] B. Ghosh and S. Muthukrishnan. Dynamic load balancing on parallel and distributed

networks by random matchings. In Symposium on Parallel Algorithms and Architec-

tures (SPAA), pages 226{235, Cape May, NJ, June 1994. ACM.

[62] J. Gilbert and R. Tarjan. The analysis of a nested dissection algorithm. Numerische

Mathematik, 50:377{404, 1987.

[63] G. Gonnet. Expected length of the longest probe sequence in hash code searching.

Journal of the ACM, 28(2):289{304, Apr. 1991.

[64] R. L. Graham. Bounds on multiprocessor timing anomalies. SIAM Journal of Applied

Mathematics, 17(2):416{429, March 1969.

[65] S. L. Graham, S. Lucco, and O. Sharp. Orchestrating interactions among parallel

computations. In Programming Language Design and Implementation (PLDI), pages

100{111, Albuquerque, NM, June 1993. ACM.

[66] J. Gray. A survey of parallel database techniques and systems, September 1995.

Tutorial at VLDB.

[67] M. Gupta and P. Banerjee. A methodology for high-level synthesis of communication

on multicomputers. In Proc. 6th ACM International Conference on Supercomputing,

Washington D.C., July 1992.

[68] M. Gupta, S. Midki�, E. Schonberg, V. Seshadri, K. Wang, D. Shields, W.-M. Ching,

and T. Ngo. An HPF compiler for the IBM SP2. In Proc. Supercomputing '95, San

Diego, CA, Dec. 1995.

[69] M. Gupta, E. Schonberg, and H. Srinivasan. A uni�ed framework for optimizing

communication in data-parallel programs. Technical Report RC 19872(87937)

12/14/94, IBM Research, 1994. To appear in IEEE Transactions on Parallel and

Distributed Systems.

[70] L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize average completion time:

O�-line and on-line algorithms. In Symposium on Discrete Algorithms (SODA).

ACM-SIAM, 1996.

[71] L. A. Hall. Approximation Algorithms for NP-Hard Problems, chapter Approximation
Algorithms for Scheduling. PWS Publishing Company, Boston, MA, 1996.

122

[72] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD

distributed-memory machines. Communications of the ACM, 35(8):66{80, Aug. 1992.

[73] W. Hong and M. Stonebraker. Optimization of parallel query execution plans in

XPRS. Distributed and Parallel Databases, 1(1):9{32, Jan. 1993. Also see Parallel

Query Processing using Shared Memory Multiprocessing and Disk Arrays by W. Hong,

PhD thesis, UCB/ERL M93-28.

[74] C. A. J. Hurkens and M. J. Coster. On the makespan of a schedule minimizing total

completion time for unrelated parallel machines. Unpublished manuscript, 1996.

[75] D. S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new dynamic

programming technique for trees. Mathematics of Operations Research, 8(1):1{14,

February 1983.

[76] S. L. Johnsson. Communication e�cient basic linear algebra computations on

hypercube architectures. Journal of Parallel and Distributed Computing, 4(2), Apr.

1987.

[77] R. Karp, M. Luby, and F. M. auf der Heide. E�cient PRAM simulation on a

distributed memory machine. In Symposium on the Theory of Computing (STOC),

pages 318{326. ACM, 1992.

[78] R. M. Karp and Y. Zhang. A randomized parallel branch-and-bound procedure.

Journal of the ACM, 40:765{789, 1993. Preliminary version in ACM STOC 1988,

pp290{300.

[79] K. Keeton, T. Anderson, and D. Patterson. LogP quanti�ed: The case for

low-overhead local area networks. In Proc. Hot Interconnects III: A Symposium on

High Performance Interconnects, Stanford, CA, Aug. 1995.

[80] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and non-

approximability results for minimizing total
ow time on a single machine. In

Symposium on the Theory of Computing (STOC). ACM, May 1996.

[81] K. Kennedy and N. Nedeljkovic. Combining dependence and data-
ow analyses to

optimize communication. In International Parallel Processing Symposium. IEEE,

1995.

123

[82] A. Krishnamurthy and K. Yelick. Optimizing parallel programs with explicit

synchronization. In Programming Language Design and Implementation (PLDI), La

Jolla, CA, June 1995. ACM.

[83] J. Li and M. Chen. Compiling communication-e�cient programs for massively parallel

machines. IEEE Transactions on Parallel and Distributed Systems, 2(3):361{376, July

1991.

[84] X. Li and H. Huang. On the concurrency of C++. In Proceedings ICCI '93. Fifth

International Conference on Computing and Information, pages 215{19, Ontario,

Canada, May 1993.

[85] J. W. H. Liu. The multifrontal method for sparse matrix solution: theory and practice.

SIAM Review, 34(1):82{109, March 1992.

[86] P. Liu. The Parallel Implementation of N -body Algorithms. PhD thesis, DIMACS

Center, Rutgers University, Piscataway, New Jersey 08855{1179, May 1994. Also

available as DIMACS Technical Report 94-27.

[87] W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable parallel tasks. In

Symposium on Discrete Algorithms (SODA), pages 167{176. ACM-SIAM, 1994.

[88] S. Luna. Implementing an e�cient portable global memory layer on distributed mem-

ory multiprocessors. Technical Report UCB/CSD-94-810, University of California,

Berkeley, CA 94720, May 1994.

[89] C. R. Mechoso, C.-C. Ma, J. Farrara, J. A. Spahr, and R. W. Moore. Parallelization

and distribution of a coupled atmosphere-ocean general circulation model. Monthly

Weather Review, 121(7):2062{2076, 1993.

