
The Evaluation of Video Layout Strategies for a High-Performance Storage Server 27

Disk Phase

IDLE 80.3% 84.6% 85.4% 85.7% 85.6%

TRANSFER 9.1% 8.8% 8.8% 8.8% 8.8%

CONTEND 3.3% 4.6% 4.7% 4.6% 4.8%

SEEK 6.9% 2.0% 1.2% 1.0% 0.9%

ROTATE 0.5% 0.0% 0.0% 0.0% 0.0%

Retrieval Block
Duration 1 second 5 seconds 15 seconds 30 seconds 60 seconds

Table 17.Percentage of Time Spent in Disk Phases for 8DISKS Layout Scheme under Frequent User Interarrival
Workload
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12.0  Appendix: Simulation Results for 8DISKS Layout Scheme

12.1  Effects of Multiple Resolution Video Data Storage

12.2  Effects of Retrieval Block Duration

13.0  Appendix: Ptolemy Source Code for Disk-Array Video Server
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Figure 16.Missed Deadlines for Single- and Multiple-Resolution
Systems using the 8DISKS Layout Scheme with 5-second Retrieval
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8.0  Summary and Remaining Work

Many modern file systems are unsuitable for the storage and retrieval of continuous media data such as video
in heterogeneous client environments. To address these concerns, we propose an integrated video file system that uses
knowledge of the disk system parameters as well as the video data structure to store multiple resolutions of each video
sequence. This file system uses the high-bandwidth, high-capacity storage of a disk array to support many concurrent
clients.

We have presented two layout strategies for multi-resolution data, which vary in the degrees of parallelism and
concurrency they use to satisfy requests. Using event driven simulation, we have evaluated the performance of the
proposed multiple resolution layout strategies. Our results show striping video data doubles the number of user
requests that can be supported by a disk array-based video server. In addition, the storage of multiple resolutions
allows the server to satisfy considerably more user requests than a system that stores only a single resolution data. The
performance of the 1DISK scheme meets or exceeds that of the 8DISKS scheme for heavy workloads and long
retrieval blocks.

A natural continuation of this work is to explore how the system would scale as additional components are
added (e.g., more servers, more controllers per server, more string per controller, etc.). In addition, we would like to
study how a magnetic disk arrays could be used as part of a hierarchical architecture, which includes tertiary storage,
for providing video service. It would also be useful to derive a system admission control policy, similar to the ones
presented in [Lou93,Ran91], for a disk array system. In our system, if new requests arrive during a period of system
saturation, it may be possible to dynamically reduce the QoS provided to current requests (without violating client
specifications) in order to free system resources that can then be used to satisfy the new client requests. Thus, the num-
ber of clients supported may be improved over that of other continuous media file services. Finally, it would be desir-
able to study the effects on disk block fragmentation brought about by the storage of data compressed by variable bit
rate compression.

9.0  Availability

The source code for the Ptolemy-based disk array simulator described in this report is available via anonymous
FTP fromginger.Berkeley.EDU . The relevant file is/pub/kkeeton/videoSim94.tar.Z . The Ptolemy
source files are also included as an appendix to this report in The source distribution for the Ptolemy simulation pack-
age is available via anonymous FTP fromptolemy.Berkeley.EDU  in directory/pub .

Figure 15.Ratio of Total Service Time for 8DISKS with respect to 1DISK
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7.4  Effects of Data Layout Policies
 While moderately larger retrieval blocks allow for more efficient data transfers, they also require the presence

of more buffer memory on the client, as shown in Table 16. Clients must buffer at least one retrieval block’s worth of
video data to ensure continuous playback. A reasonable compromise between efficient transfers and client buffering
might be the 5-second retrieval block, which requires relatively little buffer space (e.g., 1.875 MB for five seconds’
worth of 384 KB/s full-resolution data).

Figure 15 shows the relative total service time for the 8DISKS scheme with respect to the total service time for
the 1DISKS scheme. (A ratio value of 1.0 means that the total service times for 8DISKS and 1DISK are equal.) In
general, as the intensity of the user interarrival load increases, the 8DISKS scheme has worse relative performance.
As more and more user requests enter the system, there is a greater likelihood that one of the eight disks needed to sat-
isfy an 8DISKS retrieval block request will be temporarily unavailable, increasing the overall retrieval block latency.
This is not the case for 1DISK retrieval block requests, since only a single disk must be accessed to complete the
transfer. Thus, the 8DISKS scheme does not effectively support as high a degree of concurrency as the 1DISK
scheme.

The 8DISKS scheme performs five to fifteen percent better for lighter user interarrival loads (i.e., very infre-
quent, infrequent, and moderate) and short to moderate-duration retrieval blocks (i.e., 5 to 30 seconds). For heavier
interarrival loads (i.e., frequent and very frequent) and longer retrieval block durations (i.e., 30 and 60 seconds), how-
ever, the 1DISK scheme outperforms (or performs only slightly worse than) the 8DISKS scheme. Because of the
added complexity of the 8DISKS scheme, and also because video servers will be expected to handle a large number of
user requests, we anticipate that the 1DISK scheme will perform well.

7.5  Summary of Simulation Results
Overall, empirical evidence shows that striping video data over disks in an array can provide up to a two-fold

increase in the number of viewers supported. In addition, the multiple resolutions provided by scalable compression
allow a video file server to satisfy more user requests than a server that stores a single resolution of the video data. The
use of moderately large retrieval blocks improves server performance, but requires more buffer space on the clients.
Simulations show that the use of 5-second retrieval blocks is a reasonable compromise. Finally, the performance of
the 1DISK scheme meets or exceeds that of the 8DISKS scheme for heavy workloads and long retrieval blocks.

