
Approximately Counting Cliques

Lars Eilstrup Rasmussen�

University of California at Berkeley

August 1, 1996

Abstract

We present a very simple, randomized approximation algorithm

for determining the number of cliques in a random graph.

�Supported in part by NSF Grant CCR-9505448 and a UC Berkeley Faculty Research

Grant

1

1 Introduction

1.1 Cliques

Let G = ([n]; E) be an undirected graph on vertex set [n] = f1; 2; : : : ; ng. By
a clique of G we shall mean any complete subgraph of G. In particular, the

empty subgraph, as well as the n singleton subgraphs, are cliques of G, and

it is therefore trivial to decide whether a given graph contains a clique. How-

ever, the study of cliques, most notably of maximal and maximum cliques,

has attracted considerable attention in the past decades. For example, it

is known that, for almost all su�ciently large n, the size, cl(G), of a maxi-

mum clique of a random graph, G, exactly equals its expectation, cl(n), with

probability tending to 1 (see e.g. [2], Chapter XI). Nevertheless, when G is

a general graph, cl(G) cannot be approximated even to within a factor n1��

for any � > 0, unless NP=coR [4]. Likewise, no e�cient procedure for �nding

a clique of size signi�cantly greater than 1

2
cl(G) is known even for random

graphs (indeed, it has been conjectured that no such procedure exists [5]).

In this paper, we shall consider the problem of counting the total number,

#cl(G), of cliques of G. We note that a simple construction ([13], Theorem

1.17) coupled with [4] demonstrates that even approximating #cl(G) can not

be done for a general graph to within a factor 2n
1��

for any � > 0 unless

NP=coR. Weakening the requirements further, we ask whether there exists

an e�cient (randomized) approximation algorithm for #cl(G) that works for

a random graph with high probability (i.e., with probability tending to 1).

In this paper, we answer the question in the a�rmative.

1.2 Randomized approximation schemes

We shall formalize the notion of \e�cient approximation algorithm" as fol-

lows: A randomized approximation scheme [7] for #cl(G) is a probabilistic al-

gorithm which, when given an input graph, G, and a real number, 0 < � < 1,

outputs a number XG (a random variable) such that

Prf(1� �)#cl(G) � XG � (1 + �)#cl(G)g � 3

4
:

2

The success probability may be boosted to 1�� for any 0 < � < 1 by running

the algorithm O(log ��1) times and taking the median of the results [6]. Such

a scheme is said to be fully polynomial if its execution time is bounded by

some polynomial in the size of G and ��1. We shall henceforth contract the

phrase fully polynomial randomized approximation scheme to fpras. In this

paper, we will describe an algorithm which, when run on a uniformly chosen

graph on n vertices, satis�es the requirements of a fpras with probability

(over the choice of graph) tending to 1 with n.

Often, as will be the case in this paper, a fpras is constructed from an

unbiased estimator : we shall construct a polynomial time, probabilistic al-

gorithm whose output on a graph G is a random variable XG such that

E[XG] = #cl(G). We then simply run a number of independent copies

of the algorithm on the same input, and output the average of the re-

sults. A straightforward application of Chebyshev's inequality shows that

O

�
E[X2

G
]

E[XG]
2 �
�2
�
copies of the estimator su�ce to constitute a randomized ap-

proximation scheme for #cl(G). From this it is clear that if the critical ratio,
E[X2

G
]

E[XG]2
, is bounded above by a polynomial in the size of G, then we have con-

structed an fpras for #cl(G). We will show that, for some very small constant

 (� 10�8), the critical ratio of our estimator for a random graph of size n is

bounded by n
 with probability (over the choice of graph) tending to 1 with

n. Since a single run of the unbiased estimator can be completed in time

O(n2), we get, for a random graph, a fpras with running time O(n2+
��2).

Our algorithm hinges on a certain self-reducibility property of cliques which

allows us to naturally identify a graph with a rooted, binary tree, such that

each sub-tree corresponds to the cliques of a certain subgraph, and such that

the leaves are in one-to-one correspondence with the cliques of the original

graph. We then approximate the number of leaves in this tree by travers-

ing a single path from the root to a leaf, making random choices at each

node. When a leaf is reached, we compute the probability that the algorithm

reached that particular leaf, and output the inverse of that probability. It

is not hard to see that the expected value of this experiment is exactly the

number of leaves in the tree (since each leaf contributes exactly 1 to the ex-

pectation). Similarly, the critical ratio of the experiment (which is a measure

of the variance relative to the square of the mean) will be su�ciently small

if the distribution induced by the experiment on the leaves of the tree is not

3

too far from uniform.

