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Abstract

This thesis describes the development of WALKEDIT, an object placement editor for the Berkeley

architectural WALKTHRU system. In addition to incorporating editing operations commonly found

in 2D and 3D model editors, two new major results were achieved.

First, a system for simple and natural direct manipulation of 3D objects was created. This system,

which we call Object Associations, is a software framework that provides a uni�ed method for

designing and implementing convenient direct manipulation behaviors for objects in a 3D virtual

environment. A combination of nearly realistic pseudophysical behavior and idealized goal-oriented

properties is used to disambiguate 2D mouse actions on the display screen into appropriate and

natural object motion in the 3D virtual world, and to determine valid and desirable �nal locations

for objects being manipulated. Objects selected for relocation actively look for nearby objects or

structures to associate and align themselves with. An automated implicit grouping mechanism falls

out of this process. Concept, structure, and our implementation of this framework are presented.

Second, the realism of the WALKTHRU real-time rendering system was enhanced by the addition

of physical simulation software. A �rst set of routines provides the virtual user with an adjustable

eye height, which is dynamically maintained through a combination of feedback control techniques

and discrete time physical simulation. This gives a much more natural feeling to moving through the

building, allowing the user to look up and down while walking, and permitting realistic use of stairs

and elevators. In a separate experiment, the Lin-Canny closest features algorithm and a fast con-

tact force computation algorithm was integrated with the object associations system, allowing true

collision detection and pseudo-static simulation of moving objects. The implementation, tradeo�s,

and success of this experiment are presented and discussed.
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1 Introduction

Easy to use, comprehensive modeling systems remain elusive and di�cult to devise. In fact,
the modeling problem provides many more di�culties than the rendering problem. People
have frequently asked me \How long did it take to render the picture?" Rarely do questions
relating to the duration of modeling tasks arise.

Donald Greenberg, Jan. 1991 [26]

Berkeley's building walkthrough program (WALKTHRU) was intended to provide the user with the
ability to move in real time through models of large buildings fully populated with furniture. By 1991,
that goal had been realized; however, the conceptual design of WALKTHRU did not include techniques
for creating the building model in the �rst place. The modeling process for our one base model, that
of Berkeley's new Soda Hall, was a long and di�cult one, requiring months of manual calculations to
determine precise 
oating point locations and dimensions for walls and furniture. These building elements
were entered into text �les by hand, compiled with a UniGra�x compiler, pre-processed with the visibility
routines, and, �nally, displayed on the screen. Often, the result contained poorly placed walls and objects
that intersected each other or 
oated in space. These problems were resolved by manually estimating
the errors in object positions and correcting the numerical o�sets in the text �le. The entire hours-long
recompilation process would then be repeated, after which more alignment problems would inevitably
be visible, requiring further iterations of the modify/recompile process.

Given the level of modern interactive technology, there is no reason why model construction should be
such an arduous text-based process. This thesis describes the development of WALKEDIT, an interactive
editor for the WALKTHRU system which allows users of the WALKTHRU to manipulate the contents
of building models interactively within the virtual building environment. The WALKEDIT project
began several years ago with an e�ort by Thurman Brown to add standard editing operations to the
WALKTHRU environment [11]. Since then, many new techniques have been added that allow the user to
pick up, move, copy, and otherwise manipulate furniture and other objects interactively and intuitively
fromwithin the real-time rendering environment used in the originalWALKTHRU application [23]. Such
interaction is facilitated by a newly developed 3D manipulation paradigm, called object associations,
which provides intuitive object behaviors. Under the in
uence of object associations, books and cups
move in tandem with the desks they are stacked on, furniture slides along the 
oor rather than 
oating
through the air, and wall hangings re-orient themselves as they move to lie 
ush against supporting
walls.
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User motion in WALKEDIT has been modi�ed so that the user's \virtual body" behaves in a more
physically realistic fashion. The virtual body obeys a set of pseudo-physical rules that simulate normal
movement through buildings, allowing the user to walk up and down staircases and use elevators natu-
rally. This has been found to contribute a great deal to the realism of the walkthrough experience. We are
also experimenting with further enhancements such as dynamic simulation and solid-object interactions
which will further enhance the realism and usability of the user interface.
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2 Background and Previous Work

Creating a fully equipped and accurate model of a 3D environment for any purpose (graphics, CAD,
modeling, etc.) is an arduous task. Even assuming the availability of a good interactive 3D geometry
editor with a friendly and e�cient user interface, such tasks are inherently much more di�cult than
drafting and editing in only two dimensions. In the �rst portion of this section, we will discuss the
challenges inherent in the 3D direct manipulation task with modern computer hardware, and approaches
that have been taken in the past to meet those challenges. Later, we will focus on our chosen problem
domain, that of manipulation of furnishings in an architectural environment.

2.1 General 3D Interactive Direct Manipulation Techniques

2.1.1 3D Hardware

A seemingly obvious solution to the problems of 3D direct manipulation is the use of 3D displays
and 6 degree of freedom (DOF) input devices. This approach eliminates the mismatch between the
dimensionality of popular display and input technology (2D screens and mice) and the dimensionality
of the virtual environment. Unfortunately, at their present level of development, these technologies do
not yet provide a cost-e�ective and practical solution to the 3D direct manipulation task.

Current 3D display technology tends to rely on CRT-based \shutter goggles" or head mounted stereo
displays. Shutter goggles provide almost no sense of immersion in the virtual world, and give no im-
mediate perceptual bene�t because the user still cannot move his or her head to realistically examine
the object from di�erent angles. A�ordable head-mounted displays are slow and have poor resolution
and �eld of view for their proximity to the eye. Tracker radius limitations, wiring and cords, bulky and
heavy equipment, and physical interference of the user's real body with the objects in the real world
make them physically cumbersome.

Most 6 DOF input devices such as the \SpaceBall" [5], \DataGlove," or 3D mice [47] are awkward, tiring
to use for an extended period of time, and too expensive for the typical user. They tend to have much
lower sampling rates and far higher noise and jitter than 2D devices, due to the limitations of today's 3D
tracking technology. Even more fundamentally, they fail to solve the problems of 3D placement. Precise
placement of objects in three dimensions is hard { even in the real world { unless we get help from the
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physical or conceptual interactions of the objects we want to place with their surroundings. Consider
positioning a picture frame one millimeter in front of a wall without touching the wall with the frame
or with your hands; visual feedback alone cannot do a satisfactory job. With a noisy, slow, inaccurate
tracker and a picture frame that will sink into the wall surface with no tactile feedback, the user can
quickly become frustrated.

2.1.2 On-Screen Widgets

Due to the limitations of 3D displays and 6 DOF devices, a great deal of research has been directed
toward software-based techniques for manipulating 3D objects with standard, low-cost 2D input and
output devices. The challenge in this approach is to design a method for controlling all six DOF of a
3D object with only 2D user input.

Most 3D direct manipulation solutions implicitly or explicitly assume the use of 3D widget sets. A widget
is an auxiliary graphical construct, such as a set of axis-aligned arrow handles or a rotation sphere, which
is added to the on-screen display of the object (see �gure 2 for some examples of 3D widgets). This
construct is directly manipulated with the mouse to move the object in a clearly constrained way speci�c
to the widget type. Neilson and Olsen provide an overview of many of the earlier widget-based techniques
such as transformation and rotation handles [37]. Later work either improved the widgets themselves,
such as the ARCBALL work which removed the hysteresis from the earlier \crystal ball" manipulator
[39], or explored new, specialized 3D widget types, such as recent work at Brown on 3D widget classes
based on deformation and constraint linkages [51, 41]. Most commercial direct manipulation systems
that are not true CAD systems, such as Silicon Graphics' Inventor modeling system [42], use 3D widgets
to provide their direct manipulation capabilities.

The tendency of widgets to dominate 3D direct manipulation seems to be a legacy of the older 2D direct
manipulation problem, for which we have an established and proven set of 2D constraints and widgets
that provide easy-to-use and easy-to-generate 2D direct manipulation interfaces [17, 25]. The implicit
assumption is that the techniques that worked in 2D will work equally well in 3D. Chen's work in 1988
supports this idea by showing that a combination of 2D input devices with these 3D widgets is no less
accurate or harder to use than modern 3D, 6 DOF input devices for most 3D manipulation tasks [14].
However, even the latest work concedes that 3D widgets have a long way to go before a 3D widget
set in a 3D virtual environment can rival the completeness of a 2D UI toolkit and direct manipulation
widgets in a 2D application domain [41]. Standard 3D widgets perform well if the manipulation tasks
are geometrically simple, involving only translations along or rotations around clearly de�ned axes, such
as local or global coordinate axes. If more complex actions are required, widgets can be cumbersome:
either the widget set is simple, requiring the user to use many widgets sequentially or simultaneously to
perform the task, or the widget set is large and complex, requiring the user to �nd and select, from a
set of menus or lists, the widget or widgets that are appropriate to a given situation. Widget sets can
also inherit some of the same problems as 6 DOF input devices; they often fail to consider interactions
between objects when the user is performing manipulations, or when they do, they are over-generalized,
requiring use of multiple widgets and actions for conceptually simple manipulations. In an attempt to
address these shortcomings, two other major categories of direct manipulation techniques have been
explored: constraint based systems and physics/dynamics based systems.

2.1.3 Constraint Systems

Constraints are a second lasting theme in manipulation design. Whereas widgets attempt to disam-
biguate 2D mouse motion to 3D motion by forcing the user to point to auxiliary \handles" on the
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object, constraints attempt to perform the disambiguation by allowing the user to specify, at the object
or object class level, which degrees of freedom the user is permitted to manipulate, and how changes in
those degrees of freedom will alter the other, constrained degrees of freedom. This allows the system
or the user to identify how a particular object can move without attaching widgets to it. Furthermore,
if the constraints are properly speci�ed, they automatically take care of local alignments that 6 DOF
manipulators and most 3D widgets fail to deal with. Pictures whose backs are constrained to lie in
the plane of the wall and whose angle is constrained to be vertical are always properly aligned in those
dimensions; the user can manipulate the pictures' 2D position in the only \real" degrees of freedom,
those parallel to the wall plane.

The two major problems with this approach have been well documented. First, constraint systems can
be di�cult to solve at interactive rates, forcing the designers to use limited solution techniques and
constraint sets that provide less functionality than one might want. Work on improving the techniques
behind constraint solutions is an open mathematical problem [28, 4, 9], one that is outside the scope of
this thesis.

Second, it is an onerous task for the user to manually specify and maintain the constraint networks needed
for direct manipulation [35, 31]. Just the internal constraint structure needed to create a cube contains 24
distinct constraint relationships; the number of constraints necessary to specify the relationships between
the objects in an average o�ce can be large, and the user may have to make and break them individually
in order to move objects. Some work has attempted to address this problem. Brad Myers attempts to
solve the constraint maintenance problem by having the system try to guess which constraints the user
wishes to impose; ideally, this reduces the problem to a matter of the user saying \yes" or \no" to the
computer's guesses [35]. Unfortunately, answering the computers' constant requests for con�rmation can
still be annoying, and the system will inevitably miss some constraints, which sends the user back to
manual entry. Kurlander takes a di�erent approach, allowing the user to feed the system \snapshots" of
the con�guration of the objects to be manipulated, from which the system infers and applies all possible
constraints that are not invalidated by any snapshot [31]. Myers' approach is prone to underestimation,
if the computer doesn't guess a constraint; in this case, the user must go back and explicitly add
it. Likewise, Kurlander goes to the other extreme and overestimates. With the �rst snapshot, the
system is constrained completely; if the user wishes to break a constraint, he or she must deactivate
all constraints, go to a CAD mode, move into the desired alignment, take another snapshot to give the
system an example of what it can do, and re-activate the engine. It is probably impossible to create
a system that will automatically determine and maintain all constraints for the user in all situations;
these systems, as well as our own object associations system, attempt to make the best possible guesses
to minimize the amount of dialogue necessary for the user to correct the computer's assumptions and
guesses.

2.1.4 Physics and Dynamics Systems

The third major theme in manipulation is the addition of partial or complete physics simulations to
force objects to behave \properly" when pushed, pulled, or otherwise manipulated. These techniques
attempt to take advantage of the user's real-world intuition about what an object will do when the user's
virtual \hand" applies a force to the object. Some interesting work has been done to determine which
aspects of the real world are the most helpful to direct manipulation in virtual environments. Smith
identi�es the balance of functionality between physical and \magic" (non-physical) behavior in Xerox
PARC's Virtual Reality Kit [40]. He notes that real-world behavior comes for \free" in a UI, in that
the user is familiar with physical behavior from real life and needs very little training to use it well in
a virtual environment. More virtual, \magic" tools, such as Eric Bier's snap-dragging [7], come with a
learning curve, requiring users to familiarize themselves with a new paradigm for interacting with objects.
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Figueiredo identi�es fast collision detection as a critical physical aspect of intuitive interaction with
virtual objects [21], presenting some usability results for various techniques of interacting with objects
using collision detection in toy environments. However, it is important that any direct manipulation
scheme address the balance between physical simulation and magic approaches like snap-dragging. A
purely physical system can force the user to go through unnecessary contortions to accomplish a task
that can easily be expressed by a simple, nonphysical constraint: an example is the Zashiki-Warashi
system by Yoshimura [50], which allows users to arrange furniture by \dropping" items with a gravity
simulation. The approach worked well for tables, chairs, and books, but made it di�cult to a�x pictures
or shelves to walls. Physical simulation augments other methods, it does not replace them.

A major problem with physical or dynamics-based systems is that they tend to be limited to small
environments (one room or a few objects) in order to maintain interactive speeds. The relationship of
usability to speed is well established [49, 23]; in order to maintain usable frame rates for interaction,
the fastest of modern CPUs and most advanced simulation techniques must be used. It is only recently
that available hardware and software components have become powerful enough to support dynamics in
extended interactive models [16, 19].

2.1.5 Combined Techniques and Virtual Environment Frameworks

Some approaches combine subsets of these three basic techniques to provide a more complete, structured
direct manipulation system. For example, Van Emmerik combines CAD views with both constraints
and \jacks," a type of 3D widget, to provide a complete solution for 6 DOF positioning via direct
manipulation [45, 46]. Bier also combines constraints and snapping behavior with 3D widgets to provide
an alignment solution for 3D direct manipulation [7]. Both methods have the advantage of not only
providing the user the ability to manipulate 3D objects with the 2D mouse, but also permitting precise
relative positioning by aligning lines, planes, and other geometries more easily than a pure constraint
system. However, they also have disadvantages: in Van Emmerik's system, a CAD-style orthographic
display is necessary, making it unclear how to generalize his techniques to a perspective-window virtual
environment, and both systems su�er from a profusion of modes and auxiliary jacks that the user must
be familiar with in order to perform basic manipulation tasks.

Other 3D direct manipulation design e�orts concentrate on providing VR frameworks within which direct
manipulation techniques can be embedded in a reasonable fashion. Unfortunately, most non-trivial VR
systems so far have either no interaction methods at all (such as our basic WALKTHRU [18, 23, 44], the
UNC walkthrough [1, 2, 10], or the various commercial walkthrough systems [48, 6]) or have an \open
interface" that supports attaching widgets to them, without many widgets actually implemented in a
nontrivial context [38, 15, 19]. A virtual environment system that fully supports direct manipulation in
a nontrivial world has yet to be presented.

2.2 Applications of Direct Manipulation to Architectural Environments

The body of work on direct manipulation of mechanical or architectural models is relatively limited. We
do not consider CAD environments such as AutoCAD [3] to have direct manipulation interfaces; such
tools are based on manipulation via numerical entry or operations such as o�set vectors and constraint
alignments, and make no pretense of o�ering natural manipulation of building contents or structure.

Architectural environments o�er a number of contextual advantages to direct manipulation. Objects in
a building tend to have a very speci�c, context- and object-dependent set of \valid" positions in the
environment. For example, a picture never 
oats freely in space, nor does it rest sticking 90 degrees
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out into the room; it rests with its back 
ush against some wall surface. Likewise, cups, books, and
other common objects always sit on a supporting surface. Users have shown a marked tendency to be
comfortable with restrictions placed on 3D manipulation based on how an object \should" behave [29].
Houde's user interface study, for example, describes users who, when told that they could not lay a chair
on its side, were undisturbed, responding with the phrase \well, it is a chair." Taking advantage of these
expected properties can allow the system to better disambiguate user intentions, better anticipate user
needs, and limit the command set to something easier for the user to deal with.