Disk Phase

IDLE 81.8% 85.2% 85.8% 85.9% 85.7%

TRANSFER 9.1% 8.8% 8.8% 8.8% 8.8%

CONTEND 3.3% 4.2% 4.3% 4.4% 4.7%

SEEK 5.3% 1.7% 1.1% 0.9% 0.9%

ROTATE 0.5% 0.1% 0.0% 0.0% 0.0%

Retrieval Block
Duration 1 second 5 seconds 15 seconds 30 seconds 60 seconds

Table 15.Percentage of Time Spent in Disk Phases for 1DISK Layout Scheme under Frequent User Interarrival
Workload

Retrieval Block
Duration Client Buffer Space

1 s 384 KB

5 s 1.875 MB

15 s 5.625 MB

30 s 11.25 MB

60 s 22.5 MB

Table 16.Required Client Buffer Space for a Single Stream of Full-Resolution Data
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ing. (Similar disk utilization patterns have been observed for the 8DISKS scheme.) The amount of time spent posi-
tioning the disk heads (i.e., by seeking and rotating) decreases by 69 to 84 percent as the retrieval block duration
increases from one to five seconds, and up to 60 seconds. As retrieval blocks grow longer, more data is stored contig-
uously, which corresponds to more efficient transfers. More specifically, there is less rotational latency to position the
disk head over the data to be read when transferring longer retrieval blocks. In addition, a greater percentage of the
seeks are between adjacent tracks, rather than between non-adjacent tracks, as needed for transferring several shorter
(and non-contiguous) retrieval blocks. As the table indicates, most of the decrease in head positioning overhead is
realized by the five-second retrieval block.

Figure 13.Missed Deadlines for Single- and Multiple-Resolution
Systems using the 1DISK Layout Scheme with 5-second Retrieval
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Figure 14.Total Service Time for 1DISK Layout Strategy
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between five 10-minute videos. The higher the number of active users when the first deadlines are missed, the more
users the system can support while still maintaining real-time playback deadlines. The multiple-resolution system
consistently meets all deadlines, while the single-resolution system misses successively more deadlines as the number
of active requests increases.

For the single-resolution 1DISK layout scheme, presented in Figure 16, missed deadlines begin to occur at
about 35 to 40 active users. (Analogously, for the 8DISKS scheme (shown in Figure 16), deadlines are missed begin-
ning at about 50 active users. Other retrieval block durations exhibit similar behavior: the number of missed deadlines
begins to increase starting at 35 to 55 users for the single-resolution case.) In all multiple-resolution cases, however,
no deadlines are missed, even when the number of active users reaches a maximum of approximately 90 users. The
occurrence of missed deadlines is due to the fact that each request is satisfied with full-resolution data, instead of data
that matches the requested resolution. Thus, the multiple-resolution system can service a greater number of active
users while still meeting all deadlines.

In general, it should be noted that the effect of missed deadlines is self-magnifying. As the retrieval time for a
given retrieval request increases, the retrieval time for subsequent requests also increases, due to the added time these
requests are queued. Thus, if a given retrieval request is delayed long enough to miss its deadline, there is a greater
likelihood that subsequent requests will also miss their deadlines.

7.3  Effects of Retrieval Block Duration
Figure 17 shows theoverall service times for the 1DISK case for all retrieval block sizes. Data are shown for

uniform choice of video and uniform choice of resolution. We define overall service time as the time to transfer the
10-minute video sequence, measured as a sum of the times to request and receive each individual retrieval block.
More specifically, this metric is the sum over all retrieval blocks of the delay between the issuance of a retrieval block
request by the logical scheduler and the receipt of a completion message by the logical scheduler for that request. The
lower the total average service time, the quicker that retrieval blocks can be requested and received, allowing more
time to service other users during a given scheduling round. The figure shows that the overall service time generally
decreases as the retrieval block size increases. The general decreasing trend is caused by the more efficient transfers
that are possible for larger block sizes. A single larger block transfer eliminates the scheduling (e.g., scheduling,
queueing, and disk positioning) overheads associated with several smaller block transfers. (An analogous decreasing
total service time is observed for the 8DISKS case in Figure 17.)

Table 17 shows, for the 1DISKS strategy under a frequent user interarrival workload, the disk utilization as the
percent of time, on average, that a disk spent in each of five phases: idle, transferring, seeking, contending, and rotat-
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system performance for different retrieval block durations and different layout strategies. In Section 7.1, we compare
striping video data versus storing each video on a single disk. Section 7.2 describes our measurements of the number
of retrieval block missed deadlines for both single- and multi-resolution stored video data. To gain information on the
utilization of the disks, we totalled the time spent by each disk in each of five phases: transferring data, seeking to the
correct cylinder, rotating to the appropriate sector, contending for the SCSI bus, and idly awaiting a new request. We
compare system performance for the different retrieval block durations, using service time and disk utilization as met-
rics in Section 7.3. Finally, in Section 7.4 we use service time to compare the performance of the two layout strategies.
We focus our discussion on results for the 1DISK layout strategy, and present results for the 8DISKS scheme in an
appendix, Section 12.0.

7.1  Effects of Striping Video Data
To understand the effects of striping video data across multiple disks in a disk array, we ran simulations with

slightly different parameters than those described in Section 6.3.1. For this experiment, videos were roughly 14 min-
utes in length, corresponding to the length of movie compressed to 384 KB/s that can be stored entirely on a single
320 MB disk. User requests were generated using the infrequent interarrival workload, for full-resolution (384 KB/s)
data using a 5-second retrieval block. Users chose among videos according to the highly localized Zipf’s Law distri-
bution. Figure 12 shows the number of users that can be supported with no missed deadlines for both non-striped and
striped data for several disk array sizes. In the non-striped case, each video is stored on a single disk, while for the
striped case, video data is striped (using 5-second retrieval blocks) according to the 1DISK layout scheme. We see that
striping data across the disks in the array permits service to considerably more viewers than storing each video on its
own disk. This is because striping balances the load over all of the disks in the array, eliminating “hot spots” caused by
numerous accesses to very popular video. For a 24-disk array, striped data allows nearly twice the viewers as non-
striped data.

7.2  Effects of Multiple Resolution Video Data Storage
Figure 16 documents, for the 1DISK layout scheme, the relationship between the number of active requests in

the system and the number of missed deadlines that the system generates, when multiple-resolution and single-resolu-
tion data are stored. Multiple resolutions corresponds to user requests which are uniformly distributed over the four
different resolutions described in Section 3.2, while single resolution corresponds to only full-resolution user requests.
The data shown are for 5-second retrieval blocks under moderate user interarrival load. Users chose uniformly

Message Type Message Source
Message
Indication Action Taken Output Message

String-Read-
Request

Disk String Request to read
range of disk
blocks

Position head to
start transfer of
requested data

String-Contend
when head posi-
tioned correctly

String-Grant Disk String Disk has been
granted transmit
privileges for string

Begin transfer of
requested data

String-Read-
Response

Table 13.Messages Processed by Disk Star

Simulation Input Parameter Values

Layout Strategy 8DISKS, 1DISK

Retrieval Block Duration 1 sec, 5 sec, 15 sec, 30 sec, 60 sec

User Requested Resolution full-resolution or uniformly between low,
medium, high, and full

User Interarrival Workload very infrequent, infrequent, moderate, fre-
quent, very infrequent

User Requested Video according to Zipf’s Law or uniform distribu-
tions

Table 14. Simulation Study Parameters
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rotate and transfer data. This model is based on a model of an IBM Lightning disk drive obtained from Ed Lee and
Pete Chen, former graduate student members of the RAID group [Lee89]. The parameters for this disk model are
shown in Table 12. (Note: In this context, a sector corresponds to a disk block, as requested by the physical scheduler.)

