
Exploiting Process Lifetime Distributions for

Dynamic Load Balancing

Mor Harchol-Balter and Allen B. Downey

Report No. UCB/CSD-95-887

November 1995

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Exploiting Process Lifetime Distributions for Dynamic Load

Balancing

Mor Harchol-Balter� Allen B. Downey y

November 1995

Abstract

We measure the distribution of lifetimes for UNIX

processes and propose a functional form that �ts

this distribution well. We use this functional form

to derive a policy for preemptive migration, and

then use a trace-driven simulator to compare our

proposed policy with other preemptive migration

policies, and with a non-preemptive load-balancing

strategy. We �nd that, contrary to previous re-

ports, the performance bene�ts of preemptive mi-

gration are signi�cantly greater than those of non-

preemptive migration, even when the memory-

transfer cost is high. Using a model of migra-

tion costs representative of current systems, we �nd

that preemptive migration reduces the mean delay

(queueing and migration) by 35 { 50%, compared

to non-preemptive migration.

1 Introduction

Most systems that perform load balancing use re-

mote execution (i.e. non-preemptive migration)

based on a priori knowledge of process behavior, of-

ten in the form of a list of process names eligible for

migration. Although some systems are capable of

migrating active processes, most do so only for rea-

sons other than load-balancing (such as preserving

autonomy). A previous analytic study ([ELZ88])

discourages implementing preemptive migration for

load balancing, showing that the additional perfor-

mance bene�t of preemptive migration is small com-

pared with the bene�t of simple non-preemptive mi-

gration schemes. But simulation studies (which can

use more realistic workload descriptions) and im-

plemented systems have shown greater bene�ts for

preemptive migration ([KL88] and [BSW93]). This

�Supported by National Physical Science Consortium

(NPSC) Fellowship. Also supported by NSF grant number

CCR-9201092. Email: harchol@cs.berkeley.edu
yPartially supported by NSF (DARA) grant DMW-

8919074.Email: downey@cs.berkeley.edu

paper uses a measured distribution of process life-

times and a trace-driven simulation to investigate

these con
icting results.

1.1 Load-balancing taxonomy

On a network of shared processors, load balancing is

the idea of migrating processes across the network

from hosts with high loads to hosts with lower loads.

The motivation for load balancing is to reduce the

average completion time of processes and improve

the utilization of the processors. Analytic mod-

els and simulation studies have demonstrated the

performance bene�ts of load balancing, and these

results have been con�rmed in existing distributed

systems (see Section 1.4).

An important part of the load-balancing strategy

is the migration policy, which determines when mi-

grations occur and which processes are migrated.

This is the question we address in this paper.1

Process migration for purposes of load balancing

comes in two forms: remote execution (also called

non-preemptive migration), in which some new pro-

cesses are (possibly automatically) executed on re-

mote hosts, and preemptive migration, in which run-

ning processes may be suspended, moved to a re-

mote host, and restarted. In non-preemptive mi-

gration only newborn processes are migrated.

Load balancing may be done explicitly (by the

user) or implicitly (by the system). Implicit mi-

gration policies may or may not use a priori infor-

mation about the function of processes, how long

they will run, etc. If the cost of remote execution

is signi�cant relative to the lifetimes of processes,

then implicit non-preemptive policies require some

a priori information about job lifetimes. This in-

formation is often implemented as an eligibility list

1The other half of a load balancing strategy is the lo-

cation policy | the selection a new host for the migrated

process. Previous work ([Zho89] and [Kun91]), has suggested

that choosing the target host with the shortest cpu run queue

is both simple and e�ective. Our work con�rms the relative

unimportance of location policy.

1

(e.g. [Sve90]) that speci�es (by process name) which

processes may be migrated.

In contrast, most preemptive migration policies

do not use a priori information, since this it is of-

ten di�cult to maintain and preemptive strategies

can perform well without it. These systems use only

system-visible data like the current age of each pro-

cess or its memory size.

This paper examines the performance bene�ts

of preemptive, implicit load-balancing strategies

that assume no a priori information about pro-

cesses.

1.2 Process Model

In our model, processes use two resources: cpu and

memory (we do not consider I/O). Thus, we use

\age" to mean cpu age (the cpu time a process has

used thus far) and \lifetime" to mean cpu lifetime

(the total cpu time from start to completion). Since

processes may be delayed while on the run queue or

while migrating, the slowdown imposed on a process

is

Slowdown of process p =
wall time (p)

cpu time (p)

where wall-time(p) is the total time p spends run-

ning, waiting in queue, or migrating.

1.3 Outline

The e�ectiveness of load-balancing | either by re-

mote execution or preemptive migration| depends

strongly on the nature of the workload, including

the distribution of process lifetimes and the arrival

process. This paper presents empirical observations

about the workload on a UNIX network of worksta-

tions, and uses a trace-driven simulation to evalu-

ate the impact of this workload on proposed load-

balancing strategies.

Section 2 presents a study of the distribution of

process lifetimes for a variety of workloads in an

academic environment, including instructional ma-

chines, research machines, and machines used for

system administration. We �nd that the distribu-

tion is predictable (with goodness of �t > 99%) and

consistent across a variety of machines and work-

loads. As a rule of thumb, the probability that a

process with CPU age of one second uses T seconds

of CPU time is 1=T (see Figure 1).

Our measurements are consistent with the life-

time result of [LO86], but this prior work has been

incorporated in few subsequent analytic and simu-

lator load balancing studies. This omission is un-

Distribution of process lifetimes
 (fraction of processes surviving T secs.)

0.0

.25

.5

.75

1.0

1 4 16 64 256 1024

Duration (T secs.)

Distribution of process lifetimes (log plot)
 (fraction of processes surviving T secs.)

1

1/4

1/16

1/64

1/256

1/1024

1 4 16 64 256 1024

Duration (T secs.)

Figure 1: a)Distribution of process lifetimes for pro-

cesses measured on machine po, mid-semester. The

impulses show the measured data; the curve shows

the �tted values. b) The same distribution as (a),

shown on a log-log scale. The straight line in log-log

space indicates that the process lifetime distribution

can be modelled by T k, where k is the slope of of the

line.

2

fortunate, since the results of these load balancing

studies are quite sensitive to the lifetime model.

Our observations of lifetime distributions have

the following consequences for load-balancing:

� They suggest that it is preferable to migrate

older processes because these processes have a

higher probability of living long enough (even-

tually using enough cpu) to amortize their mi-

gration cost.

� A functional model of the distribution provides

an analytic tool for deriving the eligibility of a

process for migration as a function of its cur-

rent age, migration cost, and the loads at its

source and target host (the eligibility criterion

doesn't rely on free parameters which must be

hand-optimized). This tool is generally useful

for analysis of system behavior.

Speci�cally, Section 3 shows the derivation a mi-

gration eligiblity criterion that guarantees that the

slowdown imposed on a migrant process is lower (in

expectation) than it would be without migration.

According to this criterion, a process is eligible for

migration only if its

CPU age >
1

n �m
�migration cost

where n (respectively m) is the number of processes

at the source (target) host.

In Section 5 we use a trace-driven simulation

to compare our preemptive migration policy (from

Section 3) with a non-preemptive policy based on

name-lists. The simulator (see Section 5.1) uses

start times and durations from traces of a real sys-

tem, and migration costs chosen from a measured

distribution.

