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Abstract

Though existing systems for sharing distributed resources in clusters of workstations are
generally e�ective at recruiting idle resources, these systems often have a disruptive e�ect on
desktop workstation users. Even when recruiting computing cycles from strictly idle worksta-

tions, a by-product of running foreign jobs is that the virtual memory pages of the original
user's idle processes are 
ushed to disk and the workstation's �le cache is disrupted. Conse-
quently, users resuming work after an idle period experience delays while the system restores

this state.
This paper presents novel methods for minimizing the disruptions to desktop workstation

users in a cluster environment while still maintaining a high utilization of the idle resources

of the cluster. Disruptions to the user are reduced by identifying the memory-resident state
of the user's processes when the machine becomes idle and then actively restoring that state
before the user returns, using measurements of past activity patterns to predict when that

user is likely to return. Trace-driven simulations show that this method can predict a user's
arrival up to 43% of the time while still recruiting 83% of a workstation's idle cycles.

1 Introduction

Various studies over the years have consistently shown that desktop workstations are idle for a
signi�cant amount of time [Theimer et al. 1985, Nichols 1987, Douglis & Ousterhout 1991, Arpaci
et al. 1995]. In response to this, many workstation cluster systems have been built which allow
users to run jobs on other idle workstations in the cluster. These systems include PVM [Sunderam
1990], Condor [Bricker et al. 1991], LSF [Zhou 1992], Locus [Walker et al. 1983], Butler [Nichols
1987], and Sprite [Douglis & Ousterhout 1991]. However, using an idle workstation to run foreign
jobs can negatively impact the user of the workstation when that user resumes work on the
workstation. For example, if foreign processes are still running on the workstation when the user
returns, the user's processes will have to compete with the foreign processes for CPU time. Many
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systems recognize this and take steps to terminate, migrate, or reduce the priority of foreign jobs
upon detecting that the user has returned to the workstation.

However, even if all foreign jobs are eliminated when the user returns to the workstation,
there are residual e�ects from these jobs which can still disrupt the user. Running foreign jobs
on the system can cause the operating system to page out the virtual memory pages used by the
processes of the workstation's user. Modern workstations can take 30 seconds or more to load the
virtual memory pages for a typical user's processes. Additionally, �le accesses made by foreign
jobs will alter the state of the �le cache. Because of these factors, when resuming work after an
idle period, users often experience a noticeable delay due to paging activity and �le cache misses.
The consequence of these disruptions is that users often resist having their workstations integrated
into the resource sharing system. In particular, users who rarely run jobs which require remote
resources will have little incentive to join the cluster.

It should be the goal of any cluster resource sharing system to minimize the disruptions to users
of desktop workstations. Studies have shown that user productivity increases signi�cantly when
system response is consistent, even if on average the response is low [IBM 1982, Brady 1986].
Consequently, a single large disturbance followed by high responsiveness is less disruptive to a
user's productivity than many small unpredictable disturbances. Therefore, when users return
to their workstations after being idle, the system should immediately restore the entire virtual
memory and �le cache state of the user's processes rather than restoring it slowly over time like
current systems do. An ideal system would in fact restore this state before the user returns to the
workstation, completely hiding the fact that the workstation may have been recruited while the
user was absent.

Our approach is to use a combination of active state restoration and prediction to minimize
disruptions to the user. When a user stops working, the system identi�es which virtual memory
pages of the user's processes are resident in memory. When the system detects that the user has
resumed work, the system actively brings the identi�ed set of pages back into main memory. This
is further augmented by a coarse-grained prediction algorithm which identi�es general historical
usage trends of a user in order to completely eliminate resource sharing costs in many instances.

We have implemented a prototype for identifying and restoring virtual memory state, currently
running as a shared library on Solaris 2.5. We currently use trace-driven simulations to evaluate
the prediction algorithm, but have not yet integrated prediction with the prototype. (Note to the

Usenix reviewers: we intend to have these pieces integrated, along with a �le cache restoration

prototype implemented and evaluated before publication.)

The remainder of this paper is organized as follows. Section 2 describes the overall system
design while Sections 3 and 4 present and evaluate the state restoration prototype and prediction
algorithm, respectively. Section 5 highlights the similarities and di�erences between this system
and previous work. We close in Sections 6 and 7 with future work and conclusions.