We added to their model an approximation to track buffering. The reduction in rotational latency given by a
track buffer is simulated in the following way. Rotational latency is only incurred if the head is positioned on a sector
that was not requested. If the disk head is positioned anywhere in the requested range of disk blocks, no rotational
delay is incurred. This approximate model for track buffering seems reasonable, because transfers will be done for
retrieval blocks, which contain relatively large amounts of data, relative to the size of a track.

The capability to contend for and be granted the disk string was also added to the original disk model. After the
disk receives a request for a range of disk blocks, it releases the bus to position the disk head. Once the head is posi-
tioned to begin the transfer, the disk contends for the string. Upon being granted access to the string, it begins to trans-
fer data. To approximate the actual SCSI protocol, the disk is permitted to transfer only a track’s worth of data. At this
point, if additional data blocks must be transferred, the string must be released while the disk seeks to the next track.
Once the head is positioned over the next track, the disk again contends for the string to continue the transfer. The
messages used by the disk to receive requests and transfer disk block data are shown in Table 13.

7.0  Simulation Results

Four iterations of simulations were run for each combination of layout strategy, retrieval block duration, and
user interarrival workload shown in Table 14. Statistics were collected on several quantities during the course of each
simulation run; the average of the four simulation runs is presented for each of these metrics. We performed several
experiments to evaluate the effectiveness of striping video data and storing multiple video resolutions, and to compare

Message Type Message Source
Message
Indication Action Taken Output Message

String-Contend Disk / String Con-
troller

Device wishes to
transmit on string

Grant access if cur-
rently idle; queue
request if currently
granted

String-Grant

String-Read-
Request

String Controller Controller requests
range of disk
blocks

Forward message if
string already
granted to control-
ler; free string

String-Read-
Request

String-Read-
Response

Disk Final message of
disk’s data transfer

Forward message if
string already
granted to control-
ler; free string

String-Read-
Response

Table 11.Message Particles Processed by SCSI-based Disk String Star

Disk Parameter Value

capacity 311 MB

bytes/sector 512

sectors/track 48

tracks/cylinder 14

cylinders/disk 949

average seek time (ms) 12.5

full rotation time (ms) 13.9

Table 12.Disk Model Parameters
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detail in Section 6.3.6.) Once a disk queue is chosen to contend, the controller sends a String-Contend request to the
disk string on behalf of the disk queue. When the contention request is granted, the queue’s state becomes active; at
this point the controller may transmit a request for the ranges of data blocks on the granted string. A request is com-
pleted once a Disk-Block-Response is received. This completion response can then be forwarded onto the physical
scheduler. After all such request processing has been completed, the controller checks for idle strings, and contends
for them on behalf of the highest-numbered queue with waiting requests. The messages that are processed by the disk
string controller star are shown in Table 10.

6.3.6  SCSI-based Disk String Star
The SCSI disk string model permits communication between up to eight connected devices, such as disks or a

disk string controller, numbered from zero to seven. (By default convention, the disk string controller is assigned
device number seven. The three disks in our simulations are assigned device numbers zero, one, and two.) The SCSI
string protocol is simulated by having each SCSI device contend for the shared bus for all transfers of control informa-
tion and data. The SCSI string operates in one of two states:idle or granted. The bus is idle if there are no outstanding
contention requests from any of the connected devices. A device contends for the bus by sending a StringContend
request. The string chooses the winner of the contention by granting the bus to the highest priority (i.e., highest num-
bered) device. (This scheme reflects the unfairness inherent in the actual SCSI protocol: lower-numbered devices may
never be granted the bus.) Once granted the bus, a device may proceed to transmit a message, which will be forwarded
across the bus to its destination. The device may hold the bus only for the duration of its message transfer, after which
time the bus is released back into the idle state. Thus, to perform subsequent transfers, the device must again contend
for and be granted the bus. The message particles processed by the disk string star are shown in Table 11.

6.3.7  Disk Star
This disk model maintains a record of the disk head position, and simulates movement of the head to seek,

Message Type Message Source
Message
Indication Action Taken Output Message

String-Grant Disk String Controller has been
granted transmit
privileges for string

Change disk queue
state from contend-
ing to active; trans-
mit disk block
request

String-Read-
Request

String-Read-
Response

Disk String Disk has completed
its data transfer

Change disk queue
state from active to
idle; release data
structures associ-
ated with request;
forward disk block
completion to
physical sched-
uler; contend on
behalf of next
appropriate disk
queue (changing its
status to contend-
ing)

Disk-Block-
Response

Disk-Block-
Request

Physical Scheduler Request for a range
of disk blocks from
a disk controlled by
this controller

Enqueue request
for the target disk

n.a.

Table 10.Message Particles Processed by Disk String Controller Star
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Message Type Message Source
Message
Indication Action Taken Output Message

Connection-Accept Admission Control New connection to
be added to sched-
ule

Add connection to
end of retrieval
schedule

n.a.