We use the simulator to run three experiments:

First (Section 5.2) we evaluate the e�ect of mi-

gration cost on the relative performance of the

two strategies. Not surprisingly, we �nd that as

the cost of preemptive migration increases, it be-

comes less e�ective. Nevertheless, preemptive mi-

gration performs better than non-preemptive mi-

gration even with suprisingly large migration costs

(despite several conservative assumptions that give

non-preemptive migration an unfair advantage).

Next (Section 5.3) we choose a speci�c model

of preemptive and non-preemptive migration costs

(described in Section 4), and use this model to com-

pare the two migration strategies in more detail. We

�nd that preemptive migration reduces the mean

delay (queueing and migration) by 35 { 50%, com-

pared to non-preemptive migration. We also pro-

pose several alternative metrics intended to mea-

sure users' perception of system performance. By

these metrics, the additional bene�ts of preemptive

migration (compared to non-preemptive migration)

appear far more signi�cant.

Finally, in Section 5.4 we use the simulator to

compare our preemptive migration strategy with

other preemptive schemes in the literature.

We �nish with a self-criticism of our model in

Section 6 and conclusions in Section 7.

1.4 Related Work

1.4.1 Systems

Most existing systems provide some form of user-

controlled remote execution, but relatively few pro-

vide automated load balancing. Of the ones that

do, the majority are based on implicit remote ex-

ecution of newborn processes; few use preemptive

migration.

(The following taxonomy is based in large part

on [Nut94].)

Systems that have implemented user-controlled

(explicit) remote execution and/or preemptive mi-

gration include: Accent [Zay87], Locus [Thi91],

Utopia [ZWZD93], DEMOS/MP [PM83], V

[TLC85], and NEST [AE87]. Several of these also

provide some form of automated location policy.

Some other systems provide implicit remote ex-

ecution, but perform preemptive migration only at

the request of a user or for reasons other than load-

balancing (such as preserving autonomy): Amoeba

[TvRaHvSS90], Charlotte [AF89], Sprite [DO91],

and Condor [LLM88]. Although these systems are

capable of migrating active processes (with varying

degrees of transparency), none have implemented a

policy that preempts processes for purposes of load-

balancing.

In general, non-preemptive load-balancing strate-

gies depend on a priori informationabout processes;

e.g., explicit knowledge about the runtimes of pro-

cesses or user-provided lists of migratable processes

([AE87], [LL90], [DO91], [ZWZD93]).

Only a few systems have implemented automated

load-balancing policies with preemptive migration:

MOSIX[BSW93] and RHODOS [GGI+91]. The

MOSIX load-balancing scheme is similar to the

strategies recommended in this paper; our results

support their claim that their scheme is e�ective

and robust.

3

1.4.2 Studies

Although few systems use preemptive migration

for load-balancing, there have been many simu-

lation studies and analytic models showing the

performance bene�ts of various load-balancing

strategies. Some of these studies have focused

on load-balancing by remote execution ([LM82],

[WM85], [CK87], [Zho89], [PTS88], [Kun91],

[HJ90], [ELZ86]); others have compared the per-

formance of systems with and without preemptive

migration ([ELZ88], [KL88]).

Our work di�ers from [ELZ88] in both system

model and workload description. [ELZ88] model a

server farm in which incoming jobs have no a�n-

ity for a particular processor. In this context, non-

preemptive migration can maintain load balance

simply by placing jobs at lightly-loaded hosts. This

is di�erent from our model, a network of worksta-

tions, in which incoming jobs arrive at a particular

host and the cost of moving them away, even by

remote execution, is non-trivial.

Also, [ELZ88] use a degenerate hyperexponen-

tial distribution of lifetimes that includes many jobs

with zero lifetime, and far fewer short jobs (0 { 1

seconds) than we observed. For a more detailed ex-

planation of this distribution and its e�ect on the

study, see [DHB95].

[KL88] use a hyperexponential distribution which

approximates very closely the distribution we ob-

served; as a result, their �ndings are largely in ac-

cord with ours. One di�erence between their work

and ours is that they used a synthetic workload

with Poisson arrivals. The workload we observed,

and used in our trace-driven simulations, exhibits

serial correlation; i.e. it is more bursty than a Pois-

son process. Also, our migration policy di�ers from

[KL88] in that our proposed migration policy uses

preemptive migration exclusively, rather than in ad-

dition to, remote execution.

Like us, [BF81] discusses the distribution of pro-

cess lifetimes and its e�ect on preemptive migration

policy, but their hypothetical distributions are not

based on system measurements. Also like us, they

choose migrant processes on the basis of expected

slowdown on the source and target hosts, but their

estimation of those slowdowns is very di�erent from

ours. In particular, they use the distribution of pro-

cess lifetimes to predict a host's future load as a

function of its current load and the ages of the pro-

cesses running there. We have examined this issue

in detail and found (1) that this model fails to pre-

dict future loads because it ignores future arrivals,

and (2) that current load is by far the best predictor

of future load. Thus, in our estimates of slowdown,

we will assume that the future load on a host is

equal to the current load.

2 Distribution of lifetimes for

UNIX processes

The general shape of the distribution of process life-

times in an academic environment has been known

for a long time [Ros65]: there are many short jobs

and a few long jobs, and the variance of the distri-

bution is greater than that of an exponential distri-

bution.

In 1986 [LO86] presented the �rst results on a

functional form for the process lifetime distribu-

tion. This functional form was based on measure-

ments of the lifetimes of of 9.5 million UNIX pro-

cesses between 1984 and 1985. Leland and Ott con-

cluded that process lifetimes have a UBNE (used-

better-than-new-in-expectation) type of distribu-

tion. That is, the greater the current CPU age of

a process, the greater its expected remaining CPU

lifetime.2 Speci�cally, they found that for T > 3

seconds, the probability of a process' lifetime ex-

ceeding T seconds is rT k, where �1:25 < k < �1:05
(r normalizes the distribution).

In contrast to [LO86], Rommel ([Rom91]) claimed

that his measurements show that \long processes

have exponential service times."

Because of the importance of the process life-

time distribution to load balancing policies, we per-

formed an independent study of this distribution,

which we describe in Section 2.1.

In our study the functional form proposed by

[LO86] �ts all our observed distributions well for

processes with lifetimes greater than 1 second. For

the very largest jobs, the curve does not �t well,

since there are very few of these jobs.3 This func-

tional form is consistent across a variety of ma-

chines and workloads, and although the parameter,

k, varies from -1.3 to -.8, it is generally near �1:0.
Thus, as a rule of thumb,

1. The probability that a process with age 1 sec-

ond uses T seconds of cpu time is about 1=T .

2In contrast, the exponential distribution is memoryless;

the expected remaining lifetime of a process is independent

of age.
3Throughout this paper, we distinguish between observed

lifetime distributions (taken from ourmeasurements) and the

proposed functional form (which �ts the observed distribu-

tion over a range of lifetimes). Although the functional form

has in�nite mean and variance, naturally the observed dis-

tributions have �nite mean and variance.

4

2. The probability that a process with age T sec-

onds uses an additional T seconds of cpu time

is about 1=2. Thus, the median remaining life-

time of a process is equal to its current age.

Despite the [LO86] study, many researchers have

continued to assume an exponential process lifetime

distribution in their analysis of migration strate-

gies (e.g., [MTS90], [BK90] [EB93], [LR93]). The

reasons for assuming an exponential lifetime dis-

tribution include: (1) analytic tractability, and (2)

the belief that the exponential distribution is close

enough to real distributions that the results of the

analyses would not be impacted.

