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Abstract

Spectral partitioning methods use the Fiedler vector|the eigenvector of the second-

smallest eigenvalue of the Laplacian matrix|to �nd a small separator of a graph. These

methods are important components of many scienti�c numerical algorithms and have been

demonstrated by experiment to work extremely well. In this paper, we show that spectral

partitioning methods work well on bounded-degree planar graphs and �nite element meshes|

the classes of graphs to which they are usually applied. While naive spectral bisection does

not necessarily work, we prove that spectral partitioning techniques can be used to produce

separators whose ratio of vertices removed to edges cut is O(
p
n) for bounded-degree planar

graphs and two-dimensional meshes and O
�
n
1=d
�
for well-shaped d-dimensional meshes. The

heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian

matrices of these graphs.

1. Introduction

Spectral partitioning has become one of the most successful heuristics for partitioning graphs
and matrices. It is used in many scienti�c numerical applications, such as mapping �nite el-

ement calculations on parallel machines [Sim91, Wil90], solving sparse linear systems [PSW92],

and partitioning for domain decomposition [CR87, CS93]. It is also used in VLSI circuit de-

sign and simulation [CSZ93, HK92, AK95]. Substantial experimental work has demonstrated

that spectral methods �nd good partitions of the graphs and matrices that arise in many ap-
plications [BS92, HL92, HL93, PSL90, Sim91, Wil90]. However, the quality of the partition that
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these methods should produce has so far eluded precise analysis. In this paper, we will prove that

spectral partitioning methods give good separators for the graphs to which they are usually applied.

The size of the separator produced by spectral methods can be related to the Fiedler value|the

second smallest eigenvalue of the Laplacian|of the adjacency structure to which they are applied.

By showing that well-shaped meshes in d dimensions have Fiedler value at most O
�
1=n2=d

�
, we

show that spectral methods can be used to �nd bisectors of these graphs of size at most O
�
n1�1=d

�
.

While a small Fiedler value does not immediately imply that there is a cut along the Fiedler vector

that is a balanced separator, it does mean that there is a cut whose ratio of vertices separated to

edges cut is O
�
n1=d

�
. By removing the vertices separated by this cut, computing a Fiedler vector of

the new graph, and iterating as necessary, one can �nd a bisector of O
�
n1�1=d

�
edges. In particular,

we prove that bounded-degree planar graphs have Fiedler value at most O(1=n), which implies that

spectral techniques can be used to �nd bisectors of size at most O(
p
n) in these graphs. These

bounds are the best possible for well-shaped meshes and planar graphs.

1.1. History

The spectral method of graph partitioning was born in the works of Donath and Ho�man [DH72,
DH73] who �rst suggested using the eigenvectors of adjacency matrices of graphs to �nd partitions.
Fiedler [Fie73, Fie75a, Fie75b] associated the second-smallest eigenvalue of the Laplacian of a graph

with its connectivity and suggested partitioning by splitting vertices according to their value in the
corresponding eigenvector. Thus, we call this eigenvalue the Fiedler value and a corresponding
vector a Fiedler vector.

A few years later, Barnes and Ho�man [Bar82, BH84] used linear programming in combination
with an examination of the eigenvectors of the adjacency matrix of a graph. In a similar vein, Bop-

pana [Bop87] analyzed eigenvector techniques in conjunction with convex programming. However,
the use of linear and convex programming made these techniques impractical for most applications.

By recognizing a relation between the Fiedler value and the Cheeger constant [Che70] of con-
tinuous manifolds, Alon [Alo86] and Sinclair and Jerrum [SJ89] demonstrated that if the Fiedler
value of a graph is small, then directly partitioning the graph according to the values of vertices

in the eigenvector will produce a cut with a good ratio of cut edges to separated vertices (see
also [AM85, Fil91, DS91, Mih89, Moh89]). Around the same time, improvements in algorithms

for approximately computing eigenvectors, such as the Lanczos algorithm, made the computation

of eigenvectors practical [PSS82, Sim91]. In the next few years, a wealth of experimental work
demonstrated that spectral partitioning methods work well on graphs that usually arise in prac-

tice [BS92, HL92, PSL90, Sim91, Wil90]. Spectral partitioning became a standard tool for mesh
partitioning in many areas [HL93]. Still, researchers were unable to prove that spectral partition-

ing techniques would work well on the graphs encountered in practice. This failure is partially
explained by results of Guattery and Miller [GM95] demonstrating that naive applications of spec-

tral partitioning, such as spectral bisection, will fail miserably on some graphs that could con-
ceivably arise in practice. By bounding the Fiedler values of the graphs of interest in scienti�c

applications|bounded-degree planar graphs and well-shaped meshes|we are able to show that
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spectral partitioning methods will successfully �nd good partitions of these graphs.

In a related line of research, algorithms were developed along with proofs that they will always

�nd small separators in various families of graphs. The seminal work in this area was that of

Lipton and Tarjan [LT79], who constructed a linear-time algorithm that produces a 1=3-separator

of
p
8n nodes in any n-node planar graph. Their result improved a theorem of Ungar [Ung51] which

demonstrated that every planar graph has a separator of sizeO(
p
n log n). Gilbert, Hutchinson, and

Tarjan [GHT84] extended these results to show that every graph of genus at most g has a separator

of size O
�p

gn
�
. Another generalization was obtained by Alon, Seymour, and Thomas [AST90],

who showed that graphs that do not have an h-clique minor have separators of O(h3=2
p
n) nodes.

Plotkin, Rao, and Smith [PRS94] reduced the dependency on h from h3=2 to h. Using geometric

techniques, Miller, Teng, Thurston, and Vavasis [MT90, MTTV96a, MTTV96b, MTV91, MV91,

Ten91] extended the planar separator theorem to graphs embedded in higher dimensions and showed
that every well-shaped mesh in Rd has a 1=(d+2)-separator of sizeO(n1�1=d). Using multicommodity

ow, Leighton and Rao [LR88] designed a partitioning method guaranteed to return a cut whose
ratio of cut size to vertices separated is within logarithmic factors of optimal. While spectral
methods have been favored in practice, they lacked a proof of e�ectiveness.

1.2. Outline of paper

In Section 2, we introduce the concept of a graph partition, review some facts from linear algebra
that we require, and describe the class of spectral partitioning methods.

In Section 3, we prove the embedding lemma, which relates the quality of geometric embeddings
of a graph with its Fiedler value. We then show (using the main result of Section 4) that every
planar graph has a \nice" embedding as a collection of spherical caps on the surface of a unit
sphere in three dimensions. By applying the embedding lemma to this embedding, we prove that
the Fiedler value of every bounded-degree planar graph is O(1=n).

In Section 4, we show that, for almost every arrangement of spherical caps on the unit sphere in

Rd, there is a sphere-preserving map that transforms the caps so that the center of the sphere is the

centroid of their centers. It is this fact that enables us to �nd nice embeddings of planar graphs.
In Sections 5 and 6, we extend our spectral planar separator theorem to the class of overlap

graphs of k-ply neighborhood systems embedded in any �xed dimension. This extension enables us

to show that the spectral method �nds cuts of ratio O(1=n1=d) for k-nearest neighbor graphs and

well-shaped �nite element meshes.
In Section 7, we present an elementary proof that from any vector perpendicular to the all-ones

vector with small Rayleigh quotient, one can obtain a cut of small ratio.
In Section 8, we extend the results of Guattery and Miller to show that our results are essentially

the best possible given current characterizations of well-shaped meshes. We present natural families

of graphs for which Fiedler vectors can be used to �nd cuts of good ratio, but not good balance.
We discuss why these graphs exist and why they might not appear in practice.
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2. Introduction to Spectral Partitioning

In this section, we de�ne the spectral partitioning method and introduce the terminology that we

will use throughout the paper.

2.1. Graph Partitioning

Throughout this paper, G = (V;E) will be a connected, undirected graph on n vertices.

