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Abstract

IfN is a queueing network and cs is the mean service time at server s of

N , de�ne NC,FCFS (respectively, NE,FCFS) to be the queueing network

N where the service time at server s is a constant cs (respectively, an
independent exponentially distributed random variable with mean cs) and

the packets are served in a �rst-come-�rst-served order.

Recently, Harchol-Balter and Wolfe introduced the problem of deter-
mining the class S of queueing networks N for which NC,FCFS has smaller

average delay than NE,FCFS. This problem has applications to bounding

delays in packet-routing networks.
In this paper we consider the same problem, only restricted to the case

of light tra�c. We de�ne SLight to be the set of queueing networks N

for which NC,FCFS has smaller average delay than NE,FCFS in the case
of light tra�c. We discover a su�cient criterion to determine whether

a network N belongs to SLight, where this criterion is extremely simple

and easy to check. Using this criterion we are able to show that many
networks belong to SLight that were previously not known to belong to S.

The signi�cance of this result is that it suggests that many more networks

are contained in S than has already been shown.

1 Introduction

Throughout this paper, whenever we refer to a queueing network, we will have

in mind a network of servers where outside arrivals occur according to a Poisson

Process and each outside arrival (packet) is born with a path (route) which it

follows. Figure 1 illustrates an example of a possible routing scheme: Packets

arrive into the network from outside at an average rate of one packet every 5

seconds. With probability 1=2, the packet has the path a ! b ! c !; with

probability 1=4 the packet has the path a ! b ! a ! b !; with probability

1=4 the packet has the path b! c!.

�Supported by National Physical Science Consortium (NPSC) Fellowship. Also supported

by NSF grant number CCR-9201092. harchol@cs.berkeley.edu
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ROUTING SCHEME:

average rate of arrival from outside = 1/5

with probability 1/2, the packet has path  a−>b−>c

with probability 1/4, the packet has path  a−>b−>a−>b−>

with probability 1/4, the packet has path  b−>c−>

−>

Figure 1: In this paper, a queueing network denotes a network of servers together

with a routing scheme.

A queueing network is also characterized by the service time distribution

associated with each server and the order in which packets are served at a

server (the contention resolution protocol). If N is a queueing network and cs is

the mean service time at server s of N , de�ne NC,FCFS (respectively, NE,FCFS)

to be the queueing network N where the service time at server s is a constant

cs (respectively, an independent exponentially distributed random variable with

mean cs) and the packets are served in a �rst-come-�rst-served order. Likewise,

de�ne NC,PS to be the queueing network N where the service time at server s

is a constant cs and the contention resolution protocol is processor-sharing.

Harchol-Balter and Wolfe, [3], demonstrate that many real-world packet-

routing networks can be modeled by queueing networks of type NC,FCFS. It is

therefore desirable to be able to compute the steady-state average packet delay

of networks of type NC,FCFS . (The delay of a packet is de�ned as the total time

the packet spends waiting in queues at servers from the time it is born until

it reaches its destination.) Unfortunately, it is not known how to compute the

average packet delay for all but the simplest NC,FCFS type networks. However,

the corresponding network of type NE,FCFS is a product-form network (more

speci�cally it can be modeled as a classed Jackson queueing network) and the

average packet delay is easy to determine for networks of this type ([6], [2]).

Harchol-Balter and Wolfe therefore ask the following question:

2



Is it possible to bound the average delay of NC,FCFS (which we care

about) by the average delay of NE,FCFS (which we know how to com-

pute)?

Let S denote the set of queueing networks N for which

AvgDelay(NC,FCFS) � AvgDelay(NE,FCFS): (1)

Harchol-Balter and Wolfe give a simple proof that every network with Marko-

vian routing is contained in S. (In Markovian routing a packet's route is not

contained within the packet, but rather there are probabilities on the edges

leaving a server which determine all packets' routes. In other words, Markovian

routing is classless.) They also demonstrate a network which is not contained

in S. They leave as an open problem the question of determining whether more

networks are contained in S.
In this paper we approach the problem of determining S by restricting our-

selves to only networks with light tra�c. Let �N denote the outside arrival

rate into queueing network N . S is the set of queueing networks N that satisfy

equation( 1) for all (stable) values of �N . De�ne SLight to be the set of queueing
networks N that satisfy equation( 1) in the case of light tra�c, i.e., small �N .

We give a simple su�cient criterion for whether a queueing network is in

SLight. This simple criterion enables us to prove many networks belong to

SLight which haven't yet been shown to belong to S.
By de�nition S is contained in SLight. However it seems likely that SLight

is also contained in S, since it seems probable that AvgDelay(NE,FCFS) should

increase at a faster rate than AvgDelay(NC,FCFS) as the tra�c load is increased.