The algorithm follows a method used previously by Hammersley [3], Knuth

[8, 9] and Rasmussen [12] in other settings. However, as we shall see, the

application of the method to the problem of counting cliques requires, in

contrast to the above applications, that the random choices made at each

node in the tree are biased according to pre-estimates of the sizes of the left

and right subtrees. This biasing necessitates a considerably more involved

analysis of the critical ratio of the resulting estimator.

We shall specify our algorithm in Section 2, present the analysis of its runtime

in Section 3, and make a few concluding remarks in Section 4.

2 The algorithm

In this section, we will specify the algorithm and state the main result re-

garding its runtime. In preparation, we introduce some simple notation:

De�nition 1 Let G = ([n]; E) be an undirected graph and denote by

#cli(G) = jfC � [n] : jCj = i ^ 8v 6= w 2 C : fv;wg 2 Egj

the number of cliques of size i in G, by

#cl(G) =
X
i

#cli(G)

the total number of cliques in G, by

�(v) = fw 2 [n]� v : fv;wg 2 Eg

the set of neighbors of vertex v, by

d(v) = j�(v)j

the degree of v, and, for S � [n], denote by

GS = (S; ffv;wg 2 E : v;w 2 Sg)

4

the subgraph of G induced by S. Finally, let

G(n) = fG = ([n]; E) : E � [n]2g

denote the set of all n-vertex graphs, and say that a property, P , holds for

random graphs if PrfP (Gn)g ! 1 as n!1 when Gn is chosen u.a.r. from

G(n). 2

We begin by noticing that the set of cliques of G is naturally partitioned into

those cliques containing a given vertex, v, and those not containing v:

#cl(G) = #cl(G�(v)) + #cl(G[n]=v): (1)

Expanding out this recurrence immediately gives an exponential time, deter-

ministic algorithm for computing #cl(G) exactly (which would exhaustively

enumerate each leaf in the binary tree de�ned by the recurrence). The idea

for our approximation algorithm is to randomly choose only one of the right-

hand terms in (1) according to some bias, and recursively estimate its size.

From that we then compute an estimate of #cl(G) by assuming that the bias

accurately re
ects the relative sizes of the two terms. As we shall see, the

expected value of this experiment is exactly the desired number, #cl(G), re-

gardless of how the bias is constructed, whereas the variance of the estimator

depends on how accurate is our pre-estimate of the ratio of the two terms.

More precisely, our algorithm assigns to all graphs G a r.v. XG as follows:

if n = 0 then XG = 1

else
ip a p-q-coin

if heads then XG = p�1XG�(v)

else XG = q�1XG[n]=v

Figure 1: The Algorithm.

Here, p = p(G) is a function of the input graph, G, a p-q-coin is one which

lands heads up with probability p and tails up with probability q = 1 � p,

5

and v is an arbitrary vertex (chosen independently of the edges of G). We

shall specify an appropriate value for p presently.

Theorem 2 Let G 2 G(n), and p any function from graphs to [0; 1] such

that

p(G) = 0) #cl(G�(v)) = 0

and

p(G) = 1) #cl(G[n]=v) = 0:

Then

E[XG] = #cl(G):

Proof: A straightforward induction on n. 2

To control the variance of the estimator, XG, we simply let p and q re
ect

the expected fractions of cliques in the two terms in (1) for a random graph,

given the degree, d = d(v), of v. To specify this precisely, we introduce some

further notation:

De�nition 3 Choose Gn u.a.r. from G(n). De�ne

En
def
= E[#cl(Gn)] =

nX
i=0

�
n
i

�
2
�
�
i
2

�
def
=

nX
i=0

En;i:

2

The speci�cation of the algorithm in Figure 1 is now completed by letting

p = p(G) =
Ed

Ed + En�1

and

q = 1� p =
En�1

Ed + En�1
:

We are now ready to state the main theorem:

6

Theorem 4 For a random graph, G, the critical ratio of the estimator, XG,

in Figure 1 is bounded by

E[X2
G]

E[XG]2
� O(n
);

where
 � 10�8.

