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Abstract: Modern MPPs and NOWSs have evolved in ways that affect both the scheduling of parallel
applications as well as the communication layeiThe presence of a full operating systems upon each
processor as well as the need to support interactive users substantially alter the traditional
environment. Parallel applications may no longer be executing in the dedicated ermirment that fast
communication layers, such as Active Messages, assume. In this paper wespnt a simulation-based
study of the effects of a non-dedicated envanment on parallel applications and investigate one
method for reducing the esulting performance impact.

Our results quantify the performance impact of the size of the flow-cordt window on parallel
applications. We investigate inceasing the size of this window to ameliorate the effect of various
scheduling disturbances. Our esults show that additional buffering in the communication layer
significantly improves performance in the pesence of large scheduling iegularities (e.g., those that
occur when parallel applications ae locally scheduled) but has a detrimental effect with smaller
disturbances (e.g., quantum skewdaemon activity and interactive users).

1. Intr oduction

In recent years, massively parallel processors (MPPs) and networks of workstations (NOWS) have beging;omiter

MPPs using the same processors, mepang even operating systems as found in workstations, and NOWSs beginning to use
switch-based networks [ACP*95]. The workloads supported by the two environments are alsgiegniE?Ps, such as the

Intel Paragon [Gro92] and Meiko CS-2 [BCM94], are becoming more general purpose, supporting multiple users and acting
servers for sequential jobs as well as for parallel applications; NOWSs are becoming capable of executing parallel applicatic
in addition to sequential load sharing. In light of these potentially significant changes in the parallel computing environmer
both the scheduling policies and communication layers used in traditional MPPs must be re-examined.

MPPs have classically approached the scheduling of parallel applications via one of two routes: batch-scheduling in cc
junction with space-sharing or gang-scheduling. Both of these techniques provide applications with a dedicated virtu
machine. Howevertthe independent operating system running on each processor in a general-purpose MPP or a NOW m
alter the execution environment. First, the underlying UNIX kernel on each processor could schedule threads of each pare
application independentlsecond, even when gang-scheduling applications, context switches may not occur simultaneous!
in this more loosely-coupled environment. Third, daemon processes associated with the operating system must run peri
cally. These factors each invalidate the underlying assumption of a dedicated machine; in thisestdynine the impact on
parallel application performance and investigate methods within the communication layer for reducing the impact.

Traditional MPP schedulers have ignored thdialifty of scheduling parallel applications in conjunction with short,



sequential jobs requiring interactive response times. For example, in batch-scheduled, spaced-shared machines, a short jo
be forced to wait until a resource-intensive application completes. Alternasyskgms like the CM-5 [Lei*92] time-slice
parallel jobs within a partition with a reasonable time quantum to support short-lived parallel jobs; heacpwential jobs

are not supported and each node executes only a primitive kernel with limited functidimakigslicing sequential jobs with
parallel applications would maintain interactive response times, but wastes resources if parallel program performance is cc
promised or if processors sit idle. Future MPPs and NOWs must solve this scheduling problem to claim success as gene
purpose platforms. In this papexe begin to evaluate how parallel and sequential applications should share processo
resources.

In a dedicated environment, the communication layer is given the guarantee that a message arriving at a processor is
tined for the currently running process. This allows modern MPP communication layers, such as Active Messages [VEC*9:
to achieve high performance by providing ulesel communication and by avoiding messagddouiy. Even if parallel
applications are gang-scheduled, a non-dedicated environment dictactes a number of changes to the communication I
First, messages must be tagged with the destination process ID, and hardware or a trusted process must extract all packets
the network; messages which arrive for a non-scheduled process can no longer be handled im®@edatd|ythe view that
clogging the network hurts only the parallel application sending the messages can not be retainedh&iealise network
can not be drained of messages when switching between processes.

Two options exist for dealing with a message that arrives for a non-scheduled process: either discard the message (pc
bly notifying the sender of the scheduling discrepancy) debtlie message until the destination process is scheduled. In this
study we examine the bfdring approach and use credit-based flow control to manage the finite resources thdetbe buf
present. Future work may include examining the discarding approach. The primary impact that this approach has on per
mance is that the sending process experiences additional latency on request-response message$etteat; dhe lsginder is
stalled until the destination process is scheduled, the request message is handled, and the response is returned. Seconda
formance costs arise from the overhead of performing the credit-based flow-control.