Therefore, the signi�cance of the above result is that it suggests that many more

networks are contained in S than has already been proven.

Section 2 states the su�cient criterion theorem precisely and proves it. In

Section 3 we discuss which queueing networks can easily be seen to satisfy the

su�cient criterion.

2 Main Theorem

By [1] and [4], we know that the average packet delay in NC,PS is equal to the

average packet delay in NE,FCFS for all N .1 Therefore it is equivalent to study

for which queueing networks N ,

AvgDelay(NC,FCFS) � AvgDelay(NC,PS):

Wewill assume this formulation of the problem throughout the rest of the paper,

since it simpli�es our analysis.

1This powerful theorem is also described more recently in [6] and [5].
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In this section we see that, speaking loosely, to test whether a queueing

network N belongs to SLight it is enough to check whether the expected delay

created by exactly 2 packets in NC,FCFS is smaller than the expected delay

created by exactly 2 packets in NC,PS.

Theorem 1 Given a queueing network, N , if �N< min( 1

8e2km2 ; s) then

P1E
FCFS
1

< AvgDelay(NC,FCFS) < P1(E
FCFS
1

+
1

k
)

P1E
PS
1

< AvgDelay(NC,PS) < P1(E
PS
1

+
1

k
)

where

EFCFS
1

= E fDelay on packet in NC,FCFS j one other packet in NC,FCFSg

EPS
1

= E fDelay on packet in NC,PS j one other packet in NC,PSg

�N = the total arrival rate into N from outside

P1 = Prf1 arrival during (�m;m)g = e��N �m(�N �m)

k = a free parameter � 1:

s = the max. value of �N which N can accept and still be stable

m = the length of the longest route in N 's routing scheme,

where length is measured by total mean time in service.

Corollary 1 Given a queueing network, N , if �N< min( 1

8e2km2 ; s) then

P1(E
FCFS
1

�EPS
1

)�P1
1

k
< AvgDelay(NC,FCFS)�AvgDelay(NC,PS) < P1(E

FCFS
1

�EPS
1

)+P1
1

k
;

where EFCFS
1

, EPS
1

, �N , P1, k, s, and m are as de�ned in the above theorem.

Corollary 2 Given a queueing network, N , if �N< min( 1

8e2km2 ; s),

if EFCFS
1

< EPS
1

�
1

k
, then

AvgDelay(NC,FCFS) < AvgDelay(NC,PS)

where EFCFS
1

, EPS
1

, �N , P1, k, s, and m are as de�ned in the above theorem.

A few comments on the above corollary before we begin the proof. First,

observe that k is a free parameter of �N . Therefore 1

k
above can be made as

small as we wish by decreasing �N . Second, note that EFCFS
1

is an average.

Therefore, it includes the case where the two packets happen to have the same

route and both packets start within one service time of each other. In this

case PS clearly does worse than FCFS, and we can make k large enough so

that this di�erence exceeds 1

k
. Thus for light tra�c, AvgDelay(NC,FCFS) <
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AvgDelay(NC,PS) whenever E
FCFS
1

< EPS
1

, given that the two packets are on

di�erent paths.

Proof of Theorem:

By PASTA (Poisson Arrivals See Time Averages), the expected delay a

newly arriving packet experiences is equal to the average packet delay for the

network. Let N be any queueing network. For the case of light tra�c (i.e.,

�N< min( 1

8e2km2 ; s)), we will compute upper and lower bounds on the delay an

arrival experiences in NC,FCFS. The proof for NC,PS is identical.

To compute an upper bound on the delay in NC,FCFS, let p represent an

arriving packet in NC,FCFS. Clearly, p may only be delayed by packets which

are in NC,FCFS during the time p is in NC,FCFS. Note that if k packets are

in NC,FCFS, they may take up to time kn to clear the system. So, if we call

p's arrival time 0, packet p can only possibly be delayed if at least one of the

following occur:

� exactly 1 other packet arrives during (�m;m).

� exactly 2 other packets arrive during (�2m; 2m).

� exactly 3 other packets arrive during (�3m; 3m).

� etc.

We will compute the expected delay on p due to each of the above events,

and then we'll sum these. This will be an overcount, but that's o.k. because

we're just upperbounding.

Let

Pi = Prfi arrivals during time (�im; im)g

Let

EFCFS
i = E fdelay on p due to i arrivals during (�im; im) in NC,FCFSg

So

E fdelay on p in NC,FCFSg � P1E
FCFS
1

+ P2E
FCFS
2

+ P3E
FCFS
3

+ : : :

� P1E
FCFS
1

+ P2(2m) + P3(3m) + : : :

where the last inequality is an over-estimate, since we are assuming the worst

case where all the packets continually run into each other over and over again

during their entire time in the network. By de�nition of the Poisson Process,

Pi =
e��N �2im (�N � 2im)

i

i!
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For i � 2, we can express Pi in terms of P1 as follows:

Pi(i � 2) =
e��N �2im (�N � 2im)

i

i!