2 System Design

The system has two primary goals: �rst, to restore the virtual memory and �le cache state of a
workstation and second, to predict when the user will return. Figure 1 depicts the three com-
ponents of our system design that is present on each participating workstation: the Workstation
Activity Monitor, the Prediction Engine, and the State Restoration Library.
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Figure 1: System design. The Workstation Activity Monitor detects idle and busy periods of
the workstation. The Prediction Engine uses this information to estimate when the user is likely
to return to the workstation. The State Restoration Library is responsible for identifying and
restoring the virtual memory and �le cache state for the user's processes.

2.1 Workstation Activity Monitor

The Workstation Activity Monitor inspects keyboard and mouse activity to determine when the
user becomes idle and busy. Most current resource sharing systems have a local agent on each
machine which is similar to the Workstation Activity Monitor, for example, Condor's kbdd and
Utopia's Load Information Manager. The Workstation Activity Monitor noti�es the Prediction
Engine whenever the workstation becomes busy or idle.

2.2 Prediction Engine

The Prediction Engine is responsible for deciding when the machine should be made available to
foreign jobs and when to snapshot and restore the state for a user's processes. The Prediction
Engine uses the workstation state information from the Workstation Activity Monitor to identify
daily and weekly patterns in the user's activity. The prediction algorithm and an evaluation of it
are presented in Section 4.

When the user leaves the workstation, the Prediction Engine �rst signals the State Restoration
Libraries to snapshot the virtual memory and �le cache state and then noti�es the cluster resource
sharing system (e.g., Condor [Bricker et al. 1991], LFS [Zhou 1992]) that the machine is available
to foreign jobs. When the Prediction Engine predicts that the user is likely to return soon, or if
the user returns unexpectedly, the Prediction Engine noti�es the cluster resource sharing system
that the machine is unavailable to foreign jobs. If a process migration system is available, it can
be invoked at this time to remove foreign processes from the workstation. The Prediction Engine
also signals the State Restoration Libraries to restore the virtual memory and �le cache state of
the processes.

The Prediction Engine may also receive information from the cluster resource sharing system
indicating that there are no more foreign jobs to run. In this case, the Prediction Engine noti�es
the State Restoration Libraries to restore the virtual memory and �le cache state for the processes.
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This eliminates any delays, should the user return to the workstation unexpectedly.

2.3 State Restoration Library

The State Restoration Library is responsible for both identifying and restoring the virtual memory
and �le cache state for a single process. The library is linked with each application transparently
and, on initialization, establishes a communication channel with the Prediction Engine.

In order to identify the virtual memory state of a process, the library �rst �nds the memory
segments of the process and then queries the operating system to determine which pages of those
segments are resident in memory. To restore the virtual memory state, the library merely reads a
single byte from each page which should be resident.

Modern commercial operating systems do not currently provide a way for user level systems
to query the state of the �le cache. Therefore, in order to approximate this state, the State
Restoration Library monitors the �le system activity of the process, recording the most recent N
�le accesses. Then, as an approximation of restoring the �le cache, the library replays the accesses
to those �les. Since most �le accesses in a UNIX environment sequentially read or write the entire
�le [Baker et al. 1991], the system can be simpli�ed by only storing recently accessed �lenames
rather than each individual access to the �le. Restoring the �le cache would then involve reading
in the entire �le.

3 State Restoration Prototype

We have implemented a prototype of the State Restoration Library on Solaris 2.5. The prototype
uses the Solaris /proc �le system to identify valid virtual memory regions for each process and
the Solaris mincore() system call to identify which pages of those regions are resident in memory.
Restoring the virtual memory state is accomplished by simply touching a byte in each page which
should be resident, causing the operating system to page it back into main memory. Currently, the
prototype does not save or restore �le cache state. It also does not multithread the page restoration
process, although we expect that multithreading will reduce the time required to restore the state.

We transparently introduce our modi�cations into existing applications via the dynamic C li-
brary. This method requires no modi�cation or access to the source code for the C library. The C
library is split into its component object �les and then rebuilt with one extra object �le containing
the state restoration code. By including an init function in the object �le, the state restora-
tion code is automatically initialized by the dynamic linker when the C library is loaded. This
transparently installs the state restoration code on a user's processes without requiring manual
per-process installation or relinking. In Solaris, since the vast majority of applications dynamically
link with the C library1, this will apply to most user applications. An alternative approach would
be to insert the state restoration code into the kernel at the system call level using a system such
as Slic [Ghormley et al. 1996].

Upon initialization, the state restoration code registers a signal handler for communication
with the Prediction Engine. When the signal is received from the Prediction Engine, the library
checks for the existence of a temporary �le which indicates which action the library should take:
snapshot the process's virtual memory state or restore it.