One example of an applied system is Gleicher's Briar system [24], which provides an intuitive method for
\rubberbanding" objects together in natural ways. Unfortunately, Briar requires extensive descriptions
of how the objects work before they can be manipulated, and those descriptions may only be de�ned in
terms of a limited set of linear constraints . Briar can do some interesting things with well-de�ned, simple
objects like gooseneck lamps; however, movements of objects such as chairs and cups, which normally
involve plane-to-plane constraints that change depending on when and how they are moved from place
to place, are beyond the capabilities of the system to adapt to new constraint types. Some systems have
gotten around this problem by going to physical simulation, such as the Zashiki-Warashi \virtual room
construction" software [50], which provides the user with a 3D, 6 DOF tracked wand pointer with which
objects can be \picked up," then dropped under gravitic force, which enforces a \reasonable" resting
pose for the object. Unfortunately, their gravity-only system fails for such objects as light �xtures (which
are supposed to sit on the ceiling, not the 
oor) or pictures (likewise, should sit on the wall). In such
cases, the system forces the user to go back to a CAD style, non-direct manipulation interface.

Houde at Apple's user interface research group provides perhaps the most easy-to-use approach [29],
one which to some degree parallels our object association system. Houde does a series of user interface
studies which attempt to develop a manipulation technique suitable for arranging furniture in virtual
rooms. They identify a number of ease-of-use properties for manipulating objects and furniture in a
virtual room, including:

1. Most objects want to move in some given plane, such as tables and chairs (the 
oor plane) or
pictures (the wall plane).

2. Most interactions with furniture are of 3 types: translation along the aforementioned plane, orien-
tation (rotating about the normal of the plane), and lifting (for stacking objects or placing them
atop one another).

3. \Creating a composite mode for allowing easy access to rotation [about the plane normal] and
translation [in the plane] allows users to make repetitive position adjustments in a smooth manner."
[29]

4. \Reducing the number of possible degrees of 3-D manipulation freedom via context speci�c con-
straints, contributes to ease of use and a user's feeling of control in a 3-D environment." [29]

Houde uses a bounding box with attached \narrative handles" (iconic handles with shapes that represent
the handle's action) as a 3D widget. The user manipulates the object via these handles, implicitly
selecting the manipulation mode based on the chosen handle. Houde's results mirror some of our results
from the object associations research. We have extended the research by devising new techniques that
build on these precepts. She did not deal with objects other than simple, on-a-surface gravitic objects,
and glosses over how the user would stack up objects or move piles of objects. We have solved those
problems, as well as providing a more 
exible and complete framework for development of additional
context-speci�c direct manipulation properties.
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Finally, note that none of the systems mentioned here have been used with more than \toy" environments
(e.g. a \small" collection of objects or a single room). The physical simulation systems slow down when
dealing with more than a handful of objects, and the other systems have simply not been tested in
a large environment. One of the important aspects of the WALKEDIT project is the fact that we
are manipulating a database built from the speci�cations of a real building, so our results prove the
applicability of our techniques to \real-world" manipulation problems, as well as demonstrating their
robustness in the context of a very large architectural model that contains 2.2 million polygons and 14
thousand objects.

2.3 The Walkthrough Editor Prototype

Thurman Brown wrote the �rst prototype of WALKEDIT as a masters' project. The prototype at-
tempted to provide basic techniques for direct manipulation of detail objects in the WALKTHRU model;
however, it ended up raising as many issues as it solved. Some of the more complex operations were not
fully implemented, and the initial approach to a user interface proved less than satisfactory. The simple
transformations necessary for the basic editing operations worked, but the constraint system operated
neither properly nor intuitively. Often, objects would move in an unpredictable manner, and in many
cases, detailed knowledge and experience with the system was required in order to perform simple tasks
like stacking books on a desk.

This section discusses the capabilities and shortcomings of the original system; it is provided as a basis
for the discussion of the new solutions developed in the current WALKEDIT environment.

2.3.1 Selection

An object must be selected before it can be manipulated. When the user holds down the shift key, a white
bordered bounding box is dynamically generated around the current object at which the mouse pointer
is pointing. This box indicates exactly which object will be chosen if the selection button is pressed; for
selecting very small objects or a single object in the midst of a large number of other objects, this is a
very helpful feature.

The user selects an object by shift-left-clicking on it in the view window. The selection point on the
object is highlighted with a small octahedron (chosen for its visibility from any angle), and the bounding
box becomes black. If the user re-grasps the object via another shift-click, the selection point is changed
to the newly indicated point. Multiple selection is implemented via the alt key, which is used in the
same fashion as the shift key. However, shift selection implicitly deselects any other selected object or
objects. Alt selection simply toggles the state of the object between \selected" and \not selected." This
design allows the user to select sets of objects. When the user initiates a manipulation, the last selected
object that was clicked on is the \focal" object; the selection point for the group is de�ned as that of
the focal object (Figure 1).

2.3.2 Transformations

In the WALKEDIT prototype, three special-purpose modes for rigid body transformations (planar trans-
lation along a major axis plane, a \crystal ball" style rotation mode, and a scaling mode; see Figure 2)
complement a general transformation mode. In each of the special modes, a speci�c constraint is used
to map 2D mouse motion on the screen to 3D object motion in model space. The major axis translation
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Figure 1: Selection of single or multiple objects. On the left, the plant has been selected; note the

octahedron indicating the selection point and the axis-aligned hint lines. On the right, the chair

has been alt-clicked to add it to the selected group; the chair is now the focal object carrying the

selection point.

mode maps mouse motion on the screen to motion in a selected major axis plane by projecting a ray from
the eye point through the mouse pointer into the 3D world. This ray is intersected with a constructed
plane parallel to the selected major axis plane passing through the initial selection point, and the object
is moved such that the selection point is brought into coincidence with the intersection. The resulting
object transformation satis�es two properties: the object translation vector lies within the axis plane,
and the selection point on the object will always remain coincident with the mouse pointer (Figure 3).
The two other special transformation modes are somewhat simpler: the crystal ball rotation mode maps
X and Y motion of the mouse to theta and phi rotation of the object, and the scaling mode maps X
motion of the mouse to scaling of the object.

In the general transformation mode, the system applies special motion constraints dynamically depend-
ing on which mouse button is used to drag the object. These \constraints" are not mathematical, but

Figure 2: 3D manipulation mode widgets available in WALKEDIT. On the left, the major axis

translation mode handles are visible on the chair; in the middle, the crystal ball rotation mode

handles are shown; and on the right, the scaling mode handles are applied.

9



Motion Handle

User Eyepoint
Screen

X

Z

Y

Motion Plane

Initial
Cursor Ray

Final Cursor Ray

Figure 3: A schematic drawing showing how a cup would move under the major axis translation

mode. The cup is grabbed by the XY-plane motion handle; the system moves the cup parallel to

the XY axis plane to maintain the coincidence of the handle with the mouse pointer ray. Note

that interaction of the cup with other objects (i.e. the table) does not a�ect the motion.

functional in nature; they are intended to simplify manipulation of speci�c types of objects. The pro-
totype implemented two special constraints: one called on-horizontal, which was designed for objects
that normally sit on the 
oor or on other objects, and on-vertical, designed for objects that hang on
wall surfaces. Under one of these special constraints, when the object is �rst selected, a motion plane is
established through the selection point. The motion plane is either a horizontal plane parallel to the 
oor
(in the case of on-horizontal) or a vertical plane parallel to a nearby wall (in the case of on-vertical). The
constraint forces the object to move in the motion plane in the same way that the major axis translation
mode moves the object in a selected major axis plane. However, the special constraint will also move the
object out of the motion plane under certain circumstances. In on-horizontal, if the object's translation
will move it such that there is no supporting surface under the object, the special constraint will add a
motion straight up or down so that the object \rests" on some nearby support surface (Figure 4). In
on-vertical, if the translation will move the object through a corner where two walls meet, the special
constraint will rotate the motion plane to be parallel to the new wall, and rotate the object so that
its back remains parallel to the motion plane (Figure 5). These special constraints can automatically
provide desirable alignments that would ordinarily have to be applied manually: objects like desks and
books moved under on-horizontal will always sit on a support, and pictures moved under on-vertical will
rotate properly when moved from one wall to another. Unfortunately, the special constraints su�ered
from some problems. The rules used by on-horizontal to determine whether an object should move up
or down were unintuitive and buggy, making it di�cult to get objects to align properly. On-vertical was
never made to work in the prototype, so testing was di�cult. Finally, the routines were hard-coded into
the system and the menus, making it di�cult to add or change them.

A simple automated grouping mechanism accompanied the special motion constraints. When applied to
an object, on-horizontal returned the object identi�er for the supporting surface on which the selected
object came to rest. When the user selected an object in general transformation mode, the system would
search local space, applying one of the special motion constraints to the objects in the vicinity, and try to
determine which local objects were \sitting on" the selected object. All such objects were then grouped
with the selected object and moved with it (Figure 6).
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Figure 6: Automatic grouping process. When the on-horizontal procedure projects a ray from

cup A downward, it hits the 
oor; when the procedure projects a ray from box C downward, it

hits the tabletop; when the procedure projects a ray from cup B downward, it hits box C. Thus,

when the table is moved, cup B is grouped with box C, and box C is grouped with the table; box

C and cup B move with the table, while cup A remains stationary.

2.3.3 Menu Operations

The prototype editor implemented several other operations, available from pulldown menus. The user
could toggle between selecting objects by face intersections or bounding box intersections; the latter could
be used to increase interaction speed. Simpli�ed representations of the selected object, from transparent
(the optimal, but most expensive rendering technique) to wireframe to bounding box, allowed the user
to adapt the display for slower computers. The user could elect to have \hint lines" drawn from the
selection point parallel to each of the major axes; these provide positioning feedback while the object is
being moved. There is a toggle to select whether or not the scaling mode is available; normally scaling
is disabled, since it is neither a rigid body transformation, nor is it a \normal" operation to perform
when manipulating furniture in the real world. For exact positioning operations, there is a dialog that
allows the object to be moved numerically by entering o�set values from its current position.

In the prototype, there was a copy button for making multiple copies of an object. The user would
select an object and press \copy"; the next time the object was moved, a copy of the object would be
left behind at the location where the copy button was pressed. Both the original and the copy would
then be available for transformations. Also, a simple undo function was provided that allowed the user
to undo the last rigid body transformation.

2.3.4 De�ciencies in the Prototype Editor

In many ways, the prototype editor raised more questions than it solved. The general transformation
mode was buggy and quirky; it wasn't clear when objects should move out of their major plane of motion,
so on-horizontal would often unpredictably stack or unstack objects during manipulation. There was
no provision for long-distance motion of objects. In order to move a chair from one side of the building
to the other, the user had to slide it step by step to the door, down the hallway, and into the new
room, repositioning the eyepoint at every step. There was literally no way to move objects between

oors without entering a numerical o�set for the object in the \explicit transformation" dialog box. The
grouping mechanism unnecessarily duplicated a large amount of computation, did not cache work from
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selection to selection, and was implemented in a batch mode that forced the user to wait for the process
to �nish before the object could be moved, which was often frustratingly long in heavily populated
areas of the model. The copy-in-place scheme caused a number of problems: besides being di�cult and
error-prone to execute, it created problems with the grouping mechanism (if you copy a desk with a cup
on it in place, which copy of the desk should the cup be grouped with?) and the selection mechanism
(the copy begins exactly aligned with the original; how can you point to one or the other? Furthermore,
it is not obvious that there are two objects in that position). The undo system was incomplete: it could
only undo a single button-down-and-drag operation, which was usually inadequate. The prototype was
missing provisions for writing changes in the run-time model back to the original, ASCII-based UniGra�x
database from which the model was constructed. This rendered the prototype essentially useless as a
real tool, since any changes made with the editor could not be propagated back to the building model.
The prototype focussed our attention on the crucial issues that would make such an editor a practical
and easy-to-use too; a great deal of both research and programming work had yet to be done.
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3 The New Walkthrough Editor

Based on the lessons learned from the original prototype, a new editor was developed. We had three
major goals for our second generation WALKEDIT. First, we wanted to complete and debug all of the
functions of the prototype. Second, we wished to add new capabilities to make the system more useful
and intuitive. Third, we wanted to increase the realism of the walkthrough experience. The following
sections present the new methods and algorithms that have been implemented to enhance the overall
functionality of the system, as well as the tradeo�s that were explored in the transition from the old
prototype to the new, improved walkthrough editor.

3.1 The General Transformation Mode

3.1.1 Motivation for Having a General Transformation Mode

Most of the editing work is done in the general transformation mode. In the early stages of development,
we decided to make the interface as non-modal as possible so that the system would be easier to use. The
advantages of choosing a non-modal over a modal interface are twofold: it can provide fewer commands
for the user to remember, and requires less physical activity (button presses, menu selections, etc.) to
execute those commands. However, designing an intuitive non-modal interface can be more di�cult,
because a non-modal system must be more carefully designed to disambiguate a more terse form of user
input.

In the process of developing this non-modal \general transformation mode," we examined di�erent
methods for helping the user to move objects in 3D with 2D input devices. We wanted the process
of moving furniture in a 3D virtual environment to be as quick and easy as moving cut-out cardboard
pieces on a 
oorplan. However, it should also be possible to force objects to align themselves nicely
to walls and to one another, if the operator chooses such an option. Our goal was to bring as much
of this capability into the general transformation mode as possible, making it a straightforward task
to do the most common alignments with simple, single mouse actions (such as left-click-and-drag). We
accept the possibility that the general mode may not be able to handle all cases well; however, if we can
encapsulate the majority of actions the user would wish to perform in the general mode, we can succeed
in reducing the e�ort required to perform modeling tasks by a large percentage. The remaining minority
of operations can be handled by more traditional, CAD-style object manipulation tools.
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3.1.2 Properties of a Desirable General Transformation Mechanism

Balancing Realism with Goal-Oriented Behavior

There are many solutions to the 3D direct manipulation problem in the literature. Unfortunately,
these solutions often overlook an important aspect of the problem: the tradeo� between physical object
behavior and teleological (goal-oriented) object behavior in the user interface. Previous work tends to
focus on one \end" to the exclusion of the other (generalized/nonphysical vs. constrained/physical).

Physical behavior involves properties like gravity and solidity, which, through our experiences in the
real world, help us disambiguate the location of an object in a 2D projection without complete 3D
information. For example, if we see the top of a table in a 
oorplan, we know the exact position
of the table in the real world because, physically, the table must sit squarely on the 
oor. If you
want to position a real table in a real room, you don't worry about pushing down on the surface of
the table to force it to sit on the 
oor; you rely on gravity to handle that DOF and only push the
table sideways. If a virtual environment does not include this property, we have unnecessarily added
a DOF that the user must explicitly control. Approaches like snap-dragging provide more degrees of
freedom and more generality of motion than necessary for the \task at hand;" controlling these extra
DOFs forces unnecessary cognitive overhead onto the user (aligning, setting up tugboats and orientation
frames, grouping objects by hand, etc). This is a consequence of treating objects as wholly nonphysical
geometries. We would like to build useful physical properties into the objects we are manipulating. Note
that the properties are primarily local; they come from interactions with other objects in the proximity
of the object being moved, or from natural e�ects like gravity which do not involve other objects. Ideally,
a 3D manipulation paradigm would allow us to take advantage of these expected properties to avoid
unnecessary user control overhead.

Often, however, there is a downside to enforcing physical properties. They may remove certain unneces-
sary DOFs from user control, but they simultaneously limit the generality of the motions allowed. If the
user wishes to place a virtual grand piano in a virtual room, they shouldn't have to worry about �tting
the piano through the doorway. In such cases, we may wish to impose teleological rather than physical
behaviors on objects. These behaviors treat the object as merely a geometric entity, providing actions
which are convenient but not necessarily realistic. This can make certain operations much simpler; we
don't have to worry about being strong enough to move an object, we can introduce snapping behavior
to force objects to align, and so on. On the other hand, if object behavior becomes too nonphysical,
we may begin making life more di�cult instead of less. Physical simulation based methods such as the
Zashiki-Warashi system provide automated alignment (a table aligns with the 
oor via forces/torques
caused by its mass), automatic grouping (objects on the table stay on it while the table is moving be-
cause of friction), and other e�ects that make objects behave in expected ways. However, they make
other, conceptually simple operations di�cult or impossible. For example, the Zashiki-Warashi system
does not allow pictures and shelves to be moved along or attached to walls, since the physical simulation
doesn't allow unsupported objects, and modeling nails or hooks is beyond the system's capabilities. Even
if nails were modeled, there is no reason to force the user to go through elaborately realistic procedures
such as a�xing objects with nails when a simple, \magical" \glue-surfaces-together" operation solves
the problem elegantly.