=
ii

i!
� e��N �2im (�N � 2m)

i

< ei � e��N �2m (�N � 2m)
i

= P1 � (�N � 2m)i�1 � ei

Substituting �N= 1

8e2km2 , we have:

Pi(i � 2) < P1 � (�N � 2m)i�1 � ei

= P1 � (
1

4e2km
)i�1 � ei

< P1 �
1

k4i�1m

Now, substituting Pi, i � 2 into the formula for the expected delay on p, we

have:

E fdelay on p in NC,FCFSg � P1E
FCFS
1

+ P2(2m) + P3(3m) + : : :

< P1E
FCFS
1

+
P1

2k
+

P1

22k
+

P1

23k
+ : : :

= P1E
FCFS
1

+ P1

1

k

= P1

�
EFCFS
1

+
1

k

�

To derive a simple lower bound for the expected delay in NC,FCFS, again

let p represent an arriving packet in NC,FCFS. Assume p arrives at NC,FCFS

at time 0. To lowerbound the E fDelay on p in NC,FCFSg, we consider only the

delay on p caused by 1 packet arriving during (�m;m).

E fdelay on p in NC,FCFSg � P1E
FCFS
1

2

3 Characterizing SLight

In Section 2, we found that to check whether N is in SLight it is enough to

check whether the expected delay created by exactly 2 packets in NC,FCFS is

smaller than the expected delay created by exactly 2 packets in NC,PS, when the
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packets take di�erent paths. In this section we discuss which networks which

satisfy this easy test.

Throughout this section, we will only consider the case where all servers have

the same mean service time, 1. At a �rst glance it may appear that all such

networks N satisfy the test. Here is the wrong proof behind that thought: We

only need to look at the case of two packets in the network. The two packets

don't a�ect each other at all until they bump into each other. Thus, until

the packets bump into each other, NC,FCFS and NC,PS behave identically. In

NC,FCFS, if the two packets do bump into each other, even if their routes now

intersect for a long time, the packets will only interfere with each other for the

duration of one server and then one packet will pass the other. Whereas, in

NC,PS, when the packets bump into each other, they will slow each other down

by the total length of the intersection of their routes.

This proof is mostly correct. The 
aw is the claim that in NC,FCFS the two

packets will never see each other once they pass each other. In fact, the two

routes may cross repeatedly as shown in Figure 2. Even if the two routes do cross

repeatedly, though, it's tough to �nd examples where NC,FCFS behaves badly in

the case of two packets. The reason is as follows: If two packets interfere with

each other at all in NC,FCFS, the next time that they meet (if ever) will be such

that they both arrive at a server at the exact same time. When this happens,

either packet could end up serving �rst with equal likelihood. Since we don't

know which packet will go �rst it is di�cult to construct routes which force

the packets to meet again. A bad instance for NC,FCFS must force the packets

to meet again regardless of which packet served �rst in the previous collision.

Figure 2 shows the worst-case instance for NC,FCFS that we were able to come

up with, yet even here, the expected number of collisions is only O(lgn), where

; is the number of route crossings. Also, it's not clear that the corresponding

NC,PS wouldn't behave just as badly.

Thus for the case where all servers have the same service time, the expected

delay given only two packets in the network is usually greater for NC,PS than

NC,FCFS, and when it is greater for NC,FCFSit's not greater by much.

In the case where the servers may have di�erent service times it is possible

to construct a network N , where the expected delay in the case of two packets

is O(n) for NC,FCFS and only O(1) for NC,PS, where n is the number of servers

in N (see [3]).

4 Future Work

It would be useful to characterize more precisely exactly which networks satisfy

the criterion from Section 2.
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1a1b

MEET:  1a = 1b

.5 0

2a2b

 −−

−− MEET (2a = 2b) IF 1a SERVED FIRST

3a3b

4a4b

5a5b

6a6b

−− MEET (3a = 3b) IF 1b SERVED FIRST

−− MEET (4a = 4b) IF 2a SERVED FIRST

−− MEET (5a = 5b) IF 2b SERVED FIRST,
   OR IF 3a SERVED FIRST

−− MEET (6a = 6b) IF 3b SERVED FIRST

 etc.

Figure 2: Bad example for NC,FCFS with 2 packets. The number of collisions is

O(lgn) where n is the number of route crossings. At each same-time collision,

regardless of which packet served �rst, the packets are guaranteed to meet again

some time down the chain.
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