In this paper, we make the following claims about

lifetime distributions:

� The performance of various migration strate-

gies (and other system features) depends

strongly on the details of the workload descrip-

tion. For example, two distributions which

match with respect to both mean and variance

might still produce radically di�erent results.

� The properties of an exponential distribution

are very di�erent from those of the distribu-

tions we observed. For example, the distri-

butions we observed all have a tail of long-

lived jobs (i.e., the distributions have high vari-

ance). An exponential distribution with the

same mean would have lower variance; it lacks

the tail of long-lived jobs.

� Although the alternate functional form that we

(and [LO86]) propose cannot be used in queue-

ing models as easily as an exponential distribu-

tion, it nevertheless lends itself to some forms

of analysis, as we show in Section 3.2.

In previous work, some simulations and analyses

have used a hyperexponential distribution of life-

times (a hyperexponential distribution consists of

two or more exponential branches). The motivation

for this model is that by using more than one expo-

nential distribution, it is possible to match an ob-

served distribution more closely. In cases where the

hyperexponential distribution has enough branches

to �t the observed distribution well, as in [KL88],

this model has been successful.

The remainder of this section focuses on our dis-

tribution measurements. We observed that long

processes (with lifetimes greater than 1 second)

have a predictable and consistent distribution. Sec-

tion 2.1 describes this distribution. Section 2.2

makes some additional observations about shorter

processes.

2.1 Process lifetime distribution

when lifetime > 1 second

To determine the probability distribution function

for UNIX processes, we measured the lifetimes of

over one million processes, generated from a vari-

ety of academic workloads, including instructional

machines, research machines, and machines used for

system administration. We obtained our data using

the UNIX command \lastcomm,"which outputs the

cpu time used by each completed process.

Figure 1 is an impulse plot showing our process

lifetime measurements on a heavily-used instruc-

tional machine in mid-semester. The plot shows

only processes whose lifetimes exceed one second.

The impulse (line) at 2i seconds indicates the frac-

tion of processes we counted whose lifetimes ex-

ceeded 2i seconds. Figure 1b shows the same data

on a log-log scale. The straight line in log-log space

indicates that the process lifetime distribution �ts

the curve T k, where k is the slope of of the line.

For all the machines we studied, the process life-

time data (for processes with age greater than one

second) �t a curve of the form T k, where k ranged

from about �1:3 to �:8 for di�erent machines. Ta-

ble 1 shows the estimated lifetime distribution curve

for each machine we studied. The parameters were

estimated by an iteratively weighted least-squares

�t (with no intercept, in accordance with the func-

tional model). The standard error associated with

each estimated parameter gives a con�dence inter-

val for that parameter (all of these parameters are

statistically signi�cant at a very high degree of cer-

tainty). Finally, the R2 value indicates the goodness

of �t of the model | the values shown here indicate

that the �tted curve accounts for greater than 99%

of the variation of the observed values. Thus, the

goodness of �t of these models is very high.

Although the range of parameters we observed is

fairly broad, in the absence of measurements from

a speci�c system, assuming a distribution of 1=T

is substantially more accurate than assuming that

process lifetimes are exponentially distributed, as

shown by Figure 2.

Table 2 shows the lifetime distribution function

and the corresponding density function and condi-

tional distribution function. We will refer to the

conditional lifetime distribution often during our

analysis of migration strategies. The second col-

umn of Table 2 shows these functions when k = �1,
which we will assume for our analysis in Section 3.

5

Name Total Num. Estim. Std. R2

of Number Procs. Lifetime Error val

Host Procs. with Distrib.

Studied Age> 1 Curve

po1 77440 4107 T�0:97 .016 0.997

po2 154368 11468 T�1:22 .012 0.999

po3 111997 7524 T�1:27 .021 0.997

cory 182523 14253 T�0:88 .030 0.982

pors 141950 10402 T�0:94 .015 0.997

bugs 83600 4940 T�0:82 .007 0.999

faith 76507 3328 T�0:78 .045 0.964

Table 1: The estimated lifetime distribution curve

for each machine measured, and the associated

goodness of �t statistics. Description of machines:

po is a heavily-used DECserver5000/240, used pri-

marily for undergraduate coursework. Po1, po2,

and po3 refer to measurements made on po mid-

semester, late-semester, and end-semester. Cory is

a heavily-used machine, used for coursework and re-

search. Porsche is a less frequently-used machine,

used primarily for research on scienti�c computing.

Bugs is a heavily-used machine, used primarily for

multimedia research. Faith is an infrequently-used

machine, used both for video applications and sys-

tem administration.

2.2 Measuring the process lifetime

distribution in general

For completeness we discuss the lifetime distribu-

tion for processes with lifetimes less than one sec-

ond. Since our measurements were made using the

lastcomm command the shortest process we were

able to measure was :01 seconds. For processes be-

tween :01 and 1 second, we did not �nd a consistent

functional form, however for all machines we stud-

ied these processes had an even lower hazard rate

than those of age > 1 second. That is, while the

probability that a process of age T > 1 second lives

another T seconds is approximately 1=2, the prob-

ability that a process of age T < 1 second lives

another T seconds is something greater than 1=2.

3 Migration Policy

A migration policy is based on two decisions: when

to migrate processes and which processes to mi-

grate. The focus of this paper is the second question

(we will touch on the �rst question in Section 5.1):

Given that the load at a host is too high,

how do we choose which process to mi-

Comparison of exponential and T distributions
(fraction of processes surviving T sec.)

k

Duration (T sec.)

0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

exponential

k = -0.8
k = -1.0
k = -1.3

Figure 2: The curve T�1 is a reasonable approxi-

mation of the curves T k for a range of k from �:8 to
�1:3. The exponential curve shown is e��T , where

the value of � was chosen by a least-squares �t to

100 points on the curve 1=T . Although the expo-

nential model has one free parameter (compared to

the zero-parameter 1=T model), it does not produce

a reasonable approximation.

Process Lifetime Distribution for When

Processes of Age � 1 second k = �1

PrfProc. lifetime > T sec j age > 1 secg = T c = 1=T

PrfLifetime = T sec j age = 1 secg = �cT c�1 = 1=T 2

Pr fLifetime > a sec j age = b > 1 secg =
�
a

b

�
c

= b

a

Table 2: The cumulative distribution function,

probability density function, and conditional distri-

bution function of processes lifetimes. The second

column shows the functional form of each for the

typical value k = �1:0.

6

grate?

Our heuristic is to choose the process that has

highest probability of running longer than its migra-

tion time.

The motivation for this heuristic is twofold. From

the host's perspective, a large fraction of the migra-

tion time is spent at the host (packaging the pro-

cess). The host would only choose to migrate pro-

cesses that are likely to be more expensive to run

than to migrate. From the process' perspective, mi-

gration time has a large impact on response time.

A process would choose to migrate only if the mi-

gration overhead could be amortized over a longer

lifetime.

Most existing migration policies only migrate

newborn processes (non-preemptive), because these

processes have no allocated memory and therefore

their migration cost is less (see Section 4).4 The

problem with this policy is that, according to the

process lifetime distribution (Section 2), these new-

born processes are unlikely to live long enough to

justify the cost of remote execution.

Thus a \newborn" migration policy is only justi-

�ed if the system has prior knowledge about the pro-

cesses and can selectively migrate only those pro-

cesses likely to be cpu hogs. However, the ability of

the system to predict process lifetimes by name is

limited, as shown in Section 5.3.1.