The theme explored throughout this paper is whethgetlanessage bigrs (and subsequentliarger flow-control win-
dows) can lessen the performance degradation when messages arrive for non-scheduled processes. Split-C [CDG*93], the
allel language used by our applications, presents an attractive model for this study because it explicitly exposes 1
communication and synchronization dependencies between processes. Programmers can specify more relaxed assign
operators which may lessen the performance impact of a non-dedicated environment.

The rest of this paper isganized as follows. Section 2 presents our experimental environment, consisting of our pro-
gramming language, our simulation methodo|amyd our benchmark applications. In Section 3 we explore the impact of the
communication layer on parallel program performance. In Section 4, we compare the performance of gang-scheduling ver
locally-scheduling parallel applications.eWbok at the performance impact of quanta skew in Section 5 and of daemon activ-
ity in Section 6. In Section 7 examine théeef of sequential jobs on parallel applicationg $dmmarize our results in Sec-
tion 8.

2. Experimental Environment

In this section we describe our experimental environmeatb&gin by presenting an overview of our programming language,
Split-C. We then describe how we used a gang-scheduled MMEEM-5, to simulate scheduling policies and communication
layers found in more general-purpose MPP or NOW environment. Fimadlyriefly describe the benchmark applications
used in our simulations.

2.1 Programming Language
Split-C is a simple parallel extension to C for programming distributed memory machines using a global address spa



abstraction [CDG*93]. It has been implemented on the CM-5, Paragon, SP-1, and various NOWSs, using Active Messages
implement the global address space [Lun94,vEC*92,Mar94]. The language has the following salient features.

e A program is comprised of a thread of control on each processor from a single code image, i.e., SPMD.

» The threads interact through reads and writes on shared data, referegtmzhbgointersor spreadarrays. These refer-
ences require both a request and a response message.

» To allow the long latency of remote access to be masked by computation or issuing of other remote accesses, split-phe
(or non-blocking) variants of read and write, caiedandput, are provided. For example, given global poiftand
local variablex, x :=*P initiates an access to the global adde3he operation is assumed to be incomplete usitha
statement is executed, which returns after all pending gets and puts complete.

« A form of write, calledstore, is provided to expose thefiefency of one-way communication in those algorithms where
the communication pattern is known in advance. The threads can synchronize on the completion of a phase of stores or
recipient of stored values may wait for a specified amount of data.

» Bulk transferwithin the global address space can be specified in any of the blocking or non-blocking forms.
* Threads may synchronize through globatriers.

Split-C exposes three distinct types of communication/synchronization dependencies among processes of a parallel af
cation. The first and weakest dependency occurs when a prosggsedata (i.e., sends a one-way message) to another pro-
cess; this operation merely requires that messages are extracted from the network at the destination processor to prever
sender from stalling. The second dependency is between a pgatisg or putting global data; these request operations
require a response from the destination processor before the sender can complete the ssbsetatiement. Finallythe
strongest dependency occurs when a process exedodeses; in this case, the process must wait until all other processes
have reached the synchronization point.
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Figure 0: Impact of Scheduling Disturbance on Stores. On the left, Pocess A &peatedly st@s data to Rycess B.
Because theris sufficient buffer space on the destinationcBss A can continue to stadlata even during the schedu
ing disturbance. On the right, howeyéner is little buffer space on B. Thus,oeess A is faed to stall until B is
rescheduled and caespond with mar credits. Thus, A feels the effects of the scheduling disturbance amtbee rpo-
cessor



The performance of a parallel application in a non-dedicated environment depends upon the prevalence of each of th
three dependencies. Clearan embarrassingly parallel application has none of the three dependencies across processes ¢
therefore is insensitive to scheduling disturbances. An application communicating only with store operations is insensitive
scheduling disturbances if two conditions are satisfied. First, to ensure that the sending process is notfatatedstetdge
must exist to bdér messages that arrive when the destination process is not scheduled. Second, processes waiting to rec
stored data must perform enough computation prior to the store synchronization point to mask the scheduling disturban
experienced by the send&his situation is depicted in Figure 0.