Hence, overly generalized mechanisms lose the intuitive and easy positioning mechanisms and disam-
biguating knowledge we have all learned since we were children; overly physical systems bring those
mechanisms back, but force us to deal with the problems of the real world that we are using a computer
to get away from. We would like to try for the best of both worlds: a mechanism that will provide the
structure for, and encourage the interface programmer to provide, the proper tension between realism
and virtual-world magic [40].
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Applying the Physical/Teleological Balance in WALKEDIT

In WALKEDIT, we are primarily concerned with keeping objects supported against gravity, having them
attached to { and thus properly aligned with { the ceiling, walls, or vertical surfaces of other objects, or
having objects aligned with respect to each other. All this can be achieved with a remarkably small set
of physical and pseudophysical paradigms of motion. Some of the key paradigms of 3D manipulation
and some of the behavioral aspects of objects in a building that we found desirable when populating our
Soda Hall model with furniture are summarized below:

� User-selected objects should follow the mouse pointer, so that \point and place" becomes an
integral, intuitive operation.

� Objects typically should not 
oat in mid-air but rest on some supporting surface. If the cursor
points to the surface of a desk or to a bookshelf, it can be implied that the user wants to move the
selected object to that particular surface.

� Alternatively, many things, such as picture frames or light �xtures are attached to walls or other
vertical surfaces.

� Such implicit associations of objects with reference objects should be maintained even when the
reference object moves or is changed in other ways; however, they must also be breakable so that
objects can be lifted o� a surface easily and moved somewhere else.

On the software engineering side, other key aspects of a general transformation mode are:

� Ease of use: it should be easy for the user to assign behaviors to objects and classes of objects.
Furthermore, it should be easy for the programmer or user to create new behaviors.

� Flexibility: Given the description of a behavior, it should be nearly as easy to encode that behavior
as it is to describe it.

� Generality: Any desired behavior should be representable.

3.1.3 Desired Manipulation Process in the General Transformation Mode

The generic editing operation in an interactive environment is to \grab" an object and then to \place" it
(and any objects grouped with it) somewhere else. In WALKEDIT, a user selecting an object explicitly
chooses both the object itself and a selection point on the object which makes a natural handle for object
manipulation. Once the object and its selection point have been established, the user can apply either a
local motion by dragging the mouse pointer, or a remote operation such as \picking up" the object and
\placing" it at a di�erent location.

We �nd it useful to match the manipulation mechanism to the human's natural tendency to use a
combination of gross and �ne positioning. A human in the real world follows three basic phases when
repositioning an object. First, the object is picked up or grabbed by some convenient handle. Second, a
very quick, gross positioning step is used (\put that there"); this is often a large hand or body motion
to get the object into place [20]. This step is characterized by avoidance of collisions and physics; the
intent is to get the object to the vicinity of the goal position as quickly and easily as possible. Third,
a �ne tuning step �nalizes the motion: very small motions are applied, adjusting the �nal position and
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allowing physical behavior such as gravity to \take hold" of the object at rest. In this �nal step, physical
properties and interactions become more applicable and useful as the movement nears completion.

Following this model of manipulation, we derive a similar three-phase process for virtual world ma-
nipulation. The selection phase has already been described. We then implement a teleological phase,
where the intermediate path of the object to the vicinity of the goal position is as direct as possible,
relaxing physical restrictions, to follow the goal-oriented directive of the user. As the object nears the
goal position, in the pseudo-physical phase, the object's resting pose should be tuned to be \realistic"
within the de�ned simulation constraints of the virtual environment. Figure 7 shows an example of how
this model would handle the task of moving a piano into a room.
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Figure 7: A slightly exaggerated example of our model of object manipulation at work for moving

a piano into a room. On the left, the user has selected the piano; the �rst teleological step is to

move the piano through the doorway. The user doesn't care how the piano gets there; physical

interaction with the doorframe is not only useless but actively annoying. On the right, the piano

is close to its desired end position; the pseudo-physical step is entered to push the piano the last

few inches against the wall. In this step, interactions with gravity and collision with wall and


oor are essential to easily place the piano 
ush against both.

A non-interactive motion admits a similar solution; the teleological step consists of the user pointing to
a location with the intent to \put the object there." Our interpretation of this is to move the object
directly to that location (i.e. \warping" it there without regard to physical obstructions or trying to
\lift" against gravity), and then applying any desired local physical behavior to determine the valid �nal
resting position.

The ability to rotate an object is often desired, but these rotations are generally about some preferred
axis. If we can identify this axis a priori for a given situation, it is more intuitive to provide the user
with a simple \click and slide" type of rotation, where the mouse X or Y o�set is directly proportional
to the amount of rotation.

3.2 Object Associations

This section describes a software framework, which we call object associations, developed to meet the
needs of our general transformation mode. Object associations support simple and practical manipula-
tion of 3D objects with 2D I/O devices via two special types of programmer-supplied procedures and an
implicit grouping behavior. This model gives the programmer the ability to specify object-dependent
methods of disambiguating 2D gestures in a 3D world and allows association of suitable local behavior
with database objects to make precise default placement easy. These associations usually fall somewhere
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between physical simulations and mathematical constraints, but can be less formal and more 
exible
than either.

Our approach borrows heavily from several paradigms developed in the realm of interactive computer
graphics over the past several decades. It �rst has notions of snap-dragging [7], but without the need
of explicitly dealing with visible alignment manifolds; most alignments are provided automatically by
the association procedures rather than explicitly by the user. Second, while it can emulate some of the
behavior of a physical simulation of the objects in the environment [4, 27], it can be less constraining
than our every-day world; objects can pass through one another and remain in physically impossible
non-equilibrium positions under the control of suitable associations, which may be application-speci�c
or may depend on the editing mode. Third, while some associations can be described as constraints,
our system does not require the rigid formality and associated solution machinery found in mechanism
editors based on underlying geometric constraint systems [36, 8, 35, 28, 24].

A novel feature that emerges naturally from our approach is an automated implicit grouping mechanism;
it uses the relationships established between objects as they reposition themselves with respect to their
environment.

3.2.1 Overview

The object associations mechanism is based on a two-phase approach to moving a selected object. During
a �rst relocation phase, the object follows a trajectory free of physical or behavioral restrictions and which
is a suitable disambiguation of the 2D path speci�cation in screen space into a 3D motion in world space.
During a second association phase the object uses its (possibly physical or pseudo-physical) association
rules to determine a good nearby position which best satis�es the stated behavioral conditions of the
object in a rest state.

Object associations are implemented with two types of small procedures that are invoked when an object
is selected. Each object is assigned one relocation procedure but may have a number of prioritized as-

sociation procedures. The relocation procedure is used during local, interactive motion to disambiguate
gestures made with the mouse pointer; it de�nes a mapping of incremental 2D mouse motion to incre-
mental 3D object motion. Association procedures are used for both local and remote placement; they
apply additional motion components to an object, based on the other objects in the area, in order to pre-
serve the desired object behavior. In addition, objects will dynamically link themselves to the reference
objects with respect to which they have aligned themselves; they will typically follow any movements
of these reference objects. While an object can be assigned only one relocation procedure, they may
carry any number of (ordered) association procedures. The user can add or remove extra association
procedures from the existing set to selected objects during the interactive walkthrough mode. When
such an object is selected, its attributes will determine which relocation procedure applies to the object
and which association procedures are used to determine the �nal placement of the object. We have
integrated these procedures with the user interface layer that controls all the major editing functions:
selection, dynamic grouping, dragging, and detailed placement.

So far we have implemented two relocation procedures: the on-horizontal procedure, designed for objects
that move primarily horizontally, and the on-surface procedure, designed for objects that are attached
to a potentially non-horizontal support surface. In both routines, the object moves along a piecewise
continuous, polyhedral 2D manifold in space; the speci�c shape of the manifold is both view- and
object-dependent. The left mouse button translates the object along the manifold without changing its
orientation relative to the manifold. The middle button rotates the object about a line through the
center of its bounding box normal to the manifold section on which the object rests.
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In addition, there are four association procedures: the stop-at-wall procedure, the pseudo-gravity pro-
cedure, the anti-gravity procedure, and the on-wall procedure. Stop-at-wall forces objects being ma-
nipulated to remain within the current view. Pseudo-gravity simulates objects that normally rest on a
horizontal support surface. Anti-gravity attaches light �xtures, smoke detectors, sprinklers, and other
such objects to a ceiling. On-wall is used for pictures, white boards, wall clocks, and other objects that
hang on vertical surfaces. All of the currently implemented WALKEDIT association searches use the
same type of ray-based probing mechanism to �nd alignment objects. These ray-probes �nd nearby
objects that a�ect the alignment of the selected object.

3.2.2 Relocation Procedures

The local motion paradigm { dragging the object with the mouse { is the basic editing move for �ne-
tuning the position of an object, or for moving objects over short distances. The user selects the object
and moves the mouse pointer in the desired direction. To generate each frame of the motion animation,
the relocation procedure is �rst called to convert the cursor position into a constrained position on a
suitable auxiliary manifold that depends on the type of association carried by the selected object. The
relocation procedure moves the object along the manifold in such a way that the selection point maintains
coincidence with the cursor. After the relocation procedure determines the base motion, any relevant
association procedures are run to determine additional motions that the object must perform to maintain
its desired behavior. The association procedures will normally move the object in degrees of freedom not
controlled by the mouse; however, if a more constraining motion is desired, it may further restrict the
motion on the surface of the 2D manifold. For instance, the association procedure may force an object
to move along a 1D path as if dragged by an invisible rubber band between the mouse and the selection
point.

When the user initiates an interactive motion by holding down a shift/control key and clicking a mouse
button, the relocation procedure is called with arguments corresponding to the current screen coordinates
of the mouse, the user's view frustum, the particular drag mode being used (translate or rotate), the
selection point on the object, and the original mouse screen coordinates where the object was selected.
It �rst makes an a priori selection of one or two preferred DOFs that can be controlled directly and
unambiguously with a mouse or with another 2-parameter input device, and which most naturally re
ect
the basic motion of the selected object. A simple, invisible, auxiliary 2-dimensional manifold, such as
a plane, cylinder, or sphere, is established; the only requirement for the auxiliary manifold is that its
projection into the view window maps points on the screen 1:1 onto points on the manifold, but the
manifold will typically go through or near the selection point. The object is then moved under mouse
control in such a way that its selection point stays on the manifold. The mapping between the cursor
motion on the screen and the relocation of the selection point in the 3D virtual world is obtained by
intersecting the cursor ray from the eye point with the auxiliary manifold. This gives an intuitive
behavior for direct control; the object, grabbed by the user-selected handle, will follow the projection of
the mouse movement on a reasonable restricted manifold. In general, these manifolds should be piecewise
continuous so that the object will move in a predictable local way for small movements of the mouse.
Figure 8 shows an example of what the manifold for the on-surface procedure, described below, would
look like.

The manifold used in our on-horizontal procedure is simply a horizontal plane through the selection
point. In the translation mode, the eye-cursor ray is intersected with the plane equation z = sz, where
s is the original coordinate of the selection point. The ray-plane intersection returns some point i; the
procedure returns translation vector i � s. In the rotation mode, the eye-cursor ray is ignored; the x

o�set of the mouse pointer on the screen is used as an angle. A rotation by that angle about the plane
normal is returned.
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On-surface uses a more complex manifold composed of piece-wise planar o�set surface segments situated
in front of the faces of visible surfaces in the scene. In the translation mode, the procedure uses the
geometric database to intersect the eye-mouse ray with the �rst surface it hits. The intersection point i
of the ray with the surface is determined, and the translation vector i� s is returned (where s is, again,
the initial coordinate of the selection point). However, the algorithm also computes the rotation angle
between the manifold's surface normal at the selection point and at the new point, and returns that
rotation to maintain the orientation of the object's \back" with respect to the manifold. This makes
wall hangings follow the changes in wall orientation; if a wall hanging is moved around a corner, the
rotation causes it to turn its back toward the new wall as it moves. The on-surface rotation mode simply
rotates the object about the normal of the manifold.
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Figure 8: A 2D example of the relocation manifold for the on-surface relocation procedure. The

dashed line shows the edges of the view frustum. The dotted segments show the piecewise planar

segments that the visible portions of the walls contribute to the manifold. The solid rays show

sight lines; note that the wall surfaces that contribute are exactly those that are visible to the

user. Note also that, in a 3D version, the visible portions of the 
oor and ceiling would also

contribute to this manifold.

After sliding the object along the alignment manifold, the relocation procedure returns a 3D o�set vector

in space, representing the di�erence between the original pose of the object when it was selected and the
new pose indicated by the mouse motion; this represents the fundamental teleological motion intended
by the user (Figure 9). This o�set position is what is passed on to the association procedures for the
object.

3.2.3 Association Procedures

At the o�set position, the association procedure needs to �nd the closest valid rest position and orien-
tation for the moving object, given that the object is supposed to obey some particular behavior. The
�rst step is to �nd the possible candidates for alignment. All association procedures currently rely on
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Figure 9: Moving a picture under the on-surface relocation procedure. A user has selected a

picture on the wall; the \Initial Ray" shows the mouse cursor ray when the object is selected, and

the selection point is indicated at the intersection with the relocation manifold. The user then

moves the mouse; the new \Moved Ray" is intersected with the relocation manifold, producing

an o�set translation (shown as a heavily dashed line) and rotation which is returned by the

relocation procedure. The new location of the picture is also shown; note that the rotation has

been computed to maintain the picture's orientation relative to the manifold's surface normal.
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ray projections. Pseudo-gravity and anti-gravity cast rays vertically downward and upward from the
selection point, respectively; the objects hit by these rays are the objects with respect to which the
selected object's position is adjusted, causing the selected object to fall down or up respectively. The
on-wall association casts rays in the major horizontal axis directions of the original de�nition of the
object; the closest object in those four directions is the one used for alignment, as the object \falls"
sideways against the closest vertical surface.

Here is the pseudo-gravity procedure in pseudo code:

1. While the object O has changed height in the last iteration, do:

(a) Project a ray from the selection point S on object O downward to hit some face F of some
object A;

(b) Determine if S is within the bounding box of some object B (the smallest bounding box if
there is more than one);

(c) if (B is NULL) or (B==A) or (S is visible), drop the bottom of O's bounding box to the
height of F; else, lift the bottom of O's bounding box to the height of the top of B's bounding
box;

2. Return the total motion of O and associate O with A;

In general, this procedure will place the selected object on top of another one that the user points at by
using a combination of visibility cues and interference tests (see section 3.2.6 for discussion of visibility
issues). Figure 10 shows some examples of pseudo-gravity in operation. The anti-gravity procedure,
used for objects that stick to ceiling surfaces, is identical to pseudo-gravity with the vertical directions
reversed (\upward" instead of \downward" and \bottom" for \top"). The on-wall procedure makes
some additional assumptions. For an object to attach itself to a wall, it needs to have some notion of
a \back-side" which is moved to be coincident with the closest vertical support surface. Since the Soda
Hall object descriptions do not carry such a notion explicitly, we assume that the object is de�ned with
its back's surface normal in one of the major horizontal axis directions of the object's local coordinate
system (Figure 11). These four directions are then checked for the closest vertical surface, and the
pseudo-gravity algorithm is then run along the corresponding axis. Thus when the user �rst brings such
an object into the Soda Hall environment, it needs to be placed close to some wall with its one side
that is supposed to act as its back-side. For similar reasons, the pseudo-gravity and pseudo-antigravity
procedures assume that the object is de�ned with its \bottom" at the extreme of the negative Z local
axis, or its \top" at the extreme of the positive Z local axis respectively. These assumptions about how
an object is de�ned allow the procedures to align the object properly by rotating the object such that
the appropriate local coordinate system major axis is parallel to the support surface normal, and the
object can be made to rest \on" the support surface by moving the object's local-axis-aligned bounding
box extrema to touch the surface (Figure 12).

For every move generated from an o�set vector along the relocation manifold, the association procedures
decide what local �x-up motions must be made at the new position to implement the desired local
behavior for the object (e.g., falling to a supporting surface, in the case of gravity). Each association
procedure computes local components of the overall motion, commensurate with the desired object
behavior. The motion generated by the association procedures may also cause the object to change from
one supporting manifold to another, such as when the motion generated by the relocation procedure
would move the object beyond the edge of the current support or into another solid object.