Can we do better? The lifetime distribution

points us towards migrating older processes, since

they have the highest probability of living long

enough to justify the cost of migration, but there

are two potential problems with this strategy: (1)

since the vast majority of processes are short, there

might not be enough long-lived processes to have a

signi�cant load-balancing e�ect, and (2) the addi-

tional cost of migrating old processes (the memory

transfer cost) might overwhelm the bene�t of mi-

grating longer-lived processes.

The following sections address these concerns.

Section 3.2 also proposes a new preemptive migra-

tion strategy based on the lifetime distribution.

3.1 Moving Enough Work

If only old processes are eligible for migration,

and the majority of processes are short-lived, there

might not be enough old processes to produce a sig-

ni�cant load-balancing e�ect.

4The idea of migratingnewborn processesmight also stem

from the fallacy that process lifetimes have an exponential

distribution, with all processes having equal expected re-

maining lifetimes regardless of their age.

In fact, although there are few old processes, they

account for a large part of the total CPU load. Ac-

cording to our process lifetime measurements (Sec-

tion 2), typically fewer than 3:5% of processes live

longer than 2 seconds, yet these processes make up

more than 60% of the total CPU load. This is due

to the long tail of the process lifetime distribution

(see Figure 2).

Furthermore, we will see that the ability to mi-

grate even a few large jobs can have a large e�ect

on system performance, since a single large job on

a busy host will impose slowdowns on many small

processes.

3.2 Taking Migration Costs into Ac-

count: Our Migration Policy

The obvious disadvantage of preemptive migration

is the need to transfer the memory associated with

the migrant process; thus, the migration cost for

an active process is much greater than cost of re-

mote execution. If preemptive migration is done

carelessly, this additional cost might overwhelm the

bene�t of migrating processes with longer expected

lives.

For this reason, we propose a strategy that guar-

antees that every migration improves the expected

performance of the migrant process and the other

processes at the source host.5

Whenever more than one process is running on a

host and one process migrates away, the expected

slowdown of the others decreases, regardless of the

duration of the processes or the cost of migration.

But the slowdown of the migrant process might in-

crease, if the time spent migrating is greater than

the time saved by running on a less-loaded host.

Thus we will perform migration only if it improves

the expected slowdown of the migrant process.

If there is no process on the host that satis�es

this criterion, no migration is done. If migration

costs are high, few processes will be eligible for mi-

gration; in the extreme there will be no migration

at all. But in no case is the performance of the sys-

tem worse (in expectation) than the performance

without migration.

Using the distribution of process lifetimes, we

now show how to calculate the expected slowdown

imposed on a migrant process, and use this result

5Of course, processes on the target host are slowed by an

arriving migrant, but on a moderately-loaded system there

are almost always idle hosts; thus the number of processes

at the target host is usually zero. In any case, the number

of processes at the target is always less than the number at

the source.

7

to derive a minimumage for migration based on the

cost of migration. Denoting the age of the migrant

process by a; the cost of migration by c; the (even-

tual total) lifetime of the migrant by L, the number

of processes at the source host by n; and the num-

ber of processes at the target host (including the

migrant) by m, we have

E fslowdown of migrantg

=

Z
1

t=a

Pr

�
Lifetime of

migrant is t

�
�
Slowdown given

lifetime is t

=

Z
1

t=a

Pr ft � L < t+ dtjL � ag �
na + c + m(t� a)

t

=

Z
1

t=a

a

t2
�
na+ c+m(t � a)

t
dt

=
1

2

� c
a
+m + n

�

If there are n processes at a heavily loaded host,

then a process should be eligible for migration only

if its expected slowdown after migration is less than

n (which is the slowdown it expects in the absence

of migration).

Thus, we require 1

2
(c
a
+m+n) < n, which implies

Minimum migration age =
Migration cost

n�m

This analysis extends easily to the case of hetero-

geneous processor speeds by applying a scale factor

to n or m.

The MOSIX migration policy [BSW93] is based

on a similar, but simpler restriction: the age of the

process must exceed the migration cost. Thus, the

slowdown imposed on the migrant process (due to

migration) must be less than 2.0. This bound is

based on the worst case, in which the migrant pro-

cess completes immediately upon arrival at the tar-

get.

The MOSIX requirement is likely to be too re-

strictive, for two reasons. First, it ignores the slow-

down that would be imposed at the source host in

the absence of migration (presumably there is more

than one process there, or the system would not be

attempting to migrate processes away). Secondly,

it is based on the worst-case slowdown rather than

(as shown above) the expected slowdown. We will

explicitly compare the MOSIX policy with ours in

Section 5.4.

4 Model of migration costs

Since migration cost has such a large e�ect on the

performance of preemptive load balancing, this sec-

tion presents the model of migration costs we will

use in our similation studies.

We model the cost of migrating an active process

as the sum of a �xed migration cost for migrating the

process' system state plus a memory transfer cost

which is proportional to the amount of the process'

memory that must be transferred. We model re-

mote execution cost as a �xed cost; it is the same

for all processes.

Throughout this paper, we refer to the following

parameters:

� r: the cost of remote execution, in seconds

� f : the �xed cost of preemptive migration, in

seconds

� b: the memory transfer bandwidth, in MB's per

second

� m: the memory size of migrant processes, in

MB

and thus:

cost of remote execution = r

cost of preemptive migration = f +m=b

We refer to the quotientm=b as the memory transfer

cost.

4.1 Memory transfer costs

The amount of a process' memory that must be

transferred during preemptive migration depends

on properties of the distributed system. [DO91]

have an excellent discussion of this issue, and we

borrow from them here.

At the most, it might be necessary to transfer a

process' entire memory. On a system like Sprite,

which integrates virtual memory with a distributed

�le system, it is only necessary to write dirty pages

to the �le system before migration. When the pro-

cess is restarted at the target host, it will retrieve

these pages. In this case the cost of migration is

proportional to the size of the resident set rather

than the size of memory.

In systems that use precopying (such as the V

[TLC85] system), pages are transferred while the

program continues to run at the source host. When

the job stops at the source, it will have to trans-

fer again any pages that have become dirty during

8

the precopy. Although the number of pages trans-

ferred might be increased, the delay imposed on the

migrant process is greatly decreased.

Additional techniques can reduce the cost of

transferring memory even more ([Zay87]).

4.2 Migration costs in real systems

The speci�c parameters of migration cost depend

not only on the nature of the system (as discussed

above) but also on the speed of the network. In

this section, we will present reported values for pa-

rameters on a variety of real systems. Later we will

use a trace-driven simulator to evaluate the e�ect

of these parameters on system performance.

The cost of remote execution, r, on a typical

UNIX workstation connected to an Ethernet is 1 {

4 seconds. Systems which use remote execution for

load sharing have made an e�ort to reduce this cost.

On Sprite [DO91] r � :33 seconds. Similarly for

GLUNIX [VGA94], an operating system designed

for networks of workstations connected by an ATM

network, r = :25 { :5 seconds [Vah95]. The Utopia

System takes � 1:0 seconds to establish a connec-

tion between source and target hosts, but once this

is done, subsequent remote executions can take as

little as :1 seconds [ZWZD93].

On Sprite preemptive migrations took :33 seconds

plus 2:0 seconds per megabyte of memory trans-

ferred. By implementing migration at the kernel

level, MOSIX reduces the �xed cost, f , to only 6

ms; the inverse memory transfer bandwidth, 1=b, is

:44 seconds per megabyte [Bra95].

