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Abstract

Scientific computation has always been one of the driving forces behind the design of computer systems.
As a result, many advances in CPU architecture were first developed for high-speed supercomputer sys-
tems, keeping them among the fastest computers in the world. However, little research has been done in
storing the vast quantities of data that scientists manipulate on these powerful computers.

This thesis first characterizes scientists’ usage of a multi-terabyte tertiary storage system attached to a high-
speed computer. The analysis finds that the number of files and average file size have both increased by
several orders of magnitude since 1980. The study also finds that integration of tertiary storage with sec-
ondary storage is critical. Many of the accesses to files stored on tape could have easily been avoided had
scientists seen a unified view of the mass storage hierarchy instead of the two separate views of the system
studied. This finding was a major motivation of the design of the RAMA file system.

The remainder of the thesis describes the design and simulation of a massively parallel processor (MPP) file
system that is simple, easy to use, and integrates well with tertiary storage. MPPs are increasingly com-
monly used for scientific computation, yet their file systems require great attention to detail to get accept-
able performance. Worse, a program that performs well on one machine may perform poorly on a similar
machine with a slightly different file system. RAMA solves this problem by pseudo-randomly distributing
data to a disk attached to each processor, making performance independent of program usage pattemns. It
does this without sacrificing the high performance that scientific users demand, as shown by simulations
comparing the performance of RAMA and a striped file system on both real and synthetic benchmarks.
Additionally, RAMA can be easily integrated with tertiary storage systems, providing a unified view of the
file system spanning both disk and tape systems. RAMA’s ease of use and simplicity of design make it an
ideal choice for the massively parallel computers used by the scientific community.



Table of Contents

CHAPTER 1. INErOAUCHION ...t ettt naen 1
L1, TheSiS STAEMENL......c.couimuiirieerieteietei ettt et ettt ettt eeeeeee et eseeees s e e eses s 1
1.2, DiSSErtation OQULHINE ........cocuvueuimieeterieteie et ss ettt e s ee et eeee s s es s s s e s eeseas 2

CHAPTER 2. Background and Related WOrk .................cooooooiiiiiiiieieeeeeeeeeeeeeeeeeeeee e 5
2.1 SHOFAZE DEVICES ....ccoueeuruieeeueiinttetetee ittt aeeee et es s e e seeeeesesss e s s s es e 6
2. 110 MaAGnEtic DISK ......cueuuiceiieieieceeteteteeecectcteeeeee e ettt s e e es e 7
212, MaGnEHC TAPC.......coouieiececeeiriecietetet ettt e et et ee et e s e e e e se s e e ses s ee e se oo 8
2.1.3. Optical Disk and TaPe.......cceceuerrrririuitirirereteeneeeeceee ettt eeeee e e e ses e e e seseees e 10
2.1.4.  Other Storage TEChNOIOZIES . ...vuecurvereieeiceeeeeeeeeeeee e e e ee e 11
2.1.5.  RobOtic ACCESS t0 StOraZe MEia ..........ououueeeieceeeeeeeeeeeeeeeee e 11
2.2, File SYSIEm CONCEPLS ......ooveeueeeirirreieretetieeceeeeteeetes et eeeseeeeeeseeeseses s esesesesese s see s 11
2.2.1.  Berkeley Fast File SYSIeM.......cooiiuiiiioiiieieeeeeecieeeeeeeeeeeeeee e ee e 12
222, Log-Structured File SYSIEM .....c.cccooiiuriiuireieieiteteceeeeee et eeeeee e e, 13
2.3, MaSS SIOTAZE SYSIEIMS ....uvvreiuerrreriiieitesereseeeesceeecteteesee e e sese et eese st et ee s s s s seses e e s seseseeee e 14
2.3.1.  Long-Term Reference Patterns and File Migration Algorithms............cocovevevemvivevereneennn, 14
2.3.2.  Existing Mass Storage Systems for Scientific COMPUting .............oooeeueveeeerrererrrnnnn, 15
24, Massively Parallel File SYSIEMS .......ccocouiuiuiiiieieieiiiee e, 16
24.1.  File System-Independent Parallel 1/O IMPrOVEMENLS .........coccoveveeeeeeeeeeereeee oo, 17
2420 BIHAZR ..ottt ettt ee et e e 17
243, ConCurrent File SYSIEM......oceruiiiiiiuitiietetee et ettt e 18
244, VESIA...ooiiectcece ettt ettt ettt e ettt et et et rsee e 19
24.5.  CM-5File SYSIEIM (§15) ..ovvtrirererririnriirerieeeee et ee e et et ee e e es e s s seseeesee e 19
2.4.6.  Uniprocessor File Systems USed Dy MPPS ...........ccc.ououiuiieueeereeeeee oo e ee oo 19
24.7.  Other Parallel File SYSIEIMS ....c.oooeiiuiiiiiiiieiececeeeeeeee et 20
2.5. CONCIUSIONS........ooviiiieiiiiiecet ettt ettt ettt ee e e e e eesee e e e eseseeeeees 20

CHAPTER 3. File MZIation .........c.ccooiiiiiiinii et eee e ee e 22
3.1, NCAR System CONfIUIALION .........oovovovieiieeeeeeeee oo 23
3.1.1. Hardware CONfiGUIAtiON.....c.ccoeevuiuiuiioiiiceeeeeceeeeeee oo 23
3120 SYSIEIM SOFIWATE. ..ottt oot ee e e eee s e 24
3.1.30 APPLCALIONS ...ttt ee e e ee e ee e 25
3.2, TraCing METNOAS ......c.cueueirieeieieiee e e e e 25
32,1, TTaCE COLECHOMN ...ttt ettt ee e e 25
3220 Trace FOMMAL ......ccccuoimiiiuiteeeteeee et e e e ee s e e e s ee e ee e 26
3.3, ODSEIVALONS .......oemiimiineieteet ettt ettt et e ee e e e s es e e e eeee s, 26
33,10 TTACE SEALISHCS ...vcuraeiieieeeertete ettt ee e e e e e e, 27
332, LatenCy t0 FArSt BYLE ......cuouiueiieieiciiececeece e 28
3.3.3. MSS USAZE PACITIS ... e 30
3.3.4.  Interreference INEIVALS .......cooooeuiuiiiiiiiieeee e 31
3.3.5.  File Reference PatIMS ........c.coriueuiiuiiiieceeeesceeteceeee e e ee e ee e 32
3.3.6.  File and DirECIOTY SIZES ....c.ccuevevuiuiuiecieieieceeeeceeeeeee e ee e es e e 35
34.  File Migration AIZOTTIIMS ........c.oooiueueiiieieirieeeeeeeteeeeeee e e eee e ee oo 37
35. CONCIUSIONS.......coviieiiecite ettt ettt ettt ee e ee e e 38

iii



CHAPTER 4. RAMA: a Parallel File SyStem ..................ocoooommoeomoeooooeooo 40

4.1. File SyStem DESIZN.........c.ooiuiiiiiiiniceeeeeeeeee e e 41
4.1.1.  File System INfOMMation. ........couvviuuiueiuieieieeee oo 41
4.1.2.  Data Placement in RAMA .......o.oooouiiiiiimieieieeeeeeeeee e 43
4.1.2.1.  File BIOCK PIACEMENL........ccueiumitriaieeeeeieeeeee e eeeeeeee et 43
4.1.22.  Intrinsic Metadata PIACCIMENE «............u..eovveeeeeeeeeeee oo 45
4.2, File SyStem OPEIatiON .........ouueerueeruereereeenieeeeeeeeeeeees e eeesees e es oo 47
4.2.1.  Access 10 File BIOCKS ON DISK ...ucvuvuuieoeeeeoeeeeeeeeeeeeses oo 47
4.2.2.  Disk StOrage Management .................o.ueveeeeeeeeeeeeeseesesseeseee oo 47
4.2.3.  Tertiary Storage and RAMA.............ovvuevueeoeomeeeeeeeeeeee oo 50
4.3, ImPIEMENLALON ISSUES .........vuueverierruesieeeaneeeee e eeeeeesees e e es oo oo oo oo 51
4.3.1. Hashing AIZOTItRIM........cc.ccooiiimiiiieee et 51
4.3.2.  Interconnection Network CONZESHON ..........cc..oveeweevrreeeroemeooeoeeoeoeoooeoooeooooeoooo 51
4.3.3.  Dataintegrity and availability ............co..eo.ouueeeoeeeeeeeeseeseeeseeeeoeeoeoeooooeooeooeeeeo 51
4.3.4.  Disk St0rage UtlIZAON ..........evverueieereeeeeeeeeeeeeeeeeee oo 54
44, CONCIUSIONS.. ..ottt 54
CHAPTER 5. Simulation Methodology....................o..oouveeoeereeeoeeeoeeeeoeoeeoeoeoeoooooo 55
5.1. SIMUIAtOr DESIN ...ttt 56
5.1.1. Simulator IMpIemMentation. ............u.cveveceeeeeeeeee e eeee oo oo 56
5120 DHSKMOGEL.......coiiieee e 56
5.1.30 NEIWOTK MOGEL ...t oo 57
5.1.4. Multiprocessor CPU MOE] ... 61
5.1.5.  File System Simulation ..............oo.ovoveivieoeieeeeeeeeeeeeeeeoeeoeoooooo ettt 62
5.2. APPLICALONS STMUIALEA...........coeeeeieiieiieieeeeeeeee e 63
5.2.1. Strided SEQUENtIAl ACCESS ....cuuvurmiuririieieeeeeee e oo 64
5.2.2. LU MatriX DeCOMPOSION ........voveeeeeeeeeeeee oo 65
5.2.3.  Global CHmate MOGCHNG. ......cvuvevereieeeeeeeee e oo 67
524, SMAllFAlE ACCESS.......vuiuiereiieeieieeeeeeeeeeee e oo 67

5.3. Conclusions

CHAPTER 6. Sensitivity of the RAMA Design to Changes in Technology, Design and Usage . 70

6.1.  Technological ParameLers.........oc.vuuiuuivuieocereeeeeeeeeeeee oo 71
6.1.1.  NetWOrk PErfOMMANCE ..........oveveiieneeeeeeeeeeee oo 72
6.1.1.1.  Network BandWidth..........cc.oeueiuiieiuisieieeeeeeeee oo 72
6.1.1.2.  Network MesSage LateNCY ..........u.vuveomeeeeeeeeeeeeeeeee oo 74
6.1.2.  Disk PErfOrMANCE...........ovuiveieniiaiiecee e 15
6.1.2.1. DisK TTaCK DENSILY .......couverreeireienieee e eeeee oo 77
6.1.2.2.  Disk ROWHONA SPEEA .....vuvevieeieeeeeeee e 78
6.1.2.3.  Disk Head POSItioning LAteNCy ...............oveeeeeeeeeseeeeeeeseeoosoooeooooooeooooooooo 79
6.1.3.  CPU Speed and MemOTry Size.............coovvueromeeeoeeeeeoeeoeeeoeoeeoeoeoooeoooo et 81
6.2. DeSign PATAMELETS ...........cuuiiiiiiieeiiiieece e oo 82
6.2.1.  Data Distribution On DiSK ...........ovuuvveivooeeeeieeeeeeeeeeeeoeoeeeeoeoeooooooooooo 83
6.2.2.  Scalability and Multiple Disks Per NOQe .............vveooveeoomoooooooo 85
6.2.3.  Network CONfigUration ........c.o...o..oovuomeeeeeeeseeeoe oo 85
6.3. Small File PETfOMANCE .........coouveiiuitiieeeeeeeee oo 87
6.4.  FUture PErfOMMANCE ......c.ccovvvuemimrmiereeeoeeeeee oo 89
6.5. CONCIUSIONS. ...t et 90

iv



CHAPTER 7. A Performance Comparison of RAMA and Striped File Systems................... 92

7.1.  Application PErOIMANCE ........c.vueiiueriieieeceete e 93
TL 1. SHAEA ACCESS.......ecveeuiieeieeteteeete et ettt eeee et esee s ee e s e e e s e ee e, 93
7.1.1.1. Raw Bandwidth EXPETMENLS ..........ovvuivoieeeeeeeeeeeeeee oo 93
7.1.1.2.  Strided Access With COMPULALION ...............oeveveeeereeeeeeeereeseeeeeeeoeoeeeeeoeoeeeeeoeeeoeoeeeee 96
7.1.2. MatriX DECOMPOSITION .....vuvueereiaciceeieeeeeeeee oot oo 96
7.1.3.  Global Clmate MOAEHNG.........c.eviueieieiieieeeeee oo e 98
7.2. Disk UHHZAUON...........covieeiiecinieiteteeee ettt 100
7.2.1.  Spatial Distribution of stk REQUESES ...t 100
7.2.2.  Temporal Distribution Of DisSk REQUESES............eveveeeeeeeereerereoeoeeoeoooeoeoeoeoeoeeoeooeoeoeooeoe 103
7.2.3.  File System Data DiStrDULON ...............oveeeeeeeeeeeeeeeeeee oo 105
7.3, NEtWOTK UHZAON ..euceeenieeieiiieet et 107
7.3.1.  Network Utilization Under Striped File SYSteMS. .......vvovovooooooeoeooeoeoeoeooooooo 108
7.3.2.  Network Utilization Under RAMA ............c.oooumiueeeoeeeeeeeeeeeeeeoeeeeoeeeeoeoeeoeeoeeoeoeeeooo 109
74. CONCIUSIONS........ooeeceinee et et 110
CHAPTER 8. CONCIUSIONS ...t 111
8.1. SUIMIMATY ..ot e 111
8.2 FULUIE WOTK ..ot 112
8.2.1.  Future Research in Tertiary StOTAZE ...........cocovuereemeeeeeeeeeeee oo 112
8.2.2.  Future Research on RAMA and Parallel File SYSIeMS .......oo.vovervoveooeooooooooooo 113
8.3. SUIMMALY ..o et e e e 113
BiDLIOGraphy ... e 115




List of Figures

CHAPTER 1. .....

Figure 1-1.

CHAPTER 2. .....

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.

CHAPTER 3. .....

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 34.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.

CHAPTERA4. .....

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

CHAPTERS. ...

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.

......................................................................................................................................... 1
Thesis MEOAOIOZY. .....vuvvuiiriririeieieteteie ettt e e e et eeee 3
......................................................................................................................................... 5
The SLOrage Pyramid. ...........cccoceeueeeiriirininieeee ettt ee e 6
Components of a typical disk dIiVe. ...........cooevevevveieeeeeeee e, 8
Longitudinal and helical scan tape teChnologies. ...............o.oovuvveerieereeereeeeeeenan 10
Inode and indirect blocks in the Berkeley Fast File System. ...........ccocooovvveveveuennnn.. 13
Sequential file access patterns in parallel programs. ...............coeeeeeeevereeereesenn, 18
...................................................................................................................................... 22
The NCAR DEIWOTK. ...c.cuiiiiiiiieieininieteee ettt ettt ee et es s e 24
Latency to the first byte for various MSS devViCes. ...........ocooueeeveeeeeveeereeeeeeeesen. 29
Daily variations in MSS aCCESS TALES. ........c.oveveveveveeieie et 31
Weekly variations in MSS aCCeSS TaLeS. .........coovovivevieiieeeeeieeeeeeeeeeeeeee oo, 32
Long-term variations in MSS transfer rates. ...............oo.oueeeueeevereeeoeeeeeeeeseeeeeeenn, 33
MSS interreference iNEIVAS. ...........c.iuiuiuiiveieeeeeeee e, 34
File reference count diStribUtion. ...........oooueueieioioieii e, 34
MSS file interreference iNtervals. .......oooceucucueieeeeeeccececeeece e, 35
Size distribution of files transferred between the MSS and the Cray......................... 36
MSS static file size diStriDUION. ........ouiuiuiiiiiieccee e, 36
Distribution of data and files by direCtory SiZ€. .............cooovevvveveroeeeeeeeeeeeeeeeeen, 37
....................................................................................................................................... 40
Typical hardware running the RAMA file SYSIEM. ............oovvieremieeereeeeeseeeerererann 42
Typical hardware running conventional MPP file SyStemS. ...........ococoveveveeveeerennnn 43
A RAMA disk line and 1ine deSCrpLOT. ..........ocoooovoveveeeieeeeeeeeee oo, 45
Intrinsic metadata placement OPLONS. .............c.ovevveieiieieeeeeeeeeeeeeeeeee e esee e 46
Afile read iIN RAMA ..ot 48
A file write iIN RAMAL oo 48
Disk line reorganization. ..........cccevurioiuiuiuiuiseiieceeecece e e ee e 49
Scheme for insuring consistency after a RAMA crash. ...........cocooovvvvveeoeeoeeeieeen, 53
....................................................................................................................................... 55
Threads and resources in the RAMA SImMUlator. ..............cocoovooeeoeeeeeeeeeeeeeeeeeee 57
Sequence of operations for a single disk FeQUESL. ...........ocoeveveveveeeeeeeeeeeeee 59
Disk seek time curve for ST31200N............c.ovieirieieieieeeceeeeeeee oo 59
Mesh NEtWOTK LOPOIOZY. ......cururuimiriiiiieeeeeeeeieeet oot 60
Star NETWOTK OPOIOZY. ..vovevuieititireeeee ettt 61
Actions simulated for a read Or Write T€QUESL. ........c.oovvieieeeereeeeeee e, 63
Algorithm for the strided sequential access application. ...............ococoevvvveveereen, 65
Out-of-core LU deCOMPOSItION. ............cecvvieeeeeecececeeeeee e 66




CHAPTER 6.

Figure 5-9.

Figure 6-1.
Figure 6-2.
Figure 6-3.

Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.

Figure 6-9.

Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 6-13.
Figure 6-14.

CHAPTERT. .....

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.

Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.

Figure 7-15.
Figure 7-16.

CHAPTERS. .....

Block-cyclic layout of data for GATOR. ........cccceueveveueeeieeeeeeeee oo, 68
....................................................................................................................................... 70
Effects of varying link bandwidth in a mesh interconnection network on
RAMA read perfOrman e. ...........c.covceurieeeunineeeeieeesee e eeeee et es e eses e 73
Effects of varying link bandwidth in a mesh interconnection network on
RAMA WIite PETfOIMANCE. .......cuveieieeeeceteeee ettt ee e eee e er s 74
Effects of varying link bandwidth in a star interconnection network on
RAMA DPerfOrmance. ...........cccooeeeininmieeeiee e 75
Effects of varying network message latency on RAMA performance. ..................... 76
Components of disk latency in a single RAMA disk request. .............c.ocoovvree...... 71
Effects of varying disk track capacity on RAMA performance...............coocooo........ 78
Effects of varying disk rotational speed on RAMA performance. ........................ 79
The effects of average and maximum disk head seek time on
RAMA DPEITOMMANCE. ........oeieiiiicieiree ettt 80
Acceleration and travel components of disk read/write head seek time. ................... 81
Matrix decomposition performance with varying memory Sizes. .............cocooo........ 83
Effects of varying the amount of consecutive file data stored per disk. .................. 84
RAMA performance with varying numbers of disks per MPP node. ........................ 86
RAMA read performance for small files. ................oooveeueuereeoeeoeeeoeoeeoee 88
Projected RAMA performance using future technologies. .............oo.oveeeevevernn., 89
....................................................................................................................................... 92
Node sequential and iteration sequential request Ordering. .............ocooeeeeeeeenennn.... 93
Comparison of raw bandwidth in RAMA and striped file systems. ............co........... 94
Interaction of stripe size and application Stride. ...............ococooeoevoeeeoeeeeeeesee 95
Performance of a synthetic workload doing write-dominated strided access
under RAMA and striped file SYSIEMS. .........o.coeoviuvieeeeeieeeeeeeeeeee e, 97
I/O done by matrix decomposition on a 64 processor MPP.............oooovovveeoeoe 98
Execution time for LU decomposition under RAMA and striped file systems. ........ 99
Execution time for LU decomposition with an alternate data layout. ....................... 99
GATOR performance under striping and RAMA . ............ococoooviioooooee 101
Sequential request distribution in a striped file SyStem................ocovevvoveeeeierrnnn 102
Poor distribution of requests to striped disks for LU decomposition. .................... 103
Distribution of requests to RAMA disks during the read of a 32 GB file. ............. 104
Distribution of requests to RAMA disks for LU decomposition. ..............c.co.......... 105
Temporal distribution of MPP file request streams to a striped file system............. 106
Effectiveness of the RAMA hash function at eliminating poor temporal
QISTTDULION. ...ttt ee e 107
Interconnection network utilization under a striped file system. ..............co............. 108
Interconnection network utilization under RAMA. ...........coooooouioooomoeeeeeen 109
..................................................................................................................................... 111

vii



List of Tables

CHAPTER 1. ....

CHAPTER 2. ....

Table 2-1.
Table 2-2-

CHAPTER 3. ...

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.

CHAPTER 4.

CHAPTER§.

Table 5-1.
Table 5-2.

CHAPTER 6.

Table 6-1.
Table 6-2.

CHAPTERMT. ....

CHAPTERS. ....

.......................................................................................................................................... 1
.......................................................................................................................................... 5
Trends in disk t€ChNOIOZY. .....vvueeieeeieeieieie e e oo 8
Characteristics of various tertiary storage t€Chnologies. ..............ocooeeuevervevereoon . 9
........................................................................................................................................ 22
Information in a single trace TECOTA. ...........evevvvevieeeeeeeeeeeeeeeeeeeee e, 26
Overall NCAR trace SLAISHCS. ...uvvererueeerereeeeneeeeeeeeeeeeeeeeeeesee e e s e 27
NCAR MSS CCESS EITOTS. .....cueveerrieresiecte e eeceeee s eeesesseses s e e 28
NCAR MSS OVerall SEAtSHCS. ....c.coevueuerruerriecreieiereeees e eeeeeeesee e ee e, 28
........................................................................................................................................ 40
........................................................................................................................................ 55
Parameters for the simulator’s disk model..............coccoeoeeoooeeeeeeeoeeeo 58
Simulation parameters for the interconNection NEtWOIK. .............o.ovovooevooeoeooo 60
........................................................................................................................................ 70
RAMA’s expected load on various network configurations. ..............o.oevevvevevevnn.. 87
Parameters for simulated future disks. ...........coooveueeeeeeereeeeeeeee oo 90
........................................................................................................................................ 92
...................................................................................................................................... 111

viii



1 Introduction

Scientific computing has always been one of the driving forces behind computer architecture. The first com-
puters were designed to compute weapon trajectories, and weather forecasting was an early user of many
cycles. Since then, computers have become significantly faster, permitting ever-larger scientific computa-
tions that consume and produce ever-increasing amounts of data. Today’s workstations are faster than the
supercomputers of fifteen years ago, and processor speeds continue to double every three years. The intro-
duction of parallel processors has further accelerated the increase in processor speed. However, data storage
bandwidth has not kept pace because of mechanical limitations — disk rotation speed, for example, has
barely doubled in two decades. While disks and other storage devices have not seen great increases in speed,
their capacity per unit volume has increased dramatically. Today’s disk drives store more data than those of
ten years ago, yet they occupy less than 10% of the volume of the earlier drives. Increasingly, storage device
bandwidth is presenting a bottleneck to scientific computation. Moving data between disks and CPUs is one
concem retarding the acceptance of massively parallel processors. Archival storage presents an additional
bottleneck to scientific computation. Modern supercomputer centers can only afford storage systems with
the capacity and cost of tape, yet scientists want to access this storage with the bandwidth and latency disk
provides.

1.1. Thesis Statement

The objective of this dissertation is to address two issues in the design of mass storage systems for scientific
computation: characterization of modern multi-terabyte storage systems, and high bandwidth file systems
for massively parallel processors. These issues cannot simply be addressed as isolated problems, however;
both high-bandwidth storage and massive information repositories must be part of an integrated storage
environment for scientific computing. Building a coherent file system from many individual storage sys-
tems is as difficult a problem as is building each individual component. Thus, this thesis also addresses
issues of designing an integrated storage system for supercomputing. While performance and capacity are
always recognized as important metrics of storage systems, ease of use is often neglected. Ideally, users
should see a single file system entity, in contrast to current systems composed of several loosely-connected
file systems between which files must be explicitly moved by users. Additionally, current parallel file sys-
tems such as Vesta [18] and the Intel Paragon file system [27] require a user to supply file layout directives
for the file system to provide maximum performance. These directives are not necessary; however, the file
system’s performance may suffer without them. Future massive storage systems supporting scientific com-
puting must be easy to use as well as high-bandwidth and high-capacity.

The first third of the dissertation presents a detailed analysis of a modem tertiary storage system, providing
a basis for the design and analysis of new algorithms for moving data between disks and tertiary storage
devices such as tapes. The most recent extensive study of a similar system was done around 1980 and
reported in [80] and [81). However, both access patterns to mass storage and the hardware used to build




them have since changed dramatically. The introduction of new storage devices, such as inexpensive high-
capacity tape robots and optical disk jukeboxes has given scientists more ways to store their data. At the
same time, the rapid increase in supercomputer speeds has allowed scientists to generate hundreds of thou-
sands of files per year averaging 25 megabytes per file. These files are two orders of magnitude larger than
the files studied in [80]. Clearly, this data must be stored on a medium less expensive than disk. Modem
supercomputer centers store this data on tapes; however, their storage system designs and algorithms are ad
hoc, since there is little research on modemn systems on which to base their choices. This thesis presents such
an analysis, laying the groundwork for future research on file migration algorithms and mass storage sys-
tems designs.

The remaining two thirds of the dissertation focus on file systems for scientific computing on massively par-
allel processors (MPPs), which are both difficult to design and hard to use efficiently. Current MPP file sys-
tems can provide good performance, but do so at the cost of ease of use. In a traditional uniprocessor, files
are stored on disks attached directly to the computer or on remote machines reachable by a network. The
bandwidth in such storage systems need only scale with the speed of the single processor, while the connec-
tion between the disk and the processor’s memory need only be fast enough to handle the data from several
disks at the same time. For large multiprocessors, however, each processor might consume data at a rate
comparable to that for an entire traditional computer. Furthermore, the available disk bandwidth must be
scalable — if more processors are added, more bandwidth is necessary. MPPs with hundreds of processors
require secondary storage bandwidth of several hundred megabytes per second. While it may be possible to
build an single connection between hundreds of disks and hundreds of processors, it makes more sense to
build many lower-performance links instead. Recent advances in disk technology allow the storage of hun-
dreds of megabytes on a disk smaller than a deck of playing cards, while modem hi gh-speed MPP intercon-
nection networks allow data to be stored further from its eventual destination with little performance
penalty. The remaining two thirds of this dissertation proposes and analyzes a parallel file system combin-
ing these two advances. This file system, called RAMA, is well-suited for scientific applications that pro-
vides high bandwidth and eliminates the need for complex user directives. Additionally, this file system is
designed to be integrated into a larger storage system including workstations and tertiary storage systems,
in contrast to current parallel file systems that require users to explicitly move data from the outside world
to the MPP.

1.2. Dissertation Outline

The thesis opens with the background material built upon by the rest of the dissertation. Chapter 2 first dis-
cusses the characteristics of secondary storage devices such as disk drives and tertiary storage devices such
as magnetic tape, optical disk, and optical tape. Next, the chapter presents the basic file system concepts
necessary for the following chapters, using the BSD Fast File System [54] and the Log Structured File
System [74] as examples. The chapter then covers previous research in two areas: file mi gration and tertiary
storage management, and parallel file systems. The survey of file migration discusses several studies of ter-
tiary storage access patterns and proposals of migration algorithms. This research provides a good back-
ground for study of modem storage systems; however, the large increases in capacity and usage require a
reexamination of the problem. Parallel file systems, on the other hand, are recent developments. The chapter
mentions a half dozen different file systems, summarizing each one’s strong and weak points. While the
various parallel file systems each have different weaknesses, all share a common problem: they require
system-specific input from the user for optimal performance.

The remainder of the thesis follows the methodology diagrammed in Figure 1-1. The file migration study
in Chapter 3 yields several supercomputer file system requirements that traditional parallel systems do not
satisfy. These requirements, along with the more standard demands on parallel file systems, drive the design
of the RAMA file system. Simulation studies of RAMA’s sensitivity and its performance relative to con-
ventional parallel file systems may be used later to implement a high performance file system that both
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meets the high-performance goals of supercomputer systems and provides a good interface with the rest of
the computing environment.

Evaluation of . Simulation & .
real systems > Design == gensitivity Analysis —> 'mplementation

T

This thesis follows a standard methodology for developing new systems. The analysis of existing super-
computer file migration systems in this dissertation combined with the analyses of parallel systems done
elsewhere motivate the design of a new parallel file system — RAMA. Simulation is used to test this
design’s performance and sensitivity to changes in technology and design parameters. The information
gained from these simulations will be used to refine the design for an actual implementation — part of the
future work described in Chapter 8.

Figure 1-1. Thesis methodology.

Chapter 3 presents the results of a trace-based study of a typical mass storage system and discusses its impli-
cations for file migration algorithm design. It first describes the system at the National Center for Atmo-
spheric Research (NCAR), and then covers the gathering and processing of the access traces, which
included references to almost one million files containing a total of over 25 terabytes of data. The bulk of
the chapter analyzes the traces gathered at NCAR over a two year period. The analysis shows that files at
NCAR fall into two main groups: half of the files are referenced two or fewer times, and most of the rest
are referenced frequently. Additional references to a file are most likely within a day or two of previous
access to that file, though poor integration in the NCAR storage system forced two tertiary storage refer-
ences regardless of how close together the two accesses occurred. There was little difference between the
access patterns for large and small files. Reference patterns did differ, however, between reads and writes.
File read rates closely matched scientists’ schedules, peaking during the work day and dropping off at night
and on weekends. On the other hand, file write rates remained relatively constant throughout the day and
the week, suggesting that the write rate is governed more by the computer’s ability to generate new data that
must be stored.

Several findings reported in Chapter 3 motivate the proposal of the RAMA file system, the focus of the rest
of the thesis. First, storage integration is crucial to good file system performance. More than half of the ref-
erences to tertiary storage could have been avoided by transparent access to tertiary storage; however, cur-
rent parallel file systems are not well-integrated into supercomputer storage centers. Second, the storage of
file metadata is becoming a problem. Many of the supercomputer file systems that allow transparent access
to tertiary storage require all of the file system metadata and directories to remain on disk even when files
are migrated to tape. Chapter 4 presents the RAMA parallel file system design, which is primarily motivated
by these two considerations and a third: ease of use. RAMA uses pseudo-random distribution and reverse
indices similar to cache tags to spread data around the disks of an MPP. Because RAMA uses reverse indi-
ces to find file blocks, it only keeps metadata for files actually on disk; metadata for migrated files may itself
be migrated. This strategy also allows seamless integration of tertiary storage — if the reverse indices do
not locate a file on disk, it can be retrieved from tape without manual intervention by the user. As a parallel
file system, however, RAMA’s major attraction is its performance. Its pseudo-random distribution proba-
bilistically guarantees high bandwidth regardless of an application’s access pattern. Unlike current MPP file




systems, RAMA is designed to achieve high bandwidth without extensive placement and usage information
from the applications that use it, thus providing an easy-to-use parallel file system.

The remainder of the thesis describes a simulation of the RAMA file system and the results from experi-
ments that use the simulator to predict RAMA's behavior under varying conditions. Chapter 5 discusses the
methodology used to produce the performance figures reported in Chapters 6 and 7. It first describes the
how the simulator is organized and the disk and network models it uses. The chapter next discusses the
workload generators that generate reference streams to drive the simulator’s model of RAMA. Several of
the generators model real applications such as matrix decomposition, while others drive the simulation with
synthetic access traces. Both real and synthetic reference streams will be used to generate the results
reported in the next two chapters.

The sensitivities of RAMA to varying design and technological parameters are examined in Chapter 6.
Advances in disk technology increase RAMA’s bandwidth by allowing more data to go to or from disk.
Faster networks, however, have little impact on the file system’s bandwidth because it is currently disk-lim-
ited. This finding is encouraging since interconnection link speed was a serious performance bottleneck in
earlier parallel file systems. RAMA’s performance also varies for different desi gn choices at a fixed tech-
nology point. While RAMA has fewer design parameters than other parallel file systems, the few design
choices that must be made do affect file system performance. As with other file systems, though, the optimal
choice for these parameters depends on the current technology. File system workload is the final factor
affecting file system performance that Chapter 6 explores. Most of this thesis assumes that a supercomputer
workload will use primarily large files. The last section of this chapter shows that RAMA will perform well
under a small file workload as well, making RAMA suitable for use in an environment combining super-
computers and workstations.

In contrast to Chapter 6, which shows that RAMA will scale well with advancing technology and differing
workloads, Chapter 7 demonstrates that pseudo-random distribution performs well when compared to stan-
dard striping. Moreover, striping performs well for some access patterns and poorly for others; an applica-
tion must provide configuration information to the file system to distribute data for optimal performance.
RAMA, on the other hand, achieves bandwidth close to that of the optimal striping layout, and maintains
that level of performance across a wide range of access patterns for which the optimal striping arrangement
varies widely. RAMA’s performance is usually within 10% of the best performance possible from striping,
and is a factor of 4 or more higher than the bandwidth attainable from a file system with a poorly-chosen
stripe size. It is this combination of good performance and independence of performance from access pat-
tern that make RAMA an attractive altemative to traditional striped parallel file systems.

The thesis finishes with Chapter 8, which summarizes the research reported in the dissertation and discusses
avenues for future research. Since the area of storage, particularly massive storage systems for high-perfor-
mance computing, is relatively unstudied, many opportunities for further research present themselves. This
chapter discusses two such areas — the development of algorithms for file migration based on the analysis
from Chapter 3 and other trace-driven studies, and the actual construction of the RAMA file system on a
parallel processor with one or more disks per node. Addressing these research issues will further improve
the computer science community’s ability to support scientific research by providing better-performing,
easier-to-use massive storage systems.




2 Background and Related Work

Supercomputer file systems have long been the subject of research, as users of large high-speed computers
have always demanded the highest performance from all aspects of their systems. Computers used for sci-
entific research employ many types of devices to provide the combination of high bandwidth and terabytes
of storage. Storage systems are more than hardware, however. Modern high-speed computers need complex
file systems for two reasons. First, these file systems must provide rapid access to the high bandwidth
devices in the storage system, as supercomputers are capable of producing and consuming data at rates in
excess of 50 MB per second [60]. Second, supercomputer file systems must migrate files between storage
devices, placing unneeded data on slower but cheaper media and keeping active data on faster, more expen-
sive media. With the advent of massively parallel processors (MPPs), however, file systems for scientific

computing must address a third challenge — providing scalable high-speed file access to many processors
at the same time.

This chapter will first describe the devices from which file systems are made. These include both secondary
storage devices such as magnetic disks and tertiary storage devices including magnetic tapes, optical tapes,
and optical disks. While secondary storage devices perform better than tertiary storage devices, they are
more expensive per bit of data stored. The first section of this chapter will explore the differences between
various devices and lay the foundation for discussing tradeoffs between cost and performance.

An overview of file system design comes next, providing a foundation for the discussion of file systems for
scientific computation in this thesis. This section will cover some basic concepts and terminology of file
system design, drawing examples from well-known systems such as Berkeley’s Fast File System (FFS) and
Log-Structured File System (LFS). The section will explain the data structures used by these file systems,
and discuss the implications of these design choices. This discussion will be particularly useful for
Chapter 4, which describes the design of the RAMA parallel file system.