A partition of a graph G is a division of its vertices into two disjoint subsets, A and �A. Without

loss of generality, we can assume that jAj �
��� �A���. Let E(A; �A) be the set of edges with one endpoint

in A and the other in �A. The cut size of the partition (A; �A) is simply jE(A; �A)j. The cut ratio, or
simply the ratio of the cut, denoted �(A; �A), is equal to the ratio of the size of the cut to the size

of A, namely,

�(A; �A) =
jE(A; �A)j

min(jAj; j �Aj) :

The isoperimetric number of a graph, which measures how good a ratio cut one can hope to �nd,

is de�ned to be

�(G) = min
jAj�n=2

���E(A; �A)���
jAj :

In Section 7, we describe a relation between the isoperimetric number of a graph and its Fiedler

value.
A partition is a bisection of G if A and �A di�er in size by at most 1. For � in the range

0 < � � 1=2, a partition is called a �-separator if min(jAj; j �Aj) � �n. We use the word cut to refer
to a partition separating any number of vertices and reserve the word separator for partitions that
are �-separators for some � > 0. Given an algorithm that can �nd cuts of ratio � in G and its
subgraphs, we can �nd a bisector of G of size O(�n) (see Lemma 22).

2.2. Laplacians and Fiedler Vectors

The adjacency matrix, A(G), of a graph G is the n�n matrix whose (i; j)-th entry is 1 if (i; j) 2 E

and 0 otherwise. The diagonal entries are de�ned to be 0. Let D be the n�n diagonal matrix with

entries Di;i = di, where di is the degree of the ith vertex of G. The Laplacian, L(G), of the graph

G is de�ned to be L(G) = D �A.
Let M be an n�n matrix. An n-dimensional vector ~x is an eigenvector of M if there is a scalar

� such that M~x = �~x. � is the eigenvalue of M corresponding to the eigenvector ~x. If M is a real
symmetric matrix, then all of its n eigenvalues are real. The only matrices we consider in this paper

will be the Laplacians of graphs. Notice that the all-ones vector is an eigenvector of any Laplacian
matrix and that its associated eigenvalue is 0. Because Laplacian matrices are positive semide�nite,

all the other eigenvalues must be non-negative. We will focus on the second smallest eigenvalue,

�2, of the Laplacian and an associated eigenvector ~u. Fiedler called this eigenvalue the \algebraic
connectivity of a graph", so we will call it the Fiedler value and an associated eigenvector a Fiedler

vector.
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The following properties of Fiedler values and vectors play an important role in this paper:

� The Fiedler value of a graph is greater than zero if and only if the graph is connected.

� A Fiedler vector ~u = (u1; :::; un) satis�es

nX
i=1

ui = 0;

because all-ones vector is an eigenvector of the Laplacian and the eigenvectors of a symmetric

matrix are orthogonal.

� The Fiedler value, �2, of G satis�es

�2 = min
~x?(1;1;:::;1)

~xTL(G)~x

~xT~x
;

with the minimum occurring only when ~x is a Fiedler vector.

� For any vector ~x 2 Rn, we have

~xTL(G)~x =
X

(i;j)2E

(xi � xj)
2:

Let M be a symmetric n � n matrix and ~x be an n-dimensional vector. Then, the Rayleigh

quotient of ~x with respect to M is
~xTM~x

~xT~x
:

For proofs of these statements and many other fascinating facts about the eigenvalues and

eigenvectors of graphs consult one of [Str88, Moh88, CDS90, Big93].
The Fiedler value, �2, of a graph is closely linked to its isoperimetric number. If G is a graph

on more than three nodes, then one can show [AM85, Moh89, SJ88]

�2

2
� �(G) �

q
�2(2d � �2):

In Section 7, we will focus on the second inequality.

2.3. Spectral Partitioning Methods

Let ~u = (u1; :::; un) be a Fiedler vector of the Laplacian of a graph G. The idea of spectral
partitioning is to �nd a splitting value s and partition the vertices of G into the set of i such that

ui > s and the set such that ui � s. We call such a partition a Fiedler cut. There are several

popular choices for the splitting value s:

� bisection: s is the median of fu1; :::; ung.
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� ratio cut: s is the value that gives the best ratio cut.

� sign cut: s is equal to 0.

� gap cut: s is a value in the largest gap in the sorted list of Fiedler vector components.

Other variations have been proposed.

In this paper, we will analyze the spectral method that uses the splitting value that achieves

the best ratio cut. We will show that, for bounded-degree planar graphs and well-shaped meshes, it

always �nds a good ratio cut. In fact, it is not necessary to use a Fiedler vector; an approximation

will su�ce. If a vector ~x that is orthorgonal to the all-ones vector has a small Rayleigh quotient

with respect to the Laplacian of G, then ~x can be used to �nd a good ratio cut of G.

Guattery and Miller [GM95] showed that there exist bounded-degree planar graphs on n vertices

with constant-size separators for which spectral bisection and spectral sign cuts give separators that
cut n=3 edges.

We will show that planar graphs have Fiedler cuts of ratio O(1=
p
n). By Lemma 22, our result

implies that a bisector of size O(
p
n) can be found by repeatly �nding Fiedler cuts. In Section 8,

we extend the results of Guattery and Miller to show that this repeated application of Fiedler cuts

is necessary, even for some quite natural graphs. We will show that, for any constant � in the range
0 < � � 1=2, there are natural families of well-shaped two-dimensional meshes that have no Fiedler
cut of small ratio that is also a �-separator. We discuss why these graphs exist as well as why they
might fail to arise in practice. Our explanation is not entirely satisfactory and the problem remains
of �nding a better characterization of the graphs that do arise in practice as well as those for which
there is a Fiedler cut that produces a �-separator of size O(

p
n).

3. The eigenvalues of planar graphs

In this section, we will prove that the Fiedler value of every bounded-degree planar graph is O(1=n).
Our proof establishes and exploits a connection between the Fiedler value and geometric embeddings
of graphs. We obtain the eigenvalue bound by demonstrating that every planar graph has a \nice"

embedding in Euclidean space.

A bound of O(1=
p
n) can be placed on the Fiedler value of any planar graph by combining the

planar separator theorem of Lipton and Tarjan [LT79] with the fact that �2=2 � �(G). Bounds of
O(1=n) on the Fiedler values of planar graphs were previously known for graphs such as regular grids

[PSL90], quasi-uniform graphs [GK95], and bounded-degree trees. Bounds on the Fiedler values of
regular grids and quasi-uniform graphs essentially follow from the fact that the diameters of these

graphs are large (see [Chu89]). Bounds on trees can be obtained from the fact that every bounded-

degree tree has a �-separator of size 1 for some constant � in the range 0 < � < 1=2 that depends
only on the degree. However, in order to estimate the Fiedler value of general bounded-degree
planar graphs and well-shaped meshes, we need di�erent techniques.

We denote the standard l2 norm of a vector ~x in Euclidean space by k~xk =
p
xTx. We relate

the quality of an embedding of a graph in Euclidean space with its Fiedler value by the following

lemma:
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Lemma 1 (embedding lemma). Let G = (V;E) be a graph. Then �2, the Fiedler value of G, is

given by

�2 = min

P
(i;j)2E k~vi � ~vjk2Pn

i=1 k~vik2
;

where the minimum is taken over vectors f~v1; : : : ; ~vng � Rn such that

nX
i=1

~vi = ~0;

where ~0 denotes the all-zeroes vector.

Remark 2. While we state this lemma for vectors in Rn, it applies equally well for vectors in Rm

for any m � 1.