In applications performing primarilgets andputs, only the requesting process can be stalled. For there to be no perfor-
mance degradation in this case, not only must there beieoff bufering at the destination, but the requesting process must
perform a significant amount of computation between the issuing of the access synd gtatement. Only if the requesting
process performs computation for the duration of the scheduling disturbance will it not be stalled.

Finally, applications which perforrbarrier operations frequently are the most sensitive to scheduling disturbances. A
scheduling disturbance prevents a process from completing its work and progressing toward its synchronization point; the
fore, other processes which have reachedbdheer stall for an amount of time equal to the scheduling disturbance.

2.2 Direct Simulation
To measure the ffcts of scheduling disturbances on parallel applications, we use a techniquelicadtesimul ation. With
direct simulation, a 64-node Thinking Machines’ CM-5 [Lei*92] simulates a general-purpose MPP oM#éQ¥éasure the
execution time of one Split-C application gang-scheduled on the CM-5, while periodically interrupting each of the nodes 1
simulate other activity

The mechanism for creating periodic, independent disturbances across the nodesléaldiseer interrupt. By setting
the interval at which the interrupt occurs, the duration of the timer haadtéthe relationship across processors, we can sim-
ulate diferent scheduling policies and multi-program workloads. For example, to simulate a sequential application running c
one processor while a parallel application runs on 64 processors, we activate the timer handler on only one Tinecessor
“disturbance” appears to the parallel program as a sequential job time-slicing on one of the processors. By measuring the ¢
cution time of the parallel application, we can observe the slowdown induced by the simulated sequential application. Tt
same mechanism is used to simulate a local scheduling policy for time-slicing between two parallel applications and for de
mon activity

To simulate scheduling policies that require coordination across processors, we use an asynchronous global interrt
when one of the processors writes signals this interrupt, all processors simultaneously enter an interrug¥leasdier
ments of handler start times across processors showed skews of less than 6 microseconds. In this manner we can simul
gang-scheduling policy

The similarity between our simulation environment and the system being measured allows us to easily model the co
associated with real systems. For example, context-switch overhead is modeled in our simulation environment as the overh
of executing the timer interrupt. Upon receipt of each timer interrupt, the operating system saves the integer registers, progt
counter and other status registers, and vectors control to outaysdthandlerAt this point, we explicitly save the state of the
floating-point registers. Similarlypy adding code to the timer handler that strides through memergre able to model cache
effects. Note that we do not model network ficabriginating from the simulated processes. The additional netwofic traf
would increase the execution times of our applications due to both network congestion and the overhéathgfduldfi-
tional messages.

The Split-C communication layer had to be modified to accommodate the non-dedicated environment. iNamely
Active Message arrives for the application when the timer handler is executing, then the message can not be handled; ins
the message is fefed and handled when the application is re-scheduledgidrantee siiient bufer space by using a



credit-based flow-control message layer. A sender must now first check for credit availability on the destination process before
sending. If there are not enough credits, the sender waits until outstanding messages (and credits) have returned. Our flow-con-
trol message layer builds on top of the CMAML [TM94] Active Message layer in the Split-C library; therefore, Split-C appli-
cations simply need to be recompiled to execute in this environment.

Our simulation methodol ogy allows usflexibility over process scheduling, but unfortunately ties usto the network charac-
teristics of our simulation testbed. In other words, our smulated MPP or NOW has the same packet size and network band-
width and latency as the CM-5.

2.3 Benchmark Applications

We composed a suite of five parallel applications for our study, all written in Split-C. The applications were all tuned for the
CM-5 and the original implementation of Split-C (i.e., they assume a dedicated environment). Our benchmarks represent a
cross-section of parallel applications with different message sizes, communication dependencies (i.e., one-way versus request-
response), and communication and synchronization frequencies. The characteristics of each benchmark determine its perfor-
mance with different window sizes and scheduling disturbances.