It appears that the �xed part of the cost of pre-

emptive migration is determined by the implemen-

tation of migration; the memory transfer cost de-

pends mostly on properties of the network.

5 Trace-driven Simulation

In this section we present the results of a trace-

driven simulation of process migration. We com-

pare two migration strategies: our proposed age-

based preemptive migration strategy (Section 3.2)

and a non-preemptive strategy that migrates new-

born processes according to the process name

(similar to strategies proposed by [WZKL93] and

[Sve90]). Although we use a simple name-based

strategy, we give it the bene�t of several unfair ad-

vantages; for example, the name-lists are derived

from the same trace data used by the simulator.

Section 5.1 describes the simulator and the two

strategies in more detail. We use the simulator to

run three experiments. First, in Section 5.2, we

evaluate the sensitivity of each strategy to the pa-

rameters r, f , b, andm discussed in Section 4. Next,

in Section 5.3, we choose values for these parame-

ters which are representative of current systems and

compare the performance of the two strategies in

detail. Lastly, in Section 5.4, we evaluate the an-

alytic criterion for migration age (proposed in Sec-

tion 3.2) used in our preemptive migration strategy,

compared to criteria used in the literature.

5.1 The Simulator

We have implemented a trace-driven simulation of

a network of six identical workstations.6 Processes

are submitted to hosts with start times and dura-

tions taken from real machine traces (from the same

machines used to measure the distribution of pro-

cess lifetimes). We selected 6 daytime intervals from

these traces, each eight hours long, and executed

them simultaneously on a simulated network.

Although the workloads on the six hosts are ho-

mogeneous in terms of the job mix and the approxi-

mate level of activity, there is considerable variation

during the eight-hour trace. At any given time, at

least one of the six hosts is usually idle; however,

during busy intervals, all six are active. In order to

evaluate the e�ect of these variations, we divided

the eight-hour trace into eight one-hour intervals.

We refer to these as runs 0 through 7, where the

runs are sorted from lowest to highest load. Run

0 has � 15000 processes; Run 7 has � 30000 pro-

cesses. The average duration of processes (for all

runs) is � :4 seconds. Thus the total utilization of

the system, �, is between :27 and :54.

Although the start times and durations of the

processes come from trace data, the memory size of

each process, which determines its migration cost,

is chosen randomly from a distribution (see Sec-

tion 5.2).

The strategies we considered are:

name-based non-preemptive migration

A process is eligible for migration only if its

name is on a list of processes that tend to be

long-lived. If an eligible process arrives at a

heavily-loaded host, the process is executed re-

motely on the host with the lowest load. Pro-

cesses cannot be migrated once they have be-

gun execution.

The performance of the name-based, non-

preemptive strategy depends on the list of el-

6The trace-driven simulator and the trace data will be

made available by anonymous FTP before publication.

9

igible process names. We derived this list by

sorting the processes from the traces accord-

ing to name and duration and selecting the

15 common names with long mean durations.

We chose a threshold on mean duration that

is empirically optimal (for this set of runs).

Adding more names to the list detracts from

the performance of the system, as it allows

more short-lived processes to be migrated. Re-

moving names from the list detracts from per-

formance as it becomes impossible to migrate

enough processes to balance the load e�ec-

tively. Since we used the trace data itself to

construct the list, our results may overestimate

the performance bene�ts of this strategy.

age-based preemptive migration A process is

considered eligible for migration only if it has

aged for some fraction of its migration cost.

Based on the derivation in Section 3.2, this

fraction is 1

n�m
, where n (respectively m) is

the number of processes at the source (target)

host.

When a new process is born at a heavily-loaded

host, any process that satis�es the migration

criterion is migrated away. Since the system

can only initate a migration when a new pro-

cess arrives, it misses some migration opportu-

nities. We have examined strategies that allow

migration at times other than process arrivals,

and they do improve the performance of the

system, but we have omitted them here to fa-

cilitate comparison between the two migration

strategies.

Both migration strategies depend on the de�ni-

tion of a heavily-loaded host. Like Zhou ([Zho89])

and others, we use a simple threshold on the number

of jobs in the run queue. Alternative strategies that

use more global load information improved system

performance somewhat, but they are not the focus

of this paper. We chose a load threshold of 2 pro-

cesses; any time more than one process is running

on a host, one of them may be migrated away.

5.1.1 Metrics

We evaluate the e�ectiveness of each strategy ac-

cording to the following performance metrics:

mean slowdown Slowdown is the ratio of wall-

clock execution time to CPU time (thus, it is

always greater than one). The average slow-

down of all jobs is a common metric of sys-

tem performance. When we compute the ratio

of mean slowdowns (as from di�erent strate-

gies) we will use normalized slowdown, which is

the ratio of inactive time (the excess slowdown

caused by queueing and migration delays) to

CPU time. For example, if the (unnormalized)

mean slowdown drops from 2:0 to 1:5, the ratio

of normalized mean slowdowns is :5=1:0 = :5,

and thus it is more meaningful to report a 50%

reduction in delay than a 25% improvement in

performance.

Mean slowdown alone, however, is not a su�cient

measure of the di�erence in performance of the two

strategies; it understates the advantages of the pre-

emptive strategy for these two reasons:

1. Skewed distribution of slowdowns: Even in the

absence of migration, the majority of processes

su�er small slowdowns (typically 80% are less

than 3.0. See Figure 3). The value of the mean

slowdown will be dominated by this majority.

2. User perception: From the user's point of view,

the important processes are the ones in the tail

of the distribution, because although they are

the minority, they cause the most noticeable

and annoying delays. Eliminating these delays

might have a small e�ect on the mean slow-

down, but a large e�ect on the user's percep-

tion of performance.

Therefore, we will also consider the following two

metrics:

variance of slowdown : This metric is often

cited as a measure of the unpredictability of

response time [SPG94], which is a nuisance for

users trying to schedule tasks. In light of the

distribution of slowdowns, however, it may be

more meaningful to interpret this metric as a

measure of the length of the tail of the distri-

bution; i.e. the number of jobs that experience

long delays.

number of severely slowed processes : In or-

der to quantify the number of noticeable delays

explicitly, we consider the number (or percent-

age) of processes that are severely impacted by

queueing and migration penalties.

For the sake of simplicity, we assume that pro-

cesses are always ready to run (i.e. are never

blocked on I/O). During a given time interval, we

divide CPU time equally among the processes on

the host.

10

Distribution of slowdowns

Slowdown

Fraction
of procs

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

Figure 3: Distribution of process slowdowns for run

0 (with no migration). Most processes su�er small

slowdowns, but the processes in the tail of the distri-

bution are more noticeable and annoying to users.

In real systems, part of the migration time is

spent on the source host packaging the transferred

pages, part in transit in the network, and part on

the target host unpacking the data. The size of

these parts and whether they can be overlapped de-

pend on details of the system. In our simulation we

charge the entire cost of migration to the source

host. This simpli�cation is a pessimistic assump-

tion for advocates of preemptive migration.

5.2 Sensitivity to migration costs

In this section we compare the performance of the

non-preemptive and preemptive strategies over a

range of values of r, f , b and m (the migration cost

parameters de�ned in Section 4).

For the following experiments, we chose the re-

mote execution cost r = :3 seconds. We considered

a range for the �xed migration cost of :1 < f < 10

seconds.