Proof: Because the all-ones vector is the eigenvector of L(G) corresponding to the eigenvalue 0,
�2 can be characterized by

�2 = min

P
(i;j)2E(xi � xj)

2Pn
i=1 x

2
i

;

where the minimum is taken over real xi's such that
Pn

i=1 xi = 0. The minimum is achieved precisely

when (x1; : : : ; xn) is an eigenvector.
The embedding lemma now follows from a component-wise application of this fact. Write ~vi as

(vi;1; : : : ; vi;n). Then, for all f~v1; : : : ; ~vng such that
Pn

i=1 ~vi = ~0, we have

P
(i;j)2E k~vi � ~vjk2Pn

i=1 k~vik2
=

P
(i;j)2E

Pn
k=1(vi;k � vj;k)

2Pn
i=1

Pn
k=1 v

2
i;k

=

Pn
k=1

P
(i;j)2E(vi;k � vj;k)

2Pn
k=1

Pn
i=1 v

2
i;k

:

But, for each k, P
(i;j)2E(vi;k � vj;k)

2Pn
i=1 v

2
i;k

� �2;

so Pn
k=1

P
(i;j)2E(vi;k � vj;k)

2Pn
k=1

Pn
i=1 v

2
i;k

� �2

(this follows from the fact that
P

i xi=
P

i yi � mini xi=yi, for xi; yi > 0). 2

Our method of �nding a good geometric embedding of a planar graph is similar to the way

in which Miller, Teng, Thurston, and Vavasis [MTTV96a] directly �nd good separators of planar
graphs.

We �rst �nd an embedding of the graph on the plane by using the \kissing disk" embedding of

Koebe, Andreev, and Thurston [Koe36, And70a, And70b, Thu88]:
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Theorem 3 (Koebe-Andreev-Thurston). Let G be a planar graph with vertex set V =

f1; : : : ; ng and edge set E. Then, there exists a set of disks fD1; : : : ;Dng in the plane with disjoint

interiors such that Di touches Dj if and only if (i; j) 2 E.

Such an embedding is called a kissing disk embedding of G.

The analogue of a disk on the sphere is a cap. A cap is given by the intersection of a half-space

with the sphere, and its boundary is a circle. We de�ne kissing caps analogously with kissing disks.

Following [MTTV96a], we use stereographic projection to map the kissing disk embedding of the

graph on the plane to a kissing cap embedding on the sphere (See Section 4 for more information

on stereographic projection). In Theorem 9, we will show that we can �nd a sphere preserving map

map that sends the centroid (also known as the center of gravity or center of mass) of the centers

of the caps to the center of the sphere. Using this theorem, we can bound the eigenvalues of planar

graphs:

Theorem 4. Let G be a planar graph on n nodes of degree at most d. Then, the Fiedler value of

G is at most
8d

n
:

Accordingly, G has a Fiedler cut of ratio O(1=
p
n), and one can iterate Fiedler cuts to �nd a

bisector of size O(
p
n).

Proof: By Theorem 3 and Theorem 9, there is a representation of G by kissing caps on the unit
sphere so that the centroid of the centers of the caps is the center of the sphere. Let ~v1; : : : ; ~vn be
the centers of these caps. Make the center of the sphere the origin, so that

Pn
i=1 ~vi = ~0.

Let r1; : : : ; rn be the radii of the caps. If cap i kisses cap j, then the edge from ~vi to ~vj will have
length at most (ri + rj)

2. As this is at most 2(r2i + r2j ), we can divide the contribution of this edge
between the two caps. That is, we write

X
(i;j)2E

k~vi � ~vjk2 � 2d
nX
i=1

r2i :

But, because the caps do not overlap,
nX
i=1

�r2i � 4�:

Moreover, k~vik = 1 because the vectors are on the unit sphere.

Applying the embedding lemma, we �nd that the Fiedler value of G is at most

P
(i;j)2E k~vi � ~vjk2Pn

i=1 k~vik2
� 8d

n
:

Given the bound on the Fiedler value, the ratio achievable by a Fiedler cut follows immediately

from Theorem 21 and the corresponding bisector size follows Lemma 22. 2
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Remark 5. One can prove a slightly weaker result by using a result of Miller, Teng, Thurston,

and Vavasis [MTTV96a] to �nd a circle-preserving map that makes the center of the sphere a

centerpoint [Ede87] of the images of particular points in the caps. If the center of the sphere is a

centerpoint, then the centroid must be far away from at least a constant fraction of the centers of

the caps. Thus, the numerator of the Rayleigh quotient will be the same as in Theorem 4, and the

denominator will be 
 (n).

Remark 6. The embedding lemma can be viewed as a semi-de�nite relaxation of an integer program

for minimum balanced cut. The integer program would be

min
X

(i;j)2E

(xi � xj)
2

s:t:
nX
i=1

xi = 0; and

xi 2 f�1g :

However, unlike the semi-de�nite relaxation of MaxCut used by Goemans and Williamson [GW94],

we do not know if our relaxation provides a constant factor approximation of the optimum.

4. Sphere-preserving maps

Let Bd be the unit ball in d dimensions: f(x1; : : : ; xd)j
Pn

i=1 x
2
i � 1g. Let Sd denote the sphere

de�ning the surface of Bd. This section is concerned with sphere-preserving maps from Sd to Sd.
A sphere-preserving map from Sd to Sd is a continuous function that sends every sphere (of lower
dimension) contained in Sd to a sphere in Sd and such that every sphere in Sd has a pre-image
under the map that is also a sphere. Familiar sphere-preserving maps include rotations and the

map that sends each point to its antipode.
We will make use of a slightly larger family of sphere-preserving maps. We obtain this family

by �rst considering sphere-preserving maps between the sphere and the plane. Let Hd be the

hyperplane tangent to Sd at (�1; 0; : : : ; 0). One can map Hd to Sd by stereographic projection:
� : Hd ! Sd by

�(z) = the intersection of Sd with the line connecting z to (1; 0; : : : ; 0):

Similarly, one de�nes a map ��1 : Sd ! Hd that sends a point z 2 Sd to the intersection of Hd

with the line through z and (1; 0; : : : ; 0). Note that ��1 is not well-de�ned at (1; 0; : : : ; 0). To

�x this, we add the point 1 to the hyperplane Hd, and de�ne ��1(1; 0; : : : ; 0) = 1 as well as
�(1) = (1; 0; : : : ; 0).

For any point � 2 Sd, we de�ne �� to be the stereographic projection from the plane perpen-
dicular to Sd at �, and we let ��1

� be its inverse (so, �(1) = ��). One can show that the maps

�� and ��1
� are sphere-preserving maps (see [HCV52] or [MTTV96a] for a proof).
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Sphere-preserving maps in the plane include rigid motions of the plane as well as dilations (and

other mobius transformations). We will obtain sphere-preserving maps in the sphere by applying

a projection onto a plane, then applying a dilation of the plane, and then mapping back by stere-

ographic projection. Thus, for � 2 Sd and a � 0, we de�ne Da
� to be the map that dilates the

hyperplane perpendicular to Sd at � by a factor of a (note that Da
�(1) =1). For example,

Da
(�1;0;:::;0) : (�1; x2; : : : ; xd) 7! (�1; ax2; : : : ; axd):

As the composition of sphere-preserving maps is again a sphere-preserving map, we can now de�ne

the sphere-preserving maps that we will use. For any � such that k�k < 1, de�ne f�(z) by

f�(z) = ��=k�k(D
1�k�k
�=k�k (�

�1
�=k�k(z))):

It is routine to verify that f� is continuous. We wish to extend the de�nition of f� to � on S2, even
though the resulting maps will not be continuous. For k�k = 1, we de�ne

f�(z) =

(
�� if z = ��, and
� otherwise.

We will now examine the e�ect of the maps f� on arrangements of spherical caps on Sd. Recall
that a spherical cap on Sd is a connected region of Sd whose boundary is a (d � 1)-dimensional
sphere. Thus, the image of a cap under a map f� is determined by the image of its boundary
along with a point in its interior. For a cap C on Sd, let p(C) denote the point on Sd that is
the center of C (i.e., the point inside C that is equidistant from its boundary). We want to show
that, for any arrangement of caps fC1; : : : ; Cng on Sd, there is an � 2 Sd so that the centroid of

fp(f�(C1)); : : : ; p(f�(Cn))g is the origin. But �rst, we must exclude some degenerate cases:

De�nition 7. An arrangement of caps fC1; : : : ; Cng in Sd is well-behaved if there is no point that

belongs to at least half of the caps.

Remark 8. All of the arrangements of caps obtained from graphs contained in the other sections

of this paper are well-behaved. Otherwise, the induced graphs would have cliques on half of their

vertices and no small separators.