Proof: See Section 3. 2

Corollary 5 For a random input graph in G(n) and tolerance � > 0, inde-

pendent repetitions of the algorithm in Figure 1 yield a fpras with runtime

O(n2+
��2), where
 � 10�8.

Proof: Let � > 0, and choose an input graph, G, uniformly at random

from G(n). Run t = 4��2 E[X2
G
]

E[XG]
2 independent copies, X1

G;X
2
G; : : : ;X

t
G, of the

algorithm and output the observed average, SG = 1
t

Pt
i=1X

i
G. Then, by

Chebyshev's inequality,

Pr
n
jSG �#cl(G)j � �#cl(G)

o
� 1� E[X2

G]� E[XG]
2

t�2E[XG]2
� 3

4
:

The result now follows from Theorem 4 since it is clear from Figure 1 that

each run of the algorithm can be completed in time O(n2). 2

3 The analysis

In this section, we present the analysis of the runtime of the algorithm in

Figure 1, speci�cally by proving Theorem 4. Again, we start by introducing

some simple notation:

De�nition 6 Let f = f(n) and g = g(n) be functions of n. Write

f � g when lim
n!1

f(n)

g(n)
= 1

7

and

f � g when lim sup
n!1

f(n)

g(n)
< 1:

2

Notation 7 Throughout this paper, log denotes the base 2 logarithm, ln the

natural logarithm. 2

The study of the sum En will play a key role in our analysis. In particular,

we shall extend the domain of En;i, viewed as a function on i, to the real

numbers using Euler's Gamma function, and demonstrate that En converges

to an almost constant multiple of the value of En;i at a particular point,

i = en, which is close to the function's maximum (Lemma 11).

The small error,
, in Theorem 4 originates from this \almost constant" limit,

which in turn originates from the even smaller error term in the following

lemma:

Lemma 8 Let x 2 [1
4
; 1]. Then

@

@x

1X
k=�1

xk2
�
�
k
2

�
=

log x+ 1

2

x

1X
k=�1

xk2
�
�
k
2

�
+

where
 =
(x) 2 [�10�9; 10�9].

Proof: The identity follows from a special case of the transformation formula

(see, e.g., [11], Chapter 10) for #3:

#3(v; �)
def
=

1X
k=�1

e�ik
2�e2�ikv =

q
i
�
e�

�iv2

� #3(
v
�
;� 1

�
):

Let � = i ln 2
2�

, v = ln(x
p
2)

2�i
. Then

1X
k=�1

xk2
�
�
k
2

�
=

1X
k=�1

�
1p
2

�k2
(x
p
2)k

8

= #3(v; �)

=
q

i
�
e
��iv2

� #3(
v
�
;� 1

�
)

= 2
5

8

q
�
ln 2

x
log x+1

2 S(x);

where S(x) =
1X

k=�1
e
�2�2k2

ln 2
�2�ik ln(x

p
2)

ln2 . Thus,

@

@x

1X
k=�1

xk2
�
�
k
2

�
=

log x+ 1

2

x

1X
k=�1

xk2
�
�
k
2

�
+
;

where

 = 2
5

8

q
�
ln 2

x
log x+1

2

1X
k=�1

�e
�2�2k2

ln 2
�2�ik ln(x

p
2)

ln 2 2�ik

x ln 2
2 [�10�9; 10�9]:

2

For simplicity, we shall carry out the remainder of the analysis leaving out

the tedious details of tracking this error. That is, we shall pretend that

@

@x

1X
k=�1

xk2
�
�
k
2

�
=

log x+ 1

2

x

1X
k=�1

xk2
�
�
k
2

�
(2)

and, based on this approximate equality, prove in place of Theorem 4 as

stated above, that, for a random graph G and any � > 0:

E[X2
G]

E[XG]2
� O(n�):

The reader is encouraged to check that the error,
 2 [�10�9; 10�9], of
Lemma 8 does indeed turn into the error,
 � 10�8, of Theorem 4.

We now show how Euler's Gamma function can be used to obtain a sharp

estimate of the sum En:

9

De�nition 9 (Euler's Gamma function) For x 2 R, let

x!
def
= �(x+ 1)

def
=

Z 1

0
txe�tdt:

Furthermore, for y 2 R, let

(x)y =
x!