Thefirst benchmark, CHOLESKY, performs LU factorization on sparse, symmetric matrices. Our implementation relies pri-
marily on bulk get and integer store communication operations. Its average message sizeis 70 bytes, and it communicates at a
medium granularity, computing for several hundred microseconds between message sends. Implicit synchronization is per-
formed frequently between pairs of processors.

CONNECT uses a randomized algorithm to find the connected components of an arbitrary graph [KLCY 94]. CONNECT is
built on single-packet one-way Active Message calls and integer get operations, so its average message size isasingle CM-5
packet. CONNECT communicates at a very fine-granularity, computing on average only 40 microseconds between message
sends.

CoLUMN is an implementation of the column sort algorithm [Lei85]; a description of the implementation can be found in
[CDMS94]. CoLumN isabulk synchronous algorithm whose computation and communication phases last on the order of sec-
onds; barrier operations are performed only at the end of each phase. It relies primarily on transpose operations for communi-
cation, storing very large messages (greater than 16K bytes) between pairs of processors.

The program EM3D simulates the propagation of electro-magnetic waves through objects in three dimensions [CDG* 93].
EM3D communicates with bulk store operations, stores of integers and doubles, and both one-way and request-response active
message calls, with about 100 us between communication events. Its average message is small, fitting into two CM-5 packets.
The most important characteristic of EM3D is that it performs barrier synchronization frequently, more than one barrier every
10 ms.

Finally, saAmMPLE[CDM S94] implements a sample sort [BLM91]. Like coLumN, it is bulk synchronous, performing only a
few barrier synchronizations and consisting of communication and computation phases lasting many seconds. In the commu-
nication phase, each processor sends many (128 K) one-way single-packet active messages to random destination processors

3. Dedicated-Environment Window Size

Before exploring the effect of a non-dedicated environment on parallel applications, we examine the impact of our communi-
cation layer. To determine the optimal message-layer window size in a dedicated environment, we ran each of our Split-C
applications with no scheduling disturbances using window sizes between one and 512 packets, where the window size is the
number of packetsthat can be sent to each destination process before receiving additional credits. Figure 1 shows that the exe-
cution time of three of the applicationsis extremely sensitive to window size; saMPLE and EM3D are 60% faster when the win-
dow sizeis chosen correctly; cCOLUMN is 20% faster. The slowdowns are shown relative to the optimal window size, not to the
original Split-C version. SaAMPLE with our flow-control layer istwice asfast asthe CMAML version; the other applications are
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Figure 1. Sensitivity to Window Size. This figue shows the slowdown of each application as a function of the comi
cation layer window size (in numbers of packets) on a 64-node CM-5. The slowdown is the ratio of the exect
with the curent window size to the execution time with the optimal window size. Each dateepagénts the mean c
five measwements.

10% to 40% slower with our modified communication layer

The execution time cfAMPLE is minimized when the window is set to one packet due to its communication phase involv-
ing single-packet one-way messages to random destinations. This communication phase incurs contention at random pro
sors, with the hot spots in the network moving téedént processors throughout the phase. If each sender is forced to wait
until the previous message to that destination has been acknowledged, then no processor can be flooded withnBessages.
also benefits from a small window size because it primarily communicates with short one-way stores to random processc
since the average amount of data sent fits into two packets, a window size of two has better performance than a window of ol

COLUMN’S communication phase consists of vergdabulk stores between pairs of processors; in this case, the best per-
formance is achieved when the window size is slightly less than the round-trip time of the network. A smaller than optim:
window forces the sending processor to stall on acknowledgments from previous stores, preventing stores from being ft
pipelined and wasting network bandwidthitiarger windows, the send rates between pairs of processors are not kept in bal-
ance. If one processor sends faster than its pattar the slower processor is forced to handle the arriving messages before
sending out its own; howevef the sending processor experiences a slight delay between sets of message sends, then t
slower processor can send in that time and the pair is kept balanced. Since the time of this phase is the time of the slowest
cessoroptimal performance occurs when processors complete simultaneously

NeitherCHOLESKY nor CONNECT are sensitive to the size of the windaue to the fact that they communicate primarily
with request-response messages of a small size. Requiring a response to a message has a performance impact similar to



dow sizefixed at the average message size.