Theorem 9. For any well-behaved arrangement of caps fC1; : : : ; Cng in Sd, there is an � so that

k�k < 1 and Pn
i=1 p(f�(Ci))

n
= ~0:
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Proof: Consider the map from � to the centroid of fp(f�(C1)); : : : ; p(f�(Cn))g. We want to

show that ~0 has a preimage under this map. This would be easier if the map were continuous, but

it is not continuous for k�k = 1: as �� crosses the boundary of Ci, p(f�(Ci)) jumps from one side

of the sphere to the other.

To �x this problem, we construct a slightly modi�ed map that is continuous. Because the set of

caps is well-behaved, we can choose an � > 0 so that, for all � such that k�k � 1 � �, most of the

caps ff�(C1); : : : ; f�(Cn)g are entirely contained within the ball of radius 1=2n around �=k�k. In
particular, this implies that f� does not map the centroid of the centers of the caps to the origin.

For � 2 Bd, we now de�ne the map

�(�) =

Pn
i=1 w(Ci; �)f�(p(Ci))

n
;

where the weight function w is given by

w(C;�) =

(
(2� d(�;C))=� if d(�;C) � 2� �, and
1 otherwise,

where by d(�;C), we mean the greatest distance from � to a point in the cap C (for example, if

�� 2 C, then d(�;C) = 1 + k�k). We have chosen w to be a continuous function of � that goes to
zero as �� approaches the boundary of a cap; so, �(�) is also a continuous function.

From the fact that fC1; : : : ; Cng is well-behaved, it is easy to verify that, for � 2 Sd, �(�) lies
on the line connecting ~0 to � and is closer to � than it is to ��. By combining this fact with some
elementary algebraic topology, we can use Lemma 10 to show that there is an � such that �(�) = ~0.

By our choice of �, k�k < 1 � �, so all of the terms w(�;Ci) are 1, which implies that f� is the

map that we were looking for. 2

Lemma 10. Let � : Bd ! Bd be a continuous function so that, for � 2 Sd, �(�) lies on the line

connecting � with ~0 and is closer to � than it is to ��. Then, there exists an � 2 Bd such that

�(�) = ~0.

Proof: Assume, by way of contradiction, that there is no point � 2 Bd such that �(�) = ~0.

Now, consider the map b(�(�)), where b : Bd �
n
~0
o
! Sd by

b(z) = z=kzk:

Since b is a continuous map, b � � is a continuous map of Bd onto Sd that is the identity on Sd.

Then z 7! �b(�(z)) is a map from Bd onto Sd that has no �xed point. This contradicts Brouwer's

Fixed Point Theorem, which says that every continuous map from Bd into Bd has a �xed point.

2

We have shown that, for most collections of balls in Hd, there is a sphere preserving map from

Hd to Sd such that the centroid of the centers of the caps is the origin. We now show that one

can �nd such a map by performing a rigid motion of Hd followed by a dilation of Hd followed by

stereographic projection.

11



De�nition 11. An arrangement of balls fD1; : : : ;Dng in Hd is well-behaved if there is no point

that belongs to at least half of the balls.

Theorem 12. Let fD1; : : : ;Dng be a well-behaved collection of balls. Then, there is a point x 2 Hd

and an a > 0 such that the sphere preserving map

gx;a : z 7! �(a(z � x))

sends the balls to a collection of caps, the centroid of whose centers is the origin.

Proof: [sketch] For an � 2 Sd, consider the map g��1(�);(1�k�k) followed by a rotation of the

sphere that sends (�1; 0; : : : ; 0) to �. As we did in the proof of Theorem 9, we can construct a
continuous map from � to a weighted centroid of the centers of the caps, which for � 2 Sd sends �

to a point on the line segment between � and ~0. We can then apply Lemma 10 to prove that there
is some map � such that the map g��1(�);(1�k�k) sends the centroid of the centers of the caps to the
origin. 2

5. The Spectra of k-Nearest Neighbor Graphs

We extend our spectral planar separator theorem to graphs embedded in three and more dimensions.
We show that Fiedler cuts of small ratio can be found in �-overlap graphs of k-ply neighborhood
systems. One corollary of this extension is that the spectral method �nds small ratio cuts for
k-nearest neighbor graphs and well-shaped �nite element meshes in any �xed dimension. In this

section, we analyze intersection graphs and nearest neighbor graphs. Results on overlap graphs and
well-shaped meshes will be given in the next section.

In this section and the next, we will use the following notation: We use capital letters to denote
balls in Rd. If A is a ball in Rd, then we will use A0 to denote its image on the sphere Sd+1 under
stereographic projection. If � is a positive real and A is a ball of radius r, then � � A is the ball

with the same center as A and radius �r. Similarly, if A0 is a spherical cap of spherical radius r,

then � �A0 is the spherical cap with the same center as A0 and radius �r. Let Vd be the volume of
a unit d-dimensional ball. Let Ad be the surface volume of a unit d-dimensional ball.

5.1. Intersection Graphs

The graphs that we consider are de�ned by neighborhood systems. A neighborhood system is a set of
closed balls in Euclidean space. A k-ply neighborhood system is one in which no point is contained

in the interior of more than k of the balls. Given a neighborhood system, � = fB1; : : : ; Bng, we
de�ne the intersection graph of � to be the undirected graph with vertex set V = fB1; : : : ; Bng and
edge set

E = f(Bi; Bj) : Bi \Bj 6= ;g :

12



For example, the Koebe-Andreev-Thurston embedding theorem says that every planar graph is

isomorphic to the intersection graph of some 1-ply neighborhood system in two dimensions.

Let P = fp1; : : : ; png be a point set in Rd. For each pi 2 P , let Nk(pi) be the set of k points

closest to pi in P (if there are ties, break them arbitrarily). A k-nearest neighbor graph of P is a

graph with vertex set fp1; : : : ; png and edge set

E = f(pi; pj) : pi 2 Nk(pj) or pj 2 Nk(pi)g:

Miller et. al. [MTTV96b] show that every k-nearest neighbor graph in Rd is a subgraph of an inter-

section graph of a �dk-ply neighborhood system, where �d is the kissing number in d dimensions|the

maximum number of nonoverlapping unit balls in Rd that can be arranged so that they all touch a

central unit ball [CS88]. Moreover, the maximum degree of a k-nearest neighbor graph is bounded

by �dk.

5.2. A Spectral Bound

Theorem 13. Let G be a subgraph of an intersection graph of a k-ply neighborhood system in Rd

such that the maximum degree of G is �. Then, the Fiedler value of L(G) is bounded by cd�(k=n)
2=d,

where cd = 2(Ad+1=Vd)
2=d.

Proof: Let � = fB1; :::; Bng be the k-ply neighborhood system of which G is the intersection
graph. By Theorem 9, there exits a sphere-preserving map � : Rd ! Sd such that the centroid of
the centers of the images of the Bi's is the center of the sphere.

Let �(�) = fB0
i; :::; B

0
ng be the images of the balls in � under �. Then, the balls in �(�) also

form a k-ply system. Let ri be the radius of B
0
i. Because Vdr

d
i � volume(B0

i),

nX
i=1

Vdr
d
i �

nX
i=1

volume(B0
i) � kAd+1: (1)

By Lemma 1,

�2(L(G)) �
Pn

i=1 2�r
2
i

n

� (2�)
(kAd+1=Vd)

2=dn1�2=d

n

� (2�)

�
Ad+1

Vd

�2=d  k
n

!2=d
:

Note that the second inequality follows from (1). 2

The next two corollaries follow from Theorem 13, Theorem 21, and Lemma 22.

Corollary 14. The Fiedler value of a k-nearest neighbor graph of n points in Rd is bounded by

O(k1+2=d=n2=d). Therefore, G has a Fiedler cut of ratio O
�
k1+1=d=n1=d

�
, and one can repeatedly

take Fiedler cuts to �nd a bisector of size O
�
k1+1=dn1�1=d

�
.
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Corollary 15. Let G be a subgraph of an intersection graph of a k-ply neighborhood system in Rd

whose maximum degree is �. Then, G has a Fiedler cut of ratio O
�
�1+1=d=n1=d

�
, and one can

iterate Fiedler cuts to obtain a bisector of size O
�
�1+1=dn1�1=d

�
.