The memory transfer cost is the quotient of m

(the memory size of the migrant process) and b (the

bandwidth of the network). We chose the mem-

ory transfer cost from a distribution with the same

shape as the distribution of process lifetimes, set-

ting the mean memory transfer cost (MMTC) to a

range of values from 1 to 64.

The shape of the memory transfer cost distribu-

tion is based on an informal study of memory-use

1 2 4 8 16 32 64
0.1

1

3

10

Mean memory transfer cost (sec.)

F
ix

ed
 m

ig
ra

tio
n

co
st

 (
se

c.
)

Ratio of mean slowdowns

PREEMPTIVE
BETTER HERE

NON−PREEMPTIVE
BETTER HERE

X

0.6

0.7

0.8

0.9

1.0
1.1

1.2

Figure 4: The performance of preemptive migration

relative to non-preemptive migration deteriorates as

the cost of preemptive migration increases. The two

axes are the two components of the preemptive mi-

gration cost. The cost of non-preemptive migration

is held �xed. The \X" marks the particular set of

parameters which we will consider in the next sec-

tion.

patterns on the same machines from which we col-

lected trace data. The important feature of this

distribution is that there are many jobs with small

memory demands and a few jobs with very large

memory demands. The exact form of this distribu-

tion does not a�ect the performance of either mi-

gration strategy strongly, but of course the mean

(MMTC) does have a strong e�ect.

Figures 4 and 5 are contour plots of the ratio

of the performance of the two migration strategies

using normalized slowdown. Speci�cally, for each

of the eight one-hour runs we calculate the mean

(respectively standard deviation) of the slowdown

imposed on all processes that complete during the

hour. For each run, we then take the ratio of the

means (standard deviations) of the two strategies.

Lastly we take the geometric mean [HP90] of the

eight ratios.

The two axes in Figures 4 and 5 represent the two

components of the cost of preemptive migration,

namely the �xed cost (f) and the MMTC (m=b).

As mentioned above, the cost of non-preemptive

migration (r) is �xed at :3 seconds. As expected,

increasing either the �xed cost of migration or the

MMTC hurts the performance of preemptive mi-

11

1 2 4 8 16 32 64
0.1

1

3

10

Mean memory transfer cost (sec.)

F
ix

ed
 m

ig
ra

tio
n

co
st

 (
se

c.
)

Ratio of std of slowdowns

PREEMPTIVE
BETTER EXCEPT
UPPER RIGHTX

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: The standard deviation of slowdown may

give a better indication of the users' perception of

system performance than mean slowdown. By this

metric, the bene�t of preemptive migration is even

more signi�cant.

gration. The contour line marked 1:0 indicates the

crossover where the performance of preemptive and

non-preemptive migration is equal (the ratio is 1:0).

For smaller values of these parameters, preemptive

migration performs better; for example, if the �xed

migration cost is .33 seconds and the MMTC is 2

seconds, the normalized mean slowdown with pre-

emptive migration is � 40% lower than with non-

preemptive migration. When the �xed cost of mi-

gration or the MMTC are very high, almost all pro-

cesses are ineligible for preemptive migration; thus,

the preemptive strategy does almost no migrations.

The non-preemptive strategy is una�ected by these

costs so the non-preemptive strategy can be more

e�ective.

Figure 5 shows the e�ect of migration costs on

the standard deviation of slowdowns. The crossover

point | where non-preemptive migration surpasses

preemptive migration | is considerably higher in

Figure 5 than in Figure 4. Thus there is a region

where preemptive migration yields a higher mean

slowdown than non-preemptive migration, but a

lower standard deviation. The reason for this is

that non-preemptive migration occasionally chooses

a process for remote execution that turns out to be

short-lived. These processes su�er large slowdowns

(relative to their runtimes) and add to the tail of

the distribution of slowdowns. In the next section,

Mean slowdown

0 1 2 3 4 5 6 7
run number

1.0

2.0

3.0

4.0
no migration

non-preemptive, name-based migration
preemptive, age-based migration

Figure 6: Mean slowdown of all processes (mini-

mum possible slowdown is 1.0).

we show cases in which the standard deviation of

slowdowns in actually worse with preemptive mi-

gration than with no migration at all (three of the

eight runs).

5.3 Comparison of

preemptive and non-preemptive

migration strategies

In this section we choose migration cost parameters

representative of current systems (see Section 4.2)

and use them to examine more closely the perfor-

mance of the two migration strategies. The values

we chose are:

� r: the cost of remote execution, .3 seconds

� f : the �xed cost of preemptive migration, .3

seconds

� b: the memory transfer bandwidth, .5 MB per

second

� m: the meanmemory size of migrant processes,

1 MB

In Figures 4 and 5, the point corresponding to

these parameter values is marked with an \X". Fig-

ures 6{9 show the performance of the two migration

strategies at this point (compared to the base case

of no migration).

12

Standard deviation of slowdown

0 1 2 3 4 5 6 7
run number

0.0

1.0

2.0

3.0

4.0
no migration

non-preemptive, name-based migration
preemptive, age-based migration

Figure 7: Standard deviation of slowdown.

Processes slowed by a factor of 3 or more

0 1 2 3 4 5 6 7
run number

0%

10%

20%

30%

no migration
non-preemptive, name-based migration

preemptive, age-based migration

Figure 8: Percentage of processes slowed by a factor

of 3 or more.

Processes slowed by a factor of 5 or more

0 1 2 3 4 5 6 7
run number

0%

5%

10%

15%

20%
no migration

non-preemptive, name-based migration
preemptive, age-based migration

Figure 9: Percentage of processes slowed by a factor

of 5 or more.

Non-preemptive migration reduces the normal-

ized mean slowdown (Figure 6) by less than 20% for

most traces (and � 40% for the two traces with the

highest loads). Preemptive migration reduces the

normalized mean slowdown by 50% for most traces

(and more than 60% for two of the traces). The

performance improvement of preemptive migration

over non-preemptive migration is typically between

35% and 50%.

As discussed above, we feel that the mean slow-

down (normalized or not) understates the perfor-

mance bene�ts of preemptive migration. We have

proposed other metrics to try to quantify these ben-

e�ts. Figure 7 shows the standard deviation of slow-

downs, which re
ects the number of severely im-

pacted processes. Figures 8 and 9 explicitly mea-

sure the number of severely impacted processes, ac-

cording to two di�erent thresholds of acceptable

slowdown. By these metrics, the bene�ts of migra-

tion in general appear greater, and the discrepancy

between preemptive and non-preemptive migration

appears much greater. For example in Figure 9, in

the absence of migration, 7 � 18% of processes are

slowed by a factor of 5 or more. Non-preemptive

migration is able to eliminate 42 � 62% of these,

which is a signi�cant bene�t, but preemptive mi-

gration consistently eliminates nearly all (86�97%)

severe delays.

An important observation from Figure 7 is that

for several traces, non-preemptive migration actu-

13

ally makes the performance of the system worse

than if there were no migration at all. For the pre-

emptive migration strategy, this outcome is nearly

impossible, since migrations are only performed if

they improve the slowdowns of all processes in-

volved (in expectation). In the worst case, then,

the preemptive strategy will do no worse than the

case of no migration.

Another bene�t of preemptive migration is grace-

ful degradation of system performance as load in-

creases (as shown in Figures 6{9). In the presence of

preemptive migration, both the mean and standard

deviation of slowdown are nearly constant, regard-

less of the overall load on the system.