Once the association has determined what local objects and forces a�ect the motion of the selected
object, the o�set vector from the relocation procedure is modi�ed to re
ect the local motion, and the
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Figure 10: Some situations in which pseudo-gravity is used. In the upper sequence, the cup

begins a few inches above the table and is in view; pseudo-gravity casts a ray down, �nds the

table surface, and moves the object down to it. In the lower sequence, the cup is embedded in a

block and is not visible. In the second frame, the association �nds the tabletop below the cup,

but if the cup is placed on the tabletop the selection point becomes invisible. Checking upward,

the association �nds the top of the block as the next closest valid support. The cup is moved to

the top of the block's bounding box, where it is visible and its bottom is resting on the top of the

block.
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will not position this object properly. Similar restrictions apply to pseudo-gravity, in which the

objects' \bottom" must be normal to -Z, and pseudo-antigravity, in which the objects' \top" must

be normal to +Z.

Rotation to Match Surface Normal

X

Z

Y

Initial Ray Projection Determination of Resting Point

Figure 12: When the association procedures align an object with a support surface, the object

is rotated to bring an appropriate major axis parallel to the support surface normal. Here, a

box comes to rest on a sloped ramp under pseudo-gravity. The association rotates the box about

the intersection point of a ray straight down from the selection point with the ramp's top face.

The rotation is calculated to bring the bottom of the box into parallel contact with the support

surface.
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Figure 13: An example of an object changing supports. In this case, a cup moves o� the edge of a

table. The old support surface is the table, determined by the ray projection straight down from

the selection point on the cup; we say that the cup is associated with the table. When the cup

is moved o� the table, the ray projection indicates the 
oor. Pseudo-gravity adds the necessary

downward component to the motion to drop the cup to the 
oor; the cup is now associated with

the 
oor.

new vector is returned from the association procedure. The procedure may also optionally return a set
of one or more new local associations of the selected object with the other nearby objects that help
determine its �nal position, such as the table that supports a cup. These associations are used by the
implicit grouping mechanism (see section 3.2.5) to determine which objects should be grouped together
when they are manipulated. When the user �nalizes the motion by \releasing" the selected object, the
new associations replace the original associations that were in e�ect when the object was selected.

3.2.4 Stacking Multiple Associations

Multiple association procedures may come into play for single objects. For example, objects like book
cases are supposed to obey pseudo gravity and simultaneously �t snugly against walls. This may reduce
the DOFs of an object to just one or even zero. In the latter case, the object may jump from one
desirable location to the next one as the user moves the mouse pointer and the association procedure
selects the closest location that �ts the desired behavior.

Multiple associations attached to an object type are explicitly ordered. The corresponding procedures
are called in a chain, each one receiving the cumulative associations and o�sets generated by the one
before. A systems programmer assigning combinations of associations to certain types of objects must
consider their possible interactions. The interactions can potentially be very complicated since associa-
tions are described functionally rather than mathematically; an association procedure can conceivably
do anything. Because of this, it is di�cult, if not impossible, for the object association framework to
generically resolve con
icts between all combinations of procedures. The associations implemented in
WALKEDIT are simple and orthogonal and are particularly tailored to the rectilinear, axial environ-
ment of Soda Hall; thus, their interactions are easy to predict and not very problematic. The individual
adjustments of all associations are gathered into a single cumulative transformation which is then uni-
formly applied to the selected object and all its dependent associated objects in the dynamically found
group. Figure 14 shows two associations, pseudo-gravity and on-wall, at work on a �le cabinet.

Figure 15 shows the 
ow of control, from the inputs to the object association mechanism to its output
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for an object with a relocation procedure and two association procedures. On the input side, the user
selects the object (upper box) and then moves it with the mouse pointer (lower box). Selecting the
object launches the implicit grouping search (see section 3.2.5), which proceeds simultaneously with the
other operations. The original position of the object and the motion of the mouse are sent into the
relocation procedure, which uses the initial position and the mouse motion to determine an o�set which
is sent through the chain of association procedures. Each association procedure modi�es the o�set and
sends it to the next procedure, while outputting associations. The last procedure also outputs the �nal
motion of the object in 3D space, which is applied to the list of objects output by the implicit grouping
search.
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Figure 15: A 
owchart showing the various procedures at work for an object that obeys on-wall

and pseudo-gravity (such as a bookcase).

An interesting algorithmic question is raised by cyclic constraints arising from the mutual associations of
several objects. Imagine placing two \on-wall" objects back-to-back in the middle of a room. Each object
will associate with the other, thus forming a cycle. If object A is selected, object B will dynamically
group with it, and will want to rigidly follow the motion of object A; however, object A will want to
move along the surface of object B, because its association sees B as the closest vertical surface. Thus
the two objects can never again be moved away from their joint back-to-back alignment plane. A similar
situation may arise if an \on-ceiling" light �xture is attached to the underside of a table obeying pseudo-
gravity. Our current solution involves breaking loops - once they have been detected - at the point where
a large object associates itself with a smaller object. This approach provides the right feel in a building
environment, but it is not be a general answer to the problem.

3.2.5 Interactive Automated Grouping

Basic Principles
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In WALKEDIT, selection is performed by shift-clicking the object. There may be other objects that
have been previously associated with the selected object; these other objects were positioned with respect
to the selected object when they were last moved. For example, the reference object identi�ed by the
pseudo-gravity association is the surface on which the selected object came to rest. Since the position of
the reference object in
uenced the position of the selected object, it makes sense to implicitly group the
latter with the former and maintain that relative positioning when the reference object is moved. This
means that all of these associated objects must be found and grouped with every new object selected;
this grouping is maintained for the duration of the motion. An object can have multiple associations; it
will then move when any of its reference objects moves.

Moved Cursor Ray

User Eyepoint
Screen

Initial
Cursor Ray

Initial
Cursor Ray

User Eyepoint

X

Z

Y

Screen

Moved Cursor Ray

Figure 16: Implicit grouping. The blocks and the table are assigned the pseudo-gravity associ-

ation. When the table is moved (upper picture), the blocks move with it, because they are all

associated with the table or each other. When the bottom block is moved (lower picture), the

top blocks (which are associated with it) move, but the table (which is associated with the 
oor)

remains where it is.

Associations are not permanently maintained constraints; they are applied to the object that is currently
being moved. Because associations are determined from a selected object towards potential reference
objects, but are used in the opposite direction, valid associations between two objects may change by
the motion of a third, unrelated object. For example, an alignment association between two concave
objects may leave space between the two into which a third object can be inserted, thereby breaking the
previous association. To allow for such changes and to ensure robust behavior of the object association
framework, every time an object is selected we perform a local search for associated objects dynamically
in real time and store them in a separate data structure. For e�ciency, likely candidates (that is, those
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objects that were known to be associated with the selected object previously) are checked �rst. Then, a
general search is started in the vicinity of the selected object, relying on our cell-based spatial subdivision
structure used for visibility precomputation and observer tracking [43]. The association procedures (see
below) are called for all objects incident to the subdivision cells occupied by the selected source object
to see if they are associated with it; each object returns a set of association links, and all of these links
together form a graph on the objects in that region. The search e�ciently calculates a local closure on
this graph to obtain the group of objects linked, directly or indirectly, to the selected object.

To keep the virtual environment interactive and the response to any mouse-directed motions instanta-
neous, we do not delay the interactive manipulation of the original selected object; we carry out the
association search in the background. As soon as an associated object is found, it is subjected to the
cumulative set of manipulation transformations applied so far to the source object. This approach has
the somewhat startling e�ect, that when the user grabs and moves a fully loaded desk, some of the
objects on the desk may at �rst remain behind, suspended in mid-air, and will then catch up with the
new desk position within a few seconds as they are found to be associated with the desk. We found
that most users quickly accept this behavior. To minimize this e�ect, the association closure graphs,
once constructed, are cached in memory, so that any further moves of such a group of objects can be
truly instantaneous. The closure process may be safely interrupted before closure is complete if the user
decides not to move the chosen object but instead selects a di�erent one. The cache holds whatever
portion of the graph was completed, and this potentially useful work is saved; the next time an object
in the area is selected, the system will simply pick up the search where it was left o�.

This implicit grouping mechanism replaces both the explicit grouping mechanism found in many 2D
editors and the functional grouping resulting from setting constraints between objects. Our mechanism
keeps the user focused on the actual positioning of the desired object, while automatically making many
of the grouping connections the user would have to make by hand with either of the classical methods.
Furthermore, breaking a connection between objects that have been implicitly associated is as simple
as grasping the dependent (associated) object and moving it to a new location, at which point the
association with the old reference object is broken and a new one is established. Of course, we also
give the user the power to override the automatic grouping mechanism by turning it o�, or to perform
grouping manually by alt-clicking objects to explicitly add or subtract them from the current group.
The two grouping mechanisms can be active simultaneously; adding an object to a group by alt-clicking
will then also add any associated objects to that group.

Dynamic Gathering

The closure of the graph of associations on objects is computed using a dynamic gathering algorithm.
The basic dynamic gathering step takes as input a set of selected objects and a cell to be explored
for other objects which are associated with those selected objects. The association procedures for each
object in the cell are called in turn to determine which other objects (which may or may not be in that
cell) the given object is associated with. If any of the objects that the given object is associated with are
in the list of selected objects, the given object is added to the selected list. After all objects in the cell
are explored in this fashion, the newly selected objects are checked to see if they lie within or partially
within any cells other than the given cell; if they are, and those cells have not been searched yet in
this run of the dynamic gathering algorithm, the process recurses on the other cells with the new list
of selected objects. Upon termination, this algorithm results in a complete list of the objects which are
associated, through any sequence of association links, with the original set of selected objects (Figure
17).

This basic procedure was coded such that it could be called in small steps. The dynamic gathering is
initiated with a function call, which sets up data structures and returns immediately. Then, the user
calls a stepping function until that function returns the value \done," at which point the gathering
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Figure 17: An example of the grouping search in action. The dotted lines indicate subdivision

cell boundaries; the solid arrows show the associations between the objects. The table is selected,

and a search begins, rooted in cell A. Blocks 1, 2, and 4 are in the same cell as the table, and

their associations are checked; block 2 is found to be associated with the table. Since block 2 is

also in cell B, that cell is added to the search queue, which causes block 3 to be checked; block

3's association with block 2 is found, adding cell C to the queue. This will cause blocks 5 and 6

to be checked. Since neither block 5 nor block 6 is associated with any object in the group, the

recursion terminates without checking cell D.

is complete. Each step computes at most the associations for a single object, and a callback may be
registered that is invoked each time a new object is found to be associated with the growing group. This
was done to allow the gathering to be \backgrounded;" upon initiating a gathering, the operating system
event queue has a \next grouping step" event inserted, and these events are called at a rate determined
by how busy the CPU is handling the user's input. If the user is not doing anything, the grouping gets
all the CPUs attention; if the user is trying to manipulate the growing group, however, the mouse events
are handled as they come in, with one grouping step executed for each mouse or keyboard event handled.

Caching Associations

Early in the design of the dynamic grouping step, it became obvious that the association graph closure
performed to determine which objects to group with a particular object discarded a great deal of useful
information. The closure found all associations of objects in each cell it touched; thus, it actually
computed parts of the grouping closures for each of those objects. Since users will typically perform
many consecutive operations on one group, cell, room, or area of the database (for example, setting
up their desk or o�ce), it seems ine�cient to discard these partial closures only to have to recompute
them from scratch for the very next object manipulation. Thus, a mechanism was devised for e�ciently
storing this partial closure information in the object data.

Each object contains three pointers: a parent pointer, a child pointer, and a sibling pointer. The parent
pointer points to an object with which the selected object is associated. The sibling pointer points to
a sibling in a circularly linked list of other objects associated with the same parent. The child pointer
points to one of the objects associated with the selected object.

When a selected object is moved or the grouping search touches it, its associations are computed. If one
or more associations exist, one of them is selected, and the selected object's parent pointer is set to that
associated object. The associated object's child pointer is traversed, and the selected object is linked
into that sibling list. In this way, with a constant increase in object size (3 pointers, or 12 bytes), we
save some (or all) of the association information computed by the grouping search for the object.

When the grouping search is being conducted, each time a new object is added to the selected objects
list, its child pointer is traversed, gathering all of the objects pointed to by the child, its siblings, and
their children recursively. These objects are simultaneously added to the list, as they are guaranteed
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to be associated with the selected object. In our environment of WALKEDIT, this caching mechanism
nearly always caches the entire set of objects associated with the selected object, causing the desired
group to be found instantly upon selection.

Simplifying Assumptions and Heuristics

There is one basic assumption upon which our dynamic gathering algorithm relies for correctness. If two
objects are associated, those objects must both be incident to at least one common spatial subdivision
cell. This assumption seemed reasonable given that all the associations we constructed bring objects into
close contact (e.g., pseudo-gravity will bring an object into contact with a support surface). However,
it is easy to posit association procedures for which this assumption is invalid; for example, consider a
procedure that pushes objects a speci�ed distance out from a wall. Our algorithm needs to be improved
to handle such cases.

Consider two other assumptions we might make about the set of objects we're manipulating: that each
object is associated with at most one other object, and no object may be slid between two associated
objects to break that association. If we can make these assumptions, and we are using the association
caching scheme outlined above, then we provably never need to touch a database cell more than once with
the dynamic grouping algorithm. This assumption may be asserted in the options menu of WALKEDIT;
when it is active, the cells are marked when any dynamic grouping step searches them, and if that cell
is ever encountered by another grouping step, it is ignored. This can greatly accelerate the average
completion time of the dynamic grouping step if the user spends a long time manipulating objects
in a limited area. Since our most common assignments of association procedures to objects is simple
pseudo-gravity or on-wall, we make this assumption by default in WALKEDIT.

3.2.6 User Interface Issues

While we can start from a few desirable paradigms (see Section 2) to de�ne the user interface for object
manipulation in a 3D virtual world, there will always be situations that will put some of these principles
in con
ict with one another and where there seems to be no obvious \right" answer. A few such tricky
problems are raised in this section and our current solutions are discussed.

Limitations of the Object Associations Paradigm

We cannot reasonably expect that a few simple relocation and association procedures will take care of
all of the editing needs in our building environment. However, we also cannot expect the user of the
system to deal with dozens of di�erent sets of procedures, any one of which might be appropriate at
any given time. Our goal is not to solve all of the problems of 3D direct manipulation with a single
approach: object associations should be tailored to make 90% of the typically encountered operations
easy and natural. For more special-purpose editing needs we still can access traditional editor functions
via pull-down menus. If one needs an exact rotation by 45 degrees, one opens the rotation operatormenu;
if one wants to create a perfect row of 20 chairs, the familiar replicate menu is perfectly appropriate. If,
on the other hand, one �nds that one often has to do a special task that is not well supported by classical
editor menu commands, such as pushing furniture into corners, then it pays to write a new association
procedure \in-corner." This procedure probes in all 4 directions, �nds the two closest objects, and then
does on-wall alignments in two directions, trying to satisfy them both at the same time.

If this is not good enough, because one frequently wants to crowd furniture together in less regular for-
mations, then it is time to develop a more or less accurate pseudo-physical collision detection mechanism
and add it to the collection of association procedures. Depending on the types of objects that need to
be manipulated, this may simply be based on bounding boxes (good enough for �le cabinets) or may
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use a more sophisticated algorithm that can handle concave objects (needed for grand pianos). We are
currently experimenting with a prototype implementation of such a collision detection routine based on
the Lin-Canny algorithm that quickly �nds closest features in pairs of convex shapes [32, 4].

Use of Visibility Information

One of the main cues used to disambiguate the depth coordinate during object manipulation is the
intersection of the cursor ray with a visible support surface. Thus when moving an object obeying
pseudo-gravity, one would typically grab it near its \foot" while looking downwards onto the supporting
surface. This establishes a relocation manifold with a reasonable intersection angle with the cursor ray
and gives the user good interactive control over the motion. It raises the issue what should happen when
the object is dragged beyond the visible range of the support surface or outside the extent of the support
altogether. It also raises the issue how one can ever lift an object o� such a support surface, e.g., to
place a book onto a higher shelf.

Figure 18 illustrates a �rst typical situation. It should be possible to slide a co�ee cup underneath a
table; thus, we can not simply lift it to the top of the table when the bounding boxes of the cup and
of the table start to intersect. Here we use visibility information and our pointing paradigm to resolve
the issue. As long as the sight ray to the selection point clears the table top, the cup stays on the 
oor.
Since no part of the table is between the cup and the 
oor, and the cup is not actually intersecting
the table, the association procedure has no di�culties settling the cup in a valid position on the 
oor.
However, when the ray intersects any part of the table, and the bounding boxes of the cup and the table
intersect, the cup gets lifted to the top of the table.