6. The Spectra of Well-Shaped Meshes

One of the main applications of the spectral method is the partitioning of meshes for parallel

numerical simulations. Many experments demonstrate the e�ectiveness of this method [BS92, HL92,

HL93, PSL90, Sim91, Wil90]. In this section, we explain why the spectral method �nds such good

partitions of well-shaped meshes.

6.1. Well-Shaped Meshes

Most numerical methods work by approximating continuous problems with discrete problems on
�nite structures whose solutions can be e�ciently computed. The �nite structure used is often
called a mesh. Many such methods have been developed and applied to important problems in
mechanics and physics.

Most of these numerical methods can be classi�ed as equation based methods (e.g., the �nite

element, �nite di�erence, and �nite volume methods) or particle methods (e.g., the N-body sim-
ulation method). However di�erent the particular methods may be, a basic principle is common
to all|accuracy of approximation is ensured by using meshes that satisfy certain numerical and
geometric constraints. Meshes that satisfy these constraints are said to be well-shaped.

To motivate our spectral analysis of well-shaped meshes, we review the conditions required of

�nite element and �nite di�erence meshes. More detailed discussions can be found in several books
and papers (for example, see [SF73, Joh92, BEG94, BE92, Fri72]). Background material on the
particle method can be found in [BH86, GR87, HE81, Zha87].

The �nite element method approximates a continuous problem by subdividing the domain (a
subset of Rd) of the problem into a mesh of polyhedral elements and then approximates the con-

tinuous function by piecewise polynomial functions on the elements. A common choice for an

element is a d-dimensional simplex. Accordingly, a d-dimensional �nite element mesh is a d-
dimensional simplicial complex, a collection of d-dimensional simplices that meet only at shared
faces [BEG94, BE92, MT90].

The computation graph associated with each simplicial complex is often its 1-skeleton or the

1-skeleton of its geometric dual (as used in the �nite volume method). In the �nite element method,
a linear system is de�ned over a mesh, with variables representing physical quantities at the nodes.

The nonzero structure of the coe�cient matrix of such a linear system is exactly the adjacency
structure of the 1-skeleton of the simplicial complex.

To ensure accuracy, in addition to the conditions that a mesh must conform to the boundaries

of the region and be �ne enough, each individual element of the mesh must be well-shaped. A
common shape criterion for the �nite element method is that the angles of each element are not

too small, or the aspect ratio of each element is bounded [BA76, BEG94, Fri72]. Other numerical
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formulations require slightly di�erent conditions. For example, the controlled volume formulation

[Nic92, MTTW95] using a Voronoi diagram requires that the radius aspect ratio (the ratio of the

circumscribed radius to the shortest edge length of an element in the dual Delaunay diagram) is

bounded.

The �nite di�erence method also uses a discrete structure, a �nite di�erence mesh, to approxi-

mate a continuous problem. Finite di�erence meshes are often produced by inserting a uniform grid

from R2 or R3 into the domain via a boundary-matching conformal mapping. Notice that, unlike

a �nite element mesh, a �nite di�erence mesh need not be a collection of simplices or elements,

so we can not analyze it as we do a triangulation. In general, the derivative of the conformal

transformation must vary gradually with respect to the mesh size in order to produce good results

(See, for example [TWM85]). This means that the mesh will probably satisfy a density condition

[BB87, MV91].

Let G be an undirected graph and let � be an embedding of its nodes in Rd. We say � is an
embedding of density � if the following inequality holds for all vertices v in G: Let u be the node
closest to v. Let w be the node farthest from v that is connected to v by an edge. Then

jj�(w)� �(v)jj
jj�(u)� �(v)jj � �:

In general, G is an �-density graph in Rd if there exists an embedding of G in Rd with density
�.

6.2. Modeling Well-Shaped Meshes

We will use the overlap graph to model well-shaped meshes (Miller et al [MTTV96a]). An overlap

graph is based on a k-ply neighborhood system. The neighborhood system and a parameter, � � 1,
de�ne an overlap graph: Let � � 1, and let � = fB1; : : : ; Bng be a k-ply neighborhood system in
Rd. The �-overlap graph of � is the graph with vertex set fB1; : : : ; Bng and edge set

f(Bi; Bj) : (Bi \ (� �Bj) 6= ;) and ((� �Bi) \Bj 6= ;)g;

where by � � B, we mean the ball whose center is the same as the center of B and whose radius is

larger by a multiplicative factor of �.

Overlap graphs are good models of well-shaped meshes because each well-shaped mesh in two,
three, or higher dimensions is a bounded-degree subgraph of some overlap graph (for suitable choices

of the parameters � and k). For example,

� Let M be a �nite element mesh embedded in Rd in which every element has aspect ratio
bounded by a. Then, there is a constant � depending only on d and a so that the 1-skeleton

of M is a subgraph of an �-overlap graph of a 1-ply neighborhood system. Moreover its
maximum degree is bounded by a constant that also depends only on d and a ([MTTV96a]).

� Let M be a Voronoi diagram (from a �nite volume method) in Rd in which the radius aspect

ratio of its dual Delaunay diagram is bounded by a. Then there is a constant � depending

only on d and a so that the dual Delaunay diagram is an �-density graph ([MTTW95]).
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� If G is an �-density graph in Rd, then the maximum degree of G is bounded by a constant

depending only on � and d; and, G is a subgraph of an �-overlap graph of a 1-ply neighborhood

system ([MV91, MTTV96a]).

� The computation/communication graph used in hierarchical N-body simulation methods (such

as the Barnes-Hut's treecode method [BH86] and the fast-multipole method [GR87]) is a

subgraph of an �-overlap graph of an O(log n)-ply neighborhood system ([Ten96]).

6.3. Spherical Embeddings of Overlap Graphs

In this section, we show that an �-overlap graph is a subgraph of the intersection graph obtained by

projecting its neighborhoods onto the sphere and then dilating each by an O(�) factor. By choosing

the proper projection, we are able to use this fact to bound the eigenvalues of these graphs.

Theorem 16. Let � � 1. Let A and B be balls in Rd such that

(A \ (� �B) 6= ;) and ((� �A) \B 6= ;):

Then, (��+ �+ �) �A0 touches (��+ � + �) �B0.

Our proof uses two lemmas that handle orthogonal special cases.

α2 r

C

r

A

S

Figure 1:

Lemma 17. Let A and C be balls in Rd equidistant from the origin and having the same radius.

Let A0 and C 0 be their images under stereographic projection onto Sd+1. If � �A touches � �C, then
(��=2) �A0 touches (��=2) � C 0.
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Proof: Let r be the radius of A and C. Because � �A touches � �C, the centers of A and C are

at distance at most 2�r from each other.

Let S be the sphere centered at the origin that passes through the centers of A and C. The

geodesic arc between the centers of A and C (on S) has length at most 2�r�=2. The portion of this

arc that lies in the interior of A has length at least r (See Figure 1 for a two dimensional example).

Since stereographic projection preserves the relations between the intersections of A and C with S,

(��=2) �A0 will touch (��=2) � C 0. 2

a b

Figure 2: Restriction to the plane through the top of the sphere, the origin, and the centers of A
and B.

Lemma 18. Let A and B be balls in Rd so that the center of A, the center of B, and the origin

are colinear and the origin does not lie on the line segment between the center of A and the center

of B. If A is closer to the origin than B and � �A touches B, then � �A0 touches B0.

Proof: We will restrict our attention to the plane through the top of the sphere, the origin, and

the centers of A and B (see Figure 2). Let a denote the interval that is the intersection of A with
the plane. Observe that an interval of the same size as a but located further to the right on the

line will have a smaller projection on the circle. The lemma follows. 2

Proof: [of Theorem 16] Let A and B be any two balls in Rd and let A0 and B0 be their images

under stereographic projection on Sd+1. Assume that � �A touches B and � �B touches A. We will

show that (��+ � + �) �A0 touches (��+ �+ �) �B0.