[90] M. Mehta and D. Dewitt. Dynamic memory allocation for multiple-query workloads.

In Very Large Databases (VLDB), pages 354{367, 1993.

[91] J. E. Moreira, V. K. Naik, and R. B. Konuru. A system for dynamic resource allocation

and data distribution. Technical Report RC 20257, IBM Research, Yorktown Heights,

Oct. 1995.

124

[92] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoretical

Computer Science, 130:17{47, August 1994. Preliminary version in SODA 1993,

pp 422{431.

[93] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.

[94] K. V. Palem and B. B. Simons. Scheduling time-critical instructions on RISC

machines. In Principles of Programming Languages (POPL), pages 270{280, San

Francisco, CA, Jan. 1990.

[95] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A convex programming approach for

exploiting data and functional parallelism on distributed memory multiprocessors. In

International Conference on Parallel Processing (ICPP). IEEE, 1994.

[96] A. Ranade. A simpler analysis of the Karp-Zhang parallel branch-and-bound method.

Technical Report UCB/CSD 90/586, University of California, Berkeley, CA 94720,

August 1990.

[97] M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: A high-level, machine-independent

language for parallel programming. IEEE Computer, June 1993.

[98] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme

for task allocation in parallel machines. In Symposium on Parallel Algorithms and

Architectures (SPAA), pages 237{245, 1991.

[99] J. Rutter. A serial implementation of Cuppen's divide and conquer algorithm for

the symmetric eigenvalue problem. Mathematics Dept. Master's Thesis available by

anonymous ftp to tr-ftp.cs.berkeley.edu, directory pub/tech-reports/csd/csd-94-799,

�le all.ps, University of California, 1994.

[100] V. Sarkar. The PTRAN parallel programming system. Parallel Functional Program-

ming Languages and Compilers, pages 309{391, 1991.

[101] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In ACM SIGMOD

Conference on the Management of Data, pages 23{34, 1979.

125

[102] D. Shasha and M. Snir. E�cient and correct execution of parallel programs that share

memory. ACM Transactions on Programming Languages and Systems, 10(2):282{312,

April 1988.

[103] D. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop

scheduling problems. SIAM Journal on Computing, 23:617{632, 1994. Preliminary

version in SODA 1991.

[104] D. B. Shmoys and D. S. Hochbaum. Using dual approximation algorithms for

scheduling problems: theoretical and practical results. Journal of the ACM,

34(1):144{162, January 1987.

[105] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines online.

In Foundations of Computer Science (FOCS), pages 131{140, 1991.

[106] M. Snir et al. The communication software and parallel environment of the IBM SP2.

IBM Systems Journal, 34(2):205{221, 1995.

[107] K. Stanley and J. Demmel. Modeling the performance of linear systems solvers

on distributed memory multiprocessors. Technical report, University of California,

Berkeley, CA 94720, 1994. In preparation.

[108] C. Stein and J. Wein. Personal communication, May 1996.

[109] C. Stunkel et al. The SP2 high performance switch. IBM Systems Journal,

34(2):185{204, 1995.

[110] J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Exploiting task and data

parallelism on a multicomputer. In Principles and Practice of Parallel Programming

(PPoPP), pages 13{22, San Diego, May 1993. ACM-SIGPLAN.

[111] J. Turek, W. Ludwig, J. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schweigelshohn,

and P. S. Yu. Scheduling parallelizable tasks to minimize average response time. In

Symposium on Parallel Algorithms and Architectures (SPAA). ACM, 1994.

[112] J. Turek, U. Schwiegelshohn, J. Wolf, and P. Yu. Scheduling parallel tasks to minimize

average response time. In Symposium on Discrete Algorithms (SODA), pages 112{121.

ACM-SIAM, 1994.

126

[113] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms for scheduling

parallelizable tasks. In Symposium on Parallel Algorithms and Architectures (SPAA),

pages 323{332, 1992.

[114] R. v Hanxleden and K. Kennedy. Give-n-Take|a balanced code placement framework.

In Programming Language Design and Implementation (PLDI), Orlando, FL, June

1994. ACM SIGPLAN.

[115] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:

a mechanism for integrated communication and computation. In International

Symposium on Computer Architecture (ISCA), Australia, May 1992. ACM.

[116] C.-P. Wen and K. Yelick. Parallel timing simulation on a distributed memory

multiprocessor. In International Conference on CAD, Santa Clara, CA, November

1993. An earlier version appeared as UCB Technical Report CSD-93-723.

[117] R. C. Whaley. Basic linear algebra communication subprograms: Analysis and

implementation across multiple parallel architectures. Technical Report LAPACK

working note 73, University of Tennessee, Knoxville, June 1994.

[118] R. P. Wilson and M. S. Lam. E�cient context-sensitive pointer analysis for C

programs. In Programming Language Design and Implementation (PLDI), La Jolla.

CA, June 1995. ACM SIGPLAN.

[119] J. Wolf, J. Turek, M. Chen, and P. Yu. The optimal scheduling of multiple queries

in a parallel database machine. Technical Report RC 18595 (81362) 12/17/92, IBM,

1992.

[120] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,

1996.

[121] M. Wolfe and U. Banerjee. Data dependence and its application to parallel processing.

International Journal of Parallel Programming, 16(2):137{178, Apr. 1987.

[122] I.-C. Wu and H. T. Kung. Communication complexity for parallel divide-and-conquer.

In Foundations of Computer Science (FOCS), pages 151{162, 1991.

[123] H. Zima, H. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD

parallelization. Parallel Computing, 6:1{18, 1988.