Association procedure

Relocation Manifold

3

2 1

Screen

User
EyepointKEY:

Motion made by user
Relocation procedure

Figure 18: A selected cup (1) is dragged under a table. Visibility information is used to determine

when it rises to the tabletop. Solid arrows show user mouse motions; the dashed arrow shows

where the relocation procedure moves the object based on the mouse motions (2); the dotted

arrow shows the position adjustment made by the association procedure when the selection point

becomes obscured by the table edge after relocation (3).

Another critical situation is shown in Figure 19. When the cup is dragged beyond the edge of the table
top, a non-physical situation occurs. This could be resolved in two ways. The system could try to place
the cup where the cursor ray hits a valid support surface. Since the ray may still hit the table top, or
perhaps end in a vertical surface, this will not always lead to a useful answer. Thus we have found that
it makes more sense to give priority to the physical view of the world and drop the cup straight down
from the spot where it left the table top to the 
oor, which then acts as its new support surface.

In all these situations we have an interesting interplay between the teleological and the physical view of
our virtual world; visibility information and the intersection of the cursor ray with a particular object
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Figure 19: A selected cup (1) is dragged o� a table's supporting surface. The cup falls (2) onto

the lower surface (3).

are used as additional cues to infer the intent of the user.

Mouse-Cursor Correspondence

Another key paradigm of the desired user interface is that the object should follow the cursor as directly
as possible. This principle must sometimes be violated in situations such as the ones above, where
establishing a physically valid position may result in a dramatic (vertical) adjustment. As long as the
association procedure doesn't add any motion to the object, the relocation procedure usually maintains
correspondence. However, the association procedure has no responsibility to maintain the connection
between the mouse pointer and the selection point. This then raises the issue whether in such situations
the cursor should stay where the user last moved it, or should be \warped" along with the extra motion
given to the object by the association procedure. While it is generally preferable to keep the cursor point
attached to the handle established at the selection point on the object, this has the consequence that
the cursor - and the object itself - may disappear from the screen altogether. Consider the situation in
Figure 20 where the cup is moved beyond the back end of the table, and where the cursor ray hits no
suitable support. The gravity procedure will drop the cup behind the table and possibly out of sight, and
the cursor may vanish with it if the 
oor lies below the lower edge of the viewport. If the fall happens
too quickly, the user might not know where the cup (or the cursor) has gone and what should be done
to bring it back.

These problems are related to the fact that the association procedure has nothing to do with the mouse
cursor position on the screen; it is only interested in placing the object in a valid local position. Since
there is no direct relationship, it is counterintuitive in the general case to arti�cially force the mouse
cursor to follow the result of the association procedure's adjustment of the object's position. The user
controls the mouse cursor; the cursor should only move in response to the user's direct command.
Furthermore, the relative motion of the 2D mouse under the user's control directly re
ects motion along
the 2D relocation manifold, which is the primary method of controlling the object; if we warp the cursor
at the whim of the association procedure, the correspondence of the cursor with the relocation manifold

is lost, to the detriment of the user's ability to determine where the object will move when a small
relative cursor motion is applied. Thus, we do not warp the cursor to follow the results of the relocation
or association procedures; there is enough information in the relative motion of the selection point and
mouse cursor for a user to be able to determine how the object will move in response to mouse input.

As a result of this decision, the object can become \lost" to the mouse pointer when the association
procedure adds large o�sets to the object position. We have ensured that there are many redundant
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escape routes for the user in such a situation. To bring the object back into view, the user can move the
cursor back along the relocation manifold so that the (invisible) cup moves back into the bounding box
of the table, whereupon it jumps back to the table top (i.e. object motion has no hysteresis; see the next
section for details). Alternatively, the user may go to a new location from where the cup is visible, and
then continue moving it from its current location on the 
oor behind the table. Finally, if the object
seems totally lost, it can readily be brought into the knapsack while it is still selected, and from there
it can be placed directly at the current cursor position. A keyboard shortcut permits to \warp" the
object directly from any (possibly hidden) position to the cursor position with a single ctrl-click. This
operation is also a very e�cient way to quickly populate a room with furniture. It takes three mouse
operations to place an object in a desired spot: one click to select it, a ctrl-click to warp it into the
neighborhood of the desired spot, and one shift-click-and-drag operation to �ne-tune the �nal position.

Hysteresis in Manipulation

Both the mouse-cursor correspondence and visibility problems contain a question of hysteresis during
interactive motion; that is, if the mouse pointer, during an interactive motion, is moved from point A to
point B on the screen, moving the object along some path in space, and then the cursor is moved back
from B to A along the same screen path, does the object follow the exact reverse path in space, or does
it follow some di�erent path? Furthermore, does the object even end up in its original position, or is the
correspondence of point A to the object's initial position lost as soon as the mouse cursor moved? This
question is clearly evoked by moving an object o� of the edge of a table; we grab the object on the table
(point A) and move the mouse cursor \down" on the screen, moving the object along the table surface
until it falls o� (point B). The object is now on the 
oor; do we re-associate the object with the 
oor
at that instant, or do we wait until the entire motion is complete? If we do the former, and move the
cursor back \up" the screen, the object will remain on the 
oor until the cursor ray is obscured by the
tabletop, at which point it will return to the surface of the table; this demonstrates a distinct hysteresis,
as the object could very well end up on the 
oor instead of the tabletop when the mouse cursor reaches
point A again. If, on the other hand, we do not re-associate, the cup will jump back up onto the table
immediately as the cursor begins backtracking, even though if the cup had began the motion in that
position the same cursor motion would have resulted in it sliding under the table instead. However, this
solution shows no hysteresis; the cup will follow the precise path in reverse upon returning the cursor
from B to A as it followed from A to B (Figure 21).

In our tests, hysteresis was found to cause more confusion than it solved. Thus, the current object
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Figure 20: A selected cup (1) is moved o� the back of a table (2), falling completely out of the

view window (3). The mouse cursor cannot simultaneously track the selection point and remain

within the window boundaries.
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Figure 21: An example of the e�ect of hysteresis in manipulating a cup on a table. Suppose the

cup was selected at point A with mouse cursor ray 1, and the mouse cursor was moved down on

the screen until the cup reached point B (mouse cursor ray 2), at which point the cup dropped

o� the table to point C. If the system dynamically re-associated the cup at point C (requiring

the mouse cursor to be warped to position 4), the association procedure would cause the user to

experience hysteresis; moving the mouse cursor back up the screen, the cup would stay on the 
oor

and move to point D (mouse cursor ray 3) due to the fact that the selection point would remain

visible as the cup slides back toward the table. If the association procedure did not re-associate,

the mouse cursor would remain at position 2 even though the cup would move to position C; as

the mouse cursor was moved back from position 2 to position 1, the cup would follow the original

path backwards from C to B to A.

association system does not re-associate objects until the current manipulation of the object has been
completed (i.e. the user has released the mouse button). This means that the option to backtrack the
object is always available, which provides a subtle but very convenient trivial undo capability; the user
can undo the motion by simply moving the mouse cursor back to where it started.

3.2.7 Software Engineering Issues

Flexibility and Extensibility

Providing desired object behaviors in 3D virtual worlds is in principle not an easy task. Many nitty-gritty
problems concerning data structures and e�cient representations must be addressed in order to keep the
environment truly interactive. Creating a cohesive framework of object associations is our attempt at
keeping this overhead concentrated in one place, so that it can be amortized more easily by the systems
programmer with each new object behavior introduced, and so that the user can be given the 
exibility
of easily choosing the types of behaviors for each object that are most appropriate for the manipulation
tasks at hand.

The descriptions of the association and relocation procedures used in the Soda Hall walkthrough look
very simple in pseudo-code. It is important to note that the pseudo-code is very close to the level of the
actual C code used for the implemented procedures. This is because the WALKTHRU program system
provides a rich set of libraries including a complete geometric computation package that operates on
vectors, rays, points, planes, and other objects. It also provides the mechanisms to easily search the local
area of an object for other objects, to �nd the objects whose bounding boxes contain a given point, and
to quickly �nd the �rst object intersected by some space ray. Thus, most lines of pseudo code convert
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to a few lines of actual C code, making implementation rather straightforward. In such an environment,
object associations are most naturally implemented with additional C routines; the C language is more

exible and powerful than any higher level geometric scripting language we could design ourselves.

Implementing Relocation and Association Procedures

The object associations system coded into WALKEDIT is designed to easily accept new relocation and
association procedures; the only caveat is that adding procedures into the current system requires a
recompilation of the WALKEDIT program. New procedures are registered by assigning them a unique
identifying number and adding the name, number, and prototype of the procedure to a header �le. After
this is done and WALKEDIT is recompiled, the new procedure will appear in the run-time lists, may be
assigned to objects interactively or o�-line in the object properties �le, and will be called when necessary
by the object association package.

Before the relocation procedure is called, the system converts the mouse X and Y positions on the screen
into a 3D vector from the eyepoint, so that the relocation procedures can operate in object space rather
than screen space. Furthermore, the system chooses a selection point on the object. If the object is one
being directly manipulated by the user, that selection point will be the original intersection point of the
cursor ray with the object. If the object is not being directly manipulated (for example, if a dynamic
grouping test is being performed on the object, or the editor is being run in batch mode), the selection
point defaults to the object's center of mass.

A relocation procedure takes the mouse position on the screen (integer X and Y on the window), the
eyepoint and mouse vector in 3D space, the object and the selection point on the object, and the
mouse button that was pressed (left, right, or middle). The procedure must return a 6 DOF rigid body
transformation.

Once an initial 6 DOF rigid body transformation is determined, the system builds a special structure
called the association data packet (ADP). The ADP is an abstract data type that represents the current
position and associations of the object. A procedure can query the ADP for the initial positions of
the object and its selection point or the current position of the object and its selection point. When
the procedure wishes to add a motion to the object, the ADP's current position is changed via two
functions, one which translates the object and one which rotates about an arbitrary axis. These changes
are propagated to the current positions stored in the ADP. When the association process is over, the
system queries the ADP one last time to get the �nal transformation of the object. The ADP also contains
such information as which database and cell the object is in. The ADP allows the procedures to be more
modular, as well as making queries to the object's current position easier and making modi�cations to
the position more straightforward.

An association procedure takes a pointer to an ADP. Once it has applied any necessary local position
changes to the object via the ADP, the procedure returns the modi�ed ADP along with a list of any
new associations of the object with other local objects.

Internally, the object association system provides a piece of \local storage" for relocation or association
procedures that is freed between object manipulations; the procedure can use this local storage to
store information between calls during an interactive motion. For example, the on-horizontal relocation
procedure stores the initial mouse X and Y on the screen when the manipulation began, so it can compute
the rotation based on the di�erence between the current X value and the original X value of the mouse.
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3.3 Undo and Redo

A user manipulating a large building database will make many changes in an editing session; inevitably,
mistakes will be made, and it is vital that an editor of any kind allow the user to gracefully back out of
a bad operation. In the prototype editor, it was only possible to undo the last mouse operation done to
the currently selected object. If a new object was selected, even if nothing was done to it, the ability to
undo the last operation on the old object was lost. Also, the user could only undo the entire motion; if
the object was moved twice without being deselected, it was impossible to undo the second operation
alone. These limitations were due to the original construction of the undo procedure, which wrote a
script �le as transformations were made. Once a transformation on an object was �nalized (that is, the
mouse button was released), it was written to the script �le, and the script was a write-only log. Finally,
the prototype undo operated by storing an \old" transformation matrix associated with the current set
of selected objects; this matrix was initialized with the original position of the object at selection time,
and copied into the current position when the undo button was pressed. Obviously, storing only a matrix
doesn't take into account renaming, copying, or deleting objects, so none of these operations could be
undone in the prototype.

To allow for a better undo capability, it was necessary to store transformations internally rather than
copying them to a �le. A linked list stores atomic transformations performed on individual objects.
This list is not written out to the �le unless the user explicitly selects the \write script" function from
the �le menu. Each node keeps complete information on how to both perform and undo the operation
designated by the node. A pair of general routines, which take a node as input, can either \do" or \undo"
the operation of the node. The undo operation simply strips the last node o� of this list and undoes the
operation of the node (reverses the transformation, deletes the copied object, recreates a deleted object,
etc). Once the list was implemented, in�nite undo is trivial; each time the undo is pressed, another node
is stripped o� and undone. This structure also supports a straightforward redo operation; redo simply
takes the last undone node, redoes the operation, and places the node back onto the undo list. For
e�ciency, undo and redo often don't actually perform the speci�ed operations completely. For example,
performing a deletion does not actually delete the object, because if it did, it would have to store a
complete copy of all of the geometries and data comprising the object in the undo list node. Instead, the
object is unlinked from the visibility list; when the operation is �nalized, either by writing the database
out to �le or by the user quitting the editor, the object is actually deallocated and destroyed. This frees
undo and redo from allocating or deallocating and copying the data to and from the block-structured
binary database; they can simply add or subtract pointers from the visibility lists.

The interaction of groups of objects with the node structure proved to be problematic. For e�ciency
of representation, each undo node represents a single transformation of a single object. However, most
of the time, the user is moving a set of objects with a single mouse motion. When the undo button is
pressed, the user wishes to undo a single mouse \gesture," not a single atomic motion. To solve this
problem, a special marking mechanism called a \chunk marker" was added to an undo node. When the
undo button is pressed, nodes are undone until a node with a chunk marker is found; that node is the
last node which is undone. Similarly, when the redo button is pressed, nodes are redone until a marked
node is encountered. Chunk marks are inserted into the operation list whenever the user releases the
mouse button. Using chunk marks, the system only requires four node classes: transform, copy, delete,
and rename, with each node instance operating on a single object.

Given in�nite undo and redo, when should the system delete nodes that have been undone? Most often,
the user will undo a recent operation or a few recent operations and want those operations to disappear
forever. Thus, the default is to delete the nodes on the redo list permanently each time a new operation
is performed. This prevents the user from undoing an operation, then, later, pressing the redo button
only to �nd that he has just accidentally redone the move of the desk from long ago. However, it is
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conceivable that the user may want to \insert" an operation; that is, undo a set of operations, perform a
modi�cation or modi�cations, and then redo the original set. Automated deletion of the redo list must
be disabled explicitly for those rare cases where that behavior is desired.

Another useful property of this new format is that scripts can be loaded and saved independently of
writing the changes to the database or UG �les. The new script format can be loaded into the editor
and \redone" onto a binary walkthrough database. Thus, scripts of moves can be saved to be reloaded
and propagated back to the UG �les at a later time, or can be sent as a compact modi�cation format to
be applied to other binary and UG databases. This system could be used as a baseline for parameterized
or macro operations on databases.

3.4 The Knapsack

3.4.1 Motivation for Creating the Knapsack

There is no way to move the user's viewpoint while manipulating an object. In the prototype editor,
this meant that an object could only be translated from one point to another within a given view.
Moving an object from one visible point to another is straightforward; select the object and drag or
warp it. Unfortunately, if the user wishes to move the object a long distance (say, from a storeroom
in the middle of the building to the terrace on the roof), the paradigm breaks down. It requires many
iterations with many intermediate positions in order to get the object to the roof, and it may require
an extensive amount of planning for the user to get the constrained object to the �nal position (it
may require navigating stairs or an elevator, while the object is continually constrained to the closest
available surface). In fact, it may not even be possible to move the object from one arbitrary position
to another by dragging. For example, if an object is constrained to be on a vertical surface and there is
no connecting wall between the two points, there may be no way to slide the object along wall surfaces
to get to the new position.

The intent of the prototype editor's copy button was that the user would select an object to be copied
and press the button on the menu. The next selection of the object would create a copy of the object
in the original location, which would be dragged by the mouse instead of the original. Several problems
arose with this approach. First, there was the naming problem; what is the copy to be called? The
original program did not change the copy's name; however, for the database to be maintained in a
consistent manner, each copy must be given a unique name. One approach is to keep a counter of the
number of objects of a given type; when a new copy is made, it is given the name (object)(number)
and the number is incremented. This guarantees unique names; however, it requires the maintenance
of a large number of counters, and reconstruction of the counters upon loading a new database. This
counter maintenance problem is also compounded by our script-based update scheme; the user could
create a script in one session, then save the script and exit the program, leaving the database itself
unmodi�ed. If the user then reloads the database later, makes some new modi�cations (which re-use
the counter numbers generated in the �rst script), and subsequently re-loads the script, there will be
con
icts between the names created in the new session and the names in the script. Such con
icts will
exist regardless of whether a single, global counter or multiple, class-based counters are used. Another
method of generating unique names is to append a random number instead of a count for each object
type. This has the disadvantage of not being guaranteed to provide a unique name; however, it requires
no counter maintenance, and given a large enough random number, will be very unlikely to fail. This
second approach has been implemented and has caused no problems.