Assume, without loss of generality, that A is at least as large as B. Let C be the disk of the
same distance to the origin as A and congruent to A that is closest to B. Then, the centers of C

and B are colinear with the origin (See Figure 3). Let C 0 be the image of C. Since C is closer to

B than A is, � � C touches B and � �B touches A. By Lemma 18, � � C 0 touches � �B0.

17



B

A
C

Figure 3: C is the circle congruent to and equidistant from the center to A that is closest to B.

The distance between the centers of A and B is less than (�+1) times the radius of A (because
we assume that A is at least as large as B). The same holds for the distance between the center of C
and the center of B. Therefore, (�+1)�A touches (�+1)�C, so Lemma 17 implies that �(�+1)=2�A0

touches �(�+1)=2 �C 0. Since A0 and C 0 have the same spherical radius, � �C 0 � (�(�+1) + �)A0.

Thus, (��+ �+ �) �A0 must touch (��+ �+ �) �B0. 2

6.4. A Spectral Bound

We now show that the Fiedler value of a bounded degree subgraph of an �-overlap graph is small.

Theorem 19. If G is a subgraph of an �-overlap graph of a k-ply neighborhood system in Rd and

the maximum degree of G is �, then the Fiedler value of L(G) is bounded by 
d��
2(k=n)2=d, where


d = 2(� + 1 + �=�)2(Ad+1=Vd)
2=d. Accordingly, G has a Fiedler cut of ratio O

�
��(k=n)1=d

�
, and

one can iterate Fiedler cuts to obtain a bisector of size O
�
��k1=dn1�1=d

�
.

Proof: Let � = fB1; :::; Bng be the k-ply neighborhood system whose intersection graph contains
G. By Theorem 12, there is a stereographic projection � from Rd onto a particular sphere Sd+1 so

that the centroid of the centers of the images of the neighborhoods is the center of the sphere.
Let �(�) = fB0

i; :::; B
0
ng be the images of the balls in � under �. Let ri be the radius of B0

i.

Because Vdr
d � volume(B0

i), We know that

nX
i=1

Vdr
d
i �

nX
i=1

volume(B0
i) � kAd+1:
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By Theorem 16, G is a subgraph graph of the intersection graph of f(��+�+ �) �B0
i : 1 � i � ng.

Thus, by Lemma 1,

�2(L(G)) �
Pn

i=1 2�(��+ �+ �)2r2i
n

� (2�)(��+ �+ �)2
�
Ad+1

Vd

�2=d k
n

!2=d
:

Given the bound on the Fiedler value, the ratio achievable by a Fiedler cut follows immediately

from Theorem 21 and the corresponding bisector size follows Lemma 22. 2

Remark 20. Recently, Agarwal and Pach [AP95] and, independently, Spielman and Teng [ST96]

gave an elementary proof of the sphere separator theorem of Miller et al [MTTV96b] on planar

graphs and intersection graphs. However, these proofs do not directly extend to overlap graphs.

The relation between overlap graphs and intersection graphs established by Theorem 16 enables

us to prove the overlap graph separator theorem using the intersection graph separator theorem.

The same reduction also extends the deterministic linear time algorithm for �nding a good sphere

separator from intersection graphs to overlap graphs [EMT95].

7. Good ratio cuts

Alon [Alo86] and Sinclair and Jerrum [SJ88] proved that graphs with small Fiedler eigenvalue have

a good ratio cut (Alon's theorem actually demonstrates the existence of a small vertex separator).
A corollary of an extension of their work by Mihail [Mih89] demonstrates that one can obtain a
good ratio cut from any vector with small Rayleigh quotient that is perpendicular to the all-ones's
vector (although this is not explicitly stated in her work). In this section, we will present a new
proof of Mihail's theorem (see also [AM85, Fil91, DS91, Mih89] and [Moh89] for a tighter bound).

Theorem 21 (Mihail). Let G = (V;E) be a graph on n nodes of maximum degree d, let Q be

its Laplacian matrix, and let � be its isoperimetric number. For any vector ~x 2 Rn such thatPn
i=1 xi = 0,

~xTQ~x

~xT~x
� �2

2d
:

Moreover, there is an s so that the cut (fi : xi � sg ; fi : xi > sg) has ratio at most �2=(2d).

Proof: Assume, without loss of generality, that x1 � x2 � � � � � xn, and consider the embedding

of G in R by ~x. For i � n=2, at least �i edges must cross over xi. Similarly, for i � n=2, at least

�(n� i) edges must cross xi. We will use this fact to show that the Rayleigh quotient of ~x cannot
be too small.

In our proof, we will deal with the i � n=2 and the i � n=2 similarly. To simplifymatters, assume

that n is odd. To achieve symmetry, we will work instead with the vector ~y, where yi = xi�x(n+1)=2,
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so that y(n+1)=2 = 0. In a moment, we will show that

~xTQ~x

~xT~x
� ~yTQ~y

~yT~y
;

so it su�ces to �nd a lower bound for the Rayleigh quotient of ~y with respect to Q. Recall that

~xTQ~x

~xT~x
=

P
(i;j)2E(xi � xj)

2Pn
i=1 x

2
i

:

Since (xi � xj) = (yi � yj), the inequality follows from

~yT~y =
nX
i=1

(xi � x(n+1)=2)
2 =

nX
i=1

x2i � 2x(n+1)=2

nX
i=1

xi + nx2(n+1)=2

=
nX
i=1

x2i + nx2(n+1)=2 (recall
P
xi = 0)

�
nX
i=1

x2i = ~xT~x:

So that we can treat the i < (n + 1)=2 and the i > (n + 1)=2 independently, we would like to
eliminate all edges (i; j) where i < (n+1)=2 < j. Actually, we will replace each such edge with two
edges: one from i to (n + 1)=2 and one from (n + 1)=2 to j. Let ~E denote this new set of edges.

Also, let ~E� be those edges (i; j) 2 ~E such that i; j � (n+1)=2, and let ~E+ be the others. Because
(yj � yi)

2 � (yj � y(n+1)=2)
2 + (y(n+1)=2 � yi)

2, we �nd

P
(i;j)2E(yi � yj)

2Pn
i=1 y

2
i

�
P

(i;j)2 ~E(yi � yj)
2Pn

i=1 y
2
i

=

P
(i;j)2 ~E

�

(yi � yj)
2 +

P
(i;j)2 ~E+

(yi � yj)
2

P(n+1)=2
i=1 y2i +

Pn
i=(n+1)=2 y

2
i

:

We now prove a lower bound on the terms involving i � (n + 1)=2. As a similar bound will hold

for the other terms, the combination of the two will prove the theorem.
The di�culty in proving a bound on the Rayleigh quotient of ~y is that the numerator is composed

of terms like (yi�yj)
2, while the denominator is a sum of y2i 's. To overcome this problem, we would

like to bound the terms (yi � yj)
2 by a combination of y2i and y2j . Since yi and yj are usually

separated, we can �nd a bound that usually works. For any a > 0, the inequality

(yi � yj)
2 � y2i � (1 + a)y2j

1 + 1=a
;

follows from

y2i = (yi � yj + yj)
2 � (1 + 1=a)(yi � yj)

2 + (1 + a)y2j :
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We will choose a value for a later in the proof. For now, let d+i be the number of edges (i; j) such

that j > i, let d�i be the number such that j < i, and apply the inequality whenever i < j to obtain

P
(i;j)2 ~E

�

(yi � yj)
2

P(n+1)=2
i=1 y2i

�
P

(i;j)2 ~E
�

(d+i � d�i (1 + a))y2i

(1 + 1=a)
Pn=2

i=1 y
2
i

:

We will now choose a value of a so thatP
(i;j)2 ~E

�

(d+i � d�i (1 + a))y2iPn=2
i=1 y

2
i

� �=2:

Because the terms y2i are strictly decreasing, it su�ces choose a so that

Pk
i=1(d

+
i � d�i (1 + a))

k
� �=2;

for all 1 � k � n=2. Since
Pk

i=1 d
+
i is the number of edges with an endpoint less than yk andPk

i=1 d
�
i is the number of edges both of whose endpoints are less than yk, their di�erence is the

number of edges that cross yk, which is at least �k. Moreover, since the maximum degree of a node

is d,
Pk

i=1 d
�
i � (d� �k)=2. Thus, a su�cient constraint on a is that

�k � a(d� �)k=2

k
� �=2) a � �=(d � �):

If we set a = �=(d � �), then (1 + 1=a) = d=�, and we obtain a lower bound on the quotient of

�2

2d
:

2

We now explain how to use good ratio cuts to produce a bisection of a graph.