This chapter will next discuss some previous work on file migration and tertiary storage systems. Mass stor-
age systems have been used for nearly two decades, yet there are relatively few published papers describing
them. Moreover, many of these studies are over ten years old. Since storage devices and usage patterns have
changed greatly since then, these studies may have limited applicability to modem systems. However, they
do provide a good base for analyzing modern mass storage systems.

The chapter concludes with an overview of work on parallel file systems for scientific computation. The
recent increase in the number of massively parallel processors (MPPs) has resulted in the creation of several
new parallel file systems. This section describes these systems as well a few older parallel file systems,
detailing the strengths and weaknesses of each design.




2.1. Storage Devices

The first step in discussing storage systems is to describe the devices that such systems use. Figure 2-1
shows the “storage pyramid,” which relates all the forms of storage to each other. Generally, capacity
increases towards the bottom of the pyramid, while bandwidth is hi gher for storage at the top. Cost per byte
is lowest for devices lower on the pyramid.
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Figure 2-1. The storage pyramid.

This pyramid shows the range of storage devices from CPU registers through shelved magnetic tape and
optical disk. Devices and media at the bottom of the pyramid are considered tertiary storage devices, and
have the lowest cost per byte and the longest access times. Secondary storage, such as magnetic disk, has a
somewhat higher cost per megabyte and shorter access time. Tertiary storage is further divided into offline
and nearline storage. Offline storage is accessible only via human operator intervention, while nearline
storage is robotically managed. As a result, nearline storage is usually faster than offline storage. However
nearline storage is more expensive, as it is difficult to build storage for many thousands of tapes that is
robotically-accessible.

Data storage devices are classified into one of two categories depending on whether the device has easily
interchangeable media. Magnetic disk and solid state disk (SSD) are termed secondary storage devices, and
require one device per storage medium. A magnetic disk drive is an integrated unit; it is impossible to switch
media on today’s disk drives. All other storage devices are called tertiary storage devices. Optical disks and

magnetic and optical tapes are all tertiary storage devices, as a single read/write device can read any of a
large number of storage media.

Tertiary storage is further broken down into off-line and near-line (or robo-line, as used in [46]) storage.
Both types of tertiary storage use the same media, but they access those media in different ways. Near-line
storage is available with very little latency, as the media are loaded by robots. The StorageTek Automated
Cartridge System 4400 [48] is an example of such a system. Each tape silo stores 6,000 IBM 3490 (1/2 inch)
tapes. Two robotic arms inside the silo may pick any tape and insert it into one of several IBM 3490 tape
drives. Once the tape has been placed into a drive, the robotic arm is free to move other tapes. These arms
can rapidly move a tape between drive and storage slot; an arm in the STK 4400 requires an average of 10
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- 20 seconds to pick a single tape. The entire process of selecting a tape, moving it between its slot and the
tape drive, and transferring data is automatic. No human need intervene in the process, keeping latencies
low.

Off-line storage, on the other hand, is not accessible without human intervention. A mass storage center
such as the National Center for Atmospheric Research (NCAR) [65] stores 25 terabytes or more, but only
has sufficient tape silos for a fraction of that data. The remainder of the media are stored on rows of shelves
in the data center and retrieved by the mass storage system’s operators. Off-line accesses are considerably
slower than near-line accesses for two reasons. First, human operators simply cannot move as quickly as
robot arms. Second, humans may make mistakes both in picking the incorrect cartridge and in replacing a
cartridge in the incorrect slot. For these reasons, off-line storage is slower than near-line storage. Neverthe-
less, data centers must store data off-line because it costs less to build shelves than buy robotic silos.

The remainder of this section discusses various types of secondary and tertiary storage. Magnetic disk is the
only type of secondary storage covered; while solid-state disk (SSD) is used in many mass storage systems,
its characteristics are those of a large array of dynamic RAM. Tertiary storage media are based either on
magnetic or optical technologies. Since scientific computation centers use magnetic tape for tertiary storage
far more than either optical tape or optical disk, it will be covered in more detail. Similarly, robots exist to
manipulate both magnetic tape and optical disk, but tape robots dominate because of the prevalence of mag-
netic tape over optical technologies. The section concludes with a discussion of possible future directions
for storage technologies including holographic optical storage.

2.1.1. Magnetic Disk

Magnetic disks have been used to store data for more than three decades, and their dominance of secondary
Storage seems to be secure for at least another decade. Over the past decade, disk capacities have been
steadily increasing even as disks have become smaller. Disk performance, however, has not kept up with
increases in data density.

The components of a typical magnetic disk are shown in Figure 2-2. While the original disks had platters
that were or more 14 inches across, modern commodity disk drives are 5.25 or 3.5 inches across, and 2.5
inch diameter drives are becoming more common. Nonetheless, basic disk drive design has changed little
in decades. Advancing technology is improving drive characteristics, however, as summarized in Table 2-
1. Disk capacity and data density are increasing most rapidly — 27% per year [11], doubling every three
years. Transfer rate is increasing at only 22% annually, however, and even this rate of increase may be dif-
ficult to sustain as rotation rates plateau. Average seek times are improving even more slowly, as they drop
only 8% annually.

A single disk I/O request goes through four phases: switch to the correct read/write head, seek to the correct
track, rotate to the proper sector, and transfer data. These phases may be overlapped, reducing the total time
needed for a single I/0. Since a drive has one read/write head for each surface, it must switch to the appro-
priate one for each I/O. This is a rapid process, though, since switching heads is an electronic action rather
than a physical one. Seek and rotational latency, however, are physical delays. The disk actuator must move
the read/write head to the correct cylinder, taking 1 to 25 ms depending on the disk and the distance the head
must travel. After the head reaches the desired track, the drive must wait for the sector to be transferred to
rotate under the head. At this point, the data may be transferred.

This description of a disk’s operation is simplified; modem disks use caches and other techniques to reduce

the time necessary to satisfy an 1/0 request. [75] contains a more detailed description of modem disk oper-
ations.
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Figure 2-2. Components of a typical disk drive.

This diagram shows the components of a disk drive and other drive-related terminology. The sector is the
basic unit of data storage, and holds 256 - 4,096 bytes, depending on how the disk is formatted. Read and
write operations always occur on whole sectors. Each track has many sectors along its circumference. A
platter is a single disk covered with metal oxide. Each platter has two surfaces (top and bottom in this dia-
gram) that hold thousands of concentric tracks of data apiece. The set of corresponding tracks on every
surface in the drive is termed a cylinder.

1993 typical values Historical rate
of improvement

Areal density 50 - 150 Mbits/sq. inch | 27% per year
Linear density 40,000 - 60,000 bits/inch | 13% per year
Inter-track density 1,500 - 3,000 tracks/inch | 10% per year
Capacity (3.5 form factor) § 100 - 2000 MB 27% per year
Transfer rate 3-4 MB/s 22% per year
Seek time 7-20ms 8% per year

Rotation rate 120 rotations/s 4% per year

Table 2-1. Trends in disk technology.

While magnetic disks’ capacities are increasing rapidly, their performance is increasing more slowly.
Transfer rate is proportional to the product of linear density and rotation rate, neither of which is improv-
ing rapidly.

The data in this table (with the exception of rotation rate) is taken from Table 2 in [11].

2.1.2. Magnetic Tape

Magnetic tape, like magnetic disk, is a rather old technology. Tapes have long been used to hold archival
copies of data on disk. This is done for two reasons: keeping an extra copy of disk data in case of a disk
failure, and storing excess data that does not fit on disk. Magnetic tape is ideally suited for these uses, since




tapes have very low cost per megabyte of stored data (see Table 2-2). However, tapes are poorly suited for
holding active data because they are linear media and have average seek times longer three orders of mag-
nitude slower than disk seek times.

Technology Capacity | Media Den§it%' Transfer rate | Access time Exghange Media life
(MB) cost | (Mb/in®) (KB/s) (1/3 full seek) time (passes)
o - B _ Longitudinal tapes }
Reel-to-reel (1/2) 140 $5 0.11 549 minutes minutes oo
Cartridge (1/4”") 150] $15 1.25 92 minutes minutes oo
IBM 3490E (1/2”") 800| $10 1.74 6,000 15s 10s oo
Helical scan tape
VHS (1/27) 15,000 $29 ? 4,000 45s 6s| 500
8mm (video) [4] 4600 $14 | 7056 492 45s 100s| 500
4mm DAT [62,84] 1,300 $8 | 114.07 183 20s 55s} 500
19mm (DD-2) 25000{ $140 | 46.00 | 15,000 15s 51,000
Optical tape
35mm (CREO) 10%] $5,000 | 224.00 | 3,000 30s mins| oo
Optical disk
Kodak (14™) 3,200 $500 | 296.33 1,000 100+ ms 7s oo

Table 2-2. Characteristics of various tertiary storage technologies.

This table summarizes the characteristics of several tertiary storage technologies, including both magnetic
tape and optical storage. The figure for media life has different meaning for magnetic and optical technol-
ogies. For magnetic tape technologies, it refers to the maximum number of passes the tape may make past
the read/write heads, regardless of whether the tape is read or written. Optical technologies, on the other
hand, are write-once. Thus, the media life figure refers to the maximum number of times the media may be
read. Exchange time includes the time to unload a medium currently in the device and load a new one.
Thus, load and unload time each require half of this time.

This table is updated from similar data reported in [46).

There are two basic types of magnetic tape mechanisms: longitudinal (or linear) and helical scan [4,94). In
longitudinal tape drives, the tape passes by stationary read and write heads, as shown in Figure 2-3. Data is
written on the tape in one or more tracks, each of which runs the length of the tape. The tape drive’s perfor-
mance is determined by how rapidly the tape moves across the heads and how many bytes are written per
inch of tape (linear density). Tape capacity is found by multiplying the linear density by the length of the
tape. Loading a tape into a longitudinal tape drive is a relatively quick process, typically requiring a few
seconds.

Helical scan tape drives, in contrast, wrap the tape around a rotating cylinder with several read and write
heads on it as shown in Figure 2-3. This allows the drive to advance the tape more slowly than for longitu-
dinal tape while maintaining high bandwidth, since the heads rotate rapidly past the slow-moving tape.
While helical scan tapes can provide higher density than longitudinal tapes, they do have drawbacks. First,
helical scan tapes are either slow or expensive. Both §mm and 4mm technologies feature inexpensive drives
and media, but are hampered by low transfer rates and very long load times. The load time for an Exabyte
8mm tape drive, for example, is 100 seconds [26]. 19mm and VHS technologies, on the other hand, have

9



Figure 2-3. Longitudinal and helical scan tape technologies.

This diagram compares the tape path through longitudinal and helical scan tape drives. The longitudinal
system on the left has a considerably simpler tape path, as the tape contacts the read/write head at only one
point. The helical scan system on the right is more complex, with the tape wound around a cylinder with
multiple read/write heads on its surface.

high transfer rates and short load times. However, these two technologies require expensive drives. In addi-
tion, helical scan tapes and read/write heads suffer from greater wear problems than do longitudinal tape
because of the greater contact area between tape and heads.

Table 2-2 summarizes the characteristics of several tape technologies. These are split into helical scan and
longitudinal tapes. The most common tape technology in supercomputer centers today is IBM 3490 tapes.
Each full-length tape cartridge holds 400 MB, depending on the tape drive model, and data can be read or
written at 3-6 MB per second. These tapes are commonly used because the technology has existed since
before helical scan technology became widespread and supercomputer data centers are reluctant to switch
1o new storage technologies. However, as new tape technologies mature, scientific computing centers may
switch to the tapes that best serve their needs.

2.1.3. Optical Disk and Tape

Recent advances in laser technology allow storage centers to use optical technology to archive data on both
platters and linear media. Rather than recording data as changes in magnetic orientation of metal oxides,
however, optical drives use microscopic pits in the media to store information. These pits are created and
read by lasers in the drive. Since the creation of pits is not a reversible process, each bit on the medium can
only be written once. Thus, optical disks and tapes are often referred to as WORM (write once read many)
devices. Since optical tapes are particularly rare, WORM usually refers to optical disks.

Optical disks [41] are interchangeable media, unlike magnetic disks. Platters range from § inches to 12
inches in diameter, and usually contain data on both sides. While magnetic disks use concentric tracks 1o
store data, optical disks have just a single spiral track on each surface. As Table 2-2 shows, optical disks
have higher areal densities than magnetic disks. However, optical disks rotate slower than magnetic disks,
so transfer rates are lower for optical disks. In addition, optical read/write heads are heavier and harder to
move than magnetic read/write heads. As a result, average seek times for optical disks are approximately
100 ms — almost an order of magnitude slower than for magnetic disk. The combination of relatively low
bandwidth and high media cost make optical disk unattractive for scientific computing centers, so few
supercomputer centers use them in their storage hierarchies.

Optical tape is similar to longitudinal magnetic tape in most ways other than recording method. Optical tape,
like optical disk, is a write-once medium that uses pits to encode data. The primary attractiveness of this
medium is the amount of data that can be stored in a single cartridge. The CREO optical system [82] has
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cartridges that can each hold a terabyte. However, both the media and the drive are expensive, as Table 2-
2 notes. Additionally, each optical tape holds too much data — many supercomputer centers prefer to allo-
cate each tape to a single user [39], and smaller tapes serve this purpose better. The LaserTape system [7]
attempted to bridge this gap by providing drives and tapes with the same form factors as IBM 3490 drives
and tapes. This technology allows supercomputer centers to increase storage capacity using existing tape
robots. However, many centers such as NCAR [57,61] need the ability to rewrite tapes, eliminating optical
tape from consideration.

2.1.4. Other Storage Technologies

Disks and tapes are the major storage technologies today. However, holographic storage [71] is a new tech-
nology that promises high bandwidth access to gigabytes of data contained in a cartridge a few centimeters
on a side. Holographic storage systems use lasers to store data in three dimensions, as compared to tape and
disk drives that only use the surface of the media to store data. A cube of holographic storage can provide
storage on one of many parallel cross-sections of the solid, supplying approximately 1 GB of storage in a
solid 4 cm by 4 cm by 0.5 cm. These media are interchangeable and might be used as part of a future system
to store petabytes of data in a small space. [36] mentions a holographic storage system that will soon be
available, though the storage media are read-only. There are no production read-write holographic storage
systems, though prototypes exist. As a result, specific capacity and performance characteristics are difficult
to predict.

2.1.5. Robotic Access to Storage Media

Massive storage is useless unless users can easily access it. Originally, computer operators loaded and
unloaded media from drives. In the last decade, though, robotically managed storage has become wide-
spread. Robots can load media faster and more accurately than humans, and allow the storage system to be
fully automated. Robots are available for tapes and optical disks; those used for optical disks are often called
Jukeboxes (for their resemblance to the fixture in classic American diners) [95].

The tape robot most commonly used in supercomputer centers is the StorageTek Automated Cartridge
System 4400 [48]. This robot stores 6,000 IBM 3490 tapes in a silo, using one of two arms to move tapes
between their slots and one of several tape readers. The arms are very quick, and can pick a tape in less than
10 seconds. These robots are relatively expensive — approximately $250,000.

Exabyte makes a tape library system that holds 116 8mm tapes and four readers for approximately $40,000
[28]. While this system is considerably cheaper than the ACS 4400, 8mm tape drives transfer data more
slowly than IBM 3490 drives. Long load and unload times and short tape lifetimes also make this system
unsuitable for modern supercomputer centers. However, this system is sufficiently inexpensive that it might
be used by smaller organizations, making tertiary storage ubiquitous rather than the province of only large
data centers. Devices like this tape robot will allow workstations file systems to take advantage of tertiary
storage, just as supercomputer file systems have.

2.2. File System Concepts

The storage devices mentioned in the previous section are only part of a complete storage system. These
devices must be controlled by the file system — the software that manages data on secondary and tertiary
storage devices. This section provides a brief overview of file system terminology and concepts using exam-
ples from the Berkeley Fast File System (FFS) [54,70] and the Log-Structured File System (LFS) [74]. Both
of these file systems are designed for secondary storage. However, tertiary storage has been added to both
systems. The Highlight file system [47] is an adaptation of LFS for tertiary storage, and Unitree [35,53] is
a commercial integration of tertiary storage into Unix-type file systems. Both FFS and LFS are designed for
workstations; while file systems for high-speed computers may use different techniques and data layouts,

11



the basic concepts underlying their design are similar. A more general discussion of file system internals
can be found in [85].

This thesis is concerned with issues of data layout and storage allocation, not with higher-level file system
functions such as name lookup and caching. Thus, this section concentrates on issues particular to the part
of the file system corresponding to the bitfile server described in [13]. The bitfile server treats each files as
simply a stream of bits with a numeric identifier. Translation of a user-friendly name to an identifier and
caching of file blocks in memory is left to other parts of the file system.

A file system serves one basic purpose: the storage and retrieval of data from disks, tapes, and other forms
of storage. To accomplish this, the file system must maintain its own data structures, metadata, as well as
the data users entrust to it. Metadata includes information about the users’ data such as internal file identi-
fiers, timestamps, and permissions. It must also include sufficient information for the file system to translate
a logical address — file identifier and offset within the file — to a physical address on the medium. Most
disk-based file systems, including FFS and LFS, keep a list of disk blocks for each file, allowing the system
to look up the physical block number for a specific block within a file. Tape-based file systems, on the other
hand, may attempt to store an entire file sequentially on a single tape. Such a system would only need to
keep a single tape identifier and offset from start of tape, since the offset of any block in the file could be
easily found from that information.

The file system must maintain both internal consistency and data integrity. A file system is consistent if
none of its data structures are corrupt. Consistency means that all blocks on disk are in a known state, and
that each block is assigned to exactly one file or is unused. Integrity is a separate issue. A consistent file
system may lose integrity if a data block is assigned to the incorrect file. While the conditions for consis-
tency are met (all blocks belong to exactly one file), data blocks assigned to the wrong file can cause serious
security breaches and loss of data. These two conditions are relatively easy to maintain during normal oper-
ation; however, remaining consistent and integral despite a system crash is more difficult and remains an
issue in file system design.

2.2.1. Berkeley Fast File System

The Berkeley Fast File System (FFS) [54,67] is widely used, as it is a component of the BSD 4.3 operating
system. This section gives a brief overview of its storage management and metadata structures.

FFS uses two sets of data structures to manage disk blocks: inodes and a free block map. Aninode is a col-
lection of metadata for a single of file. It contains creation, modification, and access timestamps as well as
file size, ownership information and access permissions. In addition, the inode contains pointers to the phys-
ical addresses of the first few blocks in the file (the number depends on the particular implementation of
FFS). The inode also contains pointers to indirect blocks, which are disk blocks containing lists of pointers
to the remaining blocks in the file. Figure 2-4 shows the contents of an FFS inode and its associated indirect
blocks.

FFS must also manage free disk space so it can quickly allocate unused blocks when needed. In FES, the
disk is divided into regions called cylinder groups, each of which contains one or more consecutive cylin-
ders on disk. Each cylinder has its own set of inodes and its own free map. The free map is an array of bits

corresponding to disk blocks in the cylinder group, allowing FFS to quickly find free blocks to assi gntoa
file.

Consistency after a crash presents a problem for FFS. The file system must make two separate write oper-
ations to assign a free block to a file. The first write updates the inode or indirect block to point at the new
data. The second write modifies the free map. These two writes are not sequential, so a crash between them
will leave the file system inconsistent — a block will either be both free and allocated or neither free nor
allocated, depending upon the order in which the operations are scheduled. FFS uses a file system check
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Figure 2-4. Inode and indirect blocks in the Berkeley Fast File System.

This diagram shows a single inode and its associated indirect blocks in the Berkeley Fast File System.
Using this metadata, FFS can find any block in the file described by the inode. References to the first few
blocks require no additional disk 1/O to perform the translation of logical address to physical address.
However, requests for the later blocks in large files may require two or three 1/Os to follow the chain of
indirect blocks.

program (£ sck) after a crash to fix up the file system and restore consistency. While this is (barely) accept-
able for a secondary file system, a full file system check on a tertiary storage system could take hours or
longer.

2.2.2. Log-Structured File System

The Log-Structured File System (LFS) [74] was originally designed to run under the Sprite workstation
operating system [66] and was later ported to BSD Unix [79]. It retains the same user-level semantics as
standard Unix file systems, but uses different metadata structures and allocation mechanisms to improve
performance and crash recovery.

LFS is based on the concept of segments. Segments are all the same size — typically 1 MB or longer — and
are written in an atomic operation. Each segment may contain data and metadata. Rather than update in
place as FFS does, LFS writes all modified blocks to the current segment, flushing the segment to disk when
it has filled. Thus, creating a small file would result in the modification of the block containing the file’s
inode and the first block of the file. Both of these blocks would be written to the current segment, metadata
first. While this arrangement works well to keep the file system consistent and integral, it creates a problem
— finding the most recent inode written for a given file. Since the block containing the inode is rewritten
each time it is modified, the disk may contain several copies (of varying ages) of the same inode. LFS
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addresses this problem with a global map that translates file identifiers into pointers to inodes. This map
must be updated separately from the metadata it points to. Since the map is merely a cache, however, the
map may be quickly updated after a crash by scanning the most recent segments written.

The largest problem LFS must solve is “cleaning” the disk. Blocks in a segment become invalid as they are
superceded by later writes. However, the file system is only willing to write data in empty segments. Thus,
LFS must run a process to “clean” the disk by reading old segments, combining the live data from them,
and writing the result as a new segment. The old segments are then marked as empty, ready to be filled with
new data.

In contrast to FFS, LFS is a write-optimized file system. It assumes that writes to disk will dominate reads
because of large caches. This is true for workstation file servers with large caches [2], but is not true for
supercomputer workloads [60].

Neither FFS nor LFS is well-suited for scientific computation, as neither is optimized for large files. How-
ever, supercomputer and MPP file systems share basic design principles with these workstation file systems.
They, like all file systems, must remain consistent and preserve data integrity. The RAMA file system
design, which will be discussed in Chapter 4, uses techniques related to those used by FFS and LFS both
for laying out data and maintaining consistency.

File systems for scientific computing must also provide high bandwidth access to large files and support the
integration of tertiary storage. The next two sections discuss previous research efforts in these areas.

2.3. Mass Storage Systems

Tertiary storage devices such as magnetic tape have long been used to store scientific data. However, dra-
matic increases in computational power over the last two decades have produced ever-increasing quantities
of data that must be stored. The demand for storage at scientific computing centers has primarily been sat-
isfied by large tape systems using both nearline and offline storage. This great demand for storage has been
satisfied in a largely ad hoc manner, however. Tertiary storage system desi gners have had little research to
rely on, as there have been few studies of file migration and tertiary storage systems since [80] over a decade
ago. This section discusses these repositories of scientific data and provides an overview of the research per-
formed on tertiary storage systems and file migration.

2.3.1. Long-Term Reference Patterns and File Migration Algorithms

Mass storage systems for scientific computation first became common in the mid-1970’s when computers
began to generate more data than could be stored on a reasonable amount of secondary storage. By 1977,
IBM had designed a tool to archive and retrieve data between disk and tertiary storage [16], though this
paper only discussed the system’s functionality and provided no analysis. [8] outlined several approaches
to integrating mass storage systems into operating systems, but did not survey any specific systems. The
first major study of such a system is detailed in [80] and [81]. In these papers, Smith analyzed the perfor-
mance of the mass storage system at the Stanford Linear Accelerator System (SLAC) and proposed file
migration algorithms to move files between disk and tape.

This study showed that the file reference distribution was skewed — most files were accessed infrequently,
while a few files received many accesses. A file was considered referenced if it was accessed at least once
on a given day; multiple accesses on the same day were counted as a single reference. The study found that
the median number of accesses to a file was two, though the average number was 10.6. 41% of all files were
referenced exactly twice, though fewer than 10% were referenced once. The remainder were referenced
more than once, with 3.8% receiving more than 50 references. The study also showed that intervals between
successive references to the same file were very short — more than 90% of all interreference intervals were
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shorter than four days. The short interreference times and skewed file access pattern both make caching files
from tertiary storage on disk an attractive proposition.

In [81], Smith went on to propose several file replacement algorithms to determine which files to keep on
disk and which to move to tertiary storage. Each algorithm used age, file size, class, and time since last ref-
erence for every file to determine which files should be migrated to tertiary storage at the end of a day. While
all of these parameters were available to each algorithm, most algorithms only used a subset of them. The
best algorithms were those that used the entire reference history for the file system to estimate the time at
which each file would be next used. While this method resulted in the highest hit rate, an algorithm that
migrated files with the highest product of file size and time since last reference also performed acceptably.
This algorithm is easier to calculate, and variations on it are still in use today. While this study provided a
good foundation for future algorithm development, it did not consider environments where file transfer time
is a major component of tertiary storage access time. As Chapter 3 will show, the large files used by scien-
tists require more time to read than to access the first byte, thus affecting migration algorithms.

A study done on the University of Illinois computer center file access patterns in 1982 [49] confirmed the
results reported in [80] and [81] and extended the migration algorithm analysis to include additional algo-
rithms using a file’s access history and file clustering. Using the full access history yielded little improve-
ment over previous algorithms and, in some cases, actually performed worse. The latter technique, file
clustering, migrates several related files at the same time, placing them on a single medium. While cluster-
ing files by user reduced the number of media accesses, it was marginally successful overall because of the
number of superfluous files that were loaded. However, the file clustering analyzed in this paper performs
less well on the large files common in supercomputing because the larger files exacerbate the problem of
“false loads.”

[31] detailed a third evaluation of file migration, but was the first to study a Unix file system. The study
concluded that the Unix environment did result in some behavior different from that observed on other Sys-
tems. Migrating files based solely on their size proved to be one of the best algorithms in this environment,
contrary to the findings of previous studies. The paper made several recommendations for file migration in
Unix based on the results of the analysis, including support for voluntary migration, special treatment for
large files, and disk storage for all directories. For a Unix environment in the mid-1980’s, these are good
recommendations. However, they do not hold for scientific computing centers 10 years later, as this thesis
will show.

The recent drop in the cost of robotic tape systems and increase in the amount of data that must be stored
even at non-supercomputer sites has revived interest in file migration. [45] analyzed the behavior of the stor-
age center at the National Center for Supercomputing Applications, yielding results similar to those reported
in Chapter 3 of this thesis. The issue of file migration and long-term access patterns in Unix was revisited
in [83], which found that file interreference intervals were still short, and that files stored on a Unix system
were still relatively small — most less than 64 KB long. Simulations of the STP migration algorithm in this
environment showed that it was effective, though the time component required different wei ghtings for opti-
mal performance on different file systems.

2.3.2. Existing Mass Storage Systems for Scientific Computing

The papers discussed in the previous section focus on quantitative analysis of existing systems and propose
algorithms to solve the problems of managing a multi-level storage hierarchy. Much of the remaining liter-
ature on mass storage systems consists of “experience” papers in which operators of supercomputer data
centers discuss their systems’ behavior at a high level. These papers often include little specific data collec-
tion, instead focusing on the design and management of terabytes of data. Supercomputing centers dis-
cussed in practical experience papers include Lawrence Livermore National Laboratory (LLNL) [30,42],
Los Alamos National Laboratory (LANL) [12,14,15], NASA Ames Research Center [39,72], and the
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National Center for Atmospheric Research [32,65,86]. Data centers like these drove the development of the

Mass Storage Systems Reference Model [13], providing a first step towards standardizing hardware and
software interfaces for mass storage devices.

The storage designers at most data centers do not experiment with new file migration algorithms, as they
lack the time to perform the full study necessary to justify changes in a new system. Instead, they make their
“best guess” and implement migration policies that will work acceptably well. Once the system has been
built, however, it is very difficult to implement modifications to migration policy even if analysis indicates
they might be useful. Nevertheless, scientific computing centers have introduced some new concepts for
mass storage. Unitree [53], a software package based on file migration software at LLNL, allows users to
access their files without knowing whether they are stored on disk or tertiary storage. Similarly, the NASA
Ames RASH project [39] allows transparent access to massive storage, and additionally clusters a single
user’s files together on tape. The RASH system also supports cut-through, allowing a user to access any
bytes that have already been transferred from tape to disk while the rest of the file is still being moved. This
method reduces the latency to read the first byte of data from tape, since a program need not wait for the
entire file to be transferred.

While these studies introduced new techniques for designing mass storage systems, they did not design new
algorithms. Instead, today’s scientific data centers use file migration algorithms proposed by early studies
that were designed for fewer and smaller files. To compensate, file migration algorithms are often modified
ad hoc by system managers to tune performance for their particular system. This practice leads to better
migration performance, but does not necessarily assist those designing their own mass storage systems.
Many storage centers use algorithms based on the STP algorithms described in [81]. Rather than compute
and sort the age-size product of every file, however, these systems often group files into bins of similar sizes
and migrate the oldest files in each bin, approximating the space-time product as a migration criterion.

The integration of tertiary storage into a scientific computing environment has challenged system designers
for many years. The research described in this section has guided the design of mass storage systems; how-
ever, additional research is needed to reflect the changes in storage requirements. Moreover, tertiary storage
is but one piece of the data storage puzzle at most scientific data centers. The next section discusses previous
research in parallel file systems, another important part of the storage hierarchy at modern centers for sci-
entific computing.

2.4. Massively Parallel File Systems

As massively parallel computers have become more commonly used in scientific computing, they have
added to the problem of data storage and management. Traditional file systems are controlled by a single
processor and need no complex interprocessor synchronization and cooperation. Traditional supercomput-
ers such as the Cray Y-MP achieve high file system bandwidth by using many disks in parallel under the
control of a single CPU, as in a RAID (Redundant Array of Inexpensive Disks) [10,50]. This approach has
limited scalability, as a single CPU cannot control an infinite number of disks. System desi gners may get
around the problem by using multiple disk controller CPUs; as long as requests for a file come only from a
single processor, issues of coherency and synchronization are largely avoided. Distributed file systems such
as Sprite [66], in which several computers on a network share a single file system, require more complex
protocols. However, files in such systems are rarely shared by two CPUs at the same time [85]. The reuse
of a file by different computers at different times adds some complexity, but the file system CPU usually
only needs to field requests for a specific file from one computer at a time.

Massively parallel processors present two major problems to file system designers. First, the individual pro-
cessors in an MPP cooperate on a single problem and access different parts of a single file at the same time.
No longer can a file system assume that the majority of accesses to a file at any time will come from a single
CPU. This issue affects the design of caching and coherency schemes for parallel file systems.
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The second problem that MPPs present is scalability. A uniprocessor’s request rate scales with the speed of
a single processor — as technology allows the processor making the requests to run faster and make more
requests, it also allows the (single) CPU running the file system to handle more requests. A distributed
system can provide a unified view of multiple file systems each with its own CPU to provide additional per-
formance as hosts are added to the network. However, an MPP requires scalable performance when access-
ing a single file. Doubling the number of nodes in an MPP may require the data and request bandwidth for
a single file to double without providing a faster CPU to run the file system. Thus, MPP file systems must
allow multiple CPUs to run a single file system to guarantee scalability. Adding additional disks to provide
higher bandwidth is relatively straightforward; controlling them to provide higher file system performance
is a problem this thesis will address.

This section will discuss previous work done on parallel file systems. This work falls into two broad cate-
gories: general research on parallel file systems and specific file system designs and analyses. Some
research, such as discussions of access pattems and methods, is applicable to many different parallel file
systems, since it discusses an application’s view of the file system. The first part of this section will discuss
such work. The remainder of the section covers analyses of parallel file system simulations and implemen-
tations.

2.4.1. File System-Independent Parallel I/O Improvements

Much research on parallel file systems has focused on high-level concems about parallel file systems. These
papers are not concerned with data distribution on disk; rather, they discuss how parallel applications use a
file system and provide guidelines for future designers. Several papers on specific file systems also address
these issues; such papers will be discussed later.

[22] provides a good overview of the types of file accesses that parallel applications make of file systems.
It divides files into two types: those transferred sequentially, and those accessed randomly. These access
patterns are shown in Figure 2-5. As the diagram shows, a parallel file system must support interleaved
access and sequential access. In addition, a parallel file system must support random access by many pro-
cessors to a single file, an access pattern called general direct access in [22]. The paper only suggests meth-
ods for building such file systems, however, and does not discuss any real implementations.

The issue of reordering data between the I/O system and the application is discussed in [23]. This paper sug-
gests that the application and the file system should each pick their “preferred” layout, and allow the file
system software 1o reorganize the data in two phases. During the first phase, large sequential chunks of data
are read from the disks to the nodes. This strategy uses the disks effectively, but the data does not necessarily
reach the processor that needs it. The second phase accomplishes this task, using the high-bandwidth inter-
connection to redistribute the data to the appropriate nodes. Two-phase I/O was tested on both the Touch-
stone Delta [5] and the nCUBE-2 [64], providing speedups between 1.5 and well over 100, the latter
occurring when a row-major matrix was read in column-major order. These speedups depend on all of the
processors in the MPP cooperating to issue their file requests, since the file system must know all of the data
to be transferred before it can start. This method is thus promising for parallel applications that can support
such a model, but it provides less help to programs that do not have regular access patterns.

2.4.2. Bridge

The Bridge file system [24,25] integrates applications tightly into the file system to gain better performance.
Data is striped across many disks, each of which has its own local file system. Bridge provides a unified
view of these local file system to applications and adds support for parallel operations such as opens, reads,
and writes. Individual applications may, however, leam the low-level layout of a Bridge file on disk and
optimize their actions accordingly.
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Figure 2-5. Sequential file access patterns in parallel programs.

[22] describes several access patterns with which parallel programs access a single file. The access pat-
terns shown in the diagram above apply to programs that step through a file in a regular fashion, with the
various patterns corresponding to the division of work in the program. In the partitioned and sequential
cases, the program assigns large chunks of the file to a single processor. The interleaved case is similar, but
the chunks of the file allocated to each processor are not sequential, though the division is regular. A self-
scheduled program divides the file into chunks and allows the processors to “compete” for each piece. The
file is read sequentially in time, but the processor that reads a given chunk is determined by which proces-
sor is free to do the work.

Bridge performed well for straightforward operations such as file copies. Adding additional processors and
disks gave a linear speedup on sequential reads and writes. The authors also designed other tools to test their
file system; these similarly achieved speedup with more processors and disks. However, the tools all relied
on low-level knowledge of the file system. While this approach provides good performance and parallelism,
it is not easily portable and requires a great deal of programmer effort.

2.4.3. Concurrent File System

Intel’s Concurrent File System (CFS) runs on several massively parallel processors — the iPSC/2 hyper-
cube [68] and, after some evolutionary changes, the Touchstone Delta mesh [6,5]. Both machines have sep-
arate compute and 1/O nodes, restricting the file system software to only those nodes with disks. CFS
attempts to preserve the Unix file interface; however, several primitives for parallel file access are included.

[68] found that I/O scaled as nodes with disks (disked nodes) were added. The example in the paper worked
best with one 1/O node for each compute node — fewer compute nodes could not drive all of the I/O nodes
to full bandwidth, and fewer disked nodes could not supply data rapidly enough. However, the test only
included up to eight I/O nodes and 16 compute nodes. The experiments run on the Touchstone Delta were
more complete. They showed that file system bandwidth was independent of the node on which the data
was physically stored. While certain access patterns performed worse than others, this drop was due to poor
distribution of the file to disk, not the location of the disked node within the interconnection network. The
file system rarely attained the maximum possible hardware throughputs, largely due to software overheads
and poor file system cache management. Because of the poor file system performance, most programs that
use the file system on the Touchstone Delta are I/O bound.
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2.4.4. Vesta

Vesta [18,19] is an experimental file system that runs on the IBM SP-1 [43], a parallel processor composed
of workstations connected by a high-speed interconnect. Like the Bridge file system, Vesta stripes data
across the disked nodes in the system using the existing workstation file system on each node, and provides
a single parallel file system view to applications. Rather than describe a file as a linear sequence of bytes,
however, Vesta promotes a two-dimensional file structure to correspond to many two-dimensional array
layouts in software. Application software must specify the physical layout when the file is created. Addi-
tionally, each application may create a view of the file, assigning a logical order to the data in the file. The
view also allows a file to partitioned into disjoint units, allowing each processor to access its own view with-
out the need for synchronization with other processors.