The second problem was with the paradigm itself. The copy performed by this method is necessarily
delayed (i.e. the copy is not made until the object is moved). If the copy was made immediately, it
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would appear inside and exactly coincident with the original object, and it would be impossible to select
one or the other reliably. Unfortunately, this also means that the object must store a 
ag that tells the
system whether or not the object needs to be copied the next time it moves. This 
ag must be checked
everywhere the object is moved or altered, making the code expand a great deal. If the user wanted to
make many copies of something, a count must be kept rather than a 
ag. For example, the user might
wish to populate a room full of desks with computer workstations. It would be nice under this paradigm
to select the object, press the copy command multiple times, and then \strip o�" copies to put on each
desk.

Finally, long distance transformations of objects, already a problem for the direct manipulation paradigm,
also interact badly with this copy paradigm. Often, the user wishes to make a large number of copies of
an object and place them in many places. When placing desks on an empty 
oor, for example, the user
will grab a desk and replicate it several times for each room. This is di�cult to do when each object
must be dragged from the position of another object of the same type.

3.4.2 The Knapsack Mechanism

Our solution to these problems is to provide an inventory or knapsack for the user. This feature follows
the well known cut and paste paradigm common to many editing interfaces, or the inventory paradigm
common to computer adventure games. In the classical inventory, the user places objects into an in�nitely
large backpack and carries them fromplace to place without cluttering up the viewport. The walkthrough
editor knapsack is a dialog box with a set of buttons and a scrolling list. When an object is selected in
the main window, the user can click on the \Cut" or \Copy" buttons in the knapsack window. Upon
pressing the cut button, the object disappears from the main window and an entry appears in the
scrolling list with the name of the selected object. Any objects that have been grouped with the selected
object are also removed from the view; those grouped objects are stored internally, identi�ed with the
selected object, and do not appear in the list. The copy button leaves the selected and grouped objects
in the main window; copies of these objects are made, and the name of the copy of the selected object
appears in the scroll box.

The user can also add new objects de�ned in external UniGra�x �les directly to the knapsack. A button
on the Knapsack menu allows the user to load a UniGra�x �le containing any number of de�nitions and
instances of objects. One class is created for each de�nition, and one object is created for each instance
and inserted into the knapsack. The selection points are set to the default, which is the center of the
bounding box of the object. Once loaded, these objects and classes may be used normally.

Once the user has an object in the knapsack and the name of the selected object appears in the scroll
list, that object is e�ectively removed from the database and resides in the knapsack. The object retains
its original position, selection point, and object association data; however, it is tagged \invisible" and
\intangible," so it cannot be interacted with in any way. A rename button allows the user to rename
objects in the knapsack; the object's name is picked from the list and the new name is typed in. This
is often called after the copy up function to rename the newly made copy. Deletion of objects in the
database is accomplished in a similar fashion; the object or group is cut into the knapsack, the group
is selected from the list, and the \Delete" button of the knapsack menu is selected, which destroys all
objects in the group.

The user now moves in the normal walkthrough fashion until the area where the group is to put down
is in view. The user can then select a group of objects from the scroll box and press either the \Paste"
or \Paste Copy" buttons to remove the group from the knapsack and place it back into the database.
Both of these procedures initiate an object association warp operation on the selected object. The paste
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operation then removes the objects from the knapsack list and re-marks them as visible and tangible.
Paste copy produces a set of copies of all of the objects in the group and warps this set of copies to the
desired location. The originals are left in the knapsack for further use.

3.5 Event Handling in the Walkthrough

The non-interactive WALKTHRU program used multiple parallel processes to improve its frame rate.
Upon initialization, the database manager launches a secondary frame drawing process which was of-

oaded to a second CPU. The \cull" process generates \cull frames," a data type which includes pointers
to all of the objects to be drawn in the frame, plus other necessary information such as the view frustum
and eyepoint. These cull frames are placed onto a queue. The \draw" process operates on the other end
of the queue, rendering each frame in double-bu�er mode by fetching and drawing the polygons of the
speci�ed objects.

This process poses a problems if objects can be deleted in the time between when a frame is placed
on the queue and the time that the frame is drawn. Unfortunately, modi�cations performed by the
editor are made at the \back" of the queue, during the cull process. This causes problems if the editor
deletes an object; it is almost certain that object is referenced in a frame on the queue, since the user
was probably looking at the object immediately before deleting it. Furthermore, the editor continually
creates and deletes \shadow objects" while performing dynamic grouping searches. This interaction
causes segmentation faults, as the draw process attempts to draw nonexistent objects.

One solution is quite simple: disable the separate drawing process. This obviously slows the walkthrough
down, but the slowdown is not generally perceptible. A better solution would be to have the editor store
objects to be deleted in the cull frame structure; after the draw process �nished drawing the frame, it
would actually delete the marked objects. Since no object can appear in frames after the frame in which
it was deleted, this solves the problem without disabling the separate draw process. WALKEDIT is still
using the former solution.

3.6 UniGra�x Writeback

3.6.1 Motivation

An editor for a virtual environment is useless if changes made by that editor cannot be permanently
entered into the database �les that represent the environment. However, propagation of changes made
in the editor to the database is a nontrivial task for the walkthrough. This is a result of the fact that the
walkthrough uses two database formats: binary and UniGra�x. These formats have di�erent purposes
and are used in di�erent ways.

The basic format for a walkthrough database is a set of 
oors. Each 
oor is represented by a set of
UniGra�x (UG) ASCII �les: one special �le which describes the walls and 
oors, and one �le for each
room or major subdivision (such as a hallway) describing the contents and furnishings of that room
or subdivision. This organization allows the database construction and preprocessing algorithms to
determine which are the proper polygons to do the spatial subdivision on for visibility computations
(the �le containing the wall and 
oor polygons). It also serves to localize room and hall contents to
simplify manual modi�cation of the database via textual modi�cation of the UG �les. Note that UG
�les store only geometry; they have no organizational or visibility information in them.
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The binary format is what is actually used when running the walkthrough: it stores objects in packed
C data structures, and contains the visibility and spatial subdivision information needed for real-time
interactive rendering. When a database is compiled, a .wk (binary) �le is generated from the various
.UG �les and subdirectories. This single .wk �le is the run-time database format used by both the
editor and the standard WALKTHRU program; generating it from the UG �les can take several hours
of CPU time. This binary format �le is the only database that the editor sees after it has loaded the
building. Run-time modi�cations, including editor operations, are made to the binary database. These
modi�cations show up in the current editor session, and are propagated back to the .wk �le when the
editor is shut down. However, they are not automatically propagated back to the UG ASCII database
�les which are the basic data exchange format used for all of our graphics programs. To address this
issue, a set of routines for propagating binary database changes back to the original UG ASCII �les was
necessary.

3.6.2 Naming Issues

The binary format associates a unique textual name with each object in the database. These names
are generated by the instance statements in the UG �les describing the 
oor; during construction of
the binary database from the UG database, the \root" UG �lename from which the instance statement
of the object was encountered is prepended to the name of the object. For example, a sphere called
\sphere1" whose instance statement is in a �le included in the database �le \Zsphere.ug" is called
\Zsphere.sphere1" in the binary database.

Nominally, these names should serve to identify the �le and exact instance statement from which the
manipulated object was derived. However, the UG format allows arbitrary nesting of include �les.
Thus, the instance statement creating the object could be in any descendant �le included in the root �le
speci�ed in the object's name. The system needs to track the �lenames which are included via explicit
include statements in the UG �le; these �lenames may contain the instance statements from which the
objects were derived. These �lenames may or may not be in di�erent directories than the original UG
�le, so �nding the �les can be a problem.

3.6.3 The Writeback Process

The input to WALKEDIT's UG writeback process is a sequence of elementary operations; these include
transforming an object, copying an object, renaming an object, and deleting an object. These operations
are assumed to be a legal sequence in time; for example, an object must exist when a copy event is
handled. This input list is condensed into a set of modi�cations. A modi�cation consists of an \old"
object name from the original UG database, the (potentially identical) new name for the object, a single
transformation of the object from the position of the \old" object before any transformations to the �nal
resting place of the \new" object after all transformations in the editing session, and a 
ag indicating
whether or not to delete the object from the database. At most one modi�cation node exists for any
one object in the �nal database.

After the modi�cation list is made, the UG ASCII database �les are sequentially scanned. The initial
queue of UG �les to be processed is the union of all �lename pre�xes of objects in the modi�cation list.
When a �le is scanned, statements other than instances and includes are ignored. An include �le adds
the name of the included �le to the �le queue if it has not been scanned already. An instance statement
is checked to see if the instanced object is the \old" object of one or more modi�cation nodes. If it
is, the statement is replaced with set of new instance statements, one for each modi�cation node that
has the object as its parent and is not 
agged as deleted. Each new statement has the \new" name of
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one of the modi�cation nodes as the instance name, and the body of the statement is replaced with the
old statement body plus the modi�cation node transformation. This process generates a modi�ed UG
ASCII �le. If the modi�ed �le has changed from the original in any way, the original is replaced with
the modi�ed version; otherwise, the modi�ed �le is simply deleted. This process is repeated until the
�le queue is empty.

A few other features help reduce the amount of work necessary on the part of the user. Paths are not
stored with the object names; thus, the system will often not be able to �nd the �le in the current
directory when it tries to �rst open it. Rather than forcing the user to specify the �lename with a full
path each time it needs to open a �le (and most databases have hundreds of �les), the system keeps
a \working directory list" which initially contains only the current working directory. Each time an
instance statement is processed, the path in the instance statement is added to the directory list, and
each time the user is forced to enter a path, that path is added to the directory list. When a new �le
needs to be opened, the system attempts to open it on every path in the directory list before it is forced
to ask the user where the �le is. Usually, most of the �les will be in a small set of directories. In theory,
this bookkeeping allows the system to ask the user at most once for each directory in which database �les
are stored. In practice, behavior is even better; pathnames are often stored in the include statements
themselves, so the system normally only asks the user for a single pathname to get the very �rst root
�le, and all other necessary paths are deduced by the system.

3.7 Transformation Consolidation

Another feature of the UG writeback system is instance statement compression. When a human user
generates UG �les by hand, especially without the editor, the tendency is to produce multi-line in-
stance statements with many redundant rotations and transformations on them. This leads to huge and
cluttered �les. Furthermore, if the UG writeback simply worked as stated above and postpended the
transformations to each line, each use of the editor would cause the instance statements to grow. The �le
sizes for the UG database would expand unnecessarily. To remedy this, we provide a compression switch
for the writeback process; compression is active by default. When compression is active, the system
reads and processes each instance statement into a single transformation matrix. The transformation in
the modi�cation node is added to this matrix to produce a single matrix transformation from the world
origin. This transformation can be described by at most 12 parameters in a UniGra�x instance state-
ment, stored as a matrix and output as a set of mirrors, scaling, translation, and rotation parameters
about major axes. Thus, each instance statement in the �le, no matter how long, is reduced to a single
zero to nine parameter statement in the newly generated UG �le. This has two bene�cial results; the
editor in compression mode never results in UG �le explosion, and old UG �les made by human trial
and error can be substantially reduced in size simply by running them through the editor's writeback
procedure.

Transformation consolidation takes place during the sweep-and-update pass through the UG ASCII �les.
If consolidation is not being performed, an instance statement of an object that has not been modi�ed is
left as it is, and an instance statement of an object that has been modi�ed has the transformation matrix
of the modi�cation postpended to the existing instance statement. If consolidation is being performed,
every instance line is rebuilt. Reconstruction is performed by computing the transformation matrix
that the instance line gives for the initial object position in the database, then postmultiplying any new
transformation to that initial matrix. The complete transformation matrix is then decomposed into a
single set of mirrors, scales, rotations, and translations (at most one of each per axis), and the instance
line is rewritten with only this single, orthogonal set of operations.
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4 Realism in Motion and Manipulation

4.1 Simulated Gravity

In the real world, gravity is a major element of our daily life. Both our bodies and the objects we
manipulate obey physical constraints, and it is almost impossible to create a believable interactive
environment without providing some Newtonian behavior to both the user and the objects in the world.

In the original walkthrough, there were two modes for user motion. The normal mode constrained the
user to a particular height in the universe; this height was set to an initial value upon loading the
database, and the only way to change the height was by pressing \up" and \down" keys, which moved
the user some �xed amount (usually a few inches) up or down. The mouse allowed walking forward or
back while rotating in the plane of the 
oor. Aside from the obvious de�ciency of not allowing the user
to look up or down, this mode also prevents simple or realistic motion for standing on top of objects or
for moving between 
oors. The other mode, a�ectionately called \F16 mode," allows the user to spin
vertically as well as horizontally, and move straight ahead along the current view vector. This provides
a standard \
y-through" capability; the user may point himself in any direction by rotating into that
direction, and may go anywhere by pointing at the desired location and moving forward. This is no
more realistic than the standard mode; the user 
oats through the air like a miniature space ship, with
no inertia or gravity, 
ying up and down stairwells and across three-story drops without 
inching. It is
very easy to get lost in this mode, as the vertical freedom of motion makes it di�cult to simply walk
down a hallway; the user ends up drifting into the ceiling or the 
oor, changing height in an unnatural
way.

We want behavior that combines the steady height above the 
oor while walking down the hallway with
the ability to look around from that normal height and to walk up and down stairs, take elevators,
and generally move around the building in a manner approximating the way a real person would move
around the real building. The latest implementation of WALKEDIT provides a gravity approximation
that yields this behavior.

The database model allows the editor to project rays from any point in space and returns the �rst
intersection of that ray with a solid object. Our �rst attempt at simulating gravity was to insert a
process that continually projects a ray from the user's eye point straight \down" (that is, in negative
Z). On its �rst call, the process stores the initial distance to the closest surface below the eye point.
This distance becomes the \height" of the user. On subsequent calls, the system projects the ray and
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subtracts the height of the user to get a current height error.

When the height error is nonzero, the user's height must be adjusted to reduce the error. If the error
is negative, the user's eye is too close to the 
oor. In this case, the user needs to \stand up." The
normal human muscular system provides a smooth motion to move the person from a squatting position
to a standing position; this motion is initially rapid and slows as the extent of the legs are reached.
To simulate this process, the proportional correction method was borrowed from control theory. Every
cycle, a large percentage (user selectable, which defaults to 75 percent) of the error in the height is
eliminated (that is, the user's height is increased by that percentage of the error). This provides a
smooth rise, rapid at �rst, slowing as the proper height is reached.

For a positive error, the user must \fall" to the appropriate height. This is done with a simple discrete
time acceleration simulation; the user's vertical velocity is maintained from cycle to cycle, and a �xed
acceleration term (also selectable) is applied to that velocity every cycle. The velocity is applied as
a change in height in each frame. Note that the velocity can be positive as well as negative; in this
case, the user will 
y up and then down in a parabolic arc as if thrown upward. If the user has a large
downward velocity but the height error for the frame is negative, the user has fallen and struck the 
oor.
In this case, a damping term is applied, and the velocity is re
ected about the 
oor surface. Thus, a
small fall will result in the velocity being cancelled by the damping term (as in, for example, stepping
down from a short platform or dias), so there is no bounce; but stepping o� of a second story balcony
will result in a perceptible pogo stick action.

Numerical instability was observed near the user's set height, due to the relatively long virtual time
interval between iterations of the process. To cure this problem, for \small" downward steps (if the
user's height error is positive but less than half of the user's height) the proportional adjustment is
applied to gently lower the observer to the 
oor. This adjustment interacts with the damping term to
provide a gentle, smooth landing, as well as preventing vertical oscillation near the proper height.

This method provides realistic motion on nondegenerate (i.e. continuous) 
oor surfaces. The user can
walk up and down stairs by simply moving over them; the user steps smoothly up or down onto each
stair. Moving rapidly over many small vertical steps (such as walking up a staircase) doesn't allow the
system to fully process a step before the next one is encountered; the result is a steplike vertical motion
corresponding in period to the spacing of the steps themselves. Taking an elevator or moving lift is also
handled by this process; the observer rises or falls with the 
oor of the elevator.

In fact, it was the elevators that revealed another problem with this approach. The elevator doors had
a �nite thickness (an inch or so). This meant that between the 
oor and the interior of the elevator
was a small crack the width of the elevator door. Such a tiny crack wouldn't bother a person with a
�nitely large footprint (indeed, real elevators have such a crack, if it is only a fraction of an inch wide).
Unfortunately, the observer projects an in�nitely thin ray; thus, when stepping over the crack, the user
fell through into the elevator shaft. This same problem can result with any arbitrarily tiny crack in the

oor, even a small numerical error in the modeling.