Retrieval-Block-
Response

Physical Scheduler Data for requested
retrieval block has
been transferred

Record retrieval
block completion;
if this was final
retrieval block in
sequence, release
data structures
associated with
connection; inform
admission control
of user request
completion

Connection-Com-
pletion

Timeout - begin-
ning of scheduling
round

Internal Beginning of new
scheduling round

Request retrieval
block for first con-
nection in sched-
ule; initiate timeout
to continue sched-
uling round

Disk-Block-
Request; Timeout

Timeout - continu-
ation of scheduling
round

Internal Continuation of
current scheduling
round

Request retrieval
block for next con-
nection in sched-
ule; initiate timeout
to continue sched-
uling round if
there are addi-
tional connections

Disk-Block-
Request; Timeout

Table 8.Message Particles and Events Processed by Logical Scheduler Star

Message Type Message Source
Message
Indication Action Taken Output Message

Retrieval-Block-
Request

Logical Scheduler Request for the
retrieval of data
corresponding to
this retrieval block

Record request;
request all disk
block range(s) that
correspond to the
retrieval block

Disk-Block-
Request(s)

Disk-Block-
Response

String Controller Data for requested
range of disk
blocks has been
transferred

Record comple-
tion; inform logi-
cal scheduler if all
disk block ranges
for retrieval block
request trans-
ferred; otherwise,
wait for remainder
of disk block
responses

Retrieval-Block-
Response

Table 9.Message Particles Processed by Physical Scheduler Star
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schedule. If the new request were inserted at the beginning or somewhere in the middle of the schedule, the user cor-
responding to a request processed after the new request might run out of data to play back in the time it takes the
server to process the new request.) During a single round, the logical scheduler requests (from the physical scheduler)
the transfer of one retrieval block for each of the accepted user requests. Several constraints must be satisfied to meet
the user real-time playback requirements. First, the retrieval of a given block must be scheduled so that its data is
available by the time that the previous block’s playback has been completed. Second, to keep the disk system from
saturation, the data for a given retrieval block must be completely transferred before the request for the next retrieval
block is initiated. If this is not the case, we say that the deadline has beenmissed.

To address the first constraint, we limit the duration of a scheduling round to correspond to the duration of the
retrieval block. For example, if a retrieval block corresponds to a second’s worth of data, each scheduling round will
be one second in duration. Our simulations use a total of five retrieval block durations: 1 second, 5 seconds, 15 sec-
onds, 30 seconds, and 60 seconds. To address the second constraint, many systems use the admission control policy to
limit the number of accepted users to prevent saturation of the system. As stated in Section 6.3.2, our system as mod-
eled implements no admission control policy. As a result, under certain workload conditions, retrieval block requests
miss their deadlines. These results are presented more fully in Section 7.0.

Table 6 describes the messages and events processed by the logical scheduler in managing the data retrieval for
each of the user requests.

6.3.4  Physical Scheduler Star
The physical scheduler is responsible for translating logical scheduler requests for retrieval blocks to requests

for ranges of actual disk blocks. In this sense, the physical scheduler is the module that implements the 1DISK and
8DISKS layout strategies described in Section 5.2. Upon receipt of a retrieval block request, the physical scheduler
generates the corresponding disk block requests. For instance, one disk block request is generated for the 1DISK lay-
out strategy, while eight disk block requests are generated for full-resolution data for the 8DISKS strategy. These
requests are sent to the disk string controller that manages the destination disk(s). Once all of the disk blocks corre-
sponding to the retrieval block have been transferred, the physical scheduler notifies the logical scheduler of the
retrieval block completion. The messages used to manage the transfer of the disk block ranges for a given retrieval
block are shown in Table 9.

6.3.5  Disk String Controller Star
The disk string controller model forwards disk block range requests from the physical scheduler to the appro-

priate disk via the disk string. The string controller maintains a request queue for each disk under its control (i.e., con-
nected to one of the strings attached to the controller). These queues, which are processed in first-in-first-out (FIFO)
order, permit the physical scheduler to have multiple disk block range requests outstanding for each disk, while
enforcing a maximum of one outstanding request per disk.

Each disk queue can be in one of three states:idle, contending, or active. Upon arrival, disk block range
requests are enqueued in the queue corresponding to the target disk. Regardless of the number of queued requests, a
queue remains in the idle state until the controller chooses to contend on the queue’s behalf for its string. (This choice
is made based on the device number for the corresponding disk: the controller contends on behalf of the highest-num-
bered disk queue with an enqueued request. Device numbering and the choice of contenders are discussed in more

Message Type Message Source
Message
Indication Action Taken Output Message

User-Request User Request Gen-
eration

New user request Automatically
accept request and
notify logical
scheduler of accep-
tance

Connection-Accept

Connection-Com-
pletion

Logical Scheduler Video playback for
user request has
been completed

Release data struc-
tures associated
with user request

n.a.

Table 7.Message Particles Processed by Admission Control Star
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(EQ 1)

The cumulative distribution given by Zipf’s Law for  videos is shown in Figure 11.

To ensure that the simulation runs being compared received the same user inputs, the streams of user requests
were captured and saved to several workload files. The user request generation star reads these files into the simulator
at runtime, generating user requests, as shown in Table 6.

6.3.2  Admission Control Star
Generally, a video server system will accept or deny user requests, based on the server’s ability to satisfy them.

Several researchers have been successful in developing admission control policies for single-disk video server sys-
tems [Ran91, Lou93]. These schemes do not, however, easily translate into admission control schemes for complex
disk array systems such as RAID-II. Because of the difficulty of deriving an effective disk array admission control
scheme, we have focused our efforts on modelling the disk subsystem. Our simulator does not currently implement an
admission control policy. Instead, each request is automatically “accepted” and forwarded on to the logical scheduler,
as shown in Table 6.

6.3.3  Logical Scheduler Star
The logical scheduler is responsible for initiating the playback of video sequences by periodically requesting

the transfer of video retrieval blocks from the disk system. Accepted user requests are inserted at the end of a schedule
of requests, which is processed in round-robin order during a series of scheduling rounds. (Accepted requests are
appended to the schedule to ensure that the server continues to meet the real-time deadlines of requests already in the

Message Type Message Source
Message
Indication Action Taken Output Message

User Request User Workload File New user request Generate request
for Admission
Control

User-Request

Table 6.Message Particles Processed by User Request Generation Star
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6.3.1  User Request Generation Star
User requests are characterized by an interarrival time, choice of video file, and choice of video resolution.

User request interarrival was modeled using an exponential interarrival distribution plus a constant offset. (We include
the constant offset to ensure that the user request interarrival time is sufficiently large.) Using three different Poisson
arrival processes, we modeled five different load levels, which are shown in Table 5. We created file layouts for five
video sequences, each having a ten minute duration. Each sequence was available in the four resolutions described in
Figure 4: Low (6 KB/s), Medium (24 KB/s), High (96 KB/s), and Full (384 KB/s). In the modeled workload, users
requested only full-resolution data, or chose uniformly between each of the four resolutions. Depending on the exper-

iment, users chose between the video files according to a uniform distribution or according to a highly localized distri-
bution called a Zipf’s Law distribution [Knu73]. According to Zipf’s Law, which has been used to accurately model
library book borrowing patterns, the probability of choosing the th most popular of  videos is , where  is given
by Equation 1.