Lemma 22. Assume that we are given an algorithm that will �nd a cut of ratio at most �(k) in ev-

ery k-node subgraph of G, for some monotonically decreasing function �. Then repeated application

of this algorithm can be used to �nd a bisection of G of size at mostZ n

x=1
�(x)dx:

Proof: The following algorithm (see [LT79, Gil80]) will �nd the bisection.

i. Initially, let D(0) = G, let A and B be empty sets, and let i = 0.

ii. If D(i) is empty, then return A and B; otherwise repeat

(a) Find a cut of ratio at most �(jD(i)j) that divides D(i) into F (i) and F (i). We assume that

jF (i)j � jF (i)j.
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(b) If jAj � jBj, let A = A [ F (i); otherwise, let B = B [ F (i);

(c) Let D(i+1) = F (i+1), let i = i+ 1, and return to step (a).

We assume that the algorithm terminates after t iterations. To show that this algorithm produces

a bisection, we need to prove that, for all i in the range 0 � i < t, min(jAj; jBj) + jF (i)j � n=2.

Because jF (i)j � jF (i)j,
min(jAj; jBj) + jF (i)j � (jAj+ jBj+ jF (i)j+ jF (i)j)=2 = n=2:

We now analyze the total cut size. Because the algorithm �nds cuts of ratio at most �(jD(i)j)
at the ith iteration, the number of edges we cut to separate F (i) is at most

�(jD(i)j)jF (i)j =
jF (i)jX
j=1

�(jD(i)j)

=
jD(i)j�jF (i)j+1X

j=jD(i)j

�(jD(i)j)

�
jD(i)j�jF (i)j+1X

j=jD(i)j

�(j)

The inequality follows from the fact that � is monotonicly decreasing. The total number of edges
cut by this algorithm is at most

t�1X
i=0

�(jD(i)j)jF (i)j �
t�1X
i=0

0
@jD(i)j�jF (i)j+1X

j=jD(i)j

�(j)

1
A

=
nX

j=1

�(j)

�
Z n

1
�(x)dx

The last inequality follows from the assumption that � is monotonically decreasing. 2

Remark 23. If �(x) = x�1=d thenZ n

1
�(x)dx =

d

d� 1
(n1�1=d � 1):

Lipton and Tarjan [LT79] showed that by repeatedly applying an �-separator of size �
p
n, one

can obtain a bisection of size �=(1 �
p
1 � �)

p
n. Gilbert [Gil80] extended this result to graphs

with positive vertex weights at the expense of a 1=(1 �
p
2) factor in the bisection bound. Djidjev

and Gilbert [DG92] further generalized this result to graphs with arbitrary weights. Leighton
and Rao [LR88] showed that one can obtain an O(�)-approximation to a 1/3-separator from an

�-approximation to a ratio cut.
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8. When Small Fiedler Cuts Are Unbalanced

Recall that a Fiedler cut of a graph is obtained by taking its Fiedler vector (x1; : : : ; xn) and a

splitting value s and cutting the edges that cross s. In this section, we present examples of planar

graphs for which there is no balanced Fiedler cut of good ratio. In fact, we show that no eigenvector

corresponding to a small eigenvalue has a splitting value that induces a good balanced cut. These

graphs are generalizations of graphs constructed by Guattery and Miller [GM95]. The properties

that we demand of these graphs are easy to achieve, and the reader should be able to generalize our

techniques to construct examples in many di�erent contexts. Recently, Guattery and Miller [GM96]

have extended our extensions of their work to produce bounded-degree planar graphs in which the

ratio achieved by any Fiedler cut is far from the graph's isoperimetric number.

All of our example graphs have cuts of ratio O(1=
p
n) that separate o(n) nodes. This is necessary.

In Section 3, we proved that every planar graph has a splitting value that induces a cut of ratio
O(1=

p
n). Thus, if there is no unbalanced Fiedler cut of ratio O(1=

p
n), then the Fiedler cut of

ratio O(1=
p
n) must be balanced. This might explain why most graphs that arise in practice have

balanced Fiedler cuts: a fairly regular planar graph should not have a cut of ratio O(1=
p
n) that

separates few vertices.
The graphs that we build in this section will be constructed from:

� Pk, the path graph on k vertices (V = f0; : : : ; k � 1g and E = f(i� 1; i) : 1 � i < kg),

� Rk, the ring graph on k vertices (V = f0; : : : ; k � 1g and E = f(i; i+ 1 mod k) : 1 � i � kg),

� Wi;j, the Cartesian product of Pi with Rj, and

� Bi, the complete binary tree with 2i leaves and a total of 2i+1 � 1 nodes.

Proposition 24. The Fiedler value of Pk (the path graph of k vertices) is equal to

4 sin2
�
�

2k

�
:

The Fiedler vector ~u is given by

~ui = cos

 
(2i� 1)�

2k

!
:

The s-th eigenvalue of Pk is equal to

4 sin2
 
(s� 1)�

2k

!
:

Its eigenvector ~u is given by

~ui = cos

 
(2i� 1)(s� 1)�

2n

!
:
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Proposition 25. The Fiedler value of Rk is equal to

4 sin2
�
�

k

�
:

A Fiedler vector ~u is given by

~ui = cos

�
2i�

k

�

Proposition 26. Let G be the Cartesian product of graphs G1 and G2. Then the eigenvalues of G

are equal to all the possible sums of eigenvalues of G1 and G2. Therefore, the Fiedler value of G is

the smaller of the Fiedler values of G1 and G2.

We now consider graphs Sk;a;b obtained by joining one copy of Wa;b with two copies of Pk, which
we label Pk and P 0

k. Label the vertices of Wa;b by fwi;jg, for 0 � i < a and 0 � j < b. Similarly,
label the vertices of Pk and P 0

k by pi and p0i for 0 � i < k. The graph Sk;a;b contains the edges of
Wa;b, Pk, and P 0

k, as well as edges connecting w0;i to pk�1 and wa�1;i to p
0
k�1, for all 0 � i < k (See

Figure 4).

Wa,b

Pk
P’

k

Figure 4: Sk;a;b: despite the picture, the graph is planar.

We now examine what a Fiedler vector of Sk;a;b looks like. We will write a Fiedler vector of Sk;a;b
as (~p; ~w; ~p0).

Proposition 27. Let ~u = (~p; ~w; ~p0) be a Fiedler vector of Sk;a;b. If k > b > a, then it cannot be the

case that ~p = ~p0 = ~0.
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Proof: If ~p = ~p0 = ~0, then the Fiedler value of Sk;a;b is at least the Rayleigh quotient of ~w with

respect to the Laplacian of Wa;b: all the terms on the bottom of the Rayleigh quotient of ~u with

respect to L(Sk;a;b) appear on the bottom, and some extra terms appear on the top corresponding

to the edges between
n
pk�1; p

0
k�1

o
and Wa;b. This would imply that the Fiedler value of Sk;a;b is

at least the Fiedler value of Wa;b, which in turn larger than the Fiedler value of P2k�1. This is a

contradiction because the Fiedler value of P2k�1 is an upper bound on the Fiedler value of Sk;a;b:

construct a vector in which the terms corresponding to pk�1, p
0
k�1, and Wa;b are zero, and the

remaining nodes are set to the values of the Fiedler vector of P2k�1. 2

Proposition 28. Let (~p; ~w; ~p0) be a Fiedler vector of Sk;a;b, for k > b > a. Then wi;j = wi;k for all

1 � j < k � b.