(x� y)!
and

�
x
y

�
=

(x)y

y!
:

2

The Gamma function possesses simple poles at x = 0;�1;�2 : : : (see e.g.

[1], page 255-266 for properties of the Gamma function). However, those

poles will not interfere with our use of the function in this paper. A simple

application of integration by parts shows, for x 2 R, that x! = x(x � 1)!.

Thus, since 0! = �(1) = 1, the Gamma function does indeed extend the

natural factorial function

n! = n(n� 1)(n� 2) : : : 1:

Also note that, for x 2 R and k 2 N,

(x)k = x(x� 1)(x � 2) : : : (x� k + 1):

In Lemma 14, we will make use of the fact that

	(x)
def
=

@

@x
ln �(x)

is monotonically increasing on the positive real axis.

As already advertised, De�nition 9 allows us to extend the domain of En;i

(De�nition 3) to non-integer values of i. We now prove the claim indicated

before Lemma 8 that En converges to an almost constant multiple of the

value of En;i at a particular point. We will also do this for the quantity Hn,

which is the di�erence between consecutive En's:

De�nition 10

Hn
def
= En+1 � En =

nX
i=0

�
n
i

�
2
�
�
i+1
2

�
def
=

nX
i=0

Hn;i:

2

10

Lemma 11 Let e = en be de�ned by En;e = En;e+1, and h = hn by Hn;h =

Hn;h+1. Then, for some constant C,

En � CEn;e and Hn � CHn;h;

Furthermore,

e � log n� log log n;

and e > h > e�1 for all su�ciently large n.

Remark: As explained in the remarks following Lemma 8, the statement of

this lemma is based on the approximate equality (2). In fact, the quantity

C is not constant, but varies with n by a small factor (at most 1� 10�9). In
particular, the second � in (3) below is o� by this factor, as the reader may

readily check.

Proof: Note that
En;i

En;i+1
is monotonically decreasing in i, so e is well de�ned.

We �rst solve for e:

En;e+1

En;e

=
n � e

e+ 1
2�e = 1

, log n� log log n < e < log n� log log n+O

log log n

log n

!

Similarly, e > h > e�1. Note in particular that all of e, h, n� e and n � h

tend to in�nity with n.

We now proceed in two steps to prove that

CEn;e �
n�becX
k=�bec

En;e+k � En: (3)

Consider �rst the values of En;i at (constant) integer distance from e: for

any �xed k 2 Z such that 0 � e+ k � n, we have

En;e+k

En;e

= 2
�
�
k
2

�
�ek � (n� e)k

(e+ k)k
= 2

�
�
k
2

�
� (n� e)k

(n� e)k
� (e+ 1)k

(e+ k)k
� 2

�
�
k
2

�

Since, for any � > 0, there is a constant l such that, for all su�ciently large

n,

n�becX
k=�bec

En;e+k � (1+�)
lX

k=�l
En;e+k and

1X
k=�1

2
�
�
k
2

�
� (1+�)

lX
k=�l

2
�
�
k
2

�
;

11

the �rst � in (3) follows with

C =
1X

k=�1
2
�
�
k
2

� �
� 2

5

8

q
�
ln 2

by the proof of Lemma 8

�
:

To obtain the second � in (3), we prove that, for all a 2 [0; 1],

lim
n!1

@
@a

Pn
i=0 En;i+a

En

= lim
n!1

Pn
i=0

@
@i
En;i+a

En

= 0:

Let e0 = dee+ a. Since En;e0 � En, it su�ces to show that

lim
n!1

nX
i=0

@

@i

En;i+a

En;e0
= lim

n!1

n�be0cX
k=�be0c

@

@k

En;e0+k

En;e0
= 0 (4)

(where the �rst = comes from substituting k = i� be0c). Let

x = xe0 =
En;e0+1

En;e0
=

n� e0

e0 + 1
2�e

0

:

Then, as above,

En;e0+k

En;e0
= 2

�
�
k
2

�
�e0k�(n� e0)k

(e0 + k)k
= xk2

�
�
k
2

�
�(n� e0)k
(n� e0)k

� (e0 + 1)k

(e0 + k)k
� xk2

�
�
k
2

�
;

and, again since all but a negligible part of the sum in (4) is contained within

a constant distance from k = 0, it remains to show that

1X
k=�1

@

@k
xk2

�
�
k
2

�
= ln 2

1X
k=�1

xk2
�
�
k
2

�
(log x+ 1

2
� k) = 0;

or equivalently, that

@

@x

1X
k=�1

xk2
�
�
k
2

�
=

log x+ 1

2

x

1X
k=�1

xk2
�
�
k
2

�
:

Since xe0 decreases with e0,

1 = xe � xe0 > xe+2 =
1

4
� n� e� 2

n� e
� e+ 1

e+ 3
! 1

4
;

and the result follows by Lemma 8 (actually from the approximate equality

(2)). The proof for Hn is similar. 2

12

Before moving on, we shall need the following elementary technical results:

Lemma 12 (Cherno�) Let D be a binomial random variable with param-

eters n and 1

2
, and let T = 1

2
n+

p
2bn ln n. Then PrfD > Tg < n�b.

Proof: Employ a standard Cherno� bound (see e.g. [10] p. 86) 2

Lemma 13 Let m;k; m
k
; n
k
!1 as n!1. Then

�
n
k

��
m
k

��1
�
�
n

m

�k

Proof: �
n
k

��
m
k

��1
=

n!

(n� k)!
� (m� k)!

m!
� nkm�k;

where the last � follows from e.g. [1], 6.1.46. 2

We are now ready to prove the bound on the critical ratio of the estimator

when run on a random graph. We shall take a slight detour. In particular,

we shall �rst (Lemma 14) bound a suitable ratio of expectations, and then

prove the main Theorem 4 using a crude bound on the variance of #cl(G).

Lemma 14 Choose G = Gn u.a.r. from G(n), and let XG be the correspond-

ing estimator. Then, for any � > 0,

EG[E�[X
2
G]]

EG [E�[XG]]2
= O(n�);

where EG denotes the expectation over graphs, and E� the expectation over

coin-tosses performed by the estimator.

Remark: The proof of this lemma relies on Lemma 11, which in turns relies

on the approximate equality (2). Carrying forward the small error in Lemma

11 leads to a corresponding small error in Lemma 14, which means that the

upper bound holds only for � > 10�8 rather than for � > 0.

13

Proof: By Theorem 2,

EG[E�[XG]] = EG[#cl(G)] = En:

Let Fn denote EG[E�[X
2
G]]. For convenience of notation, choose for the re-

mainder of the proof G = Gn+1 u.a.r. from G(n+1), and let D be the degree

of v. By conditioning on D, we obtain the recurrence

F0 = 1

Fn+1 =
nX

d=0

PrfD = dg
�
p�1Fd + q�1Fn

�
;

and the identity

Hn = E[#cl(G�(v))] =
nX

d=0

PrfD = dgEd

(recall from De�nition 10 that Hn
def
= En+1 � En). We can now prove by

induction on n that Fn = O(n�E2
n): this will complete the proof of the

lemma. In particular, we will prove that Fn � n�E2
n) Fn+1 � (n+ 1)�E2

n+1

for n su�ciently large. We have

Fn+1 �
nX

d=0

PrfD = dg
�
p�1d�E2

d + q�1n�E2
n

�

=
nX

d=0

PrfD = dg
�
d�E2

d + (d�+n�)EdEn + n�E2
n

�

�
nX

d=0

PrfD = dgd�E2
d + 2n�HnEn + n�E2

n:

Since E2
n+1 = H2

n + 2EnHn + E2
n, it su�ces to prove that

nX
d=0

PrfD = dgd�E2
d � n�H2

n:

We will split the sum around T = Tn = 1

2
n +

p
4n ln n by letting � = 2�

�

2 ,

and proving that

X
d�T

PrfD = dgd�E2
d � (1� �)n�H2

n; (5)

14

and that X
d<T

PrfD = dgd�E2
d � �n�H2

n: (6)

But �rst, observe that

@

@i
lnEn;i = �	(i+ 1) + 	(n� i+ 1)� 2i� 1

2
ln 2

is monotonically decreasing (see the remarks following De�nition 9). There-

fore,

en � i � en + 1) En;en � En;i (7)