1An analysis shows that all of the programs in a shared �lesystem of over 1,400 binaries used at UC Berkeley

use this library as well as the local directories /bin and /usr/bin of Solaris 2.4.
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3.1 Limitations

The current prototype has a number of limitations. First, some programs reset the signal handler
used by the state restoration code. This prevents the state restoration code from receiving the
noti�cations to snapshot and restore state. Furthermore, this also may cause unexpected behavior
in those applications when they receive the signal from the Prediction Engine. To help alleviate this
problem, we use the SIGPWR signal which most user applications ignore. Currently this limitation
has not proved to be a problem. Using an alternative communication mechanism such as Solaris
Doors could eliminate this limitation altogether.

Second, between the time that the virtual memory snapshot was made and the state restoration
is requested, the application may have unmapped regions of its address space. Consequently, before
restoring each virtual memory page, the library must �rst verify its validity in order to avoid
segmentation violations. However, there is a race condition. Another thread in the application
may unmap the page after the library veri�es it but before accessing it. In practice this has
never happened during any of our test runs. This limitation could be removed by informing the
operating system to ignore segmentation violations while restoring virtual memory pages.

Finally, the current prototype does not identify or restore �le cache state. Since modern
commercial operating systems do not provide a user level interface to the �le cache, we plan to
approximate saving and restoring its state by recording recent �le accesses and replaying them.
There are three main options for intercepting �le system operations. The �rst option is to modify
or binary patch the C library to reroute �le operations to the state restoration code. The second
option is to use the Solaris /proc �le system to intercept the �le system related system calls. The
third option is to use a system such as Slic [Ghormley et al. 1996] to insert the state restoration
code into the kernel at the system call interface.

3.2 Evaluation

To quantify the delays that users experience due to virtual memory paging, we measured the
performance of the standard Solaris 2.4 virtual memory system running on a 50 MHz Sparc 20
with 64 MBytes of memory. Figure 2 shows the time required to page in a certain amount of
memory. To measure this, a test program allocated an array of the speci�ed size and accessed
each page of it to ensure that it was resident in memory. We then ran a cleaner which actively used
64 MBytes of memory, 
ushing the test array out of memory. The test program then measured
the total time required to access each page of the original test array. The results demonstrate that
even modestly-sized working sets of 20 MBytes can take over 20 seconds to reload after having
been 
ushed to disk by foreign jobs. Virtual memory set sizes of 20 MBytes and more are typical
on modern commercial operating systems.

We then evaluated the State Restoration Library's ability to restore virtual memory pages.
The types of applications which will exhibit the worst disruption in a cluster environment are
interactive applications which are idle while the user is away, but which consume substantial
memory. We chose emacs as a representative of this class of application.

On the same platform used above, we ran two experiments. For the �rst experiment, we ran
a copy of emacs and loaded a single 14 MByte �le. The total amount of virtual memory used by
the process was 22 MBytes. We then ran the same memory cleaner used above to 
ush the virtual
memory state out to disk. We then monitored the system paging activity using vmstat, signaled
the state restoration library to restore the virtual memory state, and began browsing through
the 14 MByte �le. For the second experiment, we ran exactly the same test but did not actively
restore the virtual memory state.
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Figure 2: Native paging performance. This �gure shows the time required to page in various
amounts of memory on a 50MHz Sparc20 running Solaris 2.4. Values shown are averaged over 10
runs.

Figure 3 shows the paging activity over time for both experiments. In the �rst experiment,
there was a single large delay at the beginning and no delays at all after that. However, in the
second experiment, while browsing the �le the user was noticeably interrupted periodically.

4 Prediction Engine

4.1 Recruitment Threshold

Current cluster resource sharing systems typically use a recruitment threshold to determine when to
make a machine available for running foreign jobs. The recruitment threshold speci�es how long the
machine must be idle before it is made available for running foreign jobs. The purpose of imposing a
recruitment threshold is to avoid using very short idle periods and frequently interrupting the user.
Figure 4 shows the performance of di�erent recruitment thresholds for a trace of one user's activity.
This shows that recruitment thresholds can avoid up to 90% of potential user interruptions while
making 90% of the workstation's idle time available to foreign jobs with a 10 minute recruitment
threshold. Unfortunately, once a machine is used to run foreign jobs, the recruitment threshold
policy is never able to predict when the user will return to the workstation.