5.3.1 Shortcomings of Non-preemptive Mi-

gration

The alternate metrics discussed above shed some

light on the reasons for the performance di�er-

ence between preemptive and non-preemptive mi-

gration. Two kinds of mistakes are possible in a

non-preemptive, name-based strategy that are elim-

inated by the age-based, preemptive strategy:

Migrating short-lived jobs whose names are

on the list of eligible processes: This type

of error imposes large slowdowns on the mi-

grated process, wastes network resources, and

fails to e�ect signi�cant load-balancing. It

might improve the performance of name-based

systems to exclude names with high mean life-

times but high variance.

Failing to migrate long-lived jobs whose

names are not on the list: This type of

error imposes moderate slowdowns on the po-

tential migrant, and, more importantly, in
icts

delays on short jobs that are forced to share a

processor with a CPU hog.

In our simulations, the second type of error was

more signi�cant: most severely-slowed jobs su�ered

because they were forced to run on a heavily-loaded

host, and not because they su�ered migration de-

lays. Even occasional mistakes of the second kind

can have a large impact on performance because one

long job on a busy machine will impede many small

jobs. The primary bene�t of preemptive migration

is the ability to migrate long jobs away from busy

hosts so that subsequent small jobs run unimpeded.

Preemptive migration is e�ective because it is more

successful at identifying these long jobs.

Because preemptive migration is not limited to a

set of eligible migrants, the total number of migra-

tions is higher under preemptive migration than un-

der non-preemptive migration. Nevertheless, typi-

cally fewer than 4% of processes are migrated once

and fewer than :25% of all processes are migrated

more than once.

5.4 Evaluation of analytic migration

criterion

As derived in Section 3.2, the minimum age for a

migrant process according to the analytic criterion

is

Minimum

migration age
=

Migration cost

(n�m)

where n is the load at the source host and m is

the load at the target host (including the potential

migrant).

In order to evaluate the performance of this cri-

terion, we will compare it with the �xed parameter

criterion:

Minimum

migration age
= � �Migration cost

where � is a free parameter. For comparison, we

will use the best �xed parameter, which is, for each

trace, the best parameter for that trace, chosen em-

pirically by running the trace with a range of param-

eter values (of course, this gives the �xed parameter

criterion a considerable advantage).

As discussed in Section 3.2, MOSIX uses the pa-

rameter � = 1:0, based on a worst-case analysis of

the slowdown imposed on the migrant. Although

this age threshold o�ers a strict limit on the slow-

down seen by a migrant process, it imposes greater

slowdowns on the processes that would have bene-

�ted if a younger process were allowed to migrate

away. A previous simulation study [KL88] chose a

lower value for this parameter (� = 0:1), but did

not explain how it was chosen.

Figures 10 and 11 compare the performance of the

analytic minimum age criterion with the best �xed

parameter (�). The best �xed parameter varies con-

siderably from trace to trace, and appears to be

roughly correlated with the average load during the

trace (the traces are sorted in increasing order of

total load).

The performance of the analytic criterion is al-

ways within a few percent of (and sometimes better

than) the performance of the best �xed value crite-

rion. The advantage of the analytic criterion is that

it is parameterless, and therefore more robust across

a variety of workloads. We feel that the elimination

of one free parameter is a useful result in an area

with so many (usually hand-tuned) parameters.

14

Mean slowdown

1.0

1.5

2.0

2.5

(0.3) (0.5) (0.5) (0.3) (0.3) (0.5) (0.8) (0.9)

best fixed parametric min. age
analytic minimum age

0 1 2 3 4 5 6 7

Figure 10: The mean slowdown for eight runs, us-

ing the two criteria for minimum migration age.

The value of the best �xed parameter � is shown

in parentheses for each trace.

Std. dev. of slowdowns

0

0.5

1.0

1.5

(0.4) (0.5) (0.5) (0.3) (0.3) (0.5) (0.7) (0.7)

best fixed parametric min. age
analytic minimum age

0 1 2 3 4 5 6 7

Figure 11: The standard deviation of slowdowns us-

ing the two criteria for minimum migration age.

6 Weaknesses of the model

Our simulation ignores a number of factors that

would a�ect the performance of migration in real

systems:

I/O : Our model considers all jobs CPU-bound;

thus, their response time necessarily improves

if they run on a less-loaded host. For I/O

bound jobs, however, CPU contention has lit-

tle e�ect on response time. These jobs would

bene�t less from migration.

interaction : Our model of migration cost consid-

ers only the cost of transferring a process, and

not the additional costs imposed on future in-

teraction and other I/O. For some jobs, these

additional costs might be signi�cant. To see

how large a role this plays, we noted the names

of the processes which came up most frequently

in our traces (with cpu time greater than 1 sec-

ond, since these are the processes most likely

to be migrated). The two most common names

by far were \cc1plus" and \cc1," both of which

are CPU bound. Next most frequent were: trn,

cpp, ld, jove (a version of emacs), and ps. So

although there are some jobs in our traces that

are in reality interactive, our model is reason-

able for many of the most common jobs.

memory size : In this paper we've made the pes-

simistic simpli�cation that a migrant's entire

memory must be transferred. However, we

have not been able to make a claim about the

size of this memory for processes on current

systems. It would be useful to examine mem-

ory transfer costs in more detail.

network contention : Our model does not con-

sider the e�ect of increased network tra�c as a

result of process migration. We observe, how-

ever, that for the load levels we simulated, mi-

grations are occasional (one every few seconds),

and that there is seldom more than one migra-

tion in progress at a time.

7 Conclusions

� Preemptive migration outperforms

non-preemptive migration even when memory-

transfer costs are high, for the following reason:

Non-preemptive name-based strategies choose

processes for migration that are expected to

have long lives. If this prediction is wrong, and

a process runs longer than expected, it cannot

15

be migrated away, and many subsequent small

processes will be delayed. A preemptive strat-

egy is able to make a more accurate prediction

about the duration of a process (based on the

its age) and, more importantly, if the predic-

tion is wrong, it can recover by migrating the

process later.

� Using the functional form of the distribution

of process lifetimes, we have derived a crite-

rion for the minimum time a process must age

before being migrated. This criterion is param-

eterless and robust across a range of loads.

� Exclusive use of mean slowdown as a metric of

system performance understates the bene�ts of

load balancing as perceived by users, and es-

pecially understates the bene�ts of preemptive

load balancing.

� Although preemptive migration is di�cult to

implement, several systems have chosen to im-

plement it for reasons other than load balanc-

ing. Our results suggest these systems would

bene�t from preemptive load balancing.

8 Acknowledgements

We'd like to thank TomAnderson and the members

of the NOW group for comments and suggestions on

our experimental setup, as well as on the prepara-

tion of this paper.

References

[AE87] Rakesh Agrawal and Ahmed Ezzet.

Location independent remote ex-

ecution in NEST. IEEE Trans-

actions on Software Engineering,

13(8):905{912, August 1987.

[AF89] Y. Artsy and R. Finkel. Design-

ing a process migration facility:

The Charlotte experience. IEEE

Computer, pages 47{56, September

1989.

[BF81] Raymond M.

Bryant and Raphael A. Finkel. A

stable distributed scheduling algo-

rithm. In 2nd International Confer-

ence on Distributed Computing Sys-

tems, pages 314{323, 1981.

[BK90] Flavio Bonomi and Anurag Kumar.

Adaptive optimal load balancing in

a nonhomogeneous multiserver sys-

tem with a central job scheduler.

IEEE Transactions on Computers,

39(10):1232{1250, October 1990.