Furthermore,
Hn;i+1

Hn;i

� ET;i+1

ET;i

whenever i � 4
p
n lnn. Since both sides of the inequality are decreasing

in i (as in the proof of Lemma 11), this implies that hn � eT . Since en is

increasing in n, and since en � 1 � hn (by Lemma 11), we have

eT � en � hn + 1 � eT + 1 � en + 1;

which, by (7), implies that

En;en � En;hn+1 = 2hn+1Hn;hn+1 = 2hn+1Hn;hn ;

and

ET;eT � ET;hn+1:

Now, consider the sum's upper part, i.e., the inequality in (5). Since d�E2
d

increases with d,

nX
d>T

PrfD = dgd�E2
d � (1� �)n�H2

n

(E2
n

nX
d>T

PrfD = dg � (1� �)H2
n

(E2
n;en

nX
d>T

PrfD = dg � (1� �)H2
n;hn

(by Lemma 11)

(
nX

d>T

PrfD = dg � (1� �)

log n

2n

!2

� (1� �)2�2(hn+1);

15

which holds by Lemma 12 and the choice of T .

Since
P

d�T PrfD = dg < 1, it su�ces for the lower part of the sum (inequal-

ity (6)) to prove that

T
�

2ET;eT �
p
�n

�

2Hn;hn (by Lemma 11)

(T
�
2ET;hn+1 � n

�
22�(hn+1+

�
4
)
En;hn+1

(
�
T
n

�hn+1+
�

2 � 2�(hn+1+
�

4
) (by Lemma 13);

which, since log
�
T
n

�
� 2

p
4n lnn
n

� 1, follows from

(hn + 1 + �
2
)2
p
4n lnn
n

� �
4
;

and the proof is complete. 2

Finally, we assemble the pieces to prove our main technical theorem, which

we restate:

Theorem 4 For a random graph, G, the critical ratio of the estimator, XG,

in Figure 1 is bounded by

E[X2
G]

E[XG]2
� O(n
);

where
 � 10�8.

Proof: In fact, following our previous strategy, we shall assume the approx-

imate equality (2) and prove the stronger bound

E[X2
G]

E[XG]2
� O(n�)

for any � > 0. Since the errors introduced by this assumption are small

(see remarks following Lemmas 11 and 14), we get the result claimed in the

theorem.

16

We shall prove separately that, for a random graph, the denominator of the

critical ratio will not be too much smaller than E2
n, and that the numerator

will not be too much larger than its expectation. Combined with Lemma

14, this will complete the proof of the theorem. Thus, choose G = Gn u.a.r.

from G(n).

To bound the denominator, we follow the method of [2], Chapter XI, by

considering pairs of cliques of size e = en. Let Yi = #cli(G). We have

E[Y 2
e] =

eX
l=0

�
n
e

��
e
l

��
n� e
e� l

�
2
�2
�
e
2

�
+

�
l
2

�
;

and thus

E[Y 2
e]

E[Ye]2
=

�
n
e

��1 eX
l=0

�
e
l

��
n� e
e� l

�
2

�
l
2

�
def
=

�
n
e

��1 eX
l=0

fl:

For l = 0; 1; : : : ; e� 1, let

�l
def
=

fl

fl+1

=
l+ 1

e� l
� n � 2e + l+ 1

e� l
� 2�l:

In particular, for large n,

�0 �
n� 2 log n

log2 n
� log2 n; (8)

and, very crudely,

�e�3 � 1:

Furthermore,

�l = �l�1 �
l + 1

l
�

e� l + 1

e� l

!2

� n� 2e+ l+ 1

n� 2e+ l
� 2�1;

which implies, for large n,

�e�3 � �l for l = 1 : : : e� 1: (9)

Combining (8) and (9) gives

fl �
f0

log2 n
for l = 1 : : : e;

17

and hence
E[Y 2

e]

E[Ye]2
�
�
n
e

��1
f0
�
1 + o(1)

�
� 1 + o(1):

Now, by Chebyshev's inequality,

Pr

�
n
�

4C�1Ye < E[Ye]

�
! 0;

and thus, by Lemma 11,

Pr

�
n
�
4#cl(Gn) < En

�
! 0: (10)

To bound the numerator, simply employ Markov's inequality:

Pr

�
E�[X

2
G] > n

�

4EG [E�[X
2
G]]

�
! 0: (11)

Finally, (10) and (11) together imply that

Pr

(
E�[X

2
G]

E�[XG]2
� n

3�
4
EG[E�[X

2
G]]

EG[E�[XG]]2

)
! 0;

and the result follows from Lemma 14. 2

4 Too simple

In this short �nal section, we o�er some circumstantial justi�cation for our

approach by demonstrating that certain \obvious," na��ve methods fail.