Two-dimensional physical layout and views allow Vesta to optimize multiprocessor applications’ access to
parallel files. Vesta also supports a disk equivalent of scatter-gather — it collects all of the requests for parts
of a parallel file, melds them into the minimum possible number of disk requests, and then performs the
requests. Rather than send a message for each individual file request, Vesta aggregates the data and sends
fewer but larger messages. These techniques allow Vesta’s performance on sorts and other MPP applica-
tions to show good speedups as the number of processors and disks increases.

As with Bridge, however, the programmer must expend a good deal of effort to insure that the file is laid
out and partitioned correctly. [19] reports that reactions to the file access models supported by Vesta ranged
from enthusiastic to very reluctant. While Vesta performs well, it is not clear that application programmers
want the trouble necessary to get such performance.

2.4.5. CM-S5 File System (sfs)

The Thinking Machines CM-5 [88] MPP uses a file system called sfs [52], which is based on the Unix Fast
File System [54]. The CM-§ has separate compute and 1/O nodes; while the disked nodes use the same
SPARC processor as the compute nodes, they require additional hardware to run the attached disks. Each
Disk Storage Node (DSN) has eight 1.2 GB drives, two on each of four channels. These DSN units are pack-
aged in groups of three, so a CM-5 will typically have a multiple of 24 disks in its file system.

This file system, like many others, stripes data across as many as 100 disks or more. As a result, peak per-
formance for large file systems is only reached with very large requests. A file system with 118 disks was
able to transfer at 175 MB/s, but this transfer rate was only reached when over 200 MB were transferred.
Nonetheless, the file system was able to maintain per-disk transfer rates of 1 MB/s for writes and 1.5 MB/
s for reads. Thus, sfs provides good performance for large transfers, but left unaddressed the issue of many
small requests coming from hundreds of processors.

2.4.6. Uniprocessor File Systems Used by MPPs

Many MPPs do not actually use a truly parallel file system. Instead, they use a high-speed uniprocessor file
system attached to the MPP by a high bandwidth connection. The MPP then accesses the foreign file system
through an interface host. This arrangement allows an MPP to use existing file system software and hard-
ware, and minimizes the software complexity for the file system. However, this approach is not easily scal-
able, and cannot easily accommodate many independent requests from the hundreds of processors in the
MPP.

Variations on this approach are used in the Thinking Machines CM-2 [87] and the initial release of the Cray
T3D [21,20]. The CM-2 file system is actually run by a workstation which coordinates the bitwise striping
of data across tens of disks. Since the CM-2 is a SIMD machine, the number of requests to the file system
does not scale with the number of processors, though the size of a request may. Thus, the single processor
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of the workstation can keep up with a larger CM-2, and additional bandwidth can be added by attaching
more disks.

The CM-2 approach works well for SIMD parallel processors, but breaks down for MIMD machines where
each processor makes its own requests. The initial release of the Cray T3D operating system uses a Cray Y-
MP class machine to run the file system. All requests are satisfied by this host, and all data transfers are
coordinated by it. The Y-MP uses disk arrays for its file system, providing support for high bandwidth and
high request rate. However, this scheme is not scalable. The Y-MP does not become faster as more nodes
are added to the T3D, creating a bottleneck for file access. Cray has recognized this problem, and plans to
design a file system that runs on the nodes of the MPP rather than on a separate machine [20].

2.4.7. Other Parallel File Systems

The file systems previously mentioned in this section are only some of the parallel file systems proposed or
developed. While other parallel file systems are less-studied, they may provide some useful design con-
cepts.

The hashed-index file system (HIFS) [3] uses hashing to distribute file blocks to disked nodes in a scheme
similar to that described in Chapter 4. HIFS thus allows file access without any centralized indexing, allow-
ing any processor to locate data using just a hash function. This system is proposed for parallel databases
where the application typically reads only a few kilobytes from any location in the file; thus, HIFS distrib-
utes each block to a different node and does not cluster sequential blocks. The projected performance of
such a system scales with more disks and more processors, with the speedup approaching linear. However,
maximum speedup depends on having a sufficiently large number of simultaneous requests. This perfor-
mance is similar to that described in Chapter 6.

[92] describes a parallel file system for the Hypercube Multiprocessor. The file system supports cooperative
access to a single file by multiple CPUs. However, files are stored on a single disk and not distributed among
several disks. Performance is thus limited by the bandwidth available from a single disk. [29] proposes an
alternate file system for the Hypercube that distributes data from a single file to multiple disks. The design
uses a separate network to handle I/O traffic, alleviating the load on the relatively slow links between pro-
CEsSors.

The TickerTAIP parallel disk system [9] is actually a block server, not a true file system. However, it could
be extended to provide bitfile service as described in [13]. The disks in TickerTAIP are controlled by mul-
tiple cooperating CPUs, eliminating the traditional RAID bottleneck and allowing the system to scale to
hundreds of disks. Parity management is also distributed, providing a potential model for distributing parity
in a parallel file system. TickerTAIP is noteworthy both for its design innovations and for its demonstration
that interconnection link speeds of less than 2 MB/s were sufficient to provide 12 MB/s of data service.

2.5. Conclusions

This chapter has presented the background material on which the rest of this thesis will build. Storage man-
agement is an important part of the scientific computing environment, yet current tertiary storage systems
and parallel file systems need improvement. Software is only part of the picture, however. Storage systems
may be built from a wide variety of devices from magnetic disks to robotic tape systems to optical disk.
Software and hardware must work well together to provide a high-speed storage system with a multi-ter-
abyte capacity.

A modemn mass storage system designer can choose from several types of storage devices, each with advan-
tages and drawbacks. The primary tradeoff a designer must make is between cost and performance. Devices
such as memory have low access latency and high bandwidth but cost $50,000 per gigabyte. Robotic Sys-
tems for magnetic tape and optical disk, on the other hand, can cost as little as $100 per gigabyte, but have
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bandwidths and access latencies as much as nine orders of magnitude slower. Magnetic disks, intermediate
between these two extremes in both cost and performance, are used both as caches for tertiary storage and
temporary storage for data that does not fit in limited semiconductor memory. Design decisions are compli-
cated by the cost and performance variations within in each class — for example, different magnetic tape
technologies have transfer rates ranging from 0.5 to 15 megabytes per second.

Mass storage systems for scientific computing are typically built from magnetic disks and robotically-man-
aged magnetic tape. Most of the data at a supercomputing center is stored on magnetic tape, while the most
recently used data is cached on magnetic disk. This approach should provide a system with the speed of
magnetic disk and the cost of magnetic tape. However, maintaining this illusion requires finely-tuned file
migration algorithms to decide when to move data between tape and disk. Much of the work done on file
migration algorithms only considered the time necessary to read the first byte of a file; files were small so
it took relatively little additional time to read the remainder of the file from a tape. Simple variations on
these early algorithms have been used in mass storage systems for over a decade. However, the implement-
ers of these storage systems can experiment with neither migration algorithms nor device configuration —
once a system is built, it is very difficult to convince users to survive without the system while it is being
reconfigured. Thus, new analysis is necessary to give system designers a more current picture of the behav-
ior of mass storage systems.

Parallel file systems, also components in a storage system supporting scientific computation, are less mature
than tertiary storage system. While the supercomputing community has agreed on some standards for mass
storage systems [13], they have not agreed on the best model for file systems on massively parallel proces-
sors. Some systems simply use uniprocessor file systems attached via high-bandwidth network, while others
stripe data across disks attached directly to the parallel processor. Both models share several problems,
though. Multiprocessor file systems present a bottleneck in moving data between a parallel application and
disk. Their performance can be improved, but only at the expense of programmer effort, often using knowl-
edge of the underlying hardware and limiting an application’s portability. Additionally, the special struc-
tures used in most parallel file systems make them difficult to integrate into an environment with
workstations and tertiary storage; the current solution is to manually copy files between the MPP and the
rest of the world. The parallel file system developed later in the thesis addresses this problem.

The remainder of this thesis discusses solutions to several problems brought up in this chapter. Chapter 3
discusses a recent study of a typical modern mass storage system, comparing it with earlier studies of such
systems and highlighting recent changes. It then discusses how these changes might affect the design of new
mass storage systems. Next, Chapters 4 through 7 present a parallel file system that addresses several of the
issues raised in this chapter — integration into tertiary storage, ease of use, and performance.
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3 File Migration

The first problem this thesis addresses is that of providing the terabytes of storage that scientists typically
need to store their data. The dramatic gains in the speed of supercomputers used in science have encouraged
the processing of ever larger amounts of data; however, storing this data on magnetic disk is not cost-effec-
tive. A typical data center stores more than 20 terabytes of data; this storage would require 20,000 1 GB
disks costing more than 20 million dollars and 100 standard 6-foot high racks to hold them. Power consump-
tion and maintenance would also be a problem, as standard disks have a mean time between failure (MTBF)
of around 200,000 hours. Even using this liberal figure, such a system would experience, on average, about
2.5 disk failures per day.

Instead, most data centers with large data sets use tertiary storage devices such as tapes and optical disks to
store much of their data. These devices provide a lower cost per megabyte of storage — a tape cartridge can
cost as little as $5/GB as compared to nearly $1000/GB for disk — but they have longer access times than
magnetic disk. By studying the tradeoffs between cheaper and slower tertiary storage and more expensive
and faster disk storage, response time can be improved without increasing storage costs.

This chapter is a case study of one such site — the National Center for Atmospheric Research (NCAR),
which, like many other supercomputer centers, deals with large amounts of data that can never be deleted.
Data grows at the rate of several terabytes per year [90]. The cost of storing this data on shelved magnetic
tape is relatively low, as tape cartridges cost less than $100/GB (see Section 2.1). However, storing even
1% of the total data in magnetic disk would be expensive, requiring hundreds of gigabytes of Cray disk stor-
age. Instead, NCAR uses tertiary storage devices, primarily IBM 3480 tapes, to store their data.

This chapter analyzes file migration behavior in the NCAR system described in [1] and [86]. The first sec-
tion of the chapter describes the NCAR system, and notes the features that might affect tertiary storage
usage. This is followed by a discussion of the trace-gathering and analysis methods.

The main part of the chapter is a two-part analysis of the gathered trace data — analyzing the overall usage
patterns for the entire mass storage system (MSS), and studying the behavior of individual files. The first
part of the analysis includes system behavior over the course of a day, a week, and longer periods. It char-
acterizes user behavior with respect to the entire MSS, showing at what rate data and files are read and writ-
ten. We discuss other characteristics of the mass store at NCAR, such as request latency and interrequest
distribution. The second part of the analysis provides insight for designing migration algorithms, as it
focuses on how individual files are treated. This part of the analysis will discuss file size distribution and
individual file reference patterns.

The chapter concludes with a discussion of the implications of the analysis on migration algorithms, and
suggests some directions for future research. One of the major findings reported in this chapter is that ter-
tiary storage must be well-integrated with secondary storage. Additionall y, the tertiary storage system must
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be able to prefetch files without knowing how they will be used once they are on disk. This problem is fur-
ther complicated by the increasing use of massively parallel processors (MPPs) in scientific computing cen-
ters. It is this combination of requirements that demonstrated the need for RAMA, the file system described
in the remainder of the thesis. RAMA addresses these issues by providing high-performance file access to
MPPs without requiring application placement hints. RAMA also integrates tertiary storage well, keeping
the same namespace for tertiary and secondary storage and allowing individual file blocks rather than entire
files to migrate.

3.1. NCAR System Configuration

This section describes the system on which the file migration traces were gathered. The emphasis in this
section is on those parts of the NCAR system that are relevant to the study in this chapter; however, the rest
of the environment will be briefly described, as the mass storage system is shared by all of the systems at
NCAR, possibly affecting the performance of the mass storage system. The NCAR system s storage devices
are similar to those at other mass storage systems, such as those at NASA Ames Research Center and
Lawrence Livermore Labs. Additionally, the researchers at many sites use both supercomputers (typically
Crays, though MPPs are becoming more common) and workstations to do their research, which involves
modeling complex processes and analyzing the results of these models. It thus seems that NCAR is typical
of MSS centers.

3.1.1. Hardware Configuration

The CPU in the study was a Cray Y-MP 8/864 (shavano.ucar .edu), with 8 CPUs and 64 MWords! of
main memory. Each CPU has a 6 ns cycle time. Shavano, like other Cray Y-MPs, has three 100 MB/sec
connections to its local disks and two 1 GB/sec connections to a solid state disk (SSD). There are approxi-
mately 56 GB of disks attached directly to the Cray. 47 GB of this space is reserved for application scratch
space and files over a few days old are purged from it regularly.

The mass storage system (MSS) at NCAR is composed of an IBM 3090 processor — used as a bitfile?
server — with 100 GB of online disk on IBM 3380s, a StorageTek Automated Cartridge System 4400 with
6000 200 MB IBM 3480-style cartridges, and approximately 25 TB of data in shelved tape. The MSS tries
to keep all files under 30 MB on the 3090 disks, and immediately sends all files larger than 30 MB to tape.
Usually, the tapes written are those in the cartridge silo. Files on the MSS are limited to 200 MB in length,

since a file cannot span multiple t,apes.3 While the Cray supports much larger files on its local disks, they
must be broken up before they can be written to the MSS.

The MSS at NCAR is shared by the entire NCAR computing environment, which includes the Cray Y-MP,
an IBM 3090 which runs the MSS, several VAXen, and many workstations. Figure 3-1 shows the network
connections between the various machines at NCAR. The disks and tape drives attached to the MSS pro-
cessor have direct connections to the Crays via the Local Data Network (LDN), providing a high-speed data
path. All machines connected to the MSS (including the Crays) are connected to the 3090 by a custom
hyperchannel-based network called the MASnet. Data going out over the MASnet must pass through the
3090’s main memory, so it is a slower path than the direct connection the Crays have. The few workstations
with connections act as gateways to the networks which connect to the rest of the workstations at NCAR.
These gateways are also the fileservers for the local networks. Many of these smaller machines have their
own local lower-speed disks. Approximately 5.5 GB of these disks are mounted by the Cray via NFS (Net-

1. Each Cray word is 8 bytes long.
2. A bitfile is a stream of bits stored by the file system. It is the same as a plain file in UNIX.
3. This is a software limitation, and will be fixed soon.
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Figure 3-1. The NCAR network.

This figure details the connections between supercomputers, workstations, and the mass storage system
(MSS) at NCAR. The MSS consists of massive disk storage, robotically-managed tape storage, and
shelved tapes mounted by human operators.

work File System). According to the monthly report published by the NCAR systems group [90], shavano
puts more data on the network than any other node, but several other nodes receive more data. In particular,
several of the Sun workstations receive comparable amounts of data. It is likely that these workstations,
which are the gateways to internal networks of desktop workstations, are receiving a large amount of visu-
alization traffic.

3.1.2. System Software

NCAR scientists primarily use the Cray Y-MP for climate simulations— both the extensive number crunch-
ing necessary to generate the data, and the less computationally-intensive processing to visualize it. The
Cray has two primary modes of operation: interactive or batch. In interactive mode, programs are short and
run as the user requests them. In batch mode, however, jobs are queued up and run when space and CPU
time are available. There is no explicit switch between operating modes, but short interactive jobs typically
have higher priority. These interactive jobs fall into two categories: short commands run on the Cray and
debugging runs of modeling programs. Since such jobs are submitted only when there are scientists around
to submit them, interactive mode dominates during the day. Batch mode takes over on nights, weekends,
and holidays when there are few people making interactive requests. The MSS request patterns reflect these
two different uses of the CPU, as will be shown below.

The architecture of the software which runs the MSS is based on the Mass Storage Systems Reference
Model [13]. It consists of software on the mass storage control processor (MSCP), which is the IBM 3090,
and one or more bitfile mover processes on the Cray. Users on the Cray make explicit requests (via the
UNICOS commands 1read and 1lwrite) to read or write the MSS. These commands send messages to
the MSCP, which locates the file and arranges for any necessary media mounts. The MSCP then configures
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the devices to transfer directly to the Cray. For disk and tape silo requests, these mounts are handled without
operator intervention; however, an operator must intervene to mount any non-silo tapes which are
requested. After the data is ready to be transferred, the MSCP sends a message to a bitfile mover process
which manages the actual data movement. When transfer is complete, the bitfile mover returns a completion
status to the user.

3.1.3. Applications

The Cray at NCAR runs two types of jobs: interactive and batch. Interactive jobs finish quickly and require
a short turnaround time. Batch jobs, on the other hand, may require hours of CPU time but have no specific
response time requirements.

A typical climate simulation, such as the Community Climate Model [91], runs for 2 minutes of Cray Y-
MP CPU time per simulated day and writes 50 MB of data during that time. Thus, a run of the model that
simulated 10 years of climate would require 5 full days of computer time, and write 182 GB of data, aver-
aging 600 KB of data per CPU second. This is an example of a batch job; a researcher would submit the job,
doing other work until it finished. These jobs use a large amount of temporary disk storage as well as CPU
time, because Cray programs do not write data directly to tape. The Y-MP at NCAR is configured with
small, 300 MB user partitions. Each user is allocated a few megabytes on one partition, which would be
insufficient for storing the output of even one run of a climate model. Thus, the initial input to a climate
model must come from the MSS, and any results must go back to the MSS. If the results are needed later,
they must be retrieved from the MSS.

Interactive jobs, such as a “movie” of the results of a climate simulation or a global average temperature
over the course of a simulation, have much more stringent response time requirements. Typically, a user
will initiate a command and expect a response quickly. According to [89], an interactive request must be
satisfied in just a few seconds, or interactive behavior is lost. Nevertheless, the average response time to
satisfy MSS requests is over 60 seconds; possible solutions to this problem will be discussed later.

3.2. Tracing Methods

3.2.1. Trace Collection

The data used in this study was gathered from system logs generated by the mass storage controller process
and the bitfile mover processes. Approximately 50 MB of data were written to these logs per month. The
system managers at NCAR use the data to plan future equipment acquisitions and improve performance on
the current system. The logs also serve as proof that a requested transaction took place, as system managers
occasionally use them to refute users who claim their files were written to the MSS and then disappeared.

The system log, as written by the mass storage management processes, contains a wealth of information.
Much of it is either redundant or unnecessary for analyzing file migration behavior. Information such as
project number and user name are not needed for migration studies, since the user identifier is also reported.
The trace logs are designed to be easily human-readable, so fields are always identified and dates and times
are in human-readable form. In addition, each MSS request is assigned a sequence number, since there are
several records in the system log which correspond to the same 1/0. While this method makes generating
the trace logs easier, it is very wasteful of space. However, the sequence numbers can be used to generate
much more compact traces, with only one entry per file access. By processing the traces to remove redun-
dant information and transforming the rest of the information into a form more appropriate for machine pro-
cessing, the traces were cut from 50 MB per month to 10-11 MB per month. They could not be reduced
further because file names are long and cannot be compressed without losing vital information such as file
placement in the directory structure.
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3.2.2. Trace Format

Once the system logs were copied to a local host, they were processed into a trace in a format that is easy
for a trace simulator or analysis program to read. The traces were kept in ASCII text so they would be easy
to read on different machines with different byte orderings. A list of the fields in the trace is in Table 3-1.

Field Meaning

source Device the data came from

destination Device the data is going to

flags Read/write, error information, compression information
start time time in seconds since the previous start time
startup latency time in seconds to start the transfer

transfer time time in milliseconds to transfer the data

file size file size in bytes

MSS file name file name on the MSS

local file name file name on the computer

user ID user who made the request

Table 3-1. Information in a single trace record.

This is the information included in a single trace record. The sequence numbers from the original trace
logs were not kept since their only purpose was to allow multiple entries for a single file access to be cor-
related. Other information such as project number (used for billing) and other accounting information was
also discarded. The original traces are kept in the MSS at NCAR, and can be reread if more information
from them is necessary.

Two consecutive records in the trace have little information in common except their time stamps, which are
presumably close together. Even so, the traces are compressed by recording times as differences from some
previous time, as suggested in [76]. The start time for an MSS request is recorded as the elapsed time since
the start time of the previous request, while the latency until the first byte is transferred (the startup latency)
and the transfer time are recorded as durations. Recording timestamps as differences reduced the trace size
by 30% compared to keeping the absolute times in the trace. Start time and startup latency are measured in
seconds, while transfer time is measured in milliseconds. These were the precisions available from the ori g-
inal system logs. The only other commonality between consecutive requests might be the requesting user,
so there is a bit in the flag field which indicates that the request was made by the same user who made the
previous request. Directories, too, might be common between consecutive requests, but they would be
harder to match. Future versions of the trace format may allow for full or partial paths to be obtained from
previous records.

3.3. Observations

The traces for this study were collected over a period of 24 months, from October, 1990 through September,
1992. Traces were available from the time the MSS came on-line in June, 1990, but the MSS was very
lightly used for the first few months as it was put into full production use. By October 1990, the request rate
to the MSS reached a level comparable with its long-term behavior from that point forward. Since the
steady-state behavior of the MSS was the target of the study, the traces during the startup usage period were
omitted. To study long-term trends in MSS access, however, the tracing period started as soon as the system
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reached steady-state, rather than waiting for a few months after that point. This insured the longest possible
window to study long-term MSS behavior.

3.3.1. Trace Statistics

Overall statistics for the trace period are shown in Table 3-2. The traces actually include 3,688,817 refer-
ences, but 175,633 (4.76%) had errors, the frequency of which is shown in Table 3-3. The most common
error, fully 85% of all access errors recorded in the trace and 4.06% of all references in the trace, was the
non-existence of a requested file. In such cases, it was impossible to include the reference in the analysis,
since the file never existed, and thus had no source or destination location. It might have been possible to
include references that encountered other errors, such as media errors and premature termination. However,
such errors made up only 0.7% of all of the references, and many of these errors, such as mi grating too large
a file and not having the proper permissions, also resulted in no actual data movement.

Reads Writes Total

References 2336747. (66%) | 1179047. (33%) | 3515794. (100%)
Disk 1419280, (60%) | 927722, (39%) | 2347002, (66%)
Tape (silo) 480545. (66%) | 239162. (33%) | 719707. (20%)
Tape (manual) 436922. (97%) 12163. %) | 449085. (12%)
GB transferred | 639262 (73%) |23389.9 (27%) |87316.2 (100%)
Disk ~ | 5080.4 (58%) 3727.9 (42%) | 8808.3 (10%)
Tape (silo) 38256.6 (67%) |19081.4 (33%) |57338.1 (66%)
Tape (manual) 20589.2 (97%) 580.6 (3%) |21169.8 (24%)
Avg. file size 27.36 19.84 24 .84
(MB)
Disk 3.58 4.02 375
Tape (silo) 79.61 79.78 79.67
Tape (manual) 47.12 47.74 47.14
Secs to first byte 98.1 38.6 78.18

Disk 3247 25.39 29.67
Tape (silo) 115.14 81.86 104.08
Tape (manual) 292.58 203.84 290.18

Table 3-2. Overall NCAR trace statistics.

The trace covers the period from October, 1990 through September, 1992. The percentages listed under
“Reads” and “Writes” are ratios to the value in the “Total” column of that row. The percentages listed
under “Total” are percentages relative to the top value in the column.

Table 3-4 contains data about the massive store to which the references were made. This table only includes
statistics for files which were referenced during the trace period. Since data on the actual contents of the
MSS was unavailable, the study assumed that only files actually referenced during the trace period existed
on the mass store. This is a valid simplification, as there are only three kinds of files that are never explicitly
read or written—Ilarge temporary files used by Cray applications, small files that fit into the 1 MB allocated
for each user’s home directory, and system files such as binaries. The first category, temporary files, would
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Number of Errors
Error Type (Percent)
File not found 149925 (85.3%)
File creation failed 5014 (2.8%)
User aborted the access 2982 (1.7%)
File too large to migrate 2878 (1.6%)
User not allowed to access file 1286 (0.7%)
Media error 873 (0.5%)
File operation attempted on a direc- 858 (0.5%)
tory
Other errors 11817 (6.7%)
Total 175633 (100%)

Table 3-3. NCAR MSS access errors.

This table lists the major error types listed in the NCAR traces. Only the most common errors, accounting
for 93.3% of the total errors in the traces, are listed separately here. “File not found” errors occurred on
4.06% of all accesses to the MSS, and only 0.70% of all accesses encountered any other kind of error.

be actively used for their entire lifetime, and discarded when no longer in use, never providing a chance to
move them to long-term storage. Small user files, such as . cshrc, would never be migrated since they are
used too often. Even if they were migrated, they would only add approximately 4 GB of space to the MSS,
assuming each of the 4,000 users filled their entire permanent allocation. System files, likewise, would
probably be used often enough so they would not be evicted from disk. Additionally, most system files are
read-only, eliminating the need to write any data to the MSS.

Number of files 902772
Average file size 25MB
Number of directories 143245
Largest directory 24926 files
Maximum directory depth 12

Total data in MSS 23 TB

Table 3-4. NCAR MSS overall statistics.

For the MSS 10 be large enough 1o satisfy all of the traced accesses, it would have to be at least as large as
indicated in the table. This is a minimum size, however, since we only traced accesses from the Cray Y-MP
at NCAR. Accesses from other computers, such as the workstation network, might increase these require-
ments.

3.3.2. Latency to First Byte

Figure 3-2 shows the total latency from when a request is made to the MSS until the data transfer actually
starts. This time is composed of several elements—queueing time on the Cray, queueing time on the MSS,
media mounting time, and seek time. For the disk, media mounting time and seck time are very short, usu-
ally well under a second. While median access time for the disk was 4 seconds, the distribution has a long
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tail due to queueing at individual disks. Each disk has a relatively low bandwidth, so a large file takes sev-
eral seconds to satisfy. Any requests for this disk that arrive in the meantime must wait for the long request
to finish, generating the long delays in the tail of the disk latency curve.

Delays were caused by queueing in several places in the system—the Cray, the MSS CPU, the network from
disk to Cray, and data transfer to or from the device itself. Of these, the only delays that differ between disk,
tape silo, and shelved tape are the latencies due to the device itself— queueing at the device, transfer delays
and seek delays. The disks do not transfer data much faster than the tape drives, so queueing delays for them
may be representative of the time spent waiting for a tape drive to become available. On the other hand, the
long latency to the first byte of data on a tape might cause tape queues to be longer because the tape readers
are tied up even while the tape in them is rewinding. Since it takes longer to complete an access, the queue
for the device could well be longer.
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Figure 3-2. Latency to the first byte for various MSS devices.

This figure shows the total latency incurred in accessing several types of devices in the NCAR mass stor-
age system. The disks in this diagram are those attached to the IBM 3090, not those in the Cray file system.
The graph shows, as expected, that disks have the lowest latencies, followed by tapes in a silo and manu-
ally-mounted tapes.

Differences between manually loading a tape and having it fetched by the tape robot, however, are entirely
caused by queueing delays. A tape silo can fetch a tape much faster than can a human operator. After sub-
tracting off the queueing time exhibited by the disk (which is no longer than tape queueing time), the silo is
approximately 2 to 2.5 times as fast as the manual tape drives at getting to the first byte. Since the tape silo
tape drives are the same as the operator-loaded tape drives, this difference must come from the time to
mount the tape rather than from seek time. The StorageTek 4400 ACS can pick and mount a tape in under
10 seconds; after subtracting off average queueing time for the disk, which is 25 seconds, the non-seek over-
head for reading an automatically-loaded tape is 35 seconds. According to Table 3-2, tape accesses take 85
seconds on average, so the average seek is 50 seconds long. When the same analysis is applied to manually
loaded tapes, the manual tape mounting time is found to be approximately 115 seconds, or about 2 minutes.
This is quite good. However, as Figure 3-2 shows, 10% of all manual tape mounts were not completed
within 400 seconds. Nearly all of the tape silo and disk requests were completed by this time. This is prob-
ably the biggest weakness of manual tape mounting — the very long tail of the mounting time distribution.
While other data accesses will almost certainly complete in 5 minutes, manual tape mounts may take much
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longer. Automatic computer access to mass storage data is thus valuable also for its consistency. It is diffi-
cult to gauge how estimate the response time of manually loaded tapes, making it harder to optimize system
resources.

This is just a cursory analysis. There are several factors that were not considered which may affect these
conclusions. In particular, queueing time for the tape silo may be different from queueing time for the disks.
There are only a few tape robots in the silo, and each is tied up for several seconds with a tape load. If several
tape loads come in close together, some of them will have relatively long queueing times. This does not
happen with disk, as each disk is active for relatively little time with each request.

Another observation is the relation between latency to access the first byte and time required for the entire
transfer. Both the tapes and the disks can transfer at a peak rate of 3 MB/sec, but the observed rates are usu-
ally closer to 2 MB/sec. As a result, the transfer times are similar for the two media. For tape, an average
file of 80 MB will take 40 seconds to transfer. This is comparable to the additional 60 second overhead from
using tape instead of disk. One possible way to improve perceived response time in the system would be to
use cut-through, as in [39]. Under this scheme, a call to open a file returns immediately, while the operating
system continues to load the file from the MSS and keep track of how far it has gotten. When future requests
are made, the call returns immediately unless the requested data has not yet been read. This scheme works
because applications typically do not read data as fast as the MSS can deliver it. Instead of delaying the
application, then, it allows the application and file retrieval from the MSS to overlap. This system would be
difficult to use in the current NCAR configuration, however, since the MSS is not seamlessly integrated
with the local disk file system. The bitfile mover processes would have to have special communication pro-
tocols with the local file system to let it know how much of the file has been transferred. Nevertheless, it is
a useful optimization and should be considered.

3.3.3. MSS Usage Patterns

Figure 3-3 shows the average amount of data transferred each hour of the day. As expected, activity is high-
est during working hours — from 9 AM to 5 PM. The variation in transfer rate, however, is almost entirely
due to reads. The amount of data read jumps greatly at 8 AM when the scientists usually arrive, and slowly
tails off after 4 PM as they leave. The fall is slower than the rise because most scientists are more likely to
stay late than to arrive early. This suggests that most reads on the system are initiated by interactive requests,
since reads peak when people are at work, while writes remain almost constant regardless of the number of
humans requesting data. File request rate over the course of a day shows a pattern similar to that of data
transfer rate.

The weekly data transfer rates, shown in Figure 3-4, have patterns similar to those in the daily averages. As
expected, read activity is lower on the weekends, since there are fewer researchers around to initiate read
requests. Write requests, on the other hand, experience little variation over the course of the week, as the
Cray CPU runs batch jobs all weekend. There is a small increase in write requests during the day, indicating
that users do actually make some write requests; however, the change is small relative to the flood of read
requests that users generate.

Less data is transferred early Monday moming than on any other day. This low point can be attributed to
two factors. First, the Cray was occasionally shut down early on Monday morning for maintenance, as that
would cause the least disruption of normal work. Second, any idle time the Cray might have would be on
Monday moming, as the queues from the weekend might have finished.

Over the two years the trace covers, the mass storage system received increasingly large amounts of work.
The average data rate for each of the 104 weeks is shown in Figure 3-5. There are drops in read request rate
around Thanksgiving and Christmas for both 1990 and 1991. Note, however, that write request rate does
not drop on these holidays. In fact, write requests increased at the end of the year. This reinforces the con-
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Figure 3-3. Daily variations in MSS access rates.

The graph on the left shows average transfer data transfer rates over the traced period for each hour of the
day. The graph on the right is similar, but instead shows the average number of files transferred during
each hour of the day.

clusion that reads are interactive while writes are requested primarily by batch jobs: the Cray does not take
a Christmas vacation, while the scientists do.

The MSS data request rate increases over the period shown by the graph, but this gain is due almost entirely
to increases in read requests. MSS write rate appears to be related to the speed with which the computer can
generate results, while read rate is set by the number of users that want to read their data back. The lack of
increase in write rate suggests that the Cray is already running at full capacity, and that researchers are
simply using the machine more for tasks such as visualization of the results. A faster machine would then
need a higher write rate to massive storage. There would be at least a corresponding increase in read rate,
and it might be greater if the user community gets larger.

3.3.4. Interreference Intervals
Figure 3-6 shows the distribution of intervals between references to the MSS. Since about 3,500,000 files

were referenced over a period of 731 days (approximately 6.3 x 10’ seconds), the average interval between
MSS requests was 18 seconds.

While the mean access time was 18 seconds, the median access time was only 1 second. In addition, 90%
of all references followed another by less than 10 seconds. This distribution suggests that I/Os are clustered.
There are several possible explanations for this. Since Cray files can be of (nearly) unlimited length, but
files on the MSS cannot exceed 200 MB, clustering could occur since several files are accessed together by
the same program. Another possibility is that there are really two distributions for intervals—those made by
researchers’ interactive requests, and those made by batch jobs. The interactive requests are very likely to
be bunched together, since a researcher interested in day 1 of a climate model simulation will usually be
interested in day 2, and the two days will probably be in separate files.

31



500
104 — - reads —— total - - reads — total

---- writes
400

300 -

200 —

GB transferred per hour

Files transferred per hour

T T T T 0 T T T T T T 1
3 4 5 6 7 0 1 2 3 4 5 6 7
Day of the week (0 = Sunday) Day of the week (0 = Sunday)

Figure 3-4. Weekly variations in MSS access rates.

As in Figure 3-3, the graph on the left shows the average data transfer rate, while the graph on the right
shows the average number of files transferred per hour. Note, however, that the tops of the vertical axes are
slightly higher than those in Figure 3-3, because the previous graphs averaged all days together. Week-
days, shown separately here, experienced higher transfer rates than weekends.

3.3.5. File Reference Patterns

Instead of counting all file references, this part of the analysis included at most one read and one write from
any eight hour period. Since files on the MSS were explicitly referenced by Unix commands, some files
were accessed many times in a short time. Since the NCAR system required a user to explicitly request a
file stored on tape, making several such requests in a short period of time would result in a tape read for
each request. In a system with a single name space and transparent access, this would not be likely to happen
because the requested file would be cached on disk and returned to the user without a tape request. Thus,

repeated accesses within a short period of time were filtered out because they artifically inflated tertiary
storage access rates.

As expected, most files were not referenced often. Figure 3-7 shows that only 5% of all files are referenced
more than ten times. 50% of the files in the trace were never read at all, and another 25% were read only
once. Writes were slightly different — just over 20% of the files were not written during the trace period,
but another 65% were written exactly once. Of course, these numbers add up to more than 100%: many files
were read and written one time or less. In all, 57% of the files were accessed exactly once, and 19% were
accessed exactly twice. Thus, only a quarter of the files were accessed more than two times. For this system,
the median number of file references was one, contrary to [80], which reported the median to be two. Fur-
thermore, fully 44% of all the files in the trace were written exactly once and never read. These files were
“real” data, not checkpoints; files had to be explicitly written to the mass storage system, and it is unlikely
that scientists would archive checkpoints. These numbers confirm the common belief that many files are
written to a massive store once and never read again.
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Figure 3-5. Long-term variations in MSS transfer rates.