[Bra95] Avner Braverman, 1995. Personal

Communication.

[BSW93] Amnon Barak, Guday Shai, and

Richard G. Wheeler. The MOSIX

Distributed Operating System:Load

Balancing for UNIX. Springer Ver-

lag, Berlin, 1993.

[CK87] Thomas L. Cassavant and Jon G.

Kuhl. Analysis of three dynamic

distributed load-balancing strate-

gies with varying global informa-

tion requirements. In 7th Inter-

national Conference on Distributed

Computing Systems, pages 185{

192, September 1987.

[DHB95] Allen B. Downey and Mor Harchol-

Balter. A note on \The limited

performance bene�ts of migrating

active processes for load sharing".

Technical Report UCB//CSD-95-

888, University of California,

Berkeley, November 1995.

[DO91] Fred Douglis and John Ousterhout.

Transparent process migration: De-

sign alternatives and the sprite im-

plementation. Software { Practice

and Experience, 21(8):757{785, Au-

gust 1991.

[EB93] D. J. Evans and W. U. N. Butt.

Dynamic load balancing using task-

transfer probablilites. Parallel

Computing, 19:897{916, August

1993.

[ELZ86] Derek L. Eager, Edward D. La-

zowska, and John Zahorjan. Adap-

tive load sharing in homogeneous

distributed systems. IEEE Trans-

actions on Software Engineering,

12(5):662{675, May 1986.

[ELZ88] Derek L. Eager, Edward D. La-

zowska, and John Zahorjan. The

limited performance bene�ts of mi-

grating active processes for load

16

sharing. In SIGMETRICS, pages

662{675, May 1988.

[GGI+91] G.W. Gerrity, A. Goscinski, J. In-

dulska, W. Toomey, and W. Zhu.

RHODOS{a testbed for studying

design issues in distributed operat-

ing systems. In Towards Network

Globalization (SICON 91): 2nd

International Conference on Net-

works, pages 268{274, September

1991.

[HJ90] Anna Ha�c and Xiaowei Jin. Dy-

namic load balancing in a dis-

tributed system using a sender-

initiated algorithm. Journal of Sys-

tems Software, 11:79{94, 1990.

[HP90] John L. Hennessy and David A.

Patterson. Computer Architecture

A Quantitative Approach. Morgan

Kaufmann Publishers, San Mateo,

CA, 1990.

[KL88] Phillip Krueger and Miron Livny. A

comparison of preemptive and non-

preemptive load distributing. In 8th

International Conference on Dis-

tributed Computing Systems, pages

123{130, June 1988.

[Kun91] Thomas Kunz. The in
uence of

di�erent workload descriptions on

a heuristic load balancing scheme.

IEEE Transactions on Software

Engineering, 17(7):725{730, July

1991.

[LL90] M. Litzkow and M. Livny. Expe-

rience with the Condor distributed

batch system. In IEEE Workshop

on Experimental Distributed Sys-

tems, pages 97{101, 1990.

[LLM88] M.J. Litzkow, M. Livny, and M.W.

Mutka. Condor - a hunter of idle

workstations. In 8th International

Conference on Distributed Comput-

ing Systems, June 1988.

[LM82] Miron Livny and Myron Melman.

Load balancing in homogeneous

broadcast distributed systems. In

ACM Computer Network Perfor-

mance Symposium, pages 47{55,

April 1982.

[LO86] W. E. Leland and T. J. Ott. Load-

balancing heuristics and process be-

havior. In Proceedings of Perfor-

mance and ACM Sigmetrics, vol-

ume 14, pages 54{69, 1986.

[LR93] Hwa-Chun Lin and C.S. Raghaven-

dra. A

state-aggregation method for ana-

lyzing dynamic load-balancing poli-

cies. In IEEE 13th International

Conference on Distributed Comput-

ing Systems, pages 482{489, May

1993.

[MTS90] Ravi Mirchandaney, Don Towsley,

and John A. Stankovic. Adap-

tive load sharing in heterogeneous

distributed systems. Journal of

Parallel and Distributed Comput-

ing, 9:331{346, 1990.

[Nut94] Mark Nuttall. Survey of systems

providing process or object migra-

tion. Technical Report DoC94/10,

Imperial College Research Report,

1994.

[PM83] M.L. Powell and B.P. Miller. Pro-

cess migrations in DEMOS/MP. In

ACM-SIGOPS 6th ACM Sympo-

sium on Operating Systems Prin-

ciples, pages 110{119, November

1983.

[PTS88] Spiridon Pulidas, Don Towsley, and

John A. Stankovic. Imbedding gra-

dient estimators in load balancing

algorithms. In 8th International

Conference on Distributed Comput-

ing Systems, pages 482{490, June

1988.

[Rom91] C. Gary Rommel. The probability

of load balancing success in a ho-

mogeneous network. IEEE Trans-

actions on Software Engineering,

17:922{933, 1991.

[Ros65] Robert F. Rosin. Determining

a computing center environment.

Communications of the ACM, 8(7),

1965.

[SPG94] A. Silberschatz, J.L. Peterson, and

P.B. Galvin. Operating System

Concepts, 4th Edition. Addison-

Wesley, Reading, MA, 1994.

17

[Sve90] Anders Svensson. History, an in-

telligent load sharing �lter. In

IEEE 10th International Confer-

ence on Distributed Computing Sys-

tems, pages 546{553, 1990.

[Thi91] G. Thiel. Locus operating sys-

tem, a transparent system. Com-

puter Communications, 14(6):336{

346, 1991.

[TLC85] Marvin M. Theimer, Keith A.

Lantz, and David R Cheriton. Pre-

emptable remote execution facili-

ties for the V-System. In ACM-

SIGOPS 10th ACM Symposium

on Operating Systems Principles,

pages 2{12, December 1985.

[TvRaHvSS90] A.S. Tanenbaum, R. van Renesse

adn H. van Staveren, and G.J.

Sharp. Experiences with the

Amoeba distributed operating sys-

tem. Communications of the ACM,

pages 336{346, December 1990.

[Vah95] Amin Vahdat, 1995. Personal Com-

munication.

[VGA94] Amin M. Vahdat, Douglas P.

Ghormley, and Thomas E. Ander-

son. E�cient, portable, and ro-

bust extension of operating sys-

tem functionality. Technical Report

UCB//CSD-94-842, University of

California, Berkeley, 1994.

[WM85] Yung-Terng Wang and Robert J.T.

Morris. Load sharing in dis-

tributed systems. IEEE Transac-

tions on Computers, c-94(3):204{

217, March 1985.

[WZKL93] J. Wang, S. Zhou, K.Ahmed, and

W. Long. LSBATCH: A distributed

load sharing batch system. Tech-

nical Report CSRI-286, Computer

Systems Research Institute, Uni-

versity of Toronto, April 1993.

[Zay87] E. R. Zayas. Attacking the pro-

cess migration bottleneck. In

ACM-SIGOPS 11th ACM Sympo-

sium on Operating Systems Princi-

ples, pages 13{24, 1987.

[Zho89] Songnian Zhou. Performance stud-

ies for dynamic load balancing in

distributed systems. PhD Dis-

sertation, University of California,

Berkeley, 1989.

[ZWZD93] S. Zhou, J. Wang, X. Zheng, and

P. Delisle. Utopia: a load-sharing

facitlity for large heterogeneous dis-

tributed computing systems. Soft-

ware { Practice and Expeience,

23(2):1305{1336, December 1993.

18