In summary, we see that a subtle change in the communication layer can have a noticeable impact on parallel application
performance. The choice of window size can sway performance results up to 80%. Further, we expect that the network in a
NOW will support larger packets and have longer latencies. Therefore, programs that are sensitive to the depth of the network
or packet size (e.g. coLUMN and EM3D, respectively) will require larger windows for optimal performance.

4. Coscheduling Parallel Applications

Coscheduling [Ous82] and gang scheduling [GTU91] are two similar, traditional techniques for scheduling parallel applica
tions on MPPs. Both operate under the principle that higher performance is achieved when all processes of the same parallel
application are scheduled simultaneously. We distinguish between the two scheduling policies by recognizing that coschedul-
ing is less strict than gang scheduling. With coscheduling, simultaneously scheduling parallel processes is beneficial for per-
formance, but it is not necessary for correctness. On the other hand, gang scheduling requires that parallel processes are
scheduled simultaneously for correctness, guaranteeing that messages can not arrive from other processes. By these defini-
tions, parallel applications on a NOW or modern MPP may be coscheduled, but not gang scheduled, since multiple processes
can be simultaneously running on different processors and no mechanisms exist for preventing processes outside the cluster
from communicating with any processor within.

For a comparison point, we measured the execution time of our parallel applicationsin a simulated coscheduled environ-
ment where each benchmark is time-sliced with a simulated parallel job with a quantum of 100 ms. The costs of the context-
switch and flushing the cache between time-slices are included in our measurements. As expected, total execution time is
within five percent of the sum of the dedicated run times, and the optimal window sizes are identical. Note that cache flushing
with a quantum of 100 mswas found to have a negligible effect.

Scheduling policies which do not require global coordination may be an attractive alternative in systems with a complete
operating system on each node, due to scalability or fault-tolerance constraints. One approach to scheduling parallel jobsisto
allow the underlying UNIX kernel on each processor schedule the parallel applications independently; we term this local-
scheduling. This policy, employed by parallel environments such as PVM [Sun90], has the advantage that no kernel modifica-
tions are required; however, as has been shown in previous studies [FR92], local scheduling leads to unacceptable execution
times for processes that communicate frequently. We confirm this result for our five benchmark applications while investigat-
ing the impact of window sizes on performance.

Figure 2 shows the slowdown of each application when locally-scheduled with one other (simulated) parallel job with
time quanta of 100 ms and 500 ms. Results in the graph on the left are with the window sizes that are optimal in the dedicated
environment; resultsin the graph on the right are with the optimal window sizes for this environment. With atime quantum of
100 ms, the parallel applications require up to seven times more CPU time than in a dedicated environment; changing the win-
dow size does not improve performance significantly. EM3D is affected the most severely because of its frequent barrier oper-
ations. Surprisingly, SAMPLE, CHOLESKY, and CONNECT are al slowed down by less than 90%. This sowdown may be
acceptable considering that no global scheduling is required; however, as more than two parallel applications are time-sliced
on the same workstations, slowdowns increase substantially.

Performance degrades severely when the time quantum is increased to 500 ms, because processes must wait longer on
dependencies with non-scheduled processes; slowdowns range between 5 and 75. Increasing the window size dramatically
improves performance if the dependency between processes was simply a one-way message, i.e., the sender stalled for win-
dow credits. Larger windows remove the artificial dependency of processes waiting for buffer space; processes now stall only
for true dependencies, i.e., when they need a response to a get or put request or when waiting on a barrier. However, some
applications are still slowed down by more than a factor of 20.

In conclusion, some form of global coordination is required for parallel application performance, due to dependencies
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Figure 2: Locally Scheduled. The leftmost figure shows the slowdown of the applications when locally-scheduled with
one other parallel application, using the window sizes that were optimal running in dedicated-mode. The rightmost figure
uses window sizes that are optimal when locally-scheduled. Results are shown for 100 and 500 mstime quanta. Sowdown
istheratio of the locally-scheduled execution time to the coscheduled execution time.

across processes. In the next two experiments, we examindeitts ef slight scheduling disturbances on global coordina-
tion.