4.2 Prediction Using History

In order to augment the recruitment threshold policy to include prediction, we generate a proba-

bility set for each workstation. The probability set encodes the percent of previous days that the
workstation was in use at a particular time of day. For example, if a workstation was never in use
at 7:00am, then the probability set will have a value of 0% for 7:00am. If the machine was in use
at 7:00am during half of the previous days, then the probability set will report 50%.
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Figure 3: Paging activity over time. This �gure shows the paging activity over time for an
emacs process with 22 MBytes of virtual memory state running under Solaris 2.5 on a 167 MHz
UltraSparc.

Figure 5 shows the probability set for a real user after 7 days. Notice that the system detects
that the machine is always idle in the morning, during a lunch period, and in the evening. However,
the machine is never consistently in use during the day since the probability never reaches 100%.

There are two parameters that are used in formulating a probability set: the granularity
of time and the periodicity. The granularity indicates the smallest length of time which the
prediction algorithm will use for running foreign jobs. The granularity is highly dependent on the
cluster resource sharing system being used. For a system which supports process migration, the
granularity must be large enough to allow foreign processes to be migrated o� of the workstation.
Systems which allow foreign processes to run to completion will need very large timeouts so that
the foreign processes will terminate before the user returns.

The periodicity of the probability set indicates which past days are used to construct the set.
The only two values that we consider here are daily and weekly periodicities. The daily periodicity
is used to construct a one day probability set by looking at the same time from consecutive days,
as described above. The weekly periodicity requires a week-long probability set and looks at the
same day and time from previous weeks. The daily periodicity is conceptually simpler than the
weekly periodicity, but treats weekends the same as week days and is therefore less accurate.

There are also two parameters which are used in conjunction with the probability set to de-
termine when to make the workstation available for running foreign jobs. These parameters are
the low and high water marks. When the probability of a workstation being busy rises above the
high water mark, the algorithm makes the workstation unavailable. This causes the Prediction
Engine to notify the cluster resource sharing system that the workstation is unavailable to foreign
jobs and that currently running foreign jobs should be eliminated from the system. Then the
Prediction Engine would notify the State Restoration Libraries to restore the state of the user's
processes.

7



In order for the prediction algorithm to make the workstation available for running foreign
jobs, it �rst waits for the machine to have no CPU activity for the duration of the recruitment
threshold. After that point, it then waits for the probability of the machine being used to fall
below the low water mark. Only then is the machine used to run foreign jobs.

4.3 Evaluation

We evaluated the accuracy of the prediction algorithm using trace-driven simulations, assuming
an in�nite load of foreign jobs. The traces used were taken directly from [Arpaci et al. 1995] and
were generated over the course of a month on 53 assorted workstations in the Computer Science
Division at U.C. Berkeley. The original traces were of varying quality and duration, so we selected
20 which had the longest duration and fewest gaps in the trace data.

The simulator recorded two primary statistics during the simulation of the traces: the percent-
age of time that the algorithm correctly predicted the user's return and the percent utilization
of the idle time of the workstation. Note that the �rst statistic does not mean that the algo-
rithm predicted when the user returned, only that it correctly made the workstation unavailable
to foreign jobs before the user returned.

For purposes of simplifying the simulation space, we assumed zero cost state restoration and
a �xed granularity of one second. We start using a periodicity of one day until a week of data
is processed, and then switch to a periodicity of one week. We used the optimal recruitment
threshold of 10 minutes from Figure 4.

We ran the simulator over a wide range of low and high water marks, using a single user's
trace. Once we determined the optimal values for that user, we applied those same values across
all users. The results are shows in Figure 6. The optimal values for the single user were found
to be a lower water mark of 20% and a high water mark of 50%. That is, the machine is made
available for running foreign jobs only when the probability set value for the next time granularity
falls below 20%.

Figure 6 shows that the prediction algorithm succeeds 9 to 43 percent of the time, while still
utilizing 75 to 93 percent of the idle time of the workstation.

5 Related Work

Signi�cant work has been done that is speci�cally concerned with the issues of integrating desktop
workstations into cluster environments. Previous systems such as Condor [Bricker et al. 1991],
LSF [Zhou 1992], Sprite [Douglis & Ousterhout 1991], and Butler [Nichols 1987], attempt to reduce
interruptions to the user by introducing a recruitment threshold, or timeout, before using the
machine. This simple technique eliminates most false starts of the system and avoids interrupting
the user after brief idle times. However, none of these systems make an e�ort to predict when
the user will return once the machine has been used to run foreign jobs, nor do they attempt to
actively restore the state of the user's processes.