Workload Exponential Mean (s) Constant Offset (s)

Very Infrequent 10 10

Infrequent 10 5

Moderate 10 1

Frequent 5 1

Very Frequent 1 1

Table 5.User Interarrival Workload Model

Admission
Control

Logical
Scheduler

Physical
Scheduler

User Request
Generation

Disk String
Pairs

Figure 9.Organization of Top-level Simulator Universe
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over the SCSI string to the string controller, which forwards the completion to the physical scheduler. When all of the
disk blocks comprising one retrieval block have been successfully transferred, a completion is sent to the logical
scheduler. The following sections describe each of the functional blocks, or stars, of the simulator in more detail.
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Memory (128 MByte)

8 x 8 x 32-bit
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6.0  Simulation Study

To evaluate the performance of these data layout strategies and retrieval unit sizes, we have created an event-
driven simulator of a RAID-style disk array using the Ptolemy simulation environment [Alm92]. This simulator is
loosely based on the RAID-II storage server prototype developed at Berkeley [Lee92].

6.1  Ptolemy Simulation Environment
Ptolemy is a multi-domain environment produced at the University of California that can be used to simulate

heterogeneous environments [Alm92]. It supports several different computational models, including data flow, dis-
crete event, circuit simulation and code generation. A simulation in Ptolemy is decomposed into software modules
calledblocks, that are written in C++. These blocks are invoked at runtime in an order determined by the Ptolemy
scheduler, and may exchange data among themselves (via message passing) as they execute. There are two block
types:stars, which are elemental objects provided by user-written code, andgalaxies, which are composed of stars
and possibly other galaxies. The data exchanged between the blocks are divided into discrete units calledparticles.
Hierarchies of stars and galaxies form a complete application called auniverse.

For our simulation, we chose the discrete event domain, which provides support for event-driven simulation. In
this domain, a particle represents an event that corresponds to a change in the system state. Each particle has an asso-
ciated timestamp, which tells when it was generated in simulated time. All of the particles in the system are main-
tained in a global event queue, which is processed in chronological order by the scheduler. In particular, simulation
occurs as the scheduler fetches a particle from the head of the event queue and sends it to the input of its destination
block, where it is processed. After the block has executed, it may generate output particles, which are added to the glo-
bal event queue. The scheduler continues fetching and dispatching events until a global stopping condition is met.

6.2  RAID-II Prototype
Our Ptolemy-based simulator is loosely based on the RAID-II storage server prototype, developed at Berkeley.

The RAID-II prototype, shown in Figure 8, connects a SCSI-based disk array to a high-speed network in order to pro-
vide high-bandwidth file service [Lee92]. The central component of RAID-II is the “XBUS” crossbar controller,
which connects the network, disks, and memory. The crossbar has four ports attached to VME busses; connected to
each bus is an Interphase Cougar VME-SCSI disk controller. Each Cougar can drive up to two SCSI busses, or
strings, each of which can support up to seven SCSI disks. A Sun 4/280 file server manages file metadata and control
functions, using several point-to-point VME links to communicate with other system components. High-bandwidth
transfers are accomplished by using the HIPPI source and destination network busses, while control and low-latency
transfers are performed over an Ethernet interface. In its current configuration, RAID-II operates with four string con-
trollers, each controlling two strings, for a total of eight strings. Each string supports three 320 MB IBM 0661 (“Light-
ning”) disks, yielding twenty-four disks, with 7.5 GB of total storage capacity.

6.3  Simulator Organization
The bulk of the simulator implementation was completed by the author in collaboration with Bruce Mah,

another computer science graduate student, as a project for a graduate course in performance analysis. The Ptolemy
simulator models several components of the video storage server architecture, including the disks, disk strings, string
controllers, and file server host software. Because empirical studies performed with the RAID-II prototype [Che93]
indicate that the disk subsystem is typically the bottleneck, we do not directly model the server memory and network.
Lower-level components of the system, such as the disks, disk strings, and string controllers, are modelled closely,
while higher-level server software is only approximately modelled.

The organization of the top-level simulator universe is shown in Figure 9. User requests for the playback of a
given video sequence are accepted or denied based on the server admission control policy. Accepted user-level
requests are passed on to the logical scheduler, which inserts them into the playback schedule. The logical scheduler
periodically generates retrieval block requests for each of the user-level requests; these requests are directed to the
physical scheduler. Because a single retrieval block may be composed of several disk blocks (e.g., for full-resolution
data stored according to the 8DISKS layout scheme), the physical scheduler translates retrieval block requests into
requests for actual disk blocks, which are sent to the string controllers for the target disks. (The organization of the
disk string pair galaxy is shown in Figure 10.) The string controllers forward requests to the appropriate disk using the
SCSI-based disk strings. Upon receipt of a request, a disk seeks and rotates to the appropriate disk position, and trans-
fers the requested data. Once the transfer of the requested disk blocks has been completed, the disk sends a completion
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lelism, since each retrieval block is read from only a single disk. The scheme has a high degree of concurrency,
because each column can simultaneously satisfy an independent request. Here, the striping unit size is equal to the size
of a full-resolution retrieval block (e.g., 384 KB for a 1-second retrieval block).

Figure 7 shows the data layout for the second strategy, 8DISKS. Again, each different shading pattern corre-
sponds to a distinct retrieval block. In this strategy, though, the data for each retrieval block are striped across the eight
disks in a row. This scheme gives a much higher degree of parallelism for larger (e.g., high- and full-resolution)
requests, because it transfers data from many disks for a given retrieval block. Due to this fact, the concurrency for
large requests is limited. In this scheme, the placement of successive retrieval blocks’ lower resolution components is
rotated around the disks in a row. This allows the array to provide the same concurrency as the 1DISK scheme in sat-
isfying lower (e.g., low- and medium-) resolution requests. Because data for a single retrieval block are striped across
all of the disks in a row, the striping unit for this scheme is one-eighth of that for the 1DISK scheme (e.g., 48 KB for a
1-second retrieval block).
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its full bandwidth and concurrency capacities.
In order to provide the bandwidth, latency, and capacity needed for video storage and retrieval, we propose the

use of a multi-disk system, or disk array, with each video sequence stored across multiple disks. Because different
parts of different videos are stored on different disks, each disk contains pieces of several movies. This allows for bet-
ter load balancing between frequently and infrequently accessed sequences.