5. Coscheduling Skew

In the previous section, we assumed perfect coscheduling---that is, context switches across workstations began and end
precisely the same moment. Such coscheduling may be possible in an tightly-coupled MPP because a common clock is dis
uted to all nodes. Howeven a physically distributed system, perfect coscheduling is unlikely to be practical. For example, if
context switches are coordinated by broadcasting a signal from a master rfedmtdifrocessors may receive the signal at
different times. Even if coordination exists because the clocks of the workstations have been synchronized [Lam90], it is like
that some clock skew exists across workstations. Fjnadiytext switches may even takefeliént amounts of time due to
cache dects.

We define the coscheduling skew time as the maximuiereiifce between the quantum start times across processors. T
guantify the efect of coscheduling skew on performance, wesifthe start time of each processdime quanta by a random
amount, up to 10 ms. Our simulation results, shown in Figure 3, are somewhat noisy because we are measuring slowdo
close to the variation across experimental trialgh\&% 100 ms time quantum, all of our applications see an increase in execu-
tion time as the skew increases; howetles slowdowns are all relatively smal3D experiences the most significant slow-
down of 5% when the skew is 10% of the quantum lengths&é that increasing the time quantum to 1 second has the result
that slowdown remains below 3% for all data points, with no real increasing trends in slowdown as the skew increases.

We found that increasing the window size did n&ctfour results; since the program is coscheduled most of the time, it
performs best with the dedicated taeufsize. That is, even if a gr bufer size is beneficial when the processes are not per-
fectly coscheduled, the zer bufer size hurts the performance for the majority of time when the application is coscheduled.
In conclusion, we discovered that with aglatime quantum (1 second) or small skew times (less than 10 ms), parallel applica-
tions are minimally décted by imperfect coscheduling, exhibiting slowdowns of less than 5%.

6. Daemon Activity

Processors with complete operating systems have daemon processes which must run pefialieallyshows measure-
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between 10 us and 10 ms. The slowdown is relative to the perfectly coscheduled performance.

ments of the average run time and inter-arrival times for the top running daemons on a DECstation 5000 running Ultrix 4.2a.
These measurements indicate that a daemon process runs approximately once every 10 seconds for about 5 milliseconds on
each workstation.

Daemon Run Time (ms) Interval (s)
cron 3to6 60
update 3to5 30
routed 1lto2 25
Xdec 1 25
init 1 200

Table 1. Daemon Activity. Thistable shows the average execution times and intervals between invocations of the top daemon
processes as measured over a three hour period when the machine was idle of all user activity. These measurements were
performed by Doug P. Ghormley.

We simulate the effect of daemons arriving independently across processors at intervals between 5 and 30 seconds for
durations of 5, 10, and 50 ms. In our first set of experiments, we assume that the daemon process periodically polls the network
and that the messages for the parallel application are buffered; however, the daemon process has a fixed amount of work to
accomplish and as a result may run longer if it must also buffer messages. In our second set of experiments, the daemons
ignore the network.

Our results in Figure 4 show that with interruptions characteristic of current daemon activity, parallel applications are
slowed down by less than 10%, regardless of whether or not daemons poll the network. Daemons of a dlightly longer duration
(e.g. 10 ms) arriving more frequently (e.g. every 5 seconds) slow down the applications by less than 20%, with the exception
of CONNECT, which exhibits one data point with an 80% slowdown.

If parallel applications are scheduled independently of longer system activity, such as 50 ms durations, then large slow-
downs are observed for most applications. The slowdown is surprising, since even these long-running daemons are scheduled
less than 1% of the time on each processor. Once again, EM3D is slowed down the most (2.4 times) by scheduling perturba
tions because of its frequent barrier points. The applications SAMPLE and CONNECT are also strongly affected by daemon activ-
ity, since their communication patterns have little locality; a process must wait before sending when the destination processor
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has a daemon scheduled, and then has very little to send to that processor. COLUMN suffers less than 20% because it synchro-
nizes infrequently and communicates with large messages; therefore, although a process sometimes stalls before sending, once
the destination process is scheduled, the sender has many packets to send and is not affected by the daemons running on the

other workstations.