The top graph shows the average weekly transfer rate in GB/hour, while the bottom graph shows files/
hour. Only the weekly average is graphed, as the variation within a week is so high that the graph would be
unreadable. Holidays such as Christmas, Thanksgiving, and Memorial Day are visible as temporary dips in
the access rates.

Figure 3-8 shows the distribution of time intervals between references to a given file, called interreference
intervals. Long interreference intervals mean that a file is referenced infrequently, while short intervals indi-
cate many accesses over a short period of time. As Figure 3-8 shows, interreference intervals were short.
This means that, for files that were rereferenced, the second access came soon after the first.
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Figure 3-6. MSS interreference intervals.

Lengths of intervals between Cray Y-MP references to the mass storage system. Interval lengths of 400
seconds or shorter (99.98% of all intervals) were recorded, but the graph above only shows those up to 50
seconds long (99.36% of all intervals).
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Figure 3-7. File reference count distribution.

This figure shows the total reference count of each file referenced during the trace period, broken into
reads, writes, and total references for each file. Each line in the graph is a cumulative histogram of the files
referenced n or fewer times (at n on the horizontal axis). During the trace period, 50% of the files were
never read, and 21% were never written. All files were accessed at least once, however.

However there were still some files that were referenced more than a year after the previous reference to
them. These references could not be easily predicted, so it is not sufficient merely to use prediction to
improve access times. Instead, the latency for random requests must also decrease.
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Figure 3-8. MSS file interreference intervals.

This figure shows the distribution of lengths of interreference intervals. Many files were referenced only
once; these files had no interreference intervals. In addition, only one reference per eight hour period —
the first — was included in the data in this graph. This graph only shows distribution for intervals up to
300 days long. 1% of the intervals were longer than 300 days.

3.3.6. File and Directory Sizes

The dynamic distribution of file sizes transferred between the MSS and the Cray is shown in Figure 3-9. In
this graph, a file is counted once for each access to it. The distributions of files read and files written are
similar, though there is a small jump in file writes at approximately 8 MB. However, 40% of all requests
are for files 1 MB or smaller. Since reads are more likely than writes to be initiated by a human user (as
Section 3.3.3 shows), this graph suggests that performance on small file reads in a migration system would
be especially important. Such small files make up under 1% of the total data storage requirement, so it seems
wise 1o store these files on inexpensive commodity disks rather than on tape. If magnetic disk would be too
expensive, an optical disk jukebox could provide low latency to the first byte and high capacity.

The distribution of file sizes on the MSS during the trace period is graphed in Figure 3-10. In it, each refer-
enced file is counted exactly once, regardless of the number of times it was accessed. The graph shows that,
while about half of the files are under 3 MB, these files contain 2% of the data. Algorithms that take file
size as an argument could use this fact to simplify their bookkeeping, as all files below a threshold size could
be considered equivalent when computing space-time products. Since most files are below this size, the
algorithm should run much faster.

Directories also tended to be small. Figure 3-11 shows that 90% of the directories had 10 or fewer files, and
75% had only zero or one file. Even so, over half of all files and data were in large directories that contained
more than 100 files. The size and number of directories is very important, as many current systems do not
archive directories or file metadata. With over 130,000 directories and 900,000 files, the NCAR system
needs to store gigabytes of metadata on disk. Future systems must be able to move this information to tape,
especially since over 40% of the metadata describes files that will never be accessed again. The RAMA file
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Figure 3-9. Size distribution of files transferred between the MSS and the Cray.

In this figure, a file is counted once for each time it is requested. This shows the sizes of files actually
transferred between the Cray and the MSS, as opposed to the size distribution of files stored on the MSS.
Note that the largest file the MSS can store on tape is 200 MB, limited by the capacity of the tape car-
tridges.
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Figure 3-10. MSS static file size distribution.

While 50% of the files on the MSS are relatively small (under 1 MB), very little data is in these files. Most
of the data on the MSS is stored in files longer than 30 MB, and thus is stored on tapes rather than on disk.

system described later in this thesis allows directories to move to tape, thus eliminating the problem of stor-
ing the metadata for terabytes of files on secondary storage.
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Figure 3-11. Distribution of data and files by directory size.

Most of the data is in files stored in large directories — those with over 100 entries contain over 60% of all
the data and files on the MSS. This is surprising, since only 2% of the directories have 100 entries or more.

3.4. File Migration Algorithms

The NCAR trace data has several implications for future file migration algorithms. The system studied here
is quite different from that examined in earlier studies [31,81]. While file access pattems have not changed
radically from 1980 to now, and most files are still written and subsequently read one or fewer times, the
files themselves are, on average, about 100 times larger. The average file today is sufficiently large that
transfer time is an important part of the time needed to fetch a file; this was not true in 1980. Additionally,

the 1980 system stored 25,000 files, as compared to the nearly one million files on the NCAR system by
October, 1992.

The NCAR system uses two different migration algorithms — one for moving files between the Cray and
the MSS, and the other for relocating files on different media within the MSS. Moving files between the
Cray and the MSS is entirely manual, so there is no choice in the “algorithm” involved. However, using
automatic migration between the Cray and the MSS could still save many file requests. About one third of
all requests came within eight hours of another request for the same file. Often, these accesses are generated
by batch job scripts which must read or write files on the MSS. If several of these scripts are run at about
the same time, the Cray must make a separate request to the MSS for each script; it has no way of keeping
track of multiple references to the same file. Better integration of the MSS with the Cray would fix this prob-

lem by allowing the Cray file system to recognize successive references to a file recently fetched from the
MSS.

Another change since the studies done around 1980 involves large files. Previous algorithms optimize for
low seck time and ignore transfer time. For multi-megabyte files, however, transfer time dominates the time
needed to access a file. On magnetic disk, seek time is far lower than transfer time for megabyte-sized files.
Even for robotic tape, however, seek time is comparable to transfer time. A StorageTek robot can load a
3480 tape in under 10 seconds; the drive can transfer 20 MB in this time. The standard algorithms all make
the assumption that the retrieval cost is the same for all files (though the storage cost may not be). However,
this is not true for the NCAR system. A 1 MB file can be read from tape in 0.3 seconds, while a 200 MB
file requires over 65 seconds. New algorithms will have to consider this disparity in access time. The NCAR
system already does this by storing smaller files on magnetic disk and larger files only on tape. In this way,
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small files do not suffer the latency penalties of tape. Large files, on the other hand, must wait for a tape to
be loaded. However, their transfer time is long enough that the added delay of loading a tape is not as notice-
able. The dividing point between storing files on disk and storing them on tape is a subject for future
research; however, it is likely that the switchover point will be a function of tape seek speed and transfer
rate.

Previous algorithms also make little distinction between reads and writes, primarily because their trace-
gathering methods did not allow them to distinguish a read access from a write access. However, this dif-
ference is crucial for a file migration algorithm. The read/write ratio to the MSS at NCAR is 2: 1, contrasting
with conventional wisdom that an MSS services more writes than reads. Additionally, humans must wait
for the results from reads, while users would not need to wait for writes to tape to complete. This suggests
that an algorithm should not wait until it is absolutely necessary to free up space; instead, it should write
data to tape relatively quickly, and then mark the file as “deleteable.” Since files would be written lazily,
their placement on tertiary media could be optimized, making future reads run faster. A mass storage system
should be optimized to make read access to files faster at the cost of requiring more work for writes. This
will make the system seem faster to its users at little additional cost.

3.5. Conclusions

This analysis of file movement between secondary and tertiary storage at a supercomputer Unix site pro-
vides several important hints for designers of file migration systems. First, humans wait for reads, while
computers wait for writes. Any migration policy should consider this, and optimize for reading. The write
rate is relatively steady over time, while reads vary greatly. Thus, migration algorithms should move files
to tertiary storage whenever resources (tape drives, etc.) are available, and use the extra space to prefetch
files which might be read shortly. This study also shows the need for designers of high-performance file
systems to integrate the MSS more tightly with high-speed secondary storage. 30% of the file migration ref-
erences could have been avoided by using implicit rather than explicit requests to the MSS. This would be
possible only if the Cray'’s file system were tightly integrated with the MSS.

Files have become larger and more numerous since the early 1980s. In late 1991, there were over 900,000
files on the MSS at NCAR averaging over 25 MB each. On the other hand, their reference patterns have not
changed much. File rereference rate still drops off sharply after the first few days, though it does level off
soon thereafter. Files are also infrequently rereferenced; more than half of the files were only accessed once
in two years. Again, this suggests that files can be migrated to aless costly storage medium if they are unref-
erenced for only a few days.

The NCAR system appears to be a typical large Unix-based scientific computing center. Thus, the analysis
in this chapter will help system architects design hardware and software best suited for storing and rapidly
accessing the terabytes of data that such systems must store. While reference patterns for these data have
not changed much in the last decade, more files, larger files and new tertiary storage technologies will
require new mass storage systems and new migration algorithms to run them.

The analysis also showed the necessity for a tight coupling between the tertiary storage system and the sec-
ondary storage system. This is necessary to allow the file system to optimize file placement and transfer,
especially for environments where data is shared between researchers.

A file system needs several features to facilitate close cooperation between secondary storage and the mass
storage system. First, it must maintain a single namespace for the entire storage system rather than allowing
files to have different names on disk and tertiary storage. In this way, a user making a file request cannot
know where the file resides, allowing the system to transparently cache and migrate files between high-
speed disks and the MSS.
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The file system must also permit metadata to migrate to tertiary storage. Even if metadata requires only
0.2% of actual storage space, 50 TB will still use 10 GB of secondary storage. This is space that should be
better used for faster access to files, not storage for metadata that is likely to be used once per year. Migrat-
ing metadata to the MSS is also necessary in a computing center with more than one secondary storage sys-
tem, since a file whose data has moved to tertiary storage could be read by any computer in the system.
Thus, metadata pointing to files on tape should not reside on any secondary storage; rather, it should be
stored near the taped files themselves.

Since a high-performance file system may prefetch files from tape without an explicit application request,
it will be unable to use program hints to use the optimal layout on the many disks in the system. Many cur-
rent file systems provide an order of magnitude improvement in performance if the application supplies data
placement hints to the file system. If a file is prefetched, though, such hints will not be available, as the pro-
gram that will eventually read the data may not be the same one that wrote it. A file system on disk that is
well-integrated with tertiary storage must therefore provide high-bandwidth file access without the help of
hints from an application.

A parallel file system for scientific computing must thus satisfy the following requirements, based on the
study presented in this chapter and the scientific computing demands described in Chapter 2:

* High bandwidth performance on large files, regardless of the mapping of file blocks to disks.
* Low latency on small files to allow integration with workstation file systems.
¢ Unified name space across secondary and tertiary storage.

* Transparent migration of both file data and metadata between secondary and tertiary storage.

The remainder of this thesis focuses on the design and simulation of a file system for parallel machines that
integrates scalable secondary storage and tertiary storage, using the design suggestions listed above. This
file system would make an ideal platform for real-world testing of file migration algorithms for scientific
computing.

39



4 RAMA: a Parallel File System

This chapter describes the design of the RAMA (Rapid Access to Massive Archive) parallel file system and
the reasoning behind the design. The RAMA file system is designed to provide high-bandwidth access for
large files while not sacrificing performance for small files. It is thus best used for scientific computing envi-
ronments, which require many files tens of megabytes to gigabytes in length.

RAMA takes advantage of recent advances in disk and network technology by placing a small number of
disks at each processing node and pseudo-randomly distributing data among those disks. Pseudo-random
distribution, achieved using a hash function to compute the location to place file blocks, provides two main
advantages: good performance across a wide variety of workloads without data placement hints and scal-
ability from fewer than ten to several hundred node-disk pairs. RAMA requires a fast interprocessor net-
work to overcome the slight latency disadvantage of not placing data “near” the node that will use it, as
discussed in Section 4.1.2. While physically small disks are not necessary for RAMA, they reduce hardware
cost and complexity by allowing disks to be mounted directly on processor boards rather than connected
using relatively long cables. Currently, 2.5” disks can provide up to 1 GB of storage; thus, a 128 processor
MPP could have a 128 GB file system using just a single disk attached to each processor.

As Chapter 3 shows, file migration is an important feature of file system that support scientific computation.
Many file systems for scientific computation do not support tight integration with tertiary storage, causing
unnecessary requests to tertiary storage and inefficient use of secondary storage space. RAMA, however, is
designed as a cache on disk for a multi-terabyte tertiary storage archive. Many design decisions in RAMA,
such as pseudo-random distribution, would be difficult to implement without tertiary storage. More than
that, though, RAMA supports a uniform view of the file system as proposed by the Mass Storage System
Reference Model [13]. An application using the RAMA file system need never know whether data is on
disk or a slower device when it is requested, since the file on disk has the same identifier as its image on
tape. RAMA can transparently fetch any file blocks the application needs, perhaps moving only the data
that must be moved instead of the entire file.

This chapter examines the decisions we made while designing RAMA, and mentions some of the design
alternatives. As with any file system, the RAMA design must provide schemes for allocating and laying out
data and metadata. Additionally, it must provide mechanisms to translate logical file block addresses to
physical disk block addresses and reclaim disk space that was used for a deleted file. All of these operations
must take file system consistency into account. RAMA, like other file systems, must insure that the it never
incorrectly assigns data to a file. Additionally, RAMA must maintain state for each disk block, insuring that
blocks always either free or allocated but not both or neither. Since RAMA will be used for scientific com-
putation, it must also provide high-bandwidth access to data in the file system. Algorithms on MPPs often
have many nodes accessing a single file, requiring RAMA to read and write different sections of a file with-
out a “master” node for the file.
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RAMA’s use of a basic structure called the disk line allows simple schemes to address all of these issues in
file system design. RAMA pseudo-randomly assigns blocks to disk lines using a hashing algorithm known
at each node. As a result, any node in the MPP can narrow a block’s location to a single disk without the aid
of a central “directory” node. This scheme allows all of the nodes in an MPP to access a single file without
any bottlenecks at any single node. Since blocks from a single file are distributed to many disks, large files
can be read at high bandwidth. Spreading data to disks by block rather than smaller units also allows RAMA
to deliver the high concurrency access for small files necessary in a workstation environment. RAMA also
provides good crash recovery, as each block’s state is stored only in the table of contents of its disk line.
Since a block’s descriptor includes its file identifier and offset as well as its state (free, clean, or dirty), this
system eliminates the need for file system consistency checkers such as £sck [55]. This chapter explains
RAMA's use of disk lines and presents the schemes RAMA uses to access and manipulate data on disk.

The three chapters after this one will discuss a simulation study of the RAMA file system described in this
chapter. Chapter S covers the design of the RAMA simulator and describes the workloads used in the sim-
ulation experiments. RAMA’s sensitivity to changes in technology, different configuration parameters, and
average file size are studied by simulation in Chapter 6. Next, Chapter 7 compares RAMA to a simulated
striped file system. This comparison uses several workloads to compare the two file systems’ effects on
application execution time, network performance, and disk load. It will show that RAMA provides compa-
rable bandwidth to an optimally-striped file system while far outperforming a suboptimally configured
striped file system.

4.1. File System Design

This section describes the design of the RAMA file system. Section 4.1.1 describes the metadata RAMA
must maintain for each file and each block in the file system. The layout of data and metadata on disk is
then covered in Section 4.1.2.

The RAMA file system is designed to run on MPPs with up to hundreds of processor nodes, each with a
closely-associated disk, as shown in Figure 4-1. This hardware differs from that of many modern MPP sys-
tems, shown in Figure 4-2, that attach many disks to just a few nodes in the MPP. Unlike conventional file
systems that stripe data in a regular pattern across some or all of the attached disks, RAMA uses a hash algo-
rithm to distribute data pseudo-randomly to all of the disks. This distribution of data gives RAMA two
major advantages: regular access patterns do not slow the file system down, and multiple nodes accessing
different parts of the same file do not require a central synchronization node. These effects are discussed in
Chapter 7.

4.1.1. File System Information

RAMA files, like those in most file system, are divided into blocks. A file block in RAMA may be any size.
Previous experience [2,67] indicates that sizes between 1 KB and 16 KB are best for workstation workloads
using current commodity disk technology, while blocks up to 32 or 64 KB are used in supercomputer file
systems with large files and fast, expensive disks. Additionally, both workstation and supercomputer file
systems attempt to allocate sequential blocks from a file consecutively on disk [56].

Each file in RAMA is identified by a 64-bit unique identifier called a bitfile identifier (bitfile ID), as defined
in [13]. Any active block in the entire file system can therefore be uniquely identified by the bitfile ID of
the file it belongs to and its offset within that file. Further, bitfile IDs may be chosen randomly — they need
not be sequential or otherwise related. RAMA can thus avoid reallocating bitfile IDs for files that have been
moved to tertiary storage, simplifying the directory structure.

File blocks in RAMA may be in one of three states—clean, dirty, or free. Free blocks are just that. Data can
always be written to an available free block. Clean blocks are those that have not been modified since they
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Figure 4-1. Typical hardware running the RAMA file system.

The RAMA file system is designed to run on MPPs with one or more disks attached directly to each node.
Traditional MPPs, shown in Figure 4-2, replicate the CPU-memory module. RAMA, on the other hand,
proposes that the replicated module be CPU-memory-disk. In this way, total disk bandwidth scales with
the number of MPP nodes without requiring a faster connection to more disks.

were written to tertiary storage. This includes both blocks that have been written back to archive and those
that have been retrieved from tertiary storage but not modified. If there are no free blocks, clean blocks may
be reclaimed for new data. A copy of data in these blocks exists elsewhere, so they can be retrieved if needed
later. Finally, dirty blocks are immune from overwriting. As a result, dirty blocks must be converted to clean
or free blocks faster than the overall write rate. This simply means that migration from disk to tertiary stor-
age must, on average, be faster than the rate that long-term data is created. Migration managers, described
in Section 4.2.3, move data from disk to tertiary storage, thus converting dirty blocks to clean blocks.

Metadata in RAMA is divided into two types — positional metadata and intrinsic metadata. Positional
metadata is information that RAMA needs to transform a bitfile ID and block offset to a physical block
number on a specific disk. It is particular to RAMA, as the same file stored on a tape could certainly use
different structures. Intrinsic metadata includes information that must be kept for a file regardless of the
medium on which the file is stored. Intrinsic metadata includes attributes such as file length, modification

and access timestamps, and file permissions that belong to a file and must move to tertiary storage with a
file.

In an environment with large files such as those for which RAMA is designed, the two types of metadata
are used differently. A typical MPP program will open a large file once and perform thousands or millions
of read and write operations. Intrinsic metadata is used primarily when a file is opened or closed, and thus
is not a main determinant of performance. Positional metadata, on the other hand, is used in every read and
write, and greatly affects performance. The RAMA metadata scheme must support accesses from many
nodes to different parts of a single file without requiring a central node to coordinate any modifications to
the positional metadata. If this criterion is not met, performance cannot scale because all file system requests
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Figure 4-2. Typical hardware running conventional MPP file systems.

This figure shows the hardware that many MPPs, such as the Intel Paragon and Cray T3D, use to integrate
disk storage with processors and memory. A small number of I/O nodes have high-bandwidth connections
to all of the disks in the MPP. In the diagram above, a single node (the more heavily shaded one) connects
to all of the disks the MPP uses. All disk requests must then go through this node.

must go through a single node. As later sections in this chapter show, the RAMA design is scalable because
individual nodes use a hash function, not a central directory, to compute the location of the data they read
and write.

4.1.2. Data Placement in RAMA

The data layout in RAMA is motivated by several principles. First, every node in the MPP must be able to
transfer a file block specified by a (bitfile identifier, offser) pair by only talking to the server node that stores
the data. Once a file is opened and its bitfile ID is known, a client node should not need to access a central
“control” node for the file to read and write file data. Vesta [18,19] supports this by distributing information
to each node detailing the way in which a file is striped. RAMA goes a step further by using a hashing algo-
rithm to determine where a specific file block is stored, a method also used in [3] and [17]. The algorithm
takes a bitfile ID and block offset as inputs, and is the same for all nodes in the file system. Since the algo-
rithm is relatively easy to compute and requires no per-file information that mi ght be stored on an individual
node, it fulfills the criterion of independent access.

4.1.2.1. File Block Placement

The hash algorithm in RAMA is actually used to determine the disk line within which an individual file
block resides, rather than just the node that stores the block. A disk line is similar to a line in a memory
cache. It consists of the file blocks themselves and a line descriptor similar to the tags in a memory cache,
as shown in Figure 4-3. The line descriptor acts as a “table of contents” for the disk line, keeping a list of
block descriptors for the blocks in the line. Each block descriptor holds the bitfile identifier (64 bits), file
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block number (32 bits), a timestamp used for migration (28 bits), and several flags (4 bits) encoding the
block’s state for as single file block in the disk line. These sizes were chosen because they provide a suffi-
ciently large name space while keeping block descriptor size small. Longer bitfile IDs and block offsets are
easily implemented at a slight cost in disk storage space. The line descriptor also holds a free map for the
entire disk line and a separate free map for intrinsic metadata, described in Section 4.1.2.2. The number of
file blocks a disk line contains is a system-wide parameter — fixed for all disks in the system — whose
typical values range from a few hundred to a few thousand file blocks. Since a disk line is 400 KB to 20 MB
long, a single disk in RAMA holds many of them.

This scheme has a slightly higher overhead than that of the Unix Fast File System [54], as each block
requires 16 bytes of line descriptor space, compared to the 4 bytes required in FES. However, for 8 KB
blocks, positional metadata consumes less than 0.2% of total disk space in RAMA. This percentage will
drop further as future RAMA file systems use larger file blocks to better utilize faster disks.

The disk line design is an intermediate choice between two extremes. One possibility would be to have the
hash algorithm only determine the node, and allow each node to manage the placement of data on its own
disk. While this scheme allows more flexibility for each node to manage the data it is providing, it leaves
the difficulty of finding randomly-selected bitfile IDs on a disk. At the other extreme, the hash function
could produce a physical block identifier that uniquely identifies a specific block on a specific disk. This
approach suffers from two problems. First, there is no guarantee that the block is valid. Since a file may not
actually be on disk, some mechanism must exist to make sure that a particular block mapped by the hash
function does indeed contain valid data. Second, and more serious, the hash algorithm could map two dif-
ferent file system blocks to the same physical block. There would then have to be some form of conflict
resolution. Rehashing would not be acceptable if it occurred often, since it would slow down the file request
by making additional disk I/Os to find the desired block.

Allowing each block to be accessed independently provides excellent parallelism; however, large sequential
reads and writes from a file must be broken into smaller reads on many disks. Most file systems optimize
data placement so large file accesses can be completed with few seeks. This is implemented in RAMA with
a minor modification to the hashing algorithm. Instead of assigning each file block to a different disk line,
the algorithm can be changed to map several consecutive blocks of the same file to the same line by dividing
the block’s offset within the file by the sequentiality parameter before sending it to the hash function. If
sequentiality is 16, for example, all blocks with offsets between 16 and 31 will send 1 to the hash function,
generating the same hash value for all of them. Sequentiality can be adjusted to trade off between faster
sequential access and conflict problems. If too many consecutive blocks from a single file go to the same
disk line, the line will be unable to hold much other data that hashes to the same line. This would degrade
performance by forcing RAMA to store the excess blocks for that line on tertiary storage. Additionally,
having too many consecutive file blocks in the same line reduces performance on medium-sized files, as a
file request of a given size results in requests to fewer disks with more data per disk. On the other hand, too
few sequential blocks in the same line reduces performance by requiring smaller nonsequential transfers and
more seeks. The optimal choice for sequentiality depends both on the workload and on the disk character-
istics. Faster disks and larger file requests achieve higher bandwidth with more consecutive file blocks in a
disk line; however, workstation workloads in which small files are common perform best with fewer con-
secutive blocks per disk line. Section 6.2.1 discusses the effects of changing the sequentiality parameter to
the hash function. The effect of varying the total number of blocks in a disk line, however, is beyond the
scope of this dissertation and is a subject for further investigation.

Another factor in data placement is the arrangement of data blocks within a disk line. Naive placement
would scatter sequential blocks from the same file around the disk line, which holds hundreds of data
blocks. This provides suboptimal performance, since reading sequential blocks from a file would require
rotational and head switch delays. This difficulty can be easily overcome by arranging data in a disk line so
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Figure 4-3. A RAMA disk line and line descriptor.

The disk line is a basic element of the RAMA file system. It contains a table of contents — the line
descriptor — and hundreds to thousands of file blocks. Each file block in the line corresponds to exactly
one entry in the line descriptor. That entry identifies the block and provides additional information such as
what state the block is in. Section 4.2 describes RAMA’s operation and discusses how the file system uses
disk lines to store data.

that consecutive blocks from a file are stored contiguously on disk. This does not introduce additional prob-
lems because placement within a disk line is governed only by the server for that disk line, and need not
follow any other constraints. Section 4.2 further describes this process of reorganization.

4.1.2.2. Intrinsic Metadata Placement

RAMA supports two different design choices for intrinsic metadata placement. The first choice groups
intrinsic metadata for many files together into blocks near the start of a disk line, storing the metadata in

45



much the same way as the BSD FFS uses cylinder groups [54]. Another choice, however, would store the
metadata in the same block as the first few bytes of the file itself. These choices are shown in Figure 4-4.

Intrinsic metadata at start of file block 0

Intrinsic
metadata

File data
File X, Block Y) Free space

Figure 4-4. Intrinsic metadata placement options.

RAMA supports two different placement options for intrinsic metadata. First, intrinsic metadata could go
into the first block of any file on disk. This option, shown at the top of the figure, would skew the start of
every file block in the file by the size of the metadata. Since many programs assume that file blocks start at
multiples of the file block size, this option could degrade performance by poorly dividing the file. The sec-
ond option, at the bottom of the figure, would place all of the intrinsic metadata for each disk line in a few
blocks at the start of the line. Any files whose first block is in the line would store its metadata at the start
of that line. The actual location of the metadata within the dedicated metadata blocks could be found either
by searching through each block or, better, by encoding its position in the line descriptor entry for the first
block of the file.

While each has its own advantages and disadvantages, they both share several characteristics. Both keep
intrinsic metadata near the start of file’s actual data on disk, reducing seeks. Storing intrinsic metadata in
the first file block is attractive for moving files between secondary and tertiary storage. When the first block
of a file is reused, either because the file is deleted or because it has been migrated to archive, the space for
the intrinsic metadata for the file is also reclaimed. However, putting intrinsic metadata in the first file block
preceding the file data creates other problems. In particular, file blocks no longer start at even multiples of
the block size. Instead, the first block contains less than a “full” block of data, and future blocks have their
starts offset by the size of the intrinsic metadata.

Grouping intrinsic metadata from many files into a few blocks at the start of a disk line, on the other hand,
allows the data offset for each block to be an even multiple of the block size. When a file is migrated to
tertiary storage, its intrinsic metadata must be rejoined with the rest of the file. This presents little additional
delay, however, especially when the multi-second access latency to tertiary storage is taken into account.
The difficulty of locating the appropriate metadata within the disk line is solved by encoding its position in
the block descriptor for the first block of the file it describes. A metadata free map is kept in the line descrip-
tor to speed allocation of new metadata slots,

However, the problem of reclaiming intrinsic metadata storage from migrated files must still be addressed.
Since intrinsic metadata is relatively small — fewer than 64 bytes per file — this problem can be solved by
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infrequent garbage collection of unused metadata slots. Section 3.3.3 shows that the MSS at NCAR trans-
fers fewer than 500 files per hour, or 12,000 files per day. Even if the rate for a future storage system is 10
times higher, unused metadata slots will occupy less than 8 MB of disk if they are purged daily. The purge
can easily be done as part of the migration process described in Section 4.2.3.

4.2. File System Operation

This section describes the actual operation of the RAMA file system, using the design description from pre-
vious sections. It describes how data is accessed, specifically detailing the sequence of operations for reads
and writes. The methods for free space allocation and other disk management issues are covered in this sec-
tion, as is RAMA's integration with tertiary storage.

4.2.1. Access to File Blocks on Disk

To make either a read or a write request for a file in RAMA, the client node first hashes the (bitfile ID, block
number) pair to compute the disk line in which the data is stored. The request is then sent to that node. The
client node does nothing further until the request completes and the data is ready. Once the server node with
the data receives the request, it reads in the line descriptor for the disk line with the desired data if the
descriptor is not yet cached in memory. At this point, the paths for reads and writes diverge.

For a file read, as diagrammed in Figure 4-5, the line descriptor is searched linearly for an entry that matches
the desired bitfile ID and block number. If it is found, the block is read from disk and returned to the request-
ing node. If it is not found, a message is sent to the tertiary storage manager (see Section 4.2.3) requesting
the block. When the block has been retrieved from tertiary storage, it is returned to the client. It may option-
ally be written to disk as well. This approach to file reads works very well if all block reads to the file system
correspond to real data. File blocks on disk are retrieved with minimal overhead. Blocks on tertiary storage
require more software overhead, but that overhead is lost in the long latencies required to access tertiary
storage. If a file block simply does not exist — perhaps because a program requested an erroneous bitfile
ID — this scheme will not be able to detect the error rapidly. Such an occurrence is unlikely, however, since
bitfile IDs can only be obtained by looking in a directory and directories only contain valid bitfile IDs.

If the operation is a write, shown in Figure 4-6, the server node still looks up the information in the line
descriptor. If the block already exists, the new data overwrites the old data. If, on the other hand, the data
does not already exist on disk, new blocks from the appropriate disk line are allocated. Blocks marked as
free are used first. If none are available, blocks marked clean are used in order of “desirability.” The migra-
tion manager bases this value on a file’s age, size, last reference time, and other factors using a file migration
algorithm, and sets it when a file block is written to tertiary storage. If all of the blocks in a line are dirty,
RAMA sends an emergency message to the migration manager, requesting that the line be cleaned. The
request cannot finish until this is done. This last resort is similar to thrashing in a CPU cache, and exhibits
poor performance. After the data is written, the line descriptor is updated to reflect the new access time and
mark the written blocks dirty.

This description makes no mention of keeping the file system integral and consistent. Since valid file blocks
may be overwritten with other valid file blocks, file system integrity is a major issue. Section 4.3.3 discusses
several options for keeping the file system on disk consistent.

4.2.2. Disk Storage Management

RAMA must perform several disk storage management functions. First, RAMA must insure that sufficient
space exists to write new files. Some space is freed by applications and users deleting files. RAMA must
also migrate data from disk to tertiary storage both to insure that a safe copy exists on tape and to make
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Figure 4-5. A file read in RAMA.

This diagram shows the sequence of operations executed by RAMA for a file read. Note that only the node
requesting the data and the node serving the data are involved in the request. This allows RAMA to scale
well with additional nodes, as each request involves the minimum two nodes necessary to satisfy the
request. There is no mediating node to cause a bottleneck.
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Figure 4-6. A file write in RAMA.
This figure shows the sequence of operations RAMA performs to complete a file write. Like the read

shown in Figure 4-6, writes only involve two nodes — the node writing the data and the node with the disk
the data is stored on.

additional blocks available for new file storage. File migration design alternatives in RAMA is described in
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the next section.

RAMA also attempts to reorganize storage to improve access efficiency. As Section 4.1.2.1 mentions,
sequential file data might be written to non-sequential blocks in a disk line. This could occur if the disk line
being written to did not have enough contiguous free space to hold all of the sequential file data, as depicted
in Figure 4-7. In this case, the data would be written to the disk line in whatever free space was available.

The file write could complete promptly, but it would take more time than if the data were stored sequen-
tially.

Line Intrinsic File Free
descriptor metadata blocks blocks

\
XXX

Disk line reorganization

XXX

Figure 4-7. Disk line reorganization.

When data is written in RAMA, some consecutive file blocks are stored in the same disk line to allow
larger sequential reads. However, there may not be enough contiguous free blocks to write all of the file
blocks sequentially. Disk line reorganization solves this problem by switching the positions of blocks
within the disk line to enable longer sequential reads and writes. Since the CPU controlling the disk is the
only processor that knows the exact physical location of file blocks on its disk, this reorganization can
complete without notifying other nodes in the system. In addition, reorganization is not a necessary pro-
cess. It is merely a performance optimization to create longer sequential transfers, and does not cause a net
allocation or release of disk blocks.

Reorganizing disk lines is similar to the LFS [74] task of compacting disk segments. However, RAMA can
still run even if disk lines are never reordered because reordering never produces additional free space and
is only used to improve performance. Additionally, reorganization is only necessary if a disk line becomes
fragmented, making it impossible to allocate several consecutive free blocks. In RAMA, an individual node
can rearrange the disk lines on its disk. Only the server node for a file block knows the exact location of that
file block, since other nodes in the RAMA system know only what disk line contains the data. As a result,
a node can reorder the blocks in its disk lines without notifying other nodes in the file system. The reorga-
nization, pictured in Figure 4-7, allows RAMA to cluster sequential file blocks together by switching their
positions in the disk line. One method for doing this is to read the entire disk line into memory, logically
switch some file blocks’ positions to ensure sequentiality, and write out the line descriptor and blocks whose
positions have changed. This can also be done piecemeal, by swapping just a few blocks at any time. In a
scientific computing environment, however, free space in disk lines will likely remain unfermented. Many
files in a supercomputer environment are large and thus allocate their full complement of consecutive blocks
in each disk line. When such a file is deleted or migrated, it releases those consecutive blocks, making them

49



available for another large file. As a result, fragmentation is only an issue if the file system contains few
large files; however, performance on large files is not as important if there are few of them.

4.2.3. Tertiary Storage and Rama

RAMA is designed to be used in high-performance computing environments requiring many terabytes of
storage. File migration to and from slower, cheaper media must be well integrated into the file system.
RAMA'’s data layout on disk is designed to facilitate such migration.

Tertiary storage is integrated into RAMA via one or more user-level storage managers. Whenever a block
of data is not found on disk, a tertiary storage manager is queried to find the data. Clearly, this method intro-
duces longer latency than a kemnel-based storage manager would. However, latency to tertiary storage is
already well over a second; the additional few milliseconds make little difference in overall request latency.
It is likely that RAMA would use prefetching as well as request batching, since disk file blocks are only
8 KB to 32 KB long, while tertiary storage blocks might be as long as several megabytes or more. In such
acase, RAMA might fetch all or much of a file from tertiary when a single block from the file was requested.
If this strategy was not optimal — for example, a user might scan the first thousand bytes of each of one
hundred one gigabyte files — RAMA would not have to read the entire file. Managing tertiary storage at
user level also allows the use of different storage managers, permitting the integration of new devices and
new algorithms for managing file migration without recompiling the operating system kernel.

Migration from secondary to tertiary storage is also managed by user-level processes. There may be more
than one of these processes, but they will likely be coordinated to avoid duplication of effort. This is not a
requirement, however. These processes, called migration managers, direct the copying of files from sec-
ondary to tertiary storage. RAMA has special hooks into the file system to allow this, though they are only
available to programs run by the superuser. Migration managers are allowed to change the state of a file
block, marking dirty blocks as clean. They may also adjust the modification time of a clean block so it will
be more or less likely to be written over as more disk space is needed. However, migration managers use
the standard file system interface to actually transfer file data between disk and tertiary storage.

A typical migration manager searches through every disk line looking for dirty file blocks older than a cer-
tain time. This finds file identifiers that are good candidates for migration to a lower level of the hierarchy.
This task is easily parallelizable, using one migration manager for each disk. Each process reads and scans
all of the line descriptors on a single disk. This is not a long procedure; a 1 GB disk has less than 4 MB of
line descriptors which may be read and scanned in a few seconds. The results from all of these processes
are reported to a high-level migration manager. This migration manager decides which files will be sent to
tertiary storage, and manages their layout on tertiary media. It also optimizes scheduling for the tertiary
media readers, trying to minimize the number of media switches.