5.1  Disk Array Architecture
We assume a two-dimensional disk array, as shown in Figure 5. The disks in eachcolumn communicate with

the array controller using a shared bus accessed through a disk string protocol, such as SCSI. Data are distributed, or
striped, across the disks that occupy the same position on each of the strings; this group is called arow. Thestriping
unit describes the amount of logically contiguous data that is stored on a single disk [Che90]. Striping data over mul-
tiple disks distributes the requests for that data, preventing a single disk from becoming a bottleneck for frequently
accessed data. Data are transferred in parallel across a row of disks. The disks in a single column perform indepen-
dent, concurrent transfers.Parallelism describes the number of disks that service a single user request for data. The
higher the degree of parallelism (i.e., the more disks used to service a request), the higher the transfer rate that the
request sees. However, as more disks cooperate to satisfy a single request, fewer independent requests can be serviced
simultaneously. The degree ofconcurrency in the system is defined as the average number of outstanding user
requests being actively served at one time.

Our disk array model, loosely based on the Berkeley RAID-II prototype [Lee92, Che93], assumes that each
row contains eight disks, and that each column contains three disks, for a total of twenty-four disks. Each disk holds
320 MB worth of data, for a total of 7.5 GB of storage capacity.

5.2  Data Layout Strategies
We propose two strategies for the layout of multi-resolution video data. Each of these strategies varies the size

of the striping unit to explore different degrees of the parallelism and concurrency offered by striping data across disks
in a disk array. The first layout scheme, 1DISK, is shown in Figure 6. Each of the cylinders in the figure corresponds
to one of the eight disks in a row of the array model. Each shaded block corresponds to a distinct retrieval block (from
the same or different video streams). The letters within each shaded block (i.e., ‘l’, ‘m’, ‘h’, and ‘f’) show that the data
comprising all resolutions of each retrieval block are stored contiguously. This scheme exhibits a low degree of paral-

String
Controller

String
Controller

String
Controller

Array

Controller

Disk
Column

Disk
Row

Figure 5.Two-dimensional Disk Array
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Tertiary storage devices, such as magnetic tape systems, provide adequate capacity (i.e., tens or hundreds of
gigabytes, or terabytes) and, in some cases, adequate bandwidth (i.e., tens of megabytes per second) for the storage
and retrieval of video data. They do not, however, provide sufficiently low latency or sufficiently high concurrency of
access. Tapes generally incur a latency on the order of seconds or minutes during loading, followed by seconds to
actually begin data retrieval. Tape systems provide poor concurrent access capabilities for multiple streams because
there are typically only a few tape readers for many tapes. Switching between multiple tapes for a single reader
requires that tapes be unloaded and reloaded, incurring tens of seconds’ or minutes’ worth of latency. For instance,
Drapeau measures the cartridge switch time for the Exabyte EXB120 tape robot to be over four minutes, as shown in
Table 4 [Dra93]. Even using a single tape with a single reader to satisfy multiple requests can be highly inefficient.

Repositioning tapes under the reader to satisfy an alternate stream’s request often requires a complete rewinding of the
tape and fast forwarding to reach the starting point for the alternate transfer. Thus, because of the high latency and low
concurrency of access, tape systems are not a feasible choice for the sole storage medium of a large video storage sys-
tem.

A single disk provides insufficient capacity (i.e., hundreds of megabytes, or gigabytes) and insufficient band-
width (i.e., megabytes per second) for use in a large-scale video storage and retrieval system. In addition, a single disk
cannot support many high-bandwidth concurrent users. We could use multiple disks, each with its own video
sequence or movie, to support a large video system. This provides increased storage capacity and bandwidth, and
allows an increased number of concurrent users. However, if some video sequences are more frequently accessed than
others, their disks will become “hot spots” in the system. This load imbalance may prevent the system from utilizing

Maximum Strategy
Gen 4

$178,000 60 GB up to 40 90 MB/s 11 ms

Storage Concepts
Concept 151

$125,000 up to 324 GB up to 216 up to 50 MB/s 14 ms

Optical Disk
Libraries

Hewlett Packard
200T

$96,000 187 GB 4 5.0 MB/s 3.7 s

Magnetic Tape
Libraries

Exabyte EXB10i $13,000 50 GB 1 0.5 MB/s 20 s

Exabyte EXB120 $100,000 580 GB 4 2.0 MB/s 18 s

Metrum RSS-600 $266,000 10.8 TB 5 5.0 MB/s 8 s

Operation Time (sec)

Rewind time (1/2 tape) 75

Eject time 17

Robot unload 21

Robot load 22

Device load 65

Search (1/2 tape) 84

Total 284

Table 4.Components of Cartridge Switch Time for Exabyte EXB120 Robot [Dra93]

Technology OEM Price Capacity No. of Drives Transfer
Rate

Access Time

Table 3.Cost/Performance Metrics for Alternative Storage System Technologies [McC94]
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block has been completed.) In terms of scheduling rounds, the transfer of a retrieval block for a given user request
must be completed by the following scheduling round. If the current request is still outstanding when the next retrieval
block for that user is requested (in the following scheduling round), we say that the real-time playback deadline has
beenmissed.

5.0  Disk Array Video Storage

The second component of our multiple resolution file system is knowledge of the storage system parameters.
We propose the use of a disk array as the storage system, as other tertiary and secondary storage devices provide inad-
equate bandwidth, latency or capacity. Table 2 and Table 2 summarize several of the relevant metrics for alternative
standalone storage technologies. The displayed metrics are original equipment manufacturer (OEM) price, capacity,
transfer rate (for sustained transfers), seek time and rotational latency (for disk drives only). Table 3 illustrates several
cost/performance metrics for alternative storage systems, including OEM price, capacity, number of drives, transfer
rate, and access time (which corresponds to seek time for the disk arrays).