As was the case with coscheduling skew, increasing the buffer size does not improve performance with daemon activity.
Because daemon activity occurs relatively infrequently, processes communicate with scheduled processes for the majority of
the time and experience optimal performance in this situation with small window sizes. An interesting experiment would be to
dynamically change the operating window size depending upon whether or not the destination process is currently scheduled
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With current levels of daemon activity (namely, an interval of 10 seconds and a duration of 5 ms), parallel applications
suffer a noticeable 2 to 10 percent slowdown. This slowdown can probably be ignored, but increased system behavior (ironi-
cally, perhaps daemons that monitor system activity to find idle workstationsin a NOW) might require a more drastic solution,

Frequency (seconds)

such as coscheduling daemon activity across processors.
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7. Scheduling with Interactive Jobs

Traditional MPP schedulers assume that parallel applications are the only existing jobs. This is not a fair assumption
NOWSs or in emaging MPPs, which are capable of acting as servers for sequential jobs. Studies have shown that a NOW clt
ter can sustain a “typical” workload of parallel applications, assuming that each application requires only half as many proce
sors as there are existing workstations[ADV*94]. Thus, as long as parallel applications do not request more than this num
of processors, enough resources exist to ensure that parallel processes can be migrated to an idle workstation if a user rec
their workstations. Howevegif parallel applications require as many processors as exist in the system, thenmtezebsors
must be shared between parallel and sequential applications.

We simulate sharing one non-idle workstation between an interactive job and a parallel application and determine t
impact on the parallel application. The parallel application runs 100% of the time on the 63 idle processors and is time-slic
in a round-robin fashion with the sequential application on the one non-idle protéssary the percentage of time that the
parallel process executes on the non-idle node between 20% and 100% and vary whether or not the sequential process pol
network. Figure 5 shows the results for this experiment, with a quantum of 100 milliseconds.
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Figure5: One Non-ldle Processor. A serial job is time-sliced on oneqmessor with a parallel application running on |
otherwise idle prcessors. In the first graph, the serial job igg®the network; in the second, it periodically polls and t
ers messages. The thigraph shows that ineasing the flow-conti window impoves the performance of two applicatiol
The serial job is always given a time-slice of 100 ms. Theeptage of time the parallel application is scheduled is va
from 20% to 100% along the x-axis. The slowdown is the ratio of the redaswcution time with one non-idle workstat

If the work in a parallel application is evenly distributed across processes or if barrier synchronizations are frequently pe
formed, and one process is scheduled less frequérgly the entire application is slowed down to the rate of the slowest pro-
cess; this is the case for two of our applicatiams3D, andcoLUMN. On the other hand, if a load-imbalance exist across
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processors and a processor with less work than others is interrupted, then the entire application is not slowed down by the
same amount. Thisis the case for CHOLESKY and CONNECT. A load-imbalance also exists in SAMPLE, but the interrupted pro-

cessor was already one of the slowest and so the performance curve follows this processor. *

Our results in the second graph indicate that whether the sequential process buffers messages or ignores the network has
little impact on performance. Experiments varying the window size in the third graph show that performance isimproved for
two of the applications.. The performance of SAMPLE improves dramatically with alarger window because processes no longer
stall after sending a one-way message to the non-idle processor. CHOLESKY also sees afurther improvement. In the other three
applications (COLUMN, CONNECT, and EM3D), it may still be beneficial to use a larger window when sending to the non-idle
processor; however, because the same window size is used for communicating with all processes and most of the time pro-
cesses send to idle processors, better overall performance is achieved using the smaller window sizes.