Once a file has been written to tertiary storage, its blocks become available for reuse. However, these disk
blocks are not immediately freed; instead, they are marked as clean so they may be reclaimed if necessary.
There is usually no reason to free blocks once they are safely stored on tertiary media, as they might satisfy
a future file request. However, the blocks’ modification time might be changed. The migration manager
could, for example, decide to preferentially keep blocks from small files on disk. If so, it would mark clean
file blocks from large files as being older than blocks of the same age from small files. This will not confuse
the file system, as a whole file’s modification date remains unchanged, as does the modification date for
dirty blocks. Only clean blocks which need not be written to tertiary storage may have their last access dates
changed.

This architecture fits well into the Mass Storage Systems Reference Model [13]. RAMA itself acts as a bit-
file server and storage server for magnetic disk. The user-level tertiary storage managers are bitfile servers
for tertiary storage devices; however, they do not necessarily act as storage servers for these devices.
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4.3. Implementation Issues

4.3.1. Hashing Algorithm

As [3] and [24] noted, parallel file systems without bottlenecks can achieve near-linear speedup on scientific
workloads if data is distributed evenly among all disked nodes. A file system for scientific computation
introduces additional problems, however. The first is sequential access. Most scientific computation
involves large sequential reads and writes to the I/O system [59], so these requests must run quickly. If each
8 KB block resides on a different processor-disk pair, a single half-megabyte read would need to contact 64
different nodes. Since there is a per-request overhead for each disk, this approach is inefficient. Also, it may
excessively congest the interconnection network, as a single I/O sends messages to many different nodes.
The disks are also being used inefficiently if many processes are using the file system: instead of few large
requests, disks see many small requests and spend their time seeking to the correct locations. To address
this problem, the hashing algorithm is designed to keep sequential blocks from the same file in the same
disk line.

The hashing algorithm thus must spread unrelated blocks across disk while preserving small subsets of
sequential blocks within a file. RAMA requires that a hash function A map a 64-bit and 32-bit integer to a
random positive number. The disk line a particular file block is assigned to is determined by Equation 4-1:

Equation 4-1. diskLine = h(bitfile]D,LM J) MOD r1otalLines
sequentiality

Sequentiality is the parameter that determines how many consecutive blocks from a single file will goto a
single disk line. While a single run of sequentiality blocks will go to one disk line, different runs of consec-
utive blocks from a file will likely go to different disk lines. Since the hash function is pseudo-random,
though, this distribution is probable but not certain. Chapter 7 discusses the performance implications of
using a hash function to distribute data.

4.3.2. Interconnection Network Congestion

A basic assumption for the RAMA design is that the interconnection network will not be the bottleneck for
the file system. This is a valid assumption because a today’s interconnection networks run at 100 MB per
second, while small inexpensive disks have sustained transfer rates of under 10 MB per second. However,
even high bandwidth networks can become congested. If both requests and data to fulfill those requests are
evenly spread around the parallel processor, congestion will not be a constant problem. As Section 6.1.1
will show, RAMA performs even with bandwidths as low as 15 MB/s between nodes of an MPP. Moreover,
Sections 7.3.1 and 7.3.2 will show that temporary “hot spots” in the interconnection network are more
common in a striped file system than in RAMA.

4.3.3. Data integrity and availability

As with any file system, data integrity is a major issue. The problem is especially acute in RAMA, since a
single file may be spread over many disks run by many different processors. Similarly, data availability
becomes a problem when parts of a single file are stored in many different places, as the file is unavailable
if any of those disks or processors is down.

Data integrity is the more important issue, as a file system must never lose data entrusted 10 it. Additionally,
the file system must insure that a block is not “owned” by the wrong file, as doing so could allow data to be
accessed by someone who does not have the proper permission. In addition, a file System must remain con-
sistent, insuring that a crash at an inopportune moment will not corrupt the file system’s data structures.
After a crash, the file system must insure that every block on disk belongs to exactly one file, or is free.
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Since RAMA is designed for MPPs running scientific workloads, it is not so crucial that an application
know exactly when a write is complete on disk. Many long-running programs make checkpoints of their
state [69] so they can just use the last complete checkpoint if a crash occurs. So long as a crash does not
corrupt existing files, a program can restart using the most recent complete checkpoint. In a scientific com-
puting environment, losing the last few seconds of file 1/0 is not fatal if the application is notified of the
loss, since the data may be regenerated by rerunning the all or part of the application.

One option is to use self-identifying blocks on disk. Each block would reserve a few words to record the file
identifier and block number that the data in the block corresponds to. This method has several significant
advantages. First, crashes no longer present any problem since the line descriptor can be rebuilt by scanning
the disk line. Each node can rebuild the line descriptors on its own disks independently by reading each disk
line, reassembling its line descriptor, and writing the descriptor back. Since the process uses large sequential
disk reads and writes, rebuilding all of the line descriptors on a disk can be done in little more than the time
necessary to read a disk at full speed — about 330 seconds for a 1 GB disk that can sustain a 3 MB per
second transfer rate. To avoid even this small penalty, the file system assumes that all descriptors are cor-
rect, and only rebuilds one when it finds a disagreement between a line descriptor and the self-identification
for a block in its line. Another advantage for this method is that line descriptors may be written back lazily.
This represents a trade off between faster crash recovery time afier a crash and improved performance
during normal operation. All of these benefits are countered by a few drawbacks, however. One problem is
the increased amount of metadata the file system will need. The overhead for metadata would double with
a naive implementation that keeps a copy of all metadata in the file block as well. Keeping a full copy is
unnecessary, though, and this overhead is only an additional 0.2% in any case. More importantly, though,
a file block is no longer the same size as a disk block, and file blocks are no longer a power of two bytes
long. Many programs are optimized to take advantage of specific file block sizes, and it is likely that this
choice would cause poor performance.

A better option for maintaining consistency is to introduce a fourth state — reclaimable — for file blocks.
This state would explicitly mark those clean blocks that may be reclaimed, and include a timestamp indi-
cating when they were so marked. Such blocks contain valid data for which copies exist on tertiary storage.
However, if a crash has occurred more recently than when the blocks were marked as reclaimable, the
blocks are considered free. The fourth state thus allows RAMA to use all of the available disk space as a
cache for tertiary storage while still keeping sufficient reallocatable space.

Under this scheme, shown in Figure 4-8, all file data is written out before the line descriptor is updated.
Clearly, this presents no difficulties if both updates are completed without a system crash. The only diffi-
culty, then, is if the system crashes between the time that the data is written to disk and the time the line
descriptor is updated. If a file’s blocks are overwritten by new data for the same blocks, the line descriptor
still contains the correct description for the blocks. If free blocks are overwritten and a crash occurs before
the line descriptor is updated, the blocks are not part of any file and are still marked free. Again, the last few
seconds of data are lost, but the file system remains consistent. However, if reclaimable blocks are reused
for different files, the line descriptor will still think they belong to the original files. The file system then
uses the rule that reclaimable blocks are invalid if a crash has occurred since the blocks were marked
reclaimable. The new data written to the blocks is lost, but the file system remains consistent as the blocks
are now marked free. Since the blocks had to be clean before they could be marked reclaimable, any data
in them can be retrieved from tertiary storage.

Since RAMA does not keep separate free block free lists as used in other file systems, blocks on disk cannot
be “lost.” Each block’s state is listed in its block descriptor, so RAMA can quickly rebuild its per-line free
block maps afier a crash. Additionally, RAMA never needs a file system-wide consistency checking pro-
gram. This is a necessary criterion for a file system that integrates tertiary storage, since checking a multi-
terabyte archive could take days.
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Figure 4-8. Scheme for insuring consistency after a RAMA crash.

RAMA, like all file systems, must have a way of insuring file system consistency after a system crash. This
is particularly difficult in RAMA, since clean blocks allocated to a file may be reallocated 1o a different file
without updating metadata on disk. RAMA avoids the problem by introducing a fourth state a file block
can be in — reclaimable. Any block in this state is valid only if the block was marked reclaimable since
the last crash. Otherwise, the block is free. In this way, RAMA can write data blocks first and then update
the line descriptor.

In this diagram, the disk line starts with the state at the top. Next, the file blocks are written, producing the
state in the middle disk line. Note that two block descriptors in the line descriptor are incorrect. If a crash
were to occur before the line descriptor was updated, however, each node would scan the line descriptors
on its own disks in parallel. In this example, the two overwritten blocks and the single reclaimable block
would all be marked as free. Recent data would be lost but the file system would remain consistent.

If, as expected, the system does not crash, the final result will be the bottom disk line. In it, the block
descriptors all point to the proper file blocks and the modified blocks are marked as dirty.

File availability is another problem that RAMA must address. Uniprocessor file systems spanning more
than one disk may arrange disks in a RAID [9] to keep data available even when a disk has failed. It should
be possible to use similar techniques for RAMA. However, it is not clear how they would be integrated into
the file system, since each node may rearrange its own disks without notifying other nodes. RAMA can uti-
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lize techniques learned from RAID to provide availability even when a disk or processor fails. The precise
method for accomplishing this is not addressed by this thesis, but remains open for further research.

4.3.4. Disk Storage Utilization

Since file blocks in RAMA are assigned to disk lines by a pseudo-random algorithm, some line in the file
system will fill up with valid data while others have plenty of free space. RAMA’s use of tertiary storage,
can mitigate the problem by using migration to balance the storage load. Unlike traditional file systems that
must keep 10-20% of the disk blocks free [54,73], RAMA can fill the entire disk with valid data so long as
there are enough clean blocks to reallocate to new files.

A disk line in RAMA is considered full only if all of its blocks are dirty. Free blocks may be reused imme-
diately, and clean blocks can be converted to reclaimable blocks and then reallocated without referencing
tertiary storage. If most or all of a line’s file blocks are dirty, they must be quickly copied to some other
location in the storage hierarchy so future writes can proceed at full speed. This can be done quickly if the
MPP running RAMA has one or more relatively large disks running a conventional file system attached to
it. This additional storage is considered part of the tertiary storage system, but it has much lower latency and
higher bandwidth than tapes or optical disks. Data that must be moved here can be retrieved with latencies
on the order of 100 ms or less, as compared to the multiple second penalties that tape drives impose. Since
the external storage will be used infrequently — ideally for fewer than 1% of total accesses — its lower
performance will have little impact on overall system performance. In this way, RAMA can greatly improve
the disk storage utilization of the disks within the MPP at little performance and hardware cost.

4.4. Conclusions

This chapter describes the design of the RAMA file system, which uses pseudo-random distribution to get
good file system performance from an MPP with disks attached to each processor node. Since every file
operation in RAMA involves only the node making the request and the node storing the requested data, the
RAMA design scales well to hundreds of processors. In addition, RAMA is well-integrated with tertiary
storage, as it provides transparent file block migration. Rather than include complexity in the disk file sys-
tem, RAMA keeps access to disk as simple as possible. The complexity is left to the tertiary storage system,
where software latency pales in comparison to the multi-second latencies of tertiary storage devices.

RAMA uses the disk line as a basic container for file blocks on disk. Each disk line contains hundreds of
file data blocks and a line descriptor — metadata describing those blocks. A file block is mapped to a disk
line by hashing the bitfile ID and block number of the block. Within each disk line, however, file block
placement is managed only by the node controlling the disk storing the disk line. Rather than keep a single
table of all the blocks in a single file, RAMA relies on the combination of hashing and the disk line table of
contents to locate a file block. As a result, any node in the MPP can find the disk on which any piece of data
is stored without the assistance of a central directory. Each block in the file system is pointed at by exactly
one file system pointer — an entry in the appropriate line descriptor. This scheme keeps RAMA consistent,
as a block is always either free or allocated to the file as described in the block’s entry in the line descriptor.
Additionally, the file system sequences file block writes and line descriptor updates so that a file can only
contain data written to it, and no other data. This relationship is preserved even if a line descriptor update
is delayed, allowing better performance by postponing metadata updates.

The remainder of this thesis describes simulations to explore the RAMA design space and the design’s sen-
sitivity to advances in technology. RAMA’s performance is also compared to that of simulated striped file
systems, showing that the RAMA design performs comparably to conventional striping. In the following
chapters, we will demonstrate that the combination of the RAMA design’s performance, scalability, sim-

plicity, and integration with tertiary storage make it a good file system choice for the massively parallel pro-
cessors of the future.
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5 Simulation Methodology

When RAMA was designed, there was no hardware platform available to run such a file system, as it
required a massively parallel processor with one disk per processor and relatively high-speed node inter-
connects. Instead, the concepts behind the file system were tested in a simulator. This method has several
advantages over building a real system: implementation speed and the ability to test design decisions over
a wide range of applications and configurations.

This chapter first describes the simulator that models the RAMA file system. The event-driven simulator
includes parameterized models of disks and MPP interconnection. It has the ability to “run” applications to
generate workloads for the file systems. The simulator does not actually execute every CPU instruction in
the MPP applications. Instead, it uses program skeletons to model applications as sequences of file system
requests separated by delays based on the real applications’ access patterns. In addition, the simulator uses
several parameterized synthetic workloads to stress the file system design.

The program skeletons we have used to drive the RAMA design are abstracted from real applications run-
ning on MPPs. The selected applications are all I/O-intensive; programs that do little I/O will be handled
equally well by most file systems. The real applications whose skeletons are used in the studies are based
on dense matrix decomposition and global climate model codes. LU matrix decomposition [33,34] is used
to solve large systems of simultaneous linear equations in fields such as airplane design. These equations
can involve more than one hundred thousand equations in as many independent variables, making the result-
ing matrix too large to fit into memory. The global climate model code simulates the behavior of chemical
species in the atmosphere capturing their interaction with standard components such as moisture, CO, con-

centration, and temperature. Since the chemical model is loosely coupled to the standard radiation and con-
vection model, the file system is used to transfer data between the two. A global climate model, whether
standard or chemical, writes its state out every 12 or 24 simulated hours, since scientists do not need more
frequent samples for their studies. However, a model actually computes new state every 5 to 30 simulated
minutes, depending on the model. Because the standard model passes its state to the chemical model every
iteration rather than every 12 hours, it requires two orders of magnitude higher write bandwidth.

The remainder of the workloads are synthetic. One set represents the large fraction of MPP applications with
regular data access patterns. The generator for this workload produces a stream of references derived from
parameters such as access size, distance in the file between accesses, and computation necessary between
accesses. Another workload generator models small file references on an MPP by making many simulta-
neous small references to randomly selected files.
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S.1. Simulator Design

The RAMA simulator is an event-driven simulation of a multiprocessor and its disks. Each node in the mul-
tiprocessor may have one or more disks, and is connected to other nodes by one or more network links. In
addition, each node has a single CPU that may be “used” by simulated applications. The simulator was
designed to run on a uniprocessor; as a result, we only simulated disk I/O and associated network traffic.
Simulating the entire computation, including non-1/0 network traffic and computation, would have proven
intractable. For example, LU-decomposition of a matrix with 16,384 elements on a side would require a full
day even for a single 50 MFLOP processor. The workstations used for simulation were no faster than this,
and many were considerably slower. Additionally, many simulated problems would have taken more CPU
time, and so would have been impossible for a workstation to complete in a reasonable time.

5.1.1. Simulator Implementation

The simulator was written in C++ and used the AWESIME threading package [37] with a few enhance-
ments. A program using AWESIME runs as a single process from the operating system’s point of view, but
may have many threads, each with its own stack and program counter. For event-driven simulation, AWES-
IME also maintains a “current time” for each thread. A thread must advance its time explicitly; in doing so,
it gives up the simulating CPU and allows another thread to be run. As a result, threads may only be pre-
empted at points at which a time advancement could occur, such as using a resource or waiting for another
event to occur. This restriction greatly simplifies program design by making multiple thread access to
shared data structures easier. Threads need not worry that they might be preempted at a random location,
allowing them to use simpler non-atomic methods for updating shared data structures.

AWESIME also provides facilities which are equivalent to servers in queueing theory. Threads may use
facilities to request and utilize a resource, such as a CPU or a disk. Facilities may accommodate one or more
threads simultaneously (defined by the program), and maintain a first-come, first-served queue of requests.
Threads are suspended while they are waiting for a facility to become available. When a thread does acquire
a facility, it may use it for any period of simulated time. However, the real time needed to model this access
is independent of the simulated time. The important figure for simulating a multiprocessor file system, then,
is not the total simulated time, but the number of events such as disk requests and simulated “context
switches.” Facilities thus allow the simulator to manage limited-use resources effectively without taking
much real CPU time.

The RAMA simulator has three types of resources — disks, network links, and node CPUs. Each resource
instance can accommodate a single user at a time, as it makes little sense for a single node interconnection
or disk to be used by two processes simultaneously. Instead, these resources are serially shared among

threads requesting them. Figure 5-1 shows the interconnections between resources and threads in the sim-
ulator.

5.1.2. Disk Model

The simulator uses a relatively simple model to represent the behavior of each disk. The input parameters
to the model are listed in Table 5-1. The model does not include disk track buffers, and uses a generic seek
time curve based on minimum, average, and maximum seck times. In addition, tracks are assumed to be a
constant size regardless of their location on disk. These approximations limit the accuracy of the simulation.
However, the approximations affect both the RAMA file system results and those for a striped file system
used as a baseline. Since the important results are in the comparison between the two file systems, the lower
level of detail is not as significant.

Figure 5-2 shows the sequence of operations simulated for each disk access. First, the request is put into the
disk’s request queue. Accesses are scheduled using the CSCAN algorithm, which moves the disk arm
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Figure 5-1. Threads and resources in the RAMA simulator.

The RAMA simulator uses threads for two purposes. First, a thread represents an application process on a
single MPP node. Second, resources such as disks and network links use threads to schedule incoming
requests and manage the devices they model.

steadily from one edge of the disk to the other. At any time, the next request to be serviced is the one closest
to the disk arm and ahead of it. Once a request is pulled off the queue, the disk arm must seek to the first
cylinder in the request. The simulator calculates the seck time using the distance in cylinders between the
two points and the inputs to the disk model in Equation 5-1 [51]. This equation models seek time as the sum
of head acceleration, constant velocity travel, deceleration, and settling time. The resulting seek curve for
the ST31200N is shown in Figure 5-3. At the same time as the seek is occurring, the active head is switched
so it can read or write the appropriate surface. Then, the disk must rotate to the first sector of the request.
The simulator keeps track of the rotational position of each disk, and knows where each sector starts. When
the head is finally at the correct block, data transfer begins.

5.1.3. Network Model

Impact on the interconnection network is another important factor in the performance of the RAMA file sys-
tem. To measure this effect, the simulator includes a model of the links between the nodes in a multiproces-
sor. This model is primarily concemed with the bandwidth used by the file system. The simulator supports
several network topologies, including a mesh (Figure 5-4) and three arrangements that assume an infinite-
speed “hub” but a finite-speed connection to each node (Figure 5-5). Other simulation parameters affecting
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Equation 5-1 A=z 10minseekTime + 15avgSeekTime + SmaxSeekTime

3JcylindersPerDisk
B = TminSeekTime — 15avgSeekTime + 8maxSeekTime
3JcylindersPerDisk
seekTime (dist) = { 0 ifx=0
AJdist =1+ B (dist— 1) + minSeekTime if x>0
Parameter Value for ST31200N disk
Disk surfaces 9
Cylinders per disk 2700
Bytes per track 40KB
Disk capacity 1GB
Revolutions per minute 5400
Minimum seek time 1.0 ms
Average seek time 9.0 ms
Maximum seek time 22.0ms
Internal transfer rate (ZBR) 27 to 45 Mbits/s
External transfer rate (peak) 4 MB/sec synchronous
10 MB/sec asynchronous

Table 5-1. Parameters for the simulator’s disk model.

This table lists the parameters describing a disk modeled by the RAMA simulator. The second column
gives the relevant values for a Seagate ST31200N [78], a 3.5” low-profile drive with a fast SCSI-2 inter-
face. This drive formed the basis for the models used in simulation, as it was the 3.5” drive with the high-
est capacity in the Seagate line at the time.

the network are summarized in Table 5-2. The effect of network configuration on RAMA s performance is
studied in Section 6.1.1.

The simulator models the interconnection between the CPUs in the multiprocessor as a set of resources.
Each processor has one or more links to the other processors in the MPP. These links have a finite bandwidth
and only allow a single message at any given time. Thus, this model will experience network congestion if
too much data is sent over a single link.

The model also includes a delay parameter for each packet. During this time, the node sending the packet
executes any software necessary to get the data to its destination. This delay is incurred once per packet. In
the simulator, packets are large — up to 32 KB by default. This is done to cut down on time spent simulating
the interconnection network. It takes approximately the same time to model the delivery of a single packet
as it does to simulate a single disk 1/O. If packet sizes were very small, most of the simulator’s time would
be spent modeling the network. Large packets actually make network latencies worse than small packets. A
single 32 KB packet will use a 100 MB/s link for 320 ps, queueing up other packets behind it. Using many
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Figure 5-2. Sequence of operations for a single disk request.
This is the sequence of operations that the simulated system models for a single disk access. A disk request

is queued, and serviced in CSCAN order. When a request is pulled off the queue, the disk seeks to the cor-
rect cylinder, switches heads to the correct track, and rotates to the first block in the request.

30

Time (milliseconds)
- - n N
o (3] o (S, o [3,]
] ] ] 1 ]

T T T T 1
400 800 1200 1600 2000
Seek distance (cylinders)

o

Figure 5-3. Disk seek time curve for ST31200N.

This graph plots seek time against seek distance (in cylinders) used by the simulator to model the Seagate
ST31200N. The seek time in this graph is not empirically measured. Instead, it was generated using the
formulas in Equation 5-1.

small packets, on the other hand, allows a single small transfer queued behind a large one to complete more
quickly. Since control packets for the file system are typically small, large packets could only hurt RAMA’s
performance.
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Parameter Typical value
W mesh T
Link bandwidth 100 MB/s
Maximum packet size 32KB

Packet latency 10 us

Table 5-2. Simulation parameters for the interconnection network.

All of these parameters govern the network model used by the RAMA simulator. The performance figures
used are less than those attained by the Cray T3D. The packet size is larger than the normal packet size
used in MPPs. This choice was made to speed up the simulation. Large packets actually cause greater net-
work congestion by preventing small packets from getting through quickly. Thus, the results are more pes-
simistic because of the granularity of network transfers.

While the simulator supports other topologies, most experiments used the mesh topology because it most
accurately represents today’s MPP interconnection networks. Other topologies, such as the hub, might be
more applicable to a network of workstations used as a single parallel computer. Section 6.1.1 examines
the effect on RAMA’s performance of varying these parameters.

:':...-|

s l
] e (Y el

R e S RO

Figure 5-4. Mesh network topology.

The mesh network topology has become more common in modern MPPs because it is considerably
cheaper than topologies such as the hypercube. In a mesh, every node has four links — one each to each of
its neighbors in a two dimensional plane. Nodes at opposite edges may be connected to each other as indi-
cated by the dashed line. If this is the case, as it was in the simulations, the mesh network is a torus.

The simulator uses a store-and-forward model for any packets that must traverse multiple links. The route
is chosen in advance by the simulator, and is independent of any existing congestion. For the mesh network,
for example, the simulator sends a packet across and then up or down to its destination. All packets from
one specific node to another follow the same path. While these routing algorithms would perform poorly in
a heavily-loaded network, the data in Chapter 7 show that the simulated file systems do not cause conges-
tion. Additionally, the actual load on individual network links was very low — less than 3% for 100 MB/s
links. The low level of congestion meant that there were few packet “collisions,” so the choice of a store-
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Figure 5-5. Star network topology.

While most experiments used a mesh topology, the simulator also supports simpler connection schemes. In
particular, a star network might be used by a network of workstations. In such a network, each computer
has a single link, and all links meet in a very high bandwidth switch. This nexus is often implemented
using a crossbar switch. A star network is attractive because it uses only one link per node, and all mes-
sages must only travel two hops. However, it does not scale well since it is very difficult and expensive 1o
build a hub to support hundreds of high-bandwidth links simultaneously. Many ATM networks use this
network topology, also called a hub-and-spoke topology.

and-forward model rather than other methods used in MPPs had little effect on network bandwidth and
latency.

A packet must be fully received by a node before it can be resent on a different link. However, the latency
to send a message is only paid by the processor that first sends the packet. Subsequent routing is assumed
to occur in hardware, and does not slow the message down. The simulator chooses the shortest route for
each packet. There is no need for a routing algorithm for the network topologies that do not provide multiple
paths between nodes.

5.1.4. Multiprocessor CPU Model

The simulator models each processor in the MPP as a single AWESIME facility. Any application program
that executes code on a processor must wait until the processor is available to run it. The simulator does not
support preemptive multitasking. For many simulations, this presented little problem. The experiments in
this thesis involved running just a single application over the entire machine, so there was no alternate pro-
gram that could use spare (simulated) CPU cycles. Other simulations might model more than one applica-
tion running on the MPP, since current parallel processors use multiprogramming to run several jobs at the
same time. This thesis does not include simulation of multiprogrammed workloads; modeling of multiple
simultaneous programs on an MPP is suggested as future work in Chapter 8.

File system requests themselves were not required to wait for CPU time for two reasons. First, including
them would have complicated the simulation significantly by requiring preemption to be added to AWES-
IME. Second, file system code would require very little CPU time on a processor with a single disk, as
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RAMA would be configured. A single file I/O request takes approximately 20,000 instructions to execute.
This would require 400 microseconds on a 50 MIPS processor, the minimum which was simulated. If a
single disk were able to complete 100 I/Os per second, its CPU would use 40 milliseconds — 2.5% of total
CPU time. For faster processors, this number would be lower still. This assumes no more than a single disk
per processor. In the striped file systems that were simulated, however, a node in the MPP could have 32 or
more disks attached to it. In those cases, the simulator assumed that a separate dedicated CPU handled file
requests the only load on the processor directly on the interconnection network is the added amount of data
sent to and from the attached disks.

5.1.5. File System Simulation

The RAMA simulator does not include a full simulation of the file system. Instead, it only simulates the
movement of file data between clients and disks, including any network transfers. The simulator does not
model RAMA'’s handling of metadata, and does not simulate file migration. The movement of files between
secondary and tertiary storage is limited by the speed of the tertiary storage device, and would consume only
a small fraction of the available file system bandwidth. Thus, including file migration would have little
effect on applications’ read and write bandwidth to secondary storage. Since the transfer rate between disk
and most tertiary storage devices is less than a few megabytes per second, any program requiring a tertiary
storage access will be limited by the bandwidth of the tertiary storage device; RAMA would perform no
better and no worse than any other file system delivering a file stored on tape.

The file system simulation includes the mapping from bitfile ID and block number to a disk line and the
node that owns it. The real file system would then read the line descriptor if it were not already cached and
search for the block descriptor for the block’s address. The simulator, on the other hand, assumes that the
line descriptor is cached in a processor’s memory and simply reads and writes the data on disk. Since storing
the line descriptors would have required too much memory, the simulator assumes that the requested data
is stored contiguously starting at a random location within the disk line. Caching all of the line descriptors
for a 1 GB disk would require only 2 MB of memory, as shown in Section 4.1.2.1; thus, it is reasonable to
assume that positional metadata is cached. Likewise, the assumption that data will be stored consecutively
is justified by Section 4.2.2, which presents a scheme for reorganizing disk lines to keep a file’s blocks con-
tiguous.

The RAMA simulator fully simulates the remainder of the actions for read and write requests, as dia-
grammed in Figure 5-6. A file request is sent from the client node to the server node for the requested block.
If the request is a write, the message is large enough to include the data being written. The server node then
performs the disk I/O. If the request is a read, a packet of the appropriate size is sent back to the client node.
No reply is sent for a write, as the sending node assumes the write completed unless a message to the con-
trary is sent.

The simulator also models a simple striped file system for the performance comparisons in Chapter 7. As
for RAMA, the simulator ignores metadata in the striped file system. The striped file system model takes
parameters such as stripe size and the number of disks in a stripe and uses them to map file blocks to disks.
However, it does not use a sophisticated scheme to allocate blocks within disks. Instead, it places an entire
stripe unit (the amount of consecutive file data on each disk) sequentially starting at a random block on the
disk.

Since the simulator does not simulate long-term behavior, it was not necessary to include complex space
allocation techniques. Additionally, omitting many potential pitfalls of striping allows a comparison of the
two layout schemes without the synchronization complexity many striped file systems impose. As
Chapter 7 will show, however, RAMA performs comparably even to a stripped-down striped file system.
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Figure 5-6. Actions simulated for a read or write request.

This diagram shows the actions the RAMA simulator models for a read or write request. First, the simula-
tor determines which disk line and node own the requested data. A message is sent from the client node to
the server node with the desired data. If the request is a write, the data to write is also sent at this time. The
server node then performs a disk I/0. At this point, a write is complete. For reads, however, a reply includ-
ing the requested data is sent back to the client node.

5.2. Applications Simulated

As mentioned earlier, the RAMA simulator uses program skeletons from both synthetic and real applica-
tions to model the file system accesses on an MPP. Two of the applications — global climate modeling and
out-of-core LU decomposition — are abstracted from real programs running on existing MPPs. The global
climate model used in the simulator integrates a standard general circulation model with a model of the
behavior of chemical species, and is used to predict both future climate and the future concentrations of trace
gases in the Earth’s atmosphere. LU decomposition solves large systems of simultaneous linear equations.
Out-of-core decomposition must be used when the matrix is too large to fit into main memory.

The other workloads in the simulator are synthetic workloads that attempt to mimic common MPP file
access patterns. One workload models applications such as seismic data processing that read very large files
sequentially and do some processing on each data chunk. Another workload, which is actually a special case
of the first, uses all of the nodes in the MPP to read or write a very large file as rapidly as possible. Both of
these applications access large files from disk, and both require high bandwidth. A third workload, designed
test RAMAs ability to access small files, uses multiple threads on each node to read many small files simul-
taneously.

Each workload in the simulator was modeled as if it were the only application running on the MPP. The
simulator can model multiprogramming; however, this thesis is primarily concerned with showing that the
RAMA file system performs well for demanding workloads. Future work will address RAMA'’s perfor-
mance under multiprogramming workloads. Since RAMA uses pseudo-random distribution, however, we
expect that it will perform well even when two applications “destroy” each other’s regular access pattemns.

The applications simulated were chosen because they require high file bandwidth and are sensitive to data
placement on disk. Many programs that run on MPPs do not request many megabytes per second of I/O.
However, such programs also place little stress on the file system. For them, any data layout would be ade-
quate, as file I/O is not their bottleneck. A program that transfers only a few megabytes per second between
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disk and memory performs similarly under most modem file systems, including RAMA. Applications that
request hundreds of megabytes of file data per second, on the other hand, put a much higher load on the file
system. The arrangement of data on disk is critical for these applications, since poorly laid-out data leads to
slower file I/O and makes the bottleneck worse. Such programs are becoming more common as faster pro-
cessors allow users to handle larger data sets which may not fit in main memory.

The application skeletons used in the simulator preserve the I/O request patterns of the original applications
as much as possible. However, they replace the computation phases of the programs with delays in the sim-
ulator. In this way, a workstation can simulate any amount of uninterrupted computation in a few millisec-
onds rather than the actual computation time. Simulating programs in this way allows the examination of
more design points because each simulation requires hours rather than the days required to actually perform
all of the MPP application’s computation on a workstation.

For example, decomposing a square matrix with 32,768 elements on a side requires 1013 floating point oper-
ations (FLOPs). On a 20 MFLOPS SparcStation 2 workstation, these calculations would take 500,000 sec-
onds, or almost 6 days. A typical simulated MPP, however, might have 256 processors each running at 100
MFLOPS, and be able to complete the decomposition in about 400 seconds — hardly a large problem.
When the simulator models computation as simply a simulator delay, the model takes only 800 seconds to
complete. The speed of the simulation is proportional to the number of 1/Os that must be simulated, and is
independent of the actual computation time on an MPP. This allows simulation of larger problems, but the
difficulty of simulating 1/O remains. The simulator needs about 3 ms to model a single 32 KB request from
an application, limiting it to 10 MB of I/O per second of simulator time. Applications that have I/O rates
over 10 MB per second are thus simulated on a SparcStation 2 more slowly than they would actually execute
on a real MPP. This slowdown occurs because a real MPP might run at 25 GFLOPS or more, as compared
to 20 MFLOPS for the SparcStation. For some applications with 1/O rates of 100 MB per second or more,
the slowdown factor was 10 or greater. Since the simulated applications would take no more than a few
hours to complete on an MPP, however, the simulation of their file requests took less than a day.

This rest of this section describes the applications modeled by the RAMA simulator. Matrix decomposition
and the global climate model are based on real-world applications, while the strided sequential and small
file access models are synthetic. Each program’s section discusses the program’s purpose and describes the
program skeleton used to model its accesses. Each program’s skeleton is hard-coded into the simulator;
however, adding additional skeletons (and thus applications) is a simple matter because the skeletons are
written in C++ and compiled with the simulator.

5.2.1. Strided Sequential Access

Many massively parallel applications are characterized by regular accesses to a single file, interleaving
computation and I/O. These programs generally fall into one of two categories: readers and writers. Some
programs, such as seismic analysis, read a large data file and perform operations on each successive chunk
of data. Others, including many simulations, keep all of their data in memory and periodically write out a
snapshot of memory. Both of these types of applications, however, exhibit regular access patterns to storage.

Figure 5-7 shows the algorithm that the simulator used to define the access pattern of a program making
strided sequential accesses and their effects on the I/O request stream. As the fi gure shows, one parameter
is the time between successive I/Os on a single processor. This quantity is affected by both the amount of
computation the application must do, and the speed of a single processor. If problem size and MPP size are
held constant, the time is inversely proportional to a single CPU’s MFLOP rate. The effects of changing the
problem size or the MPP size, however, vary by problem. For problems such as seismic analysis, the amount
of computation is proportional to the amount of data processed. Simulations, on the other hand, may simply
become more detailed on a faster CPU, increasing computation needs without similarly increasing I/O
demands. [58] classifies large applications into two groups: one for which I/O demand increases linearly
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firstOffset = thisNode * nodeDelta
for i = 1 .. iterations
offset = firstOffset
for j =1 .. chunksPerIteration
offset = offset + chunkDelta
Read or write reqgSize bytes at offset
Compute for thinkTime
firstOffset = firstOffset + iterationDelta

Figure 5-7. Algorithm for the strided sequential access application.

The input parameters to the strided sequential access model are nodeDella, chunksPerlteration, iterations,
reqSize, and thinkTime. NodeDelta determines the “distance” in the file between nearby nodes’ accesses
during an iteration, while iterationDelta controls the distance between successive iterations on a single
node. Typically, one of these parameters is small and the other large. These two cases are analogous to
row-major and column-major accesses 1o a matrix. ThinkTime and iterations control the total running time
and, in conjunction with regSize, the computation granularity of the application. ChunkDelta and chunks-
Perlteration allow the algorithm to model applications that use nested loops to gather data from several
parts of the file for a single compute phase.

with processor speed, and another for which I/O demand increases as the 3/4th power of processor speed.
Thus, I/O demands grow with processor, though the rate differs between the two classes of programs.

The rest of the parameters to the strided access model determine the order in which the various nodes of the
MPP access the file. Request size often depends on the available memory on each node. If an application
can use more memory on each node, it will attempt to process more data in each iteration.