Technology OEM Price Capacity
Transfer
Rate (MB/s)

Seek Time
(ms)

Rotational
Latency (ms)

Magnetic Disk Drives

Toshiba MK-2428FB
(2.5”)

$725 520 MB 6 12 7.5

Quantum Empire 540
(3.5”)

$695 540 MB 10 19 5.6

DEC StorageWorks
(3.5”)

$3525 3.5 GB 5.2 to 6.9 12 5.6

Hitachi DK 517C-37
(5.25”)

3.6 GB 4.8 12.8 5.6

Optical Disk Drives

Hewlett Packard
C1716T

$4150 1.3 GB 1.6 23.5 12.5

Table 1.Cost/Performance Metrics for Standalone Disk Drives [McC94]

Technology OEM Price Capacity Transfer Rate

Sony SDT-2000 DAT
(4mm)

$1595 2 GB 183 KB/s

Exabyte EXB 8500
(8mm)

$2315 5 GB 470 KB/s

Metrum RSP-2150
(VHS)

$32,900 18 GB 2 MB/s

Table 2.Cost/Performance Metrics for Standalone Magnetic Tape Drives [McC94]

Technology OEM Price Capacity No. of Drives Transfer
Rate

Access Time

Magnetic Disk
Array

Maximum Strategy
S2P

$54,500 10.8 GB 10 18 MB/s 16 ms

Table 3.Cost/Performance Metrics for Alternative Storage System Technologies [McC94]
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4.0  Multiple Resolution File System

We explore the use of a multiple resolution file system that uses knowledge of the video data structure as well
as the storage system parameters to maintain multiple resolutions of each video sequence on-line. In this section, we
focus on a more detailed discussion of video data structure.

4.1  Video Storage Structure
Continuous media data are structured by a logical playback unit (e.g., a single video frame), on which access

patterns are based. To preserve this structure on disk, we define a retrieval block to be the smallest unit of video data
that will be transferred from the disk array at one time. As in [Lou93, Ran91], a retrieval block corresponds to an inte-
gral multiple of logical playback units corresponding to a fixed playback duration for a given sequence. This playback
duration is the same for all sequences in the system. We examine retrieval block sizes consisting of between one and
sixty seconds’ worth of data. The data for a given retrieval block is stored contiguously in the disk system, while the
placement of successive retrieval blocks within a given stream is unrestricted.

This video storage structure is attractive for several reasons. First, the use of a fixed duration (rather than fixed
size) retrieval block simplifies data transfer. Because many compression schemes perform variable bit rate compres-
sion, the size of video frames may vary. As a result, fixed size retrieval blocks may not only contain a different number
of frames, but they may also contain partial frames. (To reconstruct these partial frames, two retrieval blocks must be
transferred.) By allowing the size of the retrieval block to vary, fixed duration retrieval blocks ensure that an integral
number of frames are stored contiguously. Furthermore, disk space allocation can be performed with increased fair-
ness: video sequences with a high throughput are allocated larger retrieval blocks than streams with a low data
throughput. (A drawback of a variable size, fixed duration retrieval block, however, is the potential for fragmentation
of disk space.) Second, because each retrieval block corresponds to the same playback duration, scheduling of data
retrieval can be simplified. This is discussed in further detail in the next section. Finally, because the storage of suc-
cessive retrieval blocks is unrestricted, the policy allows for efficient interleaving of different video sequences.

4.2  Scheduling Data Retrieval
We assume that users make a single request for the retrieval of a given video sequence, and the actual retrieval

of that data from disk is paced by the server. Once user requests have been accepted at the server, they are inserted into
a schedule of video requests in the server scheduler. This scheduler uses a round robin policy in which data retrieval
requests are performed inrounds, during which one retrieval block is read from the disk system for each of the user
requests in the schedule. Scheduling of data retrieval is simplified because each retrieval block corresponds to the
same fixed playback duration in the following way. Because enough data for the same playback duration is transferred
for each user during each round, the relative ordering of deadlines remains the same from round to round. The
retrieval schedule need not change, except when users are added or deleted. (This is in contrast with a fixed size
retrieval block, where the transfer of one retrieval block per round corresponds to different playback durations for dif-
ferent users. To support continuous playback, the relative ordering of deadlines may change from round to round in
this scheme.)

In order to maintain continuous playback at each client, the system must transfer the data for the next retrieval
block before the current one has been completely displayed. As a result, the time between the start of successive
scheduling rounds must correspond to the time for the client to play back a retrieval block. (If a scheduling round is
shorter, data will be transferred faster than the client can display it, and data may accumulate at the client. If the
rounds are longer, data for the next retrieval block may not be available at the client when the display of the current

l

l + m

l + m + h

l + m + h + f

Figure 4.Simplified Scalable Compression Example
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Additional compression can be achieved by cascading several stages of filtering and down-sampling. The
implementation described in [Cha93b], for instance, cascades up to 10 stages, which produce nearly 40 output compo-
nents. Any number of these output components can be combined to produce video streams of varying spatial and tem-
poral resolution. This scheme produces a full-resolution compressed video stream with data rates comparable to other
non-scalable algorithms such as MPEG [LeG91] (e.g., 3 Mb/s for subband coding vs. 2 Mb/s for MPEG). Thus, scal-
able compression inherently yields multiple representations of data (without the data replication needed by non-scal-
able strategies), while requiring bandwidth comparable to a single representation of the data.

Figure 3 shows an example scalable subband compression scheme that cascades three stages of spatial com-
pression identical to the one shown in Figure 1. One of the four outputs of each stage is used as input to the next stage.
Generally, the outputs of different stages could be combined to form hundreds or thousands of video streams with
slightly different spatial resolutions. To simplify the presentation of disk layout policies, we restrict our study to four
of the many possible output combinations. These form the successively lower resolution video streams shown in
Figure 3:Low (L), Medium (M), High (H), andFull (F). The full-resolution video stream, which we assume has a
throughput of 384 KB/s, is formed by combining all four outputs from the three stages. Successively lower resolution
streams are formed by combining the four outputs of fewer stages. The lowest possible resolution, which has a
throughput of 6 KB/s, is given by a single output component from the last stage.

Figure 4 shows a further simplification of the representation of the example subband scalable compression
scheme. We say that the scheme has fourcomponents (l, m, h, f), which can be used to form the four supported video
resolutions (Low (L), Medium (M), High (H), and Full (F)). The full-resolution video stream is produced by combin-
ing all four components. Successively lower quality streams are given by combining fewer and fewer of the compo-
nents. The lowest possible resolution stream is given by the l component alone.
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video data stored in multiple resolutions.