Note that it proved essential to the success of our estimator that #cl(Gn) is

fairly concentrated around its mean, En (see the proof of Theorem 4). At

�rst sight, it might seem that this concentration means that the following

trivial algorithm satis�es our requirements: on input a graph of size n, sim-

ply output the expectation En. That approach would, for any �xed � > 0,

produce an �-approximation of #cl(G) for random graphs (in time not de-

pending on �). We required, however, the quanti�ers in a di�erent order: for

random graphs, the approximation scheme must be able to produce, for any

� > 0, an �-approximation in time polynomial in n��1.

18

A slightly more sophisticated approach would be to run the following algo-

rithm, for a suitable function �0 = �0(n):

if � > �0 then

compute En

else

brute force count the cliques of Gn

Figure 2: Threshold Algorithm.

Clearly, this algorithmwill work for a graphGn (i.e., produce an �-approximation

in time polynomial in n��1 for any � > 0) only if

(1� �0)#cl(G) � En � (1 + �0)#cl(G); (12)

and

#cl(G) � poly(n��10): (13)

To argue that this approach also fails for random graphs, consider the fact

that a random graph will have more than 1

2
n +
(1) edges with at least

constant probability. In that case, the graph would, roughly, be a uniform

sample from G(n; p), the probability space of graphs on n vertices with indi-

vidual edges present independently with probability p = 1

2
+
(n�1). Thus,

the expected number of cliques in the graph would be:

En;p =
nX
i=0

�
n
i

�
p

�
i
2

�
;

which, ignoring the �rst two terms, is certainly larger than (1 +
(n�1))En.

Therefore, and since En � n, a random graph fails to satisfy conditions (12)

and (13) with at least constant probability.

19

5 Acknowledgments

I am thoroughly grateful to Nati Linial without whose input, in particular on

the central Lemma 11, this paper would not be. Likewise, Gert Almkvist and

Doron Zeilberger deserve many thanks for showing me how to prove Lemma

8, and Mike Saks for input on Section 4. I also wish to take this opportunity

to thank Alistair Sinclair and Mike Luby for valuable input and invaluable

encouragement throughout.

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of mathematical

functions with formulas, graphs, and mathematical tables. Wiley, New

York, 1972.

[2] B. Bollob�as. Random Graphs. Academic Press, London, 1985.

[3] J. M. Hammersley. Existence theorems and Monte Carlo methods for the

monomer-dimer problem. Research Papers in Statistics, pages 125{146,

1966.

[4] J. H�astad. Testing of the long code and hardness for clique. In Proceed-

ings of the 28th annual symposium on the theory of computing, pages

11{19, 1996.

[5] M. Jerrum. Large cliques elude the Metropolis process. Random Struc-

tures & Algorithms, 3(4):347{359, 1992.

[6] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combi-

natorial structures from a uniform distribution. Theoretical Computer

Science, pages 169{188, 1986.

[7] R. Karp and M. Luby. Monte-Carlo algorithms for enumeration and

reliability problems. In Proceedings of the 24th IEEE Symposium on

Foundations of Computer Science, pages 56{64, 1983.

[8] D. Knuth. Estimating the e�ciency of bactrack programs. Mathematics

of Computations, 29(129):121{136, Jan 1975.

20

[9] D. Knuth. Mathematics and computer science: Coping with �niteness.

Science, 194(4271):1235{1242, December 1976.

[10] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge Uni-

versity Press, 1995.

[11] H. Rademacher. Topics in analytic number theory. Springer-Verlag,

1973.

[12] L. E. Rasmussen. Approximating the permanent: a simple approach.

Random Structures & Algorithms, 5(2):349{361, April 1994.

[13] A. Sinclair. Algorithms for random generation and counting: a Markov

chain approach. Birkh�auser, Boston, 1993.

21