The seek distance, or simply distance, between the start of adjacent nodes’ 1/Os, on the other hand, reflects
an application’s basic problem decomposition. Some programs prefer to have each node work on its own
fragment of the computation. In such codes, the distance between adjacent nodes is large, giving each node
its own section of the file. For other applications, however, the distance between adjacent nodes is small.
This allows the entire MPP to work as a unit and progress through the file from start to finish. However,
each individual node will, under this scheme, perform a long seek between iterations. Thus, the distance
between adjacent nodes is generally inversely related to the distance between iterations for a single node.

The remaining parameters are available to fine tune the access pattern or simulate access from nested loops.
One allows an application to request several small chunks from a file between each computation phase
instead of just one. The other sets the distance between consecutive accesses issued at the same time, as
compared to the distance between the starts of requests for successive iterations.

5.2.2. LU Matrix Decomposition

Matrix decomposition is a method used to solve large systems of dense linear equations. For example, air-
craft designers use LU matrix decomposition to solve the thousands of equations involved in doing electro-
magnetic analysis of a stealth airplane. The commonly-used algorithms for decomposition require

3
0( n )FLOPS, where n is the number of elements along one edge of the matrix. As a result, large matrix
decompositions are often done on MPPs.

While MPPs solve one difficulty with matrix decomposition, another hurdle remains. The data set for a
decomposition is also large, containing n? floating-point numbers. For example, a matrix of double-preci-
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sion! numbers with 32,768 elements on a side requires 8 GB of storage. On a 256 processor MPP, it would

require 32 MB of memory per processor just to hold the entire matrix in memory. If each processor ran at
100 MFLOPS, the problem would be solved in 900 seconds, or 15 minutes. Of course, researchers would
like to solve much larger systems of equations. [77] reports that scientists would like to solve 150,000 equa-

tions in 150,000 variables. This problem would have a 180 GB input matrix and use 2 x 10'> FLOPs. On a
256 processor machine running at 200 MFLOPS per processor, it would take about 12 hours to solve. How-
ever, the application would need 720 MB of memory per processor to hold the entire matrix.

Application designers address the storage problem by using out-of-core algorithms. These methods use the
disk to store most of the data, and operate on relatively small chunks in memory. The advantage to this
method is machine cost — disk is considerably cheaper than RAM. The drawback, though, is that out-of-
core algorithms place a high load on the I/O system. For example, decomposing a 150,000 x 150,000 matrix
with 256 processors and 32 MB of memory per processor would require approximately 20 TB of I/O. Since
the problem would take 40,000 seconds, this is an 1/O rate of 500 MB per second.

The simulator implements out-of-core LU decomposition, as described in [93]. LU decomposition trans-
forms a matrix into a product of two new matrices of the same size. One matrix is upper-triangular, and has
no non-zero elements below its diagonal. The other result matrix is lower-triangular, and is em pty above the
diagonal. After the decomposition, back-substitution into the upper-triangular matrix easily yields the solu-
tion to the system of equations.

The out-of-core version of LU decomposition divides the matrix into many columns, each of which fits into
one quarter of the free memory on a node. Individual columns are divided up statically among processors
in such a way that the computational load is as balanced as possible during the entire execution time. The
algorithm, shown in Figure 5-8, proceeds left to right, reading in a column, updating it with previous col-
umns, decomposing it, and writing it back to disk. Note that updating a column requires reading the lower-
triangular half of every column to its left. As a result, the total amount of I/O done by the algorithm is

4
0( n/M ) bytes, where M is the total size of the memory available across all nodes. Thus, doubling the

problem size without changing the machine’s characteristics increases the amount of computation by a
factor of 8 and the I/O by a factor of 16.

for column = 1.. ncols
Read column from disk
for prev =1 .. column-1
Read lower triangular portion of prev from disk
Update column with prev
Decompose column into upper and lower triangular parts
Write column back to disk

Figure 5-8. Out-of-core LU decomposition.

This is the out-of-core LU decomposition algorithm, from [93], used in the simulator. The matrix is
divided into columns that fit into memory. Each column is updated with the columns before it, broken into
upper- and lower- triangular parts, and saved.

1. A double-precision number requires 8 bytes (64 bits) of storage.
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Like many applications on traditional supercomputer applications [60], out-of-core LU decomposition is

read-intensive. Each entry in the matrix is written exactly once; for a matrix of size n, n? entries are written.
On the other hand, a column is read once for each column to its right. While these accesses only read the
part of the column corresponding to the lower-triangular portion of the matrix, they are the dominant con-

4
tribution to the OL n/M ) bytes written. Only when M approaches n? do reads cease to dominate. This

corresponds to the case that the memory is sufficiently large to hold the entire matrix, making out-of-core
solution unnecessary.

Good I/O performance is thus crucial for out-of-core LU decomposition. This is especially true if processors
become faster, allowing larger problems, without corresponding decreases in memory cost per megabyte.

5.2.3. Global Climate Modeling

Modeling the earth’s climate is another important application typically run on supercomputers and MPPs.
General circulation models (GCMs) break the earth into thousands of grid cells, each a few degrees of lat-
itude and longitude on a side. Above each grid cell are ten or more vertical layers, each of which is consid-
ered a separate cell in the simulation. The GCM models two types of behavior: intracell physics and
convective dynamics. The physics section of the code calculates the effects of phenomena within a cell on
the local piece of the atmosphere. These phenomena may (depending on the level of detail in the model)
include incoming solar radiation, ocean or ground radiation, and clouds. The processors in an MPP perform
little communication during this phase of the code, since each cell may be updated independently of all oth-
ers. The dynamics portion of the model, on the other hand, tracks the movement of heat and atmospheric
compounds (H,O, CO,, etc.) between cells and thus requires interprocessor communication. The GCM
computes the state of a cell at time ¢ + Az from the state at ¢ in both the cell itself and neighboring cells. For
current GCMs, At is typically between S and 30 minutes of simulated time.

Traditional GCMs do not place a high demand on the I/O system. The equations goveming the behavior of
the atmosphere are complicated and require a good deal of CPU time. Additionally, climatologists do not
need the output of the climate model after every time step. Instead, they take a snapshot of the climate every
12 or 24 simulated hours. These snapshots comprise a “movie” of the climate on Earth over a period of years
or decades. A snapshot’s size depends on the resolution of the grid the GCM uses. Since current machines
are not fast enough to simulate using a very fine grid, they produce less than 50 MB per simulated 12 hours.
However, it takes many minutes to simulate 12 hours of Earth’s climate, so the overall I/O rate is relatively
low — CPU time dominates I/ O time.

Recently, though, there have been some developments that greatly increase GCM demand for file 1/0.
Researchers now wish to simulate the effects of various chemicals on the atmosphere using a model, called
GATOR, that is decoupled from the primary GCM. GATOR is used to simulate these chemical processes
in the same way that a standard GCM does: it updates the chemical species in each cell based on the condi-
tions in the cell and its neighbors during the previous timestep. Since GATOR may be run separately from
the main GCM, however, it needs to take a snapshot of the GCM'’s state every timestep, rather than every
12 hours. For a GCM with a 10 minute timestep, this increases the I/O rate by a factor of 72. In addition,
the two models prefer different data layouts. The standard GCM lays data out along lines of longitude, while
the chemical model (GATOR) groups data in a block-cyclic fashion, as in Figure 5-9. This difference in data
layout will cause difficulties for standard striped file systems, but not for RAMA, as Chapter 7 will show.

5.2.4. Small File Access

Since RAMA is designed to support small file access as well as supercomputer applications, one workload
creates a stream of relatively short accesses to randomly selected files. The resulting reference stream is
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Figure 5-9. Block-cyclic layout of data for GATOR.

GATOR, an application to model the behavior of chemicals in the atmosphere, uses data arranged in a
block-cyclic layout. This arrangement provides good load-balancing, as the amount of computation done
for a cell varies by the its latitude. Grouping cells on the same processor decreases communications cost.
These needs are balanced in a block-cyclic layout. The figure above shows block-cyclic layout for four
processors; a real model would use many more processors.

similar to that generated by a network of workstations, as described in [2]. However, this workload is purely
synthetic and is not based on actual traces.

The small file access workload generator creates one thread on each MPP node running the “application.”
Each thread issues an asynchronous read or write request for an entire small file and then waits a random
exponential length of time from the start of the previous request before making its next request. This method
of generating requests requires a throttle, though, since it is possible to request files faster than the file
system can satisfy requests. Thus, the workload generator includes a parameter that sets the maximum
number of outstanding requests for any thread. If a thread reaches that limit, it must wait until a request in
progress completes.

The probability that an access will be a read is a parameter to this workload, as is the average delay between
the starts of consecutive requests. The bitfile ID of each file is randomly selected, as is the actual interre-
quest interval. File size, however, is a fixed workload parameter and is thus the same for each file in a sim-
ulation run. Since each request transfers the entire file, all requests made by this reference generator are the
same size.

This workload does not accurately model workstation file access. Rather, it is intended to gauge RAMA’s
ability to simultaneously access many small files. A real network of workstations would generate references
to files of widely varying sizes, though real workstation files are small and most references read the entire
file [2]. While this workload cannot be used to accurately predict RAMA'’s performance as a workstation

68



network file server, it will show that RAMA performs well while providing many small files. Since RAMA
users may use workstations as well as supercomputers, low latency on small file service is essential.

5.3. Conclusions

This chapter describes the simulator and workloads used to test the RAMA file system’s key concepts. The
MPP hardware and file system are modeled by a multithreaded simulator based on the AWESIME threading
package. Disks, network links, and CPUs are all resources managed by the threads in the simulator. Mod-
eling these resources allows the simulator to show RAMA’s impact on the MPP. Additionally, each
resource’s parameters can be altered to predict the file system’s performance on future hardware. The sim-
ulator uses a simple model of both the RAMA file system and a generic striped file system to validate the
basic concepts behind RAMA's design.

File reference streams for the simulator are derived from both real applications and synthetic workloads, all
chosen because they place high demands on the file system. The simulator uses program skeletons to gen-
erate these reference streams. Each skeleton models an MPP application as a sequence of file requests alter-
nated with computation. By modeling computation as usage of the CPU resource, the simulator can simulate
programs that would take days to run on the workstation used for the simulation experiments.

The real applications modeled in detail are LU decomposition and global climate modeling. LU decompo-
sition is used to solve dense systems of linear equations. It is a read-intensive algorithm that makes many
passes through a single file as it decomposes the matrix. Global climate modeling, on the other hand, is a
write-intensive algorithm that uses the file system to store its output. For the algorithm in the simulator, sec-
ondary storage is used as an intermediary between two separate programs cooperating to produce a more
accurate atmospheric model. The simulator also uses synthetic workloads to model both generic MPP appli-
cations and small file access similar to that generated by a network of workstations.

Chapter 6 will use this simulator to explore the sensitivity of the RAMA design to advances in technology.
It will show that RAMA is disk-limited and that pseudo-random data placement does not place a hi gh load
on the interconnection network even as disks become faster. Chapter 7 then compares RAMA'’s perfor-
mance to that of a striped file system on similar hardware. It will demonstrate that RAMA, without requiring
application configuration hints, performs comparably to a well-configured striped file system and far out-
performs poorly-configured striping.
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Sensitivity of the RAMA Design to
Changes in Technology, Design and Usage

The expected performance of the RAMA file system design depends on many parameters. These fall into
two broad categories: technological parameters and design parameters. A system designer has control over
design parameters, but the others are generally determined by the technologies used to construct the MPP.
For example, a machine could be built with any number of processors, but the processor speed is fixed by
the CPU chips available. In our terminology, the former is a design parameter, while the latter is a techno-
logical parameter.

This chapter explores the sensitivity of the RAMA design to various parameters goveming the network,
disk, memory size, and speed of the underlying processor. These values influence more than just the file
system, however. Faster processors allow the solution of larger problems [58], leading to even greater
demands on the file system. The goal of this chapter is to understand how well RAMA can scale with
advances in technology. The simulation experiments in this chapter project RAMA'’s performance for var-
ious problem sizes as well as for future MPPs.

In this chapter, we will demonstrate that the RAMA design scales well with improvements in technology.
Since the file system avoids software bottlenecks during reads and writes, faster disks allow RAMA to pro-
vide files at higher bandwidth and with lower access latencies. Network parameters, on the other hand, have
little effect on file system performance. Disk latency is much longer than even the 1-2 ms network latencies
common today. As a result, varying network latency from 2 ms down to 5 ps only changes overall file
system performance by 1%. Similarly, interconnect network capacity affects performance only when the
aggregate bandwidth of every link is less than 10 times the maximum bandwidth from the file system. This
ratio is satisfied for current systems, and network bandwidth is increasing faster than disk bandwidth.

The graphs in this chapter focus on RAMA’s behavior under a special case of the strided access workload
— full speed reads. This workload, which reads an entire file without any computation, is used for two rea-
sons. First, RAMA'’s performance under this workload is similar to that under the other workloads tested,
as Chapter 7 will show. Second, the full speed workload is the only one in which an increase in RAMA per-
formance always results in a reduction in program execution time. For most applications, such as matrix
multiplication and climate modeling, 1/O is overlapped with computation. A program that attains 90% pro-
cessor utilization with current technology can only gain an additional 10% utilization regardless of how well
the file system performs. A file system using future disks that can sustain five times the bandwidth of current
disks may be capable of a five-fold increase in file system bandwidth; however, this increased potential
bandwidth will not be realized unless the program’s CPU time is reduced. While future problem sets will
place higher loads on the file system, as Section 6.1.3 will show, we wanted to use the same “problem”
while varying the hardware the file system uses. Using a simple abstracted benchmark — full speed reads
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— allows the simulations to vary a single parameter rather than changing both the file system parameters
and the application parameters.

The first two sections in this chapter analyze the effects of changing parameters on performance. Section 6.1
discusses the effect of technological improvements to disks and networks on RAMA'’s performance. It will
also consider the impact of larger memories and faster processors on bandwidth required by MPP applica-
tions. The effects of design parameters on RAMA are then discussed in Section 6.2.

Technological and design parameters are not the only influences on file system performance. Another
important factor in a file system’s performance is the workload that it must satisfy. Most of the simulations
in this chapter involve large file workloads, as MPPs spend most of their time accessing large files. For
RAMA 1o be useful in heterogeneous environments, however, it must also perform well on small file work-
loads. Section 6.3 will examine RAMA s performance on a workstation-like workload. Simulation results
show that RAMA is suitable for small files as well as the large files used by the rest of the workloads sim-
ulated in this chapter.

The first three sections in this chapter all show RAMA'’s expected performance as a single parameter is var-
ied. The disks of the future, however, will have shorter seek times, higher rotation rates, and higher bit den-
sities than today’s disks. Similarly, MPP networks and processors will be faster than they are currently.
Section 6.4 will consider the combined effects of all of these improvements on RAMA’s projected perfor-
mance.

6.1. Technological Parameters

Technological parameters are determined by the kind of technology used to build the MPP hardware. They
change over time, but are generally fixed for a particular machine at a particular point in time. CPU speed,
network bandwidth and message latency, and disk bandwidth and latency are all technological parameters.

Modem MPPs are made of workstation-class CPUs connected by high-speed, low-latency networks. Since
each individual processor is a commodity CPU used primarily for workstations, per-processor performance
increases track those of general purpose computers. According to [40], CPUs increase in speed between
50% and 100% per year, so each node in an MPP doubles in speed in 12 to 20 months.

Interconnection network performance has also increased dramatically in the past several years. The nCube-
1[63], for example, achieved a maximum of 2 MB per second along a single network link. Today’s network
speeds have increased by two orders of magnitude. The Cray T3D multiprocessor [20] can transfer data at
over 150 MB per second between two nodes. Network latencies have also decreased as faster CPUs and
better network hardware have cut the software and hardware overheads of sending a message. While the
Intel Paragon’s message latency is over 150 ps, the latency to send a message on the Cray T3D is less than
2 ps.

Disk performance, however, has not kept up with improvements in network and CPU speed. While both
network links and CPUs are purely electronic devices, disks are mechanical. Mechanical considerations
such as rotation rate and head positioning speed limit disk performance, as do other factors such as the
amount of data that can be stored on a square inch of medium. Rotation rate for most disks only increased
from 3600 to 5400 revolutions per minute (RPM) during the period from 1980 - 1994. This is a 50%
improvement over 14 years, or just 3% per year. Even the fastest disks currently available rotate at 7200
RPM — an average annual increase of 5%. Smaller disk platters can rotate faster than large ones because
they use less power and stress the platter material less. However, disks are unlikely to decrease in size much
beyond an inch in diameter — a factor of three smaller than disks common today. Disk seek time is limited
by how rapidly an arm can move across a disk’s surface and how quickly the head can “settle” on the correct
track. As with rotation rate, smaller devices allow faster disk seeks. Nonetheless, disk seek times cannot
improve dramatically because disk heads cannot accelerate and move 100 quickly. While seek time and rota-

71



tion rate have improved slowly, storage density has grown more quickly. The amount of data that can be
stored on a single square inch of a disk platter — the maximum areal density (MAD) — has historically

followed the curve MAD = 10(‘v car—1971) million bits per square inch [40]. This density, however, is
the product of tracks per inch and data stored along a track in a single inch. Thus, data per disk track for a
constant diameter disk increases approximately as the square root of MAD. A disk’s sustained transfer rate
is proportional to the amount of data stored on a single track; while the disk may be capable of much higher
peak rates, it is limited in the long term to transferring data that passes under its read/write head. Disk per-
formance is discussed more completely in Section 2.1.

6.1.1. Network Performance

Since RAMA distributes data to disks pseudo-randomly, it relies heavily on the MPP interconnection net-
work to move data from where it is stored to where it is needed. RAMA must not use the network too
heavily, however, as applications running on the MPP also need to use the network to pass data between
cooperating processors. This section describes the results from experiments varying two network parame-
ters — network bandwidth and network message latency. Variations in these parameters are considered for
several applications running on each of two possible network configurations.

One network configuration tested is amesh network, a typical MPP interconnection scheme. In a mesh, each
processor has a link to its nearest neighbors in 4 directions. The mesh tested was a torus, as depicted in
Figure 54.

In addition, some simulations assumed a star network, in which each node has a single connection to a cen-
tral hub with very high bandwidth. The hub must provide a full-speed connection at any time between any
two nodes. This requires bandwidth equal to (linkBandwidth x numNodes)/2. A message from one node to
another takes exactly two hops: one from source node to hub, and the other from hub to destination node.
A workstation network using a star network might have long network message latencies (1 ms) and moder-
ate link bandwidth (10-30 MB/s per client). This section shows that the RAMA design achieves high band-
width on workstations connected by high-speed high-latency links as well as on MPPs.

6.1.1.1. Network Bandwidth

RAMA relies on high network bandwidth to move data between the disk the data is stored on and the MPP
node requesting it. Links of 100 MB/s allow RAMA to run at full speed without congesting the intercon-
nection network. While RAMA does not suffer much of a performance loss at lower bandwidths, it does
cause more congestion. Since MPP applications make heavy use of the interconnection network, they run
slower when the file system places a heavy load on the network links.

Figure 6-1 shows the total time needed to read a 32 GB file and the average load per network link for various
link bandwidths on a 16 x 8 processor mesh. It takes less than 1% more time to read a file with 10 MB/s
links than it does with 200 MB/s links. However, average link load is, as expected, 20 times higher for the
15 MB/s links than for the 200 MB/s links. If the network links are, on average, 30% loaded by the file sys-
tem, any applications that use the interconnection network will likely run slower due to link contention.
Thus, low bandwidth links are not acceptable for MPPs running large scientific applications. However, a
30% load on the network links would be acceptable for workstation file service since file data is normally
a large component of network traffic in such systems. Additionally, most workstation programs do not rely
heavily on high-bandwidth low-latency network communications and would not be adversely affected by
the relatively high network load.

Writing a 32 GB file produces a curve similar to that of the 32 GB read, as Figure 6-2 shows. Again, file
system bandwidth remains relatively constant while link bandwidth drops from 200 MB/s to 10 MB/s. The
disks, not the network links, were the bottleneck in both the read and write cases. While a 10 MB/s network
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Figure 6-1. Effects of varying link bandwidth in a mesh interconnection network on RAMA read
performance.

This figure graphs the time needed to read a 32 GB file from a RAMA system on a 16 x 8 processor mesh
with a solid line. Note that total elapsed time hardly varies with link bandwidth. Likewise, the average
amount of data transmitted across a link does not decrease markedly as maximum link bandwidth
increases. However, average link utilization, shown by the broken line, drops off dramatically as maxi-
mum link bandwidth increases. Each link carries approximately the same absolute load regardless of its
maximum bandwidth. However, the interconnection network is less congested by the file system if there is
more bandwidth available.

takes 100 ms to deliver a megabyte of data, a single disk takes at least half a second to read or write the same
data. A single one megabyte file request is split into many smaller requests, each sent to a pseudo-randomly
chosen disk. Since each node in the MPP is doing the same thing, each disk receives many small I/O
requests. As network speed decreases, some of the disk 1/0 requests are delayed. However, those same 1/Os
must wait even longer for the disk to finish servicing the first few requests. Thus, the file system’s speed is
limited by disk bandwidth. As long as the interconnection network remains close to an order of magnitude
faster than disk, RAMA will perform at full efficiency for large reads and writes.

The results of a simulation using a workstation-style network are shown in Fi gure 6-3. This set of simula-
tions uses a star network (also called a hub-and-spoke network) rather than a mesh network to connect all
of the nodes, more closely resembling a network of workstations. The RAMA design provides the same
bandwidth in this configuration as in the mesh configuration, but average link utilizations are lower for a

star network. In an x X y mesh network, each message between client and disk must traverse an average of
x/4 + y/A links. If the overall file system delivers b MB/s of data, each link must carry
b(x/4+y/4)/(2n) MB/s, where the MPP is composed of n = Xxy nodes. In a star network with n

nodes, however, each message only crosses two links — the link to the client node and the link to the disk
node. Since there is only one connection to each node, however, each link carries 2b/n MB/s. A star inter-
connection network will thus run RAMA better than a mesh network with the same number of nodes and

the same link bandwidth whenever (x +y) > 16. However, mesh networks scale much better than star

networks. In a star network, all traffic must pass through a central hub. Building a hub that can support suf-
ficiently high bandwidths between any two of hundreds of nodes is expensive, as the hub may require addi-
tional components to support the added bandwidth. On the other hand, adding nodes to a mesh simply
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Figure 6-2. Effects of varying link bandwidth in a mesh interconnection network on RAMA write
performance.

The RAMA design’s write performance is, surprisingly, similar to its read performance, even for low net-
work bandwidths. While slow network links delay the arrival of most of the data written at the destination
node and disk, the disk is still the bottleneck. Even with a 10 MB/s network, most of the written data
arrives before it would have been written with the fast network. The disks thus see little difference
between a network with 10 MB/s links and one with 200 MB/s links.

involves replicating a basic network interface. Nonetheless, the RAMA design performs sufficiently well
on a relatively slow star network to permit its use as a file system for a network of workstations.

6.1.1.2. Network Message Latency

Besides link bandwidth, another important network measure is the overhead required to send a packet of
information from one node to another. Most of this overhead is due to software, particularly managing the
protocol stack and routing messages. Modern computer systems can take anywhere from 1 to 2000 micro-
seconds to send out a single message. This delay is largely a software delay caused by a multi-layered net-
work protocol stack. Fortunately, this penalty is usually paid only once per packet, even if the data is
transmitted as many physical-layer packets and must traverse several network links.

The network model used in the RAMA simulations charges the overhead at the source node before the data
is placed into the network. Since this overhead is typically a software delay, the physical network link is not
considered in use during this period. Incoming or traversing message may thus use the link while an outgo-
ing message is in the process of being sent. Long message latencies can potentially lower overall file system
performance by increasing the total response time for 1/0 requests. In particular, a read incurs two delays
— one in sending the request, and the other in replying with the requested data.

The RAMA simulations, however, show that message latency has little effect on file system performance
on large files, as file system performance is disk-limited. Figure 6-4 shows RAMA's performance as net-
work message latency increases from 5 ps to 2500 ps. The increase in message latency causes less than a
2% increase in the time needed to read a 32 GB file. Since the total elapsed time and total bandwidth show
little change, link utilization also varies little as message latency increases.
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Figure 6-3. Effects of varying link bandwidth in a star interconnection network on RAMA performance.

This graph is similar to that in Figure 6-1, but substitutes a 128 node 100 MB/s star network for the mesh
network in the previous figure. Again, file system performance varies little even as link bandwidth
increases from 10 MB/s to 200 MB/s. Link utilization is lower than in the mesh case, however. While the
mesh has twice as many network links as the star, each message in the mesh must, on average, traverse six
links as compared to two in the star network.

This lack of variation is unexpected, as two delays of 2.5 ms each should add 5 ms to the length of each file
request. However, there are two reasons why the variation due to message latency is so small. First, average
response time for an individual disk request — in this case 32 KB — is nearly 300 ms. While requests use
the disk for only 18.45 ms each, every processor issues 32 requests to various disks to read a total of 1 MB
from disk every iteration. For a 128 processor system, this results in 4096 requests being issued at once, for
an average of 32 requests per disk. Since the all requests are made at the same time, each request will wait,
on average, for half of the 32 requests for its disk to finish before it begins service. This incurs a delay of
approximately 280 ms which, when added to the average service time of 18 ms, yields a response time of
Jjust under 300 ms. An increase of 5 ms in a 300 ms request is less than 2%, in contrast to the 27% increase
from a 5 ms increase to an 18 ms request.

Additionally, the disks themselves distribute replies over time. This effect is similar to the one that occurs
for slower network links. The entire file system request is delayed by the message latency from the last disk
request to complete. However, the latencies for the other messages do not increase the time needed to com-
plete the file system request. While these latencies do make each individual message take longer, only the
finishing time of the last disk request determines when the entire file system request finishes. The data from
the other disk requests will be available to the requesting node, regardless of message latency, before the
arrival of the data from the last disk request to complete.

6.1.2. Disk Performance

Disk performance is another technological factor that drastically affects file system bandwidth in RAMA.
The three main determinants of disk performance are rotation speed, data density along a disk track, and
seek time. Certainly, disk transfer bandwidth is also an important factor in disk performance. However, sus-
tained disk bandwidth is limited to the amount of data that passes under one or more read-write heads each
second. For the majority of disks today that use only a single active head, the maximum sustained bandwidth
is the product of the number of bytes stored on each track and the number of rotations per second. This
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Figure 6-4. Effects of varying network message latency on RAMA performance.

As network message latency increases, individual messages take considerably longer to be delivered.
However, the limiting factor is still disk bandwidth. The top graph shows RAMA’s performance on a
16 x 8 mesh network with 100 MB/s links. As message latency on a increases from 5 Hs to 2.5 ms, overall
bandwidth and average link utilization increase less than 2%. The lower graph shows similar results for a
128 node star network with 25 MB/s links.

simple formula does not include track-to-track seek time and head switch time. These operations require 1-
2 ms on modem disks, reducing maximum sustained bandwidth further by 5% - 20%, depending on rotation
rate. This section thus does not use sustained bandwidth as a basic parameter; instead, it is a measure derived
primarily from rotation speed and disk track density.

Figure 6-5 shows the contributions of each performance characteristic to the total time required for a disk
operations of various sizes. The three disk parameters are orthogonal to each other — a disk manufacturer
may improve any or all of the performance metrics while leaving the others unaltered. Improving only a
single metric eventually results in little gain, as the contributions of the other two parameters dominate over-
all performance. The following sections describe each parameter in detail, and discuss their effects on
RAMA'’s simulated performance.
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Figure 6-5. Components of disk latency in a single RAMA disk request.

Each of these columns represents the total time needed for a single disk I/O in RAMA. The columns are
broken up into the components of the request service time, showing the delays due to seek latency, rota-
tional latency, and data transfer. For larger requests, transfer time dominates. However, positional latency
(seek and rotation) become more important as the amount of data transferred decreases.

This thesis does not consider disk buffering because it would not speed up file service for supercomputer
workloads. Traditional Unix file systems gain great advantage from disk track buffers because the file
system issues many separate but contiguous small reads and writes. Thus, buffering a full track in the disk’s
cache allows the disk to transfer sequential requests after the first at peripheral bus speeds which are at least
two or three times faster than sustained transfer rate. However, RAMA does not request contiguous blocks
in separate disk I/O requests. Rather, it issues a single large request for all of the data to be read or written
to disk. This makes a disk cache unnecessary. While disk buffering may improve RAMA’s performance on -
a small file, small request workload, it will have little effect on large file workloads.

6.1.2.1. Disk Track Density

Increasing the areal density of data on disk can result in both more data per track and more tracks per inch
as data is packed more densely along both the diameter and circumference of the disk. However, sustained
disk bandwidth depends primarily on how much data is read in a single revolution of the disk. Linear density
increases as the square root of areal density because areal density also increases the number of tracks per
inch. Since sustained bandwidth is proportional to linear density, recent increases in disk capacity have not
produced similarly large increases in disk bandwidth.

Because track density affects sustained bandwidth, however, it has an impact on RAMA’s performance.
Figure 6-6 shows the effects of increased track density, in the form of higher bandwidth, on RAMA'’s
expected throughput when reading a large file. Initially, the faster transfer rate improves performance. How-
ever, this increased bandwidth reaches a point of diminishing returns when the other factors in disk access

time — head latency and rotational latency — dominate the total access time. The point at which the falloff
occurs can be delayed in two ways.

First, the amount of consecutive data per disk in RAMA can be increased. A request for the data from a
single disk consists of head positioning followed by data transfer. Maximizing the amount of data trans-
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Figure 6-6. Effects of varying disk track capacity on RAMA performance.

Sustained transfer bandwidth is directly proportional to the amount of data on a single track. As the data on
a single track increases, bandwidth likewise increases. However, file system bandwidth soon becomes lim-
ited by seek and rotational latency, as transfer time for the 32 KB units in these simulations grows shorter.
Past 150 KB per track, increased density provides little performance advantage without corresponding
increases in other parameters.

ferred for each head position increases the fraction of the time the disk spends transferring data and thus
increases total bandwidth. However, increasing the amount of data stored on each disk decreases the number
of disks involved in a single file system request, reducing concurrency. Section 6.2.1 explores these
tradeoffs further.

Improving seek time and rotation rate will also allow higher track densities to improve performance, as
transfer time initially consumes a larger portion of the access time. Unlike the first solution, however, this
approach requires improvements in hardware technology.

6.1.2.2. Disk Rotational Speed

Disk rotation speed has two effects on RAMA’s performance. First, it improves disk bandwidth, thus reduc-
ing transfer time. In addition, faster rotation speeds decrease rotational latency, allowing the disk’s read/
write head to reach the necessary data faster. Thus, higher rotation speeds decrease two of the three compo-
nents of disk access time shown in Figure 6-5.

Increasing disk rotation rate improves RAMA'’s performance, as Figure 6-7 shows. As with other perfor-
mance metrics, however, steadily increasing the rotation rate reaches a point of diminishing retums. The
curve is slightly steeper than that for disk track density, however. Increasing track density only decreases
transfer time, so an infinitely high density would be limited by both seek time and rotational delay. On the
other hand, a high rotational speed improves both bandwidth and rotational delay, leaving overall through-
put limited only by head seek delays. Since rotation rate affects two components of access time, the perfor-
mance falloff is slightly steeper and continues longer than for track density.

Unfortunately, increasing disk rotation speed is perhaps the most difficult challenge for disk designers. Disk
rotation rates have only increased from 3600 RPM in the mid 1970’s to 7200 RPM today — a factor of two
improvement in twenty years. In the past, faster rotation speeds posed both signal processing problems and
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Figure 6-7. Effects of varying disk rotational speed on RAMA performance.

This graph shows the effect of increased rotation rate on RAMA's simulated performance. All disk param-
eters except for rotation rate are taken from the standard disk model used in the simulations. Each curve
shows the results of simulations varying disk rotation rate from 3600 RPM to 15,200 RPM. A four-fold
increase in rotation rate results in more than double the bandwidth for an 8 x 8 mesh, but just under double
the bandwidth for a 16 x 8 mesh. The difference is due 1o the longer queue lengths, and resulting shorter
average secks, from fewer disks.

basic physical difficulties. Today’s drive electronics can cope with the signal processing demands of the
higher bit rates from rapidly rotating drives. However, basic mechanics limit safe rotational speeds for metal
disks, particularly as read/write heads float ever-closer to achieve higher data density. It is unlikely that
disks will exceed 20,000 RPM in the near future, but even that speed is only three or four times current rota-
tion rates. Thus, slightly higher disk rotation rates are unlikely to provide great improvement in RAMA per-
formance in the next few years.

6.1.2.3. Disk Head Positioning Latency

Another important factor in disk performance is the time required to move the disk’s read/write head from
one track to another. Like rotation rate, head positioning time is primarily a mechanical operation, and thus
has only limited prospects for great improvements over time. While seck times have improved more than
rotation rates over the past twenty years, these gains have come from smaller read/write heads and smaller
disks.

Current disks have an average seek time under 10 ms and a minimum track-to-track seek time of 1 - 2 ms.
While the average seek time is still dropping, minimum seek time is limited by the need to accelerate and
decelerate the head and settle on the proper track. Maximum seek times, t0o, are decreasing as disks and
heads shrink. However, the maximum seek time is limited by the need to move the head several centimeters.
Already, the head must accelerate to over 2 meters per second, move 3 or more centimeters accurate to
within 0.03%, and decelerate. While average and maximum seek times will continue to drop, the match the
improvement in disk data density.

At first glance, it might seem that increasing the number of cylinders without increasing disk size would
improve disk performance. However, this is not the case for RAMA. Both average and maximum seek time
are largely unaffected by the number of tracks the head must traverse because the largest components of
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seek time — acceleration and constant velocity motion — are independent of track density. Deceleration.
and settling time do increase slightly as track density increases, but their effect on average and maximum
seek times is not large. Though an average seek can reach more data with more cylinders perinch, individual
files do not benefit greatly. A single file must occupy several consecutive cylinders to benefit from more
densely packed cylinders. However, each cylinder holds large quantities of data — almost 500 KB for the
base disk used in the RAMA simulations. As Section 6.2.1 shows, storing large sections of a file contigu-
ously on a single disk leads to worse performance because of the loss of concurrency.
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Figure 6-8. The effects of average and maximum disk head seek time on RAMA performance.

This figure shows the effects of different average and maximum seek times on projected RAMA perfor-
mance. Each line represents simulations with the same average seek time, varying maximum seek time
along the horizontal axis. Simulations covered average seek times from 10 ms down to 4 ms, and maxi-
mum seek times between 8 and 22 ms.

In general, lower average seek times resulted in better performance. Surprisingly, however, file system per-
formance worsened in many cases where maximum seek time decreased. This counterintuitive result is
explained in Section 6.1.2.3.

As expected, lower average seek times resulted in better RAMA performance in simulations. Figure 6-8
shows this effect, as average seck times from 10 ms down to 4 ms were simulated. Each line in the graph
represents a series of simulations with the same average seek time and different maximum seek times. As
the graph shows, however, varying seek times produce relatively limited gains — approximately 25%
between the best case at 4 ms average seek time and the worst case at 10 ms average seek time.