3.1  Motivation for Scalable Compression
Scalable compression algorithms play an important role in current and future video playback environments. A

typical video storage system generally stores one video resolution per sequence, which it uses to satisfy all client
requests. This single version must contain the highest (full) resolution data. However, client display characteristics,
and hence client playback requirements, vary widely. For instance, workstations utilize large displays capable of hold-
ing multiple resizable windows, while portable computers typically use much smaller physical displays, capable of
supporting smaller windows. Because the server has only a single version of the video, full-resolution data must be
used to satisfy each window’s video playback request, regardless of requested QoS parameters such as the window
size and resolution. This places undue burden on the server I/O system, the network, and the client I/O system. In
addition, the client must dynamically adjust the quality of received video (in addition to decompressing the com-
pressed stream).

Scalable compression algorithms address these issues. This class of algorithms produces one compressed full-
resolution video bit stream. It uses a hierarchical format where combinations of various components of the hierarchy
correspond to different resolutions or rates of the same video sequence. Servers that use scalable compression can use
different subsets to satisfy clients requesting different QoSs. For example, instead of receiving two full-resolution bit
streams, a workstation with two small windows would receive two subsets of a lower resolution. Because these com-
binations have a lower bit rate than the full-resolution version, this relieves the load on the server and client I/O sys-
tems and network resources. In addition, the computational burden on the client is reduced because the video stream
closely matches the requested QoS.

3.2  Subband Video Coding
One approach to scalable spatial and temporal compression uses subband coding techniques [Woo91]. Sub-

band coding schemes typically use multi-stage algorithms, where each stage applies quadrature mirror filtering
(QMF) to split the bandwidth of the input spectrum into low-band and high-band halves. More specifically, a single
stage of the algorithm performs high- and low-pass filtering, followed by down-sampling, in the target dimension.
Spatial (or intraframe) compression is performed by applying two stages of the algorithm, one in the x-direction and
one in the y-direction, as shown in Figure 1. The corresponding decompression scheme is shown in Figure 1
[Cha93a]. Temporal (or interframe) compression can be achieved by performing the filtering and down-sampling or
up-sampling among successive frames.
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Figure 1.Single Stage of Spatial Subband Compression Scheme
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1.0  Introduction

Recent advances in workstation architecture, high-speed networking and storage technologies have enabled
new kinds of multimedia systems. One such system is a multimedia server that supports the playback of stored video
to client display devices. Video storage servers must satisfy the requirements of individual video streams as well as
system-wide requirements. Because video files are considerably larger than traditional files, they require significant
storage capacity. Real-time video playback imposes strict delay and delay variance requirements on the retrieval of
video files. From a system-wide perspective, video servers must also maximize the number of concurrent requests that
can be satisfied, without violating any of the clients’ performance requirements.

Video servers must also be able to support heterogeneous clients that request vastly different quality of service
(QoS) parameters, such as display size, resolution, and frame rate. Video storage systems typically store one represen-
tation of each video sequence, which is used to satisfy all client requests. This representation may contain more infor-
mation than is necessitated by the requested QoS, wasting server resources. Moreover, client resources are also
wasted in dynamically adjusting the QoS parameters (in addition to performing decompression) before displaying the
video sequence.

One possible solution to the problem of managing different QoSs is to store multiple representations of video
on the server. Each request can then be satisfied with a representation that closely matches the requested QoS, and
requires only decompression for playback. The storage of multiple representations of data may also be used to accom-
modate as many playback requests as possible; in case of overload, the server may switch the representations of some
streams to use those that place less demand on the server, the network, or both.

The high concurrency of access and high data throughput rates required by video retrieval make single disk
systems inadequate for video service. We address these issues by taking advantage of the high concurrency, band-
width, and capacity provided by disk arrays such as the RAID (Redundant Arrays of Inexpensive Disks) prototypes
developed at Berkeley [Che91,Che93].

In this report, we present an integrated systems approach to video service that investigates the storage of mul-
tiple resolutions of video data on disk arrays; this work was introduced in [Kee93]. In Section 2.0, we survey the
existing approaches for video storage and retrieval. In Section 3.0, we discuss scalable compression algorithms,
which generate video streams with multiple resolutions and rates. Section 4.0 presents the structure of video data, as
well as a method of scheduling data retrieval. Section 5.0 compares several storage alternatives, including disk arrays,
and introduces two data layout strategies, which use information about the video data structure and disk array param-
eters to store video data for efficient playback. We describe our simulator in Section 6.0, and present our simulation
results in Section 7.0.

2.0  Related Work

Video playback generally requires periodically scheduled sequential reads under strictly limited delays. Exist-
ing file system data layout strategies support this access pattern to varying degrees. Traditional file systems, such as
the BSD Fast File System [McK84] and Sprite LFS [Ros91] use layout strategies that do not take into account the
video data structure. Because a given playback request may be stored in a non-contiguous manner, violations of per-
formance requirements may occur.

Several file systems address the requirements of multimedia data, such as continuous storage and sequential
retrieval of media. In particular, Rangan uses a constrained allocation policy for continuous media data blocks, to
guarantee continuous access [Ran91]. Lougher stores data in an append-only log to exploit the temporal locality: data
blocks recorded at the same time are typically replayed at the same time [Lou93]. To support multiple concurrent
requests, both approaches develop admission control algorithms for determining whether a new user request can be
accepted without violating existing real-time constraints. These video storage systems primarily focus on single disk
systems or very small disk arrays, and do not address the issue of compression to support client heterogeneity.

Very few attempts have been made to take a systems view towards integrating image coding and data layout
for video storage systems. One such approach is taken by Chiueh and Katz, who propose a multi-resolution video
coding scheme based on Gaussian and Laplacian Pyramids for storing data on disk arrays [Chi93]. We now explore
the use of disk arrays to store multi-resolution video generated by subband coding algorithms.

3.0  Scalable Compression Algorithms

To address the issue of client heterogeneity, we explore the use of scalable compression in order to support
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The Evaluation of Video Layout Strategies for a High-Performance Storage
Server

Abstract

We propose a systems approach to providing video service that integrates the multi-resolution data generated by
scalable compression algorithms with the high-bandwidth, high-capacity storage provided by disk arrays. We
introduce two layout strategies for storing multi-resolution video data on magnetic disk arrays, which vary in the
degrees of parallelism and concurrency they use to satisfy requests. We also present the event-driven simulator that
we used to evaluate these layout strategies. Our simulation results show that striping video data over disks in an
array can provide up to a two-fold increase in the number of viewers supported. In addition, the storage of multiple
video resolutions allows a video file server to satisfy considerably more user requests than a server that stores a sin-
gle resolution of video data.
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