Proof: Consider the automorphism � of Sk;a;b that maps wi;j to wi;(j+1 mod b) and leaves Pk and

P 0
k �xed. Assume, by way of contradiction, that � (~u) � ~u 6= ~0. Then, � (~u) � ~u is a Fiedler vector

in which the paths Pk and P 0
k get mapped to zero. This would contradict Proposition 27. 2

Theorem 29. Let k > b > a. Then, any Fiedler cut of the (ab+ 2k)-node graph Sk;a;b either cuts

at least b edges or separates fewer than 2k vertices.

Proof: Immediate from Propositions 27 and 28. 2

We now prove a similar statement for a bounded-degree planar graph. We do this by replacing
the star graph in Sk;a;b with a complete binary tree. For b a power of two, we de�ne the graph Tk;a;b
to be a graph with two copies of Pk, which we call Pk and P

0
k, two copies of Bb, which we call Bb and

Bb', and one copy of Wa;b. These graphs are linked by identifying the leaves of Bb with the nodes

fw0;igi and the leaves of B0
b with the nodes fwa;igi so that the graph is symmetric, the rightmost

leaf of Bb maps to w0;0, and the graph remains planar. We attach Pk and P 0
k by identifying pk�1

with the root of Bb and p0k�1 with the root of B0
b (See Figure 5).

W
a,b

B
b bB’

P
k

P’k

k−1
p

p’
k−1

Figure 5: Tk;a;b
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In order to prove a statement similar to Proposition 27, we need to lower bound the Fiedler

value of T0;a;b. We do this by proving a lower bound on the isoperimetric number of T0;a;b and then

applying Theorem 21.

Proposition 30. For a � b,

�(T0;a;b) � 1=(b+ 1):

Proof: Let (A; �A) be a cut of T0;a;b in which jAj �
��� �A���. Assume that r nodes of A are in the

portion of T0;a;b that is Wa;b, and that t nodes of A are in the internal nodes of the trees Bb and B
0
b.

Let

I = fi : 9j for which wi;j 2 Ag ; and
J = fj : 9i for which wi;j 2 Ag :

If jIj < a, then for each j 2 J , there is an i such that (wi;j; wi+1;j) 2 E(A; �A). Similarly, if jJ j < b,

then for each i 2 I, there is an i such that (wi;j; wi;j+j) 2 E(A; �A). Thus,
���E(A; �A)��� is at least the

minimum of a, b, and max fjIj ; jJ jg. Since, r � jIj � jJ j,
���E(A; �A)��� is at least the minimum of a, b,

and
p
r.

The number of edges that leave the t vertices contained in the trees is at least t. Unless jIj = a,
an edge must be cut for each of these edges. If jIj = a, then E(A; �A)= jAj � 1=(1 + b). Otherwise,���E(A; �A)��� is at least the maximum of t and min(a;

p
r). Since jAj is t+ r, we �nd

E(A; �A)

jAj � max(t;min(
p
r; a))

t+ r
� 1=(1 + b):

2

Corollary 31. The Fiedler value of T0;a;b is at least
1

8(b+1)2
.

Proof: Apply Theorem 21, observing that the maximum degree of T0;a;b is 4. 2

Proposition 32. Let ~u = (~p;~b; ~w;~b0; ~p0) be a Fiedler vector of Tk;a;b. If k=2� > b > a, then it

cannot be the case that ~p = ~p0 = ~0.

Proof: If ~p = ~p0 = ~0, then the Fiedler value of Tk;a;b is at least the Rayleigh quotient of (~b; ~w;~b0)

with respect to the Laplacian of T0;a;b: all the terms on the bottom of the Rayleigh quotient of ~u with
respect to L(Tk;a;b) appear on the bottom, and some extra terms appear on the top corresponding

to the edges between
n
pk�1; p

0
k�1

o
and Bb and B

0
b. This would imply that the Fiedler value of Tk;a;b

is at least the Fiedler value of T0;a;b, which in turn larger than the Fiedler value of P2k�1. This is

a contradiction because the Fiedler value of P2k�1 is an upper bound on the Fiedler value of Tk;a;b.
We can construct a vector in which the terms corresponding to pk�1, p

0
k�1, Bb, B

0
b and Wa;b are zero,

and the remaining nodes are set to the values of the Fiedler vector of P2k�1. 2

26



Proposition 33. Let ~u = (~p;~b; ~w;~b0; ~p0) be a Fiedler vector of Tk;a;b for k=2� > b > a. Then

wi;j = wi;k for all 1 � j < k � b. Moreover the value assigned to a node in one of the trees only

depends on its height in the tree.

Proof: We �rst show that the children of the roots of the trees must have the same value.

Consider the automorphism of Tk;a;b induced by swapping wi;j with wi;b�j�1. By an argument

similar to that used in the proof of Proposition 28, we see that the values assigned by the Fiedler

vector to wi;j and wi;b�j�1 must be identical, and the same holds for the tree nodes paired by the

mapping.

We can now work our way down the tree. The maps that we use will not necessarily be au-

tomorphisms, but they will take advantage of the identi�cation of values that we have established

before. Next, we consider the mapping induced by swapping wi;j with wi;b=2�j�1, for 0 � j < b=2,

and wi;b=2+j with wi;b�j�1, for 0 � j < b=2. This must again produce a Fiedler vector. By applying

an argument such as that in the proof of Proposition 28, we obtain more identi�cations of values.
We conclude the proof by continuing this way down the subtrees. 2

Theorem 34. Let k=2� > b > a. Then, any Fiedler cut of the (ab+2(b�1)+2(k�1))-node graph

Tk;a;b either cuts at least b edges or separates fewer than 2k vertices.

Proof: Immediate from Propositions 32 and 33. 2

For su�ciently large k, no eigenvector of a small eigenvalue of Tk;a;b will produce a balanced cut

of small ratio. To prove this, we show that the columns of Wa;b map to the same point in these
eigenvectors as well. We rely on the Courant-Fisher characterization of the eigenvalues of a matrix,
which is a generalization of Rayleigh's characterization.

Proposition 35 (Courant-Fisher). Let M be an n�n real symmetric matrix. Let �k(M) denote
its k-th smallest eigenvalue. Then

�k = min
U

max
~x2U

~xTM~x

~xT~x
;

where U ranges over all k-dimensional subspaces of Rn.

Corollary 36. For 0 < i < k,

�i+1(Tk;a;b) � �2i(P2k�1):

Proof: To bound �i+1(Tk;a;b), we will construct a set of i+ 1 vectors ~xj = (~pj ;~bj; ~wj; ~b0j; ~p0j), for

1 � j � i+ 1 such that

max
~x2span(~x1;:::;~xj+1)

~xTL(Tk;a;b)~x

~xT~x
= �2i(P2k�1):

Let ~vj be the eigenvector of P2k�1 corresponding to �j . Since ~v1 is the all-ones vector, we let ~x1
be the all-ones vector. We now build the other ~xj's from the even eigenvectors of P2k�1 Since ~v2j
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maps the middle vertex of P2k�1 to zero, we can build an analogous vector ~xj+1 by setting all of

the middle nodes of Tk;a;b to zero and making the paths on the end correspond to the values of ~v2j.

That is, we set ~bj+1, ~wj+1, and ~b0j+1 to be zero vectors, and we then assign values to ~pj+1 and ~p0j+1
so that the resulting embedding of Tk;a;b resembles the embedding of P2k�1 under ~v2j, except that

there is a large mass at zero. We conclude by applying Proposition 35. 2

Corollary 37. Let k=4�(j � 1) > b > a and 1 � i � j. Then, any cut from the i-th eigenvector of

Tk;a;b either cuts at least b edges or separates fewer than 2k vertices.

Proof: Follows by generalizing Proposition 32 and Proposition 33 with Corollary 36. 2

Before we conclude this section, we wish to point out some ways in which one can vary the

construction of Tk;a;b without adversely e�ecting its resistance to Fiedler cuts. First, it is not

necessary to have two sets of paths and two sets of trees leaving the middle section: Using only one
path will su�ce, although it complicates the proof of Proposition 32. Second, it is not necessary to
have dangling paths leaving the graph. One can obtain similar constructions in fully triangulated
graphs. A nested chain of triangles (Figure 6) will serve in place of a path.

Figure 6: Nested triangles can substitute for path graphs.
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