The increase in performance from faster average seek times is hardly unusual. However, Figure 6-8 also
shows that RAMA performance decreases in many simulations with lower maximum seek times. For exam-
ple, holding average seek time constant at 10 ms while increasing maximum seek time from 14 ms to 22 ms
results in a 6.5% performance increase. This counterintuitive result stems from the two factors in the time
needed to seek from one track to another — acceleration time and constant velocity seeking. Figure 6-9
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Figure 6-9. Acceleration and travel components of disk read/write head seek time.

This diagram shows the contributions of acceleration, constant velocity motion, and deceleration to total
disk head seek time. Short, average, and long seeks are shown for several choices of maximum seek time
with the same average seck time. This highlights the performance differences between the cases. Disks
with maximum seek time close to average seek time perform relatively well on long seeks, but poorly on

short seeks. Disks with higher maximum seck times do better on seeks considerably shorter than average,
but worse on long seeks.

shows the acceleration, movement, and deceleration components for disks with different disk arm acceler-
ation rates. If maximum seek time is just less than average seek time, as in the 10 ms average, 14 ms max-
imum case, the disk head must accelerate relatively slowly but traverse the surface rapidly. On the other
hand, a larger difference between average and maximum seek implies that acceleration and deceleration are
relatively rapid, but the disk head moves more slowly at top speed across the surface. Current disks are
closer to the first model than the second, since most disks have average seek times 1/2 to 1/3 of their max-
imum seek times. RAMA, like most file systems, attempts to make disk seeks cover as few tracks as possi-
ble. Thus, acceleration rate is more important than high speed on longer seeks. Disks whose average seek
times are considerably smaller than its maximum seek time, including most modern disks, will perform well
in such an environment.

6.1.3. CPU Speed and Memory Size

CPU speed and the amount of memory on each node of an MPP do not themselves have a major effect on
RAMA’s performance. Transferring 32 KB of data in RAMA uses fewer than 10,000 instructions. Since
RAMA'’s peak bandwidth per node is under 2 MB per second with current disk technology, each node
requires fewer than 6 million instructions per second to service all of the file system requests. Additionally,

processors are increasing in speed faster than disks are, so the percentage of CPU cycles used for the file
system will drop in the future.

Additional memory on each node will help the file system somewhat, as RAMA can cache more metadata
to improve disk performance. Caching file data is of little help, as 1/O-intensive MPP applications do not
exhibit much file locality. Additionally, the files are so large that reasonable amounts of memory would not
be able to hold sufficient file data to provide much improvement. For example, a 65,536 x 65,536 double
precision matrix requires 32 GB of storage space. Even on a 256 node MPP, this is 128 MB of data per node.
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However, Chapter 7 will show that large matrix decompositions perform well with as little as 8 MB of stor-
age space per node. Additional file caching provides no performance improvement for this algorithm since
the entire matrix must be read again before an individual file block is rereferenced. Unless the file cache can
hold the entire matrix, it will not speed up the file system.

Caching metadata, on the other hand, may result in better performance. The RAMA simulator used in this
thesis did not model metadata accesses. However, fully caching line descriptors for a 1 GB disk requires
approximately 4 MB of memory. If an MPP node can afford the space for this cache, metadata access will
not reduce file system performance. Extra memory on a node also allows RAMA to cache directories, thus
reducing the time necessary for directory searches, as discussed in Section 6.3.

While additional memory and faster CPUs do not much affect file system speed, they have a great effect on
applications that may use the file system. Faster processors allow scientists to use more detailed models and
simulate them in less time. Larger memories do not usually speed up applications, though they do permit
the solution of larger models by keeping programs CPU-bound rather than I/O-bound.

Matrix decomposition, as described in Section 5.2.2, is an application for which faster processors may be
exploited for either faster solution time or to the solution of larger problems. Figure 6-10 shows the amount
of time needed to decompose variously-sized matrices on an 8 x 8 processor mesh composed of nodes with
varying memory sizes and CPU speeds. For all CPU speeds and matrix sizes, sufficiently large per-node
memories keep the algorithm CPU-bound. However, larger matrices require more memory to keep the
application CPU bound, as do faster CPUs. Adding additional memory results in no performance improve-
ment once the algorithm is CPU-bound. Traditional MPP designers add as much memory as possible to their
systems to allow programmers to avoid using I/O. One reason for this is the difficulty in achieving good file
system performance — many file systems require the programmer to specify the layout on disk to use the
file system efficiently. By addressing this problem, RAMA allows MPPs to use file system bandwidth to
replace larger memories.

Global climate modeling is another application whose I/O demands increase with CPU speed. Since GCMs
perform hundreds or thousands of floating-point operations for each grid cell, they require less memory. For
example, a GCM may track 100 variables in each cell at 20 altitudes. This uses only 16 KB of memory per
grid cell, yet a GCM may perform over 500,000 floating-point operations to model twelve hours of its
behavior. As a result, current MPPs are not fast enough to run long-term models larger than 200 x 200 grid
cells. Even such a large model would only require 640 MB of memory, or less than 8 MB pernode in a 128
node machine. The GCM studied in this thesis uses the file system to store data from each iteration; the
bandwidth required is directly proportional to the speed of each CPU. Since the application is already using
nearly the maximum bandwidth that RAMA can provide, increasing the CPU speed will only result in an I/
O-bound application. This difficulty can be alleviated either by using more disks per processor or by getting
faster disks. Since increases in disk transfer rate will not keep up with the gains in CPU speed, however,
providing I/O for GCMs that write detailed logs will be difficult.

6.2. Design Parameters

One major advantage that RAMA enjoys over conventional parallel file systems is that it has far fewer con-
figuration options. Data is distributed pseudo-randomly, so the only parameters for distributing data to disks
are a hash function and the amount of consecutive file data placed on each disk. While any hash function
that generates a pseudo-random number from a block offset and file identifier will suffice, varying the
amount of file data stored on each disk affects RAMA’s performance. Network and disk performance, too,
are fixed by the technology used to build the system. However, the type of network used and the number of
disks per CPU are both parameters that can be changed.
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Figure 6-10. Matrix decomposition performance with varying memory sizes.

This figure shows the performance of LU matrix decomposition on an 8 X 8 processor mesh with varying
amounts of memory. Each graph shows the run times for various matrix sizes and per-node memory sizes
at a constant MFLOPS rate. The graphs show execution times for multiprocessors with 50 MFLOPS, 100
MFLOPS, 250 MFLOPS, and 500 MFLOPS per node.

The LU decomposition algorithm is able 1o overlap almost all I/O with computation, so program execution
time is constant if the algorithm requires less bandwidth than the file system can supply. When run with
small memories, however, the algorithm becomes 1/0-bound and performance suffers.

6.2.1. Data Distribution on Disk

A conventional striped file system requires much configuration information to provide optimal perfor-
mance. Determining the best pattern in which to lay the data out on disk is a difficult task — the file system
designer must decide how many processor nodes have disks attached to them, how many disks each node
has, and the pattern in which data is distributed among all of the disks. RAMA, on the other hand, relies on
randomness to provide good performance. The only data distribution parameter that affects RAMA’s per-
formance is the choice of how much data from a single file to store on a disk before moving to the next
randomly-chosen disk.
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The hash algorithm in RAMA determines data placement on a per-file block basis. Each file block may be
located on a randomly-determined disk, if desired. However, such behavior provides poor performance
because the seek and rotational latency overheads occur for each file block. Thus, RAMA s hash algorithm
can group consecutive file blocks on the same disk, allowing the positional latency to be amortized over
more data.

Figure 6-11 shows RAMA’s projected performance, using current disk technology, for varying amounts of
data stored consecutively. As expected, simulations that store few consecutive file blocks on a disk exhibit
poor performance. However, performance is also worse for very large amounts of data stored consecutively.
If RAMA stores too much file system data on each disk, concurrency is much lower. For example, a pro-
gram running on a system with 128 disks might have 32 MB of 1/O requests outstanding at any time. This
corresponds to requests to 1024 requests of 32 KB each, but is only 64 requests of 512 KB each. In the
former case, each disk will average 8 requests; though some will have more and some fewer, every disk will
be nearly fully utilized. In the latter case, however, at least half of the disks will be unused at any time, lim-
iting file system bandwidth to half maximum. Worse, some disks in this system might randomly receive two
or even three requests, further hurting performance.
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Figure 6-11. Effects of varying the amount of consecutive file data stored per disk.

This figure shows the effect on performance of varying the amount of consecutive file data stored on each
disk in RAMA. The file system’s hash algorithm assigns several consecutive file blocks 10 the same disk
line, where they can be read and written sequentially. If o few blocks are grouped together, access
latency dominates and performance suffers. However, grouping too many blocks together also adversely
affects performance. If too much consecutive data is stored on the same disk, concurrency is reduced and
fewer disks are active at a given time. While individual disks may perform better in this case, the file sys-
tem as a whole suffers by leaving some disks idle.

The curve shown in this graph is applicable only today’s disks. Section 6.4 and Figure 6-14 discuss similar
curves for possible future disks.

This issue is not unique to RAMA. Striped file systems face the same problem, particularly as individual
stripe units become very small or very large. A striped file system with very large stripe units suffers the
same loss of concurrency that RAMA does. Additionally, a striped file system using small stripe units pays
relatively larger head positioning and rotational latency penalties similar to those incurred in RAMA. While
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RAMA can pick an optimally sized “stripe unit” without compromising performance for various access pat-
terns, however, striped file systems cannot. This issue is discussed further in Chapter 7.

6.2.2. Scalability and Multiple Disks Per Node

Another issue that the RAMA design brings up is how many disks to attach to each processing node. Most
of the simulations in this thesis assume a single disk per node, but that is certainly not the only choice.
RAMA can provide higher disk bandwidth using several disks attached to each node. Since data is distrib-
uted pseudo-randomly, clustering multiple disks on every CPU node does not introduce load imbalances.

A closely related problem is that of scalability. Any two MPPs running RAMA with the same number of
disks should, in the absence of CPU or network bottlenecks, perform similarly. For example, a system with
32 nodes and 4 disks per node should provide the same bandwidth that a system with 128 nodes and 1 disk
per node provides. Additionally, a system with twice as many disks should provide twice the bandwidth. If
a file system cannot approach these numbers, it is not truly scalable and may not be suitable for use in scal-
able MPPs.

As Figure 6-12 shows, RAMA’s behavior with a single disk per node scales quite well. For a 4 x 4 mesh,
total bandwidth is 18.5 MB/s while reading a 36 GB file. At 8 times the size, on a 16 x 8 mesh, bandwidth
for the same transfer is 148 MB/s. This is almost exactly eight times the bandwidth of the smaller system,
scaling up well from 16 nodes to 128 nodes. Note, however, that bandwidth falls off as the number of disks
per node increases beyond one. This occurs for two reasons. First, the variation in the maximum number of
requests any disk will have to satisfy during a single iteration of the algorithm increases as the number of
disks increases. If the algorithm attempts to read 32 MB each iteration, 1024 individual 32 KB disk requests
will be outstanding. If those 1024 requests are distributed among 32 disks, the average disk will service 32
requests; however, one disk may serve as many as 40. If the number of disks is doubled, the average requests
per disk is cut in half to 16, but the expected maximum may be 22. Since all of the nodes must wait for the
slowest node, the overall bandwidth does not increase by a full factor of two. This factor becomes particu-
larly important as more disks are added to each node. When each node has eight disks, every disk averages
only four 32 KB requests, yet some nodes may serve more than twice that number. This lack of concurrency
results in poor speedups for multiple disks.

Serving multiple applications simultaneously or otherwise increasing the number of outstanding requests
will alleviate the problem. The bottom graph in Figure 6-12 shows the same full speed transfer as the top
graph, but with each node making 4 MB requests instead of 1 MB requests. Here, adding several disks per
node does not cause as steep a drop as in the first case, confirming the reason behind the falloff.

The two graphs in Figure 6-12 also show that two RAMA systems with the same number of disks provide
similar performance. The performance levels are not identical because the workloads for each MPP size are
not entirely identical. In both graphs, the total amount of outstanding 1/0 is proportional to the number of
nodes in the MPP, as each node reads a fixed amount of data each iteration. For the reasons already men-
tioned, this difference causes the system with less concurrency — the smaller system — to perform slightly
worse. Again, the problem is more pronounced in the top graph, as the concurrency levels are lower there
than in the bottom graph. This result supports our hypothesis that RAMA will perform well in multitasking
environments with high concurrency.

6.2.3. Network Configuration

While network configuration is an important consideration for MPP designers, it is less so for RAMA. As
Section 6.1.1 shows, RAMA’s primary demand on a network is bandwidth. Since the file system pseudo-
randomly distributes data, the best configuration is one that keeps the average distance between two nodes
as low as possible.
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Figure 6-12. RAMA performance with varying numbers of disks per MPP node.

Both graphs show RAMA'’s simulated performance with varying numbers of disks per node. The X axis in
both graphs indicates the total number of disks in the system. The Y axis gives the performance in mega-
bytes per second for an application in which all the nodes cooperate to read a 36 GB file. In the top graph,
the nodes issue 1 MB reads and wait for all of the nodes to finish the previous 1/O before issuing the next
one. The situation is identical for the bottom graph, except that the nodes issue 4 MB 1/Os instead of 1 MB
1/Os.

The expected load that RAMA places on any network is the product of the total file system bandwidth and
the average number of hops between two randomly-selected nodes. RAMA distributes this load well in Sys-
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tems with symmetrical networks, causing the loads shown in Table 6-1. As the table shows, RAMA places
reasonable loads even on large networks. For example, RAMA running on a 32 x 32 mesh, with 1024 nodes,
will average 16 times the bandwidth of a disk on each node. Since the simulations show that RAMA
achieves about 1.2 MB/s per disk for the disks in the simulation, it would put less than 20 MB/s on each link
in such an MPP. Moreover, this load can be reduced if the MPP and RAMA file system is subdivided. If the
hardware designers decide to use a 3-D mesh instead, RAMA running on a 16 x 8 x 8 mesh will average
only 8 times the bandwidth of a single disk — under 10 MB/s. If each link in the interconnection network
supports 100 MB/s or more, 10 MB/s per link should be sufficiently low to avoid conflicts with applications
passing messages between nodes.

Network type Average number of hops | Average load per link (MB/s)
Star (n) 2 28
n

(a+b) (a+b)

Mesh (a x b) 7 4—ab—B
- {atb+c) (atb+c)

3-D Mesh(ax bxc) Y Tabe B
h-D Hypercube h _hB_

2 2h +1

Table 6-1. RAMA’s expected load on various network configurations.

This table details the effect that RAMA has on various network confi gurations while providing B MB/s.
For all of these configurations, however, the most important factor is the available bandwidth on each link.
For MPPs with hundreds of nodes or fewer, the per-link load differs by less than a factor of 10 between
different configurations.

6.3. Small File Performance

The previous sections in this chapter have examined RAMAs sensitivity to changes in technological and
design parameters using workloads involving large files. However, RAMA must also perform well for small
files to permit its use in a system that integrates MPPs and workstations.

The simulation results graphed in Figure 6-13 demonstrate the RAMA desi gn’s ability to handle many small
file requests using the workload described in Section 5.2.4. This workload consists of many small file
requests, each of which reads or writes an entire file whosc size is a parameter to the workload. The average
request rate for these simulations varies from 5 to 150 requests per second per MPP node, for a total of 640
to 19,200 requests per second for the entire 16 x 8 processor mesh. As mentioned in Section 5.2.4, however,
the simulator throttles the request stream if too many requests are outstanding at any time. Thus, increased

request rates given to the workload generator result in little increase in actual request rate, preventing infi-
nitely long queues.

The curves in Figure 6-13 show how response time varies with both concurrency and file size. Simulations
were run for file sizes of 4 KB to 32 KB; the graph does not show the 4 KB results since they are nearly
identical to those for 8 KB files. For 32 KB files, performance begins to fall off at approximately 40 requests
per node per second. This corresponds to a bandwidth of 1.2 MB/s per disk, which is comparable to the
bandwidth achieved for individual large files. While transferring 40 32 KB files per node per second,
response time is still under 100 ms from initial request until the time the last byte of file data is transferred.
For smaller file requests, access latency begins to dominate. The maximum bandwidth for 8§ KB files is
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Figure 6-13. RAMA read performance for small files.

This figure shows RAMA’s read performance for the small file workload described in Section 5.2.4 run-
ning on a 16 x 8 processor mesh. 75% of all requests were file reads, and only read performance is shown
in this graph. RAMA performs very well at request rates of up 40 requests per second per MPP node. For
smaller requests of 8 KB, 80 ms file reads are possible even at 60 requests per node per second. As
expected, file read time drastically increases as the file system reaches its maximum throughput. At this
point, additional delays in the request stream prevent request queues from growing infinitely large.

700 KB per second per node, though response time drops off drastically beyond 560 KB per second per
node.

These performance figures show that the RAMA design does not sacrifice small file performance to gain
good performance for large files. RAMA’s design includes provisions for migrating metadata to tertiary
storage, allowing the file system to store millions of infrequently used small files on tape without requiring
disk to hold all of their metadata. However, the simulator does not model the additional disk access latencies
due to metadata and directory lookup. These additional latencies are most severe for files on tape, since
RAMA'’s storage scheme might require two or more tape reads to access a single small file on tape. In this
section’s simulations, however, all files were assumed to be on disk to gauge RAMA’s maximum small file
bandwidth. The simulator further assumes that the file system is simply given the correct bitfile ID for each
file. RAMA would actually find a bitfile ID by hashing the directory name to find the directory, reading the
directory to find the file name, and extracting the bitfile ID. Translating a file name to a bitfile ID would
thus require approximately the same time as reading a small file. As a result, RAMA’s actual performance
on small files should be no worse than half that shown in Figure 6-13. Nonetheless, RAMA would still be
capable of over 25 small file transfers per second per node with an acceptable response time. If directories
are cached, RAMA’s performance will improve because file name to bitfile ID translation would require no
disk access.
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6.4. Future Performance

The previous sections in this chapter have each varied a single parameter in the RAMA simulator to show
their effects on overall system performance. While these simulations are helpful in understanding how indi-
vidual parameters affect the RAMA file system, they also show that improving only a single parameter has
a limited effect. For example, increasing linear density along a disk track provides gains at first, but it
reaches a point where disk performance, and thus RAMA performance, is limited by other factors.
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Figure 6-14. Projected RAMA performance using future technologies.

This graph projects RAMA’s performance using faster disks than those available today. The top disk is the
one used in most of the simulations, and uses data from the Seagate ST31200N disk. The bottom disk
rotates at 9000 RPM, stores 144 KB per track, and has an average seek time of 4 ms and a maximum seek
time of 9.1 ms. It has 4300 cylinders and 9 surfaces for a total capacity of 5.6 GB. The intermediate curves
are for disks between the two extremes whose parameters are listed in Table 6-2. Each curve represents
approximately a year of progress except for the bottom curve which is two years ahead of the one above it.

Each curve shows RAMA's expected performance for several different amounts of consecutive data per
disk (as described in Section 6.2.1). Note that peak performance for current disks is at 32 - 64 KB per disk,
while it increases to 256 KB per disk for the faster, denser disks of the future.

RAMA simulations using projected future disk capabilities are shown in Figure 6-14. The characteristics of
the simulated future disks are shown in Table 6-2. The network used in all of these simulations is a 16 x 8
mesh running at 100 MB/s per link, as Section 6.1.1 showed that network performance was not a bottleneck.
Two trends are evident from the data in the figure. First, RAMA performance improves as disk performance
improves. Thus, RAMA should be able to take advantage of faster disks to provide higher bandwidth file
service. Additionally, Figure 6-14 shows that the optimum amount of data 1o store on each disk increases
as disk performance increases. File block size need not increase to accomplish this. Instead, RAMA can
simply place more individual file blocks consecutively on a single disk before selecting a new disk. In this
way, RAMA can increase its performance further using the high-performance disks of the future.
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Capacity (MB) | Cylinders | Average track Seek time (ms) Rotation rate (RPM)
capacity (KB) | Average lﬂaximum

— 84| 200] 48] 8 8 | 500 |
1,108 2200 56 7.36 16.56 7200
1,394 2420 64 6.75 15.25 7200
1,724 2660 72 6.21 14 9000
2,106 2925 80 5.71 12.90 9000
2,782 3220 96 5.25 11.80 9000
3,568 3540 112 483 10.80 9000
5,573 4300 144 4 9.14 9000

Table 6-2. Parameters for simulated future disks.

This table lists the characteristics projected for future disks. The first disk is the Seagate 31200N, and the
remainder are extrapolated using growth rates from [11]. RAMA’s simulated performance using these
disks in an MPP is shown in Figure 6-14.

6.5. Conclusions

The RAMA file system design scales well to future disk technologies and large processor arrays. While
RAMA'’s performance is insensitive to network parameters such as bandwidth and latency, it does place a
highload on slow networks. RAMA varies less than 1% in overall bandwidth between a 15 MB/s mesh and
a 150 MB/s mesh, though the average load per link is ten times higher with the slower network. Since the
network is not a bottleneck and the file system load is evenly and randomly distributed, the network topol-
ogy — mesh, star, hypercube — has little effect on RAMA'’s simulated performance. For some network
configurations such as a 3-D mesh or hypercube, RAMA performs well for several hundred nodes, as over-
all system bandwidth scales up linearly with the number of processor-disk pairs.

RAMA'’s performance is disk-limited; thus, improving disk parameters such as seek time, linear data den-
sity along a track, and rotation rate result in higher file system performance. However, improving only one
disk characteristic while fixing the others result in diminishing returns. Initially, RAMA performs signifi-
cantly better. As the fixed components dominate the time needed for a single 1/O, though, performance flat-
tens out. Of the three disk parameters considered, rotation rate is the most important as it both decreases
rotational latency and increases sustained transfer rate. Quadrupling rotation rate while leaving the other
two parameters at current values results in more than double the bandwidth. Denser disks also improve per-
formance, but require the file system to store more data per disk to take full advantage of them. If current
disks only packed data denser, overall RAMA bandwidth would increase by less than a factor of 2 even as
density increased by a factor of 6 if RAMA did not store more data per disk. Faster access times, likewise,
increase the file system bandwidth. However, their influence is even smaller, as reducing the average seek
time to 4 ms produces, at best, a 20% improvement. The high concurrency at each disk and the request
ordering algorithm ensure that seeks are short, so improvements in average and maximum seek time have
little effect.

RAMA has few design parameters to vary — indeed, one of its major advantages is its simplicity. Using
more than one disk per MPP node produces, as expected, higher performance. For relatively few disks per
node, performance scales linearly. As more disks are added, however, performance drops away from linear-
ity. This effect is caused by insufficient concurrency in the simulated request stream. Good performance in
RAMA depends on having many requests outstanding at any given time; failing to do so prevents linear
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scaling. The same problem occurs when the amount of data stored on each disk is increased. Performance
can vary by as much as 15%, while the optimum amount to store on each disk increases as disk performance
increases.

While RAMA is designed primarily for large files, it performs adequately for small files as well. As a result,
RAMA is well-suited to networked environments including both MPPs and workstations. While MPP files
are often megabytes or gigabytes in length, workstation files tend to be considerably smaller — well under
1 MB long. RAMA’s performance on a workload composed of small file transfers shows that it can serve
small requests from workstations as well as large requests from MPP applications. This allows workstations
to manipulate files on an MPP without having to copy them to a workstation-based file system.

This chapter has detailed the sensitivity of the RAMA design’s performance to technological and design
parameters as well as the size of transferred files. The following chapter fixes these parameters, and com-
pares RAMA's performance to that of standard striping. As the next chapter shows, RAMA provides a high-
performance, configuration-free altemnative to conventional striped MPP file systems.
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A Performance Comparison of RAMA
and Striped File Systems

This chapter discusses the performance of the RAMA file system for several massively parallel applica-
tions. It demonstrates that using hashing to distribute file system data among all the disks in a massively
parallel processor (MPP) performs well relative to traditional striped file systems.

Traditional striped file systems for MPPs use dedicated I/O nodes, each of which has one or more disks
attached to it. Such a file system has many configuration options, all of which can drastically affect appli-
cation performance. These variables include the number of 1/0 nodes, the number of disks per I/O node, and
the stripe unit size both within an I/O node (if it contains more than one disk) and across all of the I/O nodes
in a stripe. Many current striped file systems allow a programmer to control some or all of these options to
provide her application with maximum file system bandwidth to a single file. However, not all options can
be reset by the application — a program running on a system with 8 I/O nodes cannot request to stripe data
across 16 nodes. Worse, programs that specify file striping are often difficult to port, as the system’s I/O
configuration is likely to change even between different machines of the same model.

RAMA alleviates these problems by providing excellent performance without requiring extensive user con-
figuration. Instead, every program benefits from high bandwidth access to its files without having to specify
how each file is striped. This allows programmers to be concemed more with making an algorithm work
and less with how to deal with the many possible 1/0 node configurations.

The chapter first shows that distributing data pseudo-randomly among all of the disks in an MPP, as RAMA
does, imposes little penalty over optimal data striping on disk. Moreover, the pseudo-random data place-
ment of RAMA performs significantly better than non-optimal striping. As a result, RAMA is preferable
for use when the application does not explicitly specify how data should be stored on disk. RAMA’S worst-
case performance is considerably better than that of a striped file system, and it is only a few percent worse
than a striped file system in the best case.

Another concern with RAMA is that the movement of file system data between nodes of an MPP creates
network congestion because the data may not be on a disk “near” the processor that needs it. As this chapter
shows, RAMA consumes little network bandwidth on a modern MPP with a high-speed interconnect. Addi-
tionally, it uniformly spreads its generated traffic over the entire machine. In contrast, a standard striped file
system concentrates its network traffic near specific 1/O nodes, causing congestion by concentrating all I/O
requests on just a few nodes’ links. Both file systems must send the same number of requests to the disks;
however, RAMA distributes them more evenly in the network than does a striped file system.
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7.1. Application Performance

7.1.1. Strided Access

The first set of simulations comparing RAMA and a standard striped file system used synthetic workloads.
These workloads consisted of two types — those that represented real applications that used strided access,
and those that simply read or wrote the file as rapidly as possible.

7.1.1.1. Raw Bandwidth Experiments

In the raw bandwidth tests, each node in the parallel processor read or wrote a single chunk of contiguous
data and waited for every node to complete its corresponding operation. This process was repeated until the
entire file was transferred. The nodes did not do any computation on the data; they merely attempted to
move data between disk and memory as quickly as possible.

The order in which the nodes read the data had a major effect on the bandwidth delivered by the striped file
systems. The experiments covered two transfer orderings — iteration sequential and node sequential, anal-
ogous to row-major and column-major array element orderings. Figure 7-1 graphically shows the access

Time CPU Time
0
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2
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soquermial | sequential
0 Megabytes in file 15

Figure 7-1. Node sequential and iteration sequential request ordering.

This diagram shows the two access patterns used in the experiments that transferred an entire file. These
patterns correspond to row-major and column-major accesses in a program that uses matrices. An itera-
tion-sequential requests one contiguous chunk of the file in each iteration of the main loop. However, indi-
vidual nodes of the MPP do not transfer data sequentially between iterations. Node-sequential access
exhibits the opposite characteristics: a node’s I/O is sequential between iterations, but the data moved dur-
ing each iteration is not contiguous in the file.

patterns for the two orderings. In iteration sequential accesses, transfers appear sequential between itera-
tions. Taken as a whole, the MPP transfers data sequentially. However, each individual node does not
appear to have sequential transfers; instead, the offsets of consecutive accesses into the file differ by the
total data transferred by all nodes during each iteration. For the node sequential access pattern, on the other
hand, each individual node makes all of its requests sequentially. When viewed from the total machine level,
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however, the accesses do not appear sequential. Instead, transfers by adjacent nodes in the MPP start at off-
sets differing by fileSize/nodes.

The access pattern of the whole-file transfer had a major effect on the overall bandwidth of the striped file
system, but had little effect on the performance of the RAMA file system. For a striped file system, band-
width varied by a factor of five between the best and the worst striping arrangements, as Figure 7-2 shows.
The difference in performance is caused by hot spots in the disk array. Figure 7-3 shows the problem in
detail for the node sequential access pattem. For very small stripe sizes, any request will access many disks,
achieving good bandwidth for each individual request. Hot spots are minimized, since every node accesses
many disks. As the stripe size increases, each node accesses fewer and fewer disks to complete its request.
If different nodes use disjoint subsets of the disks available, performance remains good. However, overall
bandwidth drops sharply if all of the nodes direct their requests to only a few of the available disks. When
each node is requesting a portion of the file on the same disk, medium-sized stripe sizes are a very poor
choice. As the file system’s stripe size increases, however, performance goes back up. This return to good
performance occurs because each node effectively gets its own disk for all of its requests. While overall per-
formance is good under this scheme, each node performs relatively poorly for its accesses. The request from
any node is only served by a single disk, limiting its performance to that of one disk.
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Figure 7-2. Comparison of raw bandwidth in RAMA and striped file systems.

This graph compares the performance of the RAMA design to that of striped file systems in a test of raw
bandwidth. The data is read in two different access patterns as described in Section 7.1.1.1. The iteration-
sequential reads are shown as the solid lines, and the dotted lines represent node-sequential reads. Each
line is labeled with two numbers: an, bd. a is the number of disked nodes for that series of tests, and b is
the number of disks attached to each disked node. There is only one line for RAMA, as its performance
varied by less than 0.4% between the two workloads. Additionally, stripe size is not a parameter to the
RAMA file system; thus, the line for RAMA’s performance is based on just a single set of file system
parameters.

Under the RAMA file system, though, there is no stripe size. Instead, file system requests are broken into
chunks and hashed to various nodes in the file system. Effectively, a file is “striped” across all of the disks

94



X KB read by processor
aduring iteration n

Disk 0 Disk1 Disk2 Disk 3 Disk 0 Disk1 Disk2 Disk3

- am e - am wm m mn -

,
ooog

 N— / .
Stripe size = 4X Str'/e‘ Stripe size = 16X
[
Poor performance: disk n only P Good performance: all disks used
used during iteration n equally during each iteration

1 O/ @
O @ E

Figure 7-3. Interaction of stripe size and application stride.

This figure shows the interaction between file system stripe size and application stride when transferring a
file to disk. It shows that an application achieves maximum bandwidth to the file system when its access
pattern keeps all of the disks busy all of the time, as on the right. The program on the left evenly stores its
data on the disks; however, it only uses one disk at a time, limiting the performance of the four disk system
to the bandwidth of a single disk.

in the processor array in a pattern that no application is likely to duplicate. Figure 7-2 shows that bandwidth

to the file system is comparable to the best performance from a striped file system.

Note that RAMA’s peak performance is lower than that of a well-tuned striped file system. For the test in
Figure 7-2, RAMA takes 10% longer to read the 32 GB file than the optimally striped file system. This per-
formance loss occurs because, if the stripe size is chosen properly, requests will be uniformly distributed
across all the disks in the system at all times. Since all disk accesses in an iteration must complete before
the next iteration begins, each iteration will take as long as the longest time spent by a single disk. For a
striped file system under ideal conditions all disks will finish close to the same time, since they are all ser-
vicing the same number of requests.

In RAMA, however, the total number of requests each disk must service is not distributed uniformly, but
instead multinomially. The average number of requests per disk remains the same as in the striped file sys-
tem, but the maximum number of requests handled by any single disk is higher than in the ideal striping
case. As a result, each iteration takes slightly longer to complete because it waits for the disk with the high-
est load to finish servicing its requests.

The difference between RAMA's performance and that of the ideal striped file system depends on several
parameters: the number of disks and processors in the system, the total amount of data requested each iter-
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ation, and the average time to service a single request. Note that the last parameter’s value might actually
differ between RAMA and a striped file system because of differences in seek time.

7.1.1.2. Strided Access with Computation

Many programs step through a large data set once per iteration. Such applications fall into two groups. The
first are those that only need to write out their results after each iteration. Their data fits entirely in memory,
so the application does not need to use the disk as temporary storage. Instead, it uses the disk to store a his-
tory of the model’s state for later analysis. Other programs read many gigabytes off disk, analyzing them
and writing a relatively small output file at the end. The access patterns for both of these applications can
be described with one model, as both do regular sequential I/O interspersed with computation. Out-of-core
algorithms, such as matrix decomposition described in Section 7.1.2, perform both reads and writes each
iteration. These cannot be described with the simple model used to specify I/O pattems for the experiments
in this section.

The next set of experiments use a synthetic workload that overlaps I/O with computation. Asynchronous
file system requests allow an application to explicitly make read-ahead and write-behind requests. Instead
of an application requiring the sum of the time spent computing and doing 1/0, it only requires the maximum
of the two. For some applications, CPU time dominates I/O time. These applications perform similarly
regardless of the file system, since they are CPU bound. Other applications have I/O requirements that meet
or exceed the time necessary for computation, making the programs 1/0 bound. The experiments in this sec-
tion deal only with I/O bound models since CPU bound applications will not benefit or suffer from differing
file system performance.

The performance of a write-dominated strided access application is shown in Figure 7-4. This program uses
100 MFLOPs per iteration for each megabyte of data written. This corresponds to 800 operations for each
double-precision number written. On a parallel processor with 100 MFLOPS processors, the application
would write out 1 megabyte per second per node. If the disk system can keep up with this I/O rate, the appli-
cation will be CPU bound. As Figure 7-4 shows, RAMA can provide sufficient bandwidth to allow nearly
100% CPU utilization for all of the data layouts. However, striped file systems can only sink 1 MBY/s if the
data layout “fits” the striping arrangement. To achieve maximum performance from striping, an application

programmer must know about the underlying disk configuration in the MPP. If the placement knowledge is .

missing or incorrect, the program can run 8 times slower than RAMA. Even if striping is done properly,
RAMA is within 5% of the performance of a striped file system. RAMA'’s ability to provide good file
system performance without configuration is one of its major advantages over conventional MPP file Sys-
tems.

Simulation results for a read-dominated program are similar to those for write-domination, as the simula-
tor’s file system model does not account for metadata. Since the simulator does not do extra I/O for meta-
data, two programs differing only in whether data is read or written would perform nearly identically.

Section 7.1.1.1 shows that the file system is capable of slightly more than 1 megabyte per second per disk.
The previous example required exactly 1 megabyte per second per disk, so it is on the verge of being I/O
bound. If a program requires more disk bandwidth, it will be I/O bound unless the disk system is sped up.
This can be done in one of two ways: increase the bandwidth of individual disks, or use additional disks.
Both of these options were discussed in Chapter 6.

7.1.2. Matrix Decomposition

The second group of experiments involves matrix decomposition as described in Section 5.2.2. The decom-
position program, like the other applications in this chapter, uses asynchronous I/O to hide much of the
latency in the file system. Thus, the file system needs merely to provide 1/0 sufficiently fast to prevent the
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Figure 7-4. Performance of a synthetic workload doing write-dominated strided access under RAMA and
striped file systems.

The two graphs in this figure show the performance of synthetic workloads that model applications doing
strided access on a 16 x 16 processor array under both RAMA and various configurations of striped file
systems. Both applications average 1 MB/s of 1/O per node, and overlap 1/O with computation using write-
behind. The top graph shows an application doing iteration sequential access, where small stripe sizes per-
form best. RAMA is within 5% of the performance of the best striping arrangement. The bottom graph
shows a program with node sequential access where no striping arrangement outperforms RAMA.

program from becoming 1/0 bound. The point at which this occurs depends on the file system and several
other factors — the number and speed of the processors in the MPP, and the amount of memory the decom-
position is allowed to use.