[P�ster 1995] discusses the trade-o�s between machine room versus desktop clusters, warning
designers that desktop workstation users must not be inconvenienced by sharing their resources.
Experience at DEC SRC and with Sprite and U.C. Berkeley showed what can happen when
users feel inconvenienced by the system: users actually tried to deceive the system by tapping
their keyboards periodically to avoid having their machine used for foreign jobs. Encouraging
participation in a cluster requires reducing perceived disruptions to the user caused by foreign
jobs.
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[Arpaci et al. 1995] examines the interaction of parallel and sequential workloads with desk-
top workstation users in a cluster environment. In their traced environment they showed that,
depending on the de�nition of idleness, 60 to 70% of the desktop workstations were available even
in the middle of the day. Their system minimized parallel program slowdowns by implementing
a 3 minute recruitment threshold. However, because their system did not attempt to predict
workstation usage, they suggest a social contract mechanism to prevent any particular user from
being overly interrupted. Unfortunately, their study shows that even limiting the number of user
interuptions to 8 per day can cause a factor of 2 slowdown for parallel applications. In addition,
there is a large penalty for not scheduling parallel programs on workstations that have a high like-
lihood to remain idle. A large class of parallel applications require �ne-grained synchronization
and any slow node can ruin performance. Hence, the ability to predict when a workstation will
become non-idle is also bene�cial for the performance of parallel jobs.

6 Future Work

6.1 Better Prediction

Predicting the time at which a user will resume work requires the identi�cation of patterns in past
behavior. This is precisely what compression algorithms are designed to do, though in a di�erent
context. The theoretical basis for using compression algorithms for prediction is presented in [Feder
et al. 1992]. Adapting a compression algorithm such as Ziv-Lempel [Ziv & Lempel 1978] may
perform a better job at detecting workstation usage patterns than the technique described earlier.
With better prediction, we can lower user interruptions and raise the availability of workstations
as shared resources.

6.2 Integration with Resource Sharing Package

We will integrate our system with GLUnix, the global operating system support layer of the
Berkeley NOW project [Anderson et al. 1995]. Being the primary developers for GLUnix, we have
had much pressure to integrate this system from desktop workstation users experiencing state
restoration delays.

6.3 Eliminating State Restoration Restrictions

During the discussion of the prepaging prototype, we presented some limitations with our ap-
proach. Slic [Ghormley et al. 1996], a package for adding extensions to modern operating systems
may be used to provide more robust prepaging. A prepaging extension to the operating system
may catch page faults to monitor one's working set, and later cause pages to be restored without
modifying the dynamic C library, and without the limitations associated with this.

Aside from memory pages, �le caches are cleaned when a workstation has other loads on it.
Work will be done to measure the detrimental e�ect of losing one's �le cache. Slic may also
provide us with a way to correctly monitor and restore a user's �le cache by providing access to
�le caching primitives that reside inside the kernel.

6.4 Detecting Users for Prepaging

An interesting possibility is for users to wear special unique badges so that when they enter the
workplace, the cluster is aware that they may start using their workstations soon. The Prediction
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Engine and State Restoration Libraries can use this information to perform their operations. Using
badges in this manner is similar to the system at Xerox PARC in which telephone calls are routed
to the telephone nearest the callee.

7 Conclusion

This paper presented two methods for minimizing disruptions to the desktop workstation user in
a shared resource environment: actively restoring the virtual memory and �le cache state for a
user's processes, and predicting the future behavior of a user by monitoring past activity. We
have demonstrated through direct measurements of a prototype that actively restoring state can
decrease the long-term disruptions experienced by users after their workstation have been used to
run foreign jobs. Using trace-driven simulation we have shown that it is possible to completely
eliminate 9-43% of the potential disruptions to the user in a shared resource system and that this
can be done while utilizing 75-93% of the idle time of the workstation. The combination of these
two factors indicate that current cluster resource sharing systems can bene�t from these methods,
signi�cantly reducing the participation costs for users.
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Figure 4: Recruitment Threshold Performance. This graph shows the performance of an
algorithm utilizing a recruitment threshold with no prediction facility.
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Figure 5: Sample probability set. This graph shows a sample probability set for a real user
after 7 days of history.
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Figure 6: Prediction accuracy vs. workstation utilization. This graph shows the prediction
algorithm performance for the top 20 machines using a low water mark of 20% and a high water
mark of 50%.
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