Our experiments have shown that parallel applications are generally slowed to the rate of the slowest processor when
shared with an interactive user, regardless of whether the serial job interacts with the network. The resulting implications
depend upon the execution environment. In a NOW with sufficient idle resources, paralel applications should be migrated

away from busy workstations?. However, in environments where resources are over-utilized or when applications require the
maximum number of processors, migration is not an option and processors must be shared. Since little benefit existsin running
fragments of a parallel application, other processes should be scheduled on the avail able processors when the sequential appli-
cation runs. A related question, which we plan to pursue, is at what point does the need to coschedule sequential jobs arise.
Our experiments have shown that with one sequential job and one parallel job, there is no need to explicitly coschedule the
parallel application since the parallel job performs no worse than the slowest process.

8. Related Work

There have been numerous studies on multiprocessor scheduling techniques. Almost all of these, however, have been based on
shared-memory architectures or have used synthetic inputs to drive their simulations. We focus on real parallel programsin a
distributed-memory environment, which we think will typify a NOW.

Ousterhout first introduced the idea of coscheduling[Ous82]. The idea has since been included in many studies of multi-
processor scheduling techniques [TG89, CDD*91, FR92, LV 90]. Ousterhout assumed that coscheduling is a good idea, and
implemented and compared three agorithms, finding the matrix algorithm simplest and nearly most efficient. Gupta et al.
[GTU9]] found that coscheduling was as good as their space-sharing method (known as process control), if the time quantum
was long enough (25 milliseconds) to amortize cache effects.

Others have studied how to determine which processors and how many processors to alocate to a parallel application
[Sev89, NSS93, CMK 94, MZ94]. We assume that the application will demand and must be given a certain number of proces-
SOrs.

In another study of mixing parallel programsinto aworkstation cluster, smulation is used to study whether parallel appli-
cations can run in a non-dedicated environment (such asa NOW) [LS93]. While demonstrating that this may be possible with-
out a significant impact on the parallel programs, their work does not discuss any potential impact upon interactive users.
Further, all the simulations are driven by synthetic models of both workstation and parallel program behavior. Finally,

1. Our measurements are reported as the mean of five repetitions; however, in every experimental run, we run the sequential
job on the same processor. When aload-imbalance exists across processors, it would be interesting to ook at the effect of
slowing down different processes in the application; we plan on performing this experiment in future work.

2. Our experimentswere performed on applications that assume afixed number of processors. Applicationsthat dynamically
allocate work across processors (such as with atask queue) or that dynamically adapt the amount of parallelism to the
number of available processors may not need to migrate
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[ADV*95] performed a similarbut more limited study in the NOW environment, that did not examine féngts2bf changes
in the communication layer on application performance.

9. Conclusions

Modern MPPs and NOWs have evolved in a number of ways that impact both the scheduling and the communication layet
parallel applications. Interactive users, local scheduling, quantum akewsystem activity all lead to scheduling perturba-
tions in parallel applications. The result is that parallel applications are no longer strictly gang-scheduled and the communi
tion layer must be modified to take this into account. One modification, which we examined in this pajerfer messages

that arrive for non-scheduled processes, using credit-based flow-control to erfstiemshtifer space.

We have found that in situations where the scheduling disturbancesyaréelay.,, when parallel applications must share a
workstation with an interactive job and when parallel applications are locally scheduled), the degradation on parallel applic
tion performance is substantial. Increasing the amount &rsgace for messages improves the performance of applications
which communicate primarily with one-way messages, but better performance is ultimately obtained by coscheduling the
applications, in which case sensitivity to window size is just as in a dedicated environment. Thus, if few sequential process
are present, they should be migrated to idle processors apart from the parallel program, g iinméer of sequential pro-
cesses exist they can be coscheduled.

When the scheduling perturbations are small (e.g., due to coscheduling skew or daemon activity), we have found tl
larger message bfgfrs do not improve performance for two reasons. First, data dependencies and synchronization points
applications necessitate that messages are handled and responses returned; providintermspadaufloes not change this
fact. Second, the performance of coscheduled processes can be extremely sensitive to window size; in these cases, we f
that the optimal window size is small and can lead to an 80% performance improvemengevevitatow sizes. Therefore,
given small scheduling perturbations, the best performance is achieved again with the window size that is optimal wh
coscheduled.
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