Figure 7-5 graphs the total amount of 1/O done by the decomposition of matrices of various sizes against
the memory space used by the algorithm. Note that, even with a nearly infinite amount of memory, the pro-
gram must perform some I/O to read the matrix initially and write out the result. The graph shows the aver-
age bandwidth for a decomposition running on an MPP with 100 MFLOPS processors; for faster or slower
MPPs, the bandwidth must be scaled by the ratio of the actual speed to 100 MLOPS.

Because matrix decomposition uses asynchronous I/0, the application will only run slower if the file system
is unable to keep up with the CPU. Clearly, if the average required bandwidth is more than the file system
can deliver, the application will be I/O bound. However, an application may be 1/O bound for only part of
its execution time. This is particularly likely to happen with a striped file system with a poorly selected
stripe size. Matrix decomposition stresses striped file systems by only transferring a fraction of the file each
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Figure 7-5. 1/O done by matrix decomposition on a 64 processor MPP.

If insufficient memory is allocated to the matrix decomposition algorithm, it requires more I/O than a file
system can reasonably provide. However, the 1/O demand becomes reasonable even for memory sizes as
small as several megabytes. As the algorithm uses more memory, the I/O required drops off sharply. While
the average I/O bandwidth never reaches 0, it does drop below 5 MB/s for very large memories. This graph
shows the average 1/O bandwidth used matrix decompositions on an 8 x 8 processor mesh with 100
MFLOPS processors.

iteration, resulting in the performance shown in Figure 7-6. Under RAMA, the performance of matrix
decomposition matches that of the best striped arrangements, and is far better than the worst arrangements.
Note, too, that the best performance for the striped file system occurs with small stripes.

Just a small change in the source code governing the placement of data, however, can cause a large differ-
ence in performance for LU decomposition under striping. The data in Figure 7-7 were gathered from a sim-
ulation of a nearly identical program to that from Figure 7-6. The sole difference was a single line of code
determining the start of a segment of the matrix. An arbitrary choice such as this should not cause radical
changes in performance. Under RAMA, the application’s execution time is the same to within less than
0.1%. Performance under file striping, however, is very different for the two data layouts. The small stripe
sizes that did well in the first case now perform poorly with the alternate data layout. On the other hand,
large stripe sizes serve the second case well, in contrast to their performance with the first data layout.

7.1.3. Global Climate Modeling

The global climate model consists of two separate applications: one that models the physics and dynamics
of the major components of the atmosphere, and another that uses the output of the first model to compute
the behavior of many chemical species in the atmosphere. In one scenario for running these two programs,
all of the output from the first model is saved on disk and read back later by the second model. The I/O for
these programs is complicated because the two applications prefer different data organizations.

The GATOR model, as described in Section 5.2.3, simulates the behavior of various chemical species in the
atmosphere. It takes its input from the checkpoints of a standard global climate model. The standard GCM
stores its data in longitudinal strips, each stretching from near the north pole to near the south pole. GATOR,
however, wants to group data into blocks, consisting of small chunks of adjacent longitudinal strips as

98



8000 -

16d, 4n
8
c 6000 —
8
) 8d, 8n
£ 4000 - [ —
S 4d, 16n
3 2d, 32n
§ 2000- CAMA
w
0 L ) 1 LR IR BRI ll 1 L] LN B BN I ] " T L LR BN IR I | ‘l' T 1
100 1000 10000 100000 300000

Per-disked node stripe size (KB)

Figure 7-6. Execution time for LU decomposition under RAMA and striped file systems.

LU decomposition suffers only a 2% performance penalty for running under RAMA rather than a striped
file system with a small stripe size. RAMA outperforms striping with large file sizes by a factor of 3 in the
worst case. For this application, stripe size has a strong effect on application performance. RAMA pro-
vides nearly equivalent performance without requiring the user to configure the file system.
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Figure 7-7. Execution time for LU decomposition with an alternate data layout.

This graph shows the same program and file systems as Figure 7-6 with just a single change to the applica-
tion’s code that determines how data is laid out on disk — similarly to either row order or column order.
The small change results in radically different performance under striping, but execution time under
RAMA is the same in both cases.

shown in Figure 5-9. This decision forces GATOR to make many relatively small requests to read the data
for each iteration.
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The simulated GATOR model uses a 144 longitude by 96 latitude grid. Each grid point has 8 KB of data to
represent the current atmosphere at 20 levels. This information is read in every 5 simulated minutes. The
model executes 0.8 MFLOPs per grid cell per iteration, so the system needs to read in 114 MB of data for
each 11,000 MFLOPs. Since the simulated system has 100 MFLOPS per processor, the total necessary I/O
bandwidth is about 1 MB per second per CPU. This matches well with the requirement for one disk per
CPU.

Striped file systems generally perform well handling GATOR’s file requests. While each individual node
does not make sequential requests, the overall request pattern is similar to the iteration-sequential pattern
mentioned in Section 7.1.1. During each iteration, GATOR reads 114 MB. Striping attained maximum
bandwidth whenever a stripe across the entire file system evenly divided 114 MB — i.e., when a single iter-
ation’s request consisted of a whole number of full stripes across the file system. Under these conditions,
the file system mapped the same number of requests to each disk in the MPP, giving maximum performance
as shown in Figure 7-8.

However, GATOR s performance declines markedly if the file system uses large stripes. The decline occurs
because some disks must service more requests than others. This effect mirrors that seen in the iteration-
sequential 1/O case for large stripe sizes. At any given iteration, the distribution of file requests to disks is
uneven, even though the file as a whole is evenly distributed among the disks in the file system.

GATOR'’s performance on RAMA varies with the size of the processor mesh. For meshes up to 8 x 8,
GATOR using RAMA performs as well as the best striped file system. For larger meshes, GATOR s per-
formance under RAMA declines. Using an MPP with 128 processors, GATOR loses 40% in performance
between an optimally-striped file system and RAMA.

The drop in performance on larger MPPs occurs because GATOR does not scale its problem size with the
size of the MPP it runs on. Since the problem size is constant, the average number of outstanding I/Os per
disk declines as the MPP becomes larger. For an optimally striped file system, this does not present a prob-
lem, as each disk services the same number of I/Os. RAMA, however, distributes data pseudo-randomly to
disk. As the mean number of requests per disk declines, the variance increases. This results in a greater vari-
ation between the average number of requests per disk and the number that the most heavily loaded disk
must satisfy. The ratio between maximum number of requests per disk and mean requests per disk deter-
mines the difference in performance between optimal striping and RAMA — as the ratio increases,
RAMA'’s performance decreases relative to striping.

GATOR thus demonstrates that RAMA performs best when the application has many outstanding requests
for data. If the concurrency drops too low, RAMA will perform worse because of its pseudo-random distri-
bution. For many applications, however, this is not an issue. Given a larger and faster MPP, scientists usu-
ally increase the size and detail of the simulation rather than solving the original problem faster.

7.2. Disk Utilization

Application execution time and peak bandwidth are only two aspects of performance that are important to
system designers. Disk utilization is another major performance metric for file systems. For parallel file sys-
tems, in particular, the spatial and temporal distribution of requests to disk affect overall file system perfor-
mance. In addition, the distribution of file data to disk affects storage utilization. If one disk receives more
data than other disks, the file system may seem full even though there is remaining free space.

7.2.1. Spatial Distribution of Disk Requests

Spatial distribution of requests refers to the overall request load on each disk in the file system. Over the
long term, this each disk in the file system should have the same utilization for optimal performance. Under-
utilized disks represent unused bandwidth, and reduce the overall performance of a file system.
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Figure 7-8. GATOR performance under striping and RAMA.

The two graphs in this diagram show the performance of GATOR under striping and RAMA. The top
graph shows the problem running on an 8 x 8 processor mesh with 64 disks, and the bottom shows a 16 x
8 processor mesh.

For an 8 x 8 processor mesh, GATOR running under RAMA performs almost as well as under striped file
systems, losing only 2% processor utilization. With larger stripe sizes, standard file systems’ performance
falls off, dropping to CPU utilization levels as low as 21%. However, the 16 x 8 case is not so rosy for
RAMA. Here, the low average number of I/Os per disk leads to a higher variance of requests per disk.
Since RAMA’s performance is limited by the disk with the most 1/0s, GATOR runs at only 68% processor
utilization in this case.

In a striped file system, read and write requests are mapped to disks in an regular pattern. This order allows
a striped file system to guarantee that sequential read and write requests to a large file will be evenly dis-
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tributed among all disks, as shown in Figure 7-9. If the entire file is read or written, every disk handles the
same number of requests. If the requests for each disk are also temporally distributed, as described in
Section 7.2.2, the file transfer will attain maximum bandwidth.

<« File blocks —

Figure 7-9. Sequential request distribution in a striped file system.

In a striped file system, data is distributed evenly to each disk. The regular pattern guarantees that each
disk stores the same amount of a file’s data. However, the tail file does not occupy an integral number of
stripes. As a result, the first two disks of I/O node 0 will service twice as many requests as the rest of the
disks if the entire file is transferred sequentially.

The biggest problem with disk request distribution in striped file systems occurs when file requests only
cover a portion of a full stripe. This is a real issue in systems with hundreds of disks. Even if each disk holds
just 4 KB of data, a full stripe in a system with 256 disks will cover 1 MB. Many striped file systems, how-
ever, place more data on each disk, making a full stripe several megabytes in length.

If all request sequences start with the same disk, the disks towards the end of the stripe will service fewer
requests than the disks near the start of the stripe. Some file systems accept this penalty. Other MPP striped
file systems, such as Vesta [18,19], allow each individual file’s stripe to start on a different disk. In this way,
long-term distribution of requests to disks remains uniform even when files do not use an entire stripe.

Figure 7-10 shows an example of the partial stripe access problem, as typified by matrix decomposition.
While the LU decomposition algorithm writes each byte in the file exactly once, it does not distribute its
reads evenly. Only the data below the diagonal of the matrix is read multiple times. As a result, requests are
not evenly distributed to disks. In Figure 7-10, the variation between the disk with the most requests and the
one with the fewest is a factor of 2.5. This disparity limits the performance of the file system. Starting each
file’s stripe at a different disk would not help because the decomposition algorithm only references a single
file. This distribution problem can only be solved by picking the “correct” stripe size, which is dependent
both on the application’s access pattern and the number and arrangement of the disks in the system.

RAMA, on the other hand, uses a hashing algorithm to pseudo-randomly map file system requests to disks.
This operation converts any regular input ordering into a random-looking output ordering. Mapping
requests to disks this way leaves the question of whether the request load will be evenly distributed among
all of the disks in the file system.

Figure 7-11 graphically shows the distribution of disk requests processed during the read of a 32 GB file on
both a 64 and 256 processor MPP running RAMA. The disks are labeled starting at 0, with one for each
processor. As the diagram shows, both the 64 and 256 processor cases exhibit good distribution, as all of
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Figure 7-10. Poor distribution of requests to striped disks for LU decomposition.

When application access patterns interact poorly with file stripe sizes, the request distribution across all of
the disks in a striped file system can vary greatly, as shown in this graph of the disk load during the decom-
position of a 32,768 x 32,768 matrix. This graph shows the average bandwidth delivered by each of 64
disks in a striped file system, clustered 4 disks per I/O node over 16 I/O nodes. The most heavily-loaded
disks averaged 0.26 MB/s, while the least-used disks averaged just over 0.1 MB/s. Since the program used
the file system inefficiently, its execution time was 4 times that of the most efficient striping arrangements.
This long execution time lowered the disks’ average bandwidths, since the total amount of data transferred
is constant for all choices of stripe size.

the disks experience approximately the same request load. This even distribution is important because, as
noted in Section 7.1.1.1, the performance of the file system is limited by the disk that must service the most
requests.

Unlike many striped file systems, RAMA does not need application hints to avoid the problem of partial
stripe transfers. RAMA stores a fixed quantity of data on each disk before rehashing the <file/d, blockOff-
ser> pair and switching to a new disk, as described in Section 4.1. Since blocks for a file are distributed
pseudo-randomly, any request that spans multiple disks will access pseudo-randomly chosen disks. The
hashing algorithm makes it unlikely that any two specific subsets will be identical. This effect can be seen
in Figure 7-12, which shows the distribution of requests to disks for LU decomposition. This algorithm does
not read the entire file each iteration. Rather, it reads only the portion of each column under the diagonal
during the update stage. This amount varies with each column, and is often smaller than a single stripe
would be. As Figure 7-12 indicates, however, requests are still evenly distributed among disks.

7.2.2. Temporal Distribution of Disk Requests

For a file system to perform well, requests to its disks must be distributed uniformly in time as well as in
space. Even if a system maps the same number of requests to each disk over the course of a program’s run,
performance will suffer if individual disks’ requests are clustered together.

This effect often appears with striped file systems. Section 7.1.1.1 describes a case where a different access
ordering results in a large performance loss. Since the same data is being read, spatial distribution between
the two orderings is identical. However, temporal distribution differs greatly between the two access pat-
temns. The same regularity that guarantees uniform distribution of requests to disks also makes it possible
for a program to cluster many requests to a specific disk within a short period of time. In an MPP, though,
the problem is complicated because many processors may each have their own reference stream. While any
one processor’s stream may stress only a few disks, all of the streams proceeding at the same time can cover
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Figure 7-11. Distribution of requests to RAMA disks during the read of a 32 GB file.

The scatter plots in each of these graphs show the average bandwidth each disk provided during the read of
a 32 GB file. The top graph shows the distribution for an 8 x 8 mesh, while the bottom graph is for a
16 x 16 mesh. Since all requests were 32 KB long, the number of requests serviced is proportional to the
bandwidth. The difference between the disk with the lowest average transfer rate and the horizontal line
corresponding to the average bandwidth per disk is the loss in performance suffered between the ideal

striping case and RAMA.

all of the disks. Figure 7-13 shows both a well-performing and poorly-performing temporal distribution. In
the well-performing case, each processor in the MPP touches half of the disks during each iteration. How-
ever, all of the disks are in use at any given time, The poorly-performing case, on the other hand, has every
processor’s requests going 1o the same set of disks each iteration. The disks vary by iteration, but perfor-
mance suffers because half of the disks are idle at any given time. The loss in performance depends on the
fraction of disks idle each iteration, but drops of a factor of 8 or more can occur for poor striping configu-
rations.

Because RAMA distributes data pseudo-randomly, it is largely immune to poor temporal distribution of
requests 1o disks for the same reasons that it is relatively immune to poor spatial distribution. Any regularity
in time is randomized by the hash function, so the distribution of requests at any instant appears random.
Figure 7-14 shows how effective this redistribution is, using the same workload shown in Figure 7-13.
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Figure 7-12. Distribution of requests to RAMA disks for LU decomposition.

This graph, like Figure 7-11, shows the average bandwidih provided by each disk in an 8 x & processor
array running RAMA, Tn this figure, the MPP is doing a 24,576 x 24,576 matrix decomposition with seg-
ments 512 elements wide. Again, the spread between the disk with the fewest requests and disk with the
most is requests is small. Here, the least-used disk averages 1.03 MB/s and the most-used 1.15 MB/s, so

the spread is 11% of the average bandwidth. No disk is more than 6.5% over or 4.6% under the average
bandwidth per disk,

While the pattern of disk accesses for striping is regular in both cases, RAMA scatters the disk requests for
both access pattemns. This results in slightly lower performance in the optimal case because of a slightly non-
uniform request distribution in RAMA, similar 1o that described in Scction 7.2.1. However, performance in

the non-optimal casc is far superior for RAMA — it suffers no degradation between the two cases, while
the striped file system loses a factor of 8 in performance.

7.2.3. File System Data Distribution

Another issue file systems must face is that of file block allocation. Poor allocation schemes result in several
problems including inefficient storage usage and poor performance from excessive disk seeks. RAMA’s

disk block allocation scheme and the use of tertiary storage as a backing store address both of these prob-
lems.

A typical striped file system may allocate all of the blocks on its disks because there is no intrinsic location
for any file block. These system use a combination of simple mapping and index lookups to find a block.
For example, a simple Unix-based file system using a disk array would look up ajogical disk block number
using standard Unix file indices, and map that logical disk block to a physical disk block with a few simple
arithmetic operations. Vesta [18,19], on the other hand, uses simple operations to compute the disk partic-
ular data lies on, and then does an index lookup using indices local to the disk.

Since standard and striped file systems use indices to locate every block, individual blocks are limited to, at
worst, a single disk. In addition, these file systems use striping (o ensure that data is distributed evenly
among all of the disks in the file system. Theoretically, then, standard file systems can use all of the avail-
able storage space for data. However, many file systcms reserve free space to make disk block allocation
faster. The Unix Fast File System (FFS) [54] typically reserves 10% of a disk to keep acceptable perfor-
mance. LFS [74], on the other hand, needs closer to 20% of the disk free to maintain acceptable perfor-
mance. Many parallel file systems are based on onc of these two models. For example, the Vesta file system
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Figure 7-13. Temporal distribution of MPP file request streams to a striped file system.

Each dot in this diagram represents an access to the disk indicated on the vertical axis at the time shown on
the horizontal axis. Both graphs show 16 processors reading a 1 GB file by accessing 1 MB per processor
per iteration. The top graph shows the accesses resulling from iteration-sequential ordering, while the bot-
tom graph shows node-sequential ordering. In both cases, all 16 disks are attached 1o a single node, with a
stripe size of 2 MB. The system shown in the top graph achieves twice the bandwidth of the system in the
boltom graph, as all disks are used for the majority of the time. In the bottom graph, however, half of the
disks arc idle at any time.

currently uses a system similar to Unix to manage the block allocation on each individual disk. The Intel
Paragon file system [44] stripes data across many disks for better performance, but uses indices similar to
those in FFS to get logical block numbers that are then mapped to physical disks, Thus, typical file systems,
including standard striped file systems, need up to 20% of a disk free to ensure good performance.

In contrast, RAMA uses hashing to determine the disk line that each file block must go into. Since disk lines
are smaller than an entire disk, the data is partitioned more than it would be in a striped file system. In the
absence of tertiary storage, the file system would be considered full whenever any disk line filled up. Worse,
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Figure 7-14. Effectiveness of the RAMA hash function at eliminating poor temporal distribution.

This figure shows the distribution of requests to disks for the same file access sequence shown in the lower
graph of Figure 7-13. At any given instant, each disk has close 1o the average load for the entire disk 5YS-
temn. As a result, no disk is idle for a long period of time,

it would be difficult for a user to predict which files had be deleted to free up space. Only files with blocks
inthe full disk line would alleviate the space crunch, yet a user would have no simple way of knowing which
files those were.

To avoid these consequences, RAMA relies on tertiary storage to ensure that sufficient space is available
for overwriting. Once a copy of a file exists on tertiary storage, the version on disk may be freed if space is
needed. However, RAMA makes such data available so long as the space is not needed. RAMA was not
simulated with a *‘tertiary disk;” however, analytical performance estimates for such a system indicate that
the performance loss is no greater 1 MB/s per thrashing disk line. Additionally, this penalty is only paid if
active data must be moved between the main RAMA disks and the tertiary disk. Otherwise, the penalty is
paid once as inactive data is moved to the tertiary disk, and no further degradation occurs. So long as the
active working set of data does not overflow many disk lines, using a “‘tertiary disk” has a minimal effect
on RAMA’s performance.

7.3. Network Utilization

Network utilization is also a major concern for parallel file sysiem designers. Early file systems, such as the
Concurrent File System [92] ran on MPPs with low interconnection network bandwidth. The nCube-2, for
example, has links that run at 20 MB/s, only 5 times faster than the peak bandwidth of a disk. However,
recent parallel processors such as the Intel Paragon [27,44] and the Cray T-3D [20] provide link bandwidths
of 100 MB/s or more. Since peak disk bandwidths have not increased at the same rate, the interconnection
network is no longer the limiting factor in file system bandwidth.

The load on a mesh network with the edges wrapping around can be approximated analytically under the
assumption that the sending and receiving nodes are chosen randomly. If both are chosen randomly, an aver-
age network message will go one quarter of the total length in each direction. Thus, a network message on
a 16 x 8 mesh will, on average, traverse 4 horizontal links and 2 vertical links, for a total of 6 links. The
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expected total network bandwidth will be the product of the total file system bandwidth and the number of
links each message must traverse.

7.3.1, Network Utilization Under Striped File Systems

Many MPP file systems in use today [5,20,52] attach disks to the interconnection network at a few dedicated
1/O nodes. This approach concentrates link traffic due to the file system near those I/0O nodes. For example,
a file system that provides 200 MB/s through 8 I/O nodes must use 25 MB/s of network bandwidth near
each I/O node. If the I/O nodes are part of the normal interconnection network, as they usually are, normal
link traffic will be delayed in the vicinity of I/O nodes. Moreover, these delays decrease further away from
the I/O nodes, as only file system data destined for nodes distant from the 1/O nodes must use links far from
the I/O nodes. :

— <1%
— 1% - 2%
m— 2% - 3%
o 3% - 4%
wmm 4% - 5%
mm > 5%

.

Figure 7-15. Interconnection network utilization under a striped file system.

This diagram shows the interconnection links for an 8 x 8 processor mesh with 8 1/0 nodes running a
striped file system. Each node that has I/O connections is darkly shaded, while the other nodes are lightly
shaded. The thickness of a link between two nodes is proportional 10 the network traffic due to the file sys-
tem carried by that link. The thickest links carry 5 MB/s or more.

The link weights are from a simulation of a 24,876 x 24,876 matrix decomposition. Network load is high-
est near the 1/0 nodes, and drops off further from the [/O nodes. The most heavily loaded link carried 5.5
MB/s on average, and the least-loaded node averaged 0.2 MB/s,
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As Figure 7-15 shows, the file system's effect on the interconnection network varies according to alink’s
distance from the 1/O nodes. Even though there are relatively few I/O nodes, the interconnection network
must still carry all of the I/O traffic to the appropriate nodes. There are methods for restricting file system
network traffic from each /O node to its nearby neighbors, as mentioned in {68]. However, the application
programmer must make extensive use of file system layout knowledge 1o make such improvements. Addi-
tionally, programs making these optimizations perform poorly if the disk configuration changes.

7.3.2. Network Utilization Under RAMA

The RAMA design, in contrast to striping, spreads the file system load on the interconnection network
evenly around the MPP. Figure 7-16 graphically shows this balanced distribution. Since the file system data
is evenly distributed among all of the nodes in the MPP, each node injects approximately the same amount
of file system data into the interconnection network,

< 1%
—_— 1% -2%
o 2% - 3%
mm 3% - 4%
mmm 4% - 5%
mm > 5%

Figure 7-16. Interconnection network utilization under RAMA.

This figure uses the same conventions as Figure 7-15 for nodes and interconnection links. It shows the
same algorithm — LU decomposition of a 24,576 x 24,576 matrix on an 8 x 8 processor mesh. However,
the file system for this simulation is RAMA. Thus, every node has an 1/O device attached o it. The net-
work load injected by the file system is evenly distributed among all of the links. The most heavily loaded
link carries 2.8 MB/s on average, while the least loaded link averages 1.6 MB/s.

RAMA provides an average of 69.2 MB/s of disk I/O for the program simulated in Figure 7-16. Since the
mesh network it uses is 8 x8, each network message should average 4 hops, for a total of 276.8 MB/s band-
width distributed over the entire mesh network. The actual total network bandwidth is 277.8 MB/s. The esti-
mate is only low by 0.4%. However, the bandwidth calculation ignores bandwidth due to messages
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requesting data. While these messages are small, they do add about one hundred bytes per I/O request. If
the average file request is for 32 KB, request messages should add 0.3% to network load. Once this is fig-
ured in, actual bandwidth varies by less than 0.1% from predicted bandwidth. The random source and des-

tination model can thus be used to predict the file system load on larger mesh networks in MPPs running
RAMA.

7.4. Conclusions

Traditional multiprocessor file systems use striping 10 provide good performance to massively paraliel
applications. However, their performance depends on the application to provide the file system with place-
ment hints. In the absence of such hints, performance may vary by a factor of 4 or more, depending on the
interaction between the program’s data layout and the file system’s striping.

RAMA avoids the problems of poorly configured striped file systems using pseudo-random distribution.
Under this scheme, an application is unlikely to create hot spots on disk or in the network because the data
is not stored in an orderly fashion. Laying files on disk pseudo-randomly costs, at most, 10-20% of overall
performance when compared to applications that stripe data optimally. However, optimal data striping can
be difficult to achieve. RAMA's performance varies little for different data layouts in full-speed file trans-
fers and matrix decomposition. Applications using striped file systems, on the other hand, may increase
their execution time by a factor of four if they choose a poor data layout. This choice need not be the fault
of the programmer, as simply using a machine with its disks configured differently can cause an applica-
tion’s I/O to run much less efficiently.

RAMA’s flexibility does not exact a high price in multiprocessor hardware, however. RAMA allows MPP
designers to use inexpensive commodity disks and the high-speed interconnection network that most MPP
applications require. Tt is designed to run on an MPP built from replicated units of processor-memory-disk,
rather than the traditional processor-memory units. This method of building MPPs removes the need for a
very high bandwidth link between an MPP and its disks; instead, the file system uses the high-speed net-
work that already exists in a multiprocessor. Since the file system is disk-limited, though, the network is
never heavily loaded. Network loads under RAMA vary by less than a factor of 2 across the entire MPP,
while loads for traditional striped file systems vary by more than a factor of 10.

Disks, too, are utilized well in RAMA. Pseudo-random distribution insures an even distribution of data to
disks. Disk requests are evenly distributed to disks in time as well as in space. Thus, no disk serves as a
bottleneck by servicing too many requests at any time. In addition, all disks are used ncarly equally at every
step of an 1/O-intensive application without the need for data placement hints.

The simulations of both synthetic traces and kernels of real applications run in this chapter show that the
pseudo-random data distribution used in RAMA provides good performance while eliminating dependence
on user configuration. While RAMA’s performance may be up to 10-20% lower than an optimally config-
ured striped file system, it provides a factor of 4 or more performance improvement over a striped file
system with a poor layout. Its portability and scalability, however, make RAMA an excellent file system
choice for the multiprocessors of the future.
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8 Conclusions

This dissertation has addressed two issues in storage for scicntific computing: the efficient management of
terabytes of storage, and high-performance access to files in a massively parallel file system. It makes sig-
nificant advances towards solving the challenges posed by the ever-increasing appetites of scientists for
larger data stores and faster access to the data on them. This chapter will summarize the rescarch described
in this thesis and outline possible directions for future research in this area, focusing on problems that build
on this work,

8.1. Summary

The first problem addressed in this dissertation was that of tertiary storage management for scientific com-
putation. In the decade since the last studies of file migration and massive storage systems, both the volume
of data and the rate at which it is produced and consumed have increased by orders of magnitude. The
increased demands must be taken into account by new storage system designs. In addition, our analysis
revealed other workload characteristics and performance metrics not found in previous analyses.

The traces for this study were gathered over a two-year period at the National Center for Atmospheric
Research (NCAR). They include over three million references to 25 terabytes of data stored in nearly one
million different files in the NCAR mass storage system. As in previous studies, about half of the files were
referenced infrequently — two or fewer references, However, the remainder of the files expericnced many
rereferences. This behavior is similar to that reported around 1980 in [80].

Additional references to a file are most likely within a day or two of previous access to that file, though poor
integration in the NCAR storage systemn forced two tertiary storage references regardless of how close
together the two accesses occurred. There was little difference between the access patterns for large and
small files. Reference patterns did differ, however, between reads and writes. File read rates closely
matched scientists” schedules, peaking during the work day and dropping off at night and on weekends, On
the other hand, file write rates remained relatively constant throughout the day and the week, suggesting
that the write rate is governed more by the computer’s ability to generate new data that must be stored.

We then shifted our attention to the design and simulation of a massively parallel file system motivated by
the findings reported in Chapter 3. Current parallel file systems are not well-integrated with mass storage
systems; however, Chapter 3 showed that more than half of the references to tertiary storage could have
been avoided by transparent access 1o tertiary storage. Additionally, the storage of file metadata is becoming
a problem. Many of the supercomputer file systems that allow transparent access to tertiary storage require
all of the file system metadata and directories to remain on disk even when files are migrated to tape. The
RAMA file system presented in this dissertation addresses both of these problems and adds another benefit:
ease of use. In contrast to previous parallel file systems, RAMA requires little per-application customization
to achieve high performance.
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RAMA uses pseudo-random distribution and reverse indices similar to cache tags to uniformly spread data
over the disks of an MPP. Because RAMA uses reverse indices to find file blocks, it only keeps metadata
for files actually on disk; metadata for migrated files can itself be migrated. This strategy also allows seam-
less integration of tertiary storage, since a file can be retrieved from tertiary storage if it is not found in the
disk-resident reverse indices. However, RAMA’s major attraction is its performance. Its pseudo-random
distribution probabilistically guaraniees high bandwidth regardless of an application’s access pattern.
Unlike current MPP file sysiems, RAMA is designed to achicve high bandwidth without extensive place-
ment and usage information from the applications that use it, thus providing an easy-to-use parallel file sys-
tem.

After discussing RAMA’s design, the dissertation described a simulation study of its performance.
Chapter 5 discussed the methodology behind the simulation experiments performed in Chapters 6 and 7,
covering both the simulator’s organization and the models used for the disk and network devices. It also
described the workload generators that generate reference streams to drive the simulator’s model of RAMA.
Several of the gencrators model real applications such as matrix decomposition, while others drive the sim-
ulation with synthetic access traces.

The next two chapters of the disscrtation discussed RAMA’s performance, showing that a pseudo-random
file system can achieve bandwidth rates comparable to thosc delivered by conventional parallel file systems.
Chapter 6 first discussed RAMA’s sensitivity to changes in disk and network technology, demonstrating
that it will remain a good file system choice even as the performance of the underlying technologies
improves. As expected, faster disks resulted in proportionally higher bandwidths for RAMA. Faster net-
works, on the other hand, have litile impact on RAMA’s overall bandwidth because the file system is disk-
limited. This finding is encouraging since intcrconnection link speed was a serious performance bottleneck
in earlier parallel file systems.

In contrast to Chapter 6, which shows that RAMA will scale well with advancing technology and differing
workloads, Chapter 7 demonstrated that pseudo-random distribution performs comparably to the striping
layout used by previous parallel file sysiems. Moreover, striping performed well for some access patterns
and poorly for others. RAMA, on the other hand, achieved bandwidth close to that of the optimal striping
layout, and maintained that level of performance across a wide range of access patterns for which the opti-
mal striping arrangement varied widely. RAMA’s performance was gencrally within 10% of the best per-
formance possible from striping, and was more than four times better than that of a file system with a poorly-
chosen stripe size. It is this combination of high bandwidth and access pattern-independent performance that
make RAMA an attractive alternative to conventional striped parallel file systems.

8.2. Future Work

The research presented in this thesis points to several arcas for future research in storage for scientific com-
puting. These directions include further research on algorithms and system design for tertiary storage sys-
tems and the construction and evaluation of disk-based storage systems for massively parallel computers.

8.2.1. Future Research in Tertiary Storage

Chapter 3 presented an analysis of the current situation at the National Center for Atmospheric Research.
This data center provides just a single data point for tertiary storage systems. Since previous efforts in ter-
tiary storage management have focused on optimizing the data movement around a specific storage hierar-
chy (different for each study), a clear direction for future research is 1o design file migration algorithms and
test them vsing traces from several sites.

Initially, the file migration algorithms would only move whole files between different devices in the storage
hierarchy. However, it is likely that allowing partial files to exist on various levels of the hierarchy will
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result in better performance. This is particularly true when users are searching through many files for a spe-
cific piece of data because it allows the system to migrate only the necessary data from a multi-gigabyte file.

Since even a single “‘cache miss” for tertiary storage is visible to the user, another im portant area of research
is prefetching algorithms. Again, the use of traces from several sites will allow the development of good
heuristics that are based on general access patterns rather than the peculiarities of a single site. These algo-
rithms will enable the mass storage system to hide from the user the multi-second delays incurred while
feiching files from slow tertiary storage media.

The introduction of new storage technologies provides another direction for file migration research. How
will the development of holographic storage and other hi gh-speed, high-capacity inexpensive devices affect
the design of storage systems? Certainly, computers will be able to store more data and retrieve it more
quickly. However, the algorithms used in such a system may more closely resemble disk caching algorithms
than those used in mass storage systems. Even before such devices are available, these questions can be con-
sidered in simulation.

8.2.2. Future Research on RAMA and Parallel File Systems

This dissertation showed the benefits of the RAMA file system desi gn— pseudo-randomly distributing data
throughout the entire parallel processor with at least one disk per node. Many questions remain, however.

First, these findings in this thesis are based on simulation. One major avenue for future research is the actual
implementation of the RAMA file system on a parallel processor. This could be done on either a commercial
MPP or a network of workstations tightly coupled by a high-speed network. As reported in Chapter 6,
RAMA’s performance is relatively insensitive to network latency; thus, the longer latencies of a workstation
network would not result in much worse file system performance as long as network bandwidth was suffi-
cient. Once the file system was completed, it could be used to verify the simulation results and demonstrate
that RAMA could replace conventional parallel file systems.

Further experiments with parallel file systems demand additional traces. This dissertation used several
common workloads; however, little is known about applications’ use of parallel file systems. Thus, tracing
and analysis of I/O-intensive parallel applications is another direction for future research. The results of
such a study could then be used to drive additional experiments using RAMA,

RAMA itself also presents questions for additional study. Since the design described in this thesis is a paper
design, it leaves several implementation details uncovered. Simulations can only model several hours (at
best) of file system use; how will RAMA perform over the course of days and weeks? A major issue for
long-term use is file system reliability, yet the RAMA design laid out in this paper is susceptible to disk
failure. Techniques from RAID [11), the TickerTAIP project [9], and the Zebra file system [38] may be
useful in adding reliability to RAMA, allowing data stored on it to survive disk failures.

8.3. Summary

This dissertation has addressed two issues in the design of mass storage systems for scientific computation:
characterization of modemn multi-terabyte storage systems, and high bandwidth file systems for massively
parallel processors. These two areas are closely related, since both must be integrated into a storage envi-
ronment for scientific computing. Building a coherent file system from many individual storage systems is
as difficult a problem as is building each individual component. Thus, this thesis has also addressed issues
of designing an integrated storage system for supercomputing. While performance and capacity are always
recognized as important metrics of storage systems, ease of usc is often neglected. Ideally, users should see
asingle file system entity, in contrast to current systems com posed of several loosely-connected file systems
between which files must be explicitly moved by users. Additionally, most current parallel file systems
require a user to supply file layout directives for the file system to provide maximum performance. Future
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massive storage Systems supporting scientific computing must be easy 1o use as well as high-bandwidth and
high-capacity.

The first third of the dissertation presents a detailed analysis of a modem tertiary storage system, providing
a basis for the design and analysis of new algorithms for moving data between disks and tertiary storage
devices such as tapes. Modem supercomputer centers store terabytes of data on tapes; however, their storage
system designs and algorithms are ad hoc, since there is little research on modem systems on which to base
their choices. This thesis has presented such an analysis, laying the groundwork for future research on file
migration algorithms and mass storage systems designs.

Massively parallel processors (MPPs) have also created problems for designers of file systems for scientific
computing. Recent advances in disk technology allow the storage of hundreds of megabytes on a disk
smaller than a deck of playing cards, while modem high-speed MPP interconnection networks allow data
to be stored further from its eventual destination with little performance penalty, The RAMA design pro-
posed in this dissertation combines these two advances, yielding a parallel file system well-suited for sci-
entific applications that provides high bandwidth without the need for complex user directives. RAMA is
the first parallel file system designed to take advantage of tertiary storage rather than merely support it.
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