The �rst reaction to this problem is to create a �nitely large \footprint" for the user; if any portion of
this footprint can get a hold, the user won't fall through the crack. However, our system only supports
ray projections, and the projections are not inexpensive; thus, we must make do with a small number
of rays instead of a footprint. Furthermore, such rays may have problems in some cases; for instance, if
the rays are projected in front of the user and the user runs face-�rst into a wall, the front ray will be
projected on the other side of the wall, and the resulting height error can be odd.

Since the problem is cracks in the 
oor, and the user will be crossing those cracks perpendicularly, a
ray projected some distance in front of the user should be able to �nd an available patch of 
oor if one
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is available. The system projects a second ray from one �fth of the height of the user in front of the
eye point, straight down. This projection yields another error estimate on height. However, since this
error estimate is to be used to avoid falling through cracks, we use that estimate only if the error under
the user's eyepoint indicates a fall. If the user's eyepoint height error is stable or indicates a rise, that
value is used. If the eyepoint height error shows a fall and the forward height error shows a lesser fall
or a rise, the forward error is used. This stops the user from falling through cracks, prevents problems
with the user stepping up to or close to the edge of a balcony or precipice, and provides the ability to
get a \toehold" on surfaces just ahead of the user. In practice, this gravity system seems to produce the
desired behavior.

4.2 Physical Object Simulation

4.2.1 Motivation

In the design and construction of WALKEDIT, we often wanted to have the ability to do various degrees
of physical simulation. Part of the goal of our object association technique was to be able to make
objects behave similarly to the ways they behave in the real world: when objects behave naturally,
manipulation of those objects can be far more intuitive. Unfortunately, true collision detection and
dynamic simulation are time-consuming algorithmic processes, dominated in most cases by the former.
Because the walkthrough had an incompatible \higher goal," that of interactive frame rates, we had
discounted dynamics as a viable alternative.

However, in the recent past, algorithms and techniques have appeared in the literature to support real-
time collision detection and dynamics. Speci�cally, here at Berkeley, Lin and Canny have developed an
algorithm that can maintain and quickly update the closest feature of two convex polytopes. With this
algorithm, doing limited dynamic simulation should be possible while maintaining the frame rates that
make the walkthrough program interactive. Once we have this capability, we can reach further with
both our level of realism and our interactive techniques.

Research into realistic rendering and visualization techniques is an ongoing e�ort for the walkthrough.
With the ability to do dynamic simulation, we can make objects settle properly; if there is a table with
a pair of legs in the air, that table will no longer 
oat above the 
oor, but will fall to its natural resting
position. If a cup is sitting on an incline, it will not stay still, but will slide to the next lower surface. If
a book is hanging over the edge of a table, it will fall o� and hit the 
oor. Such events will make the
walkthrough a much more realistic experience.

Our research into interactive manipulation techniques will also bene�t from dynamic simulation capabil-
ity. The ability to do true collision detection will enable the pseudo-gravity association to settle objects
to the supporting surface realistically. Further user interface research will also be able to make use of
dynamics and collision detection: for example, we could implement a \rubberband" dragging interface,
where \tugging" an object with the mouse produces a force that drags the object toward the cursor po-
sition. Such a force-based approach to movement has advantages for alignment of objects. Aligning two
desks, for example, is as easy as pressing one against the other; the torques generated by their collision
will force them to rotate and press their backs evenly together. These new approaches will negate the
need to for the user to do some of the explicit constraint of objects necessary in the absence of collision
detection. Another possible use is in design of buildings for construction. Is it possible to move a piano
up a staircase? If we have dynamics and collision detection, we can �nd out by trying to drag it up the
stairwell.

This section of the thesis describes a preliminary e�ort to integrate the Lin-Canny algorithm and a fast

45



X
Z

Y

W
al

l

Wall

W
al

l

Wall

Des
k

Wall

W
al

l
Des

k

Wall

W
al

l

Desk Desk

1 2

3 4

Figure 22: An example of how collision detection and force simulations can bene�t object ma-

nipulation. The user wants to put a desk in the corner. At �rst, the user simply pulls the desk

toward the upper wall (1). The desk moves linearly with the mouse until the collision detector

�nds an impact with the wall (2). The torque produced at the contact point (the circle in frame

2) forces the table to rotate so that its backside nestles against the back wall (3). After that, the

sliding contact against that wall (the ellipse in frame 3) keeps the table aligned with the back

wall, but allows the user to slide the desk into the corner by angling the applied force. Finally,

a sliding contact is achieved when the collision detector �nds an impact with the side wall (the

ellipse in 4). The desk stops moving, with all DOF removed by physical contacts and the input

force, properly nestled into the corner. Note that all the user had to do was grab and drag.
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contact force computation algorithm into a special, standalone testing version of WALKEDIT, called
WKCM (WalKthrough with Collision Modeling). Although the algorithms are not integrated into the
object association system yet, our initial results with WKCM indicate that the approach shows promise
as a tool for interactive, realistic manipulation of objects in a virtual environment.

4.2.2 Integrating the Lin-Canny Algorithm into WKCM

Object Representation

Representing objects for simulation is a problem in the walkthrough. The spatially partitioned, prepro-
cessed run-time binary WALKTHRU database (the WK database) is generated from UG source code,
but it does not maintain the UG winged-edge data structure during the actual walkthrough. In the WK
database, an object is represented as a list of unrelated 2D facets, each of which has its own separate
list of vertices. This representation is not compatible with the Lin-Canny algorithm, which requires a
convex decomposition of each database object with a winged-edge structure for each convex subpoly-
tope. Furthermore, simulation requires the storage of a center of mass, mass, and inertia tensor with
each object.

Due to the fact that the walkthrough and Lin-Canny algorithms have very di�erent object data needs,
WKCM maintains a second runtime database, called the physical database. For each object class in the
WK database, the physical database contains a convex decomposition of the object into subparts with
a winged-edge format, the relative poses of the subparts, and the physical parameters of the object such
as the center of mass, mass, and inertia tensor of the object in its local coordinate frame. This database
is initialized from two auxiliary �les that must be precomputed for each object and must be present in
the same directory as the WK database at load time. One of these auxiliary �les holds the winged-edge
convex pieces; the other contains the simulation information (inertia tensor, mass, and center of mass)
and convex decomposition information for each class. At load time, all of this physical information is
gathered into a set of data structures called polyobject structures. There is one polyobject structure
per WK object class containing all physical data for the class. When the simulation algorithms need
to operate on a WK database object, they request a polyobject representation of that object from the
physical database.

A separate utility programwas written to assist in the creation of these �les. TheWKCM object converter

takes as input the original UG �le for the WK database and creates the winged-edge structure, center
of mass, and mass for each object class in the �le. This data is then written to the auxiliary �les in
the format required by WKCM. Center of mass of a polytope is computed by �nding a point inside
the polytope and taking the mass-weighted average of the centers of mass of all pyramids formed with
the given point and each facet of the polytope. Currently, the converter does not perform the convex
decomposition or compute the inertia tensor; further e�orts in simulation will require coding these
algorithms.

Object Linking and Closest Feature Maintenance

The Lin-Canny algorithm dynamically maintains the closest pair of features of two convex polytopes.
Features are de�ned as points, edges, or facets of the polytope. The algorithm is incremental, with two
main procedures. The �rst procedure is an initializer; when simulation is begun, the initializer is called
to determine the closest features, which must then be stored by the caller. The initializer runs in linear
time in the number of facets of the polytopes. When the objects are moved, the incremental procedure
is called with the previous set of closest features as a starting point. The procedure \walks" the surface
of the polytope from the old closest features to the new closest features and returns them. Because the
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Figure 23: Organization of run-time databases for simulation. The WK database is the original

walkthrough database, with \unstructured" object de�nitions and walkthrough object and class

data. The physical database contains a more structured winged-edge object de�nition, plus

simulation-oriented object data such as center of mass and moment of inertia.
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old features are used as a starting point, �nding the new features is very fast if the objects only moved
a small amount; given the \small motion" assumption, run time of the incremental update is expected
constant [33].

Brian Mirtich's implementation of the algorithm [34] was ported to the Walkthrough environment and
integrated into WKCM. The polyobject representation uses Mirtich's structures for the convex sub-
pieces, so there is no translation layer involved; the library can directly call Mirtich's functions on the
relevant subpart of two polyobjects to �nd their closest features. However, in order to provide maximum
performance for closest-feature determination between a pair of objects, the system must maintain the
closest features of the convex subparts of the objects between calls to the closest feature �nder.

Closest features are maintained via the linkingmechanism implemented in the WKCM simulation library.
When the user wishes two database objects to interact during simulation, a library function is called
that allocates a link between the objects. Each WK database object has a single additional pointer
added to its external data �eld, which points to a singly linked list of simulation links. Each simulation
link is a part of two such linked lists, one for each object being linked. The link contains pointers to the
objects, pointers to the next elements in the respective lists, and a matrix of the closest features of the
subpolytopes as of the last call to the Lin-Canny algorithm. This matrix contains 2nm entries, where
n and m are the number of subpolytopes of the two objects. Each entry is a single void pointer that
points to a feature in the object class representation of the subpolytope, making the link as compact as
possible.

Link Structure
Barbell Object 1

Links

Barbell Object 2

Links
OtherOther

Object 1 Links Object 2 Links

FPairFPairFPair

FPair

FPair FPair

FPair

FPair

FPair

Part 1

Part 2

Part 3

Part 1 Part 2 Part 3

Figure 24: An example of a link structure between two barbells, which are represented by two

convex weights and a convex cylinder connecting them. The link is a member of both barbells'

link lists, and contains a 3 by 3 matrix of closest features (labeled FPair) of the subpolygons.

The Lin-Canny algorithm itself is accessed by the rest of the system via a function call that takes two
database objects and a transformation matrix for each. If there is a link between the objects, the function
retrieves the previous closest features from the link structure and uses those as the starting point to
�nd nm new closest features, pairwise for each subpolytope, on the polyobjects transformed by both
the object's current pose and the given matrices. The smallest distance between any two subpolytopes
is the smallest distance between the polyobjects. This smallest distance is returned, and the link is
updated with the new closest features. The linkage system interface provides transparent closest-feature
determination at the granularity of (potentially concave) database objects to the rest of the WALKTHRU
system.

Linking Strategy

When the collision detection algorithm is invoked with an object and a planned path for the object, the
object links are traversed to �nd which other objects in the world can possibly interact with the selected
object. Thus, the programmer can control the extent of the interactions between objects by making
and deleting links as the objects move around; if an object moves to a di�erent room, for example, it
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can be unlinked from the objects in the old room, and those objects will not be considered for collision
with the moved object. This allows the system to take advantage of the cell subdivision structure to
greatly reduce the number of objects that have to be included in collision tests when moving a particular
object interactively. In WKCM, a callback is registered with the object associations' grouping function
to link every object touched by the grouping search to the selected object. This has provided satisfactory
local linking, but may be inadequate for longer-distance movements of objects. In the current version of
WKCM, unlinking has not been implemented.

4.2.3 Collision Detection with Moving Objects

Once links are established, the user may use the collision detection routine on any database object. The
current collision detector takes a database object, a motion vector for that object, and a maximum time
value. The motion vector is a complete 6-element 3D velocity vector, with a linear velocity component
and an angular velocity component, where the angular velocity is speci�ed about the object's center of
mass. The function computes the following: Starting with the object at its current position, for what
maximum value of t, 0 � t � tmax, can the object move by vt, where v is the given velocity vector,
before the object collides with an object to which it is linked?

This function uses a numeric solver on d(t), the minimum distance between the moving object and any
other linked object as a function of time, to �nd tc, 0 � tc � tmax, for which d(t) � � for all 0 � t � tc.
For numerical stability, no objects may get closer than some preset small �; values used in our tests are
about one thousandth of an inch.

In creating this function, the properties of the Lin-Canny algorithm were very important. The algorithm
cannot handle interpenetration or even contact between objects; if such a condition occurs, an in�nite
loop is created. Thus, it was imperative that the collision detector be very conservative, never even
computing d(t) for any value of t that might result in interpenetration or contact. To achieve this
behavior, we use a \stepping" algorithm. We start at t = 0 and attempt to step forward in time as
much as possible with each iteration while remaining absolutely safe. Since our velocity vector is rigid
and linear, if we know d(t1) for some t1, we can compute a time step bound tstep for which d(t) � 0 for
all t1 � t � t1 + tstep. tstep is the maximum delta time such that any point on the object can move at
most d(t1) in that time. If v is the translational velocity, a is the greater of the angular velocity or �,
and r is the radius of the bounding sphere of the object, we can write

vtstep + artstep � d(t1)

or

tstep �
d(t1)

v + ar

The collision detection algorithm, in pseudocode, works roughly as follows:

1. Set t = 0;

2. While t < tmax and d(t) � �:

(a) Compute tstep for distance d(t);
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Figure 25: An illustration of computing a conservative maximal timestep that avoids collision be-

tween the moving convex polyhedron and a stationary polyhedron. The large �gure demonstrates

that for a polyhedron with linear velocity v and angular velocity a, the largest distance that any

point P on the polyhedron can move in some time t is vt+art. The lower �gures show qualitative

examples of how the two terms relate to collision distance and time for the v >> a and a >> v

cases for a pair of hypothetical polyhedra. For a >> v, the closest distance d(t1) between the

objects at the beginning of the interval is less than or equal to artcollide where tcollide is the time

step from t1 to a collision. In fact, the approximation becomes arbitrarily good (i.e. \less than

or equal to" becomes \equal to") as tcollide approaches 0. Similarly, for v >> a, vtcollide � d(t1).

Combining the equations gives vtcollide + artcollide � d(t1), so tcollide �
d(t1)

v+ar
. Thus, if we pick a

time step less than or equal to
d(t1)

v+ar
, that time step is guaranteed to be smaller than the time to

collision.
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(b) t = t + tstep;

(c) if t > tmax then t = tmax;

3. if t = tmax then return t;

4. Set t to the last valid time when d(t) � �;

5. While d(t) � � + �2:

(a) Compute tstep for distance d(t)� �;

(b) t = t + tstep;

6. Return t;

The �rst loop attempts to advance t to tmax. If this loop fails, then a collision occurs; the second loop
backtracks and attempts to step as close as possible to � distance between the objects before returning
a value.

Note that this program loop is not called on all objects to which the selected object is linked. Before any
motion is attempted, a culling step is performed where the bounding sphere for the selected object is
swept along the velocity vector and compared with the bounding spheres of all of the linked objects. Only
linked objects whose bounding spheres intersect with the selected object's bounding sphere somewhere
along the path are tested in the main loop. This provides a large advantage in e�ciency, since the
bounding sphere computation is very fast, is only done once, and tends to remove all but a few of the
linked objects from consideration as blockers.

This relatively simplistic approach has been found to produce interactive collision detection on objects
being dragged with the mouse in WKCM. Our approach is similar to other approaches in the collision
detection literature that focus on a preliminary bounding shape cull step or spatial subdivision to reduce
the number of potential collisions from O(n2) to a more tractable set. We combine both a spatial cull
(in the form of the linking phase) with a bounding sphere cull. Approaches for the spatial cull step in
the literature focus on structures like octrees that automatically partition the objects into groups; our
algorithm simply uses the precomputed cell structure of the WK database. Our bounding sphere cull
is also similar to, but simpler than like approaches in the literature, such as four-dimensional sweep
volumes [13, 30] or spatial tiling techniques such as that used in [34]. To a large degree, such complex
culling techniques are made unnecessary by the existing WK cell structure, which produces a comparable
result to these approaches in practice.

Once potential collisions have been quickly pared down to one or two other objects by the cull step,
our numerical solution takes time inversely proportional to the closest distance that passes between
the objects in the motion. A more standard numerical method would likely improve performance, but
we were concerned about the in�nite-loop problem with the Mirtich implementation, so our approach
sacri�ces e�ciency for a guarantee of non-intersection. A newer public domain implementation of the
Lin-Canny algorithm, called I-COLLIDE, that avoids this problem has been recently presented by Cohen
et. al. [16]; we will be replacing the Mirtich code with the I-COLLIDE system in the near future.

4.2.4 Contact Force Computation

For physical simulation, we need a contact force computation algorithm as well as a collision detector.
In WKCM, we have implemented a contact force computation algorithm taken from a paper by David
Bara� in SIGGRAPH '94 [4]. The paper points out that you can model contact forces on polyhedral,
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frictionless rigid objects as point forces of two major types. Vertex to face contacts generate a force
at the vertex-face intersection point, in a direction purely normal to the face. Edge to edge contacts
generate a force at the intersection of the two edges in the direction of the cross product of the direction
vectors of the edges. We can specify the directions of the forces because the frictionless nature of the
problem implies that contact forces must be purely normal to the contact surfaces. All other types of
contact may be decomposed into these two primitive types. For example, face to face contact may be
modeled by considering the region of overlap of the faces: each of the vertices of the polygonal overlap
region will be either a vertex-face or edge-edge contact, and this set of contacts completely describes the
contact force between the two faces.

Face-Face ContactVertex-Face Contact Edge-Edge Contact

Figure 26: The two major types of contact between objects: vertex-to-face (left) and edge-to-edge

(middle). On the right is an example of how another type of contact, face-to-face, is decomposed

into the other two types. Two diamond-shaped faces are touching to produce two edge-edge

contacts and two vertex-face contacts. The contacts are circled in each picture.

To compute the contact points between colliding objects, WKCM takes advantage of the available
convex decomposition. The pairwise closest features of the subpolytopes of the objects are stored in
the link structure. The only valid contact points that can exist between a pair of subpolytopes are the
immediate neighbor features of the closest features of those subpolytopes. For example, if a vertex v of
convex polytope 1 is closest to a face f of convex polytope 2, the only valid contacts can be between
the edges and vertices on facets incident to v and the edges and vertices on face f . Thus, for each
of the mn pairs of Lin-Canny closest features, we need only consider the neighbor features of each of
those closest features to �nd all possible contacts. Since there are expected O(mn) of these neighbors,
we have reduced the number of comparisons between features necessary to compute all of the contact
points from a pairwise comparison of all features of each object to a comparison of only O(mn) features,
a substantial savings. Furthermore, a trivial reject for a pair of subpolytopes can be performed in the
case that the stored distance between the closest features is smaller than 2�.

Once the full set of contact points and force vectors at each contact point are determined, Bara�'s
algorithm comes into play. We will de�ne two vector quantities, the relative acceleration ai and the
contact force fi at each contact point pi. ai is the relative acceleration between the two bodies at pi; a
positive value means the objects are moving apart, and a zero value means they are sliding or pushing
against each other. fi is positive if the objects are pushing together at pi, and zero of the objects are
moving apart. From this description, it is clear that ai � 0, fi � 0, and fiai = 0 for all i, since objects
can either be moving apart or pushing against each other, but not both. Also, from physics,

a = Af + b

where A is a matrix representing masses and inertial forces, and b is a vector representing external forces
such as gravity. These conditions de�ne a linear complementarity problem or LCP. Bara�'s SIGGRAPH
paper [4] gives an algorithm for solving it.

Given the solution for the forces fi, we multiply the previously determined contact force direction times
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these values and apply the forces to the center of mass, giving a single 3D force and torque vector that
represents the total force on the object at the given instant in time. Given the total translational and
rotational force (f and � ) and the mass (m) and inertia tensor (I), we can determine the acceleration
of the body (a and �) by Newton's and Euler's equations f = ma and � = I�. Since WKCM limits the
dynamics simulation to \pseudo-static" conditions (described below in section 4.2.5), i.e. no momentum
or velocity, we do not need to include the full formulation of Euler's equation � = I� + ! � I!, which
includes angular velocity !.

4.2.5 Pseudo-Static Simulation with Contact Forces

The provided functions can now be used to generate simulated dynamic motion of objects. We call the
contact force computation routine, which returns a net force on the object. We call another routine which
converts this to an acceleration. The acceleration and object mass is used to compute an instantaneous
velocity vector and is passed to the collision detector, which determines how far the object can move
in the direction of the acceleration. If the object cannot move at all, it is stable, and the simulation is
completed. If the object can move, it is moved as far as possible, and the process is repeated at the new
location, which will in general have an entirely new set of contact forces.

The interaction of the collision detector and the pseudo-static force computation algorithms in the
simulation loop causes some di�culties. Since the math is subject to small numerical 
uctuations and
the accelerations are not really being applied \properly" (as accelerations on a continuously updated
velocity vector), the collision detector can cause objects to get \stuck." This usually happens when a
sliding contact is indicated by the algorithms. Sliding contact involves a motion that is very exactly
parallel to the two surfaces. Even double-precision arithmetic is not enough to make the velocity vector
exactly parallel the surface, so the object will tend to try to move in�nitesimally toward the surface.
The collision detector then stop the object from performing any motion at all, since the motion would
cause the objects to get a tiny bit closer together than �. Since the object doesn't move, the contact
forces don't change, and the object gets jammed in a nonphysical position.

The present solution to this problem is to have the contact forces repel the object slightly. A repulsive
force proportional to some user-set constant times the mass of the object times an inverse square of the
distance between objects is applied at each contact point. This tends to cause the objects to want to
separate slightly at their contacts, giving the collision detector some slack and allowing the object to
slide along the surface. This solution still gets stuck sometimes, but it can be \un-stuck" by increasing
the repulsion value. This suggests an adaptive algorithm which checks to see if the collision detector is
forcing the object to remain in an unbalanced position, and if it is, increases the value of the repulsion
slowly until the collision detector \lets go" of the object. Such an algorithm is a part of intended future
work.

4.2.6 Testing Setup

WKCM, a specially modi�ed version of WALKEDIT, integrates the simulation library into the normal
WALKEDIT user interface. There is a new control panel in the options menu with three controls. The
�rst is a checkbox that turns on collision detection for normal interactive motion. While this option is
active, any motion the user applies to an object with the standard editor operations is collision checked,
and if a collision is detected, the object is only moved far enough to collide. This demonstrates the speed
and interactivity of the collision detection and linking mechanisms.

The second control activates simulation. When this is on, the user may click and hold on an object, and
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that object will be subjected to the simulation loop until the user releases the mouse button. The user
can cause blocks to settle, octahedra to fall over, or bricks to tip o� of surfaces. The third control is
a numerical entry box that allows the user to control the repulsion force parameter, increasing it if the
objects get stuck or decreasing it if the objects are \bouncing" too violently (which happens when the
repulsion gets too large).

4.2.7 Results

Unfortunately, due to the lack of a good convex decomposition routine, we have not been able to test the
collision detection or pseudo-static physics algorithms within the \real" Soda Hall environment. WKCM
has been run with a simple \blockworld" environment containing geometric objects and constructs whose
inertia tensors and decompositions could be determined by simple mathematics. In that environment,
two things became clear: the collision detection algorithms were de�nitely quick enough for interactive
applications, and the pseudo-static force and simulation computations were clearly not quick enough
(cycle times for the force computation algorithm were several seconds). Further research must be done
before gravity and contact force computation can be used successfully in the object associations system.
However, the collision detection algorithms could be used interactively as an association that prevents
the user from dragging an object through holes or gaps through which the object could not realistically
�t. The algorithms are su�ciently robust to handle a wide variety of contact situations, and with a bit
of help do a good job of simulating frictionless interactions between objects.
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5 Extensions and Future Work

5.1 Supporting Modi�cation of Structure

WALKEDIT allows you to manipulate building contents and furniture. However, creating the building's
structure (i.e. walls, 
oors, and ceilings) from scratch or even modifying existing structural elements
is still an open problem for virtual environments. There are no truly interactive, virtual-environment-
based design tools for the structure of buildings. Furthermore, the tools that do exist (primarily 2D
CAD tools) often fail to \force" the user to make geometrically valid models: in AutoCAD, for example,
you can easily create a model that looks reasonable in plan views or elevations but is totally useless as
input to a computational geometry or Walkthrough environment. In the Berkeley WALKTHRU, the
user must still lay out the walls of the building with a text editor in a UniGra�x �le. Obviously, the next
logical extension to WALKEDIT is to allow it to interactively add, move, and delete structural elements
such as walls, 
oors, doorways, and windows. With this capability, WALKEDIT would become the �rst
complete interactive virtual environment for creating architectural walkthrough models.

There are a number of problems associated with achieving this capability. They fall into two classes:
user interface problems, which are the primary focus of WALKEDIT thus far, and algorithmic problems
involving real-time visibility processing. The set of user interface problems is quite large; it is also funda-
mentally di�erent from the problem of moving building contents, in that people often move furniture in
real life, but they do not normally push walls and ceilings into new con�gurations. There is no \natural"
way for a single person to quickly change a room's con�guration from rectangular to octagonal, or to
carve new doors and windows into the walls. This makes the interactive structure manipulation task
much more of an open problem.

On top of the user interface problem, there is another fundamental di�erence between manipulating
structure and manipulating contents in our WALKTHRU environment. The contents of the building
generally do not a�ect the visibility processing at all in the WALKTHRU; they are not considered \major
occluding surfaces." Thus, moving them consists of simply removing a pointer from the \contains" list
of one cell and adding them to the \contains" list of another cell. However, when a wall moves, the
very cell structure itself is altered. Moving a major occluding surface can propagate changes in cell
boundaries all the way up to the root of the K-D tree, rendering almost all of the visibility preprocessing
instantly useless, and changing reams of cell subdivision data. We need ways to dynamically change the
cell structure and perform the new visibility processing on the 
y. These are also open problems, and
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both our group and Seth Teller's group at MIT are working toward solutions.

5.2 Hierarchical Models

There are only two levels of objects in the WALKTHRU system: objects and occluders. Objects are rigid
entities that may be manipulated as a single body by WALKEDIT, and occluders are wall surfaces that
cannot be moved. In reality, many objects are best de�ned by multiple pieces that move in constrained
ways with respect to each other. For example, desks or �le cabinets have drawers that move in a one-
dimensional space anchored to the base unit. Doors move in one degree of freedom with respect to their
frames. We would like to be able to package up hierarchies of objects along with some form of \relative"
object associations to de�ne their motions. However, adding hierarchical models would involve large
scale changes to the way the WALKTHRU represents objects; thus, the problem is beyond the scope
of this masters work. One very promising route is to change the walkthrough from a UniGra�x basis
to a more advanced object representation system such as Silicon Graphics' Open Inventor format. Such
a shift will raise questions in both the basic WK cell partitioning and object instancing structure and
in object associations' interaction methods, which will have to take into account ambiguity in selection
and manipulation of subparts of hierarchical groups.

5.3 Virtual Environments for Simulation and Training

Up until a few years ago, the usefulness of virtual environments was primarily limited to visualization
tasks. Recently, these technologies have begun to propagate into design tasks such as AutoCAD's 3D
visualization of a proposed construction, or the many \home improvement" programs on the shelves of
software stores (which do \still-frame" walkthroughs of small, 1 or 2 room additions to houses, remodeled
kitchens, or the like). As interactive walkthrough technology improves and computers speed up, virtual
environment systems such as the Berkeley WALKTHRU will be useful as simulation environments as well
as design environments. In the future, we may see virtual environments being used to train �re�ghters
in how to combat raging building �res without ever setting foot near a 
ame, or to determine how
changes in lighting or air
ow will a�ect the comfort levels of occupants of a building. These are but a
few examples of ways a combination of simulation and virtual environment technology can be used, but
many challenges in both visualization and interface techniques stand before us.

Providing suitable virtual environments for single-user or distributed multi-user simulations in a single
3D world will require research on a variety of frontiers. In addition to moving furniture around, there
are other, more constrained motions that a user needs to carry out in order to set up the exact state
of the simulation. Doors and windows need to be opened and closed, blinds may have to be lowered,
curtains drawn, and drawers on �le cabinets or dressers may have to be pulled open partially to set
up initial conditions for the simulation. We need to �nd simple and e�cient ways to create models
that permit such constrained movements as well as interface paradigms to make use of these models
in interactive virtual environments. Furthermore, the WALKTHRU provides potential for improving
visualization of the results of simulations. Outputs of modern simulators are often devoid of graphics,
focusing on tables of numbers or two-dimensional graphs. It is di�cult to visualize conditions in a
multi-room environment, quantitatively or qualitatively, from a set of a few graphs. It would be more
natural and more instructive to set up and view simulations from within the virtual 3D environment
itself. We need to develop tools to help build such virtual simulation environments for buildings. Once
we have established a suitable framework for interactive simulations in 3D virtual building models, the
technology can readily be extended to many environments such as mine shafts, factories, submarines,
or air craft carriers. Any reasonably compartmentalized environment with relatively con�ned visibility
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from most observer positions can make use of our visibility preprocessing techniques and of our caching
schemes to give real-time rendering performance on mid-range graphics workstations.

Since many of these virtual environment applications can naturally involve more than one person in
a single environment, we also need to look into providing a distributed environment where multiple
users located at their individual workstations can visualize and interact in real time with one and the
same building and simulation environment. This involves extending the virtual simulation environment
into a distributed and concurrent program in which the scenarios displayed on the various workstations
are properly synchronized. Such an environment can be used in many contexts: to allow teams to
develop and rehearse collaborative techniques, to help building designers to work collaboratively on new
designs, to allow personnel training for the control and maintenance of a complicated environment such
as submarines and aircraft, or for practicing �re�ghting techniques under a wide variety of simulated
conditions, to name but a few examples. NPSNET, an interactive multi-user virtual environment which
is already in place, provides a real-world demonstration of the feasibility of such environments [52].
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6 Conclusion

The goal of the WALKEDIT project was to construct a placement editor for real-time interactive walk-
through of large building databases. We wanted to design WALKEDIT to work with o�-the-shelf input
and display hardware, a goal requiring the use of a software framework to allow the user to perform
unambiguous 3D manipulation with 2D devices.

WALKEDIT's manipulation techniques are based primarily on object associations, a framework that
provides the 
exibility to combine pseudo-physical properties with convenient teleological behavior in a
mixture tailor-made for a particular application domain or a special set of tasks. We have found that such
a mixture of the \magical" capabilities of geometric editing systems with some partial simulations of real,
physical behavior makes a very attractive and easy-to-use editing system for 3D virtual environments.
The combination of goal-oriented alignments, such as snap-dragging, with application speci�c physical
behavior, such as gravity and solidity, reduce the degrees of freedom the user has to deal with explicitly
while maintaining most of the convenience of a good geometrical drafting program.

We found it practical to separate into two types of procedures the mapping of 2D pointing to 3D motion
and the enforcement of the desired object placement behavior. These procedures are clearly de�ned
and easy to implement as small add-on functions in C. Geometric and database toolkits allow high-level
coding and ease of modi�cation. Our object associations normally cause little computational overhead to
the WALKTHRU system. This is an important concern, since keeping the response time of the system
fast and interactive is a crucial aspect of its usability and user-friendliness [22].

The result is a technique that makes object placement quick and accurate, works with \drag-and-drop"
as well as \cut and paste" interaction techniques, can provide desirable local object behavior and an
automated grouping facility, and greatly reduces the need for multiple editing modes in the user interface.
The resulting environment is devoid of fancy widgets, sophisticated measuring bars, or multiple view
windows. To the novice user it seem that not much is happening { objects simply follow the mouse to
reasonable, realistic locations. Ideally, that is how it should be: any additional gimmick is an indication
that the paradigm has not yet been pushed to its full potential. Some issues remain to be fully resolved,
such as dealing with association loops, but our prototype demonstrates that this approach provides a
simple, 
exible, and practical approach to constructing easy-to-use 3D manipulation interfaces.

The object associations mechanism was combined with a set of more traditional tools: a knapsack
mechanism with cut, copy, rename, and paste capabilities on objects and groups of objects, in�nite undo
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and redo capability, the ability to import new object models from UniGra�x �les, and a set of more
standard 3D manipulator widgets. Together, this package of tools de�nes a complete suite of editing
functions that makes populating an architectural model with detail objects a quick, easy, and intuitive
task even for computer \novices."

In addition to the manipulation mechanisms, some physical simulation capabilities were explored. The
�rst of these, a gravity simulation which simulates a \height" for the user above the ground, has been
found to greatly enhance the WALKTHRU experience by not only allowing the user to look up and
down as they walk, but also allowing them to take elevators and staircases in a natural way. Secondly,
interactive collision detection was attempted on objects, and was found to be helpful in some cases when
placing objects against each other. However, physics simulation needs to be explored and re�ned further
before it becomes useful as a tool for interactive manipulation in our WALKEDIT environment.

The result of our e�orts has resulted in a building contents editor that provides simple and intuitive
tools for populating a building model. This is a major step in the development of interactive virtual-
environment-based design tools. With some additional work on manipulation of structural elements,
we believe this work can be extended to be the �rst true start-to-�nish building model generation
environment, as well as the basis for a new generation of simulation-based design and virtual environment
CAD tools.

Figure 27: An example of a scene constructed in about �ve minutes using WALKEDIT. The scene

contains over 40 objects, all properly aligned with each other and artfully arranged by hand.
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